blob: f84b2e7cef23b19dfd014b09913e65450c190125 [file] [log] [blame]
Paul Bakker5121ce52009-01-03 21:22:43 +00001/*
2 * Multi-precision integer library
3 *
Bence Szépkúti1e148272020-08-07 13:07:28 +02004 * Copyright The Mbed TLS Contributors
Manuel Pégourié-Gonnard37ff1402015-09-04 14:21:07 +02005 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
Paul Bakker5121ce52009-01-03 21:22:43 +000018 */
Simon Butcher15b15d12015-11-26 19:35:03 +000019
Paul Bakker5121ce52009-01-03 21:22:43 +000020/*
Simon Butcher15b15d12015-11-26 19:35:03 +000021 * The following sources were referenced in the design of this Multi-precision
22 * Integer library:
Paul Bakker5121ce52009-01-03 21:22:43 +000023 *
Simon Butcher15b15d12015-11-26 19:35:03 +000024 * [1] Handbook of Applied Cryptography - 1997
25 * Menezes, van Oorschot and Vanstone
26 *
27 * [2] Multi-Precision Math
28 * Tom St Denis
29 * https://github.com/libtom/libtommath/blob/develop/tommath.pdf
30 *
31 * [3] GNU Multi-Precision Arithmetic Library
32 * https://gmplib.org/manual/index.html
33 *
Simon Butcherf5ba0452015-12-27 23:01:55 +000034 */
Paul Bakker5121ce52009-01-03 21:22:43 +000035
Gilles Peskinedb09ef62020-06-03 01:43:33 +020036#include "common.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000037
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020038#if defined(MBEDTLS_BIGNUM_C)
Paul Bakker5121ce52009-01-03 21:22:43 +000039
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000040#include "mbedtls/bignum.h"
Janos Follath4614b9a2022-07-21 15:34:47 +010041#include "bignum_core.h"
Chris Jones4c5819c2021-03-03 17:45:34 +000042#include "bn_mul.h"
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050043#include "mbedtls/platform_util.h"
Janos Follath24eed8d2019-11-22 13:21:35 +000044#include "mbedtls/error.h"
Gabor Mezei22c9a6f2021-10-20 12:09:35 +020045#include "constant_time_internal.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000046
Dave Rodgman351c71b2021-12-06 17:50:53 +000047#include <limits.h>
Rich Evans00ab4702015-02-06 13:43:58 +000048#include <string.h>
49
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000050#include "mbedtls/platform.h"
Paul Bakker6e339b52013-07-03 13:37:05 +020051
Gilles Peskine449bd832023-01-11 14:50:10 +010052#define MPI_VALIDATE_RET(cond) \
53 MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA)
54#define MPI_VALIDATE(cond) \
55 MBEDTLS_INTERNAL_VALIDATE(cond)
Gabor Mezei66669142022-08-03 12:52:26 +020056
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050057/* Implementation that should never be optimized out by the compiler */
Gilles Peskine449bd832023-01-11 14:50:10 +010058static void mbedtls_mpi_zeroize(mbedtls_mpi_uint *v, size_t n)
Andres Amaya Garcia6698d2f2018-04-24 08:39:07 -050059{
Gilles Peskine449bd832023-01-11 14:50:10 +010060 mbedtls_platform_zeroize(v, ciL * n);
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050061}
62
Paul Bakker5121ce52009-01-03 21:22:43 +000063/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000064 * Initialize one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000065 */
Gilles Peskine449bd832023-01-11 14:50:10 +010066void mbedtls_mpi_init(mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +000067{
Gilles Peskine449bd832023-01-11 14:50:10 +010068 MPI_VALIDATE(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +000069
Paul Bakker6c591fa2011-05-05 11:49:20 +000070 X->s = 1;
71 X->n = 0;
72 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000073}
74
75/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000076 * Unallocate one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000077 */
Gilles Peskine449bd832023-01-11 14:50:10 +010078void mbedtls_mpi_free(mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +000079{
Gilles Peskine449bd832023-01-11 14:50:10 +010080 if (X == NULL) {
Paul Bakker6c591fa2011-05-05 11:49:20 +000081 return;
Gilles Peskine449bd832023-01-11 14:50:10 +010082 }
Paul Bakker5121ce52009-01-03 21:22:43 +000083
Gilles Peskine449bd832023-01-11 14:50:10 +010084 if (X->p != NULL) {
85 mbedtls_mpi_zeroize(X->p, X->n);
86 mbedtls_free(X->p);
Paul Bakker5121ce52009-01-03 21:22:43 +000087 }
88
Paul Bakker6c591fa2011-05-05 11:49:20 +000089 X->s = 1;
90 X->n = 0;
91 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000092}
93
94/*
95 * Enlarge to the specified number of limbs
96 */
Gilles Peskine449bd832023-01-11 14:50:10 +010097int mbedtls_mpi_grow(mbedtls_mpi *X, size_t nblimbs)
Paul Bakker5121ce52009-01-03 21:22:43 +000098{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020099 mbedtls_mpi_uint *p;
Gilles Peskine449bd832023-01-11 14:50:10 +0100100 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000101
Gilles Peskine449bd832023-01-11 14:50:10 +0100102 if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
103 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
104 }
Paul Bakkerf9688572011-05-05 10:00:45 +0000105
Gilles Peskine449bd832023-01-11 14:50:10 +0100106 if (X->n < nblimbs) {
107 if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(nblimbs, ciL)) == NULL) {
108 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
109 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000110
Gilles Peskine449bd832023-01-11 14:50:10 +0100111 if (X->p != NULL) {
112 memcpy(p, X->p, X->n * ciL);
113 mbedtls_mpi_zeroize(X->p, X->n);
114 mbedtls_free(X->p);
Paul Bakker5121ce52009-01-03 21:22:43 +0000115 }
116
Gilles Peskine053022f2023-06-29 19:26:48 +0200117 /* nblimbs fits in n because we ensure that MBEDTLS_MPI_MAX_LIMBS
118 * fits, and we've checked that nblimbs <= MBEDTLS_MPI_MAX_LIMBS. */
119 X->n = (unsigned short) nblimbs;
Paul Bakker5121ce52009-01-03 21:22:43 +0000120 X->p = p;
121 }
122
Gilles Peskine449bd832023-01-11 14:50:10 +0100123 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000124}
125
126/*
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100127 * Resize down as much as possible,
128 * while keeping at least the specified number of limbs
129 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100130int mbedtls_mpi_shrink(mbedtls_mpi *X, size_t nblimbs)
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100131{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200132 mbedtls_mpi_uint *p;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100133 size_t i;
Gilles Peskine449bd832023-01-11 14:50:10 +0100134 MPI_VALIDATE_RET(X != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000135
Gilles Peskine449bd832023-01-11 14:50:10 +0100136 if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
137 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
138 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100139
Gilles Peskinee2f563e2020-01-20 21:17:43 +0100140 /* Actually resize up if there are currently fewer than nblimbs limbs. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100141 if (X->n <= nblimbs) {
142 return mbedtls_mpi_grow(X, nblimbs);
143 }
Gilles Peskine322752b2020-01-21 13:59:51 +0100144 /* After this point, then X->n > nblimbs and in particular X->n > 0. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100145
Gilles Peskine449bd832023-01-11 14:50:10 +0100146 for (i = X->n - 1; i > 0; i--) {
147 if (X->p[i] != 0) {
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100148 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100149 }
150 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100151 i++;
152
Gilles Peskine449bd832023-01-11 14:50:10 +0100153 if (i < nblimbs) {
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100154 i = nblimbs;
Gilles Peskine449bd832023-01-11 14:50:10 +0100155 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100156
Gilles Peskine449bd832023-01-11 14:50:10 +0100157 if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(i, ciL)) == NULL) {
158 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
159 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100160
Gilles Peskine449bd832023-01-11 14:50:10 +0100161 if (X->p != NULL) {
162 memcpy(p, X->p, i * ciL);
163 mbedtls_mpi_zeroize(X->p, X->n);
164 mbedtls_free(X->p);
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100165 }
166
Gilles Peskine053022f2023-06-29 19:26:48 +0200167 /* i fits in n because we ensure that MBEDTLS_MPI_MAX_LIMBS
168 * fits, and we've checked that i <= nblimbs <= MBEDTLS_MPI_MAX_LIMBS. */
169 X->n = (unsigned short) i;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100170 X->p = p;
171
Gilles Peskine449bd832023-01-11 14:50:10 +0100172 return 0;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100173}
174
Gilles Peskineed32b572021-06-02 22:17:52 +0200175/* Resize X to have exactly n limbs and set it to 0. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100176static int mbedtls_mpi_resize_clear(mbedtls_mpi *X, size_t limbs)
Gilles Peskineed32b572021-06-02 22:17:52 +0200177{
Gilles Peskine449bd832023-01-11 14:50:10 +0100178 if (limbs == 0) {
179 mbedtls_mpi_free(X);
180 return 0;
181 } else if (X->n == limbs) {
182 memset(X->p, 0, limbs * ciL);
Gilles Peskineed32b572021-06-02 22:17:52 +0200183 X->s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +0100184 return 0;
185 } else {
186 mbedtls_mpi_free(X);
187 return mbedtls_mpi_grow(X, limbs);
Gilles Peskineed32b572021-06-02 22:17:52 +0200188 }
189}
190
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100191/*
Gilles Peskine3da1a8f2021-06-08 23:17:42 +0200192 * Copy the contents of Y into X.
193 *
194 * This function is not constant-time. Leading zeros in Y may be removed.
195 *
196 * Ensure that X does not shrink. This is not guaranteed by the public API,
197 * but some code in the bignum module relies on this property, for example
198 * in mbedtls_mpi_exp_mod().
Paul Bakker5121ce52009-01-03 21:22:43 +0000199 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100200int mbedtls_mpi_copy(mbedtls_mpi *X, const mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000201{
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100202 int ret = 0;
Paul Bakker23986e52011-04-24 08:57:21 +0000203 size_t i;
Gilles Peskine449bd832023-01-11 14:50:10 +0100204 MPI_VALIDATE_RET(X != NULL);
205 MPI_VALIDATE_RET(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000206
Gilles Peskine449bd832023-01-11 14:50:10 +0100207 if (X == Y) {
208 return 0;
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200209 }
210
Gilles Peskine449bd832023-01-11 14:50:10 +0100211 if (Y->n == 0) {
212 if (X->n != 0) {
213 X->s = 1;
214 memset(X->p, 0, X->n * ciL);
215 }
216 return 0;
217 }
218
219 for (i = Y->n - 1; i > 0; i--) {
220 if (Y->p[i] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000221 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100222 }
223 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000224 i++;
225
226 X->s = Y->s;
227
Gilles Peskine449bd832023-01-11 14:50:10 +0100228 if (X->n < i) {
229 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i));
230 } else {
231 memset(X->p + i, 0, (X->n - i) * ciL);
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100232 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000233
Gilles Peskine449bd832023-01-11 14:50:10 +0100234 memcpy(X->p, Y->p, i * ciL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000235
236cleanup:
237
Gilles Peskine449bd832023-01-11 14:50:10 +0100238 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000239}
240
241/*
242 * Swap the contents of X and Y
243 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100244void mbedtls_mpi_swap(mbedtls_mpi *X, mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000245{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200246 mbedtls_mpi T;
Gilles Peskine449bd832023-01-11 14:50:10 +0100247 MPI_VALIDATE(X != NULL);
248 MPI_VALIDATE(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000249
Gilles Peskine449bd832023-01-11 14:50:10 +0100250 memcpy(&T, X, sizeof(mbedtls_mpi));
251 memcpy(X, Y, sizeof(mbedtls_mpi));
252 memcpy(Y, &T, sizeof(mbedtls_mpi));
Paul Bakker5121ce52009-01-03 21:22:43 +0000253}
254
Gilles Peskine449bd832023-01-11 14:50:10 +0100255static inline mbedtls_mpi_uint mpi_sint_abs(mbedtls_mpi_sint z)
Gilles Peskineef7f4e42022-11-15 23:25:27 +0100256{
Gilles Peskine449bd832023-01-11 14:50:10 +0100257 if (z >= 0) {
258 return z;
259 }
Gilles Peskineef7f4e42022-11-15 23:25:27 +0100260 /* Take care to handle the most negative value (-2^(biL-1)) correctly.
261 * A naive -z would have undefined behavior.
262 * Write this in a way that makes popular compilers happy (GCC, Clang,
263 * MSVC). */
Gilles Peskine449bd832023-01-11 14:50:10 +0100264 return (mbedtls_mpi_uint) 0 - (mbedtls_mpi_uint) z;
Gilles Peskineef7f4e42022-11-15 23:25:27 +0100265}
266
Paul Bakker5121ce52009-01-03 21:22:43 +0000267/*
268 * Set value from integer
269 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100270int mbedtls_mpi_lset(mbedtls_mpi *X, mbedtls_mpi_sint z)
Paul Bakker5121ce52009-01-03 21:22:43 +0000271{
Janos Follath24eed8d2019-11-22 13:21:35 +0000272 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +0100273 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000274
Gilles Peskine449bd832023-01-11 14:50:10 +0100275 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, 1));
276 memset(X->p, 0, X->n * ciL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000277
Gilles Peskine449bd832023-01-11 14:50:10 +0100278 X->p[0] = mpi_sint_abs(z);
279 X->s = (z < 0) ? -1 : 1;
Paul Bakker5121ce52009-01-03 21:22:43 +0000280
281cleanup:
282
Gilles Peskine449bd832023-01-11 14:50:10 +0100283 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000284}
285
286/*
Paul Bakker2f5947e2011-05-18 15:47:11 +0000287 * Get a specific bit
288 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100289int mbedtls_mpi_get_bit(const mbedtls_mpi *X, size_t pos)
Paul Bakker2f5947e2011-05-18 15:47:11 +0000290{
Gilles Peskine449bd832023-01-11 14:50:10 +0100291 MPI_VALIDATE_RET(X != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000292
Gilles Peskine449bd832023-01-11 14:50:10 +0100293 if (X->n * biL <= pos) {
294 return 0;
295 }
Paul Bakker2f5947e2011-05-18 15:47:11 +0000296
Gilles Peskine449bd832023-01-11 14:50:10 +0100297 return (X->p[pos / biL] >> (pos % biL)) & 0x01;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000298}
299
300/*
301 * Set a bit to a specific value of 0 or 1
302 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100303int mbedtls_mpi_set_bit(mbedtls_mpi *X, size_t pos, unsigned char val)
Paul Bakker2f5947e2011-05-18 15:47:11 +0000304{
305 int ret = 0;
306 size_t off = pos / biL;
307 size_t idx = pos % biL;
Gilles Peskine449bd832023-01-11 14:50:10 +0100308 MPI_VALIDATE_RET(X != NULL);
Paul Bakker2f5947e2011-05-18 15:47:11 +0000309
Gilles Peskine449bd832023-01-11 14:50:10 +0100310 if (val != 0 && val != 1) {
311 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000312 }
313
Gilles Peskine449bd832023-01-11 14:50:10 +0100314 if (X->n * biL <= pos) {
315 if (val == 0) {
316 return 0;
317 }
318
319 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, off + 1));
320 }
321
322 X->p[off] &= ~((mbedtls_mpi_uint) 0x01 << idx);
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200323 X->p[off] |= (mbedtls_mpi_uint) val << idx;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000324
325cleanup:
Paul Bakker9af723c2014-05-01 13:03:14 +0200326
Gilles Peskine449bd832023-01-11 14:50:10 +0100327 return ret;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000328}
329
330/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200331 * Return the number of less significant zero-bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000332 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100333size_t mbedtls_mpi_lsb(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +0000334{
Paul Bakker23986e52011-04-24 08:57:21 +0000335 size_t i, j, count = 0;
Gilles Peskine449bd832023-01-11 14:50:10 +0100336 MBEDTLS_INTERNAL_VALIDATE_RET(X != NULL, 0);
Paul Bakker5121ce52009-01-03 21:22:43 +0000337
Gilles Peskine449bd832023-01-11 14:50:10 +0100338 for (i = 0; i < X->n; i++) {
339 for (j = 0; j < biL; j++, count++) {
340 if (((X->p[i] >> j) & 1) != 0) {
341 return count;
342 }
343 }
344 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000345
Gilles Peskine449bd832023-01-11 14:50:10 +0100346 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000347}
348
349/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200350 * Return the number of bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000351 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100352size_t mbedtls_mpi_bitlen(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +0000353{
Gilles Peskine449bd832023-01-11 14:50:10 +0100354 return mbedtls_mpi_core_bitlen(X->p, X->n);
Paul Bakker5121ce52009-01-03 21:22:43 +0000355}
356
357/*
358 * Return the total size in bytes
359 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100360size_t mbedtls_mpi_size(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +0000361{
Gilles Peskine449bd832023-01-11 14:50:10 +0100362 return (mbedtls_mpi_bitlen(X) + 7) >> 3;
Paul Bakker5121ce52009-01-03 21:22:43 +0000363}
364
365/*
366 * Convert an ASCII character to digit value
367 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100368static int mpi_get_digit(mbedtls_mpi_uint *d, int radix, char c)
Paul Bakker5121ce52009-01-03 21:22:43 +0000369{
370 *d = 255;
371
Gilles Peskine449bd832023-01-11 14:50:10 +0100372 if (c >= 0x30 && c <= 0x39) {
373 *d = c - 0x30;
374 }
375 if (c >= 0x41 && c <= 0x46) {
376 *d = c - 0x37;
377 }
378 if (c >= 0x61 && c <= 0x66) {
379 *d = c - 0x57;
380 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000381
Gilles Peskine449bd832023-01-11 14:50:10 +0100382 if (*d >= (mbedtls_mpi_uint) radix) {
383 return MBEDTLS_ERR_MPI_INVALID_CHARACTER;
384 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000385
Gilles Peskine449bd832023-01-11 14:50:10 +0100386 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000387}
388
389/*
390 * Import from an ASCII string
391 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100392int mbedtls_mpi_read_string(mbedtls_mpi *X, int radix, const char *s)
Paul Bakker5121ce52009-01-03 21:22:43 +0000393{
Janos Follath24eed8d2019-11-22 13:21:35 +0000394 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000395 size_t i, j, slen, n;
Gilles Peskine80f56732021-04-03 18:26:13 +0200396 int sign = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200397 mbedtls_mpi_uint d;
398 mbedtls_mpi T;
Gilles Peskine449bd832023-01-11 14:50:10 +0100399 MPI_VALIDATE_RET(X != NULL);
400 MPI_VALIDATE_RET(s != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000401
Gilles Peskine449bd832023-01-11 14:50:10 +0100402 if (radix < 2 || radix > 16) {
403 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Gilles Peskine7cba8592021-06-08 18:32:34 +0200404 }
405
Gilles Peskine449bd832023-01-11 14:50:10 +0100406 mbedtls_mpi_init(&T);
407
408 if (s[0] == 0) {
409 mbedtls_mpi_free(X);
410 return 0;
411 }
412
413 if (s[0] == '-') {
Gilles Peskine80f56732021-04-03 18:26:13 +0200414 ++s;
415 sign = -1;
416 }
417
Gilles Peskine449bd832023-01-11 14:50:10 +0100418 slen = strlen(s);
Paul Bakkerff60ee62010-03-16 21:09:09 +0000419
Gilles Peskine449bd832023-01-11 14:50:10 +0100420 if (radix == 16) {
Dave Rodgman68ef1d62023-05-18 20:49:03 +0100421 if (slen > SIZE_MAX >> 2) {
Gilles Peskine449bd832023-01-11 14:50:10 +0100422 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Paul Bakker5121ce52009-01-03 21:22:43 +0000423 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000424
Gilles Peskine449bd832023-01-11 14:50:10 +0100425 n = BITS_TO_LIMBS(slen << 2);
426
427 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n));
428 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
429
430 for (i = slen, j = 0; i > 0; i--, j++) {
431 MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i - 1]));
432 X->p[j / (2 * ciL)] |= d << ((j % (2 * ciL)) << 2);
433 }
434 } else {
435 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
436
437 for (i = 0; i < slen; i++) {
438 MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i]));
439 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T, X, radix));
440 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, &T, d));
Paul Bakker5121ce52009-01-03 21:22:43 +0000441 }
442 }
443
Gilles Peskine449bd832023-01-11 14:50:10 +0100444 if (sign < 0 && mbedtls_mpi_bitlen(X) != 0) {
Gilles Peskine80f56732021-04-03 18:26:13 +0200445 X->s = -1;
Gilles Peskine449bd832023-01-11 14:50:10 +0100446 }
Gilles Peskine80f56732021-04-03 18:26:13 +0200447
Paul Bakker5121ce52009-01-03 21:22:43 +0000448cleanup:
449
Gilles Peskine449bd832023-01-11 14:50:10 +0100450 mbedtls_mpi_free(&T);
Paul Bakker5121ce52009-01-03 21:22:43 +0000451
Gilles Peskine449bd832023-01-11 14:50:10 +0100452 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000453}
454
455/*
Ron Eldora16fa292018-11-20 14:07:01 +0200456 * Helper to write the digits high-order first.
Paul Bakker5121ce52009-01-03 21:22:43 +0000457 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100458static int mpi_write_hlp(mbedtls_mpi *X, int radix,
459 char **p, const size_t buflen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000460{
Janos Follath24eed8d2019-11-22 13:21:35 +0000461 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200462 mbedtls_mpi_uint r;
Ron Eldora16fa292018-11-20 14:07:01 +0200463 size_t length = 0;
464 char *p_end = *p + buflen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000465
Gilles Peskine449bd832023-01-11 14:50:10 +0100466 do {
467 if (length >= buflen) {
468 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
Ron Eldora16fa292018-11-20 14:07:01 +0200469 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000470
Gilles Peskine449bd832023-01-11 14:50:10 +0100471 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, radix));
472 MBEDTLS_MPI_CHK(mbedtls_mpi_div_int(X, NULL, X, radix));
Ron Eldora16fa292018-11-20 14:07:01 +0200473 /*
474 * Write the residue in the current position, as an ASCII character.
475 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100476 if (r < 0xA) {
477 *(--p_end) = (char) ('0' + r);
478 } else {
479 *(--p_end) = (char) ('A' + (r - 0xA));
480 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000481
Ron Eldora16fa292018-11-20 14:07:01 +0200482 length++;
Gilles Peskine449bd832023-01-11 14:50:10 +0100483 } while (mbedtls_mpi_cmp_int(X, 0) != 0);
Paul Bakker5121ce52009-01-03 21:22:43 +0000484
Gilles Peskine449bd832023-01-11 14:50:10 +0100485 memmove(*p, p_end, length);
Ron Eldora16fa292018-11-20 14:07:01 +0200486 *p += length;
Paul Bakker5121ce52009-01-03 21:22:43 +0000487
488cleanup:
489
Gilles Peskine449bd832023-01-11 14:50:10 +0100490 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000491}
492
493/*
494 * Export into an ASCII string
495 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100496int mbedtls_mpi_write_string(const mbedtls_mpi *X, int radix,
497 char *buf, size_t buflen, size_t *olen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000498{
Paul Bakker23986e52011-04-24 08:57:21 +0000499 int ret = 0;
500 size_t n;
Paul Bakker5121ce52009-01-03 21:22:43 +0000501 char *p;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200502 mbedtls_mpi T;
Gilles Peskine449bd832023-01-11 14:50:10 +0100503 MPI_VALIDATE_RET(X != NULL);
504 MPI_VALIDATE_RET(olen != NULL);
505 MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000506
Gilles Peskine449bd832023-01-11 14:50:10 +0100507 if (radix < 2 || radix > 16) {
508 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
509 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000510
Gilles Peskine449bd832023-01-11 14:50:10 +0100511 n = mbedtls_mpi_bitlen(X); /* Number of bits necessary to present `n`. */
512 if (radix >= 4) {
513 n >>= 1; /* Number of 4-adic digits necessary to present
Hanno Becker23cfea02019-02-04 09:45:07 +0000514 * `n`. If radix > 4, this might be a strict
515 * overapproximation of the number of
516 * radix-adic digits needed to present `n`. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100517 }
518 if (radix >= 16) {
519 n >>= 1; /* Number of hexadecimal digits necessary to
Hanno Becker23cfea02019-02-04 09:45:07 +0000520 * present `n`. */
521
Gilles Peskine449bd832023-01-11 14:50:10 +0100522 }
Janos Follath80470622019-03-06 13:43:02 +0000523 n += 1; /* Terminating null byte */
Hanno Becker23cfea02019-02-04 09:45:07 +0000524 n += 1; /* Compensate for the divisions above, which round down `n`
525 * in case it's not even. */
526 n += 1; /* Potential '-'-sign. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100527 n += (n & 1); /* Make n even to have enough space for hexadecimal writing,
Hanno Becker23cfea02019-02-04 09:45:07 +0000528 * which always uses an even number of hex-digits. */
Paul Bakker5121ce52009-01-03 21:22:43 +0000529
Gilles Peskine449bd832023-01-11 14:50:10 +0100530 if (buflen < n) {
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100531 *olen = n;
Gilles Peskine449bd832023-01-11 14:50:10 +0100532 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
Paul Bakker5121ce52009-01-03 21:22:43 +0000533 }
534
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100535 p = buf;
Gilles Peskine449bd832023-01-11 14:50:10 +0100536 mbedtls_mpi_init(&T);
Paul Bakker5121ce52009-01-03 21:22:43 +0000537
Gilles Peskine449bd832023-01-11 14:50:10 +0100538 if (X->s == -1) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000539 *p++ = '-';
Hanno Beckerc983c812019-02-01 16:41:30 +0000540 buflen--;
541 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000542
Gilles Peskine449bd832023-01-11 14:50:10 +0100543 if (radix == 16) {
Paul Bakker23986e52011-04-24 08:57:21 +0000544 int c;
545 size_t i, j, k;
Paul Bakker5121ce52009-01-03 21:22:43 +0000546
Gilles Peskine449bd832023-01-11 14:50:10 +0100547 for (i = X->n, k = 0; i > 0; i--) {
548 for (j = ciL; j > 0; j--) {
549 c = (X->p[i - 1] >> ((j - 1) << 3)) & 0xFF;
Paul Bakker5121ce52009-01-03 21:22:43 +0000550
Gilles Peskine449bd832023-01-11 14:50:10 +0100551 if (c == 0 && k == 0 && (i + j) != 2) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000552 continue;
Gilles Peskine449bd832023-01-11 14:50:10 +0100553 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000554
Paul Bakker98fe5ea2012-10-24 11:17:48 +0000555 *(p++) = "0123456789ABCDEF" [c / 16];
Paul Bakkerd2c167e2012-10-30 07:49:19 +0000556 *(p++) = "0123456789ABCDEF" [c % 16];
Paul Bakker5121ce52009-01-03 21:22:43 +0000557 k = 1;
558 }
559 }
Gilles Peskine449bd832023-01-11 14:50:10 +0100560 } else {
561 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T, X));
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000562
Gilles Peskine449bd832023-01-11 14:50:10 +0100563 if (T.s == -1) {
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000564 T.s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +0100565 }
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000566
Gilles Peskine449bd832023-01-11 14:50:10 +0100567 MBEDTLS_MPI_CHK(mpi_write_hlp(&T, radix, &p, buflen));
Paul Bakker5121ce52009-01-03 21:22:43 +0000568 }
569
570 *p++ = '\0';
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100571 *olen = p - buf;
Paul Bakker5121ce52009-01-03 21:22:43 +0000572
573cleanup:
574
Gilles Peskine449bd832023-01-11 14:50:10 +0100575 mbedtls_mpi_free(&T);
Paul Bakker5121ce52009-01-03 21:22:43 +0000576
Gilles Peskine449bd832023-01-11 14:50:10 +0100577 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000578}
579
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200580#if defined(MBEDTLS_FS_IO)
Paul Bakker5121ce52009-01-03 21:22:43 +0000581/*
582 * Read X from an opened file
583 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100584int mbedtls_mpi_read_file(mbedtls_mpi *X, int radix, FILE *fin)
Paul Bakker5121ce52009-01-03 21:22:43 +0000585{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200586 mbedtls_mpi_uint d;
Paul Bakker23986e52011-04-24 08:57:21 +0000587 size_t slen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000588 char *p;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000589 /*
Paul Bakkercb37aa52011-11-30 16:00:20 +0000590 * Buffer should have space for (short) label and decimal formatted MPI,
591 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000592 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100593 char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
Paul Bakker5121ce52009-01-03 21:22:43 +0000594
Gilles Peskine449bd832023-01-11 14:50:10 +0100595 MPI_VALIDATE_RET(X != NULL);
596 MPI_VALIDATE_RET(fin != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000597
Gilles Peskine449bd832023-01-11 14:50:10 +0100598 if (radix < 2 || radix > 16) {
599 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
600 }
Hanno Becker73d7d792018-12-11 10:35:51 +0000601
Gilles Peskine449bd832023-01-11 14:50:10 +0100602 memset(s, 0, sizeof(s));
603 if (fgets(s, sizeof(s) - 1, fin) == NULL) {
604 return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
605 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000606
Gilles Peskine449bd832023-01-11 14:50:10 +0100607 slen = strlen(s);
608 if (slen == sizeof(s) - 2) {
609 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
610 }
Paul Bakkercb37aa52011-11-30 16:00:20 +0000611
Gilles Peskine449bd832023-01-11 14:50:10 +0100612 if (slen > 0 && s[slen - 1] == '\n') {
613 slen--; s[slen] = '\0';
614 }
615 if (slen > 0 && s[slen - 1] == '\r') {
616 slen--; s[slen] = '\0';
617 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000618
619 p = s + slen;
Gilles Peskine449bd832023-01-11 14:50:10 +0100620 while (p-- > s) {
621 if (mpi_get_digit(&d, radix, *p) != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000622 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100623 }
624 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000625
Gilles Peskine449bd832023-01-11 14:50:10 +0100626 return mbedtls_mpi_read_string(X, radix, p + 1);
Paul Bakker5121ce52009-01-03 21:22:43 +0000627}
628
629/*
630 * Write X into an opened file (or stdout if fout == NULL)
631 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100632int mbedtls_mpi_write_file(const char *p, const mbedtls_mpi *X, int radix, FILE *fout)
Paul Bakker5121ce52009-01-03 21:22:43 +0000633{
Janos Follath24eed8d2019-11-22 13:21:35 +0000634 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000635 size_t n, slen, plen;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000636 /*
Paul Bakker5531c6d2012-09-26 19:20:46 +0000637 * Buffer should have space for (short) label and decimal formatted MPI,
638 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000639 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100640 char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
641 MPI_VALIDATE_RET(X != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000642
Gilles Peskine449bd832023-01-11 14:50:10 +0100643 if (radix < 2 || radix > 16) {
644 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
645 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000646
Gilles Peskine449bd832023-01-11 14:50:10 +0100647 memset(s, 0, sizeof(s));
Paul Bakker5121ce52009-01-03 21:22:43 +0000648
Gilles Peskine449bd832023-01-11 14:50:10 +0100649 MBEDTLS_MPI_CHK(mbedtls_mpi_write_string(X, radix, s, sizeof(s) - 2, &n));
Paul Bakker5121ce52009-01-03 21:22:43 +0000650
Gilles Peskine449bd832023-01-11 14:50:10 +0100651 if (p == NULL) {
652 p = "";
653 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000654
Gilles Peskine449bd832023-01-11 14:50:10 +0100655 plen = strlen(p);
656 slen = strlen(s);
Paul Bakker5121ce52009-01-03 21:22:43 +0000657 s[slen++] = '\r';
658 s[slen++] = '\n';
659
Gilles Peskine449bd832023-01-11 14:50:10 +0100660 if (fout != NULL) {
661 if (fwrite(p, 1, plen, fout) != plen ||
662 fwrite(s, 1, slen, fout) != slen) {
663 return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
664 }
665 } else {
666 mbedtls_printf("%s%s", p, s);
Paul Bakker5121ce52009-01-03 21:22:43 +0000667 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000668
669cleanup:
670
Gilles Peskine449bd832023-01-11 14:50:10 +0100671 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000672}
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200673#endif /* MBEDTLS_FS_IO */
Paul Bakker5121ce52009-01-03 21:22:43 +0000674
675/*
Janos Follatha778a942019-02-13 10:28:28 +0000676 * Import X from unsigned binary data, little endian
Przemyslaw Stekiel76960a72022-02-21 13:42:09 +0100677 *
678 * This function is guaranteed to return an MPI with exactly the necessary
679 * number of limbs (in particular, it does not skip 0s in the input).
Janos Follatha778a942019-02-13 10:28:28 +0000680 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100681int mbedtls_mpi_read_binary_le(mbedtls_mpi *X,
682 const unsigned char *buf, size_t buflen)
Janos Follatha778a942019-02-13 10:28:28 +0000683{
Janos Follath24eed8d2019-11-22 13:21:35 +0000684 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +0100685 const size_t limbs = CHARS_TO_LIMBS(buflen);
Janos Follatha778a942019-02-13 10:28:28 +0000686
687 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine449bd832023-01-11 14:50:10 +0100688 MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
Janos Follatha778a942019-02-13 10:28:28 +0000689
Gilles Peskine449bd832023-01-11 14:50:10 +0100690 MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_le(X->p, X->n, buf, buflen));
Janos Follatha778a942019-02-13 10:28:28 +0000691
692cleanup:
693
Janos Follath171a7ef2019-02-15 16:17:45 +0000694 /*
695 * This function is also used to import keys. However, wiping the buffers
696 * upon failure is not necessary because failure only can happen before any
697 * input is copied.
698 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100699 return ret;
Janos Follatha778a942019-02-13 10:28:28 +0000700}
701
702/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000703 * Import X from unsigned binary data, big endian
Przemyslaw Stekiel76960a72022-02-21 13:42:09 +0100704 *
705 * This function is guaranteed to return an MPI with exactly the necessary
706 * number of limbs (in particular, it does not skip 0s in the input).
Paul Bakker5121ce52009-01-03 21:22:43 +0000707 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100708int mbedtls_mpi_read_binary(mbedtls_mpi *X, const unsigned char *buf, size_t buflen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000709{
Janos Follath24eed8d2019-11-22 13:21:35 +0000710 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +0100711 const size_t limbs = CHARS_TO_LIMBS(buflen);
Paul Bakker5121ce52009-01-03 21:22:43 +0000712
Gilles Peskine449bd832023-01-11 14:50:10 +0100713 MPI_VALIDATE_RET(X != NULL);
714 MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000715
Hanno Becker073c1992017-10-17 15:17:27 +0100716 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine449bd832023-01-11 14:50:10 +0100717 MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
Paul Bakker5121ce52009-01-03 21:22:43 +0000718
Gilles Peskine449bd832023-01-11 14:50:10 +0100719 MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_be(X->p, X->n, buf, buflen));
Paul Bakker5121ce52009-01-03 21:22:43 +0000720
721cleanup:
722
Janos Follath171a7ef2019-02-15 16:17:45 +0000723 /*
724 * This function is also used to import keys. However, wiping the buffers
725 * upon failure is not necessary because failure only can happen before any
726 * input is copied.
727 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100728 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000729}
730
731/*
Janos Follathe344d0f2019-02-19 16:17:40 +0000732 * Export X into unsigned binary data, little endian
733 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100734int mbedtls_mpi_write_binary_le(const mbedtls_mpi *X,
735 unsigned char *buf, size_t buflen)
Janos Follathe344d0f2019-02-19 16:17:40 +0000736{
Gilles Peskine449bd832023-01-11 14:50:10 +0100737 return mbedtls_mpi_core_write_le(X->p, X->n, buf, buflen);
Janos Follathe344d0f2019-02-19 16:17:40 +0000738}
739
740/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000741 * Export X into unsigned binary data, big endian
742 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100743int mbedtls_mpi_write_binary(const mbedtls_mpi *X,
744 unsigned char *buf, size_t buflen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000745{
Gilles Peskine449bd832023-01-11 14:50:10 +0100746 return mbedtls_mpi_core_write_be(X->p, X->n, buf, buflen);
Paul Bakker5121ce52009-01-03 21:22:43 +0000747}
748
749/*
750 * Left-shift: X <<= count
751 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100752int mbedtls_mpi_shift_l(mbedtls_mpi *X, size_t count)
Paul Bakker5121ce52009-01-03 21:22:43 +0000753{
Janos Follath24eed8d2019-11-22 13:21:35 +0000754 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Minos Galanakis0144b352023-05-02 14:02:32 +0100755 size_t i;
Gilles Peskine449bd832023-01-11 14:50:10 +0100756 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000757
Gilles Peskine449bd832023-01-11 14:50:10 +0100758 i = mbedtls_mpi_bitlen(X) + count;
Paul Bakker5121ce52009-01-03 21:22:43 +0000759
Gilles Peskine449bd832023-01-11 14:50:10 +0100760 if (X->n * biL < i) {
761 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, BITS_TO_LIMBS(i)));
762 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000763
764 ret = 0;
765
Minos Galanakis0144b352023-05-02 14:02:32 +0100766 mbedtls_mpi_core_shift_l(X->p, X->n, count);
Paul Bakker5121ce52009-01-03 21:22:43 +0000767cleanup:
768
Gilles Peskine449bd832023-01-11 14:50:10 +0100769 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000770}
771
772/*
773 * Right-shift: X >>= count
774 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100775int mbedtls_mpi_shift_r(mbedtls_mpi *X, size_t count)
Paul Bakker5121ce52009-01-03 21:22:43 +0000776{
Gilles Peskine449bd832023-01-11 14:50:10 +0100777 MPI_VALIDATE_RET(X != NULL);
778 if (X->n != 0) {
779 mbedtls_mpi_core_shift_r(X->p, X->n, count);
780 }
781 return 0;
Gilles Peskine66414202022-09-21 15:36:16 +0200782}
783
Paul Bakker5121ce52009-01-03 21:22:43 +0000784/*
785 * Compare unsigned values
786 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100787int mbedtls_mpi_cmp_abs(const mbedtls_mpi *X, const mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000788{
Paul Bakker23986e52011-04-24 08:57:21 +0000789 size_t i, j;
Gilles Peskine449bd832023-01-11 14:50:10 +0100790 MPI_VALIDATE_RET(X != NULL);
791 MPI_VALIDATE_RET(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000792
Gilles Peskine449bd832023-01-11 14:50:10 +0100793 for (i = X->n; i > 0; i--) {
794 if (X->p[i - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000795 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100796 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000797 }
798
Gilles Peskine449bd832023-01-11 14:50:10 +0100799 for (j = Y->n; j > 0; j--) {
800 if (Y->p[j - 1] != 0) {
801 break;
802 }
803 }
804
805 if (i == 0 && j == 0) {
806 return 0;
807 }
808
809 if (i > j) {
810 return 1;
811 }
812 if (j > i) {
813 return -1;
814 }
815
816 for (; i > 0; i--) {
817 if (X->p[i - 1] > Y->p[i - 1]) {
818 return 1;
819 }
820 if (X->p[i - 1] < Y->p[i - 1]) {
821 return -1;
822 }
823 }
824
825 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000826}
827
828/*
829 * Compare signed values
830 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100831int mbedtls_mpi_cmp_mpi(const mbedtls_mpi *X, const mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000832{
Paul Bakker23986e52011-04-24 08:57:21 +0000833 size_t i, j;
Gilles Peskine449bd832023-01-11 14:50:10 +0100834 MPI_VALIDATE_RET(X != NULL);
835 MPI_VALIDATE_RET(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000836
Gilles Peskine449bd832023-01-11 14:50:10 +0100837 for (i = X->n; i > 0; i--) {
838 if (X->p[i - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000839 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100840 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000841 }
842
Gilles Peskine449bd832023-01-11 14:50:10 +0100843 for (j = Y->n; j > 0; j--) {
844 if (Y->p[j - 1] != 0) {
845 break;
846 }
847 }
848
849 if (i == 0 && j == 0) {
850 return 0;
851 }
852
853 if (i > j) {
854 return X->s;
855 }
856 if (j > i) {
857 return -Y->s;
858 }
859
860 if (X->s > 0 && Y->s < 0) {
861 return 1;
862 }
863 if (Y->s > 0 && X->s < 0) {
864 return -1;
865 }
866
867 for (; i > 0; i--) {
868 if (X->p[i - 1] > Y->p[i - 1]) {
869 return X->s;
870 }
871 if (X->p[i - 1] < Y->p[i - 1]) {
872 return -X->s;
873 }
874 }
875
876 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000877}
878
Janos Follathee6abce2019-09-05 14:47:19 +0100879/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000880 * Compare signed values
881 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100882int mbedtls_mpi_cmp_int(const mbedtls_mpi *X, mbedtls_mpi_sint z)
Paul Bakker5121ce52009-01-03 21:22:43 +0000883{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200884 mbedtls_mpi Y;
885 mbedtls_mpi_uint p[1];
Gilles Peskine449bd832023-01-11 14:50:10 +0100886 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000887
Gilles Peskine449bd832023-01-11 14:50:10 +0100888 *p = mpi_sint_abs(z);
889 Y.s = (z < 0) ? -1 : 1;
Paul Bakker5121ce52009-01-03 21:22:43 +0000890 Y.n = 1;
891 Y.p = p;
892
Gilles Peskine449bd832023-01-11 14:50:10 +0100893 return mbedtls_mpi_cmp_mpi(X, &Y);
Paul Bakker5121ce52009-01-03 21:22:43 +0000894}
895
896/*
897 * Unsigned addition: X = |A| + |B| (HAC 14.7)
898 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100899int mbedtls_mpi_add_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +0000900{
Janos Follath24eed8d2019-11-22 13:21:35 +0000901 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100902 size_t j;
Agathiyan Bragadeeshc99840a2023-07-12 11:15:46 +0100903 mbedtls_mpi_uint *p;
904 mbedtls_mpi_uint c;
Gilles Peskine449bd832023-01-11 14:50:10 +0100905 MPI_VALIDATE_RET(X != NULL);
906 MPI_VALIDATE_RET(A != NULL);
907 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000908
Gilles Peskine449bd832023-01-11 14:50:10 +0100909 if (X == B) {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200910 const mbedtls_mpi *T = A; A = X; B = T;
Paul Bakker5121ce52009-01-03 21:22:43 +0000911 }
912
Gilles Peskine449bd832023-01-11 14:50:10 +0100913 if (X != A) {
914 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
915 }
Paul Bakker9af723c2014-05-01 13:03:14 +0200916
Paul Bakkerf7ca7b92009-06-20 10:31:06 +0000917 /*
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100918 * X must always be positive as a result of unsigned additions.
Paul Bakkerf7ca7b92009-06-20 10:31:06 +0000919 */
920 X->s = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +0000921
Gilles Peskine449bd832023-01-11 14:50:10 +0100922 for (j = B->n; j > 0; j--) {
923 if (B->p[j - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000924 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100925 }
926 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000927
Gilles Peskinedb14a9d2022-11-15 22:59:00 +0100928 /* Exit early to avoid undefined behavior on NULL+0 when X->n == 0
929 * and B is 0 (of any size). */
Gilles Peskine449bd832023-01-11 14:50:10 +0100930 if (j == 0) {
931 return 0;
932 }
Gilles Peskinedb14a9d2022-11-15 22:59:00 +0100933
Gilles Peskine449bd832023-01-11 14:50:10 +0100934 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j));
Paul Bakker5121ce52009-01-03 21:22:43 +0000935
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100936 /* j is the number of non-zero limbs of B. Add those to X. */
Paul Bakker5121ce52009-01-03 21:22:43 +0000937
Agathiyan Bragadeeshc99840a2023-07-12 11:15:46 +0100938 p = X->p;
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100939
Agathiyan Bragadeeshc99840a2023-07-12 11:15:46 +0100940 c = mbedtls_mpi_core_add(p, p, B->p, j);
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100941
942 p += j;
943
944 /* Now propagate any carry */
Paul Bakker5121ce52009-01-03 21:22:43 +0000945
Gilles Peskine449bd832023-01-11 14:50:10 +0100946 while (c != 0) {
947 if (j >= X->n) {
948 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j + 1));
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100949 p = X->p + j;
Paul Bakker5121ce52009-01-03 21:22:43 +0000950 }
951
Gilles Peskine449bd832023-01-11 14:50:10 +0100952 *p += c; c = (*p < c); j++; p++;
Paul Bakker5121ce52009-01-03 21:22:43 +0000953 }
954
955cleanup:
956
Gilles Peskine449bd832023-01-11 14:50:10 +0100957 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000958}
959
Paul Bakker5121ce52009-01-03 21:22:43 +0000960/*
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200961 * Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10)
Paul Bakker5121ce52009-01-03 21:22:43 +0000962 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100963int mbedtls_mpi_sub_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +0000964{
Janos Follath24eed8d2019-11-22 13:21:35 +0000965 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000966 size_t n;
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200967 mbedtls_mpi_uint carry;
Gilles Peskine449bd832023-01-11 14:50:10 +0100968 MPI_VALIDATE_RET(X != NULL);
969 MPI_VALIDATE_RET(A != NULL);
970 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000971
Gilles Peskine449bd832023-01-11 14:50:10 +0100972 for (n = B->n; n > 0; n--) {
973 if (B->p[n - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000974 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100975 }
976 }
977 if (n > A->n) {
Gilles Peskinec8a91772021-01-27 22:30:43 +0100978 /* B >= (2^ciL)^n > A */
979 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
980 goto cleanup;
981 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000982
Gilles Peskine449bd832023-01-11 14:50:10 +0100983 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, A->n));
Gilles Peskine1acf7cb2020-07-23 01:03:22 +0200984
985 /* Set the high limbs of X to match A. Don't touch the lower limbs
986 * because X might be aliased to B, and we must not overwrite the
987 * significant digits of B. */
Aaron M. Uckoaf67d2c2023-01-17 11:52:22 -0500988 if (A->n > n && A != X) {
Gilles Peskine449bd832023-01-11 14:50:10 +0100989 memcpy(X->p + n, A->p + n, (A->n - n) * ciL);
990 }
991 if (X->n > A->n) {
992 memset(X->p + A->n, 0, (X->n - A->n) * ciL);
993 }
Gilles Peskine1acf7cb2020-07-23 01:03:22 +0200994
Gilles Peskine449bd832023-01-11 14:50:10 +0100995 carry = mbedtls_mpi_core_sub(X->p, A->p, B->p, n);
996 if (carry != 0) {
Tom Cosgrove452c99c2022-08-25 10:07:07 +0100997 /* Propagate the carry through the rest of X. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100998 carry = mbedtls_mpi_core_sub_int(X->p + n, X->p + n, carry, X->n - n);
Tom Cosgrove452c99c2022-08-25 10:07:07 +0100999
1000 /* If we have further carry/borrow, the result is negative. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001001 if (carry != 0) {
Gilles Peskine89b41302020-07-23 01:16:46 +02001002 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1003 goto cleanup;
1004 }
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001005 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001006
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001007 /* X should always be positive as a result of unsigned subtractions. */
1008 X->s = 1;
1009
Paul Bakker5121ce52009-01-03 21:22:43 +00001010cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01001011 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001012}
1013
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001014/* Common function for signed addition and subtraction.
1015 * Calculate A + B * flip_B where flip_B is 1 or -1.
Paul Bakker5121ce52009-01-03 21:22:43 +00001016 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001017static int add_sub_mpi(mbedtls_mpi *X,
1018 const mbedtls_mpi *A, const mbedtls_mpi *B,
1019 int flip_B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001020{
Hanno Becker73d7d792018-12-11 10:35:51 +00001021 int ret, s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001022 MPI_VALIDATE_RET(X != NULL);
1023 MPI_VALIDATE_RET(A != NULL);
1024 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001025
Hanno Becker73d7d792018-12-11 10:35:51 +00001026 s = A->s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001027 if (A->s * B->s * flip_B < 0) {
1028 int cmp = mbedtls_mpi_cmp_abs(A, B);
1029 if (cmp >= 0) {
1030 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, A, B));
Gilles Peskine4a768dd2022-11-09 22:02:16 +01001031 /* If |A| = |B|, the result is 0 and we must set the sign bit
1032 * to +1 regardless of which of A or B was negative. Otherwise,
1033 * since |A| > |B|, the sign is the sign of A. */
1034 X->s = cmp == 0 ? 1 : s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001035 } else {
1036 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, B, A));
Gilles Peskine4a768dd2022-11-09 22:02:16 +01001037 /* Since |A| < |B|, the sign is the opposite of A. */
Paul Bakker5121ce52009-01-03 21:22:43 +00001038 X->s = -s;
1039 }
Gilles Peskine449bd832023-01-11 14:50:10 +01001040 } else {
1041 MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(X, A, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001042 X->s = s;
1043 }
1044
1045cleanup:
1046
Gilles Peskine449bd832023-01-11 14:50:10 +01001047 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001048}
1049
1050/*
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001051 * Signed addition: X = A + B
1052 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001053int mbedtls_mpi_add_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001054{
Gilles Peskine449bd832023-01-11 14:50:10 +01001055 return add_sub_mpi(X, A, B, 1);
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001056}
1057
1058/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001059 * Signed subtraction: X = A - B
Paul Bakker5121ce52009-01-03 21:22:43 +00001060 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001061int mbedtls_mpi_sub_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001062{
Gilles Peskine449bd832023-01-11 14:50:10 +01001063 return add_sub_mpi(X, A, B, -1);
Paul Bakker5121ce52009-01-03 21:22:43 +00001064}
1065
1066/*
1067 * Signed addition: X = A + b
1068 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001069int mbedtls_mpi_add_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001070{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001071 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001072 mbedtls_mpi_uint p[1];
Gilles Peskine449bd832023-01-11 14:50:10 +01001073 MPI_VALIDATE_RET(X != NULL);
1074 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001075
Gilles Peskine449bd832023-01-11 14:50:10 +01001076 p[0] = mpi_sint_abs(b);
1077 B.s = (b < 0) ? -1 : 1;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001078 B.n = 1;
1079 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001080
Gilles Peskine449bd832023-01-11 14:50:10 +01001081 return mbedtls_mpi_add_mpi(X, A, &B);
Paul Bakker5121ce52009-01-03 21:22:43 +00001082}
1083
1084/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001085 * Signed subtraction: X = A - b
Paul Bakker5121ce52009-01-03 21:22:43 +00001086 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001087int mbedtls_mpi_sub_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001088{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001089 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001090 mbedtls_mpi_uint p[1];
Gilles Peskine449bd832023-01-11 14:50:10 +01001091 MPI_VALIDATE_RET(X != NULL);
1092 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001093
Gilles Peskine449bd832023-01-11 14:50:10 +01001094 p[0] = mpi_sint_abs(b);
1095 B.s = (b < 0) ? -1 : 1;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001096 B.n = 1;
1097 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001098
Gilles Peskine449bd832023-01-11 14:50:10 +01001099 return mbedtls_mpi_sub_mpi(X, A, &B);
Paul Bakker5121ce52009-01-03 21:22:43 +00001100}
1101
Paul Bakker5121ce52009-01-03 21:22:43 +00001102/*
1103 * Baseline multiplication: X = A * B (HAC 14.12)
1104 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001105int mbedtls_mpi_mul_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001106{
Janos Follath24eed8d2019-11-22 13:21:35 +00001107 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker1772e052022-04-13 06:51:40 +01001108 size_t i, j;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001109 mbedtls_mpi TA, TB;
Hanno Beckerda763de2022-04-13 06:50:02 +01001110 int result_is_zero = 0;
Gilles Peskine449bd832023-01-11 14:50:10 +01001111 MPI_VALIDATE_RET(X != NULL);
1112 MPI_VALIDATE_RET(A != NULL);
1113 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001114
Tom Cosgrove6af26f32022-08-24 16:40:55 +01001115 mbedtls_mpi_init(&TA);
1116 mbedtls_mpi_init(&TB);
Paul Bakker5121ce52009-01-03 21:22:43 +00001117
Gilles Peskine449bd832023-01-11 14:50:10 +01001118 if (X == A) {
1119 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A)); A = &TA;
1120 }
1121 if (X == B) {
1122 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B)); B = &TB;
1123 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001124
Gilles Peskine449bd832023-01-11 14:50:10 +01001125 for (i = A->n; i > 0; i--) {
1126 if (A->p[i - 1] != 0) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001127 break;
Gilles Peskine449bd832023-01-11 14:50:10 +01001128 }
1129 }
1130 if (i == 0) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001131 result_is_zero = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001132 }
Hanno Beckerda763de2022-04-13 06:50:02 +01001133
Gilles Peskine449bd832023-01-11 14:50:10 +01001134 for (j = B->n; j > 0; j--) {
1135 if (B->p[j - 1] != 0) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001136 break;
Gilles Peskine449bd832023-01-11 14:50:10 +01001137 }
1138 }
1139 if (j == 0) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001140 result_is_zero = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001141 }
Hanno Beckerda763de2022-04-13 06:50:02 +01001142
Gilles Peskine449bd832023-01-11 14:50:10 +01001143 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + j));
1144 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
Paul Bakker5121ce52009-01-03 21:22:43 +00001145
Tom Cosgrove6af26f32022-08-24 16:40:55 +01001146 mbedtls_mpi_core_mul(X->p, A->p, i, B->p, j);
Paul Bakker5121ce52009-01-03 21:22:43 +00001147
Hanno Beckerda763de2022-04-13 06:50:02 +01001148 /* If the result is 0, we don't shortcut the operation, which reduces
1149 * but does not eliminate side channels leaking the zero-ness. We do
1150 * need to take care to set the sign bit properly since the library does
1151 * not fully support an MPI object with a value of 0 and s == -1. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001152 if (result_is_zero) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001153 X->s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001154 } else {
Hanno Beckerda763de2022-04-13 06:50:02 +01001155 X->s = A->s * B->s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001156 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001157
1158cleanup:
1159
Gilles Peskine449bd832023-01-11 14:50:10 +01001160 mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TA);
Paul Bakker5121ce52009-01-03 21:22:43 +00001161
Gilles Peskine449bd832023-01-11 14:50:10 +01001162 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001163}
1164
1165/*
1166 * Baseline multiplication: X = A * b
1167 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001168int mbedtls_mpi_mul_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001169{
Gilles Peskine449bd832023-01-11 14:50:10 +01001170 MPI_VALIDATE_RET(X != NULL);
1171 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001172
Hanno Becker35771312022-04-14 11:52:11 +01001173 size_t n = A->n;
Gilles Peskine449bd832023-01-11 14:50:10 +01001174 while (n > 0 && A->p[n - 1] == 0) {
Hanno Becker35771312022-04-14 11:52:11 +01001175 --n;
Gilles Peskine449bd832023-01-11 14:50:10 +01001176 }
Hanno Becker35771312022-04-14 11:52:11 +01001177
Hanno Becker74a11a32022-04-06 06:27:00 +01001178 /* The general method below doesn't work if b==0. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001179 if (b == 0 || n == 0) {
1180 return mbedtls_mpi_lset(X, 0);
1181 }
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001182
Hanno Beckeraef9cc42022-04-11 06:36:29 +01001183 /* Calculate A*b as A + A*(b-1) to take advantage of mbedtls_mpi_core_mla */
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001184 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001185 /* In general, A * b requires 1 limb more than b. If
1186 * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
1187 * number of limbs as A and the call to grow() is not required since
Gilles Peskinee1bba7c2021-03-10 23:44:10 +01001188 * copy() will take care of the growth if needed. However, experimentally,
1189 * making the call to grow() unconditional causes slightly fewer
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001190 * calls to calloc() in ECP code, presumably because it reuses the
1191 * same mpi for a while and this way the mpi is more likely to directly
Hanno Becker9137b9c2022-04-12 10:51:54 +01001192 * grow to its final size.
1193 *
1194 * Note that calculating A*b as 0 + A*b doesn't work as-is because
1195 * A,X can be the same. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001196 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n + 1));
1197 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
1198 mbedtls_mpi_core_mla(X->p, X->n, A->p, n, b - 1);
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001199
1200cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01001201 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001202}
1203
1204/*
Simon Butcherf5ba0452015-12-27 23:01:55 +00001205 * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
1206 * mbedtls_mpi_uint divisor, d
Simon Butcher15b15d12015-11-26 19:35:03 +00001207 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001208static mbedtls_mpi_uint mbedtls_int_div_int(mbedtls_mpi_uint u1,
1209 mbedtls_mpi_uint u0,
1210 mbedtls_mpi_uint d,
1211 mbedtls_mpi_uint *r)
Simon Butcher15b15d12015-11-26 19:35:03 +00001212{
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001213#if defined(MBEDTLS_HAVE_UDBL)
1214 mbedtls_t_udbl dividend, quotient;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001215#else
Simon Butcher9803d072016-01-03 00:24:34 +00001216 const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
Gilles Peskine449bd832023-01-11 14:50:10 +01001217 const mbedtls_mpi_uint uint_halfword_mask = ((mbedtls_mpi_uint) 1 << biH) - 1;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001218 mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
1219 mbedtls_mpi_uint u0_msw, u0_lsw;
Simon Butcher9803d072016-01-03 00:24:34 +00001220 size_t s;
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001221#endif
1222
Simon Butcher15b15d12015-11-26 19:35:03 +00001223 /*
1224 * Check for overflow
1225 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001226 if (0 == d || u1 >= d) {
1227 if (r != NULL) {
1228 *r = ~(mbedtls_mpi_uint) 0u;
1229 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001230
Gilles Peskine449bd832023-01-11 14:50:10 +01001231 return ~(mbedtls_mpi_uint) 0u;
Simon Butcher15b15d12015-11-26 19:35:03 +00001232 }
1233
1234#if defined(MBEDTLS_HAVE_UDBL)
Simon Butcher15b15d12015-11-26 19:35:03 +00001235 dividend = (mbedtls_t_udbl) u1 << biL;
1236 dividend |= (mbedtls_t_udbl) u0;
1237 quotient = dividend / d;
Gilles Peskine449bd832023-01-11 14:50:10 +01001238 if (quotient > ((mbedtls_t_udbl) 1 << biL) - 1) {
1239 quotient = ((mbedtls_t_udbl) 1 << biL) - 1;
1240 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001241
Gilles Peskine449bd832023-01-11 14:50:10 +01001242 if (r != NULL) {
1243 *r = (mbedtls_mpi_uint) (dividend - (quotient * d));
1244 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001245
1246 return (mbedtls_mpi_uint) quotient;
1247#else
Simon Butcher15b15d12015-11-26 19:35:03 +00001248
1249 /*
1250 * Algorithm D, Section 4.3.1 - The Art of Computer Programming
1251 * Vol. 2 - Seminumerical Algorithms, Knuth
1252 */
1253
1254 /*
1255 * Normalize the divisor, d, and dividend, u0, u1
1256 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001257 s = mbedtls_mpi_core_clz(d);
Simon Butcher15b15d12015-11-26 19:35:03 +00001258 d = d << s;
1259
1260 u1 = u1 << s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001261 u1 |= (u0 >> (biL - s)) & (-(mbedtls_mpi_sint) s >> (biL - 1));
Simon Butcher15b15d12015-11-26 19:35:03 +00001262 u0 = u0 << s;
1263
1264 d1 = d >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001265 d0 = d & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001266
1267 u0_msw = u0 >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001268 u0_lsw = u0 & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001269
1270 /*
1271 * Find the first quotient and remainder
1272 */
1273 q1 = u1 / d1;
1274 r0 = u1 - d1 * q1;
1275
Gilles Peskine449bd832023-01-11 14:50:10 +01001276 while (q1 >= radix || (q1 * d0 > radix * r0 + u0_msw)) {
Simon Butcher15b15d12015-11-26 19:35:03 +00001277 q1 -= 1;
1278 r0 += d1;
1279
Gilles Peskine449bd832023-01-11 14:50:10 +01001280 if (r0 >= radix) {
1281 break;
1282 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001283 }
1284
Gilles Peskine449bd832023-01-11 14:50:10 +01001285 rAX = (u1 * radix) + (u0_msw - q1 * d);
Simon Butcher15b15d12015-11-26 19:35:03 +00001286 q0 = rAX / d1;
1287 r0 = rAX - q0 * d1;
1288
Gilles Peskine449bd832023-01-11 14:50:10 +01001289 while (q0 >= radix || (q0 * d0 > radix * r0 + u0_lsw)) {
Simon Butcher15b15d12015-11-26 19:35:03 +00001290 q0 -= 1;
1291 r0 += d1;
1292
Gilles Peskine449bd832023-01-11 14:50:10 +01001293 if (r0 >= radix) {
1294 break;
1295 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001296 }
1297
Gilles Peskine449bd832023-01-11 14:50:10 +01001298 if (r != NULL) {
1299 *r = (rAX * radix + u0_lsw - q0 * d) >> s;
1300 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001301
1302 quotient = q1 * radix + q0;
1303
1304 return quotient;
1305#endif
1306}
1307
1308/*
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001309 * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
Paul Bakker5121ce52009-01-03 21:22:43 +00001310 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001311int mbedtls_mpi_div_mpi(mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
1312 const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001313{
Janos Follath24eed8d2019-11-22 13:21:35 +00001314 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001315 size_t i, n, t, k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001316 mbedtls_mpi X, Y, Z, T1, T2;
Alexander Kd19a1932019-11-01 18:20:42 +03001317 mbedtls_mpi_uint TP2[3];
Gilles Peskine449bd832023-01-11 14:50:10 +01001318 MPI_VALIDATE_RET(A != NULL);
1319 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001320
Gilles Peskine449bd832023-01-11 14:50:10 +01001321 if (mbedtls_mpi_cmp_int(B, 0) == 0) {
1322 return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
1323 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001324
Gilles Peskine449bd832023-01-11 14:50:10 +01001325 mbedtls_mpi_init(&X); mbedtls_mpi_init(&Y); mbedtls_mpi_init(&Z);
1326 mbedtls_mpi_init(&T1);
Alexander Kd19a1932019-11-01 18:20:42 +03001327 /*
1328 * Avoid dynamic memory allocations for constant-size T2.
1329 *
1330 * T2 is used for comparison only and the 3 limbs are assigned explicitly,
1331 * so nobody increase the size of the MPI and we're safe to use an on-stack
1332 * buffer.
1333 */
Alexander K35d6d462019-10-31 14:46:45 +03001334 T2.s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001335 T2.n = sizeof(TP2) / sizeof(*TP2);
Alexander Kd19a1932019-11-01 18:20:42 +03001336 T2.p = TP2;
Paul Bakker5121ce52009-01-03 21:22:43 +00001337
Gilles Peskine449bd832023-01-11 14:50:10 +01001338 if (mbedtls_mpi_cmp_abs(A, B) < 0) {
1339 if (Q != NULL) {
1340 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(Q, 0));
1341 }
1342 if (R != NULL) {
1343 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, A));
1344 }
1345 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001346 }
1347
Gilles Peskine449bd832023-01-11 14:50:10 +01001348 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&X, A));
1349 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001350 X.s = Y.s = 1;
1351
Gilles Peskine449bd832023-01-11 14:50:10 +01001352 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&Z, A->n + 2));
1353 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Z, 0));
1354 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T1, A->n + 2));
Paul Bakker5121ce52009-01-03 21:22:43 +00001355
Gilles Peskine449bd832023-01-11 14:50:10 +01001356 k = mbedtls_mpi_bitlen(&Y) % biL;
1357 if (k < biL - 1) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001358 k = biL - 1 - k;
Gilles Peskine449bd832023-01-11 14:50:10 +01001359 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&X, k));
1360 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, k));
1361 } else {
1362 k = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001363 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001364
1365 n = X.n - 1;
1366 t = Y.n - 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001367 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, biL * (n - t)));
Paul Bakker5121ce52009-01-03 21:22:43 +00001368
Gilles Peskine449bd832023-01-11 14:50:10 +01001369 while (mbedtls_mpi_cmp_mpi(&X, &Y) >= 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001370 Z.p[n - t]++;
Gilles Peskine449bd832023-01-11 14:50:10 +01001371 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &Y));
Paul Bakker5121ce52009-01-03 21:22:43 +00001372 }
Gilles Peskine449bd832023-01-11 14:50:10 +01001373 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, biL * (n - t)));
Paul Bakker5121ce52009-01-03 21:22:43 +00001374
Gilles Peskine449bd832023-01-11 14:50:10 +01001375 for (i = n; i > t; i--) {
1376 if (X.p[i] >= Y.p[t]) {
1377 Z.p[i - t - 1] = ~(mbedtls_mpi_uint) 0u;
1378 } else {
1379 Z.p[i - t - 1] = mbedtls_int_div_int(X.p[i], X.p[i - 1],
1380 Y.p[t], NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001381 }
1382
Gilles Peskine449bd832023-01-11 14:50:10 +01001383 T2.p[0] = (i < 2) ? 0 : X.p[i - 2];
1384 T2.p[1] = (i < 1) ? 0 : X.p[i - 1];
Alexander K35d6d462019-10-31 14:46:45 +03001385 T2.p[2] = X.p[i];
1386
Paul Bakker5121ce52009-01-03 21:22:43 +00001387 Z.p[i - t - 1]++;
Gilles Peskine449bd832023-01-11 14:50:10 +01001388 do {
Paul Bakker5121ce52009-01-03 21:22:43 +00001389 Z.p[i - t - 1]--;
1390
Gilles Peskine449bd832023-01-11 14:50:10 +01001391 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&T1, 0));
1392 T1.p[0] = (t < 1) ? 0 : Y.p[t - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001393 T1.p[1] = Y.p[t];
Gilles Peskine449bd832023-01-11 14:50:10 +01001394 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &T1, Z.p[i - t - 1]));
1395 } while (mbedtls_mpi_cmp_mpi(&T1, &T2) > 0);
Paul Bakker5121ce52009-01-03 21:22:43 +00001396
Gilles Peskine449bd832023-01-11 14:50:10 +01001397 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &Y, Z.p[i - t - 1]));
1398 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
1399 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &T1));
Paul Bakker5121ce52009-01-03 21:22:43 +00001400
Gilles Peskine449bd832023-01-11 14:50:10 +01001401 if (mbedtls_mpi_cmp_int(&X, 0) < 0) {
1402 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T1, &Y));
1403 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
1404 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&X, &X, &T1));
Paul Bakker5121ce52009-01-03 21:22:43 +00001405 Z.p[i - t - 1]--;
1406 }
1407 }
1408
Gilles Peskine449bd832023-01-11 14:50:10 +01001409 if (Q != NULL) {
1410 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(Q, &Z));
Paul Bakker5121ce52009-01-03 21:22:43 +00001411 Q->s = A->s * B->s;
1412 }
1413
Gilles Peskine449bd832023-01-11 14:50:10 +01001414 if (R != NULL) {
1415 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&X, k));
Paul Bakkerf02c5642012-11-13 10:25:21 +00001416 X.s = A->s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001417 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, &X));
Paul Bakker5121ce52009-01-03 21:22:43 +00001418
Gilles Peskine449bd832023-01-11 14:50:10 +01001419 if (mbedtls_mpi_cmp_int(R, 0) == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001420 R->s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001421 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001422 }
1423
1424cleanup:
1425
Gilles Peskine449bd832023-01-11 14:50:10 +01001426 mbedtls_mpi_free(&X); mbedtls_mpi_free(&Y); mbedtls_mpi_free(&Z);
1427 mbedtls_mpi_free(&T1);
1428 mbedtls_platform_zeroize(TP2, sizeof(TP2));
Paul Bakker5121ce52009-01-03 21:22:43 +00001429
Gilles Peskine449bd832023-01-11 14:50:10 +01001430 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001431}
1432
1433/*
1434 * Division by int: A = Q * b + R
Paul Bakker5121ce52009-01-03 21:22:43 +00001435 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001436int mbedtls_mpi_div_int(mbedtls_mpi *Q, mbedtls_mpi *R,
1437 const mbedtls_mpi *A,
1438 mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001439{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001440 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001441 mbedtls_mpi_uint p[1];
Gilles Peskine449bd832023-01-11 14:50:10 +01001442 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001443
Gilles Peskine449bd832023-01-11 14:50:10 +01001444 p[0] = mpi_sint_abs(b);
1445 B.s = (b < 0) ? -1 : 1;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001446 B.n = 1;
1447 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001448
Gilles Peskine449bd832023-01-11 14:50:10 +01001449 return mbedtls_mpi_div_mpi(Q, R, A, &B);
Paul Bakker5121ce52009-01-03 21:22:43 +00001450}
1451
1452/*
1453 * Modulo: R = A mod B
1454 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001455int mbedtls_mpi_mod_mpi(mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001456{
Janos Follath24eed8d2019-11-22 13:21:35 +00001457 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +01001458 MPI_VALIDATE_RET(R != NULL);
1459 MPI_VALIDATE_RET(A != NULL);
1460 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001461
Gilles Peskine449bd832023-01-11 14:50:10 +01001462 if (mbedtls_mpi_cmp_int(B, 0) < 0) {
1463 return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1464 }
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001465
Gilles Peskine449bd832023-01-11 14:50:10 +01001466 MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(NULL, R, A, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001467
Gilles Peskine449bd832023-01-11 14:50:10 +01001468 while (mbedtls_mpi_cmp_int(R, 0) < 0) {
1469 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(R, R, B));
1470 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001471
Gilles Peskine449bd832023-01-11 14:50:10 +01001472 while (mbedtls_mpi_cmp_mpi(R, B) >= 0) {
1473 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(R, R, B));
1474 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001475
1476cleanup:
1477
Gilles Peskine449bd832023-01-11 14:50:10 +01001478 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001479}
1480
1481/*
1482 * Modulo: r = A mod b
1483 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001484int mbedtls_mpi_mod_int(mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001485{
Paul Bakker23986e52011-04-24 08:57:21 +00001486 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001487 mbedtls_mpi_uint x, y, z;
Gilles Peskine449bd832023-01-11 14:50:10 +01001488 MPI_VALIDATE_RET(r != NULL);
1489 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001490
Gilles Peskine449bd832023-01-11 14:50:10 +01001491 if (b == 0) {
1492 return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
1493 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001494
Gilles Peskine449bd832023-01-11 14:50:10 +01001495 if (b < 0) {
1496 return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1497 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001498
1499 /*
1500 * handle trivial cases
1501 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001502 if (b == 1 || A->n == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001503 *r = 0;
Gilles Peskine449bd832023-01-11 14:50:10 +01001504 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001505 }
1506
Gilles Peskine449bd832023-01-11 14:50:10 +01001507 if (b == 2) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001508 *r = A->p[0] & 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001509 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001510 }
1511
1512 /*
1513 * general case
1514 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001515 for (i = A->n, y = 0; i > 0; i--) {
Paul Bakker23986e52011-04-24 08:57:21 +00001516 x = A->p[i - 1];
Gilles Peskine449bd832023-01-11 14:50:10 +01001517 y = (y << biH) | (x >> biH);
Paul Bakker5121ce52009-01-03 21:22:43 +00001518 z = y / b;
1519 y -= z * b;
1520
1521 x <<= biH;
Gilles Peskine449bd832023-01-11 14:50:10 +01001522 y = (y << biH) | (x >> biH);
Paul Bakker5121ce52009-01-03 21:22:43 +00001523 z = y / b;
1524 y -= z * b;
1525 }
1526
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001527 /*
1528 * If A is negative, then the current y represents a negative value.
1529 * Flipping it to the positive side.
1530 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001531 if (A->s < 0 && y != 0) {
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001532 y = b - y;
Gilles Peskine449bd832023-01-11 14:50:10 +01001533 }
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001534
Paul Bakker5121ce52009-01-03 21:22:43 +00001535 *r = y;
1536
Gilles Peskine449bd832023-01-11 14:50:10 +01001537 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001538}
1539
Gilles Peskine449bd832023-01-11 14:50:10 +01001540static void mpi_montg_init(mbedtls_mpi_uint *mm, const mbedtls_mpi *N)
Paul Bakker5121ce52009-01-03 21:22:43 +00001541{
Gilles Peskine449bd832023-01-11 14:50:10 +01001542 *mm = mbedtls_mpi_core_montmul_init(N->p);
Paul Bakker5121ce52009-01-03 21:22:43 +00001543}
1544
Tom Cosgrove93842842022-08-05 16:59:43 +01001545/** Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
1546 *
1547 * \param[in,out] A One of the numbers to multiply.
1548 * It must have at least as many limbs as N
1549 * (A->n >= N->n), and any limbs beyond n are ignored.
1550 * On successful completion, A contains the result of
1551 * the multiplication A * B * R^-1 mod N where
1552 * R = (2^ciL)^n.
1553 * \param[in] B One of the numbers to multiply.
1554 * It must be nonzero and must not have more limbs than N
1555 * (B->n <= N->n).
Tom Cosgrove40d22942022-08-17 06:42:44 +01001556 * \param[in] N The modulus. \p N must be odd.
Tom Cosgrove93842842022-08-05 16:59:43 +01001557 * \param mm The value calculated by `mpi_montg_init(&mm, N)`.
1558 * This is -N^-1 mod 2^ciL.
1559 * \param[in,out] T A bignum for temporary storage.
1560 * It must be at least twice the limb size of N plus 1
1561 * (T->n >= 2 * N->n + 1).
1562 * Its initial content is unused and
1563 * its final content is indeterminate.
Tom Cosgrove5dd97e62022-08-30 14:31:49 +01001564 * It does not get reallocated.
Tom Cosgrove93842842022-08-05 16:59:43 +01001565 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001566static void mpi_montmul(mbedtls_mpi *A, const mbedtls_mpi *B,
1567 const mbedtls_mpi *N, mbedtls_mpi_uint mm,
1568 mbedtls_mpi *T)
Paul Bakker5121ce52009-01-03 21:22:43 +00001569{
Gilles Peskine449bd832023-01-11 14:50:10 +01001570 mbedtls_mpi_core_montmul(A->p, A->p, B->p, B->n, N->p, N->n, mm, T->p);
Paul Bakker5121ce52009-01-03 21:22:43 +00001571}
1572
1573/*
1574 * Montgomery reduction: A = A * R^-1 mod N
Gilles Peskine2a82f722020-06-04 15:00:49 +02001575 *
Tom Cosgrove93842842022-08-05 16:59:43 +01001576 * See mpi_montmul() regarding constraints and guarantees on the parameters.
Paul Bakker5121ce52009-01-03 21:22:43 +00001577 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001578static void mpi_montred(mbedtls_mpi *A, const mbedtls_mpi *N,
1579 mbedtls_mpi_uint mm, mbedtls_mpi *T)
Paul Bakker5121ce52009-01-03 21:22:43 +00001580{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001581 mbedtls_mpi_uint z = 1;
1582 mbedtls_mpi U;
Gilles Peskine053022f2023-06-29 19:26:48 +02001583 U.n = 1;
1584 U.s = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001585 U.p = &z;
1586
Gilles Peskine449bd832023-01-11 14:50:10 +01001587 mpi_montmul(A, &U, N, mm, T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001588}
1589
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001590/**
1591 * Select an MPI from a table without leaking the index.
1592 *
1593 * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
1594 * reads the entire table in order to avoid leaking the value of idx to an
1595 * attacker able to observe memory access patterns.
1596 *
1597 * \param[out] R Where to write the selected MPI.
1598 * \param[in] T The table to read from.
1599 * \param[in] T_size The number of elements in the table.
1600 * \param[in] idx The index of the element to select;
1601 * this must satisfy 0 <= idx < T_size.
1602 *
1603 * \return \c 0 on success, or a negative error code.
1604 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001605static int mpi_select(mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx)
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001606{
1607 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1608
Gilles Peskine449bd832023-01-11 14:50:10 +01001609 for (size_t i = 0; i < T_size; i++) {
1610 MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(R, &T[i],
1611 (unsigned char) mbedtls_ct_size_bool_eq(i,
1612 idx)));
Manuel Pégourié-Gonnard92413ef2021-06-03 10:42:46 +02001613 }
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001614
1615cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01001616 return ret;
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001617}
1618
Paul Bakker5121ce52009-01-03 21:22:43 +00001619/*
1620 * Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
1621 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001622int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A,
1623 const mbedtls_mpi *E, const mbedtls_mpi *N,
1624 mbedtls_mpi *prec_RR)
Paul Bakker5121ce52009-01-03 21:22:43 +00001625{
Janos Follath24eed8d2019-11-22 13:21:35 +00001626 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follath74601202022-11-21 15:54:20 +00001627 size_t window_bitsize;
Paul Bakker23986e52011-04-24 08:57:21 +00001628 size_t i, j, nblimbs;
1629 size_t bufsize, nbits;
Paul Elliott1748de12023-02-13 15:35:35 +00001630 size_t exponent_bits_in_window = 0;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001631 mbedtls_mpi_uint ei, mm, state;
Gilles Peskine449bd832023-01-11 14:50:10 +01001632 mbedtls_mpi RR, T, W[(size_t) 1 << MBEDTLS_MPI_WINDOW_SIZE], WW, Apos;
Paul Bakkerf6198c12012-05-16 08:02:29 +00001633 int neg;
Paul Bakker5121ce52009-01-03 21:22:43 +00001634
Gilles Peskine449bd832023-01-11 14:50:10 +01001635 MPI_VALIDATE_RET(X != NULL);
1636 MPI_VALIDATE_RET(A != NULL);
1637 MPI_VALIDATE_RET(E != NULL);
1638 MPI_VALIDATE_RET(N != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00001639
Gilles Peskine449bd832023-01-11 14:50:10 +01001640 if (mbedtls_mpi_cmp_int(N, 0) <= 0 || (N->p[0] & 1) == 0) {
1641 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1642 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001643
Gilles Peskine449bd832023-01-11 14:50:10 +01001644 if (mbedtls_mpi_cmp_int(E, 0) < 0) {
1645 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1646 }
Paul Bakkerf6198c12012-05-16 08:02:29 +00001647
Gilles Peskine449bd832023-01-11 14:50:10 +01001648 if (mbedtls_mpi_bitlen(E) > MBEDTLS_MPI_MAX_BITS ||
1649 mbedtls_mpi_bitlen(N) > MBEDTLS_MPI_MAX_BITS) {
1650 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1651 }
Chris Jones9246d042020-11-25 15:12:39 +00001652
Paul Bakkerf6198c12012-05-16 08:02:29 +00001653 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00001654 * Init temps and window size
1655 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001656 mpi_montg_init(&mm, N);
1657 mbedtls_mpi_init(&RR); mbedtls_mpi_init(&T);
1658 mbedtls_mpi_init(&Apos);
1659 mbedtls_mpi_init(&WW);
1660 memset(W, 0, sizeof(W));
Paul Bakker5121ce52009-01-03 21:22:43 +00001661
Gilles Peskine449bd832023-01-11 14:50:10 +01001662 i = mbedtls_mpi_bitlen(E);
Paul Bakker5121ce52009-01-03 21:22:43 +00001663
Gilles Peskine449bd832023-01-11 14:50:10 +01001664 window_bitsize = (i > 671) ? 6 : (i > 239) ? 5 :
1665 (i > 79) ? 4 : (i > 23) ? 3 : 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001666
Gilles Peskine449bd832023-01-11 14:50:10 +01001667#if (MBEDTLS_MPI_WINDOW_SIZE < 6)
1668 if (window_bitsize > MBEDTLS_MPI_WINDOW_SIZE) {
Janos Follath7fa11b82022-11-21 14:48:02 +00001669 window_bitsize = MBEDTLS_MPI_WINDOW_SIZE;
Gilles Peskine449bd832023-01-11 14:50:10 +01001670 }
Peter Kolbuse6bcad32018-12-11 14:01:44 -06001671#endif
Paul Bakkerb6d5f082011-11-25 11:52:11 +00001672
Janos Follathc8d66d52022-11-22 10:47:10 +00001673 const size_t w_table_used_size = (size_t) 1 << window_bitsize;
Janos Follath06000952022-11-22 10:18:06 +00001674
Paul Bakker5121ce52009-01-03 21:22:43 +00001675 /*
Janos Follathbe54ca72022-11-21 16:14:54 +00001676 * This function is not constant-trace: its memory accesses depend on the
1677 * exponent value. To defend against timing attacks, callers (such as RSA
1678 * and DHM) should use exponent blinding. However this is not enough if the
1679 * adversary can find the exponent in a single trace, so this function
1680 * takes extra precautions against adversaries who can observe memory
1681 * access patterns.
Janos Follathf08b40e2022-11-11 15:56:38 +00001682 *
Janos Follathbe54ca72022-11-21 16:14:54 +00001683 * This function performs a series of multiplications by table elements and
1684 * squarings, and we want the prevent the adversary from finding out which
1685 * table element was used, and from distinguishing between multiplications
1686 * and squarings. Firstly, when multiplying by an element of the window
1687 * W[i], we do a constant-trace table lookup to obfuscate i. This leaves
1688 * squarings as having a different memory access patterns from other
1689 * multiplications. So secondly, we put the accumulator X in the table as
1690 * well, and also do a constant-trace table lookup to multiply by X.
1691 *
1692 * This way, all multiplications take the form of a lookup-and-multiply.
1693 * The number of lookup-and-multiply operations inside each iteration of
1694 * the main loop still depends on the bits of the exponent, but since the
1695 * other operations in the loop don't have an easily recognizable memory
1696 * trace, an adversary is unlikely to be able to observe the exact
1697 * patterns.
1698 *
1699 * An adversary may still be able to recover the exponent if they can
1700 * observe both memory accesses and branches. However, branch prediction
1701 * exploitation typically requires many traces of execution over the same
1702 * data, which is defeated by randomized blinding.
Janos Follath84461482022-11-21 14:31:22 +00001703 *
1704 * To achieve this, we make a copy of X and we use the table entry in each
1705 * calculation from this point on.
Janos Follath8e7d6a02022-10-04 13:27:40 +01001706 */
Janos Follathc8d66d52022-11-22 10:47:10 +00001707 const size_t x_index = 0;
Gilles Peskine449bd832023-01-11 14:50:10 +01001708 mbedtls_mpi_init(&W[x_index]);
1709 mbedtls_mpi_copy(&W[x_index], X);
Janos Follath84461482022-11-21 14:31:22 +00001710
Paul Bakker5121ce52009-01-03 21:22:43 +00001711 j = N->n + 1;
Tom Cosgrove93842842022-08-05 16:59:43 +01001712 /* All W[i] and X must have at least N->n limbs for the mpi_montmul()
Paul Bakker5121ce52009-01-03 21:22:43 +00001713 * and mpi_montred() calls later. Here we ensure that W[1] and X are
1714 * large enough, and later we'll grow other W[i] to the same length.
1715 * They must not be shrunk midway through this function!
1716 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001717 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[x_index], j));
1718 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], j));
1719 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T, j * 2));
Paul Bakker5121ce52009-01-03 21:22:43 +00001720
1721 /*
Paul Bakker50546922012-05-19 08:40:49 +00001722 * Compensate for negative A (and correct at the end)
1723 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001724 neg = (A->s == -1);
1725 if (neg) {
1726 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Apos, A));
Paul Bakker50546922012-05-19 08:40:49 +00001727 Apos.s = 1;
1728 A = &Apos;
1729 }
1730
1731 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00001732 * If 1st call, pre-compute R^2 mod N
1733 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001734 if (prec_RR == NULL || prec_RR->p == NULL) {
1735 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&RR, 1));
1736 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&RR, N->n * 2 * biL));
1737 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&RR, &RR, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00001738
Gilles Peskine449bd832023-01-11 14:50:10 +01001739 if (prec_RR != NULL) {
1740 memcpy(prec_RR, &RR, sizeof(mbedtls_mpi));
1741 }
1742 } else {
1743 memcpy(&RR, prec_RR, sizeof(mbedtls_mpi));
Paul Bakker5121ce52009-01-03 21:22:43 +00001744 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001745
1746 /*
1747 * W[1] = A * R^2 * R^-1 mod N = A * R mod N
1748 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001749 if (mbedtls_mpi_cmp_mpi(A, N) >= 0) {
1750 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&W[1], A, N));
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001751 /* This should be a no-op because W[1] is already that large before
1752 * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
Tom Cosgrove93842842022-08-05 16:59:43 +01001753 * in mpi_montmul() below, so let's make sure. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001754 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], N->n + 1));
1755 } else {
1756 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[1], A));
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001757 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001758
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001759 /* Note that this is safe because W[1] always has at least N->n limbs
1760 * (it grew above and was preserved by mbedtls_mpi_copy()). */
Gilles Peskine449bd832023-01-11 14:50:10 +01001761 mpi_montmul(&W[1], &RR, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001762
1763 /*
Janos Follath8e7d6a02022-10-04 13:27:40 +01001764 * W[x_index] = R^2 * R^-1 mod N = R mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00001765 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001766 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[x_index], &RR));
1767 mpi_montred(&W[x_index], N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001768
Janos Follathc8d66d52022-11-22 10:47:10 +00001769
Gilles Peskine449bd832023-01-11 14:50:10 +01001770 if (window_bitsize > 1) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001771 /*
Janos Follath74601202022-11-21 15:54:20 +00001772 * W[i] = W[1] ^ i
1773 *
1774 * The first bit of the sliding window is always 1 and therefore we
1775 * only need to store the second half of the table.
Janos Follathc8d66d52022-11-22 10:47:10 +00001776 *
1777 * (There are two special elements in the table: W[0] for the
1778 * accumulator/result and W[1] for A in Montgomery form. Both of these
1779 * are already set at this point.)
Paul Bakker5121ce52009-01-03 21:22:43 +00001780 */
Janos Follath74601202022-11-21 15:54:20 +00001781 j = w_table_used_size / 2;
Paul Bakker5121ce52009-01-03 21:22:43 +00001782
Gilles Peskine449bd832023-01-11 14:50:10 +01001783 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[j], N->n + 1));
1784 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[j], &W[1]));
Paul Bakker5121ce52009-01-03 21:22:43 +00001785
Gilles Peskine449bd832023-01-11 14:50:10 +01001786 for (i = 0; i < window_bitsize - 1; i++) {
1787 mpi_montmul(&W[j], &W[j], N, mm, &T);
1788 }
Paul Bakker0d7702c2013-10-29 16:18:35 +01001789
Paul Bakker5121ce52009-01-03 21:22:43 +00001790 /*
1791 * W[i] = W[i - 1] * W[1]
1792 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001793 for (i = j + 1; i < w_table_used_size; i++) {
1794 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[i], N->n + 1));
1795 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[i], &W[i - 1]));
Paul Bakker5121ce52009-01-03 21:22:43 +00001796
Gilles Peskine449bd832023-01-11 14:50:10 +01001797 mpi_montmul(&W[i], &W[1], N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001798 }
1799 }
1800
1801 nblimbs = E->n;
1802 bufsize = 0;
1803 nbits = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001804 state = 0;
1805
Gilles Peskine449bd832023-01-11 14:50:10 +01001806 while (1) {
1807 if (bufsize == 0) {
1808 if (nblimbs == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001809 break;
Gilles Peskine449bd832023-01-11 14:50:10 +01001810 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001811
Paul Bakker0d7702c2013-10-29 16:18:35 +01001812 nblimbs--;
1813
Gilles Peskine449bd832023-01-11 14:50:10 +01001814 bufsize = sizeof(mbedtls_mpi_uint) << 3;
Paul Bakker5121ce52009-01-03 21:22:43 +00001815 }
1816
1817 bufsize--;
1818
1819 ei = (E->p[nblimbs] >> bufsize) & 1;
1820
1821 /*
1822 * skip leading 0s
1823 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001824 if (ei == 0 && state == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001825 continue;
Gilles Peskine449bd832023-01-11 14:50:10 +01001826 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001827
Gilles Peskine449bd832023-01-11 14:50:10 +01001828 if (ei == 0 && state == 1) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001829 /*
Janos Follath8e7d6a02022-10-04 13:27:40 +01001830 * out of window, square W[x_index]
Paul Bakker5121ce52009-01-03 21:22:43 +00001831 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001832 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));
1833 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001834 continue;
1835 }
1836
1837 /*
1838 * add ei to current window
1839 */
1840 state = 2;
1841
1842 nbits++;
Gilles Peskine449bd832023-01-11 14:50:10 +01001843 exponent_bits_in_window |= (ei << (window_bitsize - nbits));
Paul Bakker5121ce52009-01-03 21:22:43 +00001844
Gilles Peskine449bd832023-01-11 14:50:10 +01001845 if (nbits == window_bitsize) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001846 /*
Janos Follath7fa11b82022-11-21 14:48:02 +00001847 * W[x_index] = W[x_index]^window_bitsize R^-1 mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00001848 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001849 for (i = 0; i < window_bitsize; i++) {
1850 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,
1851 x_index));
1852 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Janos Follathb764ee12022-10-04 14:00:09 +01001853 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001854
1855 /*
Janos Follath7fa11b82022-11-21 14:48:02 +00001856 * W[x_index] = W[x_index] * W[exponent_bits_in_window] R^-1 mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00001857 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001858 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,
1859 exponent_bits_in_window));
1860 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001861
1862 state--;
1863 nbits = 0;
Janos Follath7fa11b82022-11-21 14:48:02 +00001864 exponent_bits_in_window = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001865 }
1866 }
1867
1868 /*
1869 * process the remaining bits
1870 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001871 for (i = 0; i < nbits; i++) {
1872 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));
1873 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001874
Janos Follath7fa11b82022-11-21 14:48:02 +00001875 exponent_bits_in_window <<= 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001876
Gilles Peskine449bd832023-01-11 14:50:10 +01001877 if ((exponent_bits_in_window & ((size_t) 1 << window_bitsize)) != 0) {
1878 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, 1));
1879 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Janos Follathb764ee12022-10-04 14:00:09 +01001880 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001881 }
1882
1883 /*
Janos Follath8e7d6a02022-10-04 13:27:40 +01001884 * W[x_index] = A^E * R * R^-1 mod N = A^E mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00001885 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001886 mpi_montred(&W[x_index], N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001887
Gilles Peskine449bd832023-01-11 14:50:10 +01001888 if (neg && E->n != 0 && (E->p[0] & 1) != 0) {
Janos Follath8e7d6a02022-10-04 13:27:40 +01001889 W[x_index].s = -1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001890 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&W[x_index], N, &W[x_index]));
Paul Bakkerf6198c12012-05-16 08:02:29 +00001891 }
1892
Janos Follath8e7d6a02022-10-04 13:27:40 +01001893 /*
1894 * Load the result in the output variable.
1895 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001896 mbedtls_mpi_copy(X, &W[x_index]);
Janos Follath8e7d6a02022-10-04 13:27:40 +01001897
Paul Bakker5121ce52009-01-03 21:22:43 +00001898cleanup:
1899
Janos Follathb2c2fca2022-11-21 15:05:31 +00001900 /* The first bit of the sliding window is always 1 and therefore the first
1901 * half of the table was unused. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001902 for (i = w_table_used_size/2; i < w_table_used_size; i++) {
1903 mbedtls_mpi_free(&W[i]);
1904 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001905
Gilles Peskine449bd832023-01-11 14:50:10 +01001906 mbedtls_mpi_free(&W[x_index]);
1907 mbedtls_mpi_free(&W[1]);
1908 mbedtls_mpi_free(&T);
1909 mbedtls_mpi_free(&Apos);
1910 mbedtls_mpi_free(&WW);
Paul Bakker6c591fa2011-05-05 11:49:20 +00001911
Gilles Peskine449bd832023-01-11 14:50:10 +01001912 if (prec_RR == NULL || prec_RR->p == NULL) {
1913 mbedtls_mpi_free(&RR);
1914 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001915
Gilles Peskine449bd832023-01-11 14:50:10 +01001916 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001917}
1918
Paul Bakker5121ce52009-01-03 21:22:43 +00001919/*
1920 * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
1921 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001922int mbedtls_mpi_gcd(mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001923{
Janos Follath24eed8d2019-11-22 13:21:35 +00001924 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001925 size_t lz, lzt;
Alexander Ke8ad49f2019-08-16 16:16:07 +03001926 mbedtls_mpi TA, TB;
Paul Bakker5121ce52009-01-03 21:22:43 +00001927
Gilles Peskine449bd832023-01-11 14:50:10 +01001928 MPI_VALIDATE_RET(G != NULL);
1929 MPI_VALIDATE_RET(A != NULL);
1930 MPI_VALIDATE_RET(B != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00001931
Gilles Peskine449bd832023-01-11 14:50:10 +01001932 mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);
Paul Bakker5121ce52009-01-03 21:22:43 +00001933
Gilles Peskine449bd832023-01-11 14:50:10 +01001934 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A));
1935 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001936
Gilles Peskine449bd832023-01-11 14:50:10 +01001937 lz = mbedtls_mpi_lsb(&TA);
1938 lzt = mbedtls_mpi_lsb(&TB);
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001939
Gilles Peskine27253bc2021-06-09 13:26:43 +02001940 /* The loop below gives the correct result when A==0 but not when B==0.
1941 * So have a special case for B==0. Leverage the fact that we just
1942 * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
1943 * slightly more efficient than cmp_int(). */
Gilles Peskine449bd832023-01-11 14:50:10 +01001944 if (lzt == 0 && mbedtls_mpi_get_bit(&TB, 0) == 0) {
1945 ret = mbedtls_mpi_copy(G, A);
Gilles Peskine27253bc2021-06-09 13:26:43 +02001946 goto cleanup;
1947 }
1948
Gilles Peskine449bd832023-01-11 14:50:10 +01001949 if (lzt < lz) {
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001950 lz = lzt;
Gilles Peskine449bd832023-01-11 14:50:10 +01001951 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001952
Paul Bakker5121ce52009-01-03 21:22:43 +00001953 TA.s = TB.s = 1;
1954
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001955 /* We mostly follow the procedure described in HAC 14.54, but with some
1956 * minor differences:
1957 * - Sequences of multiplications or divisions by 2 are grouped into a
1958 * single shift operation.
Gilles Peskineb09c7ee2021-06-21 18:58:39 +02001959 * - The procedure in HAC assumes that 0 < TB <= TA.
1960 * - The condition TB <= TA is not actually necessary for correctness.
1961 * TA and TB have symmetric roles except for the loop termination
1962 * condition, and the shifts at the beginning of the loop body
1963 * remove any significance from the ordering of TA vs TB before
1964 * the shifts.
1965 * - If TA = 0, the loop goes through 0 iterations and the result is
1966 * correctly TB.
1967 * - The case TB = 0 was short-circuited above.
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001968 *
1969 * For the correctness proof below, decompose the original values of
1970 * A and B as
1971 * A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
1972 * B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
1973 * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
1974 * and gcd(A',B') is odd or 0.
1975 *
1976 * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
1977 * The code maintains the following invariant:
1978 * gcd(A,B) = 2^k * gcd(TA,TB) for some k (I)
Gilles Peskine4df3f1f2021-06-15 22:09:39 +02001979 */
1980
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001981 /* Proof that the loop terminates:
1982 * At each iteration, either the right-shift by 1 is made on a nonzero
1983 * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
1984 * by at least 1, or the right-shift by 1 is made on zero and then
1985 * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
1986 * since in that case TB is calculated from TB-TA with the condition TB>TA).
1987 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001988 while (mbedtls_mpi_cmp_int(&TA, 0) != 0) {
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001989 /* Divisions by 2 preserve the invariant (I). */
Gilles Peskine449bd832023-01-11 14:50:10 +01001990 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, mbedtls_mpi_lsb(&TA)));
1991 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, mbedtls_mpi_lsb(&TB)));
Paul Bakker5121ce52009-01-03 21:22:43 +00001992
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001993 /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
1994 * TA-TB is even so the division by 2 has an integer result.
1995 * Invariant (I) is preserved since any odd divisor of both TA and TB
1996 * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
Shaun Case8b0ecbc2021-12-20 21:14:10 -08001997 * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001998 * divides TA.
1999 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002000 if (mbedtls_mpi_cmp_mpi(&TA, &TB) >= 0) {
2001 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TA, &TA, &TB));
2002 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, 1));
2003 } else {
2004 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TB, &TB, &TA));
2005 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002006 }
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002007 /* Note that one of TA or TB is still odd. */
Paul Bakker5121ce52009-01-03 21:22:43 +00002008 }
2009
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002010 /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
2011 * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
2012 * - If there was at least one loop iteration, then one of TA or TB is odd,
2013 * and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
2014 * lz = min(a,b) so gcd(A,B) = 2^lz * TB.
2015 * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
Gilles Peskine4d3fd362021-06-21 11:40:38 +02002016 * In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002017 */
2018
Gilles Peskine449bd832023-01-11 14:50:10 +01002019 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&TB, lz));
2020 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(G, &TB));
Paul Bakker5121ce52009-01-03 21:22:43 +00002021
2022cleanup:
2023
Gilles Peskine449bd832023-01-11 14:50:10 +01002024 mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TB);
Paul Bakker5121ce52009-01-03 21:22:43 +00002025
Gilles Peskine449bd832023-01-11 14:50:10 +01002026 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002027}
2028
Paul Bakker33dc46b2014-04-30 16:11:39 +02002029/*
2030 * Fill X with size bytes of random.
Gilles Peskine22cdd0c2022-10-27 20:15:13 +02002031 * The bytes returned from the RNG are used in a specific order which
2032 * is suitable for deterministic ECDSA (see the specification of
2033 * mbedtls_mpi_random() and the implementation in mbedtls_mpi_fill_random()).
Paul Bakker33dc46b2014-04-30 16:11:39 +02002034 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002035int mbedtls_mpi_fill_random(mbedtls_mpi *X, size_t size,
2036 int (*f_rng)(void *, unsigned char *, size_t),
2037 void *p_rng)
Paul Bakker287781a2011-03-26 13:18:49 +00002038{
Janos Follath24eed8d2019-11-22 13:21:35 +00002039 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +01002040 const size_t limbs = CHARS_TO_LIMBS(size);
Hanno Beckerda1655a2017-10-18 14:21:44 +01002041
Gilles Peskine449bd832023-01-11 14:50:10 +01002042 MPI_VALIDATE_RET(X != NULL);
2043 MPI_VALIDATE_RET(f_rng != NULL);
Paul Bakker33dc46b2014-04-30 16:11:39 +02002044
Hanno Beckerda1655a2017-10-18 14:21:44 +01002045 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine449bd832023-01-11 14:50:10 +01002046 MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
2047 if (size == 0) {
2048 return 0;
2049 }
Paul Bakker287781a2011-03-26 13:18:49 +00002050
Gilles Peskine449bd832023-01-11 14:50:10 +01002051 ret = mbedtls_mpi_core_fill_random(X->p, X->n, size, f_rng, p_rng);
Paul Bakker287781a2011-03-26 13:18:49 +00002052
2053cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01002054 return ret;
Paul Bakker287781a2011-03-26 13:18:49 +00002055}
2056
Gilles Peskine449bd832023-01-11 14:50:10 +01002057int mbedtls_mpi_random(mbedtls_mpi *X,
2058 mbedtls_mpi_sint min,
2059 const mbedtls_mpi *N,
2060 int (*f_rng)(void *, unsigned char *, size_t),
2061 void *p_rng)
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002062{
Gilles Peskine449bd832023-01-11 14:50:10 +01002063 if (min < 0) {
2064 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2065 }
2066 if (mbedtls_mpi_cmp_int(N, min) <= 0) {
2067 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2068 }
Gilles Peskine1e918f42021-03-29 22:14:51 +02002069
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002070 /* Ensure that target MPI has exactly the same number of limbs
2071 * as the upper bound, even if the upper bound has leading zeros.
Gilles Peskine6b7ce962022-12-15 15:04:33 +01002072 * This is necessary for mbedtls_mpi_core_random. */
Gilles Peskine449bd832023-01-11 14:50:10 +01002073 int ret = mbedtls_mpi_resize_clear(X, N->n);
2074 if (ret != 0) {
2075 return ret;
2076 }
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002077
Gilles Peskine449bd832023-01-11 14:50:10 +01002078 return mbedtls_mpi_core_random(X->p, min, N->p, X->n, f_rng, p_rng);
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002079}
2080
Paul Bakker5121ce52009-01-03 21:22:43 +00002081/*
2082 * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
2083 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002084int mbedtls_mpi_inv_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N)
Paul Bakker5121ce52009-01-03 21:22:43 +00002085{
Janos Follath24eed8d2019-11-22 13:21:35 +00002086 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002087 mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
Gilles Peskine449bd832023-01-11 14:50:10 +01002088 MPI_VALIDATE_RET(X != NULL);
2089 MPI_VALIDATE_RET(A != NULL);
2090 MPI_VALIDATE_RET(N != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00002091
Gilles Peskine449bd832023-01-11 14:50:10 +01002092 if (mbedtls_mpi_cmp_int(N, 1) <= 0) {
2093 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2094 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002095
Gilles Peskine449bd832023-01-11 14:50:10 +01002096 mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TU); mbedtls_mpi_init(&U1); mbedtls_mpi_init(&U2);
2097 mbedtls_mpi_init(&G); mbedtls_mpi_init(&TB); mbedtls_mpi_init(&TV);
2098 mbedtls_mpi_init(&V1); mbedtls_mpi_init(&V2);
Paul Bakker5121ce52009-01-03 21:22:43 +00002099
Gilles Peskine449bd832023-01-11 14:50:10 +01002100 MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, A, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002101
Gilles Peskine449bd832023-01-11 14:50:10 +01002102 if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002103 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002104 goto cleanup;
2105 }
2106
Gilles Peskine449bd832023-01-11 14:50:10 +01002107 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&TA, A, N));
2108 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TU, &TA));
2109 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, N));
2110 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TV, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002111
Gilles Peskine449bd832023-01-11 14:50:10 +01002112 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U1, 1));
2113 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U2, 0));
2114 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V1, 0));
2115 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V2, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002116
Gilles Peskine449bd832023-01-11 14:50:10 +01002117 do {
2118 while ((TU.p[0] & 1) == 0) {
2119 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TU, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002120
Gilles Peskine449bd832023-01-11 14:50:10 +01002121 if ((U1.p[0] & 1) != 0 || (U2.p[0] & 1) != 0) {
2122 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&U1, &U1, &TB));
2123 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &TA));
Paul Bakker5121ce52009-01-03 21:22:43 +00002124 }
2125
Gilles Peskine449bd832023-01-11 14:50:10 +01002126 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U1, 1));
2127 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U2, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002128 }
2129
Gilles Peskine449bd832023-01-11 14:50:10 +01002130 while ((TV.p[0] & 1) == 0) {
2131 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TV, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002132
Gilles Peskine449bd832023-01-11 14:50:10 +01002133 if ((V1.p[0] & 1) != 0 || (V2.p[0] & 1) != 0) {
2134 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, &TB));
2135 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &TA));
Paul Bakker5121ce52009-01-03 21:22:43 +00002136 }
2137
Gilles Peskine449bd832023-01-11 14:50:10 +01002138 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V1, 1));
2139 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V2, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002140 }
2141
Gilles Peskine449bd832023-01-11 14:50:10 +01002142 if (mbedtls_mpi_cmp_mpi(&TU, &TV) >= 0) {
2143 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TU, &TU, &TV));
2144 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U1, &U1, &V1));
2145 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &V2));
2146 } else {
2147 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TV, &TV, &TU));
2148 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, &U1));
2149 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &U2));
Paul Bakker5121ce52009-01-03 21:22:43 +00002150 }
Gilles Peskine449bd832023-01-11 14:50:10 +01002151 } while (mbedtls_mpi_cmp_int(&TU, 0) != 0);
2152
2153 while (mbedtls_mpi_cmp_int(&V1, 0) < 0) {
2154 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002155 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002156
Gilles Peskine449bd832023-01-11 14:50:10 +01002157 while (mbedtls_mpi_cmp_mpi(&V1, N) >= 0) {
2158 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, N));
2159 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002160
Gilles Peskine449bd832023-01-11 14:50:10 +01002161 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &V1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002162
2163cleanup:
2164
Gilles Peskine449bd832023-01-11 14:50:10 +01002165 mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TU); mbedtls_mpi_free(&U1); mbedtls_mpi_free(&U2);
2166 mbedtls_mpi_free(&G); mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TV);
2167 mbedtls_mpi_free(&V1); mbedtls_mpi_free(&V2);
Paul Bakker5121ce52009-01-03 21:22:43 +00002168
Gilles Peskine449bd832023-01-11 14:50:10 +01002169 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002170}
2171
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002172#if defined(MBEDTLS_GENPRIME)
Paul Bakkerd9374b02012-11-02 11:02:58 +00002173
Gilles Peskineb2bc1712019-02-08 17:27:11 +01002174/* Gaps between primes, starting at 3. https://oeis.org/A001223 */
2175static const unsigned char small_prime_gaps[] = {
2176 2, 2, 4, 2, 4, 2, 4, 6,
2177 2, 6, 4, 2, 4, 6, 6, 2,
2178 6, 4, 2, 6, 4, 6, 8, 4,
2179 2, 4, 2, 4, 14, 4, 6, 2,
2180 10, 2, 6, 6, 4, 6, 6, 2,
2181 10, 2, 4, 2, 12, 12, 4, 2,
2182 4, 6, 2, 10, 6, 6, 6, 2,
2183 6, 4, 2, 10, 14, 4, 2, 4,
2184 14, 6, 10, 2, 4, 6, 8, 6,
2185 6, 4, 6, 8, 4, 8, 10, 2,
2186 10, 2, 6, 4, 6, 8, 4, 2,
2187 4, 12, 8, 4, 8, 4, 6, 12,
2188 2, 18, 6, 10, 6, 6, 2, 6,
2189 10, 6, 6, 2, 6, 6, 4, 2,
2190 12, 10, 2, 4, 6, 6, 2, 12,
2191 4, 6, 8, 10, 8, 10, 8, 6,
2192 6, 4, 8, 6, 4, 8, 4, 14,
2193 10, 12, 2, 10, 2, 4, 2, 10,
2194 14, 4, 2, 4, 14, 4, 2, 4,
2195 20, 4, 8, 10, 8, 4, 6, 6,
2196 14, 4, 6, 6, 8, 6, /*reaches 997*/
Paul Bakker5121ce52009-01-03 21:22:43 +00002197};
2198
2199/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002200 * Small divisors test (X must be positive)
2201 *
2202 * Return values:
2203 * 0: no small factor (possible prime, more tests needed)
2204 * 1: certain prime
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002205 * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002206 * other negative: error
Paul Bakker5121ce52009-01-03 21:22:43 +00002207 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002208static int mpi_check_small_factors(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +00002209{
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002210 int ret = 0;
2211 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002212 mbedtls_mpi_uint r;
Gilles Peskineb2bc1712019-02-08 17:27:11 +01002213 unsigned p = 3; /* The first odd prime */
Paul Bakker5121ce52009-01-03 21:22:43 +00002214
Gilles Peskine449bd832023-01-11 14:50:10 +01002215 if ((X->p[0] & 1) == 0) {
2216 return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2217 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002218
Gilles Peskineb2bc1712019-02-08 17:27:11 +01002219 for (i = 0; i < sizeof(small_prime_gaps); p += small_prime_gaps[i], i++) {
2220 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, p));
Gilles Peskine449bd832023-01-11 14:50:10 +01002221 if (r == 0) {
Gilles Peskineb2bc1712019-02-08 17:27:11 +01002222 if (mbedtls_mpi_cmp_int(X, p) == 0) {
2223 return 1;
2224 } else {
2225 return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2226 }
Gilles Peskine449bd832023-01-11 14:50:10 +01002227 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002228 }
2229
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002230cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01002231 return ret;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002232}
2233
2234/*
2235 * Miller-Rabin pseudo-primality test (HAC 4.24)
2236 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002237static int mpi_miller_rabin(const mbedtls_mpi *X, size_t rounds,
2238 int (*f_rng)(void *, unsigned char *, size_t),
2239 void *p_rng)
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002240{
Pascal Junodb99183d2015-03-11 16:49:45 +01002241 int ret, count;
Janos Follathda31fa12018-09-03 14:45:23 +01002242 size_t i, j, k, s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002243 mbedtls_mpi W, R, T, A, RR;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002244
Gilles Peskine449bd832023-01-11 14:50:10 +01002245 MPI_VALIDATE_RET(X != NULL);
2246 MPI_VALIDATE_RET(f_rng != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00002247
Gilles Peskine449bd832023-01-11 14:50:10 +01002248 mbedtls_mpi_init(&W); mbedtls_mpi_init(&R);
2249 mbedtls_mpi_init(&T); mbedtls_mpi_init(&A);
2250 mbedtls_mpi_init(&RR);
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002251
Paul Bakker5121ce52009-01-03 21:22:43 +00002252 /*
2253 * W = |X| - 1
2254 * R = W >> lsb( W )
2255 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002256 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&W, X, 1));
2257 s = mbedtls_mpi_lsb(&W);
2258 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R, &W));
2259 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&R, s));
Paul Bakker5121ce52009-01-03 21:22:43 +00002260
Gilles Peskine449bd832023-01-11 14:50:10 +01002261 for (i = 0; i < rounds; i++) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002262 /*
2263 * pick a random A, 1 < A < |X| - 1
2264 */
Pascal Junodb99183d2015-03-11 16:49:45 +01002265 count = 0;
2266 do {
Gilles Peskine449bd832023-01-11 14:50:10 +01002267 MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&A, X->n * ciL, f_rng, p_rng));
Pascal Junodb99183d2015-03-11 16:49:45 +01002268
Gilles Peskine449bd832023-01-11 14:50:10 +01002269 j = mbedtls_mpi_bitlen(&A);
2270 k = mbedtls_mpi_bitlen(&W);
Pascal Junodb99183d2015-03-11 16:49:45 +01002271 if (j > k) {
Gilles Peskine449bd832023-01-11 14:50:10 +01002272 A.p[A.n - 1] &= ((mbedtls_mpi_uint) 1 << (k - (A.n - 1) * biL - 1)) - 1;
Pascal Junodb99183d2015-03-11 16:49:45 +01002273 }
2274
2275 if (count++ > 30) {
Jens Wiklanderf08aa3e2019-01-17 13:30:57 +01002276 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2277 goto cleanup;
Pascal Junodb99183d2015-03-11 16:49:45 +01002278 }
2279
Gilles Peskine449bd832023-01-11 14:50:10 +01002280 } while (mbedtls_mpi_cmp_mpi(&A, &W) >= 0 ||
2281 mbedtls_mpi_cmp_int(&A, 1) <= 0);
Paul Bakker5121ce52009-01-03 21:22:43 +00002282
2283 /*
2284 * A = A^R mod |X|
2285 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002286 MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&A, &A, &R, X, &RR));
Paul Bakker5121ce52009-01-03 21:22:43 +00002287
Gilles Peskine449bd832023-01-11 14:50:10 +01002288 if (mbedtls_mpi_cmp_mpi(&A, &W) == 0 ||
2289 mbedtls_mpi_cmp_int(&A, 1) == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002290 continue;
Gilles Peskine449bd832023-01-11 14:50:10 +01002291 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002292
2293 j = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01002294 while (j < s && mbedtls_mpi_cmp_mpi(&A, &W) != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002295 /*
2296 * A = A * A mod |X|
2297 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002298 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &A, &A));
2299 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&A, &T, X));
Paul Bakker5121ce52009-01-03 21:22:43 +00002300
Gilles Peskine449bd832023-01-11 14:50:10 +01002301 if (mbedtls_mpi_cmp_int(&A, 1) == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002302 break;
Gilles Peskine449bd832023-01-11 14:50:10 +01002303 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002304
2305 j++;
2306 }
2307
2308 /*
2309 * not prime if A != |X| - 1 or A == 1
2310 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002311 if (mbedtls_mpi_cmp_mpi(&A, &W) != 0 ||
2312 mbedtls_mpi_cmp_int(&A, 1) == 0) {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002313 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002314 break;
2315 }
2316 }
2317
2318cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01002319 mbedtls_mpi_free(&W); mbedtls_mpi_free(&R);
2320 mbedtls_mpi_free(&T); mbedtls_mpi_free(&A);
2321 mbedtls_mpi_free(&RR);
Paul Bakker5121ce52009-01-03 21:22:43 +00002322
Gilles Peskine449bd832023-01-11 14:50:10 +01002323 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002324}
2325
2326/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002327 * Pseudo-primality test: small factors, then Miller-Rabin
2328 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002329int mbedtls_mpi_is_prime_ext(const mbedtls_mpi *X, int rounds,
2330 int (*f_rng)(void *, unsigned char *, size_t),
2331 void *p_rng)
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002332{
Janos Follath24eed8d2019-11-22 13:21:35 +00002333 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002334 mbedtls_mpi XX;
Gilles Peskine449bd832023-01-11 14:50:10 +01002335 MPI_VALIDATE_RET(X != NULL);
2336 MPI_VALIDATE_RET(f_rng != NULL);
Manuel Pégourié-Gonnard7f4ed672014-10-14 20:56:02 +02002337
2338 XX.s = 1;
2339 XX.n = X->n;
2340 XX.p = X->p;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002341
Gilles Peskine449bd832023-01-11 14:50:10 +01002342 if (mbedtls_mpi_cmp_int(&XX, 0) == 0 ||
2343 mbedtls_mpi_cmp_int(&XX, 1) == 0) {
2344 return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002345 }
2346
Gilles Peskine449bd832023-01-11 14:50:10 +01002347 if (mbedtls_mpi_cmp_int(&XX, 2) == 0) {
2348 return 0;
2349 }
2350
2351 if ((ret = mpi_check_small_factors(&XX)) != 0) {
2352 if (ret == 1) {
2353 return 0;
2354 }
2355
2356 return ret;
2357 }
2358
2359 return mpi_miller_rabin(&XX, rounds, f_rng, p_rng);
Janos Follathf301d232018-08-14 13:34:01 +01002360}
2361
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002362/*
Paul Bakker5121ce52009-01-03 21:22:43 +00002363 * Prime number generation
Jethro Beekman66689272018-02-14 19:24:10 -08002364 *
Janos Follathf301d232018-08-14 13:34:01 +01002365 * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
2366 * be either 1024 bits or 1536 bits long, and flags must contain
2367 * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
Paul Bakker5121ce52009-01-03 21:22:43 +00002368 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002369int mbedtls_mpi_gen_prime(mbedtls_mpi *X, size_t nbits, int flags,
2370 int (*f_rng)(void *, unsigned char *, size_t),
2371 void *p_rng)
Paul Bakker5121ce52009-01-03 21:22:43 +00002372{
Jethro Beekman66689272018-02-14 19:24:10 -08002373#ifdef MBEDTLS_HAVE_INT64
2374// ceil(2^63.5)
2375#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
2376#else
2377// ceil(2^31.5)
2378#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
2379#endif
2380 int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker23986e52011-04-24 08:57:21 +00002381 size_t k, n;
Janos Follathda31fa12018-09-03 14:45:23 +01002382 int rounds;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002383 mbedtls_mpi_uint r;
2384 mbedtls_mpi Y;
Paul Bakker5121ce52009-01-03 21:22:43 +00002385
Gilles Peskine449bd832023-01-11 14:50:10 +01002386 MPI_VALIDATE_RET(X != NULL);
2387 MPI_VALIDATE_RET(f_rng != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00002388
Gilles Peskine449bd832023-01-11 14:50:10 +01002389 if (nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS) {
2390 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2391 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002392
Gilles Peskine449bd832023-01-11 14:50:10 +01002393 mbedtls_mpi_init(&Y);
Paul Bakker5121ce52009-01-03 21:22:43 +00002394
Gilles Peskine449bd832023-01-11 14:50:10 +01002395 n = BITS_TO_LIMBS(nbits);
Paul Bakker5121ce52009-01-03 21:22:43 +00002396
Gilles Peskine449bd832023-01-11 14:50:10 +01002397 if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR) == 0) {
Janos Follathda31fa12018-09-03 14:45:23 +01002398 /*
2399 * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
2400 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002401 rounds = ((nbits >= 1300) ? 2 : (nbits >= 850) ? 3 :
2402 (nbits >= 650) ? 4 : (nbits >= 350) ? 8 :
2403 (nbits >= 250) ? 12 : (nbits >= 150) ? 18 : 27);
2404 } else {
Janos Follathda31fa12018-09-03 14:45:23 +01002405 /*
2406 * 2^-100 error probability, number of rounds computed based on HAC,
2407 * fact 4.48
2408 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002409 rounds = ((nbits >= 1450) ? 4 : (nbits >= 1150) ? 5 :
2410 (nbits >= 1000) ? 6 : (nbits >= 850) ? 7 :
2411 (nbits >= 750) ? 8 : (nbits >= 500) ? 13 :
2412 (nbits >= 250) ? 28 : (nbits >= 150) ? 40 : 51);
Janos Follathda31fa12018-09-03 14:45:23 +01002413 }
2414
Gilles Peskine449bd832023-01-11 14:50:10 +01002415 while (1) {
2416 MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(X, n * ciL, f_rng, p_rng));
Jethro Beekman66689272018-02-14 19:24:10 -08002417 /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
Gilles Peskine449bd832023-01-11 14:50:10 +01002418 if (X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2) {
2419 continue;
2420 }
Jethro Beekman66689272018-02-14 19:24:10 -08002421
2422 k = n * biL;
Gilles Peskine449bd832023-01-11 14:50:10 +01002423 if (k > nbits) {
2424 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, k - nbits));
2425 }
Jethro Beekman66689272018-02-14 19:24:10 -08002426 X->p[0] |= 1;
2427
Gilles Peskine449bd832023-01-11 14:50:10 +01002428 if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH) == 0) {
2429 ret = mbedtls_mpi_is_prime_ext(X, rounds, f_rng, p_rng);
Jethro Beekman66689272018-02-14 19:24:10 -08002430
Gilles Peskine449bd832023-01-11 14:50:10 +01002431 if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002432 goto cleanup;
Gilles Peskine449bd832023-01-11 14:50:10 +01002433 }
2434 } else {
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002435 /*
Tom Cosgrovece7f18c2022-07-28 05:50:56 +01002436 * A necessary condition for Y and X = 2Y + 1 to be prime
Jethro Beekman66689272018-02-14 19:24:10 -08002437 * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
2438 * Make sure it is satisfied, while keeping X = 3 mod 4
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002439 */
Jethro Beekman66689272018-02-14 19:24:10 -08002440
2441 X->p[0] |= 2;
2442
Gilles Peskine449bd832023-01-11 14:50:10 +01002443 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, 3));
2444 if (r == 0) {
2445 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 8));
2446 } else if (r == 1) {
2447 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 4));
2448 }
Jethro Beekman66689272018-02-14 19:24:10 -08002449
2450 /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
Gilles Peskine449bd832023-01-11 14:50:10 +01002451 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, X));
2452 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, 1));
Jethro Beekman66689272018-02-14 19:24:10 -08002453
Gilles Peskine449bd832023-01-11 14:50:10 +01002454 while (1) {
Jethro Beekman66689272018-02-14 19:24:10 -08002455 /*
2456 * First, check small factors for X and Y
2457 * before doing Miller-Rabin on any of them
2458 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002459 if ((ret = mpi_check_small_factors(X)) == 0 &&
2460 (ret = mpi_check_small_factors(&Y)) == 0 &&
2461 (ret = mpi_miller_rabin(X, rounds, f_rng, p_rng))
2462 == 0 &&
2463 (ret = mpi_miller_rabin(&Y, rounds, f_rng, p_rng))
2464 == 0) {
Jethro Beekman66689272018-02-14 19:24:10 -08002465 goto cleanup;
Gilles Peskine449bd832023-01-11 14:50:10 +01002466 }
Jethro Beekman66689272018-02-14 19:24:10 -08002467
Gilles Peskine449bd832023-01-11 14:50:10 +01002468 if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
Jethro Beekman66689272018-02-14 19:24:10 -08002469 goto cleanup;
Gilles Peskine449bd832023-01-11 14:50:10 +01002470 }
Jethro Beekman66689272018-02-14 19:24:10 -08002471
2472 /*
2473 * Next candidates. We want to preserve Y = (X-1) / 2 and
2474 * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
2475 * so up Y by 6 and X by 12.
2476 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002477 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 12));
2478 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&Y, &Y, 6));
Paul Bakker5121ce52009-01-03 21:22:43 +00002479 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002480 }
2481 }
2482
2483cleanup:
2484
Gilles Peskine449bd832023-01-11 14:50:10 +01002485 mbedtls_mpi_free(&Y);
Paul Bakker5121ce52009-01-03 21:22:43 +00002486
Gilles Peskine449bd832023-01-11 14:50:10 +01002487 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002488}
2489
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002490#endif /* MBEDTLS_GENPRIME */
Paul Bakker5121ce52009-01-03 21:22:43 +00002491
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002492#if defined(MBEDTLS_SELF_TEST)
Paul Bakker5121ce52009-01-03 21:22:43 +00002493
Paul Bakker23986e52011-04-24 08:57:21 +00002494#define GCD_PAIR_COUNT 3
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002495
2496static const int gcd_pairs[GCD_PAIR_COUNT][3] =
2497{
2498 { 693, 609, 21 },
2499 { 1764, 868, 28 },
2500 { 768454923, 542167814, 1 }
2501};
2502
Paul Bakker5121ce52009-01-03 21:22:43 +00002503/*
2504 * Checkup routine
2505 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002506int mbedtls_mpi_self_test(int verbose)
Paul Bakker5121ce52009-01-03 21:22:43 +00002507{
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002508 int ret, i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002509 mbedtls_mpi A, E, N, X, Y, U, V;
Paul Bakker5121ce52009-01-03 21:22:43 +00002510
Gilles Peskine449bd832023-01-11 14:50:10 +01002511 mbedtls_mpi_init(&A); mbedtls_mpi_init(&E); mbedtls_mpi_init(&N); mbedtls_mpi_init(&X);
2512 mbedtls_mpi_init(&Y); mbedtls_mpi_init(&U); mbedtls_mpi_init(&V);
Paul Bakker5121ce52009-01-03 21:22:43 +00002513
Gilles Peskine449bd832023-01-11 14:50:10 +01002514 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&A, 16,
2515 "EFE021C2645FD1DC586E69184AF4A31E" \
2516 "D5F53E93B5F123FA41680867BA110131" \
2517 "944FE7952E2517337780CB0DB80E61AA" \
2518 "E7C8DDC6C5C6AADEB34EB38A2F40D5E6"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002519
Gilles Peskine449bd832023-01-11 14:50:10 +01002520 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&E, 16,
2521 "B2E7EFD37075B9F03FF989C7C5051C20" \
2522 "34D2A323810251127E7BF8625A4F49A5" \
2523 "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
2524 "5B5C25763222FEFCCFC38B832366C29E"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002525
Gilles Peskine449bd832023-01-11 14:50:10 +01002526 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&N, 16,
2527 "0066A198186C18C10B2F5ED9B522752A" \
2528 "9830B69916E535C8F047518A889A43A5" \
2529 "94B6BED27A168D31D4A52F88925AA8F5"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002530
Gilles Peskine449bd832023-01-11 14:50:10 +01002531 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&X, &A, &N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002532
Gilles Peskine449bd832023-01-11 14:50:10 +01002533 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2534 "602AB7ECA597A3D6B56FF9829A5E8B85" \
2535 "9E857EA95A03512E2BAE7391688D264A" \
2536 "A5663B0341DB9CCFD2C4C5F421FEC814" \
2537 "8001B72E848A38CAE1C65F78E56ABDEF" \
2538 "E12D3C039B8A02D6BE593F0BBBDA56F1" \
2539 "ECF677152EF804370C1A305CAF3B5BF1" \
2540 "30879B56C61DE584A0F53A2447A51E"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002541
Gilles Peskine449bd832023-01-11 14:50:10 +01002542 if (verbose != 0) {
2543 mbedtls_printf(" MPI test #1 (mul_mpi): ");
2544 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002545
Gilles Peskine449bd832023-01-11 14:50:10 +01002546 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2547 if (verbose != 0) {
2548 mbedtls_printf("failed\n");
2549 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002550
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002551 ret = 1;
2552 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002553 }
2554
Gilles Peskine449bd832023-01-11 14:50:10 +01002555 if (verbose != 0) {
2556 mbedtls_printf("passed\n");
2557 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002558
Gilles Peskine449bd832023-01-11 14:50:10 +01002559 MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&X, &Y, &A, &N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002560
Gilles Peskine449bd832023-01-11 14:50:10 +01002561 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2562 "256567336059E52CAE22925474705F39A94"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002563
Gilles Peskine449bd832023-01-11 14:50:10 +01002564 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&V, 16,
2565 "6613F26162223DF488E9CD48CC132C7A" \
2566 "0AC93C701B001B092E4E5B9F73BCD27B" \
2567 "9EE50D0657C77F374E903CDFA4C642"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002568
Gilles Peskine449bd832023-01-11 14:50:10 +01002569 if (verbose != 0) {
2570 mbedtls_printf(" MPI test #2 (div_mpi): ");
2571 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002572
Gilles Peskine449bd832023-01-11 14:50:10 +01002573 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0 ||
2574 mbedtls_mpi_cmp_mpi(&Y, &V) != 0) {
2575 if (verbose != 0) {
2576 mbedtls_printf("failed\n");
2577 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002578
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002579 ret = 1;
2580 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002581 }
2582
Gilles Peskine449bd832023-01-11 14:50:10 +01002583 if (verbose != 0) {
2584 mbedtls_printf("passed\n");
2585 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002586
Gilles Peskine449bd832023-01-11 14:50:10 +01002587 MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&X, &A, &E, &N, NULL));
Paul Bakker5121ce52009-01-03 21:22:43 +00002588
Gilles Peskine449bd832023-01-11 14:50:10 +01002589 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2590 "36E139AEA55215609D2816998ED020BB" \
2591 "BD96C37890F65171D948E9BC7CBAA4D9" \
2592 "325D24D6A3C12710F10A09FA08AB87"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002593
Gilles Peskine449bd832023-01-11 14:50:10 +01002594 if (verbose != 0) {
2595 mbedtls_printf(" MPI test #3 (exp_mod): ");
2596 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002597
Gilles Peskine449bd832023-01-11 14:50:10 +01002598 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2599 if (verbose != 0) {
2600 mbedtls_printf("failed\n");
2601 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002602
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002603 ret = 1;
2604 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002605 }
2606
Gilles Peskine449bd832023-01-11 14:50:10 +01002607 if (verbose != 0) {
2608 mbedtls_printf("passed\n");
2609 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002610
Gilles Peskine449bd832023-01-11 14:50:10 +01002611 MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&X, &A, &N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002612
Gilles Peskine449bd832023-01-11 14:50:10 +01002613 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2614 "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
2615 "C3DBA76456363A10869622EAC2DD84EC" \
2616 "C5B8A74DAC4D09E03B5E0BE779F2DF61"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002617
Gilles Peskine449bd832023-01-11 14:50:10 +01002618 if (verbose != 0) {
2619 mbedtls_printf(" MPI test #4 (inv_mod): ");
2620 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002621
Gilles Peskine449bd832023-01-11 14:50:10 +01002622 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2623 if (verbose != 0) {
2624 mbedtls_printf("failed\n");
2625 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002626
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002627 ret = 1;
2628 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002629 }
2630
Gilles Peskine449bd832023-01-11 14:50:10 +01002631 if (verbose != 0) {
2632 mbedtls_printf("passed\n");
2633 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002634
Gilles Peskine449bd832023-01-11 14:50:10 +01002635 if (verbose != 0) {
2636 mbedtls_printf(" MPI test #5 (simple gcd): ");
2637 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002638
Gilles Peskine449bd832023-01-11 14:50:10 +01002639 for (i = 0; i < GCD_PAIR_COUNT; i++) {
2640 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&X, gcd_pairs[i][0]));
2641 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Y, gcd_pairs[i][1]));
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002642
Gilles Peskine449bd832023-01-11 14:50:10 +01002643 MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&A, &X, &Y));
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002644
Gilles Peskine449bd832023-01-11 14:50:10 +01002645 if (mbedtls_mpi_cmp_int(&A, gcd_pairs[i][2]) != 0) {
2646 if (verbose != 0) {
2647 mbedtls_printf("failed at %d\n", i);
2648 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002649
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002650 ret = 1;
2651 goto cleanup;
2652 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002653 }
2654
Gilles Peskine449bd832023-01-11 14:50:10 +01002655 if (verbose != 0) {
2656 mbedtls_printf("passed\n");
2657 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002658
Paul Bakker5121ce52009-01-03 21:22:43 +00002659cleanup:
2660
Gilles Peskine449bd832023-01-11 14:50:10 +01002661 if (ret != 0 && verbose != 0) {
2662 mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
2663 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002664
Gilles Peskine449bd832023-01-11 14:50:10 +01002665 mbedtls_mpi_free(&A); mbedtls_mpi_free(&E); mbedtls_mpi_free(&N); mbedtls_mpi_free(&X);
2666 mbedtls_mpi_free(&Y); mbedtls_mpi_free(&U); mbedtls_mpi_free(&V);
Paul Bakker5121ce52009-01-03 21:22:43 +00002667
Gilles Peskine449bd832023-01-11 14:50:10 +01002668 if (verbose != 0) {
2669 mbedtls_printf("\n");
2670 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002671
Gilles Peskine449bd832023-01-11 14:50:10 +01002672 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002673}
2674
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002675#endif /* MBEDTLS_SELF_TEST */
Paul Bakker5121ce52009-01-03 21:22:43 +00002676
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002677#endif /* MBEDTLS_BIGNUM_C */