blob: 521787d74908af2406ebde06ea436bf2f0a9d6d4 [file] [log] [blame]
Paul Bakker5121ce52009-01-03 21:22:43 +00001/*
2 * Multi-precision integer library
3 *
Bence Szépkúti1e148272020-08-07 13:07:28 +02004 * Copyright The Mbed TLS Contributors
Manuel Pégourié-Gonnard37ff1402015-09-04 14:21:07 +02005 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
Paul Bakker5121ce52009-01-03 21:22:43 +000018 */
Simon Butcher15b15d12015-11-26 19:35:03 +000019
Paul Bakker5121ce52009-01-03 21:22:43 +000020/*
Simon Butcher15b15d12015-11-26 19:35:03 +000021 * The following sources were referenced in the design of this Multi-precision
22 * Integer library:
Paul Bakker5121ce52009-01-03 21:22:43 +000023 *
Simon Butcher15b15d12015-11-26 19:35:03 +000024 * [1] Handbook of Applied Cryptography - 1997
25 * Menezes, van Oorschot and Vanstone
26 *
27 * [2] Multi-Precision Math
28 * Tom St Denis
29 * https://github.com/libtom/libtommath/blob/develop/tommath.pdf
30 *
31 * [3] GNU Multi-Precision Arithmetic Library
32 * https://gmplib.org/manual/index.html
33 *
Simon Butcherf5ba0452015-12-27 23:01:55 +000034 */
Paul Bakker5121ce52009-01-03 21:22:43 +000035
Gilles Peskinedb09ef62020-06-03 01:43:33 +020036#include "common.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000037
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020038#if defined(MBEDTLS_BIGNUM_C)
Paul Bakker5121ce52009-01-03 21:22:43 +000039
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000040#include "mbedtls/bignum.h"
Janos Follath4614b9a2022-07-21 15:34:47 +010041#include "bignum_core.h"
Chris Jones4c5819c2021-03-03 17:45:34 +000042#include "bn_mul.h"
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050043#include "mbedtls/platform_util.h"
Janos Follath24eed8d2019-11-22 13:21:35 +000044#include "mbedtls/error.h"
Gabor Mezei22c9a6f2021-10-20 12:09:35 +020045#include "constant_time_internal.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000046
Dave Rodgman351c71b2021-12-06 17:50:53 +000047#include <limits.h>
Rich Evans00ab4702015-02-06 13:43:58 +000048#include <string.h>
49
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000050#include "mbedtls/platform.h"
Paul Bakker6e339b52013-07-03 13:37:05 +020051
Gabor Mezei66669142022-08-03 12:52:26 +020052#define MPI_VALIDATE_RET( cond ) \
53 MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA )
54#define MPI_VALIDATE( cond ) \
55 MBEDTLS_INTERNAL_VALIDATE( cond )
56
Manuel Pégourié-Gonnard2d708342015-10-05 15:23:11 +010057#define MPI_SIZE_T_MAX ( (size_t) -1 ) /* SIZE_T_MAX is not standard */
58
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050059/* Implementation that should never be optimized out by the compiler */
Andres Amaya Garcia6698d2f2018-04-24 08:39:07 -050060static void mbedtls_mpi_zeroize( mbedtls_mpi_uint *v, size_t n )
61{
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050062 mbedtls_platform_zeroize( v, ciL * n );
63}
64
Paul Bakker5121ce52009-01-03 21:22:43 +000065/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000066 * Initialize one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000067 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020068void mbedtls_mpi_init( mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +000069{
Hanno Becker73d7d792018-12-11 10:35:51 +000070 MPI_VALIDATE( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +000071
Paul Bakker6c591fa2011-05-05 11:49:20 +000072 X->s = 1;
73 X->n = 0;
74 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000075}
76
77/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000078 * Unallocate one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000079 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020080void mbedtls_mpi_free( mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +000081{
Paul Bakker6c591fa2011-05-05 11:49:20 +000082 if( X == NULL )
83 return;
Paul Bakker5121ce52009-01-03 21:22:43 +000084
Paul Bakker6c591fa2011-05-05 11:49:20 +000085 if( X->p != NULL )
Paul Bakker5121ce52009-01-03 21:22:43 +000086 {
Alexey Skalozube17a8da2016-01-13 17:19:33 +020087 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020088 mbedtls_free( X->p );
Paul Bakker5121ce52009-01-03 21:22:43 +000089 }
90
Paul Bakker6c591fa2011-05-05 11:49:20 +000091 X->s = 1;
92 X->n = 0;
93 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000094}
95
96/*
97 * Enlarge to the specified number of limbs
98 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020099int mbedtls_mpi_grow( mbedtls_mpi *X, size_t nblimbs )
Paul Bakker5121ce52009-01-03 21:22:43 +0000100{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200101 mbedtls_mpi_uint *p;
Hanno Becker73d7d792018-12-11 10:35:51 +0000102 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000103
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200104 if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200105 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Paul Bakkerf9688572011-05-05 10:00:45 +0000106
Paul Bakker5121ce52009-01-03 21:22:43 +0000107 if( X->n < nblimbs )
108 {
Simon Butcher29176892016-05-20 00:19:09 +0100109 if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( nblimbs, ciL ) ) == NULL )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200110 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Paul Bakker5121ce52009-01-03 21:22:43 +0000111
Paul Bakker5121ce52009-01-03 21:22:43 +0000112 if( X->p != NULL )
113 {
114 memcpy( p, X->p, X->n * ciL );
Alexey Skalozube17a8da2016-01-13 17:19:33 +0200115 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200116 mbedtls_free( X->p );
Paul Bakker5121ce52009-01-03 21:22:43 +0000117 }
118
119 X->n = nblimbs;
120 X->p = p;
121 }
122
123 return( 0 );
124}
125
126/*
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100127 * Resize down as much as possible,
128 * while keeping at least the specified number of limbs
129 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200130int mbedtls_mpi_shrink( mbedtls_mpi *X, size_t nblimbs )
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100131{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200132 mbedtls_mpi_uint *p;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100133 size_t i;
Hanno Becker73d7d792018-12-11 10:35:51 +0000134 MPI_VALIDATE_RET( X != NULL );
135
136 if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
137 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100138
Gilles Peskinee2f563e2020-01-20 21:17:43 +0100139 /* Actually resize up if there are currently fewer than nblimbs limbs. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100140 if( X->n <= nblimbs )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200141 return( mbedtls_mpi_grow( X, nblimbs ) );
Gilles Peskine322752b2020-01-21 13:59:51 +0100142 /* After this point, then X->n > nblimbs and in particular X->n > 0. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100143
144 for( i = X->n - 1; i > 0; i-- )
145 if( X->p[i] != 0 )
146 break;
147 i++;
148
149 if( i < nblimbs )
150 i = nblimbs;
151
Simon Butcher29176892016-05-20 00:19:09 +0100152 if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( i, ciL ) ) == NULL )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200153 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100154
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100155 if( X->p != NULL )
156 {
157 memcpy( p, X->p, i * ciL );
Alexey Skalozube17a8da2016-01-13 17:19:33 +0200158 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200159 mbedtls_free( X->p );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100160 }
161
162 X->n = i;
163 X->p = p;
164
165 return( 0 );
166}
167
Gilles Peskineed32b572021-06-02 22:17:52 +0200168/* Resize X to have exactly n limbs and set it to 0. */
169static int mbedtls_mpi_resize_clear( mbedtls_mpi *X, size_t limbs )
170{
171 if( limbs == 0 )
172 {
173 mbedtls_mpi_free( X );
174 return( 0 );
175 }
176 else if( X->n == limbs )
177 {
178 memset( X->p, 0, limbs * ciL );
179 X->s = 1;
180 return( 0 );
181 }
182 else
183 {
184 mbedtls_mpi_free( X );
185 return( mbedtls_mpi_grow( X, limbs ) );
186 }
187}
188
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100189/*
Gilles Peskine3da1a8f2021-06-08 23:17:42 +0200190 * Copy the contents of Y into X.
191 *
192 * This function is not constant-time. Leading zeros in Y may be removed.
193 *
194 * Ensure that X does not shrink. This is not guaranteed by the public API,
195 * but some code in the bignum module relies on this property, for example
196 * in mbedtls_mpi_exp_mod().
Paul Bakker5121ce52009-01-03 21:22:43 +0000197 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200198int mbedtls_mpi_copy( mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000199{
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100200 int ret = 0;
Paul Bakker23986e52011-04-24 08:57:21 +0000201 size_t i;
Hanno Becker73d7d792018-12-11 10:35:51 +0000202 MPI_VALIDATE_RET( X != NULL );
203 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000204
205 if( X == Y )
206 return( 0 );
207
Gilles Peskinedb420622020-01-20 21:12:50 +0100208 if( Y->n == 0 )
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200209 {
Gilles Peskine3da1a8f2021-06-08 23:17:42 +0200210 if( X->n != 0 )
211 {
212 X->s = 1;
213 memset( X->p, 0, X->n * ciL );
214 }
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200215 return( 0 );
216 }
217
Paul Bakker5121ce52009-01-03 21:22:43 +0000218 for( i = Y->n - 1; i > 0; i-- )
219 if( Y->p[i] != 0 )
220 break;
221 i++;
222
223 X->s = Y->s;
224
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100225 if( X->n < i )
226 {
227 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i ) );
228 }
229 else
230 {
231 memset( X->p + i, 0, ( X->n - i ) * ciL );
232 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000233
Paul Bakker5121ce52009-01-03 21:22:43 +0000234 memcpy( X->p, Y->p, i * ciL );
235
236cleanup:
237
238 return( ret );
239}
240
241/*
242 * Swap the contents of X and Y
243 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200244void mbedtls_mpi_swap( mbedtls_mpi *X, mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000245{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200246 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000247 MPI_VALIDATE( X != NULL );
248 MPI_VALIDATE( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000249
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200250 memcpy( &T, X, sizeof( mbedtls_mpi ) );
251 memcpy( X, Y, sizeof( mbedtls_mpi ) );
252 memcpy( Y, &T, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000253}
254
255/*
256 * Set value from integer
257 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200258int mbedtls_mpi_lset( mbedtls_mpi *X, mbedtls_mpi_sint z )
Paul Bakker5121ce52009-01-03 21:22:43 +0000259{
Janos Follath24eed8d2019-11-22 13:21:35 +0000260 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker73d7d792018-12-11 10:35:51 +0000261 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000262
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200263 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000264 memset( X->p, 0, X->n * ciL );
265
266 X->p[0] = ( z < 0 ) ? -z : z;
267 X->s = ( z < 0 ) ? -1 : 1;
268
269cleanup:
270
271 return( ret );
272}
273
274/*
Paul Bakker2f5947e2011-05-18 15:47:11 +0000275 * Get a specific bit
276 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200277int mbedtls_mpi_get_bit( const mbedtls_mpi *X, size_t pos )
Paul Bakker2f5947e2011-05-18 15:47:11 +0000278{
Hanno Becker73d7d792018-12-11 10:35:51 +0000279 MPI_VALIDATE_RET( X != NULL );
280
Paul Bakker2f5947e2011-05-18 15:47:11 +0000281 if( X->n * biL <= pos )
282 return( 0 );
283
Paul Bakkerd8bb8262014-06-17 14:06:49 +0200284 return( ( X->p[pos / biL] >> ( pos % biL ) ) & 0x01 );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000285}
286
287/*
288 * Set a bit to a specific value of 0 or 1
289 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200290int mbedtls_mpi_set_bit( mbedtls_mpi *X, size_t pos, unsigned char val )
Paul Bakker2f5947e2011-05-18 15:47:11 +0000291{
292 int ret = 0;
293 size_t off = pos / biL;
294 size_t idx = pos % biL;
Hanno Becker73d7d792018-12-11 10:35:51 +0000295 MPI_VALIDATE_RET( X != NULL );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000296
297 if( val != 0 && val != 1 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200298 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker9af723c2014-05-01 13:03:14 +0200299
Paul Bakker2f5947e2011-05-18 15:47:11 +0000300 if( X->n * biL <= pos )
301 {
302 if( val == 0 )
Paul Bakkerd8bb8262014-06-17 14:06:49 +0200303 return( 0 );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000304
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200305 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, off + 1 ) );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000306 }
307
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200308 X->p[off] &= ~( (mbedtls_mpi_uint) 0x01 << idx );
309 X->p[off] |= (mbedtls_mpi_uint) val << idx;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000310
311cleanup:
Paul Bakker9af723c2014-05-01 13:03:14 +0200312
Paul Bakker2f5947e2011-05-18 15:47:11 +0000313 return( ret );
314}
315
316/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200317 * Return the number of less significant zero-bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000318 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200319size_t mbedtls_mpi_lsb( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000320{
Paul Bakker23986e52011-04-24 08:57:21 +0000321 size_t i, j, count = 0;
Hanno Beckerf25ee7f2018-12-19 16:51:02 +0000322 MBEDTLS_INTERNAL_VALIDATE_RET( X != NULL, 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000323
324 for( i = 0; i < X->n; i++ )
Paul Bakkerf9688572011-05-05 10:00:45 +0000325 for( j = 0; j < biL; j++, count++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000326 if( ( ( X->p[i] >> j ) & 1 ) != 0 )
327 return( count );
328
329 return( 0 );
330}
331
332/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200333 * Return the number of bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000334 */
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200335size_t mbedtls_mpi_bitlen( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000336{
Gabor Mezei89e31462022-08-12 15:36:56 +0200337 return( mbedtls_mpi_core_bitlen( X->p, X->n ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000338}
339
340/*
341 * Return the total size in bytes
342 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200343size_t mbedtls_mpi_size( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000344{
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200345 return( ( mbedtls_mpi_bitlen( X ) + 7 ) >> 3 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000346}
347
348/*
349 * Convert an ASCII character to digit value
350 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200351static int mpi_get_digit( mbedtls_mpi_uint *d, int radix, char c )
Paul Bakker5121ce52009-01-03 21:22:43 +0000352{
353 *d = 255;
354
355 if( c >= 0x30 && c <= 0x39 ) *d = c - 0x30;
356 if( c >= 0x41 && c <= 0x46 ) *d = c - 0x37;
357 if( c >= 0x61 && c <= 0x66 ) *d = c - 0x57;
358
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200359 if( *d >= (mbedtls_mpi_uint) radix )
360 return( MBEDTLS_ERR_MPI_INVALID_CHARACTER );
Paul Bakker5121ce52009-01-03 21:22:43 +0000361
362 return( 0 );
363}
364
365/*
366 * Import from an ASCII string
367 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200368int mbedtls_mpi_read_string( mbedtls_mpi *X, int radix, const char *s )
Paul Bakker5121ce52009-01-03 21:22:43 +0000369{
Janos Follath24eed8d2019-11-22 13:21:35 +0000370 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000371 size_t i, j, slen, n;
Gilles Peskine80f56732021-04-03 18:26:13 +0200372 int sign = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200373 mbedtls_mpi_uint d;
374 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000375 MPI_VALIDATE_RET( X != NULL );
376 MPI_VALIDATE_RET( s != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000377
378 if( radix < 2 || radix > 16 )
Hanno Becker54c91dd2018-12-12 13:37:06 +0000379 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000380
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200381 mbedtls_mpi_init( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000382
Gilles Peskine7cba8592021-06-08 18:32:34 +0200383 if( s[0] == 0 )
384 {
385 mbedtls_mpi_free( X );
386 return( 0 );
387 }
388
Gilles Peskine80f56732021-04-03 18:26:13 +0200389 if( s[0] == '-' )
390 {
391 ++s;
392 sign = -1;
393 }
394
Paul Bakkerff60ee62010-03-16 21:09:09 +0000395 slen = strlen( s );
396
Paul Bakker5121ce52009-01-03 21:22:43 +0000397 if( radix == 16 )
398 {
Manuel Pégourié-Gonnard2d708342015-10-05 15:23:11 +0100399 if( slen > MPI_SIZE_T_MAX >> 2 )
Manuel Pégourié-Gonnard58fb4952015-09-28 13:48:04 +0200400 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
401
Paul Bakkerff60ee62010-03-16 21:09:09 +0000402 n = BITS_TO_LIMBS( slen << 2 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000403
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200404 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n ) );
405 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000406
Paul Bakker23986e52011-04-24 08:57:21 +0000407 for( i = slen, j = 0; i > 0; i--, j++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000408 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200409 MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i - 1] ) );
Paul Bakker66d5d072014-06-17 16:39:18 +0200410 X->p[j / ( 2 * ciL )] |= d << ( ( j % ( 2 * ciL ) ) << 2 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000411 }
412 }
413 else
414 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200415 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000416
Paul Bakkerff60ee62010-03-16 21:09:09 +0000417 for( i = 0; i < slen; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000418 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200419 MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i] ) );
420 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T, X, radix ) );
Gilles Peskine80f56732021-04-03 18:26:13 +0200421 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, &T, d ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000422 }
423 }
424
Gilles Peskine80f56732021-04-03 18:26:13 +0200425 if( sign < 0 && mbedtls_mpi_bitlen( X ) != 0 )
426 X->s = -1;
427
Paul Bakker5121ce52009-01-03 21:22:43 +0000428cleanup:
429
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200430 mbedtls_mpi_free( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000431
432 return( ret );
433}
434
435/*
Ron Eldora16fa292018-11-20 14:07:01 +0200436 * Helper to write the digits high-order first.
Paul Bakker5121ce52009-01-03 21:22:43 +0000437 */
Ron Eldora16fa292018-11-20 14:07:01 +0200438static int mpi_write_hlp( mbedtls_mpi *X, int radix,
439 char **p, const size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000440{
Janos Follath24eed8d2019-11-22 13:21:35 +0000441 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200442 mbedtls_mpi_uint r;
Ron Eldora16fa292018-11-20 14:07:01 +0200443 size_t length = 0;
444 char *p_end = *p + buflen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000445
Ron Eldora16fa292018-11-20 14:07:01 +0200446 do
447 {
448 if( length >= buflen )
449 {
450 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
451 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000452
Ron Eldora16fa292018-11-20 14:07:01 +0200453 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, radix ) );
454 MBEDTLS_MPI_CHK( mbedtls_mpi_div_int( X, NULL, X, radix ) );
455 /*
456 * Write the residue in the current position, as an ASCII character.
457 */
458 if( r < 0xA )
459 *(--p_end) = (char)( '0' + r );
460 else
461 *(--p_end) = (char)( 'A' + ( r - 0xA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000462
Ron Eldora16fa292018-11-20 14:07:01 +0200463 length++;
464 } while( mbedtls_mpi_cmp_int( X, 0 ) != 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000465
Ron Eldora16fa292018-11-20 14:07:01 +0200466 memmove( *p, p_end, length );
467 *p += length;
Paul Bakker5121ce52009-01-03 21:22:43 +0000468
469cleanup:
470
471 return( ret );
472}
473
474/*
475 * Export into an ASCII string
476 */
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100477int mbedtls_mpi_write_string( const mbedtls_mpi *X, int radix,
478 char *buf, size_t buflen, size_t *olen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000479{
Paul Bakker23986e52011-04-24 08:57:21 +0000480 int ret = 0;
481 size_t n;
Paul Bakker5121ce52009-01-03 21:22:43 +0000482 char *p;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200483 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000484 MPI_VALIDATE_RET( X != NULL );
485 MPI_VALIDATE_RET( olen != NULL );
486 MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000487
488 if( radix < 2 || radix > 16 )
Hanno Becker54c91dd2018-12-12 13:37:06 +0000489 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000490
Hanno Becker23cfea02019-02-04 09:45:07 +0000491 n = mbedtls_mpi_bitlen( X ); /* Number of bits necessary to present `n`. */
492 if( radix >= 4 ) n >>= 1; /* Number of 4-adic digits necessary to present
493 * `n`. If radix > 4, this might be a strict
494 * overapproximation of the number of
495 * radix-adic digits needed to present `n`. */
496 if( radix >= 16 ) n >>= 1; /* Number of hexadecimal digits necessary to
497 * present `n`. */
498
Janos Follath80470622019-03-06 13:43:02 +0000499 n += 1; /* Terminating null byte */
Hanno Becker23cfea02019-02-04 09:45:07 +0000500 n += 1; /* Compensate for the divisions above, which round down `n`
501 * in case it's not even. */
502 n += 1; /* Potential '-'-sign. */
503 n += ( n & 1 ); /* Make n even to have enough space for hexadecimal writing,
504 * which always uses an even number of hex-digits. */
Paul Bakker5121ce52009-01-03 21:22:43 +0000505
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100506 if( buflen < n )
Paul Bakker5121ce52009-01-03 21:22:43 +0000507 {
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100508 *olen = n;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200509 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000510 }
511
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100512 p = buf;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200513 mbedtls_mpi_init( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000514
515 if( X->s == -1 )
Hanno Beckerc983c812019-02-01 16:41:30 +0000516 {
Paul Bakker5121ce52009-01-03 21:22:43 +0000517 *p++ = '-';
Hanno Beckerc983c812019-02-01 16:41:30 +0000518 buflen--;
519 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000520
521 if( radix == 16 )
522 {
Paul Bakker23986e52011-04-24 08:57:21 +0000523 int c;
524 size_t i, j, k;
Paul Bakker5121ce52009-01-03 21:22:43 +0000525
Paul Bakker23986e52011-04-24 08:57:21 +0000526 for( i = X->n, k = 0; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000527 {
Paul Bakker23986e52011-04-24 08:57:21 +0000528 for( j = ciL; j > 0; j-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000529 {
Paul Bakker23986e52011-04-24 08:57:21 +0000530 c = ( X->p[i - 1] >> ( ( j - 1 ) << 3) ) & 0xFF;
Paul Bakker5121ce52009-01-03 21:22:43 +0000531
Paul Bakker6c343d72014-07-10 14:36:19 +0200532 if( c == 0 && k == 0 && ( i + j ) != 2 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000533 continue;
534
Paul Bakker98fe5ea2012-10-24 11:17:48 +0000535 *(p++) = "0123456789ABCDEF" [c / 16];
Paul Bakkerd2c167e2012-10-30 07:49:19 +0000536 *(p++) = "0123456789ABCDEF" [c % 16];
Paul Bakker5121ce52009-01-03 21:22:43 +0000537 k = 1;
538 }
539 }
540 }
541 else
542 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200543 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T, X ) );
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000544
545 if( T.s == -1 )
546 T.s = 1;
547
Ron Eldora16fa292018-11-20 14:07:01 +0200548 MBEDTLS_MPI_CHK( mpi_write_hlp( &T, radix, &p, buflen ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000549 }
550
551 *p++ = '\0';
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100552 *olen = p - buf;
Paul Bakker5121ce52009-01-03 21:22:43 +0000553
554cleanup:
555
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200556 mbedtls_mpi_free( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000557
558 return( ret );
559}
560
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200561#if defined(MBEDTLS_FS_IO)
Paul Bakker5121ce52009-01-03 21:22:43 +0000562/*
563 * Read X from an opened file
564 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200565int mbedtls_mpi_read_file( mbedtls_mpi *X, int radix, FILE *fin )
Paul Bakker5121ce52009-01-03 21:22:43 +0000566{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200567 mbedtls_mpi_uint d;
Paul Bakker23986e52011-04-24 08:57:21 +0000568 size_t slen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000569 char *p;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000570 /*
Paul Bakkercb37aa52011-11-30 16:00:20 +0000571 * Buffer should have space for (short) label and decimal formatted MPI,
572 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000573 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200574 char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
Paul Bakker5121ce52009-01-03 21:22:43 +0000575
Hanno Becker73d7d792018-12-11 10:35:51 +0000576 MPI_VALIDATE_RET( X != NULL );
577 MPI_VALIDATE_RET( fin != NULL );
578
579 if( radix < 2 || radix > 16 )
580 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
581
Paul Bakker5121ce52009-01-03 21:22:43 +0000582 memset( s, 0, sizeof( s ) );
583 if( fgets( s, sizeof( s ) - 1, fin ) == NULL )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200584 return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
Paul Bakker5121ce52009-01-03 21:22:43 +0000585
586 slen = strlen( s );
Paul Bakkercb37aa52011-11-30 16:00:20 +0000587 if( slen == sizeof( s ) - 2 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200588 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
Paul Bakkercb37aa52011-11-30 16:00:20 +0000589
Hanno Beckerb2034b72017-04-26 11:46:46 +0100590 if( slen > 0 && s[slen - 1] == '\n' ) { slen--; s[slen] = '\0'; }
591 if( slen > 0 && s[slen - 1] == '\r' ) { slen--; s[slen] = '\0'; }
Paul Bakker5121ce52009-01-03 21:22:43 +0000592
593 p = s + slen;
Hanno Beckerb2034b72017-04-26 11:46:46 +0100594 while( p-- > s )
Paul Bakker5121ce52009-01-03 21:22:43 +0000595 if( mpi_get_digit( &d, radix, *p ) != 0 )
596 break;
597
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200598 return( mbedtls_mpi_read_string( X, radix, p + 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000599}
600
601/*
602 * Write X into an opened file (or stdout if fout == NULL)
603 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200604int mbedtls_mpi_write_file( const char *p, const mbedtls_mpi *X, int radix, FILE *fout )
Paul Bakker5121ce52009-01-03 21:22:43 +0000605{
Janos Follath24eed8d2019-11-22 13:21:35 +0000606 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000607 size_t n, slen, plen;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000608 /*
Paul Bakker5531c6d2012-09-26 19:20:46 +0000609 * Buffer should have space for (short) label and decimal formatted MPI,
610 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000611 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200612 char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
Hanno Becker73d7d792018-12-11 10:35:51 +0000613 MPI_VALIDATE_RET( X != NULL );
614
615 if( radix < 2 || radix > 16 )
616 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000617
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100618 memset( s, 0, sizeof( s ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000619
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100620 MBEDTLS_MPI_CHK( mbedtls_mpi_write_string( X, radix, s, sizeof( s ) - 2, &n ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000621
622 if( p == NULL ) p = "";
623
624 plen = strlen( p );
625 slen = strlen( s );
626 s[slen++] = '\r';
627 s[slen++] = '\n';
628
629 if( fout != NULL )
630 {
631 if( fwrite( p, 1, plen, fout ) != plen ||
632 fwrite( s, 1, slen, fout ) != slen )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200633 return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
Paul Bakker5121ce52009-01-03 21:22:43 +0000634 }
635 else
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200636 mbedtls_printf( "%s%s", p, s );
Paul Bakker5121ce52009-01-03 21:22:43 +0000637
638cleanup:
639
640 return( ret );
641}
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200642#endif /* MBEDTLS_FS_IO */
Paul Bakker5121ce52009-01-03 21:22:43 +0000643
644/*
Janos Follatha778a942019-02-13 10:28:28 +0000645 * Import X from unsigned binary data, little endian
Przemyslaw Stekiel76960a72022-02-21 13:42:09 +0100646 *
647 * This function is guaranteed to return an MPI with exactly the necessary
648 * number of limbs (in particular, it does not skip 0s in the input).
Janos Follatha778a942019-02-13 10:28:28 +0000649 */
650int mbedtls_mpi_read_binary_le( mbedtls_mpi *X,
651 const unsigned char *buf, size_t buflen )
652{
Janos Follath24eed8d2019-11-22 13:21:35 +0000653 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follath620c58c2022-08-15 11:58:42 +0100654 const size_t limbs = CHARS_TO_LIMBS( buflen );
Janos Follatha778a942019-02-13 10:28:28 +0000655
656 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskineed32b572021-06-02 22:17:52 +0200657 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Janos Follatha778a942019-02-13 10:28:28 +0000658
Janos Follath5f016652022-07-22 16:18:41 +0100659 MBEDTLS_MPI_CHK( mbedtls_mpi_core_read_le( X->p, X->n, buf, buflen ) );
Janos Follatha778a942019-02-13 10:28:28 +0000660
661cleanup:
662
Janos Follath171a7ef2019-02-15 16:17:45 +0000663 /*
664 * This function is also used to import keys. However, wiping the buffers
665 * upon failure is not necessary because failure only can happen before any
666 * input is copied.
667 */
Janos Follatha778a942019-02-13 10:28:28 +0000668 return( ret );
669}
670
671/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000672 * Import X from unsigned binary data, big endian
Przemyslaw Stekiel76960a72022-02-21 13:42:09 +0100673 *
674 * This function is guaranteed to return an MPI with exactly the necessary
675 * number of limbs (in particular, it does not skip 0s in the input).
Paul Bakker5121ce52009-01-03 21:22:43 +0000676 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200677int mbedtls_mpi_read_binary( mbedtls_mpi *X, const unsigned char *buf, size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000678{
Janos Follath24eed8d2019-11-22 13:21:35 +0000679 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follath620c58c2022-08-15 11:58:42 +0100680 const size_t limbs = CHARS_TO_LIMBS( buflen );
Paul Bakker5121ce52009-01-03 21:22:43 +0000681
Hanno Becker8ce11a32018-12-19 16:18:52 +0000682 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +0000683 MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
684
Hanno Becker073c1992017-10-17 15:17:27 +0100685 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskineed32b572021-06-02 22:17:52 +0200686 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000687
Janos Follath5f016652022-07-22 16:18:41 +0100688 MBEDTLS_MPI_CHK( mbedtls_mpi_core_read_be( X->p, X->n, buf, buflen ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000689
690cleanup:
691
Janos Follath171a7ef2019-02-15 16:17:45 +0000692 /*
693 * This function is also used to import keys. However, wiping the buffers
694 * upon failure is not necessary because failure only can happen before any
695 * input is copied.
696 */
Paul Bakker5121ce52009-01-03 21:22:43 +0000697 return( ret );
698}
699
700/*
Janos Follathe344d0f2019-02-19 16:17:40 +0000701 * Export X into unsigned binary data, little endian
702 */
703int mbedtls_mpi_write_binary_le( const mbedtls_mpi *X,
704 unsigned char *buf, size_t buflen )
705{
Janos Follathca5688e2022-08-19 12:05:28 +0100706 return( mbedtls_mpi_core_write_le( X->p, X->n, buf, buflen ) );
Janos Follathe344d0f2019-02-19 16:17:40 +0000707}
708
709/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000710 * Export X into unsigned binary data, big endian
711 */
Gilles Peskine11cdb052018-11-20 16:47:47 +0100712int mbedtls_mpi_write_binary( const mbedtls_mpi *X,
713 unsigned char *buf, size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000714{
Janos Follath5f016652022-07-22 16:18:41 +0100715 return( mbedtls_mpi_core_write_be( X->p, X->n, buf, buflen ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000716}
717
718/*
719 * Left-shift: X <<= count
720 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200721int mbedtls_mpi_shift_l( mbedtls_mpi *X, size_t count )
Paul Bakker5121ce52009-01-03 21:22:43 +0000722{
Janos Follath24eed8d2019-11-22 13:21:35 +0000723 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000724 size_t i, v0, t1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200725 mbedtls_mpi_uint r0 = 0, r1;
Hanno Becker73d7d792018-12-11 10:35:51 +0000726 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000727
728 v0 = count / (biL );
729 t1 = count & (biL - 1);
730
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200731 i = mbedtls_mpi_bitlen( X ) + count;
Paul Bakker5121ce52009-01-03 21:22:43 +0000732
Paul Bakkerf9688572011-05-05 10:00:45 +0000733 if( X->n * biL < i )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200734 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, BITS_TO_LIMBS( i ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000735
736 ret = 0;
737
738 /*
739 * shift by count / limb_size
740 */
741 if( v0 > 0 )
742 {
Paul Bakker23986e52011-04-24 08:57:21 +0000743 for( i = X->n; i > v0; i-- )
744 X->p[i - 1] = X->p[i - v0 - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +0000745
Paul Bakker23986e52011-04-24 08:57:21 +0000746 for( ; i > 0; i-- )
747 X->p[i - 1] = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000748 }
749
750 /*
751 * shift by count % limb_size
752 */
753 if( t1 > 0 )
754 {
755 for( i = v0; i < X->n; i++ )
756 {
757 r1 = X->p[i] >> (biL - t1);
758 X->p[i] <<= t1;
759 X->p[i] |= r0;
760 r0 = r1;
761 }
762 }
763
764cleanup:
765
766 return( ret );
767}
768
769/*
770 * Right-shift: X >>= count
771 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200772int mbedtls_mpi_shift_r( mbedtls_mpi *X, size_t count )
Paul Bakker5121ce52009-01-03 21:22:43 +0000773{
Gilles Peskine66414202022-09-21 15:36:16 +0200774 MPI_VALIDATE_RET( X != NULL );
775 if( X->n != 0 )
776 mbedtls_mpi_core_shift_r( X->p, X->n, count );
777 return( 0 );
778}
779
Paul Bakker5121ce52009-01-03 21:22:43 +0000780/*
781 * Compare unsigned values
782 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200783int mbedtls_mpi_cmp_abs( const mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000784{
Paul Bakker23986e52011-04-24 08:57:21 +0000785 size_t i, j;
Hanno Becker73d7d792018-12-11 10:35:51 +0000786 MPI_VALIDATE_RET( X != NULL );
787 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000788
Paul Bakker23986e52011-04-24 08:57:21 +0000789 for( i = X->n; i > 0; i-- )
790 if( X->p[i - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000791 break;
792
Paul Bakker23986e52011-04-24 08:57:21 +0000793 for( j = Y->n; j > 0; j-- )
794 if( Y->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000795 break;
796
Paul Bakker23986e52011-04-24 08:57:21 +0000797 if( i == 0 && j == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000798 return( 0 );
799
800 if( i > j ) return( 1 );
801 if( j > i ) return( -1 );
802
Paul Bakker23986e52011-04-24 08:57:21 +0000803 for( ; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000804 {
Paul Bakker23986e52011-04-24 08:57:21 +0000805 if( X->p[i - 1] > Y->p[i - 1] ) return( 1 );
806 if( X->p[i - 1] < Y->p[i - 1] ) return( -1 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000807 }
808
809 return( 0 );
810}
811
812/*
813 * Compare signed values
814 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200815int mbedtls_mpi_cmp_mpi( const mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000816{
Paul Bakker23986e52011-04-24 08:57:21 +0000817 size_t i, j;
Hanno Becker73d7d792018-12-11 10:35:51 +0000818 MPI_VALIDATE_RET( X != NULL );
819 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000820
Paul Bakker23986e52011-04-24 08:57:21 +0000821 for( i = X->n; i > 0; i-- )
822 if( X->p[i - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000823 break;
824
Paul Bakker23986e52011-04-24 08:57:21 +0000825 for( j = Y->n; j > 0; j-- )
826 if( Y->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000827 break;
828
Paul Bakker23986e52011-04-24 08:57:21 +0000829 if( i == 0 && j == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000830 return( 0 );
831
832 if( i > j ) return( X->s );
Paul Bakker0c8f73b2012-03-22 14:08:57 +0000833 if( j > i ) return( -Y->s );
Paul Bakker5121ce52009-01-03 21:22:43 +0000834
835 if( X->s > 0 && Y->s < 0 ) return( 1 );
836 if( Y->s > 0 && X->s < 0 ) return( -1 );
837
Paul Bakker23986e52011-04-24 08:57:21 +0000838 for( ; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000839 {
Paul Bakker23986e52011-04-24 08:57:21 +0000840 if( X->p[i - 1] > Y->p[i - 1] ) return( X->s );
841 if( X->p[i - 1] < Y->p[i - 1] ) return( -X->s );
Paul Bakker5121ce52009-01-03 21:22:43 +0000842 }
843
844 return( 0 );
845}
846
Janos Follathee6abce2019-09-05 14:47:19 +0100847/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000848 * Compare signed values
849 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200850int mbedtls_mpi_cmp_int( const mbedtls_mpi *X, mbedtls_mpi_sint z )
Paul Bakker5121ce52009-01-03 21:22:43 +0000851{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200852 mbedtls_mpi Y;
853 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +0000854 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000855
856 *p = ( z < 0 ) ? -z : z;
857 Y.s = ( z < 0 ) ? -1 : 1;
858 Y.n = 1;
859 Y.p = p;
860
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200861 return( mbedtls_mpi_cmp_mpi( X, &Y ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000862}
863
864/*
865 * Unsigned addition: X = |A| + |B| (HAC 14.7)
866 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200867int mbedtls_mpi_add_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +0000868{
Janos Follath24eed8d2019-11-22 13:21:35 +0000869 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100870 size_t j;
Hanno Becker73d7d792018-12-11 10:35:51 +0000871 MPI_VALIDATE_RET( X != NULL );
872 MPI_VALIDATE_RET( A != NULL );
873 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000874
875 if( X == B )
876 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200877 const mbedtls_mpi *T = A; A = X; B = T;
Paul Bakker5121ce52009-01-03 21:22:43 +0000878 }
879
880 if( X != A )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200881 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
Paul Bakker9af723c2014-05-01 13:03:14 +0200882
Paul Bakkerf7ca7b92009-06-20 10:31:06 +0000883 /*
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100884 * X must always be positive as a result of unsigned additions.
Paul Bakkerf7ca7b92009-06-20 10:31:06 +0000885 */
886 X->s = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +0000887
Paul Bakker23986e52011-04-24 08:57:21 +0000888 for( j = B->n; j > 0; j-- )
889 if( B->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000890 break;
891
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200892 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000893
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100894 /* j is the number of non-zero limbs of B. Add those to X. */
Paul Bakker5121ce52009-01-03 21:22:43 +0000895
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100896 mbedtls_mpi_uint *p = X->p;
897
Tom Cosgrove6469fdf2022-10-25 12:46:13 +0100898 mbedtls_mpi_uint c = mbedtls_mpi_core_add( p, p, B->p, j );
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100899
900 p += j;
901
902 /* Now propagate any carry */
Paul Bakker5121ce52009-01-03 21:22:43 +0000903
904 while( c != 0 )
905 {
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100906 if( j >= X->n )
Paul Bakker5121ce52009-01-03 21:22:43 +0000907 {
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100908 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j + 1 ) );
909 p = X->p + j;
Paul Bakker5121ce52009-01-03 21:22:43 +0000910 }
911
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100912 *p += c; c = ( *p < c ); j++; p++;
Paul Bakker5121ce52009-01-03 21:22:43 +0000913 }
914
915cleanup:
916
917 return( ret );
918}
919
Paul Bakker5121ce52009-01-03 21:22:43 +0000920/*
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200921 * Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10)
Paul Bakker5121ce52009-01-03 21:22:43 +0000922 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200923int mbedtls_mpi_sub_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +0000924{
Janos Follath24eed8d2019-11-22 13:21:35 +0000925 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000926 size_t n;
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200927 mbedtls_mpi_uint carry;
Hanno Becker73d7d792018-12-11 10:35:51 +0000928 MPI_VALIDATE_RET( X != NULL );
929 MPI_VALIDATE_RET( A != NULL );
930 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000931
Paul Bakker23986e52011-04-24 08:57:21 +0000932 for( n = B->n; n > 0; n-- )
933 if( B->p[n - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000934 break;
Gilles Peskinec8a91772021-01-27 22:30:43 +0100935 if( n > A->n )
936 {
937 /* B >= (2^ciL)^n > A */
938 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
939 goto cleanup;
940 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000941
Gilles Peskine1acf7cb2020-07-23 01:03:22 +0200942 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, A->n ) );
943
944 /* Set the high limbs of X to match A. Don't touch the lower limbs
945 * because X might be aliased to B, and we must not overwrite the
946 * significant digits of B. */
947 if( A->n > n )
948 memcpy( X->p + n, A->p + n, ( A->n - n ) * ciL );
949 if( X->n > A->n )
950 memset( X->p + A->n, 0, ( X->n - A->n ) * ciL );
951
Tom Cosgrove7e655f72022-07-20 14:02:11 +0100952 carry = mbedtls_mpi_core_sub( X->p, A->p, B->p, n );
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200953 if( carry != 0 )
Gilles Peskinec097e9e2020-06-08 21:58:22 +0200954 {
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200955 /* Propagate the carry to the first nonzero limb of X. */
956 for( ; n < X->n && X->p[n] == 0; n++ )
957 --X->p[n];
958 /* If we ran out of space for the carry, it means that the result
959 * is negative. */
960 if( n == X->n )
Gilles Peskine89b41302020-07-23 01:16:46 +0200961 {
962 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
963 goto cleanup;
964 }
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200965 --X->p[n];
Gilles Peskinec097e9e2020-06-08 21:58:22 +0200966 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000967
Gilles Peskine1acf7cb2020-07-23 01:03:22 +0200968 /* X should always be positive as a result of unsigned subtractions. */
969 X->s = 1;
970
Paul Bakker5121ce52009-01-03 21:22:43 +0000971cleanup:
Paul Bakker5121ce52009-01-03 21:22:43 +0000972 return( ret );
973}
974
975/*
976 * Signed addition: X = A + B
977 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200978int mbedtls_mpi_add_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +0000979{
Hanno Becker73d7d792018-12-11 10:35:51 +0000980 int ret, s;
981 MPI_VALIDATE_RET( X != NULL );
982 MPI_VALIDATE_RET( A != NULL );
983 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000984
Hanno Becker73d7d792018-12-11 10:35:51 +0000985 s = A->s;
Paul Bakker5121ce52009-01-03 21:22:43 +0000986 if( A->s * B->s < 0 )
987 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200988 if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000989 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200990 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000991 X->s = s;
992 }
993 else
994 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200995 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000996 X->s = -s;
997 }
998 }
999 else
1000 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001001 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001002 X->s = s;
1003 }
1004
1005cleanup:
1006
1007 return( ret );
1008}
1009
1010/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001011 * Signed subtraction: X = A - B
Paul Bakker5121ce52009-01-03 21:22:43 +00001012 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001013int mbedtls_mpi_sub_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001014{
Hanno Becker73d7d792018-12-11 10:35:51 +00001015 int ret, s;
1016 MPI_VALIDATE_RET( X != NULL );
1017 MPI_VALIDATE_RET( A != NULL );
1018 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001019
Hanno Becker73d7d792018-12-11 10:35:51 +00001020 s = A->s;
Paul Bakker5121ce52009-01-03 21:22:43 +00001021 if( A->s * B->s > 0 )
1022 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001023 if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001024 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001025 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001026 X->s = s;
1027 }
1028 else
1029 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001030 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001031 X->s = -s;
1032 }
1033 }
1034 else
1035 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001036 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001037 X->s = s;
1038 }
1039
1040cleanup:
1041
1042 return( ret );
1043}
1044
1045/*
1046 * Signed addition: X = A + b
1047 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001048int mbedtls_mpi_add_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001049{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001050 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001051 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001052 MPI_VALIDATE_RET( X != NULL );
1053 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001054
1055 p[0] = ( b < 0 ) ? -b : b;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001056 B.s = ( b < 0 ) ? -1 : 1;
1057 B.n = 1;
1058 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001059
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001060 return( mbedtls_mpi_add_mpi( X, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001061}
1062
1063/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001064 * Signed subtraction: X = A - b
Paul Bakker5121ce52009-01-03 21:22:43 +00001065 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001066int mbedtls_mpi_sub_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001067{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001068 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001069 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001070 MPI_VALIDATE_RET( X != NULL );
1071 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001072
1073 p[0] = ( b < 0 ) ? -b : b;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001074 B.s = ( b < 0 ) ? -1 : 1;
1075 B.n = 1;
1076 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001077
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001078 return( mbedtls_mpi_sub_mpi( X, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001079}
1080
Paul Bakker5121ce52009-01-03 21:22:43 +00001081/*
1082 * Baseline multiplication: X = A * B (HAC 14.12)
1083 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001084int mbedtls_mpi_mul_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001085{
Janos Follath24eed8d2019-11-22 13:21:35 +00001086 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker1772e052022-04-13 06:51:40 +01001087 size_t i, j;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001088 mbedtls_mpi TA, TB;
Hanno Beckerda763de2022-04-13 06:50:02 +01001089 int result_is_zero = 0;
Hanno Becker73d7d792018-12-11 10:35:51 +00001090 MPI_VALIDATE_RET( X != NULL );
1091 MPI_VALIDATE_RET( A != NULL );
1092 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001093
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001094 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00001095
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001096 if( X == A ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) ); A = &TA; }
1097 if( X == B ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) ); B = &TB; }
Paul Bakker5121ce52009-01-03 21:22:43 +00001098
Hanno Beckerda763de2022-04-13 06:50:02 +01001099 for( i = A->n; i > 0; i-- )
1100 if( A->p[i - 1] != 0 )
1101 break;
1102 if( i == 0 )
1103 result_is_zero = 1;
1104
1105 for( j = B->n; j > 0; j-- )
1106 if( B->p[j - 1] != 0 )
1107 break;
1108 if( j == 0 )
1109 result_is_zero = 1;
1110
1111 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + j ) );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001112 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001113
Hanno Becker1772e052022-04-13 06:51:40 +01001114 for( size_t k = 0; k < j; k++ )
Hanno Beckerfee261a2022-04-06 06:20:22 +01001115 {
1116 /* We know that there cannot be any carry-out since we're
1117 * iterating from bottom to top. */
Hanno Beckerda763de2022-04-13 06:50:02 +01001118 (void) mbedtls_mpi_core_mla( X->p + k, i + 1,
1119 A->p, i,
Hanno Beckeraef9cc42022-04-11 06:36:29 +01001120 B->p[k] );
Hanno Beckerfee261a2022-04-06 06:20:22 +01001121 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001122
Hanno Beckerda763de2022-04-13 06:50:02 +01001123 /* If the result is 0, we don't shortcut the operation, which reduces
1124 * but does not eliminate side channels leaking the zero-ness. We do
1125 * need to take care to set the sign bit properly since the library does
1126 * not fully support an MPI object with a value of 0 and s == -1. */
1127 if( result_is_zero )
1128 X->s = 1;
1129 else
1130 X->s = A->s * B->s;
Paul Bakker5121ce52009-01-03 21:22:43 +00001131
1132cleanup:
1133
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001134 mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TA );
Paul Bakker5121ce52009-01-03 21:22:43 +00001135
1136 return( ret );
1137}
1138
1139/*
1140 * Baseline multiplication: X = A * b
1141 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001142int mbedtls_mpi_mul_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001143{
Hanno Becker73d7d792018-12-11 10:35:51 +00001144 MPI_VALIDATE_RET( X != NULL );
1145 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001146
Hanno Becker35771312022-04-14 11:52:11 +01001147 size_t n = A->n;
1148 while( n > 0 && A->p[n - 1] == 0 )
1149 --n;
1150
Hanno Becker74a11a32022-04-06 06:27:00 +01001151 /* The general method below doesn't work if b==0. */
Hanno Becker35771312022-04-14 11:52:11 +01001152 if( b == 0 || n == 0 )
Paul Elliott986b55a2021-04-20 21:46:29 +01001153 return( mbedtls_mpi_lset( X, 0 ) );
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001154
Hanno Beckeraef9cc42022-04-11 06:36:29 +01001155 /* Calculate A*b as A + A*(b-1) to take advantage of mbedtls_mpi_core_mla */
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001156 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001157 /* In general, A * b requires 1 limb more than b. If
1158 * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
1159 * number of limbs as A and the call to grow() is not required since
Gilles Peskinee1bba7c2021-03-10 23:44:10 +01001160 * copy() will take care of the growth if needed. However, experimentally,
1161 * making the call to grow() unconditional causes slightly fewer
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001162 * calls to calloc() in ECP code, presumably because it reuses the
1163 * same mpi for a while and this way the mpi is more likely to directly
Hanno Becker9137b9c2022-04-12 10:51:54 +01001164 * grow to its final size.
1165 *
1166 * Note that calculating A*b as 0 + A*b doesn't work as-is because
1167 * A,X can be the same. */
Hanno Becker35771312022-04-14 11:52:11 +01001168 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n + 1 ) );
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001169 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
Hanno Becker35771312022-04-14 11:52:11 +01001170 mbedtls_mpi_core_mla( X->p, X->n, A->p, n, b - 1 );
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001171
1172cleanup:
1173 return( ret );
Paul Bakker5121ce52009-01-03 21:22:43 +00001174}
1175
1176/*
Simon Butcherf5ba0452015-12-27 23:01:55 +00001177 * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
1178 * mbedtls_mpi_uint divisor, d
Simon Butcher15b15d12015-11-26 19:35:03 +00001179 */
Simon Butcherf5ba0452015-12-27 23:01:55 +00001180static mbedtls_mpi_uint mbedtls_int_div_int( mbedtls_mpi_uint u1,
1181 mbedtls_mpi_uint u0, mbedtls_mpi_uint d, mbedtls_mpi_uint *r )
Simon Butcher15b15d12015-11-26 19:35:03 +00001182{
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001183#if defined(MBEDTLS_HAVE_UDBL)
1184 mbedtls_t_udbl dividend, quotient;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001185#else
Simon Butcher9803d072016-01-03 00:24:34 +00001186 const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
1187 const mbedtls_mpi_uint uint_halfword_mask = ( (mbedtls_mpi_uint) 1 << biH ) - 1;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001188 mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
1189 mbedtls_mpi_uint u0_msw, u0_lsw;
Simon Butcher9803d072016-01-03 00:24:34 +00001190 size_t s;
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001191#endif
1192
Simon Butcher15b15d12015-11-26 19:35:03 +00001193 /*
1194 * Check for overflow
1195 */
Simon Butcherf5ba0452015-12-27 23:01:55 +00001196 if( 0 == d || u1 >= d )
Simon Butcher15b15d12015-11-26 19:35:03 +00001197 {
Simon Butcherf5ba0452015-12-27 23:01:55 +00001198 if (r != NULL) *r = ~0;
Simon Butcher15b15d12015-11-26 19:35:03 +00001199
Simon Butcherf5ba0452015-12-27 23:01:55 +00001200 return ( ~0 );
Simon Butcher15b15d12015-11-26 19:35:03 +00001201 }
1202
1203#if defined(MBEDTLS_HAVE_UDBL)
Simon Butcher15b15d12015-11-26 19:35:03 +00001204 dividend = (mbedtls_t_udbl) u1 << biL;
1205 dividend |= (mbedtls_t_udbl) u0;
1206 quotient = dividend / d;
1207 if( quotient > ( (mbedtls_t_udbl) 1 << biL ) - 1 )
1208 quotient = ( (mbedtls_t_udbl) 1 << biL ) - 1;
1209
1210 if( r != NULL )
Simon Butcher9803d072016-01-03 00:24:34 +00001211 *r = (mbedtls_mpi_uint)( dividend - (quotient * d ) );
Simon Butcher15b15d12015-11-26 19:35:03 +00001212
1213 return (mbedtls_mpi_uint) quotient;
1214#else
Simon Butcher15b15d12015-11-26 19:35:03 +00001215
1216 /*
1217 * Algorithm D, Section 4.3.1 - The Art of Computer Programming
1218 * Vol. 2 - Seminumerical Algorithms, Knuth
1219 */
1220
1221 /*
1222 * Normalize the divisor, d, and dividend, u0, u1
1223 */
Janos Follath4670f882022-07-21 18:25:42 +01001224 s = mbedtls_mpi_core_clz( d );
Simon Butcher15b15d12015-11-26 19:35:03 +00001225 d = d << s;
1226
1227 u1 = u1 << s;
Simon Butcher9803d072016-01-03 00:24:34 +00001228 u1 |= ( u0 >> ( biL - s ) ) & ( -(mbedtls_mpi_sint)s >> ( biL - 1 ) );
Simon Butcher15b15d12015-11-26 19:35:03 +00001229 u0 = u0 << s;
1230
1231 d1 = d >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001232 d0 = d & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001233
1234 u0_msw = u0 >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001235 u0_lsw = u0 & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001236
1237 /*
1238 * Find the first quotient and remainder
1239 */
1240 q1 = u1 / d1;
1241 r0 = u1 - d1 * q1;
1242
1243 while( q1 >= radix || ( q1 * d0 > radix * r0 + u0_msw ) )
1244 {
1245 q1 -= 1;
1246 r0 += d1;
1247
1248 if ( r0 >= radix ) break;
1249 }
1250
Simon Butcherf5ba0452015-12-27 23:01:55 +00001251 rAX = ( u1 * radix ) + ( u0_msw - q1 * d );
Simon Butcher15b15d12015-11-26 19:35:03 +00001252 q0 = rAX / d1;
1253 r0 = rAX - q0 * d1;
1254
1255 while( q0 >= radix || ( q0 * d0 > radix * r0 + u0_lsw ) )
1256 {
1257 q0 -= 1;
1258 r0 += d1;
1259
1260 if ( r0 >= radix ) break;
1261 }
1262
1263 if (r != NULL)
Simon Butcherf5ba0452015-12-27 23:01:55 +00001264 *r = ( rAX * radix + u0_lsw - q0 * d ) >> s;
Simon Butcher15b15d12015-11-26 19:35:03 +00001265
1266 quotient = q1 * radix + q0;
1267
1268 return quotient;
1269#endif
1270}
1271
1272/*
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001273 * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
Paul Bakker5121ce52009-01-03 21:22:43 +00001274 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001275int mbedtls_mpi_div_mpi( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
1276 const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001277{
Janos Follath24eed8d2019-11-22 13:21:35 +00001278 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001279 size_t i, n, t, k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001280 mbedtls_mpi X, Y, Z, T1, T2;
Alexander Kd19a1932019-11-01 18:20:42 +03001281 mbedtls_mpi_uint TP2[3];
Hanno Becker73d7d792018-12-11 10:35:51 +00001282 MPI_VALIDATE_RET( A != NULL );
1283 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001284
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001285 if( mbedtls_mpi_cmp_int( B, 0 ) == 0 )
1286 return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
Paul Bakker5121ce52009-01-03 21:22:43 +00001287
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001288 mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
Alexander K35d6d462019-10-31 14:46:45 +03001289 mbedtls_mpi_init( &T1 );
Alexander Kd19a1932019-11-01 18:20:42 +03001290 /*
1291 * Avoid dynamic memory allocations for constant-size T2.
1292 *
1293 * T2 is used for comparison only and the 3 limbs are assigned explicitly,
1294 * so nobody increase the size of the MPI and we're safe to use an on-stack
1295 * buffer.
1296 */
Alexander K35d6d462019-10-31 14:46:45 +03001297 T2.s = 1;
Alexander Kd19a1932019-11-01 18:20:42 +03001298 T2.n = sizeof( TP2 ) / sizeof( *TP2 );
1299 T2.p = TP2;
Paul Bakker5121ce52009-01-03 21:22:43 +00001300
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001301 if( mbedtls_mpi_cmp_abs( A, B ) < 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001302 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001303 if( Q != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_lset( Q, 0 ) );
1304 if( R != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001305 return( 0 );
1306 }
1307
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001308 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &X, A ) );
1309 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001310 X.s = Y.s = 1;
1311
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001312 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &Z, A->n + 2 ) );
1313 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Z, 0 ) );
Gilles Peskine2536aa72020-07-24 00:12:59 +02001314 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T1, A->n + 2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001315
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02001316 k = mbedtls_mpi_bitlen( &Y ) % biL;
Paul Bakkerf9688572011-05-05 10:00:45 +00001317 if( k < biL - 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001318 {
1319 k = biL - 1 - k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001320 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &X, k ) );
1321 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, k ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001322 }
1323 else k = 0;
1324
1325 n = X.n - 1;
1326 t = Y.n - 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001327 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, biL * ( n - t ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001328
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001329 while( mbedtls_mpi_cmp_mpi( &X, &Y ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001330 {
1331 Z.p[n - t]++;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001332 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &Y ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001333 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001334 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, biL * ( n - t ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001335
1336 for( i = n; i > t ; i-- )
1337 {
1338 if( X.p[i] >= Y.p[t] )
1339 Z.p[i - t - 1] = ~0;
1340 else
1341 {
Simon Butcher15b15d12015-11-26 19:35:03 +00001342 Z.p[i - t - 1] = mbedtls_int_div_int( X.p[i], X.p[i - 1],
1343 Y.p[t], NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001344 }
1345
Alexander K35d6d462019-10-31 14:46:45 +03001346 T2.p[0] = ( i < 2 ) ? 0 : X.p[i - 2];
1347 T2.p[1] = ( i < 1 ) ? 0 : X.p[i - 1];
1348 T2.p[2] = X.p[i];
1349
Paul Bakker5121ce52009-01-03 21:22:43 +00001350 Z.p[i - t - 1]++;
1351 do
1352 {
1353 Z.p[i - t - 1]--;
1354
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001355 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &T1, 0 ) );
Paul Bakker66d5d072014-06-17 16:39:18 +02001356 T1.p[0] = ( t < 1 ) ? 0 : Y.p[t - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001357 T1.p[1] = Y.p[t];
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001358 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &T1, Z.p[i - t - 1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001359 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001360 while( mbedtls_mpi_cmp_mpi( &T1, &T2 ) > 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00001361
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001362 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &Y, Z.p[i - t - 1] ) );
1363 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
1364 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001365
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001366 if( mbedtls_mpi_cmp_int( &X, 0 ) < 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001367 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001368 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T1, &Y ) );
1369 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
1370 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &X, &X, &T1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001371 Z.p[i - t - 1]--;
1372 }
1373 }
1374
1375 if( Q != NULL )
1376 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001377 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( Q, &Z ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001378 Q->s = A->s * B->s;
1379 }
1380
1381 if( R != NULL )
1382 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001383 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &X, k ) );
Paul Bakkerf02c5642012-11-13 10:25:21 +00001384 X.s = A->s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001385 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, &X ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001386
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001387 if( mbedtls_mpi_cmp_int( R, 0 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001388 R->s = 1;
1389 }
1390
1391cleanup:
1392
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001393 mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
Alexander K35d6d462019-10-31 14:46:45 +03001394 mbedtls_mpi_free( &T1 );
Alexander Kd19a1932019-11-01 18:20:42 +03001395 mbedtls_platform_zeroize( TP2, sizeof( TP2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001396
1397 return( ret );
1398}
1399
1400/*
1401 * Division by int: A = Q * b + R
Paul Bakker5121ce52009-01-03 21:22:43 +00001402 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001403int mbedtls_mpi_div_int( mbedtls_mpi *Q, mbedtls_mpi *R,
1404 const mbedtls_mpi *A,
1405 mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001406{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001407 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001408 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001409 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001410
1411 p[0] = ( b < 0 ) ? -b : b;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001412 B.s = ( b < 0 ) ? -1 : 1;
1413 B.n = 1;
1414 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001415
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001416 return( mbedtls_mpi_div_mpi( Q, R, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001417}
1418
1419/*
1420 * Modulo: R = A mod B
1421 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001422int mbedtls_mpi_mod_mpi( mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001423{
Janos Follath24eed8d2019-11-22 13:21:35 +00001424 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker73d7d792018-12-11 10:35:51 +00001425 MPI_VALIDATE_RET( R != NULL );
1426 MPI_VALIDATE_RET( A != NULL );
1427 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001428
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001429 if( mbedtls_mpi_cmp_int( B, 0 ) < 0 )
1430 return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001431
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001432 MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( NULL, R, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001433
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001434 while( mbedtls_mpi_cmp_int( R, 0 ) < 0 )
1435 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( R, R, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001436
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001437 while( mbedtls_mpi_cmp_mpi( R, B ) >= 0 )
1438 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( R, R, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001439
1440cleanup:
1441
1442 return( ret );
1443}
1444
1445/*
1446 * Modulo: r = A mod b
1447 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001448int mbedtls_mpi_mod_int( mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001449{
Paul Bakker23986e52011-04-24 08:57:21 +00001450 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001451 mbedtls_mpi_uint x, y, z;
Hanno Becker73d7d792018-12-11 10:35:51 +00001452 MPI_VALIDATE_RET( r != NULL );
1453 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001454
1455 if( b == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001456 return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
Paul Bakker5121ce52009-01-03 21:22:43 +00001457
1458 if( b < 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001459 return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
Paul Bakker5121ce52009-01-03 21:22:43 +00001460
1461 /*
1462 * handle trivial cases
1463 */
Gilles Peskineae25bb02022-06-09 19:32:46 +02001464 if( b == 1 || A->n == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001465 {
1466 *r = 0;
1467 return( 0 );
1468 }
1469
1470 if( b == 2 )
1471 {
1472 *r = A->p[0] & 1;
1473 return( 0 );
1474 }
1475
1476 /*
1477 * general case
1478 */
Paul Bakker23986e52011-04-24 08:57:21 +00001479 for( i = A->n, y = 0; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +00001480 {
Paul Bakker23986e52011-04-24 08:57:21 +00001481 x = A->p[i - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001482 y = ( y << biH ) | ( x >> biH );
1483 z = y / b;
1484 y -= z * b;
1485
1486 x <<= biH;
1487 y = ( y << biH ) | ( x >> biH );
1488 z = y / b;
1489 y -= z * b;
1490 }
1491
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001492 /*
1493 * If A is negative, then the current y represents a negative value.
1494 * Flipping it to the positive side.
1495 */
1496 if( A->s < 0 && y != 0 )
1497 y = b - y;
1498
Paul Bakker5121ce52009-01-03 21:22:43 +00001499 *r = y;
1500
1501 return( 0 );
1502}
1503
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001504static void mpi_montg_init( mbedtls_mpi_uint *mm, const mbedtls_mpi *N )
Paul Bakker5121ce52009-01-03 21:22:43 +00001505{
Tom Cosgroveb7438d12022-09-15 15:05:59 +01001506 *mm = mbedtls_mpi_core_montmul_init( N->p );
Paul Bakker5121ce52009-01-03 21:22:43 +00001507}
1508
Tom Cosgrove93842842022-08-05 16:59:43 +01001509/** Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
1510 *
1511 * \param[in,out] A One of the numbers to multiply.
1512 * It must have at least as many limbs as N
1513 * (A->n >= N->n), and any limbs beyond n are ignored.
1514 * On successful completion, A contains the result of
1515 * the multiplication A * B * R^-1 mod N where
1516 * R = (2^ciL)^n.
1517 * \param[in] B One of the numbers to multiply.
1518 * It must be nonzero and must not have more limbs than N
1519 * (B->n <= N->n).
Tom Cosgrove40d22942022-08-17 06:42:44 +01001520 * \param[in] N The modulus. \p N must be odd.
Tom Cosgrove93842842022-08-05 16:59:43 +01001521 * \param mm The value calculated by `mpi_montg_init(&mm, N)`.
1522 * This is -N^-1 mod 2^ciL.
1523 * \param[in,out] T A bignum for temporary storage.
1524 * It must be at least twice the limb size of N plus 1
1525 * (T->n >= 2 * N->n + 1).
1526 * Its initial content is unused and
1527 * its final content is indeterminate.
Tom Cosgrove5dd97e62022-08-30 14:31:49 +01001528 * It does not get reallocated.
Tom Cosgrove93842842022-08-05 16:59:43 +01001529 */
1530static void mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B,
1531 const mbedtls_mpi *N, mbedtls_mpi_uint mm,
Tom Cosgrovef88b47e2022-08-17 08:42:58 +01001532 mbedtls_mpi *T )
Paul Bakker5121ce52009-01-03 21:22:43 +00001533{
Tom Cosgrove93842842022-08-05 16:59:43 +01001534 mbedtls_mpi_core_montmul( A->p, A->p, B->p, B->n, N->p, N->n, mm, T->p );
Paul Bakker5121ce52009-01-03 21:22:43 +00001535}
1536
1537/*
1538 * Montgomery reduction: A = A * R^-1 mod N
Gilles Peskine2a82f722020-06-04 15:00:49 +02001539 *
Tom Cosgrove93842842022-08-05 16:59:43 +01001540 * See mpi_montmul() regarding constraints and guarantees on the parameters.
Paul Bakker5121ce52009-01-03 21:22:43 +00001541 */
Gilles Peskine4e91d472020-06-04 20:55:15 +02001542static void mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N,
Tom Cosgrovef88b47e2022-08-17 08:42:58 +01001543 mbedtls_mpi_uint mm, mbedtls_mpi *T )
Paul Bakker5121ce52009-01-03 21:22:43 +00001544{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001545 mbedtls_mpi_uint z = 1;
1546 mbedtls_mpi U;
Paul Bakker5121ce52009-01-03 21:22:43 +00001547
Paul Bakker8ddb6452013-02-27 14:56:33 +01001548 U.n = U.s = (int) z;
Paul Bakker5121ce52009-01-03 21:22:43 +00001549 U.p = &z;
1550
Tom Cosgrove93842842022-08-05 16:59:43 +01001551 mpi_montmul( A, &U, N, mm, T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001552}
1553
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001554/**
1555 * Select an MPI from a table without leaking the index.
1556 *
1557 * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
1558 * reads the entire table in order to avoid leaking the value of idx to an
1559 * attacker able to observe memory access patterns.
1560 *
1561 * \param[out] R Where to write the selected MPI.
1562 * \param[in] T The table to read from.
1563 * \param[in] T_size The number of elements in the table.
1564 * \param[in] idx The index of the element to select;
1565 * this must satisfy 0 <= idx < T_size.
1566 *
1567 * \return \c 0 on success, or a negative error code.
1568 */
1569static int mpi_select( mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx )
1570{
1571 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1572
1573 for( size_t i = 0; i < T_size; i++ )
Manuel Pégourié-Gonnard92413ef2021-06-03 10:42:46 +02001574 {
1575 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( R, &T[i],
Gabor Mezei90437e32021-10-20 11:59:27 +02001576 (unsigned char) mbedtls_ct_size_bool_eq( i, idx ) ) );
Manuel Pégourié-Gonnard92413ef2021-06-03 10:42:46 +02001577 }
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001578
1579cleanup:
1580 return( ret );
1581}
1582
Paul Bakker5121ce52009-01-03 21:22:43 +00001583/*
1584 * Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
1585 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001586int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A,
1587 const mbedtls_mpi *E, const mbedtls_mpi *N,
Yuto Takano538a0cb2021-07-14 10:20:09 +01001588 mbedtls_mpi *prec_RR )
Paul Bakker5121ce52009-01-03 21:22:43 +00001589{
Janos Follath24eed8d2019-11-22 13:21:35 +00001590 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001591 size_t wbits, wsize, one = 1;
1592 size_t i, j, nblimbs;
1593 size_t bufsize, nbits;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001594 mbedtls_mpi_uint ei, mm, state;
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001595 mbedtls_mpi RR, T, W[ 1 << MBEDTLS_MPI_WINDOW_SIZE ], WW, Apos;
Paul Bakkerf6198c12012-05-16 08:02:29 +00001596 int neg;
Paul Bakker5121ce52009-01-03 21:22:43 +00001597
Hanno Becker73d7d792018-12-11 10:35:51 +00001598 MPI_VALIDATE_RET( X != NULL );
1599 MPI_VALIDATE_RET( A != NULL );
1600 MPI_VALIDATE_RET( E != NULL );
1601 MPI_VALIDATE_RET( N != NULL );
1602
Hanno Becker8d1dd1b2017-09-28 11:02:24 +01001603 if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 || ( N->p[0] & 1 ) == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001604 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00001605
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001606 if( mbedtls_mpi_cmp_int( E, 0 ) < 0 )
1607 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakkerf6198c12012-05-16 08:02:29 +00001608
Chris Jones9246d042020-11-25 15:12:39 +00001609 if( mbedtls_mpi_bitlen( E ) > MBEDTLS_MPI_MAX_BITS ||
1610 mbedtls_mpi_bitlen( N ) > MBEDTLS_MPI_MAX_BITS )
1611 return ( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
1612
Paul Bakkerf6198c12012-05-16 08:02:29 +00001613 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00001614 * Init temps and window size
1615 */
1616 mpi_montg_init( &mm, N );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001617 mbedtls_mpi_init( &RR ); mbedtls_mpi_init( &T );
1618 mbedtls_mpi_init( &Apos );
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001619 mbedtls_mpi_init( &WW );
Paul Bakker5121ce52009-01-03 21:22:43 +00001620 memset( W, 0, sizeof( W ) );
1621
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02001622 i = mbedtls_mpi_bitlen( E );
Paul Bakker5121ce52009-01-03 21:22:43 +00001623
1624 wsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 :
1625 ( i > 79 ) ? 4 : ( i > 23 ) ? 3 : 1;
1626
Peter Kolbuse6bcad32018-12-11 14:01:44 -06001627#if( MBEDTLS_MPI_WINDOW_SIZE < 6 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001628 if( wsize > MBEDTLS_MPI_WINDOW_SIZE )
1629 wsize = MBEDTLS_MPI_WINDOW_SIZE;
Peter Kolbuse6bcad32018-12-11 14:01:44 -06001630#endif
Paul Bakkerb6d5f082011-11-25 11:52:11 +00001631
Paul Bakker5121ce52009-01-03 21:22:43 +00001632 j = N->n + 1;
Tom Cosgrove93842842022-08-05 16:59:43 +01001633 /* All W[i] and X must have at least N->n limbs for the mpi_montmul()
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001634 * and mpi_montred() calls later. Here we ensure that W[1] and X are
1635 * large enough, and later we'll grow other W[i] to the same length.
1636 * They must not be shrunk midway through this function!
1637 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001638 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
1639 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], j ) );
1640 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T, j * 2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001641
1642 /*
Paul Bakker50546922012-05-19 08:40:49 +00001643 * Compensate for negative A (and correct at the end)
1644 */
1645 neg = ( A->s == -1 );
Paul Bakker50546922012-05-19 08:40:49 +00001646 if( neg )
1647 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001648 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Apos, A ) );
Paul Bakker50546922012-05-19 08:40:49 +00001649 Apos.s = 1;
1650 A = &Apos;
1651 }
1652
1653 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00001654 * If 1st call, pre-compute R^2 mod N
1655 */
Yuto Takano538a0cb2021-07-14 10:20:09 +01001656 if( prec_RR == NULL || prec_RR->p == NULL )
Paul Bakker5121ce52009-01-03 21:22:43 +00001657 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001658 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &RR, 1 ) );
1659 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &RR, N->n * 2 * biL ) );
1660 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &RR, &RR, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001661
Yuto Takano538a0cb2021-07-14 10:20:09 +01001662 if( prec_RR != NULL )
1663 memcpy( prec_RR, &RR, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001664 }
1665 else
Yuto Takano538a0cb2021-07-14 10:20:09 +01001666 memcpy( &RR, prec_RR, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001667
1668 /*
1669 * W[1] = A * R^2 * R^-1 mod N = A * R mod N
1670 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001671 if( mbedtls_mpi_cmp_mpi( A, N ) >= 0 )
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001672 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001673 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &W[1], A, N ) );
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001674 /* This should be a no-op because W[1] is already that large before
1675 * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
Tom Cosgrove93842842022-08-05 16:59:43 +01001676 * in mpi_montmul() below, so let's make sure. */
Gilles Peskine2aa3f162021-06-15 21:22:48 +02001677 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], N->n + 1 ) );
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001678 }
Paul Bakkerc2024f42014-01-23 20:38:35 +01001679 else
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001680 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[1], A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001681
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001682 /* Note that this is safe because W[1] always has at least N->n limbs
1683 * (it grew above and was preserved by mbedtls_mpi_copy()). */
Tom Cosgrove93842842022-08-05 16:59:43 +01001684 mpi_montmul( &W[1], &RR, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001685
1686 /*
1687 * X = R^2 * R^-1 mod N = R mod N
1688 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001689 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &RR ) );
Gilles Peskine4e91d472020-06-04 20:55:15 +02001690 mpi_montred( X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001691
1692 if( wsize > 1 )
1693 {
1694 /*
1695 * W[1 << (wsize - 1)] = W[1] ^ (wsize - 1)
1696 */
Paul Bakker66d5d072014-06-17 16:39:18 +02001697 j = one << ( wsize - 1 );
Paul Bakker5121ce52009-01-03 21:22:43 +00001698
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001699 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[j], N->n + 1 ) );
1700 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[j], &W[1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001701
1702 for( i = 0; i < wsize - 1; i++ )
Tom Cosgrove93842842022-08-05 16:59:43 +01001703 mpi_montmul( &W[j], &W[j], N, mm, &T );
Paul Bakker0d7702c2013-10-29 16:18:35 +01001704
Paul Bakker5121ce52009-01-03 21:22:43 +00001705 /*
1706 * W[i] = W[i - 1] * W[1]
1707 */
Paul Bakker66d5d072014-06-17 16:39:18 +02001708 for( i = j + 1; i < ( one << wsize ); i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00001709 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001710 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[i], N->n + 1 ) );
1711 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[i], &W[i - 1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001712
Tom Cosgrove93842842022-08-05 16:59:43 +01001713 mpi_montmul( &W[i], &W[1], N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001714 }
1715 }
1716
1717 nblimbs = E->n;
1718 bufsize = 0;
1719 nbits = 0;
1720 wbits = 0;
1721 state = 0;
1722
1723 while( 1 )
1724 {
1725 if( bufsize == 0 )
1726 {
Paul Bakker0d7702c2013-10-29 16:18:35 +01001727 if( nblimbs == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001728 break;
1729
Paul Bakker0d7702c2013-10-29 16:18:35 +01001730 nblimbs--;
1731
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001732 bufsize = sizeof( mbedtls_mpi_uint ) << 3;
Paul Bakker5121ce52009-01-03 21:22:43 +00001733 }
1734
1735 bufsize--;
1736
1737 ei = (E->p[nblimbs] >> bufsize) & 1;
1738
1739 /*
1740 * skip leading 0s
1741 */
1742 if( ei == 0 && state == 0 )
1743 continue;
1744
1745 if( ei == 0 && state == 1 )
1746 {
1747 /*
1748 * out of window, square X
1749 */
Tom Cosgrove93842842022-08-05 16:59:43 +01001750 mpi_montmul( X, X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001751 continue;
1752 }
1753
1754 /*
1755 * add ei to current window
1756 */
1757 state = 2;
1758
1759 nbits++;
Paul Bakker66d5d072014-06-17 16:39:18 +02001760 wbits |= ( ei << ( wsize - nbits ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001761
1762 if( nbits == wsize )
1763 {
1764 /*
1765 * X = X^wsize R^-1 mod N
1766 */
1767 for( i = 0; i < wsize; i++ )
Tom Cosgrove93842842022-08-05 16:59:43 +01001768 mpi_montmul( X, X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001769
1770 /*
1771 * X = X * W[wbits] R^-1 mod N
1772 */
Manuel Pégourié-Gonnarde22176e2021-06-10 09:34:00 +02001773 MBEDTLS_MPI_CHK( mpi_select( &WW, W, (size_t) 1 << wsize, wbits ) );
Tom Cosgrove93842842022-08-05 16:59:43 +01001774 mpi_montmul( X, &WW, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001775
1776 state--;
1777 nbits = 0;
1778 wbits = 0;
1779 }
1780 }
1781
1782 /*
1783 * process the remaining bits
1784 */
1785 for( i = 0; i < nbits; i++ )
1786 {
Tom Cosgrove93842842022-08-05 16:59:43 +01001787 mpi_montmul( X, X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001788
1789 wbits <<= 1;
1790
Paul Bakker66d5d072014-06-17 16:39:18 +02001791 if( ( wbits & ( one << wsize ) ) != 0 )
Tom Cosgrove93842842022-08-05 16:59:43 +01001792 mpi_montmul( X, &W[1], N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001793 }
1794
1795 /*
1796 * X = A^E * R * R^-1 mod N = A^E mod N
1797 */
Gilles Peskine4e91d472020-06-04 20:55:15 +02001798 mpi_montred( X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001799
Hanno Beckera4af1c42017-04-18 09:07:45 +01001800 if( neg && E->n != 0 && ( E->p[0] & 1 ) != 0 )
Paul Bakkerf6198c12012-05-16 08:02:29 +00001801 {
1802 X->s = -1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001803 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( X, N, X ) );
Paul Bakkerf6198c12012-05-16 08:02:29 +00001804 }
1805
Paul Bakker5121ce52009-01-03 21:22:43 +00001806cleanup:
1807
Paul Bakker66d5d072014-06-17 16:39:18 +02001808 for( i = ( one << ( wsize - 1 ) ); i < ( one << wsize ); i++ )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001809 mbedtls_mpi_free( &W[i] );
Paul Bakker5121ce52009-01-03 21:22:43 +00001810
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001811 mbedtls_mpi_free( &W[1] ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &Apos );
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001812 mbedtls_mpi_free( &WW );
Paul Bakker6c591fa2011-05-05 11:49:20 +00001813
Yuto Takano538a0cb2021-07-14 10:20:09 +01001814 if( prec_RR == NULL || prec_RR->p == NULL )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001815 mbedtls_mpi_free( &RR );
Paul Bakker5121ce52009-01-03 21:22:43 +00001816
1817 return( ret );
1818}
1819
Paul Bakker5121ce52009-01-03 21:22:43 +00001820/*
1821 * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
1822 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001823int mbedtls_mpi_gcd( mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001824{
Janos Follath24eed8d2019-11-22 13:21:35 +00001825 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001826 size_t lz, lzt;
Alexander Ke8ad49f2019-08-16 16:16:07 +03001827 mbedtls_mpi TA, TB;
Paul Bakker5121ce52009-01-03 21:22:43 +00001828
Hanno Becker73d7d792018-12-11 10:35:51 +00001829 MPI_VALIDATE_RET( G != NULL );
1830 MPI_VALIDATE_RET( A != NULL );
1831 MPI_VALIDATE_RET( B != NULL );
1832
Alexander Ke8ad49f2019-08-16 16:16:07 +03001833 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00001834
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001835 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) );
1836 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001837
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001838 lz = mbedtls_mpi_lsb( &TA );
1839 lzt = mbedtls_mpi_lsb( &TB );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001840
Gilles Peskine27253bc2021-06-09 13:26:43 +02001841 /* The loop below gives the correct result when A==0 but not when B==0.
1842 * So have a special case for B==0. Leverage the fact that we just
1843 * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
1844 * slightly more efficient than cmp_int(). */
1845 if( lzt == 0 && mbedtls_mpi_get_bit( &TB, 0 ) == 0 )
1846 {
1847 ret = mbedtls_mpi_copy( G, A );
1848 goto cleanup;
1849 }
1850
Paul Bakker66d5d072014-06-17 16:39:18 +02001851 if( lzt < lz )
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001852 lz = lzt;
1853
Paul Bakker5121ce52009-01-03 21:22:43 +00001854 TA.s = TB.s = 1;
1855
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001856 /* We mostly follow the procedure described in HAC 14.54, but with some
1857 * minor differences:
1858 * - Sequences of multiplications or divisions by 2 are grouped into a
1859 * single shift operation.
Gilles Peskineb09c7ee2021-06-21 18:58:39 +02001860 * - The procedure in HAC assumes that 0 < TB <= TA.
1861 * - The condition TB <= TA is not actually necessary for correctness.
1862 * TA and TB have symmetric roles except for the loop termination
1863 * condition, and the shifts at the beginning of the loop body
1864 * remove any significance from the ordering of TA vs TB before
1865 * the shifts.
1866 * - If TA = 0, the loop goes through 0 iterations and the result is
1867 * correctly TB.
1868 * - The case TB = 0 was short-circuited above.
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001869 *
1870 * For the correctness proof below, decompose the original values of
1871 * A and B as
1872 * A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
1873 * B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
1874 * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
1875 * and gcd(A',B') is odd or 0.
1876 *
1877 * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
1878 * The code maintains the following invariant:
1879 * gcd(A,B) = 2^k * gcd(TA,TB) for some k (I)
Gilles Peskine4df3f1f2021-06-15 22:09:39 +02001880 */
1881
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001882 /* Proof that the loop terminates:
1883 * At each iteration, either the right-shift by 1 is made on a nonzero
1884 * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
1885 * by at least 1, or the right-shift by 1 is made on zero and then
1886 * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
1887 * since in that case TB is calculated from TB-TA with the condition TB>TA).
1888 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001889 while( mbedtls_mpi_cmp_int( &TA, 0 ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001890 {
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001891 /* Divisions by 2 preserve the invariant (I). */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001892 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, mbedtls_mpi_lsb( &TA ) ) );
1893 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, mbedtls_mpi_lsb( &TB ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001894
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001895 /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
1896 * TA-TB is even so the division by 2 has an integer result.
1897 * Invariant (I) is preserved since any odd divisor of both TA and TB
1898 * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
Shaun Case8b0ecbc2021-12-20 21:14:10 -08001899 * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001900 * divides TA.
1901 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001902 if( mbedtls_mpi_cmp_mpi( &TA, &TB ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001903 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001904 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TA, &TA, &TB ) );
1905 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001906 }
1907 else
1908 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001909 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TB, &TB, &TA ) );
1910 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001911 }
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001912 /* Note that one of TA or TB is still odd. */
Paul Bakker5121ce52009-01-03 21:22:43 +00001913 }
1914
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001915 /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
1916 * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
1917 * - If there was at least one loop iteration, then one of TA or TB is odd,
1918 * and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
1919 * lz = min(a,b) so gcd(A,B) = 2^lz * TB.
1920 * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
Gilles Peskine4d3fd362021-06-21 11:40:38 +02001921 * In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001922 */
1923
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001924 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &TB, lz ) );
1925 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( G, &TB ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001926
1927cleanup:
1928
Alexander Ke8ad49f2019-08-16 16:16:07 +03001929 mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00001930
1931 return( ret );
1932}
1933
Paul Bakker33dc46b2014-04-30 16:11:39 +02001934/*
1935 * Fill X with size bytes of random.
Gilles Peskine22cdd0c2022-10-27 20:15:13 +02001936 * The bytes returned from the RNG are used in a specific order which
1937 * is suitable for deterministic ECDSA (see the specification of
1938 * mbedtls_mpi_random() and the implementation in mbedtls_mpi_fill_random()).
Paul Bakker33dc46b2014-04-30 16:11:39 +02001939 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001940int mbedtls_mpi_fill_random( mbedtls_mpi *X, size_t size,
Paul Bakkera3d195c2011-11-27 21:07:34 +00001941 int (*f_rng)(void *, unsigned char *, size_t),
1942 void *p_rng )
Paul Bakker287781a2011-03-26 13:18:49 +00001943{
Janos Follath24eed8d2019-11-22 13:21:35 +00001944 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follath620c58c2022-08-15 11:58:42 +01001945 const size_t limbs = CHARS_TO_LIMBS( size );
Hanno Beckerda1655a2017-10-18 14:21:44 +01001946
Hanno Becker8ce11a32018-12-19 16:18:52 +00001947 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00001948 MPI_VALIDATE_RET( f_rng != NULL );
Paul Bakker33dc46b2014-04-30 16:11:39 +02001949
Hanno Beckerda1655a2017-10-18 14:21:44 +01001950 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskineed32b572021-06-02 22:17:52 +02001951 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02001952 if( size == 0 )
1953 return( 0 );
Paul Bakker287781a2011-03-26 13:18:49 +00001954
Gilles Peskine5980f2b2022-09-09 20:55:53 +02001955 ret = mbedtls_mpi_core_fill_random( X->p, X->n, size, f_rng, p_rng );
Paul Bakker287781a2011-03-26 13:18:49 +00001956
1957cleanup:
1958 return( ret );
1959}
1960
Gilles Peskine02ac93a2021-03-29 22:02:55 +02001961int mbedtls_mpi_random( mbedtls_mpi *X,
1962 mbedtls_mpi_sint min,
1963 const mbedtls_mpi *N,
1964 int (*f_rng)(void *, unsigned char *, size_t),
1965 void *p_rng )
1966{
Gilles Peskine02ac93a2021-03-29 22:02:55 +02001967 int ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Gilles Peskinee5381682021-04-13 21:23:25 +02001968 int count;
Gilles Peskine5b0589e2021-04-13 21:09:10 +02001969 unsigned lt_lower = 1, lt_upper = 0;
Gilles Peskine02ac93a2021-03-29 22:02:55 +02001970 size_t n_bits = mbedtls_mpi_bitlen( N );
1971 size_t n_bytes = ( n_bits + 7 ) / 8;
Gilles Peskine5b0589e2021-04-13 21:09:10 +02001972 mbedtls_mpi lower_bound;
Gilles Peskine02ac93a2021-03-29 22:02:55 +02001973
Gilles Peskine1e918f42021-03-29 22:14:51 +02001974 if( min < 0 )
1975 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
1976 if( mbedtls_mpi_cmp_int( N, min ) <= 0 )
1977 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
1978
Gilles Peskinee5381682021-04-13 21:23:25 +02001979 /*
1980 * When min == 0, each try has at worst a probability 1/2 of failing
1981 * (the msb has a probability 1/2 of being 0, and then the result will
1982 * be < N), so after 30 tries failure probability is a most 2**(-30).
1983 *
1984 * When N is just below a power of 2, as is the case when generating
Gilles Peskinee842e582021-04-15 11:45:19 +02001985 * a random scalar on most elliptic curves, 1 try is enough with
Gilles Peskinee5381682021-04-13 21:23:25 +02001986 * overwhelming probability. When N is just above a power of 2,
Gilles Peskinee842e582021-04-15 11:45:19 +02001987 * as when generating a random scalar on secp224k1, each try has
Gilles Peskinee5381682021-04-13 21:23:25 +02001988 * a probability of failing that is almost 1/2.
1989 *
1990 * The probabilities are almost the same if min is nonzero but negligible
1991 * compared to N. This is always the case when N is crypto-sized, but
1992 * it's convenient to support small N for testing purposes. When N
1993 * is small, use a higher repeat count, otherwise the probability of
1994 * failure is macroscopic.
1995 */
Gilles Peskine87823d72021-06-02 21:18:59 +02001996 count = ( n_bytes > 4 ? 30 : 250 );
Gilles Peskinee5381682021-04-13 21:23:25 +02001997
Gilles Peskine5b0589e2021-04-13 21:09:10 +02001998 mbedtls_mpi_init( &lower_bound );
1999
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002000 /* Ensure that target MPI has exactly the same number of limbs
2001 * as the upper bound, even if the upper bound has leading zeros.
2002 * This is necessary for the mbedtls_mpi_lt_mpi_ct() check. */
Gilles Peskineed32b572021-06-02 22:17:52 +02002003 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, N->n ) );
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002004 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &lower_bound, N->n ) );
2005 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &lower_bound, min ) );
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002006
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002007 /*
2008 * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
2009 * when f_rng is a suitably parametrized instance of HMAC_DRBG:
2010 * - use the same byte ordering;
2011 * - keep the leftmost n_bits bits of the generated octet string;
2012 * - try until result is in the desired range.
2013 * This also avoids any bias, which is especially important for ECDSA.
2014 */
2015 do
2016 {
Gilles Peskine5980f2b2022-09-09 20:55:53 +02002017 MBEDTLS_MPI_CHK( mbedtls_mpi_core_fill_random( X->p, X->n,
2018 n_bytes,
2019 f_rng, p_rng ) );
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002020 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, 8 * n_bytes - n_bits ) );
2021
Gilles Peskinee5381682021-04-13 21:23:25 +02002022 if( --count == 0 )
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002023 {
2024 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2025 goto cleanup;
2026 }
2027
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002028 MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, &lower_bound, &lt_lower ) );
2029 MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, N, &lt_upper ) );
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002030 }
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002031 while( lt_lower != 0 || lt_upper == 0 );
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002032
2033cleanup:
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002034 mbedtls_mpi_free( &lower_bound );
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002035 return( ret );
2036}
2037
Paul Bakker5121ce52009-01-03 21:22:43 +00002038/*
2039 * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
2040 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002041int mbedtls_mpi_inv_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N )
Paul Bakker5121ce52009-01-03 21:22:43 +00002042{
Janos Follath24eed8d2019-11-22 13:21:35 +00002043 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002044 mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
Hanno Becker73d7d792018-12-11 10:35:51 +00002045 MPI_VALIDATE_RET( X != NULL );
2046 MPI_VALIDATE_RET( A != NULL );
2047 MPI_VALIDATE_RET( N != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00002048
Hanno Becker4bcb4912017-04-18 15:49:39 +01002049 if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002050 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00002051
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002052 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TU ); mbedtls_mpi_init( &U1 ); mbedtls_mpi_init( &U2 );
2053 mbedtls_mpi_init( &G ); mbedtls_mpi_init( &TB ); mbedtls_mpi_init( &TV );
2054 mbedtls_mpi_init( &V1 ); mbedtls_mpi_init( &V2 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002055
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002056 MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, A, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002057
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002058 if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002059 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002060 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002061 goto cleanup;
2062 }
2063
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002064 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &TA, A, N ) );
2065 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TU, &TA ) );
2066 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, N ) );
2067 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TV, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002068
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002069 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U1, 1 ) );
2070 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U2, 0 ) );
2071 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V1, 0 ) );
2072 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002073
2074 do
2075 {
2076 while( ( TU.p[0] & 1 ) == 0 )
2077 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002078 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TU, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002079
2080 if( ( U1.p[0] & 1 ) != 0 || ( U2.p[0] & 1 ) != 0 )
2081 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002082 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &U1, &U1, &TB ) );
2083 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &TA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002084 }
2085
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002086 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U1, 1 ) );
2087 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002088 }
2089
2090 while( ( TV.p[0] & 1 ) == 0 )
2091 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002092 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TV, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002093
2094 if( ( V1.p[0] & 1 ) != 0 || ( V2.p[0] & 1 ) != 0 )
2095 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002096 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, &TB ) );
2097 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &TA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002098 }
2099
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002100 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V1, 1 ) );
2101 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002102 }
2103
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002104 if( mbedtls_mpi_cmp_mpi( &TU, &TV ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002105 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002106 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TU, &TU, &TV ) );
2107 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U1, &U1, &V1 ) );
2108 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &V2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002109 }
2110 else
2111 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002112 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TV, &TV, &TU ) );
2113 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, &U1 ) );
2114 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &U2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002115 }
2116 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002117 while( mbedtls_mpi_cmp_int( &TU, 0 ) != 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002118
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002119 while( mbedtls_mpi_cmp_int( &V1, 0 ) < 0 )
2120 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002121
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002122 while( mbedtls_mpi_cmp_mpi( &V1, N ) >= 0 )
2123 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002124
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002125 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &V1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002126
2127cleanup:
2128
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002129 mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TU ); mbedtls_mpi_free( &U1 ); mbedtls_mpi_free( &U2 );
2130 mbedtls_mpi_free( &G ); mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TV );
2131 mbedtls_mpi_free( &V1 ); mbedtls_mpi_free( &V2 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002132
2133 return( ret );
2134}
2135
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002136#if defined(MBEDTLS_GENPRIME)
Paul Bakkerd9374b02012-11-02 11:02:58 +00002137
Paul Bakker5121ce52009-01-03 21:22:43 +00002138static const int small_prime[] =
2139{
2140 3, 5, 7, 11, 13, 17, 19, 23,
2141 29, 31, 37, 41, 43, 47, 53, 59,
2142 61, 67, 71, 73, 79, 83, 89, 97,
2143 101, 103, 107, 109, 113, 127, 131, 137,
2144 139, 149, 151, 157, 163, 167, 173, 179,
2145 181, 191, 193, 197, 199, 211, 223, 227,
2146 229, 233, 239, 241, 251, 257, 263, 269,
2147 271, 277, 281, 283, 293, 307, 311, 313,
2148 317, 331, 337, 347, 349, 353, 359, 367,
2149 373, 379, 383, 389, 397, 401, 409, 419,
2150 421, 431, 433, 439, 443, 449, 457, 461,
2151 463, 467, 479, 487, 491, 499, 503, 509,
2152 521, 523, 541, 547, 557, 563, 569, 571,
2153 577, 587, 593, 599, 601, 607, 613, 617,
2154 619, 631, 641, 643, 647, 653, 659, 661,
2155 673, 677, 683, 691, 701, 709, 719, 727,
2156 733, 739, 743, 751, 757, 761, 769, 773,
2157 787, 797, 809, 811, 821, 823, 827, 829,
2158 839, 853, 857, 859, 863, 877, 881, 883,
2159 887, 907, 911, 919, 929, 937, 941, 947,
2160 953, 967, 971, 977, 983, 991, 997, -103
2161};
2162
2163/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002164 * Small divisors test (X must be positive)
2165 *
2166 * Return values:
2167 * 0: no small factor (possible prime, more tests needed)
2168 * 1: certain prime
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002169 * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002170 * other negative: error
Paul Bakker5121ce52009-01-03 21:22:43 +00002171 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002172static int mpi_check_small_factors( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +00002173{
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002174 int ret = 0;
2175 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002176 mbedtls_mpi_uint r;
Paul Bakker5121ce52009-01-03 21:22:43 +00002177
Paul Bakker5121ce52009-01-03 21:22:43 +00002178 if( ( X->p[0] & 1 ) == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002179 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Paul Bakker5121ce52009-01-03 21:22:43 +00002180
2181 for( i = 0; small_prime[i] > 0; i++ )
2182 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002183 if( mbedtls_mpi_cmp_int( X, small_prime[i] ) <= 0 )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002184 return( 1 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002185
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002186 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, small_prime[i] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002187
2188 if( r == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002189 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Paul Bakker5121ce52009-01-03 21:22:43 +00002190 }
2191
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002192cleanup:
2193 return( ret );
2194}
2195
2196/*
2197 * Miller-Rabin pseudo-primality test (HAC 4.24)
2198 */
Janos Follathda31fa12018-09-03 14:45:23 +01002199static int mpi_miller_rabin( const mbedtls_mpi *X, size_t rounds,
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002200 int (*f_rng)(void *, unsigned char *, size_t),
2201 void *p_rng )
2202{
Pascal Junodb99183d2015-03-11 16:49:45 +01002203 int ret, count;
Janos Follathda31fa12018-09-03 14:45:23 +01002204 size_t i, j, k, s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002205 mbedtls_mpi W, R, T, A, RR;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002206
Hanno Becker8ce11a32018-12-19 16:18:52 +00002207 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002208 MPI_VALIDATE_RET( f_rng != NULL );
2209
2210 mbedtls_mpi_init( &W ); mbedtls_mpi_init( &R );
2211 mbedtls_mpi_init( &T ); mbedtls_mpi_init( &A );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002212 mbedtls_mpi_init( &RR );
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002213
Paul Bakker5121ce52009-01-03 21:22:43 +00002214 /*
2215 * W = |X| - 1
2216 * R = W >> lsb( W )
2217 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002218 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &W, X, 1 ) );
2219 s = mbedtls_mpi_lsb( &W );
2220 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R, &W ) );
2221 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &R, s ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002222
Janos Follathda31fa12018-09-03 14:45:23 +01002223 for( i = 0; i < rounds; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00002224 {
2225 /*
2226 * pick a random A, 1 < A < |X| - 1
2227 */
Pascal Junodb99183d2015-03-11 16:49:45 +01002228 count = 0;
2229 do {
Manuel Pégourié-Gonnard53c76c02015-04-17 20:15:36 +02002230 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) );
Pascal Junodb99183d2015-03-11 16:49:45 +01002231
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02002232 j = mbedtls_mpi_bitlen( &A );
2233 k = mbedtls_mpi_bitlen( &W );
Pascal Junodb99183d2015-03-11 16:49:45 +01002234 if (j > k) {
Darryl Greene3f95ed2018-10-02 13:21:35 +01002235 A.p[A.n - 1] &= ( (mbedtls_mpi_uint) 1 << ( k - ( A.n - 1 ) * biL - 1 ) ) - 1;
Pascal Junodb99183d2015-03-11 16:49:45 +01002236 }
2237
2238 if (count++ > 30) {
Jens Wiklanderf08aa3e2019-01-17 13:30:57 +01002239 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2240 goto cleanup;
Pascal Junodb99183d2015-03-11 16:49:45 +01002241 }
2242
Manuel Pégourié-Gonnard53c76c02015-04-17 20:15:36 +02002243 } while ( mbedtls_mpi_cmp_mpi( &A, &W ) >= 0 ||
2244 mbedtls_mpi_cmp_int( &A, 1 ) <= 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002245
2246 /*
2247 * A = A^R mod |X|
2248 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002249 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &A, &A, &R, X, &RR ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002250
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002251 if( mbedtls_mpi_cmp_mpi( &A, &W ) == 0 ||
2252 mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002253 continue;
2254
2255 j = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002256 while( j < s && mbedtls_mpi_cmp_mpi( &A, &W ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002257 {
2258 /*
2259 * A = A * A mod |X|
2260 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002261 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &A, &A ) );
2262 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &A, &T, X ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002263
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002264 if( mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002265 break;
2266
2267 j++;
2268 }
2269
2270 /*
2271 * not prime if A != |X| - 1 or A == 1
2272 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002273 if( mbedtls_mpi_cmp_mpi( &A, &W ) != 0 ||
2274 mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002275 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002276 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002277 break;
2278 }
2279 }
2280
2281cleanup:
Hanno Becker73d7d792018-12-11 10:35:51 +00002282 mbedtls_mpi_free( &W ); mbedtls_mpi_free( &R );
2283 mbedtls_mpi_free( &T ); mbedtls_mpi_free( &A );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002284 mbedtls_mpi_free( &RR );
Paul Bakker5121ce52009-01-03 21:22:43 +00002285
2286 return( ret );
2287}
2288
2289/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002290 * Pseudo-primality test: small factors, then Miller-Rabin
2291 */
Janos Follatha0b67c22018-09-18 14:48:23 +01002292int mbedtls_mpi_is_prime_ext( const mbedtls_mpi *X, int rounds,
2293 int (*f_rng)(void *, unsigned char *, size_t),
2294 void *p_rng )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002295{
Janos Follath24eed8d2019-11-22 13:21:35 +00002296 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002297 mbedtls_mpi XX;
Hanno Becker8ce11a32018-12-19 16:18:52 +00002298 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002299 MPI_VALIDATE_RET( f_rng != NULL );
Manuel Pégourié-Gonnard7f4ed672014-10-14 20:56:02 +02002300
2301 XX.s = 1;
2302 XX.n = X->n;
2303 XX.p = X->p;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002304
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002305 if( mbedtls_mpi_cmp_int( &XX, 0 ) == 0 ||
2306 mbedtls_mpi_cmp_int( &XX, 1 ) == 0 )
2307 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002308
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002309 if( mbedtls_mpi_cmp_int( &XX, 2 ) == 0 )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002310 return( 0 );
2311
2312 if( ( ret = mpi_check_small_factors( &XX ) ) != 0 )
2313 {
2314 if( ret == 1 )
2315 return( 0 );
2316
2317 return( ret );
2318 }
2319
Janos Follathda31fa12018-09-03 14:45:23 +01002320 return( mpi_miller_rabin( &XX, rounds, f_rng, p_rng ) );
Janos Follathf301d232018-08-14 13:34:01 +01002321}
2322
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002323/*
Paul Bakker5121ce52009-01-03 21:22:43 +00002324 * Prime number generation
Jethro Beekman66689272018-02-14 19:24:10 -08002325 *
Janos Follathf301d232018-08-14 13:34:01 +01002326 * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
2327 * be either 1024 bits or 1536 bits long, and flags must contain
2328 * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
Paul Bakker5121ce52009-01-03 21:22:43 +00002329 */
Janos Follath7c025a92018-08-14 11:08:41 +01002330int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int flags,
Paul Bakkera3d195c2011-11-27 21:07:34 +00002331 int (*f_rng)(void *, unsigned char *, size_t),
2332 void *p_rng )
Paul Bakker5121ce52009-01-03 21:22:43 +00002333{
Jethro Beekman66689272018-02-14 19:24:10 -08002334#ifdef MBEDTLS_HAVE_INT64
2335// ceil(2^63.5)
2336#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
2337#else
2338// ceil(2^31.5)
2339#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
2340#endif
2341 int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker23986e52011-04-24 08:57:21 +00002342 size_t k, n;
Janos Follathda31fa12018-09-03 14:45:23 +01002343 int rounds;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002344 mbedtls_mpi_uint r;
2345 mbedtls_mpi Y;
Paul Bakker5121ce52009-01-03 21:22:43 +00002346
Hanno Becker8ce11a32018-12-19 16:18:52 +00002347 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002348 MPI_VALIDATE_RET( f_rng != NULL );
2349
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002350 if( nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS )
2351 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00002352
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002353 mbedtls_mpi_init( &Y );
Paul Bakker5121ce52009-01-03 21:22:43 +00002354
2355 n = BITS_TO_LIMBS( nbits );
2356
Janos Follathda31fa12018-09-03 14:45:23 +01002357 if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR ) == 0 )
2358 {
2359 /*
2360 * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
2361 */
2362 rounds = ( ( nbits >= 1300 ) ? 2 : ( nbits >= 850 ) ? 3 :
2363 ( nbits >= 650 ) ? 4 : ( nbits >= 350 ) ? 8 :
2364 ( nbits >= 250 ) ? 12 : ( nbits >= 150 ) ? 18 : 27 );
2365 }
2366 else
2367 {
2368 /*
2369 * 2^-100 error probability, number of rounds computed based on HAC,
2370 * fact 4.48
2371 */
2372 rounds = ( ( nbits >= 1450 ) ? 4 : ( nbits >= 1150 ) ? 5 :
2373 ( nbits >= 1000 ) ? 6 : ( nbits >= 850 ) ? 7 :
2374 ( nbits >= 750 ) ? 8 : ( nbits >= 500 ) ? 13 :
2375 ( nbits >= 250 ) ? 28 : ( nbits >= 150 ) ? 40 : 51 );
2376 }
2377
Jethro Beekman66689272018-02-14 19:24:10 -08002378 while( 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002379 {
Jethro Beekman66689272018-02-14 19:24:10 -08002380 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n * ciL, f_rng, p_rng ) );
2381 /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
2382 if( X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2 ) continue;
2383
2384 k = n * biL;
2385 if( k > nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, k - nbits ) );
2386 X->p[0] |= 1;
2387
Janos Follath7c025a92018-08-14 11:08:41 +01002388 if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002389 {
Janos Follatha0b67c22018-09-18 14:48:23 +01002390 ret = mbedtls_mpi_is_prime_ext( X, rounds, f_rng, p_rng );
Jethro Beekman66689272018-02-14 19:24:10 -08002391
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002392 if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
Paul Bakker5121ce52009-01-03 21:22:43 +00002393 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002394 }
Jethro Beekman66689272018-02-14 19:24:10 -08002395 else
Paul Bakker5121ce52009-01-03 21:22:43 +00002396 {
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002397 /*
Tom Cosgrovece7f18c2022-07-28 05:50:56 +01002398 * A necessary condition for Y and X = 2Y + 1 to be prime
Jethro Beekman66689272018-02-14 19:24:10 -08002399 * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
2400 * Make sure it is satisfied, while keeping X = 3 mod 4
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002401 */
Jethro Beekman66689272018-02-14 19:24:10 -08002402
2403 X->p[0] |= 2;
2404
2405 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, 3 ) );
2406 if( r == 0 )
2407 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 8 ) );
2408 else if( r == 1 )
2409 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 4 ) );
2410
2411 /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
2412 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, X ) );
2413 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, 1 ) );
2414
2415 while( 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002416 {
Jethro Beekman66689272018-02-14 19:24:10 -08002417 /*
2418 * First, check small factors for X and Y
2419 * before doing Miller-Rabin on any of them
2420 */
2421 if( ( ret = mpi_check_small_factors( X ) ) == 0 &&
2422 ( ret = mpi_check_small_factors( &Y ) ) == 0 &&
Janos Follathda31fa12018-09-03 14:45:23 +01002423 ( ret = mpi_miller_rabin( X, rounds, f_rng, p_rng ) )
Janos Follathf301d232018-08-14 13:34:01 +01002424 == 0 &&
Janos Follathda31fa12018-09-03 14:45:23 +01002425 ( ret = mpi_miller_rabin( &Y, rounds, f_rng, p_rng ) )
Janos Follathf301d232018-08-14 13:34:01 +01002426 == 0 )
Jethro Beekman66689272018-02-14 19:24:10 -08002427 goto cleanup;
2428
2429 if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
2430 goto cleanup;
2431
2432 /*
2433 * Next candidates. We want to preserve Y = (X-1) / 2 and
2434 * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
2435 * so up Y by 6 and X by 12.
2436 */
2437 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 12 ) );
2438 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &Y, &Y, 6 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002439 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002440 }
2441 }
2442
2443cleanup:
2444
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002445 mbedtls_mpi_free( &Y );
Paul Bakker5121ce52009-01-03 21:22:43 +00002446
2447 return( ret );
2448}
2449
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002450#endif /* MBEDTLS_GENPRIME */
Paul Bakker5121ce52009-01-03 21:22:43 +00002451
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002452#if defined(MBEDTLS_SELF_TEST)
Paul Bakker5121ce52009-01-03 21:22:43 +00002453
Paul Bakker23986e52011-04-24 08:57:21 +00002454#define GCD_PAIR_COUNT 3
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002455
2456static const int gcd_pairs[GCD_PAIR_COUNT][3] =
2457{
2458 { 693, 609, 21 },
2459 { 1764, 868, 28 },
2460 { 768454923, 542167814, 1 }
2461};
2462
Paul Bakker5121ce52009-01-03 21:22:43 +00002463/*
2464 * Checkup routine
2465 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002466int mbedtls_mpi_self_test( int verbose )
Paul Bakker5121ce52009-01-03 21:22:43 +00002467{
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002468 int ret, i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002469 mbedtls_mpi A, E, N, X, Y, U, V;
Paul Bakker5121ce52009-01-03 21:22:43 +00002470
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002471 mbedtls_mpi_init( &A ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &X );
2472 mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &U ); mbedtls_mpi_init( &V );
Paul Bakker5121ce52009-01-03 21:22:43 +00002473
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002474 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &A, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002475 "EFE021C2645FD1DC586E69184AF4A31E" \
2476 "D5F53E93B5F123FA41680867BA110131" \
2477 "944FE7952E2517337780CB0DB80E61AA" \
2478 "E7C8DDC6C5C6AADEB34EB38A2F40D5E6" ) );
2479
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002480 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &E, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002481 "B2E7EFD37075B9F03FF989C7C5051C20" \
2482 "34D2A323810251127E7BF8625A4F49A5" \
2483 "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
2484 "5B5C25763222FEFCCFC38B832366C29E" ) );
2485
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002486 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &N, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002487 "0066A198186C18C10B2F5ED9B522752A" \
2488 "9830B69916E535C8F047518A889A43A5" \
2489 "94B6BED27A168D31D4A52F88925AA8F5" ) );
2490
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002491 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002492
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002493 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002494 "602AB7ECA597A3D6B56FF9829A5E8B85" \
2495 "9E857EA95A03512E2BAE7391688D264A" \
2496 "A5663B0341DB9CCFD2C4C5F421FEC814" \
2497 "8001B72E848A38CAE1C65F78E56ABDEF" \
2498 "E12D3C039B8A02D6BE593F0BBBDA56F1" \
2499 "ECF677152EF804370C1A305CAF3B5BF1" \
2500 "30879B56C61DE584A0F53A2447A51E" ) );
2501
2502 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002503 mbedtls_printf( " MPI test #1 (mul_mpi): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002504
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002505 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002506 {
2507 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002508 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002509
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002510 ret = 1;
2511 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002512 }
2513
2514 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002515 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002516
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002517 MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &X, &Y, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002518
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002519 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002520 "256567336059E52CAE22925474705F39A94" ) );
2521
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002522 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &V, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002523 "6613F26162223DF488E9CD48CC132C7A" \
2524 "0AC93C701B001B092E4E5B9F73BCD27B" \
2525 "9EE50D0657C77F374E903CDFA4C642" ) );
2526
2527 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002528 mbedtls_printf( " MPI test #2 (div_mpi): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002529
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002530 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 ||
2531 mbedtls_mpi_cmp_mpi( &Y, &V ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002532 {
2533 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002534 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002535
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002536 ret = 1;
2537 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002538 }
2539
2540 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002541 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002542
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002543 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &X, &A, &E, &N, NULL ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002544
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002545 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002546 "36E139AEA55215609D2816998ED020BB" \
2547 "BD96C37890F65171D948E9BC7CBAA4D9" \
2548 "325D24D6A3C12710F10A09FA08AB87" ) );
2549
2550 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002551 mbedtls_printf( " MPI test #3 (exp_mod): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002552
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002553 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002554 {
2555 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002556 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002557
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002558 ret = 1;
2559 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002560 }
2561
2562 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002563 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002564
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002565 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &X, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002566
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002567 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002568 "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
2569 "C3DBA76456363A10869622EAC2DD84EC" \
2570 "C5B8A74DAC4D09E03B5E0BE779F2DF61" ) );
2571
2572 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002573 mbedtls_printf( " MPI test #4 (inv_mod): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002574
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002575 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002576 {
2577 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002578 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002579
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002580 ret = 1;
2581 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002582 }
2583
2584 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002585 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002586
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002587 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002588 mbedtls_printf( " MPI test #5 (simple gcd): " );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002589
Paul Bakker66d5d072014-06-17 16:39:18 +02002590 for( i = 0; i < GCD_PAIR_COUNT; i++ )
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002591 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002592 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &X, gcd_pairs[i][0] ) );
2593 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Y, gcd_pairs[i][1] ) );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002594
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002595 MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &A, &X, &Y ) );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002596
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002597 if( mbedtls_mpi_cmp_int( &A, gcd_pairs[i][2] ) != 0 )
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002598 {
2599 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002600 mbedtls_printf( "failed at %d\n", i );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002601
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002602 ret = 1;
2603 goto cleanup;
2604 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002605 }
2606
2607 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002608 mbedtls_printf( "passed\n" );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002609
Paul Bakker5121ce52009-01-03 21:22:43 +00002610cleanup:
2611
2612 if( ret != 0 && verbose != 0 )
Kenneth Soerensen518d4352020-04-01 17:22:45 +02002613 mbedtls_printf( "Unexpected error, return code = %08X\n", (unsigned int) ret );
Paul Bakker5121ce52009-01-03 21:22:43 +00002614
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002615 mbedtls_mpi_free( &A ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &X );
2616 mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &U ); mbedtls_mpi_free( &V );
Paul Bakker5121ce52009-01-03 21:22:43 +00002617
2618 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002619 mbedtls_printf( "\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002620
2621 return( ret );
2622}
2623
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002624#endif /* MBEDTLS_SELF_TEST */
Paul Bakker5121ce52009-01-03 21:22:43 +00002625
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002626#endif /* MBEDTLS_BIGNUM_C */