Gabor Mezei | a306d20 | 2023-06-06 17:15:52 +0200 | [diff] [blame^] | 1 | /* |
| 2 | * Elliptic curves over GF(p): generic functions |
| 3 | * |
| 4 | * Copyright The Mbed TLS Contributors |
| 5 | * SPDX-License-Identifier: Apache-2.0 |
| 6 | * |
| 7 | * Licensed under the Apache License, Version 2.0 (the "License"); you may |
| 8 | * not use this file except in compliance with the License. |
| 9 | * You may obtain a copy of the License at |
| 10 | * |
| 11 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 12 | * |
| 13 | * Unless required by applicable law or agreed to in writing, software |
| 14 | * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| 15 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 16 | * See the License for the specific language governing permissions and |
| 17 | * limitations under the License. |
| 18 | */ |
| 19 | |
| 20 | /* |
| 21 | * References: |
| 22 | * |
| 23 | * SEC1 https://www.secg.org/sec1-v2.pdf |
| 24 | * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone |
| 25 | * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf |
| 26 | * RFC 4492 for the related TLS structures and constants |
| 27 | * - https://www.rfc-editor.org/rfc/rfc4492 |
| 28 | * RFC 7748 for the Curve448 and Curve25519 curve definitions |
| 29 | * - https://www.rfc-editor.org/rfc/rfc7748 |
| 30 | * |
| 31 | * [Curve25519] https://cr.yp.to/ecdh/curve25519-20060209.pdf |
| 32 | * |
| 33 | * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis |
| 34 | * for elliptic curve cryptosystems. In : Cryptographic Hardware and |
| 35 | * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302. |
| 36 | * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25> |
| 37 | * |
| 38 | * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to |
| 39 | * render ECC resistant against Side Channel Attacks. IACR Cryptology |
| 40 | * ePrint Archive, 2004, vol. 2004, p. 342. |
| 41 | * <http://eprint.iacr.org/2004/342.pdf> |
| 42 | */ |
| 43 | |
| 44 | #include "common.h" |
| 45 | |
| 46 | #include "ecp_invasive.h" |
| 47 | |
| 48 | #if defined(MBEDTLS_ECP_WITH_MPI_UINT) |
| 49 | |
| 50 | /** |
| 51 | * \brief Function level alternative implementation. |
| 52 | * |
| 53 | * The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to |
| 54 | * replace certain functions in this module. The alternative implementations are |
| 55 | * typically hardware accelerators and need to activate the hardware before the |
| 56 | * computation starts and deactivate it after it finishes. The |
| 57 | * mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve |
| 58 | * this purpose. |
| 59 | * |
| 60 | * To preserve the correct functionality the following conditions must hold: |
| 61 | * |
| 62 | * - The alternative implementation must be activated by |
| 63 | * mbedtls_internal_ecp_init() before any of the replaceable functions is |
| 64 | * called. |
| 65 | * - mbedtls_internal_ecp_free() must \b only be called when the alternative |
| 66 | * implementation is activated. |
| 67 | * - mbedtls_internal_ecp_init() must \b not be called when the alternative |
| 68 | * implementation is activated. |
| 69 | * - Public functions must not return while the alternative implementation is |
| 70 | * activated. |
| 71 | * - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and |
| 72 | * before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) ) |
| 73 | * \endcode ensures that the alternative implementation supports the current |
| 74 | * group. |
| 75 | */ |
| 76 | #if defined(MBEDTLS_ECP_INTERNAL_ALT) |
| 77 | #endif |
| 78 | |
| 79 | #if defined(MBEDTLS_ECP_LIGHT) |
| 80 | |
| 81 | #include "mbedtls/ecp.h" |
| 82 | #include "mbedtls/threading.h" |
| 83 | #include "mbedtls/platform_util.h" |
| 84 | #include "mbedtls/error.h" |
| 85 | |
| 86 | #include "bn_mul.h" |
| 87 | |
| 88 | #include <string.h> |
| 89 | |
| 90 | #if !defined(MBEDTLS_ECP_ALT) |
| 91 | |
| 92 | #include "mbedtls/platform.h" |
| 93 | |
| 94 | #include "ecp_internal_alt.h" |
| 95 | |
| 96 | #if defined(MBEDTLS_SELF_TEST) |
| 97 | /* |
| 98 | * Counts of point addition and doubling, and field multiplications. |
| 99 | * Used to test resistance of point multiplication to simple timing attacks. |
| 100 | */ |
| 101 | #if defined(MBEDTLS_ECP_C) |
| 102 | static unsigned long add_count, dbl_count; |
| 103 | #endif /* MBEDTLS_ECP_C */ |
| 104 | static unsigned long mul_count; |
| 105 | #endif |
| 106 | |
| 107 | #if defined(MBEDTLS_ECP_RESTARTABLE) |
| 108 | /* |
| 109 | * Maximum number of "basic operations" to be done in a row. |
| 110 | * |
| 111 | * Default value 0 means that ECC operations will not yield. |
| 112 | * Note that regardless of the value of ecp_max_ops, always at |
| 113 | * least one step is performed before yielding. |
| 114 | * |
| 115 | * Setting ecp_max_ops=1 can be suitable for testing purposes |
| 116 | * as it will interrupt computation at all possible points. |
| 117 | */ |
| 118 | static unsigned ecp_max_ops = 0; |
| 119 | |
| 120 | /* |
| 121 | * Set ecp_max_ops |
| 122 | */ |
| 123 | void mbedtls_ecp_set_max_ops(unsigned max_ops) |
| 124 | { |
| 125 | ecp_max_ops = max_ops; |
| 126 | } |
| 127 | |
| 128 | /* |
| 129 | * Check if restart is enabled |
| 130 | */ |
| 131 | int mbedtls_ecp_restart_is_enabled(void) |
| 132 | { |
| 133 | return ecp_max_ops != 0; |
| 134 | } |
| 135 | |
| 136 | /* |
| 137 | * Restart sub-context for ecp_mul_comb() |
| 138 | */ |
| 139 | struct mbedtls_ecp_restart_mul { |
| 140 | mbedtls_ecp_point R; /* current intermediate result */ |
| 141 | size_t i; /* current index in various loops, 0 outside */ |
| 142 | mbedtls_ecp_point *T; /* table for precomputed points */ |
| 143 | unsigned char T_size; /* number of points in table T */ |
| 144 | enum { /* what were we doing last time we returned? */ |
| 145 | ecp_rsm_init = 0, /* nothing so far, dummy initial state */ |
| 146 | ecp_rsm_pre_dbl, /* precompute 2^n multiples */ |
| 147 | ecp_rsm_pre_norm_dbl, /* normalize precomputed 2^n multiples */ |
| 148 | ecp_rsm_pre_add, /* precompute remaining points by adding */ |
| 149 | ecp_rsm_pre_norm_add, /* normalize all precomputed points */ |
| 150 | ecp_rsm_comb_core, /* ecp_mul_comb_core() */ |
| 151 | ecp_rsm_final_norm, /* do the final normalization */ |
| 152 | } state; |
| 153 | }; |
| 154 | |
| 155 | /* |
| 156 | * Init restart_mul sub-context |
| 157 | */ |
| 158 | static void ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx *ctx) |
| 159 | { |
| 160 | mbedtls_ecp_point_init(&ctx->R); |
| 161 | ctx->i = 0; |
| 162 | ctx->T = NULL; |
| 163 | ctx->T_size = 0; |
| 164 | ctx->state = ecp_rsm_init; |
| 165 | } |
| 166 | |
| 167 | /* |
| 168 | * Free the components of a restart_mul sub-context |
| 169 | */ |
| 170 | static void ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx *ctx) |
| 171 | { |
| 172 | unsigned char i; |
| 173 | |
| 174 | if (ctx == NULL) { |
| 175 | return; |
| 176 | } |
| 177 | |
| 178 | mbedtls_ecp_point_free(&ctx->R); |
| 179 | |
| 180 | if (ctx->T != NULL) { |
| 181 | for (i = 0; i < ctx->T_size; i++) { |
| 182 | mbedtls_ecp_point_free(ctx->T + i); |
| 183 | } |
| 184 | mbedtls_free(ctx->T); |
| 185 | } |
| 186 | |
| 187 | ecp_restart_rsm_init(ctx); |
| 188 | } |
| 189 | |
| 190 | /* |
| 191 | * Restart context for ecp_muladd() |
| 192 | */ |
| 193 | struct mbedtls_ecp_restart_muladd { |
| 194 | mbedtls_ecp_point mP; /* mP value */ |
| 195 | mbedtls_ecp_point R; /* R intermediate result */ |
| 196 | enum { /* what should we do next? */ |
| 197 | ecp_rsma_mul1 = 0, /* first multiplication */ |
| 198 | ecp_rsma_mul2, /* second multiplication */ |
| 199 | ecp_rsma_add, /* addition */ |
| 200 | ecp_rsma_norm, /* normalization */ |
| 201 | } state; |
| 202 | }; |
| 203 | |
| 204 | /* |
| 205 | * Init restart_muladd sub-context |
| 206 | */ |
| 207 | static void ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx *ctx) |
| 208 | { |
| 209 | mbedtls_ecp_point_init(&ctx->mP); |
| 210 | mbedtls_ecp_point_init(&ctx->R); |
| 211 | ctx->state = ecp_rsma_mul1; |
| 212 | } |
| 213 | |
| 214 | /* |
| 215 | * Free the components of a restart_muladd sub-context |
| 216 | */ |
| 217 | static void ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx *ctx) |
| 218 | { |
| 219 | if (ctx == NULL) { |
| 220 | return; |
| 221 | } |
| 222 | |
| 223 | mbedtls_ecp_point_free(&ctx->mP); |
| 224 | mbedtls_ecp_point_free(&ctx->R); |
| 225 | |
| 226 | ecp_restart_ma_init(ctx); |
| 227 | } |
| 228 | |
| 229 | /* |
| 230 | * Initialize a restart context |
| 231 | */ |
| 232 | void mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx *ctx) |
| 233 | { |
| 234 | ctx->ops_done = 0; |
| 235 | ctx->depth = 0; |
| 236 | ctx->rsm = NULL; |
| 237 | ctx->ma = NULL; |
| 238 | } |
| 239 | |
| 240 | /* |
| 241 | * Free the components of a restart context |
| 242 | */ |
| 243 | void mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx *ctx) |
| 244 | { |
| 245 | if (ctx == NULL) { |
| 246 | return; |
| 247 | } |
| 248 | |
| 249 | ecp_restart_rsm_free(ctx->rsm); |
| 250 | mbedtls_free(ctx->rsm); |
| 251 | |
| 252 | ecp_restart_ma_free(ctx->ma); |
| 253 | mbedtls_free(ctx->ma); |
| 254 | |
| 255 | mbedtls_ecp_restart_init(ctx); |
| 256 | } |
| 257 | |
| 258 | /* |
| 259 | * Check if we can do the next step |
| 260 | */ |
| 261 | int mbedtls_ecp_check_budget(const mbedtls_ecp_group *grp, |
| 262 | mbedtls_ecp_restart_ctx *rs_ctx, |
| 263 | unsigned ops) |
| 264 | { |
| 265 | if (rs_ctx != NULL && ecp_max_ops != 0) { |
| 266 | /* scale depending on curve size: the chosen reference is 256-bit, |
| 267 | * and multiplication is quadratic. Round to the closest integer. */ |
| 268 | if (grp->pbits >= 512) { |
| 269 | ops *= 4; |
| 270 | } else if (grp->pbits >= 384) { |
| 271 | ops *= 2; |
| 272 | } |
| 273 | |
| 274 | /* Avoid infinite loops: always allow first step. |
| 275 | * Because of that, however, it's not generally true |
| 276 | * that ops_done <= ecp_max_ops, so the check |
| 277 | * ops_done > ecp_max_ops below is mandatory. */ |
| 278 | if ((rs_ctx->ops_done != 0) && |
| 279 | (rs_ctx->ops_done > ecp_max_ops || |
| 280 | ops > ecp_max_ops - rs_ctx->ops_done)) { |
| 281 | return MBEDTLS_ERR_ECP_IN_PROGRESS; |
| 282 | } |
| 283 | |
| 284 | /* update running count */ |
| 285 | rs_ctx->ops_done += ops; |
| 286 | } |
| 287 | |
| 288 | return 0; |
| 289 | } |
| 290 | |
| 291 | /* Call this when entering a function that needs its own sub-context */ |
| 292 | #define ECP_RS_ENTER(SUB) do { \ |
| 293 | /* reset ops count for this call if top-level */ \ |
| 294 | if (rs_ctx != NULL && rs_ctx->depth++ == 0) \ |
| 295 | rs_ctx->ops_done = 0; \ |
| 296 | \ |
| 297 | /* set up our own sub-context if needed */ \ |
| 298 | if (mbedtls_ecp_restart_is_enabled() && \ |
| 299 | rs_ctx != NULL && rs_ctx->SUB == NULL) \ |
| 300 | { \ |
| 301 | rs_ctx->SUB = mbedtls_calloc(1, sizeof(*rs_ctx->SUB)); \ |
| 302 | if (rs_ctx->SUB == NULL) \ |
| 303 | return MBEDTLS_ERR_ECP_ALLOC_FAILED; \ |
| 304 | \ |
| 305 | ecp_restart_## SUB ##_init(rs_ctx->SUB); \ |
| 306 | } \ |
| 307 | } while (0) |
| 308 | |
| 309 | /* Call this when leaving a function that needs its own sub-context */ |
| 310 | #define ECP_RS_LEAVE(SUB) do { \ |
| 311 | /* clear our sub-context when not in progress (done or error) */ \ |
| 312 | if (rs_ctx != NULL && rs_ctx->SUB != NULL && \ |
| 313 | ret != MBEDTLS_ERR_ECP_IN_PROGRESS) \ |
| 314 | { \ |
| 315 | ecp_restart_## SUB ##_free(rs_ctx->SUB); \ |
| 316 | mbedtls_free(rs_ctx->SUB); \ |
| 317 | rs_ctx->SUB = NULL; \ |
| 318 | } \ |
| 319 | \ |
| 320 | if (rs_ctx != NULL) \ |
| 321 | rs_ctx->depth--; \ |
| 322 | } while (0) |
| 323 | |
| 324 | #else /* MBEDTLS_ECP_RESTARTABLE */ |
| 325 | |
| 326 | #define ECP_RS_ENTER(sub) (void) rs_ctx; |
| 327 | #define ECP_RS_LEAVE(sub) (void) rs_ctx; |
| 328 | |
| 329 | #endif /* MBEDTLS_ECP_RESTARTABLE */ |
| 330 | |
| 331 | #if defined(MBEDTLS_ECP_C) |
| 332 | static void mpi_init_many(mbedtls_mpi *arr, size_t size) |
| 333 | { |
| 334 | while (size--) { |
| 335 | mbedtls_mpi_init(arr++); |
| 336 | } |
| 337 | } |
| 338 | |
| 339 | static void mpi_free_many(mbedtls_mpi *arr, size_t size) |
| 340 | { |
| 341 | while (size--) { |
| 342 | mbedtls_mpi_free(arr++); |
| 343 | } |
| 344 | } |
| 345 | #endif /* MBEDTLS_ECP_C */ |
| 346 | |
| 347 | /* |
| 348 | * List of supported curves: |
| 349 | * - internal ID |
| 350 | * - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2, RFC 8446 sec. 4.2.7) |
| 351 | * - size in bits |
| 352 | * - readable name |
| 353 | * |
| 354 | * Curves are listed in order: largest curves first, and for a given size, |
| 355 | * fastest curves first. |
| 356 | * |
| 357 | * Reminder: update profiles in x509_crt.c and ssl_tls.c when adding a new curve! |
| 358 | */ |
| 359 | static const mbedtls_ecp_curve_info ecp_supported_curves[] = |
| 360 | { |
| 361 | #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) |
| 362 | { MBEDTLS_ECP_DP_SECP521R1, 25, 521, "secp521r1" }, |
| 363 | #endif |
| 364 | #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED) |
| 365 | { MBEDTLS_ECP_DP_BP512R1, 28, 512, "brainpoolP512r1" }, |
| 366 | #endif |
| 367 | #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) |
| 368 | { MBEDTLS_ECP_DP_SECP384R1, 24, 384, "secp384r1" }, |
| 369 | #endif |
| 370 | #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED) |
| 371 | { MBEDTLS_ECP_DP_BP384R1, 27, 384, "brainpoolP384r1" }, |
| 372 | #endif |
| 373 | #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) |
| 374 | { MBEDTLS_ECP_DP_SECP256R1, 23, 256, "secp256r1" }, |
| 375 | #endif |
| 376 | #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED) |
| 377 | { MBEDTLS_ECP_DP_SECP256K1, 22, 256, "secp256k1" }, |
| 378 | #endif |
| 379 | #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED) |
| 380 | { MBEDTLS_ECP_DP_BP256R1, 26, 256, "brainpoolP256r1" }, |
| 381 | #endif |
| 382 | #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) |
| 383 | { MBEDTLS_ECP_DP_SECP224R1, 21, 224, "secp224r1" }, |
| 384 | #endif |
| 385 | #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) |
| 386 | { MBEDTLS_ECP_DP_SECP224K1, 20, 224, "secp224k1" }, |
| 387 | #endif |
| 388 | #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) |
| 389 | { MBEDTLS_ECP_DP_SECP192R1, 19, 192, "secp192r1" }, |
| 390 | #endif |
| 391 | #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) |
| 392 | { MBEDTLS_ECP_DP_SECP192K1, 18, 192, "secp192k1" }, |
| 393 | #endif |
| 394 | #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) |
| 395 | { MBEDTLS_ECP_DP_CURVE25519, 29, 256, "x25519" }, |
| 396 | #endif |
| 397 | #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED) |
| 398 | { MBEDTLS_ECP_DP_CURVE448, 30, 448, "x448" }, |
| 399 | #endif |
| 400 | { MBEDTLS_ECP_DP_NONE, 0, 0, NULL }, |
| 401 | }; |
| 402 | |
| 403 | #define ECP_NB_CURVES sizeof(ecp_supported_curves) / \ |
| 404 | sizeof(ecp_supported_curves[0]) |
| 405 | |
| 406 | static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES]; |
| 407 | |
| 408 | /* |
| 409 | * List of supported curves and associated info |
| 410 | */ |
| 411 | const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list(void) |
| 412 | { |
| 413 | return ecp_supported_curves; |
| 414 | } |
| 415 | |
| 416 | /* |
| 417 | * List of supported curves, group ID only |
| 418 | */ |
| 419 | const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list(void) |
| 420 | { |
| 421 | static int init_done = 0; |
| 422 | |
| 423 | if (!init_done) { |
| 424 | size_t i = 0; |
| 425 | const mbedtls_ecp_curve_info *curve_info; |
| 426 | |
| 427 | for (curve_info = mbedtls_ecp_curve_list(); |
| 428 | curve_info->grp_id != MBEDTLS_ECP_DP_NONE; |
| 429 | curve_info++) { |
| 430 | ecp_supported_grp_id[i++] = curve_info->grp_id; |
| 431 | } |
| 432 | ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE; |
| 433 | |
| 434 | init_done = 1; |
| 435 | } |
| 436 | |
| 437 | return ecp_supported_grp_id; |
| 438 | } |
| 439 | |
| 440 | /* |
| 441 | * Get the curve info for the internal identifier |
| 442 | */ |
| 443 | const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id) |
| 444 | { |
| 445 | const mbedtls_ecp_curve_info *curve_info; |
| 446 | |
| 447 | for (curve_info = mbedtls_ecp_curve_list(); |
| 448 | curve_info->grp_id != MBEDTLS_ECP_DP_NONE; |
| 449 | curve_info++) { |
| 450 | if (curve_info->grp_id == grp_id) { |
| 451 | return curve_info; |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | return NULL; |
| 456 | } |
| 457 | |
| 458 | /* |
| 459 | * Get the curve info from the TLS identifier |
| 460 | */ |
| 461 | const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id) |
| 462 | { |
| 463 | const mbedtls_ecp_curve_info *curve_info; |
| 464 | |
| 465 | for (curve_info = mbedtls_ecp_curve_list(); |
| 466 | curve_info->grp_id != MBEDTLS_ECP_DP_NONE; |
| 467 | curve_info++) { |
| 468 | if (curve_info->tls_id == tls_id) { |
| 469 | return curve_info; |
| 470 | } |
| 471 | } |
| 472 | |
| 473 | return NULL; |
| 474 | } |
| 475 | |
| 476 | /* |
| 477 | * Get the curve info from the name |
| 478 | */ |
| 479 | const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name(const char *name) |
| 480 | { |
| 481 | const mbedtls_ecp_curve_info *curve_info; |
| 482 | |
| 483 | if (name == NULL) { |
| 484 | return NULL; |
| 485 | } |
| 486 | |
| 487 | for (curve_info = mbedtls_ecp_curve_list(); |
| 488 | curve_info->grp_id != MBEDTLS_ECP_DP_NONE; |
| 489 | curve_info++) { |
| 490 | if (strcmp(curve_info->name, name) == 0) { |
| 491 | return curve_info; |
| 492 | } |
| 493 | } |
| 494 | |
| 495 | return NULL; |
| 496 | } |
| 497 | |
| 498 | /* |
| 499 | * Get the type of a curve |
| 500 | */ |
| 501 | mbedtls_ecp_curve_type mbedtls_ecp_get_type(const mbedtls_ecp_group *grp) |
| 502 | { |
| 503 | if (grp->G.X.p == NULL) { |
| 504 | return MBEDTLS_ECP_TYPE_NONE; |
| 505 | } |
| 506 | |
| 507 | if (grp->G.Y.p == NULL) { |
| 508 | return MBEDTLS_ECP_TYPE_MONTGOMERY; |
| 509 | } else { |
| 510 | return MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS; |
| 511 | } |
| 512 | } |
| 513 | |
| 514 | /* |
| 515 | * Initialize (the components of) a point |
| 516 | */ |
| 517 | void mbedtls_ecp_point_init(mbedtls_ecp_point *pt) |
| 518 | { |
| 519 | mbedtls_mpi_init(&pt->X); |
| 520 | mbedtls_mpi_init(&pt->Y); |
| 521 | mbedtls_mpi_init(&pt->Z); |
| 522 | } |
| 523 | |
| 524 | /* |
| 525 | * Initialize (the components of) a group |
| 526 | */ |
| 527 | void mbedtls_ecp_group_init(mbedtls_ecp_group *grp) |
| 528 | { |
| 529 | grp->id = MBEDTLS_ECP_DP_NONE; |
| 530 | mbedtls_mpi_init(&grp->P); |
| 531 | mbedtls_mpi_init(&grp->A); |
| 532 | mbedtls_mpi_init(&grp->B); |
| 533 | mbedtls_ecp_point_init(&grp->G); |
| 534 | mbedtls_mpi_init(&grp->N); |
| 535 | grp->pbits = 0; |
| 536 | grp->nbits = 0; |
| 537 | grp->h = 0; |
| 538 | grp->modp = NULL; |
| 539 | grp->t_pre = NULL; |
| 540 | grp->t_post = NULL; |
| 541 | grp->t_data = NULL; |
| 542 | grp->T = NULL; |
| 543 | grp->T_size = 0; |
| 544 | } |
| 545 | |
| 546 | /* |
| 547 | * Initialize (the components of) a key pair |
| 548 | */ |
| 549 | void mbedtls_ecp_keypair_init(mbedtls_ecp_keypair *key) |
| 550 | { |
| 551 | mbedtls_ecp_group_init(&key->grp); |
| 552 | mbedtls_mpi_init(&key->d); |
| 553 | mbedtls_ecp_point_init(&key->Q); |
| 554 | } |
| 555 | |
| 556 | /* |
| 557 | * Unallocate (the components of) a point |
| 558 | */ |
| 559 | void mbedtls_ecp_point_free(mbedtls_ecp_point *pt) |
| 560 | { |
| 561 | if (pt == NULL) { |
| 562 | return; |
| 563 | } |
| 564 | |
| 565 | mbedtls_mpi_free(&(pt->X)); |
| 566 | mbedtls_mpi_free(&(pt->Y)); |
| 567 | mbedtls_mpi_free(&(pt->Z)); |
| 568 | } |
| 569 | |
| 570 | /* |
| 571 | * Check that the comb table (grp->T) is static initialized. |
| 572 | */ |
| 573 | static int ecp_group_is_static_comb_table(const mbedtls_ecp_group *grp) |
| 574 | { |
| 575 | #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1 |
| 576 | return grp->T != NULL && grp->T_size == 0; |
| 577 | #else |
| 578 | (void) grp; |
| 579 | return 0; |
| 580 | #endif |
| 581 | } |
| 582 | |
| 583 | /* |
| 584 | * Unallocate (the components of) a group |
| 585 | */ |
| 586 | void mbedtls_ecp_group_free(mbedtls_ecp_group *grp) |
| 587 | { |
| 588 | size_t i; |
| 589 | |
| 590 | if (grp == NULL) { |
| 591 | return; |
| 592 | } |
| 593 | |
| 594 | if (grp->h != 1) { |
| 595 | mbedtls_mpi_free(&grp->A); |
| 596 | mbedtls_mpi_free(&grp->B); |
| 597 | mbedtls_ecp_point_free(&grp->G); |
| 598 | } |
| 599 | |
| 600 | if (!ecp_group_is_static_comb_table(grp) && grp->T != NULL) { |
| 601 | for (i = 0; i < grp->T_size; i++) { |
| 602 | mbedtls_ecp_point_free(&grp->T[i]); |
| 603 | } |
| 604 | mbedtls_free(grp->T); |
| 605 | } |
| 606 | |
| 607 | mbedtls_platform_zeroize(grp, sizeof(mbedtls_ecp_group)); |
| 608 | } |
| 609 | |
| 610 | /* |
| 611 | * Unallocate (the components of) a key pair |
| 612 | */ |
| 613 | void mbedtls_ecp_keypair_free(mbedtls_ecp_keypair *key) |
| 614 | { |
| 615 | if (key == NULL) { |
| 616 | return; |
| 617 | } |
| 618 | |
| 619 | mbedtls_ecp_group_free(&key->grp); |
| 620 | mbedtls_mpi_free(&key->d); |
| 621 | mbedtls_ecp_point_free(&key->Q); |
| 622 | } |
| 623 | |
| 624 | /* |
| 625 | * Copy the contents of a point |
| 626 | */ |
| 627 | int mbedtls_ecp_copy(mbedtls_ecp_point *P, const mbedtls_ecp_point *Q) |
| 628 | { |
| 629 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 630 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->X, &Q->X)); |
| 631 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Y, &Q->Y)); |
| 632 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Z, &Q->Z)); |
| 633 | |
| 634 | cleanup: |
| 635 | return ret; |
| 636 | } |
| 637 | |
| 638 | /* |
| 639 | * Copy the contents of a group object |
| 640 | */ |
| 641 | int mbedtls_ecp_group_copy(mbedtls_ecp_group *dst, const mbedtls_ecp_group *src) |
| 642 | { |
| 643 | return mbedtls_ecp_group_load(dst, src->id); |
| 644 | } |
| 645 | |
| 646 | /* |
| 647 | * Set point to zero |
| 648 | */ |
| 649 | int mbedtls_ecp_set_zero(mbedtls_ecp_point *pt) |
| 650 | { |
| 651 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 652 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->X, 1)); |
| 653 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Y, 1)); |
| 654 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 0)); |
| 655 | |
| 656 | cleanup: |
| 657 | return ret; |
| 658 | } |
| 659 | |
| 660 | /* |
| 661 | * Tell if a point is zero |
| 662 | */ |
| 663 | int mbedtls_ecp_is_zero(mbedtls_ecp_point *pt) |
| 664 | { |
| 665 | return mbedtls_mpi_cmp_int(&pt->Z, 0) == 0; |
| 666 | } |
| 667 | |
| 668 | /* |
| 669 | * Compare two points lazily |
| 670 | */ |
| 671 | int mbedtls_ecp_point_cmp(const mbedtls_ecp_point *P, |
| 672 | const mbedtls_ecp_point *Q) |
| 673 | { |
| 674 | if (mbedtls_mpi_cmp_mpi(&P->X, &Q->X) == 0 && |
| 675 | mbedtls_mpi_cmp_mpi(&P->Y, &Q->Y) == 0 && |
| 676 | mbedtls_mpi_cmp_mpi(&P->Z, &Q->Z) == 0) { |
| 677 | return 0; |
| 678 | } |
| 679 | |
| 680 | return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 681 | } |
| 682 | |
| 683 | /* |
| 684 | * Import a non-zero point from ASCII strings |
| 685 | */ |
| 686 | int mbedtls_ecp_point_read_string(mbedtls_ecp_point *P, int radix, |
| 687 | const char *x, const char *y) |
| 688 | { |
| 689 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 690 | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->X, radix, x)); |
| 691 | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->Y, radix, y)); |
| 692 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&P->Z, 1)); |
| 693 | |
| 694 | cleanup: |
| 695 | return ret; |
| 696 | } |
| 697 | |
| 698 | /* |
| 699 | * Export a point into unsigned binary data (SEC1 2.3.3 and RFC7748) |
| 700 | */ |
| 701 | int mbedtls_ecp_point_write_binary(const mbedtls_ecp_group *grp, |
| 702 | const mbedtls_ecp_point *P, |
| 703 | int format, size_t *olen, |
| 704 | unsigned char *buf, size_t buflen) |
| 705 | { |
| 706 | int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; |
| 707 | size_t plen; |
| 708 | if (format != MBEDTLS_ECP_PF_UNCOMPRESSED && |
| 709 | format != MBEDTLS_ECP_PF_COMPRESSED) { |
| 710 | return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 711 | } |
| 712 | |
| 713 | plen = mbedtls_mpi_size(&grp->P); |
| 714 | |
| 715 | #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) |
| 716 | (void) format; /* Montgomery curves always use the same point format */ |
| 717 | if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) { |
| 718 | *olen = plen; |
| 719 | if (buflen < *olen) { |
| 720 | return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL; |
| 721 | } |
| 722 | |
| 723 | MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&P->X, buf, plen)); |
| 724 | } |
| 725 | #endif |
| 726 | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) |
| 727 | if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) { |
| 728 | /* |
| 729 | * Common case: P == 0 |
| 730 | */ |
| 731 | if (mbedtls_mpi_cmp_int(&P->Z, 0) == 0) { |
| 732 | if (buflen < 1) { |
| 733 | return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL; |
| 734 | } |
| 735 | |
| 736 | buf[0] = 0x00; |
| 737 | *olen = 1; |
| 738 | |
| 739 | return 0; |
| 740 | } |
| 741 | |
| 742 | if (format == MBEDTLS_ECP_PF_UNCOMPRESSED) { |
| 743 | *olen = 2 * plen + 1; |
| 744 | |
| 745 | if (buflen < *olen) { |
| 746 | return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL; |
| 747 | } |
| 748 | |
| 749 | buf[0] = 0x04; |
| 750 | MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen)); |
| 751 | MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->Y, buf + 1 + plen, plen)); |
| 752 | } else if (format == MBEDTLS_ECP_PF_COMPRESSED) { |
| 753 | *olen = plen + 1; |
| 754 | |
| 755 | if (buflen < *olen) { |
| 756 | return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL; |
| 757 | } |
| 758 | |
| 759 | buf[0] = 0x02 + mbedtls_mpi_get_bit(&P->Y, 0); |
| 760 | MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen)); |
| 761 | } |
| 762 | } |
| 763 | #endif |
| 764 | |
| 765 | cleanup: |
| 766 | return ret; |
| 767 | } |
| 768 | |
| 769 | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) |
| 770 | static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp, |
| 771 | const mbedtls_mpi *X, |
| 772 | mbedtls_mpi *Y, |
| 773 | int parity_bit); |
| 774 | #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */ |
| 775 | |
| 776 | /* |
| 777 | * Import a point from unsigned binary data (SEC1 2.3.4 and RFC7748) |
| 778 | */ |
| 779 | int mbedtls_ecp_point_read_binary(const mbedtls_ecp_group *grp, |
| 780 | mbedtls_ecp_point *pt, |
| 781 | const unsigned char *buf, size_t ilen) |
| 782 | { |
| 783 | int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; |
| 784 | size_t plen; |
| 785 | if (ilen < 1) { |
| 786 | return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 787 | } |
| 788 | |
| 789 | plen = mbedtls_mpi_size(&grp->P); |
| 790 | |
| 791 | #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) |
| 792 | if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) { |
| 793 | if (plen != ilen) { |
| 794 | return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 795 | } |
| 796 | |
| 797 | MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&pt->X, buf, plen)); |
| 798 | mbedtls_mpi_free(&pt->Y); |
| 799 | |
| 800 | if (grp->id == MBEDTLS_ECP_DP_CURVE25519) { |
| 801 | /* Set most significant bit to 0 as prescribed in RFC7748 §5 */ |
| 802 | MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&pt->X, plen * 8 - 1, 0)); |
| 803 | } |
| 804 | |
| 805 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1)); |
| 806 | } |
| 807 | #endif |
| 808 | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) |
| 809 | if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) { |
| 810 | if (buf[0] == 0x00) { |
| 811 | if (ilen == 1) { |
| 812 | return mbedtls_ecp_set_zero(pt); |
| 813 | } else { |
| 814 | return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 815 | } |
| 816 | } |
| 817 | |
| 818 | if (ilen < 1 + plen) { |
| 819 | return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 820 | } |
| 821 | |
| 822 | MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&pt->X, buf + 1, plen)); |
| 823 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1)); |
| 824 | |
| 825 | if (buf[0] == 0x04) { |
| 826 | /* format == MBEDTLS_ECP_PF_UNCOMPRESSED */ |
| 827 | if (ilen != 1 + plen * 2) { |
| 828 | return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 829 | } |
| 830 | return mbedtls_mpi_read_binary(&pt->Y, buf + 1 + plen, plen); |
| 831 | } else if (buf[0] == 0x02 || buf[0] == 0x03) { |
| 832 | /* format == MBEDTLS_ECP_PF_COMPRESSED */ |
| 833 | if (ilen != 1 + plen) { |
| 834 | return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 835 | } |
| 836 | return mbedtls_ecp_sw_derive_y(grp, &pt->X, &pt->Y, |
| 837 | (buf[0] & 1)); |
| 838 | } else { |
| 839 | return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 840 | } |
| 841 | } |
| 842 | #endif |
| 843 | |
| 844 | cleanup: |
| 845 | return ret; |
| 846 | } |
| 847 | |
| 848 | /* |
| 849 | * Import a point from a TLS ECPoint record (RFC 4492) |
| 850 | * struct { |
| 851 | * opaque point <1..2^8-1>; |
| 852 | * } ECPoint; |
| 853 | */ |
| 854 | int mbedtls_ecp_tls_read_point(const mbedtls_ecp_group *grp, |
| 855 | mbedtls_ecp_point *pt, |
| 856 | const unsigned char **buf, size_t buf_len) |
| 857 | { |
| 858 | unsigned char data_len; |
| 859 | const unsigned char *buf_start; |
| 860 | /* |
| 861 | * We must have at least two bytes (1 for length, at least one for data) |
| 862 | */ |
| 863 | if (buf_len < 2) { |
| 864 | return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 865 | } |
| 866 | |
| 867 | data_len = *(*buf)++; |
| 868 | if (data_len < 1 || data_len > buf_len - 1) { |
| 869 | return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 870 | } |
| 871 | |
| 872 | /* |
| 873 | * Save buffer start for read_binary and update buf |
| 874 | */ |
| 875 | buf_start = *buf; |
| 876 | *buf += data_len; |
| 877 | |
| 878 | return mbedtls_ecp_point_read_binary(grp, pt, buf_start, data_len); |
| 879 | } |
| 880 | |
| 881 | /* |
| 882 | * Export a point as a TLS ECPoint record (RFC 4492) |
| 883 | * struct { |
| 884 | * opaque point <1..2^8-1>; |
| 885 | * } ECPoint; |
| 886 | */ |
| 887 | int mbedtls_ecp_tls_write_point(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt, |
| 888 | int format, size_t *olen, |
| 889 | unsigned char *buf, size_t blen) |
| 890 | { |
| 891 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 892 | if (format != MBEDTLS_ECP_PF_UNCOMPRESSED && |
| 893 | format != MBEDTLS_ECP_PF_COMPRESSED) { |
| 894 | return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 895 | } |
| 896 | |
| 897 | /* |
| 898 | * buffer length must be at least one, for our length byte |
| 899 | */ |
| 900 | if (blen < 1) { |
| 901 | return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 902 | } |
| 903 | |
| 904 | if ((ret = mbedtls_ecp_point_write_binary(grp, pt, format, |
| 905 | olen, buf + 1, blen - 1)) != 0) { |
| 906 | return ret; |
| 907 | } |
| 908 | |
| 909 | /* |
| 910 | * write length to the first byte and update total length |
| 911 | */ |
| 912 | buf[0] = (unsigned char) *olen; |
| 913 | ++*olen; |
| 914 | |
| 915 | return 0; |
| 916 | } |
| 917 | |
| 918 | /* |
| 919 | * Set a group from an ECParameters record (RFC 4492) |
| 920 | */ |
| 921 | int mbedtls_ecp_tls_read_group(mbedtls_ecp_group *grp, |
| 922 | const unsigned char **buf, size_t len) |
| 923 | { |
| 924 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 925 | mbedtls_ecp_group_id grp_id; |
| 926 | if ((ret = mbedtls_ecp_tls_read_group_id(&grp_id, buf, len)) != 0) { |
| 927 | return ret; |
| 928 | } |
| 929 | |
| 930 | return mbedtls_ecp_group_load(grp, grp_id); |
| 931 | } |
| 932 | |
| 933 | /* |
| 934 | * Read a group id from an ECParameters record (RFC 4492) and convert it to |
| 935 | * mbedtls_ecp_group_id. |
| 936 | */ |
| 937 | int mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id *grp, |
| 938 | const unsigned char **buf, size_t len) |
| 939 | { |
| 940 | uint16_t tls_id; |
| 941 | const mbedtls_ecp_curve_info *curve_info; |
| 942 | /* |
| 943 | * We expect at least three bytes (see below) |
| 944 | */ |
| 945 | if (len < 3) { |
| 946 | return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 947 | } |
| 948 | |
| 949 | /* |
| 950 | * First byte is curve_type; only named_curve is handled |
| 951 | */ |
| 952 | if (*(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE) { |
| 953 | return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 954 | } |
| 955 | |
| 956 | /* |
| 957 | * Next two bytes are the namedcurve value |
| 958 | */ |
| 959 | tls_id = *(*buf)++; |
| 960 | tls_id <<= 8; |
| 961 | tls_id |= *(*buf)++; |
| 962 | |
| 963 | if ((curve_info = mbedtls_ecp_curve_info_from_tls_id(tls_id)) == NULL) { |
| 964 | return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; |
| 965 | } |
| 966 | |
| 967 | *grp = curve_info->grp_id; |
| 968 | |
| 969 | return 0; |
| 970 | } |
| 971 | |
| 972 | /* |
| 973 | * Write the ECParameters record corresponding to a group (RFC 4492) |
| 974 | */ |
| 975 | int mbedtls_ecp_tls_write_group(const mbedtls_ecp_group *grp, size_t *olen, |
| 976 | unsigned char *buf, size_t blen) |
| 977 | { |
| 978 | const mbedtls_ecp_curve_info *curve_info; |
| 979 | if ((curve_info = mbedtls_ecp_curve_info_from_grp_id(grp->id)) == NULL) { |
| 980 | return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 981 | } |
| 982 | |
| 983 | /* |
| 984 | * We are going to write 3 bytes (see below) |
| 985 | */ |
| 986 | *olen = 3; |
| 987 | if (blen < *olen) { |
| 988 | return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL; |
| 989 | } |
| 990 | |
| 991 | /* |
| 992 | * First byte is curve_type, always named_curve |
| 993 | */ |
| 994 | *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE; |
| 995 | |
| 996 | /* |
| 997 | * Next two bytes are the namedcurve value |
| 998 | */ |
| 999 | MBEDTLS_PUT_UINT16_BE(curve_info->tls_id, buf, 0); |
| 1000 | |
| 1001 | return 0; |
| 1002 | } |
| 1003 | |
| 1004 | /* |
| 1005 | * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi. |
| 1006 | * See the documentation of struct mbedtls_ecp_group. |
| 1007 | * |
| 1008 | * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf. |
| 1009 | */ |
| 1010 | static int ecp_modp(mbedtls_mpi *N, const mbedtls_ecp_group *grp) |
| 1011 | { |
| 1012 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1013 | |
| 1014 | if (grp->modp == NULL) { |
| 1015 | return mbedtls_mpi_mod_mpi(N, N, &grp->P); |
| 1016 | } |
| 1017 | |
| 1018 | /* N->s < 0 is a much faster test, which fails only if N is 0 */ |
| 1019 | if ((N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) || |
| 1020 | mbedtls_mpi_bitlen(N) > 2 * grp->pbits) { |
| 1021 | return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 1022 | } |
| 1023 | |
| 1024 | MBEDTLS_MPI_CHK(grp->modp(N)); |
| 1025 | |
| 1026 | /* N->s < 0 is a much faster test, which fails only if N is 0 */ |
| 1027 | while (N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) { |
| 1028 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &grp->P)); |
| 1029 | } |
| 1030 | |
| 1031 | while (mbedtls_mpi_cmp_mpi(N, &grp->P) >= 0) { |
| 1032 | /* we known P, N and the result are positive */ |
| 1033 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(N, N, &grp->P)); |
| 1034 | } |
| 1035 | |
| 1036 | cleanup: |
| 1037 | return ret; |
| 1038 | } |
| 1039 | |
| 1040 | /* |
| 1041 | * Fast mod-p functions expect their argument to be in the 0..p^2 range. |
| 1042 | * |
| 1043 | * In order to guarantee that, we need to ensure that operands of |
| 1044 | * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will |
| 1045 | * bring the result back to this range. |
| 1046 | * |
| 1047 | * The following macros are shortcuts for doing that. |
| 1048 | */ |
| 1049 | |
| 1050 | /* |
| 1051 | * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi |
| 1052 | */ |
| 1053 | #if defined(MBEDTLS_SELF_TEST) |
| 1054 | #define INC_MUL_COUNT mul_count++; |
| 1055 | #else |
| 1056 | #define INC_MUL_COUNT |
| 1057 | #endif |
| 1058 | |
| 1059 | #define MOD_MUL(N) \ |
| 1060 | do \ |
| 1061 | { \ |
| 1062 | MBEDTLS_MPI_CHK(ecp_modp(&(N), grp)); \ |
| 1063 | INC_MUL_COUNT \ |
| 1064 | } while (0) |
| 1065 | |
| 1066 | static inline int mbedtls_mpi_mul_mod(const mbedtls_ecp_group *grp, |
| 1067 | mbedtls_mpi *X, |
| 1068 | const mbedtls_mpi *A, |
| 1069 | const mbedtls_mpi *B) |
| 1070 | { |
| 1071 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1072 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(X, A, B)); |
| 1073 | MOD_MUL(*X); |
| 1074 | cleanup: |
| 1075 | return ret; |
| 1076 | } |
| 1077 | |
| 1078 | /* |
| 1079 | * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi |
| 1080 | * N->s < 0 is a very fast test, which fails only if N is 0 |
| 1081 | */ |
| 1082 | #define MOD_SUB(N) \ |
| 1083 | do { \ |
| 1084 | while ((N)->s < 0 && mbedtls_mpi_cmp_int((N), 0) != 0) \ |
| 1085 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi((N), (N), &grp->P)); \ |
| 1086 | } while (0) |
| 1087 | |
| 1088 | #if (defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) && \ |
| 1089 | !(defined(MBEDTLS_ECP_NO_FALLBACK) && \ |
| 1090 | defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) && \ |
| 1091 | defined(MBEDTLS_ECP_ADD_MIXED_ALT))) || \ |
| 1092 | (defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) && \ |
| 1093 | !(defined(MBEDTLS_ECP_NO_FALLBACK) && \ |
| 1094 | defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT))) |
| 1095 | static inline int mbedtls_mpi_sub_mod(const mbedtls_ecp_group *grp, |
| 1096 | mbedtls_mpi *X, |
| 1097 | const mbedtls_mpi *A, |
| 1098 | const mbedtls_mpi *B) |
| 1099 | { |
| 1100 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1101 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(X, A, B)); |
| 1102 | MOD_SUB(X); |
| 1103 | cleanup: |
| 1104 | return ret; |
| 1105 | } |
| 1106 | #endif /* All functions referencing mbedtls_mpi_sub_mod() are alt-implemented without fallback */ |
| 1107 | |
| 1108 | /* |
| 1109 | * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int. |
| 1110 | * We known P, N and the result are positive, so sub_abs is correct, and |
| 1111 | * a bit faster. |
| 1112 | */ |
| 1113 | #define MOD_ADD(N) \ |
| 1114 | while (mbedtls_mpi_cmp_mpi((N), &grp->P) >= 0) \ |
| 1115 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs((N), (N), &grp->P)) |
| 1116 | |
| 1117 | static inline int mbedtls_mpi_add_mod(const mbedtls_ecp_group *grp, |
| 1118 | mbedtls_mpi *X, |
| 1119 | const mbedtls_mpi *A, |
| 1120 | const mbedtls_mpi *B) |
| 1121 | { |
| 1122 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1123 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(X, A, B)); |
| 1124 | MOD_ADD(X); |
| 1125 | cleanup: |
| 1126 | return ret; |
| 1127 | } |
| 1128 | |
| 1129 | static inline int mbedtls_mpi_mul_int_mod(const mbedtls_ecp_group *grp, |
| 1130 | mbedtls_mpi *X, |
| 1131 | const mbedtls_mpi *A, |
| 1132 | mbedtls_mpi_uint c) |
| 1133 | { |
| 1134 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1135 | |
| 1136 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(X, A, c)); |
| 1137 | MOD_ADD(X); |
| 1138 | cleanup: |
| 1139 | return ret; |
| 1140 | } |
| 1141 | |
| 1142 | static inline int mbedtls_mpi_sub_int_mod(const mbedtls_ecp_group *grp, |
| 1143 | mbedtls_mpi *X, |
| 1144 | const mbedtls_mpi *A, |
| 1145 | mbedtls_mpi_uint c) |
| 1146 | { |
| 1147 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1148 | |
| 1149 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(X, A, c)); |
| 1150 | MOD_SUB(X); |
| 1151 | cleanup: |
| 1152 | return ret; |
| 1153 | } |
| 1154 | |
| 1155 | #define MPI_ECP_SUB_INT(X, A, c) \ |
| 1156 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int_mod(grp, X, A, c)) |
| 1157 | |
| 1158 | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) && \ |
| 1159 | !(defined(MBEDTLS_ECP_NO_FALLBACK) && \ |
| 1160 | defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) && \ |
| 1161 | defined(MBEDTLS_ECP_ADD_MIXED_ALT)) |
| 1162 | static inline int mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group *grp, |
| 1163 | mbedtls_mpi *X, |
| 1164 | size_t count) |
| 1165 | { |
| 1166 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1167 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, count)); |
| 1168 | MOD_ADD(X); |
| 1169 | cleanup: |
| 1170 | return ret; |
| 1171 | } |
| 1172 | #endif \ |
| 1173 | /* All functions referencing mbedtls_mpi_shift_l_mod() are alt-implemented without fallback */ |
| 1174 | |
| 1175 | /* |
| 1176 | * Macro wrappers around ECP modular arithmetic |
| 1177 | * |
| 1178 | * Currently, these wrappers are defined via the bignum module. |
| 1179 | */ |
| 1180 | |
| 1181 | #define MPI_ECP_ADD(X, A, B) \ |
| 1182 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, X, A, B)) |
| 1183 | |
| 1184 | #define MPI_ECP_SUB(X, A, B) \ |
| 1185 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, X, A, B)) |
| 1186 | |
| 1187 | #define MPI_ECP_MUL(X, A, B) \ |
| 1188 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, B)) |
| 1189 | |
| 1190 | #define MPI_ECP_SQR(X, A) \ |
| 1191 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, A)) |
| 1192 | |
| 1193 | #define MPI_ECP_MUL_INT(X, A, c) \ |
| 1194 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int_mod(grp, X, A, c)) |
| 1195 | |
| 1196 | #define MPI_ECP_INV(dst, src) \ |
| 1197 | MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod((dst), (src), &grp->P)) |
| 1198 | |
| 1199 | #define MPI_ECP_MOV(X, A) \ |
| 1200 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A)) |
| 1201 | |
| 1202 | #define MPI_ECP_SHIFT_L(X, count) \ |
| 1203 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, X, count)) |
| 1204 | |
| 1205 | #define MPI_ECP_LSET(X, c) \ |
| 1206 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, c)) |
| 1207 | |
| 1208 | #define MPI_ECP_CMP_INT(X, c) \ |
| 1209 | mbedtls_mpi_cmp_int(X, c) |
| 1210 | |
| 1211 | #define MPI_ECP_CMP(X, Y) \ |
| 1212 | mbedtls_mpi_cmp_mpi(X, Y) |
| 1213 | |
| 1214 | /* Needs f_rng, p_rng to be defined. */ |
| 1215 | #define MPI_ECP_RAND(X) \ |
| 1216 | MBEDTLS_MPI_CHK(mbedtls_mpi_random((X), 2, &grp->P, f_rng, p_rng)) |
| 1217 | |
| 1218 | /* Conditional negation |
| 1219 | * Needs grp and a temporary MPI tmp to be defined. */ |
| 1220 | #define MPI_ECP_COND_NEG(X, cond) \ |
| 1221 | do \ |
| 1222 | { \ |
| 1223 | unsigned char nonzero = mbedtls_mpi_cmp_int((X), 0) != 0; \ |
| 1224 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&tmp, &grp->P, (X))); \ |
| 1225 | MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), &tmp, \ |
| 1226 | nonzero & cond)); \ |
| 1227 | } while (0) |
| 1228 | |
| 1229 | #define MPI_ECP_NEG(X) MPI_ECP_COND_NEG((X), 1) |
| 1230 | |
| 1231 | #define MPI_ECP_VALID(X) \ |
| 1232 | ((X)->p != NULL) |
| 1233 | |
| 1234 | #define MPI_ECP_COND_ASSIGN(X, Y, cond) \ |
| 1235 | MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), (Y), (cond))) |
| 1236 | |
| 1237 | #define MPI_ECP_COND_SWAP(X, Y, cond) \ |
| 1238 | MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_swap((X), (Y), (cond))) |
| 1239 | |
| 1240 | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) |
| 1241 | |
| 1242 | /* |
| 1243 | * Computes the right-hand side of the Short Weierstrass equation |
| 1244 | * RHS = X^3 + A X + B |
| 1245 | */ |
| 1246 | static int ecp_sw_rhs(const mbedtls_ecp_group *grp, |
| 1247 | mbedtls_mpi *rhs, |
| 1248 | const mbedtls_mpi *X) |
| 1249 | { |
| 1250 | int ret; |
| 1251 | |
| 1252 | /* Compute X^3 + A X + B as X (X^2 + A) + B */ |
| 1253 | MPI_ECP_SQR(rhs, X); |
| 1254 | |
| 1255 | /* Special case for A = -3 */ |
| 1256 | if (grp->A.p == NULL) { |
| 1257 | MPI_ECP_SUB_INT(rhs, rhs, 3); |
| 1258 | } else { |
| 1259 | MPI_ECP_ADD(rhs, rhs, &grp->A); |
| 1260 | } |
| 1261 | |
| 1262 | MPI_ECP_MUL(rhs, rhs, X); |
| 1263 | MPI_ECP_ADD(rhs, rhs, &grp->B); |
| 1264 | |
| 1265 | cleanup: |
| 1266 | return ret; |
| 1267 | } |
| 1268 | |
| 1269 | /* |
| 1270 | * Derive Y from X and a parity bit |
| 1271 | */ |
| 1272 | static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp, |
| 1273 | const mbedtls_mpi *X, |
| 1274 | mbedtls_mpi *Y, |
| 1275 | int parity_bit) |
| 1276 | { |
| 1277 | /* w = y^2 = x^3 + ax + b |
| 1278 | * y = sqrt(w) = w^((p+1)/4) mod p (for prime p where p = 3 mod 4) |
| 1279 | * |
| 1280 | * Note: this method for extracting square root does not validate that w |
| 1281 | * was indeed a square so this function will return garbage in Y if X |
| 1282 | * does not correspond to a point on the curve. |
| 1283 | */ |
| 1284 | |
| 1285 | /* Check prerequisite p = 3 mod 4 */ |
| 1286 | if (mbedtls_mpi_get_bit(&grp->P, 0) != 1 || |
| 1287 | mbedtls_mpi_get_bit(&grp->P, 1) != 1) { |
| 1288 | return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; |
| 1289 | } |
| 1290 | |
| 1291 | int ret; |
| 1292 | mbedtls_mpi exp; |
| 1293 | mbedtls_mpi_init(&exp); |
| 1294 | |
| 1295 | /* use Y to store intermediate result, actually w above */ |
| 1296 | MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, Y, X)); |
| 1297 | |
| 1298 | /* w = y^2 */ /* Y contains y^2 intermediate result */ |
| 1299 | /* exp = ((p+1)/4) */ |
| 1300 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&exp, &grp->P, 1)); |
| 1301 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&exp, 2)); |
| 1302 | /* sqrt(w) = w^((p+1)/4) mod p (for prime p where p = 3 mod 4) */ |
| 1303 | MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(Y, Y /*y^2*/, &exp, &grp->P, NULL)); |
| 1304 | |
| 1305 | /* check parity bit match or else invert Y */ |
| 1306 | /* This quick inversion implementation is valid because Y != 0 for all |
| 1307 | * Short Weierstrass curves supported by mbedtls, as each supported curve |
| 1308 | * has an order that is a large prime, so each supported curve does not |
| 1309 | * have any point of order 2, and a point with Y == 0 would be of order 2 */ |
| 1310 | if (mbedtls_mpi_get_bit(Y, 0) != parity_bit) { |
| 1311 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Y, &grp->P, Y)); |
| 1312 | } |
| 1313 | |
| 1314 | cleanup: |
| 1315 | |
| 1316 | mbedtls_mpi_free(&exp); |
| 1317 | return ret; |
| 1318 | } |
| 1319 | #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */ |
| 1320 | |
| 1321 | #if defined(MBEDTLS_ECP_C) |
| 1322 | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) |
| 1323 | /* |
| 1324 | * For curves in short Weierstrass form, we do all the internal operations in |
| 1325 | * Jacobian coordinates. |
| 1326 | * |
| 1327 | * For multiplication, we'll use a comb method with countermeasures against |
| 1328 | * SPA, hence timing attacks. |
| 1329 | */ |
| 1330 | |
| 1331 | /* |
| 1332 | * Normalize jacobian coordinates so that Z == 0 || Z == 1 (GECC 3.2.1) |
| 1333 | * Cost: 1N := 1I + 3M + 1S |
| 1334 | */ |
| 1335 | static int ecp_normalize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt) |
| 1336 | { |
| 1337 | if (MPI_ECP_CMP_INT(&pt->Z, 0) == 0) { |
| 1338 | return 0; |
| 1339 | } |
| 1340 | |
| 1341 | #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) |
| 1342 | if (mbedtls_internal_ecp_grp_capable(grp)) { |
| 1343 | return mbedtls_internal_ecp_normalize_jac(grp, pt); |
| 1344 | } |
| 1345 | #endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */ |
| 1346 | |
| 1347 | #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) |
| 1348 | return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; |
| 1349 | #else |
| 1350 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1351 | mbedtls_mpi T; |
| 1352 | mbedtls_mpi_init(&T); |
| 1353 | |
| 1354 | MPI_ECP_INV(&T, &pt->Z); /* T <- 1 / Z */ |
| 1355 | MPI_ECP_MUL(&pt->Y, &pt->Y, &T); /* Y' <- Y*T = Y / Z */ |
| 1356 | MPI_ECP_SQR(&T, &T); /* T <- T^2 = 1 / Z^2 */ |
| 1357 | MPI_ECP_MUL(&pt->X, &pt->X, &T); /* X <- X * T = X / Z^2 */ |
| 1358 | MPI_ECP_MUL(&pt->Y, &pt->Y, &T); /* Y'' <- Y' * T = Y / Z^3 */ |
| 1359 | |
| 1360 | MPI_ECP_LSET(&pt->Z, 1); |
| 1361 | |
| 1362 | cleanup: |
| 1363 | |
| 1364 | mbedtls_mpi_free(&T); |
| 1365 | |
| 1366 | return ret; |
| 1367 | #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) */ |
| 1368 | } |
| 1369 | |
| 1370 | /* |
| 1371 | * Normalize jacobian coordinates of an array of (pointers to) points, |
| 1372 | * using Montgomery's trick to perform only one inversion mod P. |
| 1373 | * (See for example Cohen's "A Course in Computational Algebraic Number |
| 1374 | * Theory", Algorithm 10.3.4.) |
| 1375 | * |
| 1376 | * Warning: fails (returning an error) if one of the points is zero! |
| 1377 | * This should never happen, see choice of w in ecp_mul_comb(). |
| 1378 | * |
| 1379 | * Cost: 1N(t) := 1I + (6t - 3)M + 1S |
| 1380 | */ |
| 1381 | static int ecp_normalize_jac_many(const mbedtls_ecp_group *grp, |
| 1382 | mbedtls_ecp_point *T[], size_t T_size) |
| 1383 | { |
| 1384 | if (T_size < 2) { |
| 1385 | return ecp_normalize_jac(grp, *T); |
| 1386 | } |
| 1387 | |
| 1388 | #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) |
| 1389 | if (mbedtls_internal_ecp_grp_capable(grp)) { |
| 1390 | return mbedtls_internal_ecp_normalize_jac_many(grp, T, T_size); |
| 1391 | } |
| 1392 | #endif |
| 1393 | |
| 1394 | #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) |
| 1395 | return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; |
| 1396 | #else |
| 1397 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1398 | size_t i; |
| 1399 | mbedtls_mpi *c, t; |
| 1400 | |
| 1401 | if ((c = mbedtls_calloc(T_size, sizeof(mbedtls_mpi))) == NULL) { |
| 1402 | return MBEDTLS_ERR_ECP_ALLOC_FAILED; |
| 1403 | } |
| 1404 | |
| 1405 | mbedtls_mpi_init(&t); |
| 1406 | |
| 1407 | mpi_init_many(c, T_size); |
| 1408 | /* |
| 1409 | * c[i] = Z_0 * ... * Z_i, i = 0,..,n := T_size-1 |
| 1410 | */ |
| 1411 | MPI_ECP_MOV(&c[0], &T[0]->Z); |
| 1412 | for (i = 1; i < T_size; i++) { |
| 1413 | MPI_ECP_MUL(&c[i], &c[i-1], &T[i]->Z); |
| 1414 | } |
| 1415 | |
| 1416 | /* |
| 1417 | * c[n] = 1 / (Z_0 * ... * Z_n) mod P |
| 1418 | */ |
| 1419 | MPI_ECP_INV(&c[T_size-1], &c[T_size-1]); |
| 1420 | |
| 1421 | for (i = T_size - 1;; i--) { |
| 1422 | /* At the start of iteration i (note that i decrements), we have |
| 1423 | * - c[j] = Z_0 * .... * Z_j for j < i, |
| 1424 | * - c[j] = 1 / (Z_0 * .... * Z_j) for j == i, |
| 1425 | * |
| 1426 | * This is maintained via |
| 1427 | * - c[i-1] <- c[i] * Z_i |
| 1428 | * |
| 1429 | * We also derive 1/Z_i = c[i] * c[i-1] for i>0 and use that |
| 1430 | * to do the actual normalization. For i==0, we already have |
| 1431 | * c[0] = 1 / Z_0. |
| 1432 | */ |
| 1433 | |
| 1434 | if (i > 0) { |
| 1435 | /* Compute 1/Z_i and establish invariant for the next iteration. */ |
| 1436 | MPI_ECP_MUL(&t, &c[i], &c[i-1]); |
| 1437 | MPI_ECP_MUL(&c[i-1], &c[i], &T[i]->Z); |
| 1438 | } else { |
| 1439 | MPI_ECP_MOV(&t, &c[0]); |
| 1440 | } |
| 1441 | |
| 1442 | /* Now t holds 1 / Z_i; normalize as in ecp_normalize_jac() */ |
| 1443 | MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t); |
| 1444 | MPI_ECP_SQR(&t, &t); |
| 1445 | MPI_ECP_MUL(&T[i]->X, &T[i]->X, &t); |
| 1446 | MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t); |
| 1447 | |
| 1448 | /* |
| 1449 | * Post-precessing: reclaim some memory by shrinking coordinates |
| 1450 | * - not storing Z (always 1) |
| 1451 | * - shrinking other coordinates, but still keeping the same number of |
| 1452 | * limbs as P, as otherwise it will too likely be regrown too fast. |
| 1453 | */ |
| 1454 | MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->X, grp->P.n)); |
| 1455 | MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->Y, grp->P.n)); |
| 1456 | |
| 1457 | MPI_ECP_LSET(&T[i]->Z, 1); |
| 1458 | |
| 1459 | if (i == 0) { |
| 1460 | break; |
| 1461 | } |
| 1462 | } |
| 1463 | |
| 1464 | cleanup: |
| 1465 | |
| 1466 | mbedtls_mpi_free(&t); |
| 1467 | mpi_free_many(c, T_size); |
| 1468 | mbedtls_free(c); |
| 1469 | |
| 1470 | return ret; |
| 1471 | #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) */ |
| 1472 | } |
| 1473 | |
| 1474 | /* |
| 1475 | * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak. |
| 1476 | * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid |
| 1477 | */ |
| 1478 | static int ecp_safe_invert_jac(const mbedtls_ecp_group *grp, |
| 1479 | mbedtls_ecp_point *Q, |
| 1480 | unsigned char inv) |
| 1481 | { |
| 1482 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1483 | mbedtls_mpi tmp; |
| 1484 | mbedtls_mpi_init(&tmp); |
| 1485 | |
| 1486 | MPI_ECP_COND_NEG(&Q->Y, inv); |
| 1487 | |
| 1488 | cleanup: |
| 1489 | mbedtls_mpi_free(&tmp); |
| 1490 | return ret; |
| 1491 | } |
| 1492 | |
| 1493 | /* |
| 1494 | * Point doubling R = 2 P, Jacobian coordinates |
| 1495 | * |
| 1496 | * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 . |
| 1497 | * |
| 1498 | * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR |
| 1499 | * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring. |
| 1500 | * |
| 1501 | * Standard optimizations are applied when curve parameter A is one of { 0, -3 }. |
| 1502 | * |
| 1503 | * Cost: 1D := 3M + 4S (A == 0) |
| 1504 | * 4M + 4S (A == -3) |
| 1505 | * 3M + 6S + 1a otherwise |
| 1506 | */ |
| 1507 | static int ecp_double_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R, |
| 1508 | const mbedtls_ecp_point *P, |
| 1509 | mbedtls_mpi tmp[4]) |
| 1510 | { |
| 1511 | #if defined(MBEDTLS_SELF_TEST) |
| 1512 | dbl_count++; |
| 1513 | #endif |
| 1514 | |
| 1515 | #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) |
| 1516 | if (mbedtls_internal_ecp_grp_capable(grp)) { |
| 1517 | return mbedtls_internal_ecp_double_jac(grp, R, P); |
| 1518 | } |
| 1519 | #endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */ |
| 1520 | |
| 1521 | #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) |
| 1522 | return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; |
| 1523 | #else |
| 1524 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1525 | |
| 1526 | /* Special case for A = -3 */ |
| 1527 | if (grp->A.p == NULL) { |
| 1528 | /* tmp[0] <- M = 3(X + Z^2)(X - Z^2) */ |
| 1529 | MPI_ECP_SQR(&tmp[1], &P->Z); |
| 1530 | MPI_ECP_ADD(&tmp[2], &P->X, &tmp[1]); |
| 1531 | MPI_ECP_SUB(&tmp[3], &P->X, &tmp[1]); |
| 1532 | MPI_ECP_MUL(&tmp[1], &tmp[2], &tmp[3]); |
| 1533 | MPI_ECP_MUL_INT(&tmp[0], &tmp[1], 3); |
| 1534 | } else { |
| 1535 | /* tmp[0] <- M = 3.X^2 + A.Z^4 */ |
| 1536 | MPI_ECP_SQR(&tmp[1], &P->X); |
| 1537 | MPI_ECP_MUL_INT(&tmp[0], &tmp[1], 3); |
| 1538 | |
| 1539 | /* Optimize away for "koblitz" curves with A = 0 */ |
| 1540 | if (MPI_ECP_CMP_INT(&grp->A, 0) != 0) { |
| 1541 | /* M += A.Z^4 */ |
| 1542 | MPI_ECP_SQR(&tmp[1], &P->Z); |
| 1543 | MPI_ECP_SQR(&tmp[2], &tmp[1]); |
| 1544 | MPI_ECP_MUL(&tmp[1], &tmp[2], &grp->A); |
| 1545 | MPI_ECP_ADD(&tmp[0], &tmp[0], &tmp[1]); |
| 1546 | } |
| 1547 | } |
| 1548 | |
| 1549 | /* tmp[1] <- S = 4.X.Y^2 */ |
| 1550 | MPI_ECP_SQR(&tmp[2], &P->Y); |
| 1551 | MPI_ECP_SHIFT_L(&tmp[2], 1); |
| 1552 | MPI_ECP_MUL(&tmp[1], &P->X, &tmp[2]); |
| 1553 | MPI_ECP_SHIFT_L(&tmp[1], 1); |
| 1554 | |
| 1555 | /* tmp[3] <- U = 8.Y^4 */ |
| 1556 | MPI_ECP_SQR(&tmp[3], &tmp[2]); |
| 1557 | MPI_ECP_SHIFT_L(&tmp[3], 1); |
| 1558 | |
| 1559 | /* tmp[2] <- T = M^2 - 2.S */ |
| 1560 | MPI_ECP_SQR(&tmp[2], &tmp[0]); |
| 1561 | MPI_ECP_SUB(&tmp[2], &tmp[2], &tmp[1]); |
| 1562 | MPI_ECP_SUB(&tmp[2], &tmp[2], &tmp[1]); |
| 1563 | |
| 1564 | /* tmp[1] <- S = M(S - T) - U */ |
| 1565 | MPI_ECP_SUB(&tmp[1], &tmp[1], &tmp[2]); |
| 1566 | MPI_ECP_MUL(&tmp[1], &tmp[1], &tmp[0]); |
| 1567 | MPI_ECP_SUB(&tmp[1], &tmp[1], &tmp[3]); |
| 1568 | |
| 1569 | /* tmp[3] <- U = 2.Y.Z */ |
| 1570 | MPI_ECP_MUL(&tmp[3], &P->Y, &P->Z); |
| 1571 | MPI_ECP_SHIFT_L(&tmp[3], 1); |
| 1572 | |
| 1573 | /* Store results */ |
| 1574 | MPI_ECP_MOV(&R->X, &tmp[2]); |
| 1575 | MPI_ECP_MOV(&R->Y, &tmp[1]); |
| 1576 | MPI_ECP_MOV(&R->Z, &tmp[3]); |
| 1577 | |
| 1578 | cleanup: |
| 1579 | |
| 1580 | return ret; |
| 1581 | #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) */ |
| 1582 | } |
| 1583 | |
| 1584 | /* |
| 1585 | * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22) |
| 1586 | * |
| 1587 | * The coordinates of Q must be normalized (= affine), |
| 1588 | * but those of P don't need to. R is not normalized. |
| 1589 | * |
| 1590 | * P,Q,R may alias, but only at the level of EC points: they must be either |
| 1591 | * equal as pointers, or disjoint (including the coordinate data buffers). |
| 1592 | * Fine-grained aliasing at the level of coordinates is not supported. |
| 1593 | * |
| 1594 | * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q. |
| 1595 | * None of these cases can happen as intermediate step in ecp_mul_comb(): |
| 1596 | * - at each step, P, Q and R are multiples of the base point, the factor |
| 1597 | * being less than its order, so none of them is zero; |
| 1598 | * - Q is an odd multiple of the base point, P an even multiple, |
| 1599 | * due to the choice of precomputed points in the modified comb method. |
| 1600 | * So branches for these cases do not leak secret information. |
| 1601 | * |
| 1602 | * Cost: 1A := 8M + 3S |
| 1603 | */ |
| 1604 | static int ecp_add_mixed(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R, |
| 1605 | const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q, |
| 1606 | mbedtls_mpi tmp[4]) |
| 1607 | { |
| 1608 | #if defined(MBEDTLS_SELF_TEST) |
| 1609 | add_count++; |
| 1610 | #endif |
| 1611 | |
| 1612 | #if defined(MBEDTLS_ECP_ADD_MIXED_ALT) |
| 1613 | if (mbedtls_internal_ecp_grp_capable(grp)) { |
| 1614 | return mbedtls_internal_ecp_add_mixed(grp, R, P, Q); |
| 1615 | } |
| 1616 | #endif /* MBEDTLS_ECP_ADD_MIXED_ALT */ |
| 1617 | |
| 1618 | #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_ADD_MIXED_ALT) |
| 1619 | return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; |
| 1620 | #else |
| 1621 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1622 | |
| 1623 | /* NOTE: Aliasing between input and output is allowed, so one has to make |
| 1624 | * sure that at the point X,Y,Z are written, {P,Q}->{X,Y,Z} are no |
| 1625 | * longer read from. */ |
| 1626 | mbedtls_mpi * const X = &R->X; |
| 1627 | mbedtls_mpi * const Y = &R->Y; |
| 1628 | mbedtls_mpi * const Z = &R->Z; |
| 1629 | |
| 1630 | if (!MPI_ECP_VALID(&Q->Z)) { |
| 1631 | return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 1632 | } |
| 1633 | |
| 1634 | /* |
| 1635 | * Trivial cases: P == 0 or Q == 0 (case 1) |
| 1636 | */ |
| 1637 | if (MPI_ECP_CMP_INT(&P->Z, 0) == 0) { |
| 1638 | return mbedtls_ecp_copy(R, Q); |
| 1639 | } |
| 1640 | |
| 1641 | if (MPI_ECP_CMP_INT(&Q->Z, 0) == 0) { |
| 1642 | return mbedtls_ecp_copy(R, P); |
| 1643 | } |
| 1644 | |
| 1645 | /* |
| 1646 | * Make sure Q coordinates are normalized |
| 1647 | */ |
| 1648 | if (MPI_ECP_CMP_INT(&Q->Z, 1) != 0) { |
| 1649 | return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 1650 | } |
| 1651 | |
| 1652 | MPI_ECP_SQR(&tmp[0], &P->Z); |
| 1653 | MPI_ECP_MUL(&tmp[1], &tmp[0], &P->Z); |
| 1654 | MPI_ECP_MUL(&tmp[0], &tmp[0], &Q->X); |
| 1655 | MPI_ECP_MUL(&tmp[1], &tmp[1], &Q->Y); |
| 1656 | MPI_ECP_SUB(&tmp[0], &tmp[0], &P->X); |
| 1657 | MPI_ECP_SUB(&tmp[1], &tmp[1], &P->Y); |
| 1658 | |
| 1659 | /* Special cases (2) and (3) */ |
| 1660 | if (MPI_ECP_CMP_INT(&tmp[0], 0) == 0) { |
| 1661 | if (MPI_ECP_CMP_INT(&tmp[1], 0) == 0) { |
| 1662 | ret = ecp_double_jac(grp, R, P, tmp); |
| 1663 | goto cleanup; |
| 1664 | } else { |
| 1665 | ret = mbedtls_ecp_set_zero(R); |
| 1666 | goto cleanup; |
| 1667 | } |
| 1668 | } |
| 1669 | |
| 1670 | /* {P,Q}->Z no longer used, so OK to write to Z even if there's aliasing. */ |
| 1671 | MPI_ECP_MUL(Z, &P->Z, &tmp[0]); |
| 1672 | MPI_ECP_SQR(&tmp[2], &tmp[0]); |
| 1673 | MPI_ECP_MUL(&tmp[3], &tmp[2], &tmp[0]); |
| 1674 | MPI_ECP_MUL(&tmp[2], &tmp[2], &P->X); |
| 1675 | |
| 1676 | MPI_ECP_MOV(&tmp[0], &tmp[2]); |
| 1677 | MPI_ECP_SHIFT_L(&tmp[0], 1); |
| 1678 | |
| 1679 | /* {P,Q}->X no longer used, so OK to write to X even if there's aliasing. */ |
| 1680 | MPI_ECP_SQR(X, &tmp[1]); |
| 1681 | MPI_ECP_SUB(X, X, &tmp[0]); |
| 1682 | MPI_ECP_SUB(X, X, &tmp[3]); |
| 1683 | MPI_ECP_SUB(&tmp[2], &tmp[2], X); |
| 1684 | MPI_ECP_MUL(&tmp[2], &tmp[2], &tmp[1]); |
| 1685 | MPI_ECP_MUL(&tmp[3], &tmp[3], &P->Y); |
| 1686 | /* {P,Q}->Y no longer used, so OK to write to Y even if there's aliasing. */ |
| 1687 | MPI_ECP_SUB(Y, &tmp[2], &tmp[3]); |
| 1688 | |
| 1689 | cleanup: |
| 1690 | |
| 1691 | return ret; |
| 1692 | #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_ADD_MIXED_ALT) */ |
| 1693 | } |
| 1694 | |
| 1695 | /* |
| 1696 | * Randomize jacobian coordinates: |
| 1697 | * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l |
| 1698 | * This is sort of the reverse operation of ecp_normalize_jac(). |
| 1699 | * |
| 1700 | * This countermeasure was first suggested in [2]. |
| 1701 | */ |
| 1702 | static int ecp_randomize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt, |
| 1703 | int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) |
| 1704 | { |
| 1705 | #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) |
| 1706 | if (mbedtls_internal_ecp_grp_capable(grp)) { |
| 1707 | return mbedtls_internal_ecp_randomize_jac(grp, pt, f_rng, p_rng); |
| 1708 | } |
| 1709 | #endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */ |
| 1710 | |
| 1711 | #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) |
| 1712 | return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; |
| 1713 | #else |
| 1714 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1715 | mbedtls_mpi l; |
| 1716 | |
| 1717 | mbedtls_mpi_init(&l); |
| 1718 | |
| 1719 | /* Generate l such that 1 < l < p */ |
| 1720 | MPI_ECP_RAND(&l); |
| 1721 | |
| 1722 | /* Z' = l * Z */ |
| 1723 | MPI_ECP_MUL(&pt->Z, &pt->Z, &l); |
| 1724 | |
| 1725 | /* Y' = l * Y */ |
| 1726 | MPI_ECP_MUL(&pt->Y, &pt->Y, &l); |
| 1727 | |
| 1728 | /* X' = l^2 * X */ |
| 1729 | MPI_ECP_SQR(&l, &l); |
| 1730 | MPI_ECP_MUL(&pt->X, &pt->X, &l); |
| 1731 | |
| 1732 | /* Y'' = l^2 * Y' = l^3 * Y */ |
| 1733 | MPI_ECP_MUL(&pt->Y, &pt->Y, &l); |
| 1734 | |
| 1735 | cleanup: |
| 1736 | mbedtls_mpi_free(&l); |
| 1737 | |
| 1738 | if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) { |
| 1739 | ret = MBEDTLS_ERR_ECP_RANDOM_FAILED; |
| 1740 | } |
| 1741 | return ret; |
| 1742 | #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) */ |
| 1743 | } |
| 1744 | |
| 1745 | /* |
| 1746 | * Check and define parameters used by the comb method (see below for details) |
| 1747 | */ |
| 1748 | #if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7 |
| 1749 | #error "MBEDTLS_ECP_WINDOW_SIZE out of bounds" |
| 1750 | #endif |
| 1751 | |
| 1752 | /* d = ceil( n / w ) */ |
| 1753 | #define COMB_MAX_D (MBEDTLS_ECP_MAX_BITS + 1) / 2 |
| 1754 | |
| 1755 | /* number of precomputed points */ |
| 1756 | #define COMB_MAX_PRE (1 << (MBEDTLS_ECP_WINDOW_SIZE - 1)) |
| 1757 | |
| 1758 | /* |
| 1759 | * Compute the representation of m that will be used with our comb method. |
| 1760 | * |
| 1761 | * The basic comb method is described in GECC 3.44 for example. We use a |
| 1762 | * modified version that provides resistance to SPA by avoiding zero |
| 1763 | * digits in the representation as in [3]. We modify the method further by |
| 1764 | * requiring that all K_i be odd, which has the small cost that our |
| 1765 | * representation uses one more K_i, due to carries, but saves on the size of |
| 1766 | * the precomputed table. |
| 1767 | * |
| 1768 | * Summary of the comb method and its modifications: |
| 1769 | * |
| 1770 | * - The goal is to compute m*P for some w*d-bit integer m. |
| 1771 | * |
| 1772 | * - The basic comb method splits m into the w-bit integers |
| 1773 | * x[0] .. x[d-1] where x[i] consists of the bits in m whose |
| 1774 | * index has residue i modulo d, and computes m * P as |
| 1775 | * S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where |
| 1776 | * S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P. |
| 1777 | * |
| 1778 | * - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by |
| 1779 | * .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] .., |
| 1780 | * thereby successively converting it into a form where all summands |
| 1781 | * are nonzero, at the cost of negative summands. This is the basic idea of [3]. |
| 1782 | * |
| 1783 | * - More generally, even if x[i+1] != 0, we can first transform the sum as |
| 1784 | * .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] .., |
| 1785 | * and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]]. |
| 1786 | * Performing and iterating this procedure for those x[i] that are even |
| 1787 | * (keeping track of carry), we can transform the original sum into one of the form |
| 1788 | * S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]] |
| 1789 | * with all x'[i] odd. It is therefore only necessary to know S at odd indices, |
| 1790 | * which is why we are only computing half of it in the first place in |
| 1791 | * ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb. |
| 1792 | * |
| 1793 | * - For the sake of compactness, only the seven low-order bits of x[i] |
| 1794 | * are used to represent its absolute value (K_i in the paper), and the msb |
| 1795 | * of x[i] encodes the sign (s_i in the paper): it is set if and only if |
| 1796 | * if s_i == -1; |
| 1797 | * |
| 1798 | * Calling conventions: |
| 1799 | * - x is an array of size d + 1 |
| 1800 | * - w is the size, ie number of teeth, of the comb, and must be between |
| 1801 | * 2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE) |
| 1802 | * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d |
| 1803 | * (the result will be incorrect if these assumptions are not satisfied) |
| 1804 | */ |
| 1805 | static void ecp_comb_recode_core(unsigned char x[], size_t d, |
| 1806 | unsigned char w, const mbedtls_mpi *m) |
| 1807 | { |
| 1808 | size_t i, j; |
| 1809 | unsigned char c, cc, adjust; |
| 1810 | |
| 1811 | memset(x, 0, d+1); |
| 1812 | |
| 1813 | /* First get the classical comb values (except for x_d = 0) */ |
| 1814 | for (i = 0; i < d; i++) { |
| 1815 | for (j = 0; j < w; j++) { |
| 1816 | x[i] |= mbedtls_mpi_get_bit(m, i + d * j) << j; |
| 1817 | } |
| 1818 | } |
| 1819 | |
| 1820 | /* Now make sure x_1 .. x_d are odd */ |
| 1821 | c = 0; |
| 1822 | for (i = 1; i <= d; i++) { |
| 1823 | /* Add carry and update it */ |
| 1824 | cc = x[i] & c; |
| 1825 | x[i] = x[i] ^ c; |
| 1826 | c = cc; |
| 1827 | |
| 1828 | /* Adjust if needed, avoiding branches */ |
| 1829 | adjust = 1 - (x[i] & 0x01); |
| 1830 | c |= x[i] & (x[i-1] * adjust); |
| 1831 | x[i] = x[i] ^ (x[i-1] * adjust); |
| 1832 | x[i-1] |= adjust << 7; |
| 1833 | } |
| 1834 | } |
| 1835 | |
| 1836 | /* |
| 1837 | * Precompute points for the adapted comb method |
| 1838 | * |
| 1839 | * Assumption: T must be able to hold 2^{w - 1} elements. |
| 1840 | * |
| 1841 | * Operation: If i = i_{w-1} ... i_1 is the binary representation of i, |
| 1842 | * sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P. |
| 1843 | * |
| 1844 | * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1) |
| 1845 | * |
| 1846 | * Note: Even comb values (those where P would be omitted from the |
| 1847 | * sum defining T[i] above) are not needed in our adaption |
| 1848 | * the comb method. See ecp_comb_recode_core(). |
| 1849 | * |
| 1850 | * This function currently works in four steps: |
| 1851 | * (1) [dbl] Computation of intermediate T[i] for 2-power values of i |
| 1852 | * (2) [norm_dbl] Normalization of coordinates of these T[i] |
| 1853 | * (3) [add] Computation of all T[i] |
| 1854 | * (4) [norm_add] Normalization of all T[i] |
| 1855 | * |
| 1856 | * Step 1 can be interrupted but not the others; together with the final |
| 1857 | * coordinate normalization they are the largest steps done at once, depending |
| 1858 | * on the window size. Here are operation counts for P-256: |
| 1859 | * |
| 1860 | * step (2) (3) (4) |
| 1861 | * w = 5 142 165 208 |
| 1862 | * w = 4 136 77 160 |
| 1863 | * w = 3 130 33 136 |
| 1864 | * w = 2 124 11 124 |
| 1865 | * |
| 1866 | * So if ECC operations are blocking for too long even with a low max_ops |
| 1867 | * value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order |
| 1868 | * to minimize maximum blocking time. |
| 1869 | */ |
| 1870 | static int ecp_precompute_comb(const mbedtls_ecp_group *grp, |
| 1871 | mbedtls_ecp_point T[], const mbedtls_ecp_point *P, |
| 1872 | unsigned char w, size_t d, |
| 1873 | mbedtls_ecp_restart_ctx *rs_ctx) |
| 1874 | { |
| 1875 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1876 | unsigned char i; |
| 1877 | size_t j = 0; |
| 1878 | const unsigned char T_size = 1U << (w - 1); |
| 1879 | mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1] = { NULL }; |
| 1880 | |
| 1881 | mbedtls_mpi tmp[4]; |
| 1882 | |
| 1883 | mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi)); |
| 1884 | |
| 1885 | #if defined(MBEDTLS_ECP_RESTARTABLE) |
| 1886 | if (rs_ctx != NULL && rs_ctx->rsm != NULL) { |
| 1887 | if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) { |
| 1888 | goto dbl; |
| 1889 | } |
| 1890 | if (rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl) { |
| 1891 | goto norm_dbl; |
| 1892 | } |
| 1893 | if (rs_ctx->rsm->state == ecp_rsm_pre_add) { |
| 1894 | goto add; |
| 1895 | } |
| 1896 | if (rs_ctx->rsm->state == ecp_rsm_pre_norm_add) { |
| 1897 | goto norm_add; |
| 1898 | } |
| 1899 | } |
| 1900 | #else |
| 1901 | (void) rs_ctx; |
| 1902 | #endif |
| 1903 | |
| 1904 | #if defined(MBEDTLS_ECP_RESTARTABLE) |
| 1905 | if (rs_ctx != NULL && rs_ctx->rsm != NULL) { |
| 1906 | rs_ctx->rsm->state = ecp_rsm_pre_dbl; |
| 1907 | |
| 1908 | /* initial state for the loop */ |
| 1909 | rs_ctx->rsm->i = 0; |
| 1910 | } |
| 1911 | |
| 1912 | dbl: |
| 1913 | #endif |
| 1914 | /* |
| 1915 | * Set T[0] = P and |
| 1916 | * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value) |
| 1917 | */ |
| 1918 | MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&T[0], P)); |
| 1919 | |
| 1920 | #if defined(MBEDTLS_ECP_RESTARTABLE) |
| 1921 | if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) { |
| 1922 | j = rs_ctx->rsm->i; |
| 1923 | } else |
| 1924 | #endif |
| 1925 | j = 0; |
| 1926 | |
| 1927 | for (; j < d * (w - 1); j++) { |
| 1928 | MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL); |
| 1929 | |
| 1930 | i = 1U << (j / d); |
| 1931 | cur = T + i; |
| 1932 | |
| 1933 | if (j % d == 0) { |
| 1934 | MBEDTLS_MPI_CHK(mbedtls_ecp_copy(cur, T + (i >> 1))); |
| 1935 | } |
| 1936 | |
| 1937 | MBEDTLS_MPI_CHK(ecp_double_jac(grp, cur, cur, tmp)); |
| 1938 | } |
| 1939 | |
| 1940 | #if defined(MBEDTLS_ECP_RESTARTABLE) |
| 1941 | if (rs_ctx != NULL && rs_ctx->rsm != NULL) { |
| 1942 | rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl; |
| 1943 | } |
| 1944 | |
| 1945 | norm_dbl: |
| 1946 | #endif |
| 1947 | /* |
| 1948 | * Normalize current elements in T to allow them to be used in |
| 1949 | * ecp_add_mixed() below, which requires one normalized input. |
| 1950 | * |
| 1951 | * As T has holes, use an auxiliary array of pointers to elements in T. |
| 1952 | * |
| 1953 | */ |
| 1954 | j = 0; |
| 1955 | for (i = 1; i < T_size; i <<= 1) { |
| 1956 | TT[j++] = T + i; |
| 1957 | } |
| 1958 | |
| 1959 | MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2); |
| 1960 | |
| 1961 | MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j)); |
| 1962 | |
| 1963 | #if defined(MBEDTLS_ECP_RESTARTABLE) |
| 1964 | if (rs_ctx != NULL && rs_ctx->rsm != NULL) { |
| 1965 | rs_ctx->rsm->state = ecp_rsm_pre_add; |
| 1966 | } |
| 1967 | |
| 1968 | add: |
| 1969 | #endif |
| 1970 | /* |
| 1971 | * Compute the remaining ones using the minimal number of additions |
| 1972 | * Be careful to update T[2^l] only after using it! |
| 1973 | */ |
| 1974 | MBEDTLS_ECP_BUDGET((T_size - 1) * MBEDTLS_ECP_OPS_ADD); |
| 1975 | |
| 1976 | for (i = 1; i < T_size; i <<= 1) { |
| 1977 | j = i; |
| 1978 | while (j--) { |
| 1979 | MBEDTLS_MPI_CHK(ecp_add_mixed(grp, &T[i + j], &T[j], &T[i], tmp)); |
| 1980 | } |
| 1981 | } |
| 1982 | |
| 1983 | #if defined(MBEDTLS_ECP_RESTARTABLE) |
| 1984 | if (rs_ctx != NULL && rs_ctx->rsm != NULL) { |
| 1985 | rs_ctx->rsm->state = ecp_rsm_pre_norm_add; |
| 1986 | } |
| 1987 | |
| 1988 | norm_add: |
| 1989 | #endif |
| 1990 | /* |
| 1991 | * Normalize final elements in T. Even though there are no holes now, we |
| 1992 | * still need the auxiliary array for homogeneity with the previous |
| 1993 | * call. Also, skip T[0] which is already normalised, being a copy of P. |
| 1994 | */ |
| 1995 | for (j = 0; j + 1 < T_size; j++) { |
| 1996 | TT[j] = T + j + 1; |
| 1997 | } |
| 1998 | |
| 1999 | MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2); |
| 2000 | |
| 2001 | MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j)); |
| 2002 | |
| 2003 | /* Free Z coordinate (=1 after normalization) to save RAM. |
| 2004 | * This makes T[i] invalid as mbedtls_ecp_points, but this is OK |
| 2005 | * since from this point onwards, they are only accessed indirectly |
| 2006 | * via the getter function ecp_select_comb() which does set the |
| 2007 | * target's Z coordinate to 1. */ |
| 2008 | for (i = 0; i < T_size; i++) { |
| 2009 | mbedtls_mpi_free(&T[i].Z); |
| 2010 | } |
| 2011 | |
| 2012 | cleanup: |
| 2013 | |
| 2014 | mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi)); |
| 2015 | |
| 2016 | #if defined(MBEDTLS_ECP_RESTARTABLE) |
| 2017 | if (rs_ctx != NULL && rs_ctx->rsm != NULL && |
| 2018 | ret == MBEDTLS_ERR_ECP_IN_PROGRESS) { |
| 2019 | if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) { |
| 2020 | rs_ctx->rsm->i = j; |
| 2021 | } |
| 2022 | } |
| 2023 | #endif |
| 2024 | |
| 2025 | return ret; |
| 2026 | } |
| 2027 | |
| 2028 | /* |
| 2029 | * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ] |
| 2030 | * |
| 2031 | * See ecp_comb_recode_core() for background |
| 2032 | */ |
| 2033 | static int ecp_select_comb(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R, |
| 2034 | const mbedtls_ecp_point T[], unsigned char T_size, |
| 2035 | unsigned char i) |
| 2036 | { |
| 2037 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 2038 | unsigned char ii, j; |
| 2039 | |
| 2040 | /* Ignore the "sign" bit and scale down */ |
| 2041 | ii = (i & 0x7Fu) >> 1; |
| 2042 | |
| 2043 | /* Read the whole table to thwart cache-based timing attacks */ |
| 2044 | for (j = 0; j < T_size; j++) { |
| 2045 | MPI_ECP_COND_ASSIGN(&R->X, &T[j].X, j == ii); |
| 2046 | MPI_ECP_COND_ASSIGN(&R->Y, &T[j].Y, j == ii); |
| 2047 | } |
| 2048 | |
| 2049 | /* Safely invert result if i is "negative" */ |
| 2050 | MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, R, i >> 7)); |
| 2051 | |
| 2052 | MPI_ECP_LSET(&R->Z, 1); |
| 2053 | |
| 2054 | cleanup: |
| 2055 | return ret; |
| 2056 | } |
| 2057 | |
| 2058 | /* |
| 2059 | * Core multiplication algorithm for the (modified) comb method. |
| 2060 | * This part is actually common with the basic comb method (GECC 3.44) |
| 2061 | * |
| 2062 | * Cost: d A + d D + 1 R |
| 2063 | */ |
| 2064 | static int ecp_mul_comb_core(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R, |
| 2065 | const mbedtls_ecp_point T[], unsigned char T_size, |
| 2066 | const unsigned char x[], size_t d, |
| 2067 | int (*f_rng)(void *, unsigned char *, size_t), |
| 2068 | void *p_rng, |
| 2069 | mbedtls_ecp_restart_ctx *rs_ctx) |
| 2070 | { |
| 2071 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 2072 | mbedtls_ecp_point Txi; |
| 2073 | mbedtls_mpi tmp[4]; |
| 2074 | size_t i; |
| 2075 | |
| 2076 | mbedtls_ecp_point_init(&Txi); |
| 2077 | mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi)); |
| 2078 | |
| 2079 | #if !defined(MBEDTLS_ECP_RESTARTABLE) |
| 2080 | (void) rs_ctx; |
| 2081 | #endif |
| 2082 | |
| 2083 | #if defined(MBEDTLS_ECP_RESTARTABLE) |
| 2084 | if (rs_ctx != NULL && rs_ctx->rsm != NULL && |
| 2085 | rs_ctx->rsm->state != ecp_rsm_comb_core) { |
| 2086 | rs_ctx->rsm->i = 0; |
| 2087 | rs_ctx->rsm->state = ecp_rsm_comb_core; |
| 2088 | } |
| 2089 | |
| 2090 | /* new 'if' instead of nested for the sake of the 'else' branch */ |
| 2091 | if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) { |
| 2092 | /* restore current index (R already pointing to rs_ctx->rsm->R) */ |
| 2093 | i = rs_ctx->rsm->i; |
| 2094 | } else |
| 2095 | #endif |
| 2096 | { |
| 2097 | /* Start with a non-zero point and randomize its coordinates */ |
| 2098 | i = d; |
| 2099 | MBEDTLS_MPI_CHK(ecp_select_comb(grp, R, T, T_size, x[i])); |
| 2100 | if (f_rng != 0) { |
| 2101 | MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, R, f_rng, p_rng)); |
| 2102 | } |
| 2103 | } |
| 2104 | |
| 2105 | while (i != 0) { |
| 2106 | MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD); |
| 2107 | --i; |
| 2108 | |
| 2109 | MBEDTLS_MPI_CHK(ecp_double_jac(grp, R, R, tmp)); |
| 2110 | MBEDTLS_MPI_CHK(ecp_select_comb(grp, &Txi, T, T_size, x[i])); |
| 2111 | MBEDTLS_MPI_CHK(ecp_add_mixed(grp, R, R, &Txi, tmp)); |
| 2112 | } |
| 2113 | |
| 2114 | cleanup: |
| 2115 | |
| 2116 | mbedtls_ecp_point_free(&Txi); |
| 2117 | mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi)); |
| 2118 | |
| 2119 | #if defined(MBEDTLS_ECP_RESTARTABLE) |
| 2120 | if (rs_ctx != NULL && rs_ctx->rsm != NULL && |
| 2121 | ret == MBEDTLS_ERR_ECP_IN_PROGRESS) { |
| 2122 | rs_ctx->rsm->i = i; |
| 2123 | /* no need to save R, already pointing to rs_ctx->rsm->R */ |
| 2124 | } |
| 2125 | #endif |
| 2126 | |
| 2127 | return ret; |
| 2128 | } |
| 2129 | |
| 2130 | /* |
| 2131 | * Recode the scalar to get constant-time comb multiplication |
| 2132 | * |
| 2133 | * As the actual scalar recoding needs an odd scalar as a starting point, |
| 2134 | * this wrapper ensures that by replacing m by N - m if necessary, and |
| 2135 | * informs the caller that the result of multiplication will be negated. |
| 2136 | * |
| 2137 | * This works because we only support large prime order for Short Weierstrass |
| 2138 | * curves, so N is always odd hence either m or N - m is. |
| 2139 | * |
| 2140 | * See ecp_comb_recode_core() for background. |
| 2141 | */ |
| 2142 | static int ecp_comb_recode_scalar(const mbedtls_ecp_group *grp, |
| 2143 | const mbedtls_mpi *m, |
| 2144 | unsigned char k[COMB_MAX_D + 1], |
| 2145 | size_t d, |
| 2146 | unsigned char w, |
| 2147 | unsigned char *parity_trick) |
| 2148 | { |
| 2149 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 2150 | mbedtls_mpi M, mm; |
| 2151 | |
| 2152 | mbedtls_mpi_init(&M); |
| 2153 | mbedtls_mpi_init(&mm); |
| 2154 | |
| 2155 | /* N is always odd (see above), just make extra sure */ |
| 2156 | if (mbedtls_mpi_get_bit(&grp->N, 0) != 1) { |
| 2157 | return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 2158 | } |
| 2159 | |
| 2160 | /* do we need the parity trick? */ |
| 2161 | *parity_trick = (mbedtls_mpi_get_bit(m, 0) == 0); |
| 2162 | |
| 2163 | /* execute parity fix in constant time */ |
| 2164 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&M, m)); |
| 2165 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&mm, &grp->N, m)); |
| 2166 | MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(&M, &mm, *parity_trick)); |
| 2167 | |
| 2168 | /* actual scalar recoding */ |
| 2169 | ecp_comb_recode_core(k, d, w, &M); |
| 2170 | |
| 2171 | cleanup: |
| 2172 | mbedtls_mpi_free(&mm); |
| 2173 | mbedtls_mpi_free(&M); |
| 2174 | |
| 2175 | return ret; |
| 2176 | } |
| 2177 | |
| 2178 | /* |
| 2179 | * Perform comb multiplication (for short Weierstrass curves) |
| 2180 | * once the auxiliary table has been pre-computed. |
| 2181 | * |
| 2182 | * Scalar recoding may use a parity trick that makes us compute -m * P, |
| 2183 | * if that is the case we'll need to recover m * P at the end. |
| 2184 | */ |
| 2185 | static int ecp_mul_comb_after_precomp(const mbedtls_ecp_group *grp, |
| 2186 | mbedtls_ecp_point *R, |
| 2187 | const mbedtls_mpi *m, |
| 2188 | const mbedtls_ecp_point *T, |
| 2189 | unsigned char T_size, |
| 2190 | unsigned char w, |
| 2191 | size_t d, |
| 2192 | int (*f_rng)(void *, unsigned char *, size_t), |
| 2193 | void *p_rng, |
| 2194 | mbedtls_ecp_restart_ctx *rs_ctx) |
| 2195 | { |
| 2196 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 2197 | unsigned char parity_trick; |
| 2198 | unsigned char k[COMB_MAX_D + 1]; |
| 2199 | mbedtls_ecp_point *RR = R; |
| 2200 | |
| 2201 | #if defined(MBEDTLS_ECP_RESTARTABLE) |
| 2202 | if (rs_ctx != NULL && rs_ctx->rsm != NULL) { |
| 2203 | RR = &rs_ctx->rsm->R; |
| 2204 | |
| 2205 | if (rs_ctx->rsm->state == ecp_rsm_final_norm) { |
| 2206 | goto final_norm; |
| 2207 | } |
| 2208 | } |
| 2209 | #endif |
| 2210 | |
| 2211 | MBEDTLS_MPI_CHK(ecp_comb_recode_scalar(grp, m, k, d, w, |
| 2212 | &parity_trick)); |
| 2213 | MBEDTLS_MPI_CHK(ecp_mul_comb_core(grp, RR, T, T_size, k, d, |
| 2214 | f_rng, p_rng, rs_ctx)); |
| 2215 | MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, RR, parity_trick)); |
| 2216 | |
| 2217 | #if defined(MBEDTLS_ECP_RESTARTABLE) |
| 2218 | if (rs_ctx != NULL && rs_ctx->rsm != NULL) { |
| 2219 | rs_ctx->rsm->state = ecp_rsm_final_norm; |
| 2220 | } |
| 2221 | |
| 2222 | final_norm: |
| 2223 | MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV); |
| 2224 | #endif |
| 2225 | /* |
| 2226 | * Knowledge of the jacobian coordinates may leak the last few bits of the |
| 2227 | * scalar [1], and since our MPI implementation isn't constant-flow, |
| 2228 | * inversion (used for coordinate normalization) may leak the full value |
| 2229 | * of its input via side-channels [2]. |
| 2230 | * |
| 2231 | * [1] https://eprint.iacr.org/2003/191 |
| 2232 | * [2] https://eprint.iacr.org/2020/055 |
| 2233 | * |
| 2234 | * Avoid the leak by randomizing coordinates before we normalize them. |
| 2235 | */ |
| 2236 | if (f_rng != 0) { |
| 2237 | MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, RR, f_rng, p_rng)); |
| 2238 | } |
| 2239 | |
| 2240 | MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, RR)); |
| 2241 | |
| 2242 | #if defined(MBEDTLS_ECP_RESTARTABLE) |
| 2243 | if (rs_ctx != NULL && rs_ctx->rsm != NULL) { |
| 2244 | MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, RR)); |
| 2245 | } |
| 2246 | #endif |
| 2247 | |
| 2248 | cleanup: |
| 2249 | return ret; |
| 2250 | } |
| 2251 | |
| 2252 | /* |
| 2253 | * Pick window size based on curve size and whether we optimize for base point |
| 2254 | */ |
| 2255 | static unsigned char ecp_pick_window_size(const mbedtls_ecp_group *grp, |
| 2256 | unsigned char p_eq_g) |
| 2257 | { |
| 2258 | unsigned char w; |
| 2259 | |
| 2260 | /* |
| 2261 | * Minimize the number of multiplications, that is minimize |
| 2262 | * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w ) |
| 2263 | * (see costs of the various parts, with 1S = 1M) |
| 2264 | */ |
| 2265 | w = grp->nbits >= 384 ? 5 : 4; |
| 2266 | |
| 2267 | /* |
| 2268 | * If P == G, pre-compute a bit more, since this may be re-used later. |
| 2269 | * Just adding one avoids upping the cost of the first mul too much, |
| 2270 | * and the memory cost too. |
| 2271 | */ |
| 2272 | if (p_eq_g) { |
| 2273 | w++; |
| 2274 | } |
| 2275 | |
| 2276 | /* |
| 2277 | * If static comb table may not be used (!p_eq_g) or static comb table does |
| 2278 | * not exists, make sure w is within bounds. |
| 2279 | * (The last test is useful only for very small curves in the test suite.) |
| 2280 | * |
| 2281 | * The user reduces MBEDTLS_ECP_WINDOW_SIZE does not changes the size of |
| 2282 | * static comb table, because the size of static comb table is fixed when |
| 2283 | * it is generated. |
| 2284 | */ |
| 2285 | #if (MBEDTLS_ECP_WINDOW_SIZE < 6) |
| 2286 | if ((!p_eq_g || !ecp_group_is_static_comb_table(grp)) && w > MBEDTLS_ECP_WINDOW_SIZE) { |
| 2287 | w = MBEDTLS_ECP_WINDOW_SIZE; |
| 2288 | } |
| 2289 | #endif |
| 2290 | if (w >= grp->nbits) { |
| 2291 | w = 2; |
| 2292 | } |
| 2293 | |
| 2294 | return w; |
| 2295 | } |
| 2296 | |
| 2297 | /* |
| 2298 | * Multiplication using the comb method - for curves in short Weierstrass form |
| 2299 | * |
| 2300 | * This function is mainly responsible for administrative work: |
| 2301 | * - managing the restart context if enabled |
| 2302 | * - managing the table of precomputed points (passed between the below two |
| 2303 | * functions): allocation, computation, ownership transfer, freeing. |
| 2304 | * |
| 2305 | * It delegates the actual arithmetic work to: |
| 2306 | * ecp_precompute_comb() and ecp_mul_comb_with_precomp() |
| 2307 | * |
| 2308 | * See comments on ecp_comb_recode_core() regarding the computation strategy. |
| 2309 | */ |
| 2310 | static int ecp_mul_comb(mbedtls_ecp_group *grp, mbedtls_ecp_point *R, |
| 2311 | const mbedtls_mpi *m, const mbedtls_ecp_point *P, |
| 2312 | int (*f_rng)(void *, unsigned char *, size_t), |
| 2313 | void *p_rng, |
| 2314 | mbedtls_ecp_restart_ctx *rs_ctx) |
| 2315 | { |
| 2316 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 2317 | unsigned char w, p_eq_g, i; |
| 2318 | size_t d; |
| 2319 | unsigned char T_size = 0, T_ok = 0; |
| 2320 | mbedtls_ecp_point *T = NULL; |
| 2321 | |
| 2322 | ECP_RS_ENTER(rsm); |
| 2323 | |
| 2324 | /* Is P the base point ? */ |
| 2325 | #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1 |
| 2326 | p_eq_g = (MPI_ECP_CMP(&P->Y, &grp->G.Y) == 0 && |
| 2327 | MPI_ECP_CMP(&P->X, &grp->G.X) == 0); |
| 2328 | #else |
| 2329 | p_eq_g = 0; |
| 2330 | #endif |
| 2331 | |
| 2332 | /* Pick window size and deduce related sizes */ |
| 2333 | w = ecp_pick_window_size(grp, p_eq_g); |
| 2334 | T_size = 1U << (w - 1); |
| 2335 | d = (grp->nbits + w - 1) / w; |
| 2336 | |
| 2337 | /* Pre-computed table: do we have it already for the base point? */ |
| 2338 | if (p_eq_g && grp->T != NULL) { |
| 2339 | /* second pointer to the same table, will be deleted on exit */ |
| 2340 | T = grp->T; |
| 2341 | T_ok = 1; |
| 2342 | } else |
| 2343 | #if defined(MBEDTLS_ECP_RESTARTABLE) |
| 2344 | /* Pre-computed table: do we have one in progress? complete? */ |
| 2345 | if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL) { |
| 2346 | /* transfer ownership of T from rsm to local function */ |
| 2347 | T = rs_ctx->rsm->T; |
| 2348 | rs_ctx->rsm->T = NULL; |
| 2349 | rs_ctx->rsm->T_size = 0; |
| 2350 | |
| 2351 | /* This effectively jumps to the call to mul_comb_after_precomp() */ |
| 2352 | T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core; |
| 2353 | } else |
| 2354 | #endif |
| 2355 | /* Allocate table if we didn't have any */ |
| 2356 | { |
| 2357 | T = mbedtls_calloc(T_size, sizeof(mbedtls_ecp_point)); |
| 2358 | if (T == NULL) { |
| 2359 | ret = MBEDTLS_ERR_ECP_ALLOC_FAILED; |
| 2360 | goto cleanup; |
| 2361 | } |
| 2362 | |
| 2363 | for (i = 0; i < T_size; i++) { |
| 2364 | mbedtls_ecp_point_init(&T[i]); |
| 2365 | } |
| 2366 | |
| 2367 | T_ok = 0; |
| 2368 | } |
| 2369 | |
| 2370 | /* Compute table (or finish computing it) if not done already */ |
| 2371 | if (!T_ok) { |
| 2372 | MBEDTLS_MPI_CHK(ecp_precompute_comb(grp, T, P, w, d, rs_ctx)); |
| 2373 | |
| 2374 | if (p_eq_g) { |
| 2375 | /* almost transfer ownership of T to the group, but keep a copy of |
| 2376 | * the pointer to use for calling the next function more easily */ |
| 2377 | grp->T = T; |
| 2378 | grp->T_size = T_size; |
| 2379 | } |
| 2380 | } |
| 2381 | |
| 2382 | /* Actual comb multiplication using precomputed points */ |
| 2383 | MBEDTLS_MPI_CHK(ecp_mul_comb_after_precomp(grp, R, m, |
| 2384 | T, T_size, w, d, |
| 2385 | f_rng, p_rng, rs_ctx)); |
| 2386 | |
| 2387 | cleanup: |
| 2388 | |
| 2389 | /* does T belong to the group? */ |
| 2390 | if (T == grp->T) { |
| 2391 | T = NULL; |
| 2392 | } |
| 2393 | |
| 2394 | /* does T belong to the restart context? */ |
| 2395 | #if defined(MBEDTLS_ECP_RESTARTABLE) |
| 2396 | if (rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL) { |
| 2397 | /* transfer ownership of T from local function to rsm */ |
| 2398 | rs_ctx->rsm->T_size = T_size; |
| 2399 | rs_ctx->rsm->T = T; |
| 2400 | T = NULL; |
| 2401 | } |
| 2402 | #endif |
| 2403 | |
| 2404 | /* did T belong to us? then let's destroy it! */ |
| 2405 | if (T != NULL) { |
| 2406 | for (i = 0; i < T_size; i++) { |
| 2407 | mbedtls_ecp_point_free(&T[i]); |
| 2408 | } |
| 2409 | mbedtls_free(T); |
| 2410 | } |
| 2411 | |
| 2412 | /* prevent caller from using invalid value */ |
| 2413 | int should_free_R = (ret != 0); |
| 2414 | #if defined(MBEDTLS_ECP_RESTARTABLE) |
| 2415 | /* don't free R while in progress in case R == P */ |
| 2416 | if (ret == MBEDTLS_ERR_ECP_IN_PROGRESS) { |
| 2417 | should_free_R = 0; |
| 2418 | } |
| 2419 | #endif |
| 2420 | if (should_free_R) { |
| 2421 | mbedtls_ecp_point_free(R); |
| 2422 | } |
| 2423 | |
| 2424 | ECP_RS_LEAVE(rsm); |
| 2425 | |
| 2426 | return ret; |
| 2427 | } |
| 2428 | |
| 2429 | #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */ |
| 2430 | |
| 2431 | #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) |
| 2432 | /* |
| 2433 | * For Montgomery curves, we do all the internal arithmetic in projective |
| 2434 | * coordinates. Import/export of points uses only the x coordinates, which is |
| 2435 | * internally represented as X / Z. |
| 2436 | * |
| 2437 | * For scalar multiplication, we'll use a Montgomery ladder. |
| 2438 | */ |
| 2439 | |
| 2440 | /* |
| 2441 | * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1 |
| 2442 | * Cost: 1M + 1I |
| 2443 | */ |
| 2444 | static int ecp_normalize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P) |
| 2445 | { |
| 2446 | #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) |
| 2447 | if (mbedtls_internal_ecp_grp_capable(grp)) { |
| 2448 | return mbedtls_internal_ecp_normalize_mxz(grp, P); |
| 2449 | } |
| 2450 | #endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */ |
| 2451 | |
| 2452 | #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) |
| 2453 | return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; |
| 2454 | #else |
| 2455 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 2456 | MPI_ECP_INV(&P->Z, &P->Z); |
| 2457 | MPI_ECP_MUL(&P->X, &P->X, &P->Z); |
| 2458 | MPI_ECP_LSET(&P->Z, 1); |
| 2459 | |
| 2460 | cleanup: |
| 2461 | return ret; |
| 2462 | #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) */ |
| 2463 | } |
| 2464 | |
| 2465 | /* |
| 2466 | * Randomize projective x/z coordinates: |
| 2467 | * (X, Z) -> (l X, l Z) for random l |
| 2468 | * This is sort of the reverse operation of ecp_normalize_mxz(). |
| 2469 | * |
| 2470 | * This countermeasure was first suggested in [2]. |
| 2471 | * Cost: 2M |
| 2472 | */ |
| 2473 | static int ecp_randomize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P, |
| 2474 | int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) |
| 2475 | { |
| 2476 | #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) |
| 2477 | if (mbedtls_internal_ecp_grp_capable(grp)) { |
| 2478 | return mbedtls_internal_ecp_randomize_mxz(grp, P, f_rng, p_rng); |
| 2479 | } |
| 2480 | #endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */ |
| 2481 | |
| 2482 | #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) |
| 2483 | return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; |
| 2484 | #else |
| 2485 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 2486 | mbedtls_mpi l; |
| 2487 | mbedtls_mpi_init(&l); |
| 2488 | |
| 2489 | /* Generate l such that 1 < l < p */ |
| 2490 | MPI_ECP_RAND(&l); |
| 2491 | |
| 2492 | MPI_ECP_MUL(&P->X, &P->X, &l); |
| 2493 | MPI_ECP_MUL(&P->Z, &P->Z, &l); |
| 2494 | |
| 2495 | cleanup: |
| 2496 | mbedtls_mpi_free(&l); |
| 2497 | |
| 2498 | if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) { |
| 2499 | ret = MBEDTLS_ERR_ECP_RANDOM_FAILED; |
| 2500 | } |
| 2501 | return ret; |
| 2502 | #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) */ |
| 2503 | } |
| 2504 | |
| 2505 | /* |
| 2506 | * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q), |
| 2507 | * for Montgomery curves in x/z coordinates. |
| 2508 | * |
| 2509 | * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3 |
| 2510 | * with |
| 2511 | * d = X1 |
| 2512 | * P = (X2, Z2) |
| 2513 | * Q = (X3, Z3) |
| 2514 | * R = (X4, Z4) |
| 2515 | * S = (X5, Z5) |
| 2516 | * and eliminating temporary variables tO, ..., t4. |
| 2517 | * |
| 2518 | * Cost: 5M + 4S |
| 2519 | */ |
| 2520 | static int ecp_double_add_mxz(const mbedtls_ecp_group *grp, |
| 2521 | mbedtls_ecp_point *R, mbedtls_ecp_point *S, |
| 2522 | const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q, |
| 2523 | const mbedtls_mpi *d, |
| 2524 | mbedtls_mpi T[4]) |
| 2525 | { |
| 2526 | #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) |
| 2527 | if (mbedtls_internal_ecp_grp_capable(grp)) { |
| 2528 | return mbedtls_internal_ecp_double_add_mxz(grp, R, S, P, Q, d); |
| 2529 | } |
| 2530 | #endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */ |
| 2531 | |
| 2532 | #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) |
| 2533 | return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; |
| 2534 | #else |
| 2535 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 2536 | |
| 2537 | MPI_ECP_ADD(&T[0], &P->X, &P->Z); /* Pp := PX + PZ */ |
| 2538 | MPI_ECP_SUB(&T[1], &P->X, &P->Z); /* Pm := PX - PZ */ |
| 2539 | MPI_ECP_ADD(&T[2], &Q->X, &Q->Z); /* Qp := QX + XZ */ |
| 2540 | MPI_ECP_SUB(&T[3], &Q->X, &Q->Z); /* Qm := QX - QZ */ |
| 2541 | MPI_ECP_MUL(&T[3], &T[3], &T[0]); /* Qm * Pp */ |
| 2542 | MPI_ECP_MUL(&T[2], &T[2], &T[1]); /* Qp * Pm */ |
| 2543 | MPI_ECP_SQR(&T[0], &T[0]); /* Pp^2 */ |
| 2544 | MPI_ECP_SQR(&T[1], &T[1]); /* Pm^2 */ |
| 2545 | MPI_ECP_MUL(&R->X, &T[0], &T[1]); /* Pp^2 * Pm^2 */ |
| 2546 | MPI_ECP_SUB(&T[0], &T[0], &T[1]); /* Pp^2 - Pm^2 */ |
| 2547 | MPI_ECP_MUL(&R->Z, &grp->A, &T[0]); /* A * (Pp^2 - Pm^2) */ |
| 2548 | MPI_ECP_ADD(&R->Z, &T[1], &R->Z); /* [ A * (Pp^2-Pm^2) ] + Pm^2 */ |
| 2549 | MPI_ECP_ADD(&S->X, &T[3], &T[2]); /* Qm*Pp + Qp*Pm */ |
| 2550 | MPI_ECP_SQR(&S->X, &S->X); /* (Qm*Pp + Qp*Pm)^2 */ |
| 2551 | MPI_ECP_SUB(&S->Z, &T[3], &T[2]); /* Qm*Pp - Qp*Pm */ |
| 2552 | MPI_ECP_SQR(&S->Z, &S->Z); /* (Qm*Pp - Qp*Pm)^2 */ |
| 2553 | MPI_ECP_MUL(&S->Z, d, &S->Z); /* d * ( Qm*Pp - Qp*Pm )^2 */ |
| 2554 | MPI_ECP_MUL(&R->Z, &T[0], &R->Z); /* [A*(Pp^2-Pm^2)+Pm^2]*(Pp^2-Pm^2) */ |
| 2555 | |
| 2556 | cleanup: |
| 2557 | |
| 2558 | return ret; |
| 2559 | #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) */ |
| 2560 | } |
| 2561 | |
| 2562 | /* |
| 2563 | * Multiplication with Montgomery ladder in x/z coordinates, |
| 2564 | * for curves in Montgomery form |
| 2565 | */ |
| 2566 | static int ecp_mul_mxz(mbedtls_ecp_group *grp, mbedtls_ecp_point *R, |
| 2567 | const mbedtls_mpi *m, const mbedtls_ecp_point *P, |
| 2568 | int (*f_rng)(void *, unsigned char *, size_t), |
| 2569 | void *p_rng) |
| 2570 | { |
| 2571 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 2572 | size_t i; |
| 2573 | unsigned char b; |
| 2574 | mbedtls_ecp_point RP; |
| 2575 | mbedtls_mpi PX; |
| 2576 | mbedtls_mpi tmp[4]; |
| 2577 | mbedtls_ecp_point_init(&RP); mbedtls_mpi_init(&PX); |
| 2578 | |
| 2579 | mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi)); |
| 2580 | |
| 2581 | if (f_rng == NULL) { |
| 2582 | return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 2583 | } |
| 2584 | |
| 2585 | /* Save PX and read from P before writing to R, in case P == R */ |
| 2586 | MPI_ECP_MOV(&PX, &P->X); |
| 2587 | MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&RP, P)); |
| 2588 | |
| 2589 | /* Set R to zero in modified x/z coordinates */ |
| 2590 | MPI_ECP_LSET(&R->X, 1); |
| 2591 | MPI_ECP_LSET(&R->Z, 0); |
| 2592 | mbedtls_mpi_free(&R->Y); |
| 2593 | |
| 2594 | /* RP.X might be slightly larger than P, so reduce it */ |
| 2595 | MOD_ADD(&RP.X); |
| 2596 | |
| 2597 | /* Randomize coordinates of the starting point */ |
| 2598 | MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, &RP, f_rng, p_rng)); |
| 2599 | |
| 2600 | /* Loop invariant: R = result so far, RP = R + P */ |
| 2601 | i = grp->nbits + 1; /* one past the (zero-based) required msb for private keys */ |
| 2602 | while (i-- > 0) { |
| 2603 | b = mbedtls_mpi_get_bit(m, i); |
| 2604 | /* |
| 2605 | * if (b) R = 2R + P else R = 2R, |
| 2606 | * which is: |
| 2607 | * if (b) double_add( RP, R, RP, R ) |
| 2608 | * else double_add( R, RP, R, RP ) |
| 2609 | * but using safe conditional swaps to avoid leaks |
| 2610 | */ |
| 2611 | MPI_ECP_COND_SWAP(&R->X, &RP.X, b); |
| 2612 | MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b); |
| 2613 | MBEDTLS_MPI_CHK(ecp_double_add_mxz(grp, R, &RP, R, &RP, &PX, tmp)); |
| 2614 | MPI_ECP_COND_SWAP(&R->X, &RP.X, b); |
| 2615 | MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b); |
| 2616 | } |
| 2617 | |
| 2618 | /* |
| 2619 | * Knowledge of the projective coordinates may leak the last few bits of the |
| 2620 | * scalar [1], and since our MPI implementation isn't constant-flow, |
| 2621 | * inversion (used for coordinate normalization) may leak the full value |
| 2622 | * of its input via side-channels [2]. |
| 2623 | * |
| 2624 | * [1] https://eprint.iacr.org/2003/191 |
| 2625 | * [2] https://eprint.iacr.org/2020/055 |
| 2626 | * |
| 2627 | * Avoid the leak by randomizing coordinates before we normalize them. |
| 2628 | */ |
| 2629 | MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, R, f_rng, p_rng)); |
| 2630 | MBEDTLS_MPI_CHK(ecp_normalize_mxz(grp, R)); |
| 2631 | |
| 2632 | cleanup: |
| 2633 | mbedtls_ecp_point_free(&RP); mbedtls_mpi_free(&PX); |
| 2634 | |
| 2635 | mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi)); |
| 2636 | return ret; |
| 2637 | } |
| 2638 | |
| 2639 | #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */ |
| 2640 | |
| 2641 | /* |
| 2642 | * Restartable multiplication R = m * P |
| 2643 | * |
| 2644 | * This internal function can be called without an RNG in case where we know |
| 2645 | * the inputs are not sensitive. |
| 2646 | */ |
| 2647 | static int ecp_mul_restartable_internal(mbedtls_ecp_group *grp, mbedtls_ecp_point *R, |
| 2648 | const mbedtls_mpi *m, const mbedtls_ecp_point *P, |
| 2649 | int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, |
| 2650 | mbedtls_ecp_restart_ctx *rs_ctx) |
| 2651 | { |
| 2652 | int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 2653 | #if defined(MBEDTLS_ECP_INTERNAL_ALT) |
| 2654 | char is_grp_capable = 0; |
| 2655 | #endif |
| 2656 | |
| 2657 | #if defined(MBEDTLS_ECP_RESTARTABLE) |
| 2658 | /* reset ops count for this call if top-level */ |
| 2659 | if (rs_ctx != NULL && rs_ctx->depth++ == 0) { |
| 2660 | rs_ctx->ops_done = 0; |
| 2661 | } |
| 2662 | #else |
| 2663 | (void) rs_ctx; |
| 2664 | #endif |
| 2665 | |
| 2666 | #if defined(MBEDTLS_ECP_INTERNAL_ALT) |
| 2667 | if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) { |
| 2668 | MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp)); |
| 2669 | } |
| 2670 | #endif /* MBEDTLS_ECP_INTERNAL_ALT */ |
| 2671 | |
| 2672 | int restarting = 0; |
| 2673 | #if defined(MBEDTLS_ECP_RESTARTABLE) |
| 2674 | restarting = (rs_ctx != NULL && rs_ctx->rsm != NULL); |
| 2675 | #endif |
| 2676 | /* skip argument check when restarting */ |
| 2677 | if (!restarting) { |
| 2678 | /* check_privkey is free */ |
| 2679 | MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_CHK); |
| 2680 | |
| 2681 | /* Common sanity checks */ |
| 2682 | MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(grp, m)); |
| 2683 | MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P)); |
| 2684 | } |
| 2685 | |
| 2686 | ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 2687 | #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) |
| 2688 | if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) { |
| 2689 | MBEDTLS_MPI_CHK(ecp_mul_mxz(grp, R, m, P, f_rng, p_rng)); |
| 2690 | } |
| 2691 | #endif |
| 2692 | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) |
| 2693 | if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) { |
| 2694 | MBEDTLS_MPI_CHK(ecp_mul_comb(grp, R, m, P, f_rng, p_rng, rs_ctx)); |
| 2695 | } |
| 2696 | #endif |
| 2697 | |
| 2698 | cleanup: |
| 2699 | |
| 2700 | #if defined(MBEDTLS_ECP_INTERNAL_ALT) |
| 2701 | if (is_grp_capable) { |
| 2702 | mbedtls_internal_ecp_free(grp); |
| 2703 | } |
| 2704 | #endif /* MBEDTLS_ECP_INTERNAL_ALT */ |
| 2705 | |
| 2706 | #if defined(MBEDTLS_ECP_RESTARTABLE) |
| 2707 | if (rs_ctx != NULL) { |
| 2708 | rs_ctx->depth--; |
| 2709 | } |
| 2710 | #endif |
| 2711 | |
| 2712 | return ret; |
| 2713 | } |
| 2714 | |
| 2715 | /* |
| 2716 | * Restartable multiplication R = m * P |
| 2717 | */ |
| 2718 | int mbedtls_ecp_mul_restartable(mbedtls_ecp_group *grp, mbedtls_ecp_point *R, |
| 2719 | const mbedtls_mpi *m, const mbedtls_ecp_point *P, |
| 2720 | int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, |
| 2721 | mbedtls_ecp_restart_ctx *rs_ctx) |
| 2722 | { |
| 2723 | if (f_rng == NULL) { |
| 2724 | return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 2725 | } |
| 2726 | |
| 2727 | return ecp_mul_restartable_internal(grp, R, m, P, f_rng, p_rng, rs_ctx); |
| 2728 | } |
| 2729 | |
| 2730 | /* |
| 2731 | * Multiplication R = m * P |
| 2732 | */ |
| 2733 | int mbedtls_ecp_mul(mbedtls_ecp_group *grp, mbedtls_ecp_point *R, |
| 2734 | const mbedtls_mpi *m, const mbedtls_ecp_point *P, |
| 2735 | int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) |
| 2736 | { |
| 2737 | return mbedtls_ecp_mul_restartable(grp, R, m, P, f_rng, p_rng, NULL); |
| 2738 | } |
| 2739 | #endif /* MBEDTLS_ECP_C */ |
| 2740 | |
| 2741 | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) |
| 2742 | /* |
| 2743 | * Check that an affine point is valid as a public key, |
| 2744 | * short weierstrass curves (SEC1 3.2.3.1) |
| 2745 | */ |
| 2746 | static int ecp_check_pubkey_sw(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt) |
| 2747 | { |
| 2748 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 2749 | mbedtls_mpi YY, RHS; |
| 2750 | |
| 2751 | /* pt coordinates must be normalized for our checks */ |
| 2752 | if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0 || |
| 2753 | mbedtls_mpi_cmp_int(&pt->Y, 0) < 0 || |
| 2754 | mbedtls_mpi_cmp_mpi(&pt->X, &grp->P) >= 0 || |
| 2755 | mbedtls_mpi_cmp_mpi(&pt->Y, &grp->P) >= 0) { |
| 2756 | return MBEDTLS_ERR_ECP_INVALID_KEY; |
| 2757 | } |
| 2758 | |
| 2759 | mbedtls_mpi_init(&YY); mbedtls_mpi_init(&RHS); |
| 2760 | |
| 2761 | /* |
| 2762 | * YY = Y^2 |
| 2763 | * RHS = X^3 + A X + B |
| 2764 | */ |
| 2765 | MPI_ECP_SQR(&YY, &pt->Y); |
| 2766 | MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, &RHS, &pt->X)); |
| 2767 | |
| 2768 | if (MPI_ECP_CMP(&YY, &RHS) != 0) { |
| 2769 | ret = MBEDTLS_ERR_ECP_INVALID_KEY; |
| 2770 | } |
| 2771 | |
| 2772 | cleanup: |
| 2773 | |
| 2774 | mbedtls_mpi_free(&YY); mbedtls_mpi_free(&RHS); |
| 2775 | |
| 2776 | return ret; |
| 2777 | } |
| 2778 | #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */ |
| 2779 | |
| 2780 | #if defined(MBEDTLS_ECP_C) |
| 2781 | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) |
| 2782 | /* |
| 2783 | * R = m * P with shortcuts for m == 0, m == 1 and m == -1 |
| 2784 | * NOT constant-time - ONLY for short Weierstrass! |
| 2785 | */ |
| 2786 | static int mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group *grp, |
| 2787 | mbedtls_ecp_point *R, |
| 2788 | const mbedtls_mpi *m, |
| 2789 | const mbedtls_ecp_point *P, |
| 2790 | mbedtls_ecp_restart_ctx *rs_ctx) |
| 2791 | { |
| 2792 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 2793 | mbedtls_mpi tmp; |
| 2794 | mbedtls_mpi_init(&tmp); |
| 2795 | |
| 2796 | if (mbedtls_mpi_cmp_int(m, 0) == 0) { |
| 2797 | MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P)); |
| 2798 | MBEDTLS_MPI_CHK(mbedtls_ecp_set_zero(R)); |
| 2799 | } else if (mbedtls_mpi_cmp_int(m, 1) == 0) { |
| 2800 | MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P)); |
| 2801 | MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P)); |
| 2802 | } else if (mbedtls_mpi_cmp_int(m, -1) == 0) { |
| 2803 | MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P)); |
| 2804 | MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P)); |
| 2805 | MPI_ECP_NEG(&R->Y); |
| 2806 | } else { |
| 2807 | MBEDTLS_MPI_CHK(ecp_mul_restartable_internal(grp, R, m, P, |
| 2808 | NULL, NULL, rs_ctx)); |
| 2809 | } |
| 2810 | |
| 2811 | cleanup: |
| 2812 | mbedtls_mpi_free(&tmp); |
| 2813 | |
| 2814 | return ret; |
| 2815 | } |
| 2816 | |
| 2817 | /* |
| 2818 | * Restartable linear combination |
| 2819 | * NOT constant-time |
| 2820 | */ |
| 2821 | int mbedtls_ecp_muladd_restartable( |
| 2822 | mbedtls_ecp_group *grp, mbedtls_ecp_point *R, |
| 2823 | const mbedtls_mpi *m, const mbedtls_ecp_point *P, |
| 2824 | const mbedtls_mpi *n, const mbedtls_ecp_point *Q, |
| 2825 | mbedtls_ecp_restart_ctx *rs_ctx) |
| 2826 | { |
| 2827 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 2828 | mbedtls_ecp_point mP; |
| 2829 | mbedtls_ecp_point *pmP = &mP; |
| 2830 | mbedtls_ecp_point *pR = R; |
| 2831 | mbedtls_mpi tmp[4]; |
| 2832 | #if defined(MBEDTLS_ECP_INTERNAL_ALT) |
| 2833 | char is_grp_capable = 0; |
| 2834 | #endif |
| 2835 | if (mbedtls_ecp_get_type(grp) != MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) { |
| 2836 | return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; |
| 2837 | } |
| 2838 | |
| 2839 | mbedtls_ecp_point_init(&mP); |
| 2840 | mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi)); |
| 2841 | |
| 2842 | ECP_RS_ENTER(ma); |
| 2843 | |
| 2844 | #if defined(MBEDTLS_ECP_RESTARTABLE) |
| 2845 | if (rs_ctx != NULL && rs_ctx->ma != NULL) { |
| 2846 | /* redirect intermediate results to restart context */ |
| 2847 | pmP = &rs_ctx->ma->mP; |
| 2848 | pR = &rs_ctx->ma->R; |
| 2849 | |
| 2850 | /* jump to next operation */ |
| 2851 | if (rs_ctx->ma->state == ecp_rsma_mul2) { |
| 2852 | goto mul2; |
| 2853 | } |
| 2854 | if (rs_ctx->ma->state == ecp_rsma_add) { |
| 2855 | goto add; |
| 2856 | } |
| 2857 | if (rs_ctx->ma->state == ecp_rsma_norm) { |
| 2858 | goto norm; |
| 2859 | } |
| 2860 | } |
| 2861 | #endif /* MBEDTLS_ECP_RESTARTABLE */ |
| 2862 | |
| 2863 | MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pmP, m, P, rs_ctx)); |
| 2864 | #if defined(MBEDTLS_ECP_RESTARTABLE) |
| 2865 | if (rs_ctx != NULL && rs_ctx->ma != NULL) { |
| 2866 | rs_ctx->ma->state = ecp_rsma_mul2; |
| 2867 | } |
| 2868 | |
| 2869 | mul2: |
| 2870 | #endif |
| 2871 | MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pR, n, Q, rs_ctx)); |
| 2872 | |
| 2873 | #if defined(MBEDTLS_ECP_INTERNAL_ALT) |
| 2874 | if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) { |
| 2875 | MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp)); |
| 2876 | } |
| 2877 | #endif /* MBEDTLS_ECP_INTERNAL_ALT */ |
| 2878 | |
| 2879 | #if defined(MBEDTLS_ECP_RESTARTABLE) |
| 2880 | if (rs_ctx != NULL && rs_ctx->ma != NULL) { |
| 2881 | rs_ctx->ma->state = ecp_rsma_add; |
| 2882 | } |
| 2883 | |
| 2884 | add: |
| 2885 | #endif |
| 2886 | MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_ADD); |
| 2887 | MBEDTLS_MPI_CHK(ecp_add_mixed(grp, pR, pmP, pR, tmp)); |
| 2888 | #if defined(MBEDTLS_ECP_RESTARTABLE) |
| 2889 | if (rs_ctx != NULL && rs_ctx->ma != NULL) { |
| 2890 | rs_ctx->ma->state = ecp_rsma_norm; |
| 2891 | } |
| 2892 | |
| 2893 | norm: |
| 2894 | #endif |
| 2895 | MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV); |
| 2896 | MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, pR)); |
| 2897 | |
| 2898 | #if defined(MBEDTLS_ECP_RESTARTABLE) |
| 2899 | if (rs_ctx != NULL && rs_ctx->ma != NULL) { |
| 2900 | MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, pR)); |
| 2901 | } |
| 2902 | #endif |
| 2903 | |
| 2904 | cleanup: |
| 2905 | |
| 2906 | mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi)); |
| 2907 | |
| 2908 | #if defined(MBEDTLS_ECP_INTERNAL_ALT) |
| 2909 | if (is_grp_capable) { |
| 2910 | mbedtls_internal_ecp_free(grp); |
| 2911 | } |
| 2912 | #endif /* MBEDTLS_ECP_INTERNAL_ALT */ |
| 2913 | |
| 2914 | mbedtls_ecp_point_free(&mP); |
| 2915 | |
| 2916 | ECP_RS_LEAVE(ma); |
| 2917 | |
| 2918 | return ret; |
| 2919 | } |
| 2920 | |
| 2921 | /* |
| 2922 | * Linear combination |
| 2923 | * NOT constant-time |
| 2924 | */ |
| 2925 | int mbedtls_ecp_muladd(mbedtls_ecp_group *grp, mbedtls_ecp_point *R, |
| 2926 | const mbedtls_mpi *m, const mbedtls_ecp_point *P, |
| 2927 | const mbedtls_mpi *n, const mbedtls_ecp_point *Q) |
| 2928 | { |
| 2929 | return mbedtls_ecp_muladd_restartable(grp, R, m, P, n, Q, NULL); |
| 2930 | } |
| 2931 | #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */ |
| 2932 | #endif /* MBEDTLS_ECP_C */ |
| 2933 | |
| 2934 | #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) |
| 2935 | #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) |
| 2936 | #define ECP_MPI_INIT(s, n, p) { s, (n), (mbedtls_mpi_uint *) (p) } |
| 2937 | #define ECP_MPI_INIT_ARRAY(x) \ |
| 2938 | ECP_MPI_INIT(1, sizeof(x) / sizeof(mbedtls_mpi_uint), x) |
| 2939 | /* |
| 2940 | * Constants for the two points other than 0, 1, -1 (mod p) in |
| 2941 | * https://cr.yp.to/ecdh.html#validate |
| 2942 | * See ecp_check_pubkey_x25519(). |
| 2943 | */ |
| 2944 | static const mbedtls_mpi_uint x25519_bad_point_1[] = { |
| 2945 | MBEDTLS_BYTES_TO_T_UINT_8(0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae), |
| 2946 | MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a), |
| 2947 | MBEDTLS_BYTES_TO_T_UINT_8(0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd), |
| 2948 | MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00), |
| 2949 | }; |
| 2950 | static const mbedtls_mpi_uint x25519_bad_point_2[] = { |
| 2951 | MBEDTLS_BYTES_TO_T_UINT_8(0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24), |
| 2952 | MBEDTLS_BYTES_TO_T_UINT_8(0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b), |
| 2953 | MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86), |
| 2954 | MBEDTLS_BYTES_TO_T_UINT_8(0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57), |
| 2955 | }; |
| 2956 | static const mbedtls_mpi ecp_x25519_bad_point_1 = ECP_MPI_INIT_ARRAY( |
| 2957 | x25519_bad_point_1); |
| 2958 | static const mbedtls_mpi ecp_x25519_bad_point_2 = ECP_MPI_INIT_ARRAY( |
| 2959 | x25519_bad_point_2); |
| 2960 | #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */ |
| 2961 | |
| 2962 | /* |
| 2963 | * Check that the input point is not one of the low-order points. |
| 2964 | * This is recommended by the "May the Fourth" paper: |
| 2965 | * https://eprint.iacr.org/2017/806.pdf |
| 2966 | * Those points are never sent by an honest peer. |
| 2967 | */ |
| 2968 | static int ecp_check_bad_points_mx(const mbedtls_mpi *X, const mbedtls_mpi *P, |
| 2969 | const mbedtls_ecp_group_id grp_id) |
| 2970 | { |
| 2971 | int ret; |
| 2972 | mbedtls_mpi XmP; |
| 2973 | |
| 2974 | mbedtls_mpi_init(&XmP); |
| 2975 | |
| 2976 | /* Reduce X mod P so that we only need to check values less than P. |
| 2977 | * We know X < 2^256 so we can proceed by subtraction. */ |
| 2978 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&XmP, X)); |
| 2979 | while (mbedtls_mpi_cmp_mpi(&XmP, P) >= 0) { |
| 2980 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&XmP, &XmP, P)); |
| 2981 | } |
| 2982 | |
| 2983 | /* Check against the known bad values that are less than P. For Curve448 |
| 2984 | * these are 0, 1 and -1. For Curve25519 we check the values less than P |
| 2985 | * from the following list: https://cr.yp.to/ecdh.html#validate */ |
| 2986 | if (mbedtls_mpi_cmp_int(&XmP, 1) <= 0) { /* takes care of 0 and 1 */ |
| 2987 | ret = MBEDTLS_ERR_ECP_INVALID_KEY; |
| 2988 | goto cleanup; |
| 2989 | } |
| 2990 | |
| 2991 | #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) |
| 2992 | if (grp_id == MBEDTLS_ECP_DP_CURVE25519) { |
| 2993 | if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_1) == 0) { |
| 2994 | ret = MBEDTLS_ERR_ECP_INVALID_KEY; |
| 2995 | goto cleanup; |
| 2996 | } |
| 2997 | |
| 2998 | if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_2) == 0) { |
| 2999 | ret = MBEDTLS_ERR_ECP_INVALID_KEY; |
| 3000 | goto cleanup; |
| 3001 | } |
| 3002 | } |
| 3003 | #else |
| 3004 | (void) grp_id; |
| 3005 | #endif |
| 3006 | |
| 3007 | /* Final check: check if XmP + 1 is P (final because it changes XmP!) */ |
| 3008 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&XmP, &XmP, 1)); |
| 3009 | if (mbedtls_mpi_cmp_mpi(&XmP, P) == 0) { |
| 3010 | ret = MBEDTLS_ERR_ECP_INVALID_KEY; |
| 3011 | goto cleanup; |
| 3012 | } |
| 3013 | |
| 3014 | ret = 0; |
| 3015 | |
| 3016 | cleanup: |
| 3017 | mbedtls_mpi_free(&XmP); |
| 3018 | |
| 3019 | return ret; |
| 3020 | } |
| 3021 | |
| 3022 | /* |
| 3023 | * Check validity of a public key for Montgomery curves with x-only schemes |
| 3024 | */ |
| 3025 | static int ecp_check_pubkey_mx(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt) |
| 3026 | { |
| 3027 | /* [Curve25519 p. 5] Just check X is the correct number of bytes */ |
| 3028 | /* Allow any public value, if it's too big then we'll just reduce it mod p |
| 3029 | * (RFC 7748 sec. 5 para. 3). */ |
| 3030 | if (mbedtls_mpi_size(&pt->X) > (grp->nbits + 7) / 8) { |
| 3031 | return MBEDTLS_ERR_ECP_INVALID_KEY; |
| 3032 | } |
| 3033 | |
| 3034 | /* Implicit in all standards (as they don't consider negative numbers): |
| 3035 | * X must be non-negative. This is normally ensured by the way it's |
| 3036 | * encoded for transmission, but let's be extra sure. */ |
| 3037 | if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0) { |
| 3038 | return MBEDTLS_ERR_ECP_INVALID_KEY; |
| 3039 | } |
| 3040 | |
| 3041 | return ecp_check_bad_points_mx(&pt->X, &grp->P, grp->id); |
| 3042 | } |
| 3043 | #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */ |
| 3044 | |
| 3045 | /* |
| 3046 | * Check that a point is valid as a public key |
| 3047 | */ |
| 3048 | int mbedtls_ecp_check_pubkey(const mbedtls_ecp_group *grp, |
| 3049 | const mbedtls_ecp_point *pt) |
| 3050 | { |
| 3051 | /* Must use affine coordinates */ |
| 3052 | if (mbedtls_mpi_cmp_int(&pt->Z, 1) != 0) { |
| 3053 | return MBEDTLS_ERR_ECP_INVALID_KEY; |
| 3054 | } |
| 3055 | |
| 3056 | #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) |
| 3057 | if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) { |
| 3058 | return ecp_check_pubkey_mx(grp, pt); |
| 3059 | } |
| 3060 | #endif |
| 3061 | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) |
| 3062 | if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) { |
| 3063 | return ecp_check_pubkey_sw(grp, pt); |
| 3064 | } |
| 3065 | #endif |
| 3066 | return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 3067 | } |
| 3068 | |
| 3069 | /* |
| 3070 | * Check that an mbedtls_mpi is valid as a private key |
| 3071 | */ |
| 3072 | int mbedtls_ecp_check_privkey(const mbedtls_ecp_group *grp, |
| 3073 | const mbedtls_mpi *d) |
| 3074 | { |
| 3075 | #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) |
| 3076 | if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) { |
| 3077 | /* see RFC 7748 sec. 5 para. 5 */ |
| 3078 | if (mbedtls_mpi_get_bit(d, 0) != 0 || |
| 3079 | mbedtls_mpi_get_bit(d, 1) != 0 || |
| 3080 | mbedtls_mpi_bitlen(d) - 1 != grp->nbits) { /* mbedtls_mpi_bitlen is one-based! */ |
| 3081 | return MBEDTLS_ERR_ECP_INVALID_KEY; |
| 3082 | } |
| 3083 | |
| 3084 | /* see [Curve25519] page 5 */ |
| 3085 | if (grp->nbits == 254 && mbedtls_mpi_get_bit(d, 2) != 0) { |
| 3086 | return MBEDTLS_ERR_ECP_INVALID_KEY; |
| 3087 | } |
| 3088 | |
| 3089 | return 0; |
| 3090 | } |
| 3091 | #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */ |
| 3092 | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) |
| 3093 | if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) { |
| 3094 | /* see SEC1 3.2 */ |
| 3095 | if (mbedtls_mpi_cmp_int(d, 1) < 0 || |
| 3096 | mbedtls_mpi_cmp_mpi(d, &grp->N) >= 0) { |
| 3097 | return MBEDTLS_ERR_ECP_INVALID_KEY; |
| 3098 | } else { |
| 3099 | return 0; |
| 3100 | } |
| 3101 | } |
| 3102 | #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */ |
| 3103 | |
| 3104 | return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 3105 | } |
| 3106 | |
| 3107 | #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) |
| 3108 | MBEDTLS_STATIC_TESTABLE |
| 3109 | int mbedtls_ecp_gen_privkey_mx(size_t high_bit, |
| 3110 | mbedtls_mpi *d, |
| 3111 | int (*f_rng)(void *, unsigned char *, size_t), |
| 3112 | void *p_rng) |
| 3113 | { |
| 3114 | int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 3115 | size_t n_random_bytes = high_bit / 8 + 1; |
| 3116 | |
| 3117 | /* [Curve25519] page 5 */ |
| 3118 | /* Generate a (high_bit+1)-bit random number by generating just enough |
| 3119 | * random bytes, then shifting out extra bits from the top (necessary |
| 3120 | * when (high_bit+1) is not a multiple of 8). */ |
| 3121 | MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(d, n_random_bytes, |
| 3122 | f_rng, p_rng)); |
| 3123 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(d, 8 * n_random_bytes - high_bit - 1)); |
| 3124 | |
| 3125 | MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, high_bit, 1)); |
| 3126 | |
| 3127 | /* Make sure the last two bits are unset for Curve448, three bits for |
| 3128 | Curve25519 */ |
| 3129 | MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 0, 0)); |
| 3130 | MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 1, 0)); |
| 3131 | if (high_bit == 254) { |
| 3132 | MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 2, 0)); |
| 3133 | } |
| 3134 | |
| 3135 | cleanup: |
| 3136 | return ret; |
| 3137 | } |
| 3138 | #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */ |
| 3139 | |
| 3140 | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) |
| 3141 | static int mbedtls_ecp_gen_privkey_sw( |
| 3142 | const mbedtls_mpi *N, mbedtls_mpi *d, |
| 3143 | int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) |
| 3144 | { |
| 3145 | int ret = mbedtls_mpi_random(d, 1, N, f_rng, p_rng); |
| 3146 | switch (ret) { |
| 3147 | case MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: |
| 3148 | return MBEDTLS_ERR_ECP_RANDOM_FAILED; |
| 3149 | default: |
| 3150 | return ret; |
| 3151 | } |
| 3152 | } |
| 3153 | #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */ |
| 3154 | |
| 3155 | /* |
| 3156 | * Generate a private key |
| 3157 | */ |
| 3158 | int mbedtls_ecp_gen_privkey(const mbedtls_ecp_group *grp, |
| 3159 | mbedtls_mpi *d, |
| 3160 | int (*f_rng)(void *, unsigned char *, size_t), |
| 3161 | void *p_rng) |
| 3162 | { |
| 3163 | #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) |
| 3164 | if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) { |
| 3165 | return mbedtls_ecp_gen_privkey_mx(grp->nbits, d, f_rng, p_rng); |
| 3166 | } |
| 3167 | #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */ |
| 3168 | |
| 3169 | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) |
| 3170 | if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) { |
| 3171 | return mbedtls_ecp_gen_privkey_sw(&grp->N, d, f_rng, p_rng); |
| 3172 | } |
| 3173 | #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */ |
| 3174 | |
| 3175 | return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 3176 | } |
| 3177 | |
| 3178 | #if defined(MBEDTLS_ECP_C) |
| 3179 | /* |
| 3180 | * Generate a keypair with configurable base point |
| 3181 | */ |
| 3182 | int mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group *grp, |
| 3183 | const mbedtls_ecp_point *G, |
| 3184 | mbedtls_mpi *d, mbedtls_ecp_point *Q, |
| 3185 | int (*f_rng)(void *, unsigned char *, size_t), |
| 3186 | void *p_rng) |
| 3187 | { |
| 3188 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 3189 | MBEDTLS_MPI_CHK(mbedtls_ecp_gen_privkey(grp, d, f_rng, p_rng)); |
| 3190 | MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, Q, d, G, f_rng, p_rng)); |
| 3191 | |
| 3192 | cleanup: |
| 3193 | return ret; |
| 3194 | } |
| 3195 | |
| 3196 | /* |
| 3197 | * Generate key pair, wrapper for conventional base point |
| 3198 | */ |
| 3199 | int mbedtls_ecp_gen_keypair(mbedtls_ecp_group *grp, |
| 3200 | mbedtls_mpi *d, mbedtls_ecp_point *Q, |
| 3201 | int (*f_rng)(void *, unsigned char *, size_t), |
| 3202 | void *p_rng) |
| 3203 | { |
| 3204 | return mbedtls_ecp_gen_keypair_base(grp, &grp->G, d, Q, f_rng, p_rng); |
| 3205 | } |
| 3206 | |
| 3207 | /* |
| 3208 | * Generate a keypair, prettier wrapper |
| 3209 | */ |
| 3210 | int mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key, |
| 3211 | int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) |
| 3212 | { |
| 3213 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 3214 | if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) { |
| 3215 | return ret; |
| 3216 | } |
| 3217 | |
| 3218 | return mbedtls_ecp_gen_keypair(&key->grp, &key->d, &key->Q, f_rng, p_rng); |
| 3219 | } |
| 3220 | #endif /* MBEDTLS_ECP_C */ |
| 3221 | |
| 3222 | #define ECP_CURVE25519_KEY_SIZE 32 |
| 3223 | #define ECP_CURVE448_KEY_SIZE 56 |
| 3224 | /* |
| 3225 | * Read a private key. |
| 3226 | */ |
| 3227 | int mbedtls_ecp_read_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key, |
| 3228 | const unsigned char *buf, size_t buflen) |
| 3229 | { |
| 3230 | int ret = 0; |
| 3231 | |
| 3232 | if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) { |
| 3233 | return ret; |
| 3234 | } |
| 3235 | |
| 3236 | ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; |
| 3237 | |
| 3238 | #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) |
| 3239 | if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) { |
| 3240 | /* |
| 3241 | * Mask the key as mandated by RFC7748 for Curve25519 and Curve448. |
| 3242 | */ |
| 3243 | if (grp_id == MBEDTLS_ECP_DP_CURVE25519) { |
| 3244 | if (buflen != ECP_CURVE25519_KEY_SIZE) { |
| 3245 | return MBEDTLS_ERR_ECP_INVALID_KEY; |
| 3246 | } |
| 3247 | |
| 3248 | MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen)); |
| 3249 | |
| 3250 | /* Set the three least significant bits to 0 */ |
| 3251 | MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0)); |
| 3252 | MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0)); |
| 3253 | MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 2, 0)); |
| 3254 | |
| 3255 | /* Set the most significant bit to 0 */ |
| 3256 | MBEDTLS_MPI_CHK( |
| 3257 | mbedtls_mpi_set_bit(&key->d, |
| 3258 | ECP_CURVE25519_KEY_SIZE * 8 - 1, 0) |
| 3259 | ); |
| 3260 | |
| 3261 | /* Set the second most significant bit to 1 */ |
| 3262 | MBEDTLS_MPI_CHK( |
| 3263 | mbedtls_mpi_set_bit(&key->d, |
| 3264 | ECP_CURVE25519_KEY_SIZE * 8 - 2, 1) |
| 3265 | ); |
| 3266 | } else if (grp_id == MBEDTLS_ECP_DP_CURVE448) { |
| 3267 | if (buflen != ECP_CURVE448_KEY_SIZE) { |
| 3268 | return MBEDTLS_ERR_ECP_INVALID_KEY; |
| 3269 | } |
| 3270 | |
| 3271 | MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen)); |
| 3272 | |
| 3273 | /* Set the two least significant bits to 0 */ |
| 3274 | MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0)); |
| 3275 | MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0)); |
| 3276 | |
| 3277 | /* Set the most significant bit to 1 */ |
| 3278 | MBEDTLS_MPI_CHK( |
| 3279 | mbedtls_mpi_set_bit(&key->d, |
| 3280 | ECP_CURVE448_KEY_SIZE * 8 - 1, 1) |
| 3281 | ); |
| 3282 | } |
| 3283 | } |
| 3284 | |
| 3285 | #endif |
| 3286 | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) |
| 3287 | if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) { |
| 3288 | MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&key->d, buf, buflen)); |
| 3289 | |
| 3290 | MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(&key->grp, &key->d)); |
| 3291 | } |
| 3292 | |
| 3293 | #endif |
| 3294 | cleanup: |
| 3295 | |
| 3296 | if (ret != 0) { |
| 3297 | mbedtls_mpi_free(&key->d); |
| 3298 | } |
| 3299 | |
| 3300 | return ret; |
| 3301 | } |
| 3302 | |
| 3303 | /* |
| 3304 | * Write a private key. |
| 3305 | */ |
| 3306 | int mbedtls_ecp_write_key(mbedtls_ecp_keypair *key, |
| 3307 | unsigned char *buf, size_t buflen) |
| 3308 | { |
| 3309 | int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; |
| 3310 | |
| 3311 | #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) |
| 3312 | if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) { |
| 3313 | if (key->grp.id == MBEDTLS_ECP_DP_CURVE25519) { |
| 3314 | if (buflen < ECP_CURVE25519_KEY_SIZE) { |
| 3315 | return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL; |
| 3316 | } |
| 3317 | |
| 3318 | } else if (key->grp.id == MBEDTLS_ECP_DP_CURVE448) { |
| 3319 | if (buflen < ECP_CURVE448_KEY_SIZE) { |
| 3320 | return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL; |
| 3321 | } |
| 3322 | } |
| 3323 | MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&key->d, buf, buflen)); |
| 3324 | } |
| 3325 | #endif |
| 3326 | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) |
| 3327 | if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) { |
| 3328 | MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&key->d, buf, buflen)); |
| 3329 | } |
| 3330 | |
| 3331 | #endif |
| 3332 | cleanup: |
| 3333 | |
| 3334 | return ret; |
| 3335 | } |
| 3336 | |
| 3337 | #if defined(MBEDTLS_ECP_C) |
| 3338 | /* |
| 3339 | * Check a public-private key pair |
| 3340 | */ |
| 3341 | int mbedtls_ecp_check_pub_priv( |
| 3342 | const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv, |
| 3343 | int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) |
| 3344 | { |
| 3345 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 3346 | mbedtls_ecp_point Q; |
| 3347 | mbedtls_ecp_group grp; |
| 3348 | if (pub->grp.id == MBEDTLS_ECP_DP_NONE || |
| 3349 | pub->grp.id != prv->grp.id || |
| 3350 | mbedtls_mpi_cmp_mpi(&pub->Q.X, &prv->Q.X) || |
| 3351 | mbedtls_mpi_cmp_mpi(&pub->Q.Y, &prv->Q.Y) || |
| 3352 | mbedtls_mpi_cmp_mpi(&pub->Q.Z, &prv->Q.Z)) { |
| 3353 | return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 3354 | } |
| 3355 | |
| 3356 | mbedtls_ecp_point_init(&Q); |
| 3357 | mbedtls_ecp_group_init(&grp); |
| 3358 | |
| 3359 | /* mbedtls_ecp_mul() needs a non-const group... */ |
| 3360 | mbedtls_ecp_group_copy(&grp, &prv->grp); |
| 3361 | |
| 3362 | /* Also checks d is valid */ |
| 3363 | MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &Q, &prv->d, &prv->grp.G, f_rng, p_rng)); |
| 3364 | |
| 3365 | if (mbedtls_mpi_cmp_mpi(&Q.X, &prv->Q.X) || |
| 3366 | mbedtls_mpi_cmp_mpi(&Q.Y, &prv->Q.Y) || |
| 3367 | mbedtls_mpi_cmp_mpi(&Q.Z, &prv->Q.Z)) { |
| 3368 | ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 3369 | goto cleanup; |
| 3370 | } |
| 3371 | |
| 3372 | cleanup: |
| 3373 | mbedtls_ecp_point_free(&Q); |
| 3374 | mbedtls_ecp_group_free(&grp); |
| 3375 | |
| 3376 | return ret; |
| 3377 | } |
| 3378 | #endif /* MBEDTLS_ECP_C */ |
| 3379 | |
| 3380 | /* |
| 3381 | * Export generic key-pair parameters. |
| 3382 | */ |
| 3383 | int mbedtls_ecp_export(const mbedtls_ecp_keypair *key, mbedtls_ecp_group *grp, |
| 3384 | mbedtls_mpi *d, mbedtls_ecp_point *Q) |
| 3385 | { |
| 3386 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 3387 | |
| 3388 | if ((ret = mbedtls_ecp_group_copy(grp, &key->grp)) != 0) { |
| 3389 | return ret; |
| 3390 | } |
| 3391 | |
| 3392 | if ((ret = mbedtls_mpi_copy(d, &key->d)) != 0) { |
| 3393 | return ret; |
| 3394 | } |
| 3395 | |
| 3396 | if ((ret = mbedtls_ecp_copy(Q, &key->Q)) != 0) { |
| 3397 | return ret; |
| 3398 | } |
| 3399 | |
| 3400 | return 0; |
| 3401 | } |
| 3402 | |
| 3403 | #if defined(MBEDTLS_SELF_TEST) |
| 3404 | |
| 3405 | #if defined(MBEDTLS_ECP_C) |
| 3406 | /* |
| 3407 | * PRNG for test - !!!INSECURE NEVER USE IN PRODUCTION!!! |
| 3408 | * |
| 3409 | * This is the linear congruential generator from numerical recipes, |
| 3410 | * except we only use the low byte as the output. See |
| 3411 | * https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use |
| 3412 | */ |
| 3413 | static int self_test_rng(void *ctx, unsigned char *out, size_t len) |
| 3414 | { |
| 3415 | static uint32_t state = 42; |
| 3416 | |
| 3417 | (void) ctx; |
| 3418 | |
| 3419 | for (size_t i = 0; i < len; i++) { |
| 3420 | state = state * 1664525u + 1013904223u; |
| 3421 | out[i] = (unsigned char) state; |
| 3422 | } |
| 3423 | |
| 3424 | return 0; |
| 3425 | } |
| 3426 | |
| 3427 | /* Adjust the exponent to be a valid private point for the specified curve. |
| 3428 | * This is sometimes necessary because we use a single set of exponents |
| 3429 | * for all curves but the validity of values depends on the curve. */ |
| 3430 | static int self_test_adjust_exponent(const mbedtls_ecp_group *grp, |
| 3431 | mbedtls_mpi *m) |
| 3432 | { |
| 3433 | int ret = 0; |
| 3434 | switch (grp->id) { |
| 3435 | /* If Curve25519 is available, then that's what we use for the |
| 3436 | * Montgomery test, so we don't need the adjustment code. */ |
| 3437 | #if !defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) |
| 3438 | #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED) |
| 3439 | case MBEDTLS_ECP_DP_CURVE448: |
| 3440 | /* Move highest bit from 254 to N-1. Setting bit N-1 is |
| 3441 | * necessary to enforce the highest-bit-set constraint. */ |
| 3442 | MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, 254, 0)); |
| 3443 | MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, grp->nbits, 1)); |
| 3444 | /* Copy second-highest bit from 253 to N-2. This is not |
| 3445 | * necessary but improves the test variety a bit. */ |
| 3446 | MBEDTLS_MPI_CHK( |
| 3447 | mbedtls_mpi_set_bit(m, grp->nbits - 1, |
| 3448 | mbedtls_mpi_get_bit(m, 253))); |
| 3449 | break; |
| 3450 | #endif |
| 3451 | #endif /* ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) */ |
| 3452 | default: |
| 3453 | /* Non-Montgomery curves and Curve25519 need no adjustment. */ |
| 3454 | (void) grp; |
| 3455 | (void) m; |
| 3456 | goto cleanup; |
| 3457 | } |
| 3458 | cleanup: |
| 3459 | return ret; |
| 3460 | } |
| 3461 | |
| 3462 | /* Calculate R = m.P for each m in exponents. Check that the number of |
| 3463 | * basic operations doesn't depend on the value of m. */ |
| 3464 | static int self_test_point(int verbose, |
| 3465 | mbedtls_ecp_group *grp, |
| 3466 | mbedtls_ecp_point *R, |
| 3467 | mbedtls_mpi *m, |
| 3468 | const mbedtls_ecp_point *P, |
| 3469 | const char *const *exponents, |
| 3470 | size_t n_exponents) |
| 3471 | { |
| 3472 | int ret = 0; |
| 3473 | size_t i = 0; |
| 3474 | unsigned long add_c_prev, dbl_c_prev, mul_c_prev; |
| 3475 | add_count = 0; |
| 3476 | dbl_count = 0; |
| 3477 | mul_count = 0; |
| 3478 | |
| 3479 | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[0])); |
| 3480 | MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m)); |
| 3481 | MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL)); |
| 3482 | |
| 3483 | for (i = 1; i < n_exponents; i++) { |
| 3484 | add_c_prev = add_count; |
| 3485 | dbl_c_prev = dbl_count; |
| 3486 | mul_c_prev = mul_count; |
| 3487 | add_count = 0; |
| 3488 | dbl_count = 0; |
| 3489 | mul_count = 0; |
| 3490 | |
| 3491 | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[i])); |
| 3492 | MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m)); |
| 3493 | MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL)); |
| 3494 | |
| 3495 | if (add_count != add_c_prev || |
| 3496 | dbl_count != dbl_c_prev || |
| 3497 | mul_count != mul_c_prev) { |
| 3498 | ret = 1; |
| 3499 | break; |
| 3500 | } |
| 3501 | } |
| 3502 | |
| 3503 | cleanup: |
| 3504 | if (verbose != 0) { |
| 3505 | if (ret != 0) { |
| 3506 | mbedtls_printf("failed (%u)\n", (unsigned int) i); |
| 3507 | } else { |
| 3508 | mbedtls_printf("passed\n"); |
| 3509 | } |
| 3510 | } |
| 3511 | return ret; |
| 3512 | } |
| 3513 | #endif /* MBEDTLS_ECP_C */ |
| 3514 | |
| 3515 | /* |
| 3516 | * Checkup routine |
| 3517 | */ |
| 3518 | int mbedtls_ecp_self_test(int verbose) |
| 3519 | { |
| 3520 | #if defined(MBEDTLS_ECP_C) |
| 3521 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 3522 | mbedtls_ecp_group grp; |
| 3523 | mbedtls_ecp_point R, P; |
| 3524 | mbedtls_mpi m; |
| 3525 | |
| 3526 | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) |
| 3527 | /* Exponents especially adapted for secp192k1, which has the lowest |
| 3528 | * order n of all supported curves (secp192r1 is in a slightly larger |
| 3529 | * field but the order of its base point is slightly smaller). */ |
| 3530 | const char *sw_exponents[] = |
| 3531 | { |
| 3532 | "000000000000000000000000000000000000000000000001", /* one */ |
| 3533 | "FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8C", /* n - 1 */ |
| 3534 | "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */ |
| 3535 | "400000000000000000000000000000000000000000000000", /* one and zeros */ |
| 3536 | "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */ |
| 3537 | "555555555555555555555555555555555555555555555555", /* 101010... */ |
| 3538 | }; |
| 3539 | #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */ |
| 3540 | #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) |
| 3541 | const char *m_exponents[] = |
| 3542 | { |
| 3543 | /* Valid private values for Curve25519. In a build with Curve448 |
| 3544 | * but not Curve25519, they will be adjusted in |
| 3545 | * self_test_adjust_exponent(). */ |
| 3546 | "4000000000000000000000000000000000000000000000000000000000000000", |
| 3547 | "5C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C30", |
| 3548 | "5715ECCE24583F7A7023C24164390586842E816D7280A49EF6DF4EAE6B280BF8", |
| 3549 | "41A2B017516F6D254E1F002BCCBADD54BE30F8CEC737A0E912B4963B6BA74460", |
| 3550 | "5555555555555555555555555555555555555555555555555555555555555550", |
| 3551 | "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8", |
| 3552 | }; |
| 3553 | #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */ |
| 3554 | |
| 3555 | mbedtls_ecp_group_init(&grp); |
| 3556 | mbedtls_ecp_point_init(&R); |
| 3557 | mbedtls_ecp_point_init(&P); |
| 3558 | mbedtls_mpi_init(&m); |
| 3559 | |
| 3560 | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) |
| 3561 | /* Use secp192r1 if available, or any available curve */ |
| 3562 | #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) |
| 3563 | MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP192R1)); |
| 3564 | #else |
| 3565 | MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, mbedtls_ecp_curve_list()->grp_id)); |
| 3566 | #endif |
| 3567 | |
| 3568 | if (verbose != 0) { |
| 3569 | mbedtls_printf(" ECP SW test #1 (constant op_count, base point G): "); |
| 3570 | } |
| 3571 | /* Do a dummy multiplication first to trigger precomputation */ |
| 3572 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&m, 2)); |
| 3573 | MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &P, &m, &grp.G, self_test_rng, NULL)); |
| 3574 | ret = self_test_point(verbose, |
| 3575 | &grp, &R, &m, &grp.G, |
| 3576 | sw_exponents, |
| 3577 | sizeof(sw_exponents) / sizeof(sw_exponents[0])); |
| 3578 | if (ret != 0) { |
| 3579 | goto cleanup; |
| 3580 | } |
| 3581 | |
| 3582 | if (verbose != 0) { |
| 3583 | mbedtls_printf(" ECP SW test #2 (constant op_count, other point): "); |
| 3584 | } |
| 3585 | /* We computed P = 2G last time, use it */ |
| 3586 | ret = self_test_point(verbose, |
| 3587 | &grp, &R, &m, &P, |
| 3588 | sw_exponents, |
| 3589 | sizeof(sw_exponents) / sizeof(sw_exponents[0])); |
| 3590 | if (ret != 0) { |
| 3591 | goto cleanup; |
| 3592 | } |
| 3593 | |
| 3594 | mbedtls_ecp_group_free(&grp); |
| 3595 | mbedtls_ecp_point_free(&R); |
| 3596 | #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */ |
| 3597 | |
| 3598 | #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) |
| 3599 | if (verbose != 0) { |
| 3600 | mbedtls_printf(" ECP Montgomery test (constant op_count): "); |
| 3601 | } |
| 3602 | #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) |
| 3603 | MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE25519)); |
| 3604 | #elif defined(MBEDTLS_ECP_DP_CURVE448_ENABLED) |
| 3605 | MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE448)); |
| 3606 | #else |
| 3607 | #error "MBEDTLS_ECP_MONTGOMERY_ENABLED is defined, but no curve is supported for self-test" |
| 3608 | #endif |
| 3609 | ret = self_test_point(verbose, |
| 3610 | &grp, &R, &m, &grp.G, |
| 3611 | m_exponents, |
| 3612 | sizeof(m_exponents) / sizeof(m_exponents[0])); |
| 3613 | if (ret != 0) { |
| 3614 | goto cleanup; |
| 3615 | } |
| 3616 | #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */ |
| 3617 | |
| 3618 | cleanup: |
| 3619 | |
| 3620 | if (ret < 0 && verbose != 0) { |
| 3621 | mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret); |
| 3622 | } |
| 3623 | |
| 3624 | mbedtls_ecp_group_free(&grp); |
| 3625 | mbedtls_ecp_point_free(&R); |
| 3626 | mbedtls_ecp_point_free(&P); |
| 3627 | mbedtls_mpi_free(&m); |
| 3628 | |
| 3629 | if (verbose != 0) { |
| 3630 | mbedtls_printf("\n"); |
| 3631 | } |
| 3632 | |
| 3633 | return ret; |
| 3634 | #else /* MBEDTLS_ECP_C */ |
| 3635 | (void) verbose; |
| 3636 | return 0; |
| 3637 | #endif /* MBEDTLS_ECP_C */ |
| 3638 | } |
| 3639 | |
| 3640 | #endif /* MBEDTLS_SELF_TEST */ |
| 3641 | |
| 3642 | MBEDTLS_STATIC_TESTABLE |
| 3643 | mbedtls_ecp_variant mbedtls_ecp_get_variant() |
| 3644 | { |
| 3645 | return MBEDTLS_ECP_VARIANT_WITH_MPI_UINT; |
| 3646 | } |
| 3647 | |
| 3648 | #endif /* !MBEDTLS_ECP_ALT */ |
| 3649 | |
| 3650 | #endif /* MBEDTLS_ECP_LIGHT */ |
| 3651 | |
| 3652 | #endif /* MBEDTLS_ECP_WITH_MPI_UINT */ |