blob: 173be72e7fe07b5f24f9411923761fafb61b6d40 [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- BasicTTIImpl.h -------------------------------------------*- C++ -*-===//
2//
Andrew Walbran16937d02019-10-22 13:54:20 +01003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01006//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// This file provides a helper that implements much of the TTI interface in
11/// terms of the target-independent code generator and TargetLowering
12/// interfaces.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_CODEGEN_BASICTTIIMPL_H
17#define LLVM_CODEGEN_BASICTTIIMPL_H
18
19#include "llvm/ADT/APInt.h"
20#include "llvm/ADT/ArrayRef.h"
21#include "llvm/ADT/BitVector.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/Analysis/LoopInfo.h"
25#include "llvm/Analysis/TargetTransformInfo.h"
26#include "llvm/Analysis/TargetTransformInfoImpl.h"
27#include "llvm/CodeGen/ISDOpcodes.h"
28#include "llvm/CodeGen/TargetLowering.h"
29#include "llvm/CodeGen/TargetSubtargetInfo.h"
30#include "llvm/CodeGen/ValueTypes.h"
31#include "llvm/IR/BasicBlock.h"
32#include "llvm/IR/CallSite.h"
33#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/DerivedTypes.h"
37#include "llvm/IR/InstrTypes.h"
38#include "llvm/IR/Instruction.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/Operator.h"
42#include "llvm/IR/Type.h"
43#include "llvm/IR/Value.h"
44#include "llvm/MC/MCSchedule.h"
45#include "llvm/Support/Casting.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/ErrorHandling.h"
48#include "llvm/Support/MachineValueType.h"
49#include "llvm/Support/MathExtras.h"
50#include <algorithm>
51#include <cassert>
52#include <cstdint>
53#include <limits>
54#include <utility>
55
56namespace llvm {
57
58class Function;
59class GlobalValue;
60class LLVMContext;
61class ScalarEvolution;
62class SCEV;
63class TargetMachine;
64
65extern cl::opt<unsigned> PartialUnrollingThreshold;
66
Andrew Scullcdfcccc2018-10-05 20:58:37 +010067/// Base class which can be used to help build a TTI implementation.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010068///
69/// This class provides as much implementation of the TTI interface as is
70/// possible using the target independent parts of the code generator.
71///
72/// In order to subclass it, your class must implement a getST() method to
73/// return the subtarget, and a getTLI() method to return the target lowering.
74/// We need these methods implemented in the derived class so that this class
75/// doesn't have to duplicate storage for them.
76template <typename T>
77class BasicTTIImplBase : public TargetTransformInfoImplCRTPBase<T> {
78private:
79 using BaseT = TargetTransformInfoImplCRTPBase<T>;
80 using TTI = TargetTransformInfo;
81
Andrew Walbran16937d02019-10-22 13:54:20 +010082 /// Estimate a cost of Broadcast as an extract and sequence of insert
83 /// operations.
84 unsigned getBroadcastShuffleOverhead(Type *Ty) {
85 assert(Ty->isVectorTy() && "Can only shuffle vectors");
86 unsigned Cost = 0;
87 // Broadcast cost is equal to the cost of extracting the zero'th element
88 // plus the cost of inserting it into every element of the result vector.
89 Cost += static_cast<T *>(this)->getVectorInstrCost(
90 Instruction::ExtractElement, Ty, 0);
91
92 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
93 Cost += static_cast<T *>(this)->getVectorInstrCost(
94 Instruction::InsertElement, Ty, i);
95 }
96 return Cost;
97 }
98
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010099 /// Estimate a cost of shuffle as a sequence of extract and insert
100 /// operations.
101 unsigned getPermuteShuffleOverhead(Type *Ty) {
102 assert(Ty->isVectorTy() && "Can only shuffle vectors");
103 unsigned Cost = 0;
104 // Shuffle cost is equal to the cost of extracting element from its argument
105 // plus the cost of inserting them onto the result vector.
106
107 // e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from
108 // index 0 of first vector, index 1 of second vector,index 2 of first
109 // vector and finally index 3 of second vector and insert them at index
110 // <0,1,2,3> of result vector.
111 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
112 Cost += static_cast<T *>(this)
113 ->getVectorInstrCost(Instruction::InsertElement, Ty, i);
114 Cost += static_cast<T *>(this)
115 ->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
116 }
117 return Cost;
118 }
119
Andrew Walbran16937d02019-10-22 13:54:20 +0100120 /// Estimate a cost of subvector extraction as a sequence of extract and
121 /// insert operations.
122 unsigned getExtractSubvectorOverhead(Type *Ty, int Index, Type *SubTy) {
123 assert(Ty && Ty->isVectorTy() && SubTy && SubTy->isVectorTy() &&
124 "Can only extract subvectors from vectors");
125 int NumSubElts = SubTy->getVectorNumElements();
126 assert((Index + NumSubElts) <= (int)Ty->getVectorNumElements() &&
127 "SK_ExtractSubvector index out of range");
128
129 unsigned Cost = 0;
130 // Subvector extraction cost is equal to the cost of extracting element from
131 // the source type plus the cost of inserting them into the result vector
132 // type.
133 for (int i = 0; i != NumSubElts; ++i) {
134 Cost += static_cast<T *>(this)->getVectorInstrCost(
135 Instruction::ExtractElement, Ty, i + Index);
136 Cost += static_cast<T *>(this)->getVectorInstrCost(
137 Instruction::InsertElement, SubTy, i);
138 }
139 return Cost;
140 }
141
142 /// Estimate a cost of subvector insertion as a sequence of extract and
143 /// insert operations.
144 unsigned getInsertSubvectorOverhead(Type *Ty, int Index, Type *SubTy) {
145 assert(Ty && Ty->isVectorTy() && SubTy && SubTy->isVectorTy() &&
146 "Can only insert subvectors into vectors");
147 int NumSubElts = SubTy->getVectorNumElements();
148 assert((Index + NumSubElts) <= (int)Ty->getVectorNumElements() &&
149 "SK_InsertSubvector index out of range");
150
151 unsigned Cost = 0;
152 // Subvector insertion cost is equal to the cost of extracting element from
153 // the source type plus the cost of inserting them into the result vector
154 // type.
155 for (int i = 0; i != NumSubElts; ++i) {
156 Cost += static_cast<T *>(this)->getVectorInstrCost(
157 Instruction::ExtractElement, SubTy, i);
158 Cost += static_cast<T *>(this)->getVectorInstrCost(
159 Instruction::InsertElement, Ty, i + Index);
160 }
161 return Cost;
162 }
163
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100164 /// Local query method delegates up to T which *must* implement this!
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100165 const TargetSubtargetInfo *getST() const {
166 return static_cast<const T *>(this)->getST();
167 }
168
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100169 /// Local query method delegates up to T which *must* implement this!
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100170 const TargetLoweringBase *getTLI() const {
171 return static_cast<const T *>(this)->getTLI();
172 }
173
174 static ISD::MemIndexedMode getISDIndexedMode(TTI::MemIndexedMode M) {
175 switch (M) {
176 case TTI::MIM_Unindexed:
177 return ISD::UNINDEXED;
178 case TTI::MIM_PreInc:
179 return ISD::PRE_INC;
180 case TTI::MIM_PreDec:
181 return ISD::PRE_DEC;
182 case TTI::MIM_PostInc:
183 return ISD::POST_INC;
184 case TTI::MIM_PostDec:
185 return ISD::POST_DEC;
186 }
187 llvm_unreachable("Unexpected MemIndexedMode");
188 }
189
190protected:
191 explicit BasicTTIImplBase(const TargetMachine *TM, const DataLayout &DL)
192 : BaseT(DL) {}
193
194 using TargetTransformInfoImplBase::DL;
195
196public:
197 /// \name Scalar TTI Implementations
198 /// @{
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100199 bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
200 unsigned AddressSpace, unsigned Alignment,
201 bool *Fast) const {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100202 EVT E = EVT::getIntegerVT(Context, BitWidth);
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100203 return getTLI()->allowsMisalignedMemoryAccesses(
204 E, AddressSpace, Alignment, MachineMemOperand::MONone, Fast);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100205 }
206
207 bool hasBranchDivergence() { return false; }
208
209 bool isSourceOfDivergence(const Value *V) { return false; }
210
211 bool isAlwaysUniform(const Value *V) { return false; }
212
213 unsigned getFlatAddressSpace() {
214 // Return an invalid address space.
215 return -1;
216 }
217
218 bool isLegalAddImmediate(int64_t imm) {
219 return getTLI()->isLegalAddImmediate(imm);
220 }
221
222 bool isLegalICmpImmediate(int64_t imm) {
223 return getTLI()->isLegalICmpImmediate(imm);
224 }
225
226 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
227 bool HasBaseReg, int64_t Scale,
228 unsigned AddrSpace, Instruction *I = nullptr) {
229 TargetLoweringBase::AddrMode AM;
230 AM.BaseGV = BaseGV;
231 AM.BaseOffs = BaseOffset;
232 AM.HasBaseReg = HasBaseReg;
233 AM.Scale = Scale;
234 return getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace, I);
235 }
236
237 bool isIndexedLoadLegal(TTI::MemIndexedMode M, Type *Ty,
238 const DataLayout &DL) const {
239 EVT VT = getTLI()->getValueType(DL, Ty);
240 return getTLI()->isIndexedLoadLegal(getISDIndexedMode(M), VT);
241 }
242
243 bool isIndexedStoreLegal(TTI::MemIndexedMode M, Type *Ty,
244 const DataLayout &DL) const {
245 EVT VT = getTLI()->getValueType(DL, Ty);
246 return getTLI()->isIndexedStoreLegal(getISDIndexedMode(M), VT);
247 }
248
249 bool isLSRCostLess(TTI::LSRCost C1, TTI::LSRCost C2) {
250 return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
251 }
252
253 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
254 bool HasBaseReg, int64_t Scale, unsigned AddrSpace) {
255 TargetLoweringBase::AddrMode AM;
256 AM.BaseGV = BaseGV;
257 AM.BaseOffs = BaseOffset;
258 AM.HasBaseReg = HasBaseReg;
259 AM.Scale = Scale;
260 return getTLI()->getScalingFactorCost(DL, AM, Ty, AddrSpace);
261 }
262
263 bool isTruncateFree(Type *Ty1, Type *Ty2) {
264 return getTLI()->isTruncateFree(Ty1, Ty2);
265 }
266
267 bool isProfitableToHoist(Instruction *I) {
268 return getTLI()->isProfitableToHoist(I);
269 }
270
271 bool useAA() const { return getST()->useAA(); }
272
273 bool isTypeLegal(Type *Ty) {
274 EVT VT = getTLI()->getValueType(DL, Ty);
275 return getTLI()->isTypeLegal(VT);
276 }
277
278 int getGEPCost(Type *PointeeType, const Value *Ptr,
279 ArrayRef<const Value *> Operands) {
280 return BaseT::getGEPCost(PointeeType, Ptr, Operands);
281 }
282
283 int getExtCost(const Instruction *I, const Value *Src) {
284 if (getTLI()->isExtFree(I))
285 return TargetTransformInfo::TCC_Free;
286
287 if (isa<ZExtInst>(I) || isa<SExtInst>(I))
288 if (const LoadInst *LI = dyn_cast<LoadInst>(Src))
289 if (getTLI()->isExtLoad(LI, I, DL))
290 return TargetTransformInfo::TCC_Free;
291
292 return TargetTransformInfo::TCC_Basic;
293 }
294
295 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100296 ArrayRef<const Value *> Arguments, const User *U) {
297 return BaseT::getIntrinsicCost(IID, RetTy, Arguments, U);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100298 }
299
300 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100301 ArrayRef<Type *> ParamTys, const User *U) {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100302 if (IID == Intrinsic::cttz) {
303 if (getTLI()->isCheapToSpeculateCttz())
304 return TargetTransformInfo::TCC_Basic;
305 return TargetTransformInfo::TCC_Expensive;
306 }
307
308 if (IID == Intrinsic::ctlz) {
309 if (getTLI()->isCheapToSpeculateCtlz())
310 return TargetTransformInfo::TCC_Basic;
311 return TargetTransformInfo::TCC_Expensive;
312 }
313
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100314 return BaseT::getIntrinsicCost(IID, RetTy, ParamTys, U);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100315 }
316
317 unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
318 unsigned &JumpTableSize) {
319 /// Try to find the estimated number of clusters. Note that the number of
320 /// clusters identified in this function could be different from the actural
321 /// numbers found in lowering. This function ignore switches that are
322 /// lowered with a mix of jump table / bit test / BTree. This function was
323 /// initially intended to be used when estimating the cost of switch in
324 /// inline cost heuristic, but it's a generic cost model to be used in other
325 /// places (e.g., in loop unrolling).
326 unsigned N = SI.getNumCases();
327 const TargetLoweringBase *TLI = getTLI();
328 const DataLayout &DL = this->getDataLayout();
329
330 JumpTableSize = 0;
331 bool IsJTAllowed = TLI->areJTsAllowed(SI.getParent()->getParent());
332
333 // Early exit if both a jump table and bit test are not allowed.
334 if (N < 1 || (!IsJTAllowed && DL.getIndexSizeInBits(0u) < N))
335 return N;
336
337 APInt MaxCaseVal = SI.case_begin()->getCaseValue()->getValue();
338 APInt MinCaseVal = MaxCaseVal;
339 for (auto CI : SI.cases()) {
340 const APInt &CaseVal = CI.getCaseValue()->getValue();
341 if (CaseVal.sgt(MaxCaseVal))
342 MaxCaseVal = CaseVal;
343 if (CaseVal.slt(MinCaseVal))
344 MinCaseVal = CaseVal;
345 }
346
347 // Check if suitable for a bit test
348 if (N <= DL.getIndexSizeInBits(0u)) {
349 SmallPtrSet<const BasicBlock *, 4> Dests;
350 for (auto I : SI.cases())
351 Dests.insert(I.getCaseSuccessor());
352
353 if (TLI->isSuitableForBitTests(Dests.size(), N, MinCaseVal, MaxCaseVal,
354 DL))
355 return 1;
356 }
357
358 // Check if suitable for a jump table.
359 if (IsJTAllowed) {
360 if (N < 2 || N < TLI->getMinimumJumpTableEntries())
361 return N;
362 uint64_t Range =
363 (MaxCaseVal - MinCaseVal)
364 .getLimitedValue(std::numeric_limits<uint64_t>::max() - 1) + 1;
365 // Check whether a range of clusters is dense enough for a jump table
366 if (TLI->isSuitableForJumpTable(&SI, N, Range)) {
367 JumpTableSize = Range;
368 return 1;
369 }
370 }
371 return N;
372 }
373
374 unsigned getJumpBufAlignment() { return getTLI()->getJumpBufAlignment(); }
375
376 unsigned getJumpBufSize() { return getTLI()->getJumpBufSize(); }
377
378 bool shouldBuildLookupTables() {
379 const TargetLoweringBase *TLI = getTLI();
380 return TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
381 TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
382 }
383
384 bool haveFastSqrt(Type *Ty) {
385 const TargetLoweringBase *TLI = getTLI();
386 EVT VT = TLI->getValueType(DL, Ty);
387 return TLI->isTypeLegal(VT) &&
388 TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
389 }
390
391 bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
392 return true;
393 }
394
395 unsigned getFPOpCost(Type *Ty) {
396 // Check whether FADD is available, as a proxy for floating-point in
397 // general.
398 const TargetLoweringBase *TLI = getTLI();
399 EVT VT = TLI->getValueType(DL, Ty);
400 if (TLI->isOperationLegalOrCustomOrPromote(ISD::FADD, VT))
401 return TargetTransformInfo::TCC_Basic;
402 return TargetTransformInfo::TCC_Expensive;
403 }
404
405 unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) {
406 const TargetLoweringBase *TLI = getTLI();
407 switch (Opcode) {
408 default: break;
409 case Instruction::Trunc:
410 if (TLI->isTruncateFree(OpTy, Ty))
411 return TargetTransformInfo::TCC_Free;
412 return TargetTransformInfo::TCC_Basic;
413 case Instruction::ZExt:
414 if (TLI->isZExtFree(OpTy, Ty))
415 return TargetTransformInfo::TCC_Free;
416 return TargetTransformInfo::TCC_Basic;
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100417
418 case Instruction::AddrSpaceCast:
419 if (TLI->isFreeAddrSpaceCast(OpTy->getPointerAddressSpace(),
420 Ty->getPointerAddressSpace()))
421 return TargetTransformInfo::TCC_Free;
422 return TargetTransformInfo::TCC_Basic;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100423 }
424
425 return BaseT::getOperationCost(Opcode, Ty, OpTy);
426 }
427
428 unsigned getInliningThresholdMultiplier() { return 1; }
429
430 void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
431 TTI::UnrollingPreferences &UP) {
432 // This unrolling functionality is target independent, but to provide some
433 // motivation for its intended use, for x86:
434
435 // According to the Intel 64 and IA-32 Architectures Optimization Reference
436 // Manual, Intel Core models and later have a loop stream detector (and
437 // associated uop queue) that can benefit from partial unrolling.
438 // The relevant requirements are:
439 // - The loop must have no more than 4 (8 for Nehalem and later) branches
440 // taken, and none of them may be calls.
441 // - The loop can have no more than 18 (28 for Nehalem and later) uops.
442
443 // According to the Software Optimization Guide for AMD Family 15h
444 // Processors, models 30h-4fh (Steamroller and later) have a loop predictor
445 // and loop buffer which can benefit from partial unrolling.
446 // The relevant requirements are:
447 // - The loop must have fewer than 16 branches
448 // - The loop must have less than 40 uops in all executed loop branches
449
450 // The number of taken branches in a loop is hard to estimate here, and
451 // benchmarking has revealed that it is better not to be conservative when
452 // estimating the branch count. As a result, we'll ignore the branch limits
453 // until someone finds a case where it matters in practice.
454
455 unsigned MaxOps;
456 const TargetSubtargetInfo *ST = getST();
457 if (PartialUnrollingThreshold.getNumOccurrences() > 0)
458 MaxOps = PartialUnrollingThreshold;
459 else if (ST->getSchedModel().LoopMicroOpBufferSize > 0)
460 MaxOps = ST->getSchedModel().LoopMicroOpBufferSize;
461 else
462 return;
463
464 // Scan the loop: don't unroll loops with calls.
465 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
466 ++I) {
467 BasicBlock *BB = *I;
468
469 for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); J != JE; ++J)
470 if (isa<CallInst>(J) || isa<InvokeInst>(J)) {
471 ImmutableCallSite CS(&*J);
472 if (const Function *F = CS.getCalledFunction()) {
473 if (!static_cast<T *>(this)->isLoweredToCall(F))
474 continue;
475 }
476
477 return;
478 }
479 }
480
481 // Enable runtime and partial unrolling up to the specified size.
482 // Enable using trip count upper bound to unroll loops.
483 UP.Partial = UP.Runtime = UP.UpperBound = true;
484 UP.PartialThreshold = MaxOps;
485
486 // Avoid unrolling when optimizing for size.
487 UP.OptSizeThreshold = 0;
488 UP.PartialOptSizeThreshold = 0;
489
490 // Set number of instructions optimized when "back edge"
491 // becomes "fall through" to default value of 2.
492 UP.BEInsns = 2;
493 }
494
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100495 bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
496 AssumptionCache &AC,
497 TargetLibraryInfo *LibInfo,
498 HardwareLoopInfo &HWLoopInfo) {
499 return BaseT::isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
500 }
501
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100502 int getInstructionLatency(const Instruction *I) {
503 if (isa<LoadInst>(I))
504 return getST()->getSchedModel().DefaultLoadLatency;
505
506 return BaseT::getInstructionLatency(I);
507 }
508
509 /// @}
510
511 /// \name Vector TTI Implementations
512 /// @{
513
514 unsigned getNumberOfRegisters(bool Vector) { return Vector ? 0 : 1; }
515
516 unsigned getRegisterBitWidth(bool Vector) const { return 32; }
517
518 /// Estimate the overhead of scalarizing an instruction. Insert and Extract
519 /// are set if the result needs to be inserted and/or extracted from vectors.
520 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
521 assert(Ty->isVectorTy() && "Can only scalarize vectors");
522 unsigned Cost = 0;
523
524 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
525 if (Insert)
526 Cost += static_cast<T *>(this)
527 ->getVectorInstrCost(Instruction::InsertElement, Ty, i);
528 if (Extract)
529 Cost += static_cast<T *>(this)
530 ->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
531 }
532
533 return Cost;
534 }
535
536 /// Estimate the overhead of scalarizing an instructions unique
537 /// non-constant operands. The types of the arguments are ordinarily
538 /// scalar, in which case the costs are multiplied with VF.
539 unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
540 unsigned VF) {
541 unsigned Cost = 0;
542 SmallPtrSet<const Value*, 4> UniqueOperands;
543 for (const Value *A : Args) {
544 if (!isa<Constant>(A) && UniqueOperands.insert(A).second) {
545 Type *VecTy = nullptr;
546 if (A->getType()->isVectorTy()) {
547 VecTy = A->getType();
548 // If A is a vector operand, VF should be 1 or correspond to A.
549 assert((VF == 1 || VF == VecTy->getVectorNumElements()) &&
550 "Vector argument does not match VF");
551 }
552 else
553 VecTy = VectorType::get(A->getType(), VF);
554
555 Cost += getScalarizationOverhead(VecTy, false, true);
556 }
557 }
558
559 return Cost;
560 }
561
562 unsigned getScalarizationOverhead(Type *VecTy, ArrayRef<const Value *> Args) {
563 assert(VecTy->isVectorTy());
564
565 unsigned Cost = 0;
566
567 Cost += getScalarizationOverhead(VecTy, true, false);
568 if (!Args.empty())
569 Cost += getOperandsScalarizationOverhead(Args,
570 VecTy->getVectorNumElements());
571 else
572 // When no information on arguments is provided, we add the cost
573 // associated with one argument as a heuristic.
574 Cost += getScalarizationOverhead(VecTy, false, true);
575
576 return Cost;
577 }
578
579 unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }
580
581 unsigned getArithmeticInstrCost(
582 unsigned Opcode, Type *Ty,
583 TTI::OperandValueKind Opd1Info = TTI::OK_AnyValue,
584 TTI::OperandValueKind Opd2Info = TTI::OK_AnyValue,
585 TTI::OperandValueProperties Opd1PropInfo = TTI::OP_None,
586 TTI::OperandValueProperties Opd2PropInfo = TTI::OP_None,
587 ArrayRef<const Value *> Args = ArrayRef<const Value *>()) {
588 // Check if any of the operands are vector operands.
589 const TargetLoweringBase *TLI = getTLI();
590 int ISD = TLI->InstructionOpcodeToISD(Opcode);
591 assert(ISD && "Invalid opcode");
592
593 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
594
595 bool IsFloat = Ty->isFPOrFPVectorTy();
596 // Assume that floating point arithmetic operations cost twice as much as
597 // integer operations.
598 unsigned OpCost = (IsFloat ? 2 : 1);
599
600 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
601 // The operation is legal. Assume it costs 1.
602 // TODO: Once we have extract/insert subvector cost we need to use them.
603 return LT.first * OpCost;
604 }
605
606 if (!TLI->isOperationExpand(ISD, LT.second)) {
607 // If the operation is custom lowered, then assume that the code is twice
608 // as expensive.
609 return LT.first * 2 * OpCost;
610 }
611
612 // Else, assume that we need to scalarize this op.
613 // TODO: If one of the types get legalized by splitting, handle this
614 // similarly to what getCastInstrCost() does.
615 if (Ty->isVectorTy()) {
616 unsigned Num = Ty->getVectorNumElements();
617 unsigned Cost = static_cast<T *>(this)
618 ->getArithmeticInstrCost(Opcode, Ty->getScalarType());
619 // Return the cost of multiple scalar invocation plus the cost of
620 // inserting and extracting the values.
621 return getScalarizationOverhead(Ty, Args) + Num * Cost;
622 }
623
624 // We don't know anything about this scalar instruction.
625 return OpCost;
626 }
627
628 unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
629 Type *SubTp) {
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100630 switch (Kind) {
Andrew Walbran16937d02019-10-22 13:54:20 +0100631 case TTI::SK_Broadcast:
632 return getBroadcastShuffleOverhead(Tp);
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100633 case TTI::SK_Select:
Andrew Walbran16937d02019-10-22 13:54:20 +0100634 case TTI::SK_Reverse:
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100635 case TTI::SK_Transpose:
636 case TTI::SK_PermuteSingleSrc:
637 case TTI::SK_PermuteTwoSrc:
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100638 return getPermuteShuffleOverhead(Tp);
Andrew Walbran16937d02019-10-22 13:54:20 +0100639 case TTI::SK_ExtractSubvector:
640 return getExtractSubvectorOverhead(Tp, Index, SubTp);
641 case TTI::SK_InsertSubvector:
642 return getInsertSubvectorOverhead(Tp, Index, SubTp);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100643 }
Andrew Walbran16937d02019-10-22 13:54:20 +0100644 llvm_unreachable("Unknown TTI::ShuffleKind");
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100645 }
646
647 unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
648 const Instruction *I = nullptr) {
649 const TargetLoweringBase *TLI = getTLI();
650 int ISD = TLI->InstructionOpcodeToISD(Opcode);
651 assert(ISD && "Invalid opcode");
652 std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, Src);
653 std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(DL, Dst);
654
655 // Check for NOOP conversions.
656 if (SrcLT.first == DstLT.first &&
657 SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
658
659 // Bitcast between types that are legalized to the same type are free.
660 if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc)
661 return 0;
662 }
663
664 if (Opcode == Instruction::Trunc &&
665 TLI->isTruncateFree(SrcLT.second, DstLT.second))
666 return 0;
667
668 if (Opcode == Instruction::ZExt &&
669 TLI->isZExtFree(SrcLT.second, DstLT.second))
670 return 0;
671
672 if (Opcode == Instruction::AddrSpaceCast &&
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100673 TLI->isFreeAddrSpaceCast(Src->getPointerAddressSpace(),
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100674 Dst->getPointerAddressSpace()))
675 return 0;
676
677 // If this is a zext/sext of a load, return 0 if the corresponding
678 // extending load exists on target.
679 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
680 I && isa<LoadInst>(I->getOperand(0))) {
681 EVT ExtVT = EVT::getEVT(Dst);
682 EVT LoadVT = EVT::getEVT(Src);
683 unsigned LType =
684 ((Opcode == Instruction::ZExt) ? ISD::ZEXTLOAD : ISD::SEXTLOAD);
685 if (TLI->isLoadExtLegal(LType, ExtVT, LoadVT))
686 return 0;
687 }
688
689 // If the cast is marked as legal (or promote) then assume low cost.
690 if (SrcLT.first == DstLT.first &&
691 TLI->isOperationLegalOrPromote(ISD, DstLT.second))
692 return 1;
693
694 // Handle scalar conversions.
695 if (!Src->isVectorTy() && !Dst->isVectorTy()) {
696 // Scalar bitcasts are usually free.
697 if (Opcode == Instruction::BitCast)
698 return 0;
699
700 // Just check the op cost. If the operation is legal then assume it costs
701 // 1.
702 if (!TLI->isOperationExpand(ISD, DstLT.second))
703 return 1;
704
705 // Assume that illegal scalar instruction are expensive.
706 return 4;
707 }
708
709 // Check vector-to-vector casts.
710 if (Dst->isVectorTy() && Src->isVectorTy()) {
711 // If the cast is between same-sized registers, then the check is simple.
712 if (SrcLT.first == DstLT.first &&
713 SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
714
715 // Assume that Zext is done using AND.
716 if (Opcode == Instruction::ZExt)
717 return 1;
718
719 // Assume that sext is done using SHL and SRA.
720 if (Opcode == Instruction::SExt)
721 return 2;
722
723 // Just check the op cost. If the operation is legal then assume it
724 // costs
725 // 1 and multiply by the type-legalization overhead.
726 if (!TLI->isOperationExpand(ISD, DstLT.second))
727 return SrcLT.first * 1;
728 }
729
730 // If we are legalizing by splitting, query the concrete TTI for the cost
731 // of casting the original vector twice. We also need to factor in the
732 // cost of the split itself. Count that as 1, to be consistent with
733 // TLI->getTypeLegalizationCost().
734 if ((TLI->getTypeAction(Src->getContext(), TLI->getValueType(DL, Src)) ==
735 TargetLowering::TypeSplitVector) ||
736 (TLI->getTypeAction(Dst->getContext(), TLI->getValueType(DL, Dst)) ==
737 TargetLowering::TypeSplitVector)) {
738 Type *SplitDst = VectorType::get(Dst->getVectorElementType(),
739 Dst->getVectorNumElements() / 2);
740 Type *SplitSrc = VectorType::get(Src->getVectorElementType(),
741 Src->getVectorNumElements() / 2);
742 T *TTI = static_cast<T *>(this);
743 return TTI->getVectorSplitCost() +
744 (2 * TTI->getCastInstrCost(Opcode, SplitDst, SplitSrc, I));
745 }
746
747 // In other cases where the source or destination are illegal, assume
748 // the operation will get scalarized.
749 unsigned Num = Dst->getVectorNumElements();
750 unsigned Cost = static_cast<T *>(this)->getCastInstrCost(
751 Opcode, Dst->getScalarType(), Src->getScalarType(), I);
752
753 // Return the cost of multiple scalar invocation plus the cost of
754 // inserting and extracting the values.
755 return getScalarizationOverhead(Dst, true, true) + Num * Cost;
756 }
757
758 // We already handled vector-to-vector and scalar-to-scalar conversions.
759 // This
760 // is where we handle bitcast between vectors and scalars. We need to assume
761 // that the conversion is scalarized in one way or another.
762 if (Opcode == Instruction::BitCast)
763 // Illegal bitcasts are done by storing and loading from a stack slot.
764 return (Src->isVectorTy() ? getScalarizationOverhead(Src, false, true)
765 : 0) +
766 (Dst->isVectorTy() ? getScalarizationOverhead(Dst, true, false)
767 : 0);
768
769 llvm_unreachable("Unhandled cast");
770 }
771
772 unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst,
773 VectorType *VecTy, unsigned Index) {
774 return static_cast<T *>(this)->getVectorInstrCost(
775 Instruction::ExtractElement, VecTy, Index) +
776 static_cast<T *>(this)->getCastInstrCost(Opcode, Dst,
777 VecTy->getElementType());
778 }
779
780 unsigned getCFInstrCost(unsigned Opcode) {
781 // Branches are assumed to be predicted.
782 return 0;
783 }
784
785 unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
786 const Instruction *I) {
787 const TargetLoweringBase *TLI = getTLI();
788 int ISD = TLI->InstructionOpcodeToISD(Opcode);
789 assert(ISD && "Invalid opcode");
790
791 // Selects on vectors are actually vector selects.
792 if (ISD == ISD::SELECT) {
793 assert(CondTy && "CondTy must exist");
794 if (CondTy->isVectorTy())
795 ISD = ISD::VSELECT;
796 }
797 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
798
799 if (!(ValTy->isVectorTy() && !LT.second.isVector()) &&
800 !TLI->isOperationExpand(ISD, LT.second)) {
801 // The operation is legal. Assume it costs 1. Multiply
802 // by the type-legalization overhead.
803 return LT.first * 1;
804 }
805
806 // Otherwise, assume that the cast is scalarized.
807 // TODO: If one of the types get legalized by splitting, handle this
808 // similarly to what getCastInstrCost() does.
809 if (ValTy->isVectorTy()) {
810 unsigned Num = ValTy->getVectorNumElements();
811 if (CondTy)
812 CondTy = CondTy->getScalarType();
813 unsigned Cost = static_cast<T *>(this)->getCmpSelInstrCost(
814 Opcode, ValTy->getScalarType(), CondTy, I);
815
816 // Return the cost of multiple scalar invocation plus the cost of
817 // inserting and extracting the values.
818 return getScalarizationOverhead(ValTy, true, false) + Num * Cost;
819 }
820
821 // Unknown scalar opcode.
822 return 1;
823 }
824
825 unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
826 std::pair<unsigned, MVT> LT =
827 getTLI()->getTypeLegalizationCost(DL, Val->getScalarType());
828
829 return LT.first;
830 }
831
832 unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
833 unsigned AddressSpace, const Instruction *I = nullptr) {
834 assert(!Src->isVoidTy() && "Invalid type");
835 std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Src);
836
837 // Assuming that all loads of legal types cost 1.
838 unsigned Cost = LT.first;
839
840 if (Src->isVectorTy() &&
841 Src->getPrimitiveSizeInBits() < LT.second.getSizeInBits()) {
842 // This is a vector load that legalizes to a larger type than the vector
843 // itself. Unless the corresponding extending load or truncating store is
844 // legal, then this will scalarize.
845 TargetLowering::LegalizeAction LA = TargetLowering::Expand;
846 EVT MemVT = getTLI()->getValueType(DL, Src);
847 if (Opcode == Instruction::Store)
848 LA = getTLI()->getTruncStoreAction(LT.second, MemVT);
849 else
850 LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, LT.second, MemVT);
851
852 if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) {
853 // This is a vector load/store for some illegal type that is scalarized.
854 // We must account for the cost of building or decomposing the vector.
855 Cost += getScalarizationOverhead(Src, Opcode != Instruction::Store,
856 Opcode == Instruction::Store);
857 }
858 }
859
860 return Cost;
861 }
862
863 unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
864 unsigned Factor,
865 ArrayRef<unsigned> Indices,
Andrew Walbran16937d02019-10-22 13:54:20 +0100866 unsigned Alignment, unsigned AddressSpace,
867 bool UseMaskForCond = false,
868 bool UseMaskForGaps = false) {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100869 VectorType *VT = dyn_cast<VectorType>(VecTy);
870 assert(VT && "Expect a vector type for interleaved memory op");
871
872 unsigned NumElts = VT->getNumElements();
873 assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor");
874
875 unsigned NumSubElts = NumElts / Factor;
876 VectorType *SubVT = VectorType::get(VT->getElementType(), NumSubElts);
877
878 // Firstly, the cost of load/store operation.
Andrew Walbran16937d02019-10-22 13:54:20 +0100879 unsigned Cost;
880 if (UseMaskForCond || UseMaskForGaps)
881 Cost = static_cast<T *>(this)->getMaskedMemoryOpCost(
882 Opcode, VecTy, Alignment, AddressSpace);
883 else
884 Cost = static_cast<T *>(this)->getMemoryOpCost(Opcode, VecTy, Alignment,
885 AddressSpace);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100886
887 // Legalize the vector type, and get the legalized and unlegalized type
888 // sizes.
889 MVT VecTyLT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
890 unsigned VecTySize =
891 static_cast<T *>(this)->getDataLayout().getTypeStoreSize(VecTy);
892 unsigned VecTyLTSize = VecTyLT.getStoreSize();
893
894 // Return the ceiling of dividing A by B.
895 auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; };
896
897 // Scale the cost of the memory operation by the fraction of legalized
898 // instructions that will actually be used. We shouldn't account for the
899 // cost of dead instructions since they will be removed.
900 //
901 // E.g., An interleaved load of factor 8:
902 // %vec = load <16 x i64>, <16 x i64>* %ptr
903 // %v0 = shufflevector %vec, undef, <0, 8>
904 //
905 // If <16 x i64> is legalized to 8 v2i64 loads, only 2 of the loads will be
906 // used (those corresponding to elements [0:1] and [8:9] of the unlegalized
907 // type). The other loads are unused.
908 //
909 // We only scale the cost of loads since interleaved store groups aren't
910 // allowed to have gaps.
911 if (Opcode == Instruction::Load && VecTySize > VecTyLTSize) {
912 // The number of loads of a legal type it will take to represent a load
913 // of the unlegalized vector type.
914 unsigned NumLegalInsts = ceil(VecTySize, VecTyLTSize);
915
916 // The number of elements of the unlegalized type that correspond to a
917 // single legal instruction.
918 unsigned NumEltsPerLegalInst = ceil(NumElts, NumLegalInsts);
919
920 // Determine which legal instructions will be used.
921 BitVector UsedInsts(NumLegalInsts, false);
922 for (unsigned Index : Indices)
923 for (unsigned Elt = 0; Elt < NumSubElts; ++Elt)
924 UsedInsts.set((Index + Elt * Factor) / NumEltsPerLegalInst);
925
926 // Scale the cost of the load by the fraction of legal instructions that
927 // will be used.
928 Cost *= UsedInsts.count() / NumLegalInsts;
929 }
930
931 // Then plus the cost of interleave operation.
932 if (Opcode == Instruction::Load) {
933 // The interleave cost is similar to extract sub vectors' elements
934 // from the wide vector, and insert them into sub vectors.
935 //
936 // E.g. An interleaved load of factor 2 (with one member of index 0):
937 // %vec = load <8 x i32>, <8 x i32>* %ptr
938 // %v0 = shuffle %vec, undef, <0, 2, 4, 6> ; Index 0
939 // The cost is estimated as extract elements at 0, 2, 4, 6 from the
940 // <8 x i32> vector and insert them into a <4 x i32> vector.
941
942 assert(Indices.size() <= Factor &&
943 "Interleaved memory op has too many members");
944
945 for (unsigned Index : Indices) {
946 assert(Index < Factor && "Invalid index for interleaved memory op");
947
948 // Extract elements from loaded vector for each sub vector.
949 for (unsigned i = 0; i < NumSubElts; i++)
950 Cost += static_cast<T *>(this)->getVectorInstrCost(
951 Instruction::ExtractElement, VT, Index + i * Factor);
952 }
953
954 unsigned InsSubCost = 0;
955 for (unsigned i = 0; i < NumSubElts; i++)
956 InsSubCost += static_cast<T *>(this)->getVectorInstrCost(
957 Instruction::InsertElement, SubVT, i);
958
959 Cost += Indices.size() * InsSubCost;
960 } else {
961 // The interleave cost is extract all elements from sub vectors, and
962 // insert them into the wide vector.
963 //
964 // E.g. An interleaved store of factor 2:
965 // %v0_v1 = shuffle %v0, %v1, <0, 4, 1, 5, 2, 6, 3, 7>
966 // store <8 x i32> %interleaved.vec, <8 x i32>* %ptr
967 // The cost is estimated as extract all elements from both <4 x i32>
968 // vectors and insert into the <8 x i32> vector.
969
970 unsigned ExtSubCost = 0;
971 for (unsigned i = 0; i < NumSubElts; i++)
972 ExtSubCost += static_cast<T *>(this)->getVectorInstrCost(
973 Instruction::ExtractElement, SubVT, i);
974 Cost += ExtSubCost * Factor;
975
976 for (unsigned i = 0; i < NumElts; i++)
977 Cost += static_cast<T *>(this)
978 ->getVectorInstrCost(Instruction::InsertElement, VT, i);
979 }
980
Andrew Walbran16937d02019-10-22 13:54:20 +0100981 if (!UseMaskForCond)
982 return Cost;
983
984 Type *I8Type = Type::getInt8Ty(VT->getContext());
985 VectorType *MaskVT = VectorType::get(I8Type, NumElts);
986 SubVT = VectorType::get(I8Type, NumSubElts);
987
988 // The Mask shuffling cost is extract all the elements of the Mask
989 // and insert each of them Factor times into the wide vector:
990 //
991 // E.g. an interleaved group with factor 3:
992 // %mask = icmp ult <8 x i32> %vec1, %vec2
993 // %interleaved.mask = shufflevector <8 x i1> %mask, <8 x i1> undef,
994 // <24 x i32> <0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7>
995 // The cost is estimated as extract all mask elements from the <8xi1> mask
996 // vector and insert them factor times into the <24xi1> shuffled mask
997 // vector.
998 for (unsigned i = 0; i < NumSubElts; i++)
999 Cost += static_cast<T *>(this)->getVectorInstrCost(
1000 Instruction::ExtractElement, SubVT, i);
1001
1002 for (unsigned i = 0; i < NumElts; i++)
1003 Cost += static_cast<T *>(this)->getVectorInstrCost(
1004 Instruction::InsertElement, MaskVT, i);
1005
1006 // The Gaps mask is invariant and created outside the loop, therefore the
1007 // cost of creating it is not accounted for here. However if we have both
1008 // a MaskForGaps and some other mask that guards the execution of the
1009 // memory access, we need to account for the cost of And-ing the two masks
1010 // inside the loop.
1011 if (UseMaskForGaps)
1012 Cost += static_cast<T *>(this)->getArithmeticInstrCost(
1013 BinaryOperator::And, MaskVT);
1014
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001015 return Cost;
1016 }
1017
1018 /// Get intrinsic cost based on arguments.
1019 unsigned getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1020 ArrayRef<Value *> Args, FastMathFlags FMF,
1021 unsigned VF = 1) {
1022 unsigned RetVF = (RetTy->isVectorTy() ? RetTy->getVectorNumElements() : 1);
1023 assert((RetVF == 1 || VF == 1) && "VF > 1 and RetVF is a vector type");
Andrew Walbran16937d02019-10-22 13:54:20 +01001024 auto *ConcreteTTI = static_cast<T *>(this);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001025
1026 switch (IID) {
1027 default: {
1028 // Assume that we need to scalarize this intrinsic.
1029 SmallVector<Type *, 4> Types;
1030 for (Value *Op : Args) {
1031 Type *OpTy = Op->getType();
1032 assert(VF == 1 || !OpTy->isVectorTy());
1033 Types.push_back(VF == 1 ? OpTy : VectorType::get(OpTy, VF));
1034 }
1035
1036 if (VF > 1 && !RetTy->isVoidTy())
1037 RetTy = VectorType::get(RetTy, VF);
1038
1039 // Compute the scalarization overhead based on Args for a vector
1040 // intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while
1041 // CostModel will pass a vector RetTy and VF is 1.
1042 unsigned ScalarizationCost = std::numeric_limits<unsigned>::max();
1043 if (RetVF > 1 || VF > 1) {
1044 ScalarizationCost = 0;
1045 if (!RetTy->isVoidTy())
1046 ScalarizationCost += getScalarizationOverhead(RetTy, true, false);
1047 ScalarizationCost += getOperandsScalarizationOverhead(Args, VF);
1048 }
1049
Andrew Walbran16937d02019-10-22 13:54:20 +01001050 return ConcreteTTI->getIntrinsicInstrCost(IID, RetTy, Types, FMF,
1051 ScalarizationCost);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001052 }
1053 case Intrinsic::masked_scatter: {
1054 assert(VF == 1 && "Can't vectorize types here.");
1055 Value *Mask = Args[3];
1056 bool VarMask = !isa<Constant>(Mask);
1057 unsigned Alignment = cast<ConstantInt>(Args[2])->getZExtValue();
Andrew Walbran16937d02019-10-22 13:54:20 +01001058 return ConcreteTTI->getGatherScatterOpCost(
1059 Instruction::Store, Args[0]->getType(), Args[1], VarMask, Alignment);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001060 }
1061 case Intrinsic::masked_gather: {
1062 assert(VF == 1 && "Can't vectorize types here.");
1063 Value *Mask = Args[2];
1064 bool VarMask = !isa<Constant>(Mask);
1065 unsigned Alignment = cast<ConstantInt>(Args[1])->getZExtValue();
Andrew Walbran16937d02019-10-22 13:54:20 +01001066 return ConcreteTTI->getGatherScatterOpCost(Instruction::Load, RetTy,
1067 Args[0], VarMask, Alignment);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001068 }
1069 case Intrinsic::experimental_vector_reduce_add:
1070 case Intrinsic::experimental_vector_reduce_mul:
1071 case Intrinsic::experimental_vector_reduce_and:
1072 case Intrinsic::experimental_vector_reduce_or:
1073 case Intrinsic::experimental_vector_reduce_xor:
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001074 case Intrinsic::experimental_vector_reduce_v2_fadd:
1075 case Intrinsic::experimental_vector_reduce_v2_fmul:
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001076 case Intrinsic::experimental_vector_reduce_smax:
1077 case Intrinsic::experimental_vector_reduce_smin:
1078 case Intrinsic::experimental_vector_reduce_fmax:
1079 case Intrinsic::experimental_vector_reduce_fmin:
1080 case Intrinsic::experimental_vector_reduce_umax:
1081 case Intrinsic::experimental_vector_reduce_umin:
1082 return getIntrinsicInstrCost(IID, RetTy, Args[0]->getType(), FMF);
Andrew Walbran16937d02019-10-22 13:54:20 +01001083 case Intrinsic::fshl:
1084 case Intrinsic::fshr: {
1085 Value *X = Args[0];
1086 Value *Y = Args[1];
1087 Value *Z = Args[2];
1088 TTI::OperandValueProperties OpPropsX, OpPropsY, OpPropsZ, OpPropsBW;
1089 TTI::OperandValueKind OpKindX = TTI::getOperandInfo(X, OpPropsX);
1090 TTI::OperandValueKind OpKindY = TTI::getOperandInfo(Y, OpPropsY);
1091 TTI::OperandValueKind OpKindZ = TTI::getOperandInfo(Z, OpPropsZ);
1092 TTI::OperandValueKind OpKindBW = TTI::OK_UniformConstantValue;
1093 OpPropsBW = isPowerOf2_32(RetTy->getScalarSizeInBits()) ? TTI::OP_PowerOf2
1094 : TTI::OP_None;
1095 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
1096 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
1097 unsigned Cost = 0;
1098 Cost += ConcreteTTI->getArithmeticInstrCost(BinaryOperator::Or, RetTy);
1099 Cost += ConcreteTTI->getArithmeticInstrCost(BinaryOperator::Sub, RetTy);
1100 Cost += ConcreteTTI->getArithmeticInstrCost(BinaryOperator::Shl, RetTy,
1101 OpKindX, OpKindZ, OpPropsX);
1102 Cost += ConcreteTTI->getArithmeticInstrCost(BinaryOperator::LShr, RetTy,
1103 OpKindY, OpKindZ, OpPropsY);
1104 // Non-constant shift amounts requires a modulo.
1105 if (OpKindZ != TTI::OK_UniformConstantValue &&
1106 OpKindZ != TTI::OK_NonUniformConstantValue)
1107 Cost += ConcreteTTI->getArithmeticInstrCost(BinaryOperator::URem, RetTy,
1108 OpKindZ, OpKindBW, OpPropsZ,
1109 OpPropsBW);
1110 // For non-rotates (X != Y) we must add shift-by-zero handling costs.
1111 if (X != Y) {
1112 Type *CondTy = Type::getInt1Ty(RetTy->getContext());
1113 if (RetVF > 1)
1114 CondTy = VectorType::get(CondTy, RetVF);
1115 Cost += ConcreteTTI->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy,
1116 CondTy, nullptr);
1117 Cost += ConcreteTTI->getCmpSelInstrCost(BinaryOperator::Select, RetTy,
1118 CondTy, nullptr);
1119 }
1120 return Cost;
1121 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001122 }
1123 }
1124
1125 /// Get intrinsic cost based on argument types.
1126 /// If ScalarizationCostPassed is std::numeric_limits<unsigned>::max(), the
1127 /// cost of scalarizing the arguments and the return value will be computed
1128 /// based on types.
1129 unsigned getIntrinsicInstrCost(
1130 Intrinsic::ID IID, Type *RetTy, ArrayRef<Type *> Tys, FastMathFlags FMF,
1131 unsigned ScalarizationCostPassed = std::numeric_limits<unsigned>::max()) {
Andrew Walbran16937d02019-10-22 13:54:20 +01001132 unsigned RetVF = (RetTy->isVectorTy() ? RetTy->getVectorNumElements() : 1);
1133 auto *ConcreteTTI = static_cast<T *>(this);
1134
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001135 SmallVector<unsigned, 2> ISDs;
1136 unsigned SingleCallCost = 10; // Library call cost. Make it expensive.
1137 switch (IID) {
1138 default: {
1139 // Assume that we need to scalarize this intrinsic.
1140 unsigned ScalarizationCost = ScalarizationCostPassed;
1141 unsigned ScalarCalls = 1;
1142 Type *ScalarRetTy = RetTy;
1143 if (RetTy->isVectorTy()) {
1144 if (ScalarizationCostPassed == std::numeric_limits<unsigned>::max())
1145 ScalarizationCost = getScalarizationOverhead(RetTy, true, false);
1146 ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
1147 ScalarRetTy = RetTy->getScalarType();
1148 }
1149 SmallVector<Type *, 4> ScalarTys;
1150 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
1151 Type *Ty = Tys[i];
1152 if (Ty->isVectorTy()) {
1153 if (ScalarizationCostPassed == std::numeric_limits<unsigned>::max())
1154 ScalarizationCost += getScalarizationOverhead(Ty, false, true);
1155 ScalarCalls = std::max(ScalarCalls, Ty->getVectorNumElements());
1156 Ty = Ty->getScalarType();
1157 }
1158 ScalarTys.push_back(Ty);
1159 }
1160 if (ScalarCalls == 1)
1161 return 1; // Return cost of a scalar intrinsic. Assume it to be cheap.
1162
Andrew Walbran16937d02019-10-22 13:54:20 +01001163 unsigned ScalarCost =
1164 ConcreteTTI->getIntrinsicInstrCost(IID, ScalarRetTy, ScalarTys, FMF);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001165
1166 return ScalarCalls * ScalarCost + ScalarizationCost;
1167 }
1168 // Look for intrinsics that can be lowered directly or turned into a scalar
1169 // intrinsic call.
1170 case Intrinsic::sqrt:
1171 ISDs.push_back(ISD::FSQRT);
1172 break;
1173 case Intrinsic::sin:
1174 ISDs.push_back(ISD::FSIN);
1175 break;
1176 case Intrinsic::cos:
1177 ISDs.push_back(ISD::FCOS);
1178 break;
1179 case Intrinsic::exp:
1180 ISDs.push_back(ISD::FEXP);
1181 break;
1182 case Intrinsic::exp2:
1183 ISDs.push_back(ISD::FEXP2);
1184 break;
1185 case Intrinsic::log:
1186 ISDs.push_back(ISD::FLOG);
1187 break;
1188 case Intrinsic::log10:
1189 ISDs.push_back(ISD::FLOG10);
1190 break;
1191 case Intrinsic::log2:
1192 ISDs.push_back(ISD::FLOG2);
1193 break;
1194 case Intrinsic::fabs:
1195 ISDs.push_back(ISD::FABS);
1196 break;
Andrew Scull0372a572018-11-16 15:47:06 +00001197 case Intrinsic::canonicalize:
1198 ISDs.push_back(ISD::FCANONICALIZE);
1199 break;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001200 case Intrinsic::minnum:
1201 ISDs.push_back(ISD::FMINNUM);
1202 if (FMF.noNaNs())
Andrew Walbran16937d02019-10-22 13:54:20 +01001203 ISDs.push_back(ISD::FMINIMUM);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001204 break;
1205 case Intrinsic::maxnum:
1206 ISDs.push_back(ISD::FMAXNUM);
1207 if (FMF.noNaNs())
Andrew Walbran16937d02019-10-22 13:54:20 +01001208 ISDs.push_back(ISD::FMAXIMUM);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001209 break;
1210 case Intrinsic::copysign:
1211 ISDs.push_back(ISD::FCOPYSIGN);
1212 break;
1213 case Intrinsic::floor:
1214 ISDs.push_back(ISD::FFLOOR);
1215 break;
1216 case Intrinsic::ceil:
1217 ISDs.push_back(ISD::FCEIL);
1218 break;
1219 case Intrinsic::trunc:
1220 ISDs.push_back(ISD::FTRUNC);
1221 break;
1222 case Intrinsic::nearbyint:
1223 ISDs.push_back(ISD::FNEARBYINT);
1224 break;
1225 case Intrinsic::rint:
1226 ISDs.push_back(ISD::FRINT);
1227 break;
1228 case Intrinsic::round:
1229 ISDs.push_back(ISD::FROUND);
1230 break;
1231 case Intrinsic::pow:
1232 ISDs.push_back(ISD::FPOW);
1233 break;
1234 case Intrinsic::fma:
1235 ISDs.push_back(ISD::FMA);
1236 break;
1237 case Intrinsic::fmuladd:
1238 ISDs.push_back(ISD::FMA);
1239 break;
1240 // FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free.
1241 case Intrinsic::lifetime_start:
1242 case Intrinsic::lifetime_end:
1243 case Intrinsic::sideeffect:
1244 return 0;
1245 case Intrinsic::masked_store:
Andrew Walbran16937d02019-10-22 13:54:20 +01001246 return ConcreteTTI->getMaskedMemoryOpCost(Instruction::Store, Tys[0], 0,
1247 0);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001248 case Intrinsic::masked_load:
Andrew Walbran16937d02019-10-22 13:54:20 +01001249 return ConcreteTTI->getMaskedMemoryOpCost(Instruction::Load, RetTy, 0, 0);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001250 case Intrinsic::experimental_vector_reduce_add:
Andrew Walbran16937d02019-10-22 13:54:20 +01001251 return ConcreteTTI->getArithmeticReductionCost(Instruction::Add, Tys[0],
1252 /*IsPairwiseForm=*/false);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001253 case Intrinsic::experimental_vector_reduce_mul:
Andrew Walbran16937d02019-10-22 13:54:20 +01001254 return ConcreteTTI->getArithmeticReductionCost(Instruction::Mul, Tys[0],
1255 /*IsPairwiseForm=*/false);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001256 case Intrinsic::experimental_vector_reduce_and:
Andrew Walbran16937d02019-10-22 13:54:20 +01001257 return ConcreteTTI->getArithmeticReductionCost(Instruction::And, Tys[0],
1258 /*IsPairwiseForm=*/false);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001259 case Intrinsic::experimental_vector_reduce_or:
Andrew Walbran16937d02019-10-22 13:54:20 +01001260 return ConcreteTTI->getArithmeticReductionCost(Instruction::Or, Tys[0],
1261 /*IsPairwiseForm=*/false);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001262 case Intrinsic::experimental_vector_reduce_xor:
Andrew Walbran16937d02019-10-22 13:54:20 +01001263 return ConcreteTTI->getArithmeticReductionCost(Instruction::Xor, Tys[0],
1264 /*IsPairwiseForm=*/false);
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001265 case Intrinsic::experimental_vector_reduce_v2_fadd:
1266 return ConcreteTTI->getArithmeticReductionCost(
1267 Instruction::FAdd, Tys[0],
1268 /*IsPairwiseForm=*/false); // FIXME: Add new flag for cost of strict
1269 // reductions.
1270 case Intrinsic::experimental_vector_reduce_v2_fmul:
1271 return ConcreteTTI->getArithmeticReductionCost(
1272 Instruction::FMul, Tys[0],
1273 /*IsPairwiseForm=*/false); // FIXME: Add new flag for cost of strict
1274 // reductions.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001275 case Intrinsic::experimental_vector_reduce_smax:
1276 case Intrinsic::experimental_vector_reduce_smin:
1277 case Intrinsic::experimental_vector_reduce_fmax:
1278 case Intrinsic::experimental_vector_reduce_fmin:
Andrew Walbran16937d02019-10-22 13:54:20 +01001279 return ConcreteTTI->getMinMaxReductionCost(
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001280 Tys[0], CmpInst::makeCmpResultType(Tys[0]), /*IsPairwiseForm=*/false,
1281 /*IsSigned=*/true);
1282 case Intrinsic::experimental_vector_reduce_umax:
1283 case Intrinsic::experimental_vector_reduce_umin:
Andrew Walbran16937d02019-10-22 13:54:20 +01001284 return ConcreteTTI->getMinMaxReductionCost(
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001285 Tys[0], CmpInst::makeCmpResultType(Tys[0]), /*IsPairwiseForm=*/false,
1286 /*IsSigned=*/false);
Andrew Walbran16937d02019-10-22 13:54:20 +01001287 case Intrinsic::sadd_sat:
1288 case Intrinsic::ssub_sat: {
1289 Type *CondTy = Type::getInt1Ty(RetTy->getContext());
1290 if (RetVF > 1)
1291 CondTy = VectorType::get(CondTy, RetVF);
1292
1293 Type *OpTy = StructType::create({RetTy, CondTy});
1294 Intrinsic::ID OverflowOp = IID == Intrinsic::sadd_sat
1295 ? Intrinsic::sadd_with_overflow
1296 : Intrinsic::ssub_with_overflow;
1297
1298 // SatMax -> Overflow && SumDiff < 0
1299 // SatMin -> Overflow && SumDiff >= 0
1300 unsigned Cost = 0;
1301 Cost += ConcreteTTI->getIntrinsicInstrCost(
1302 OverflowOp, OpTy, {RetTy, RetTy}, FMF, ScalarizationCostPassed);
1303 Cost += ConcreteTTI->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy,
1304 CondTy, nullptr);
1305 Cost += 2 * ConcreteTTI->getCmpSelInstrCost(BinaryOperator::Select, RetTy,
1306 CondTy, nullptr);
1307 return Cost;
1308 }
1309 case Intrinsic::uadd_sat:
1310 case Intrinsic::usub_sat: {
1311 Type *CondTy = Type::getInt1Ty(RetTy->getContext());
1312 if (RetVF > 1)
1313 CondTy = VectorType::get(CondTy, RetVF);
1314
1315 Type *OpTy = StructType::create({RetTy, CondTy});
1316 Intrinsic::ID OverflowOp = IID == Intrinsic::uadd_sat
1317 ? Intrinsic::uadd_with_overflow
1318 : Intrinsic::usub_with_overflow;
1319
1320 unsigned Cost = 0;
1321 Cost += ConcreteTTI->getIntrinsicInstrCost(
1322 OverflowOp, OpTy, {RetTy, RetTy}, FMF, ScalarizationCostPassed);
1323 Cost += ConcreteTTI->getCmpSelInstrCost(BinaryOperator::Select, RetTy,
1324 CondTy, nullptr);
1325 return Cost;
1326 }
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001327 case Intrinsic::smul_fix:
1328 case Intrinsic::umul_fix: {
1329 unsigned ExtSize = RetTy->getScalarSizeInBits() * 2;
1330 Type *ExtTy = Type::getIntNTy(RetTy->getContext(), ExtSize);
1331 if (RetVF > 1)
1332 ExtTy = VectorType::get(ExtTy, RetVF);
1333
1334 unsigned ExtOp =
1335 IID == Intrinsic::smul_fix ? Instruction::SExt : Instruction::ZExt;
1336
1337 unsigned Cost = 0;
1338 Cost += 2 * ConcreteTTI->getCastInstrCost(ExtOp, ExtTy, RetTy);
1339 Cost += ConcreteTTI->getArithmeticInstrCost(Instruction::Mul, ExtTy);
1340 Cost +=
1341 2 * ConcreteTTI->getCastInstrCost(Instruction::Trunc, RetTy, ExtTy);
1342 Cost += ConcreteTTI->getArithmeticInstrCost(Instruction::LShr, RetTy,
1343 TTI::OK_AnyValue,
1344 TTI::OK_UniformConstantValue);
1345 Cost += ConcreteTTI->getArithmeticInstrCost(Instruction::Shl, RetTy,
1346 TTI::OK_AnyValue,
1347 TTI::OK_UniformConstantValue);
1348 Cost += ConcreteTTI->getArithmeticInstrCost(Instruction::Or, RetTy);
1349 return Cost;
1350 }
Andrew Walbran16937d02019-10-22 13:54:20 +01001351 case Intrinsic::sadd_with_overflow:
1352 case Intrinsic::ssub_with_overflow: {
1353 Type *SumTy = RetTy->getContainedType(0);
1354 Type *OverflowTy = RetTy->getContainedType(1);
1355 unsigned Opcode = IID == Intrinsic::sadd_with_overflow
1356 ? BinaryOperator::Add
1357 : BinaryOperator::Sub;
1358
1359 // LHSSign -> LHS >= 0
1360 // RHSSign -> RHS >= 0
1361 // SumSign -> Sum >= 0
1362 //
1363 // Add:
1364 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
1365 // Sub:
1366 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
1367 unsigned Cost = 0;
1368 Cost += ConcreteTTI->getArithmeticInstrCost(Opcode, SumTy);
1369 Cost += 3 * ConcreteTTI->getCmpSelInstrCost(BinaryOperator::ICmp, SumTy,
1370 OverflowTy, nullptr);
1371 Cost += 2 * ConcreteTTI->getCmpSelInstrCost(
1372 BinaryOperator::ICmp, OverflowTy, OverflowTy, nullptr);
1373 Cost +=
1374 ConcreteTTI->getArithmeticInstrCost(BinaryOperator::And, OverflowTy);
1375 return Cost;
1376 }
1377 case Intrinsic::uadd_with_overflow:
1378 case Intrinsic::usub_with_overflow: {
1379 Type *SumTy = RetTy->getContainedType(0);
1380 Type *OverflowTy = RetTy->getContainedType(1);
1381 unsigned Opcode = IID == Intrinsic::uadd_with_overflow
1382 ? BinaryOperator::Add
1383 : BinaryOperator::Sub;
1384
1385 unsigned Cost = 0;
1386 Cost += ConcreteTTI->getArithmeticInstrCost(Opcode, SumTy);
1387 Cost += ConcreteTTI->getCmpSelInstrCost(BinaryOperator::ICmp, SumTy,
1388 OverflowTy, nullptr);
1389 return Cost;
1390 }
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001391 case Intrinsic::smul_with_overflow:
1392 case Intrinsic::umul_with_overflow: {
1393 Type *MulTy = RetTy->getContainedType(0);
1394 Type *OverflowTy = RetTy->getContainedType(1);
1395 unsigned ExtSize = MulTy->getScalarSizeInBits() * 2;
1396 Type *ExtTy = Type::getIntNTy(RetTy->getContext(), ExtSize);
1397 if (MulTy->isVectorTy())
1398 ExtTy = VectorType::get(ExtTy, MulTy->getVectorNumElements() );
1399
1400 unsigned ExtOp =
1401 IID == Intrinsic::smul_fix ? Instruction::SExt : Instruction::ZExt;
1402
1403 unsigned Cost = 0;
1404 Cost += 2 * ConcreteTTI->getCastInstrCost(ExtOp, ExtTy, MulTy);
1405 Cost += ConcreteTTI->getArithmeticInstrCost(Instruction::Mul, ExtTy);
1406 Cost +=
1407 2 * ConcreteTTI->getCastInstrCost(Instruction::Trunc, MulTy, ExtTy);
1408 Cost += ConcreteTTI->getArithmeticInstrCost(Instruction::LShr, MulTy,
1409 TTI::OK_AnyValue,
1410 TTI::OK_UniformConstantValue);
1411
1412 if (IID == Intrinsic::smul_with_overflow)
1413 Cost += ConcreteTTI->getArithmeticInstrCost(
1414 Instruction::AShr, MulTy, TTI::OK_AnyValue,
1415 TTI::OK_UniformConstantValue);
1416
1417 Cost += ConcreteTTI->getCmpSelInstrCost(BinaryOperator::ICmp, MulTy,
1418 OverflowTy, nullptr);
1419 return Cost;
1420 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001421 case Intrinsic::ctpop:
1422 ISDs.push_back(ISD::CTPOP);
1423 // In case of legalization use TCC_Expensive. This is cheaper than a
1424 // library call but still not a cheap instruction.
1425 SingleCallCost = TargetTransformInfo::TCC_Expensive;
1426 break;
1427 // FIXME: ctlz, cttz, ...
1428 }
1429
1430 const TargetLoweringBase *TLI = getTLI();
1431 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
1432
1433 SmallVector<unsigned, 2> LegalCost;
1434 SmallVector<unsigned, 2> CustomCost;
1435 for (unsigned ISD : ISDs) {
1436 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
Andrew Scull0372a572018-11-16 15:47:06 +00001437 if (IID == Intrinsic::fabs && LT.second.isFloatingPoint() &&
1438 TLI->isFAbsFree(LT.second)) {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001439 return 0;
1440 }
1441
1442 // The operation is legal. Assume it costs 1.
1443 // If the type is split to multiple registers, assume that there is some
1444 // overhead to this.
1445 // TODO: Once we have extract/insert subvector cost we need to use them.
1446 if (LT.first > 1)
1447 LegalCost.push_back(LT.first * 2);
1448 else
1449 LegalCost.push_back(LT.first * 1);
1450 } else if (!TLI->isOperationExpand(ISD, LT.second)) {
1451 // If the operation is custom lowered then assume
1452 // that the code is twice as expensive.
1453 CustomCost.push_back(LT.first * 2);
1454 }
1455 }
1456
1457 auto MinLegalCostI = std::min_element(LegalCost.begin(), LegalCost.end());
1458 if (MinLegalCostI != LegalCost.end())
1459 return *MinLegalCostI;
1460
Andrew Walbran16937d02019-10-22 13:54:20 +01001461 auto MinCustomCostI =
1462 std::min_element(CustomCost.begin(), CustomCost.end());
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001463 if (MinCustomCostI != CustomCost.end())
1464 return *MinCustomCostI;
1465
1466 // If we can't lower fmuladd into an FMA estimate the cost as a floating
1467 // point mul followed by an add.
1468 if (IID == Intrinsic::fmuladd)
Andrew Walbran16937d02019-10-22 13:54:20 +01001469 return ConcreteTTI->getArithmeticInstrCost(BinaryOperator::FMul, RetTy) +
1470 ConcreteTTI->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001471
1472 // Else, assume that we need to scalarize this intrinsic. For math builtins
1473 // this will emit a costly libcall, adding call overhead and spills. Make it
1474 // very expensive.
1475 if (RetTy->isVectorTy()) {
1476 unsigned ScalarizationCost =
1477 ((ScalarizationCostPassed != std::numeric_limits<unsigned>::max())
1478 ? ScalarizationCostPassed
1479 : getScalarizationOverhead(RetTy, true, false));
1480 unsigned ScalarCalls = RetTy->getVectorNumElements();
1481 SmallVector<Type *, 4> ScalarTys;
1482 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
1483 Type *Ty = Tys[i];
1484 if (Ty->isVectorTy())
1485 Ty = Ty->getScalarType();
1486 ScalarTys.push_back(Ty);
1487 }
Andrew Walbran16937d02019-10-22 13:54:20 +01001488 unsigned ScalarCost = ConcreteTTI->getIntrinsicInstrCost(
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001489 IID, RetTy->getScalarType(), ScalarTys, FMF);
1490 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
1491 if (Tys[i]->isVectorTy()) {
1492 if (ScalarizationCostPassed == std::numeric_limits<unsigned>::max())
1493 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true);
1494 ScalarCalls = std::max(ScalarCalls, Tys[i]->getVectorNumElements());
1495 }
1496 }
1497
1498 return ScalarCalls * ScalarCost + ScalarizationCost;
1499 }
1500
1501 // This is going to be turned into a library call, make it expensive.
1502 return SingleCallCost;
1503 }
1504
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001505 /// Compute a cost of the given call instruction.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001506 ///
1507 /// Compute the cost of calling function F with return type RetTy and
1508 /// argument types Tys. F might be nullptr, in this case the cost of an
1509 /// arbitrary call with the specified signature will be returned.
1510 /// This is used, for instance, when we estimate call of a vector
1511 /// counterpart of the given function.
1512 /// \param F Called function, might be nullptr.
1513 /// \param RetTy Return value types.
1514 /// \param Tys Argument types.
1515 /// \returns The cost of Call instruction.
1516 unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) {
1517 return 10;
1518 }
1519
1520 unsigned getNumberOfParts(Type *Tp) {
1521 std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Tp);
1522 return LT.first;
1523 }
1524
1525 unsigned getAddressComputationCost(Type *Ty, ScalarEvolution *,
1526 const SCEV *) {
1527 return 0;
1528 }
1529
1530 /// Try to calculate arithmetic and shuffle op costs for reduction operations.
1531 /// We're assuming that reduction operation are performing the following way:
1532 /// 1. Non-pairwise reduction
1533 /// %val1 = shufflevector<n x t> %val, <n x t> %undef,
1534 /// <n x i32> <i32 n/2, i32 n/2 + 1, ..., i32 n, i32 undef, ..., i32 undef>
1535 /// \----------------v-------------/ \----------v------------/
1536 /// n/2 elements n/2 elements
1537 /// %red1 = op <n x t> %val, <n x t> val1
1538 /// After this operation we have a vector %red1 where only the first n/2
1539 /// elements are meaningful, the second n/2 elements are undefined and can be
1540 /// dropped. All other operations are actually working with the vector of
1541 /// length n/2, not n, though the real vector length is still n.
1542 /// %val2 = shufflevector<n x t> %red1, <n x t> %undef,
1543 /// <n x i32> <i32 n/4, i32 n/4 + 1, ..., i32 n/2, i32 undef, ..., i32 undef>
1544 /// \----------------v-------------/ \----------v------------/
1545 /// n/4 elements 3*n/4 elements
1546 /// %red2 = op <n x t> %red1, <n x t> val2 - working with the vector of
1547 /// length n/2, the resulting vector has length n/4 etc.
1548 /// 2. Pairwise reduction:
1549 /// Everything is the same except for an additional shuffle operation which
1550 /// is used to produce operands for pairwise kind of reductions.
1551 /// %val1 = shufflevector<n x t> %val, <n x t> %undef,
1552 /// <n x i32> <i32 0, i32 2, ..., i32 n-2, i32 undef, ..., i32 undef>
1553 /// \-------------v----------/ \----------v------------/
1554 /// n/2 elements n/2 elements
1555 /// %val2 = shufflevector<n x t> %val, <n x t> %undef,
1556 /// <n x i32> <i32 1, i32 3, ..., i32 n-1, i32 undef, ..., i32 undef>
1557 /// \-------------v----------/ \----------v------------/
1558 /// n/2 elements n/2 elements
1559 /// %red1 = op <n x t> %val1, <n x t> val2
1560 /// Again, the operation is performed on <n x t> vector, but the resulting
1561 /// vector %red1 is <n/2 x t> vector.
1562 ///
1563 /// The cost model should take into account that the actual length of the
1564 /// vector is reduced on each iteration.
1565 unsigned getArithmeticReductionCost(unsigned Opcode, Type *Ty,
1566 bool IsPairwise) {
1567 assert(Ty->isVectorTy() && "Expect a vector type");
1568 Type *ScalarTy = Ty->getVectorElementType();
1569 unsigned NumVecElts = Ty->getVectorNumElements();
1570 unsigned NumReduxLevels = Log2_32(NumVecElts);
1571 unsigned ArithCost = 0;
1572 unsigned ShuffleCost = 0;
1573 auto *ConcreteTTI = static_cast<T *>(this);
1574 std::pair<unsigned, MVT> LT =
1575 ConcreteTTI->getTLI()->getTypeLegalizationCost(DL, Ty);
1576 unsigned LongVectorCount = 0;
1577 unsigned MVTLen =
1578 LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
1579 while (NumVecElts > MVTLen) {
1580 NumVecElts /= 2;
Andrew Walbran16937d02019-10-22 13:54:20 +01001581 Type *SubTy = VectorType::get(ScalarTy, NumVecElts);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001582 // Assume the pairwise shuffles add a cost.
1583 ShuffleCost += (IsPairwise + 1) *
1584 ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty,
Andrew Walbran16937d02019-10-22 13:54:20 +01001585 NumVecElts, SubTy);
1586 ArithCost += ConcreteTTI->getArithmeticInstrCost(Opcode, SubTy);
1587 Ty = SubTy;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001588 ++LongVectorCount;
1589 }
Andrew Walbran16937d02019-10-22 13:54:20 +01001590
1591 NumReduxLevels -= LongVectorCount;
1592
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001593 // The minimal length of the vector is limited by the real length of vector
1594 // operations performed on the current platform. That's why several final
1595 // reduction operations are performed on the vectors with the same
1596 // architecture-dependent length.
Andrew Walbran16937d02019-10-22 13:54:20 +01001597
1598 // Non pairwise reductions need one shuffle per reduction level. Pairwise
1599 // reductions need two shuffles on every level, but the last one. On that
1600 // level one of the shuffles is <0, u, u, ...> which is identity.
1601 unsigned NumShuffles = NumReduxLevels;
1602 if (IsPairwise && NumReduxLevels >= 1)
1603 NumShuffles += NumReduxLevels - 1;
1604 ShuffleCost += NumShuffles *
1605 ConcreteTTI->getShuffleCost(TTI::SK_PermuteSingleSrc, Ty,
1606 0, Ty);
1607 ArithCost += NumReduxLevels *
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001608 ConcreteTTI->getArithmeticInstrCost(Opcode, Ty);
Andrew Walbran16937d02019-10-22 13:54:20 +01001609 return ShuffleCost + ArithCost +
1610 ConcreteTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001611 }
1612
1613 /// Try to calculate op costs for min/max reduction operations.
1614 /// \param CondTy Conditional type for the Select instruction.
1615 unsigned getMinMaxReductionCost(Type *Ty, Type *CondTy, bool IsPairwise,
1616 bool) {
1617 assert(Ty->isVectorTy() && "Expect a vector type");
1618 Type *ScalarTy = Ty->getVectorElementType();
1619 Type *ScalarCondTy = CondTy->getVectorElementType();
1620 unsigned NumVecElts = Ty->getVectorNumElements();
1621 unsigned NumReduxLevels = Log2_32(NumVecElts);
1622 unsigned CmpOpcode;
1623 if (Ty->isFPOrFPVectorTy()) {
1624 CmpOpcode = Instruction::FCmp;
1625 } else {
1626 assert(Ty->isIntOrIntVectorTy() &&
1627 "expecting floating point or integer type for min/max reduction");
1628 CmpOpcode = Instruction::ICmp;
1629 }
1630 unsigned MinMaxCost = 0;
1631 unsigned ShuffleCost = 0;
1632 auto *ConcreteTTI = static_cast<T *>(this);
1633 std::pair<unsigned, MVT> LT =
1634 ConcreteTTI->getTLI()->getTypeLegalizationCost(DL, Ty);
1635 unsigned LongVectorCount = 0;
1636 unsigned MVTLen =
1637 LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
1638 while (NumVecElts > MVTLen) {
1639 NumVecElts /= 2;
Andrew Walbran16937d02019-10-22 13:54:20 +01001640 Type *SubTy = VectorType::get(ScalarTy, NumVecElts);
1641 CondTy = VectorType::get(ScalarCondTy, NumVecElts);
1642
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001643 // Assume the pairwise shuffles add a cost.
1644 ShuffleCost += (IsPairwise + 1) *
1645 ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty,
Andrew Walbran16937d02019-10-22 13:54:20 +01001646 NumVecElts, SubTy);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001647 MinMaxCost +=
Andrew Walbran16937d02019-10-22 13:54:20 +01001648 ConcreteTTI->getCmpSelInstrCost(CmpOpcode, SubTy, CondTy, nullptr) +
1649 ConcreteTTI->getCmpSelInstrCost(Instruction::Select, SubTy, CondTy,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001650 nullptr);
Andrew Walbran16937d02019-10-22 13:54:20 +01001651 Ty = SubTy;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001652 ++LongVectorCount;
1653 }
Andrew Walbran16937d02019-10-22 13:54:20 +01001654
1655 NumReduxLevels -= LongVectorCount;
1656
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001657 // The minimal length of the vector is limited by the real length of vector
1658 // operations performed on the current platform. That's why several final
1659 // reduction opertions are perfomed on the vectors with the same
1660 // architecture-dependent length.
Andrew Walbran16937d02019-10-22 13:54:20 +01001661
1662 // Non pairwise reductions need one shuffle per reduction level. Pairwise
1663 // reductions need two shuffles on every level, but the last one. On that
1664 // level one of the shuffles is <0, u, u, ...> which is identity.
1665 unsigned NumShuffles = NumReduxLevels;
1666 if (IsPairwise && NumReduxLevels >= 1)
1667 NumShuffles += NumReduxLevels - 1;
1668 ShuffleCost += NumShuffles *
1669 ConcreteTTI->getShuffleCost(TTI::SK_PermuteSingleSrc, Ty,
1670 0, Ty);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001671 MinMaxCost +=
Andrew Walbran16937d02019-10-22 13:54:20 +01001672 NumReduxLevels *
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001673 (ConcreteTTI->getCmpSelInstrCost(CmpOpcode, Ty, CondTy, nullptr) +
1674 ConcreteTTI->getCmpSelInstrCost(Instruction::Select, Ty, CondTy,
1675 nullptr));
Andrew Walbran16937d02019-10-22 13:54:20 +01001676 // The last min/max should be in vector registers and we counted it above.
1677 // So just need a single extractelement.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001678 return ShuffleCost + MinMaxCost +
Andrew Walbran16937d02019-10-22 13:54:20 +01001679 ConcreteTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001680 }
1681
1682 unsigned getVectorSplitCost() { return 1; }
1683
1684 /// @}
1685};
1686
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001687/// Concrete BasicTTIImpl that can be used if no further customization
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001688/// is needed.
1689class BasicTTIImpl : public BasicTTIImplBase<BasicTTIImpl> {
1690 using BaseT = BasicTTIImplBase<BasicTTIImpl>;
1691
1692 friend class BasicTTIImplBase<BasicTTIImpl>;
1693
1694 const TargetSubtargetInfo *ST;
1695 const TargetLoweringBase *TLI;
1696
1697 const TargetSubtargetInfo *getST() const { return ST; }
1698 const TargetLoweringBase *getTLI() const { return TLI; }
1699
1700public:
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001701 explicit BasicTTIImpl(const TargetMachine *TM, const Function &F);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001702};
1703
1704} // end namespace llvm
1705
1706#endif // LLVM_CODEGEN_BASICTTIIMPL_H