Clone the ecp.c file as ecp_new.c
Add macro guard for each file defaults to enable the ecp.c file content.
Signed-off-by: Gabor Mezei <gabor.mezei@arm.com>
diff --git a/library/ecp_new.c b/library/ecp_new.c
new file mode 100644
index 0000000..c212f63
--- /dev/null
+++ b/library/ecp_new.c
@@ -0,0 +1,3652 @@
+/*
+ * Elliptic curves over GF(p): generic functions
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License"); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * References:
+ *
+ * SEC1 https://www.secg.org/sec1-v2.pdf
+ * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
+ * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
+ * RFC 4492 for the related TLS structures and constants
+ * - https://www.rfc-editor.org/rfc/rfc4492
+ * RFC 7748 for the Curve448 and Curve25519 curve definitions
+ * - https://www.rfc-editor.org/rfc/rfc7748
+ *
+ * [Curve25519] https://cr.yp.to/ecdh/curve25519-20060209.pdf
+ *
+ * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
+ * for elliptic curve cryptosystems. In : Cryptographic Hardware and
+ * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
+ * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
+ *
+ * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
+ * render ECC resistant against Side Channel Attacks. IACR Cryptology
+ * ePrint Archive, 2004, vol. 2004, p. 342.
+ * <http://eprint.iacr.org/2004/342.pdf>
+ */
+
+#include "common.h"
+
+#include "ecp_invasive.h"
+
+#if defined(MBEDTLS_ECP_WITH_MPI_UINT)
+
+/**
+ * \brief Function level alternative implementation.
+ *
+ * The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to
+ * replace certain functions in this module. The alternative implementations are
+ * typically hardware accelerators and need to activate the hardware before the
+ * computation starts and deactivate it after it finishes. The
+ * mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve
+ * this purpose.
+ *
+ * To preserve the correct functionality the following conditions must hold:
+ *
+ * - The alternative implementation must be activated by
+ * mbedtls_internal_ecp_init() before any of the replaceable functions is
+ * called.
+ * - mbedtls_internal_ecp_free() must \b only be called when the alternative
+ * implementation is activated.
+ * - mbedtls_internal_ecp_init() must \b not be called when the alternative
+ * implementation is activated.
+ * - Public functions must not return while the alternative implementation is
+ * activated.
+ * - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and
+ * before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) )
+ * \endcode ensures that the alternative implementation supports the current
+ * group.
+ */
+#if defined(MBEDTLS_ECP_INTERNAL_ALT)
+#endif
+
+#if defined(MBEDTLS_ECP_LIGHT)
+
+#include "mbedtls/ecp.h"
+#include "mbedtls/threading.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include "bn_mul.h"
+
+#include <string.h>
+
+#if !defined(MBEDTLS_ECP_ALT)
+
+#include "mbedtls/platform.h"
+
+#include "ecp_internal_alt.h"
+
+#if defined(MBEDTLS_SELF_TEST)
+/*
+ * Counts of point addition and doubling, and field multiplications.
+ * Used to test resistance of point multiplication to simple timing attacks.
+ */
+#if defined(MBEDTLS_ECP_C)
+static unsigned long add_count, dbl_count;
+#endif /* MBEDTLS_ECP_C */
+static unsigned long mul_count;
+#endif
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+/*
+ * Maximum number of "basic operations" to be done in a row.
+ *
+ * Default value 0 means that ECC operations will not yield.
+ * Note that regardless of the value of ecp_max_ops, always at
+ * least one step is performed before yielding.
+ *
+ * Setting ecp_max_ops=1 can be suitable for testing purposes
+ * as it will interrupt computation at all possible points.
+ */
+static unsigned ecp_max_ops = 0;
+
+/*
+ * Set ecp_max_ops
+ */
+void mbedtls_ecp_set_max_ops(unsigned max_ops)
+{
+ ecp_max_ops = max_ops;
+}
+
+/*
+ * Check if restart is enabled
+ */
+int mbedtls_ecp_restart_is_enabled(void)
+{
+ return ecp_max_ops != 0;
+}
+
+/*
+ * Restart sub-context for ecp_mul_comb()
+ */
+struct mbedtls_ecp_restart_mul {
+ mbedtls_ecp_point R; /* current intermediate result */
+ size_t i; /* current index in various loops, 0 outside */
+ mbedtls_ecp_point *T; /* table for precomputed points */
+ unsigned char T_size; /* number of points in table T */
+ enum { /* what were we doing last time we returned? */
+ ecp_rsm_init = 0, /* nothing so far, dummy initial state */
+ ecp_rsm_pre_dbl, /* precompute 2^n multiples */
+ ecp_rsm_pre_norm_dbl, /* normalize precomputed 2^n multiples */
+ ecp_rsm_pre_add, /* precompute remaining points by adding */
+ ecp_rsm_pre_norm_add, /* normalize all precomputed points */
+ ecp_rsm_comb_core, /* ecp_mul_comb_core() */
+ ecp_rsm_final_norm, /* do the final normalization */
+ } state;
+};
+
+/*
+ * Init restart_mul sub-context
+ */
+static void ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx *ctx)
+{
+ mbedtls_ecp_point_init(&ctx->R);
+ ctx->i = 0;
+ ctx->T = NULL;
+ ctx->T_size = 0;
+ ctx->state = ecp_rsm_init;
+}
+
+/*
+ * Free the components of a restart_mul sub-context
+ */
+static void ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx *ctx)
+{
+ unsigned char i;
+
+ if (ctx == NULL) {
+ return;
+ }
+
+ mbedtls_ecp_point_free(&ctx->R);
+
+ if (ctx->T != NULL) {
+ for (i = 0; i < ctx->T_size; i++) {
+ mbedtls_ecp_point_free(ctx->T + i);
+ }
+ mbedtls_free(ctx->T);
+ }
+
+ ecp_restart_rsm_init(ctx);
+}
+
+/*
+ * Restart context for ecp_muladd()
+ */
+struct mbedtls_ecp_restart_muladd {
+ mbedtls_ecp_point mP; /* mP value */
+ mbedtls_ecp_point R; /* R intermediate result */
+ enum { /* what should we do next? */
+ ecp_rsma_mul1 = 0, /* first multiplication */
+ ecp_rsma_mul2, /* second multiplication */
+ ecp_rsma_add, /* addition */
+ ecp_rsma_norm, /* normalization */
+ } state;
+};
+
+/*
+ * Init restart_muladd sub-context
+ */
+static void ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx *ctx)
+{
+ mbedtls_ecp_point_init(&ctx->mP);
+ mbedtls_ecp_point_init(&ctx->R);
+ ctx->state = ecp_rsma_mul1;
+}
+
+/*
+ * Free the components of a restart_muladd sub-context
+ */
+static void ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ mbedtls_ecp_point_free(&ctx->mP);
+ mbedtls_ecp_point_free(&ctx->R);
+
+ ecp_restart_ma_init(ctx);
+}
+
+/*
+ * Initialize a restart context
+ */
+void mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx *ctx)
+{
+ ctx->ops_done = 0;
+ ctx->depth = 0;
+ ctx->rsm = NULL;
+ ctx->ma = NULL;
+}
+
+/*
+ * Free the components of a restart context
+ */
+void mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ ecp_restart_rsm_free(ctx->rsm);
+ mbedtls_free(ctx->rsm);
+
+ ecp_restart_ma_free(ctx->ma);
+ mbedtls_free(ctx->ma);
+
+ mbedtls_ecp_restart_init(ctx);
+}
+
+/*
+ * Check if we can do the next step
+ */
+int mbedtls_ecp_check_budget(const mbedtls_ecp_group *grp,
+ mbedtls_ecp_restart_ctx *rs_ctx,
+ unsigned ops)
+{
+ if (rs_ctx != NULL && ecp_max_ops != 0) {
+ /* scale depending on curve size: the chosen reference is 256-bit,
+ * and multiplication is quadratic. Round to the closest integer. */
+ if (grp->pbits >= 512) {
+ ops *= 4;
+ } else if (grp->pbits >= 384) {
+ ops *= 2;
+ }
+
+ /* Avoid infinite loops: always allow first step.
+ * Because of that, however, it's not generally true
+ * that ops_done <= ecp_max_ops, so the check
+ * ops_done > ecp_max_ops below is mandatory. */
+ if ((rs_ctx->ops_done != 0) &&
+ (rs_ctx->ops_done > ecp_max_ops ||
+ ops > ecp_max_ops - rs_ctx->ops_done)) {
+ return MBEDTLS_ERR_ECP_IN_PROGRESS;
+ }
+
+ /* update running count */
+ rs_ctx->ops_done += ops;
+ }
+
+ return 0;
+}
+
+/* Call this when entering a function that needs its own sub-context */
+#define ECP_RS_ENTER(SUB) do { \
+ /* reset ops count for this call if top-level */ \
+ if (rs_ctx != NULL && rs_ctx->depth++ == 0) \
+ rs_ctx->ops_done = 0; \
+ \
+ /* set up our own sub-context if needed */ \
+ if (mbedtls_ecp_restart_is_enabled() && \
+ rs_ctx != NULL && rs_ctx->SUB == NULL) \
+ { \
+ rs_ctx->SUB = mbedtls_calloc(1, sizeof(*rs_ctx->SUB)); \
+ if (rs_ctx->SUB == NULL) \
+ return MBEDTLS_ERR_ECP_ALLOC_FAILED; \
+ \
+ ecp_restart_## SUB ##_init(rs_ctx->SUB); \
+ } \
+} while (0)
+
+/* Call this when leaving a function that needs its own sub-context */
+#define ECP_RS_LEAVE(SUB) do { \
+ /* clear our sub-context when not in progress (done or error) */ \
+ if (rs_ctx != NULL && rs_ctx->SUB != NULL && \
+ ret != MBEDTLS_ERR_ECP_IN_PROGRESS) \
+ { \
+ ecp_restart_## SUB ##_free(rs_ctx->SUB); \
+ mbedtls_free(rs_ctx->SUB); \
+ rs_ctx->SUB = NULL; \
+ } \
+ \
+ if (rs_ctx != NULL) \
+ rs_ctx->depth--; \
+} while (0)
+
+#else /* MBEDTLS_ECP_RESTARTABLE */
+
+#define ECP_RS_ENTER(sub) (void) rs_ctx;
+#define ECP_RS_LEAVE(sub) (void) rs_ctx;
+
+#endif /* MBEDTLS_ECP_RESTARTABLE */
+
+#if defined(MBEDTLS_ECP_C)
+static void mpi_init_many(mbedtls_mpi *arr, size_t size)
+{
+ while (size--) {
+ mbedtls_mpi_init(arr++);
+ }
+}
+
+static void mpi_free_many(mbedtls_mpi *arr, size_t size)
+{
+ while (size--) {
+ mbedtls_mpi_free(arr++);
+ }
+}
+#endif /* MBEDTLS_ECP_C */
+
+/*
+ * List of supported curves:
+ * - internal ID
+ * - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2, RFC 8446 sec. 4.2.7)
+ * - size in bits
+ * - readable name
+ *
+ * Curves are listed in order: largest curves first, and for a given size,
+ * fastest curves first.
+ *
+ * Reminder: update profiles in x509_crt.c and ssl_tls.c when adding a new curve!
+ */
+static const mbedtls_ecp_curve_info ecp_supported_curves[] =
+{
+#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
+ { MBEDTLS_ECP_DP_SECP521R1, 25, 521, "secp521r1" },
+#endif
+#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
+ { MBEDTLS_ECP_DP_BP512R1, 28, 512, "brainpoolP512r1" },
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+ { MBEDTLS_ECP_DP_SECP384R1, 24, 384, "secp384r1" },
+#endif
+#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
+ { MBEDTLS_ECP_DP_BP384R1, 27, 384, "brainpoolP384r1" },
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
+ { MBEDTLS_ECP_DP_SECP256R1, 23, 256, "secp256r1" },
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+ { MBEDTLS_ECP_DP_SECP256K1, 22, 256, "secp256k1" },
+#endif
+#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
+ { MBEDTLS_ECP_DP_BP256R1, 26, 256, "brainpoolP256r1" },
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
+ { MBEDTLS_ECP_DP_SECP224R1, 21, 224, "secp224r1" },
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
+ { MBEDTLS_ECP_DP_SECP224K1, 20, 224, "secp224k1" },
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
+ { MBEDTLS_ECP_DP_SECP192R1, 19, 192, "secp192r1" },
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
+ { MBEDTLS_ECP_DP_SECP192K1, 18, 192, "secp192k1" },
+#endif
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+ { MBEDTLS_ECP_DP_CURVE25519, 29, 256, "x25519" },
+#endif
+#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+ { MBEDTLS_ECP_DP_CURVE448, 30, 448, "x448" },
+#endif
+ { MBEDTLS_ECP_DP_NONE, 0, 0, NULL },
+};
+
+#define ECP_NB_CURVES sizeof(ecp_supported_curves) / \
+ sizeof(ecp_supported_curves[0])
+
+static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
+
+/*
+ * List of supported curves and associated info
+ */
+const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list(void)
+{
+ return ecp_supported_curves;
+}
+
+/*
+ * List of supported curves, group ID only
+ */
+const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list(void)
+{
+ static int init_done = 0;
+
+ if (!init_done) {
+ size_t i = 0;
+ const mbedtls_ecp_curve_info *curve_info;
+
+ for (curve_info = mbedtls_ecp_curve_list();
+ curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
+ curve_info++) {
+ ecp_supported_grp_id[i++] = curve_info->grp_id;
+ }
+ ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
+
+ init_done = 1;
+ }
+
+ return ecp_supported_grp_id;
+}
+
+/*
+ * Get the curve info for the internal identifier
+ */
+const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)
+{
+ const mbedtls_ecp_curve_info *curve_info;
+
+ for (curve_info = mbedtls_ecp_curve_list();
+ curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
+ curve_info++) {
+ if (curve_info->grp_id == grp_id) {
+ return curve_info;
+ }
+ }
+
+ return NULL;
+}
+
+/*
+ * Get the curve info from the TLS identifier
+ */
+const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)
+{
+ const mbedtls_ecp_curve_info *curve_info;
+
+ for (curve_info = mbedtls_ecp_curve_list();
+ curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
+ curve_info++) {
+ if (curve_info->tls_id == tls_id) {
+ return curve_info;
+ }
+ }
+
+ return NULL;
+}
+
+/*
+ * Get the curve info from the name
+ */
+const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name(const char *name)
+{
+ const mbedtls_ecp_curve_info *curve_info;
+
+ if (name == NULL) {
+ return NULL;
+ }
+
+ for (curve_info = mbedtls_ecp_curve_list();
+ curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
+ curve_info++) {
+ if (strcmp(curve_info->name, name) == 0) {
+ return curve_info;
+ }
+ }
+
+ return NULL;
+}
+
+/*
+ * Get the type of a curve
+ */
+mbedtls_ecp_curve_type mbedtls_ecp_get_type(const mbedtls_ecp_group *grp)
+{
+ if (grp->G.X.p == NULL) {
+ return MBEDTLS_ECP_TYPE_NONE;
+ }
+
+ if (grp->G.Y.p == NULL) {
+ return MBEDTLS_ECP_TYPE_MONTGOMERY;
+ } else {
+ return MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS;
+ }
+}
+
+/*
+ * Initialize (the components of) a point
+ */
+void mbedtls_ecp_point_init(mbedtls_ecp_point *pt)
+{
+ mbedtls_mpi_init(&pt->X);
+ mbedtls_mpi_init(&pt->Y);
+ mbedtls_mpi_init(&pt->Z);
+}
+
+/*
+ * Initialize (the components of) a group
+ */
+void mbedtls_ecp_group_init(mbedtls_ecp_group *grp)
+{
+ grp->id = MBEDTLS_ECP_DP_NONE;
+ mbedtls_mpi_init(&grp->P);
+ mbedtls_mpi_init(&grp->A);
+ mbedtls_mpi_init(&grp->B);
+ mbedtls_ecp_point_init(&grp->G);
+ mbedtls_mpi_init(&grp->N);
+ grp->pbits = 0;
+ grp->nbits = 0;
+ grp->h = 0;
+ grp->modp = NULL;
+ grp->t_pre = NULL;
+ grp->t_post = NULL;
+ grp->t_data = NULL;
+ grp->T = NULL;
+ grp->T_size = 0;
+}
+
+/*
+ * Initialize (the components of) a key pair
+ */
+void mbedtls_ecp_keypair_init(mbedtls_ecp_keypair *key)
+{
+ mbedtls_ecp_group_init(&key->grp);
+ mbedtls_mpi_init(&key->d);
+ mbedtls_ecp_point_init(&key->Q);
+}
+
+/*
+ * Unallocate (the components of) a point
+ */
+void mbedtls_ecp_point_free(mbedtls_ecp_point *pt)
+{
+ if (pt == NULL) {
+ return;
+ }
+
+ mbedtls_mpi_free(&(pt->X));
+ mbedtls_mpi_free(&(pt->Y));
+ mbedtls_mpi_free(&(pt->Z));
+}
+
+/*
+ * Check that the comb table (grp->T) is static initialized.
+ */
+static int ecp_group_is_static_comb_table(const mbedtls_ecp_group *grp)
+{
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+ return grp->T != NULL && grp->T_size == 0;
+#else
+ (void) grp;
+ return 0;
+#endif
+}
+
+/*
+ * Unallocate (the components of) a group
+ */
+void mbedtls_ecp_group_free(mbedtls_ecp_group *grp)
+{
+ size_t i;
+
+ if (grp == NULL) {
+ return;
+ }
+
+ if (grp->h != 1) {
+ mbedtls_mpi_free(&grp->A);
+ mbedtls_mpi_free(&grp->B);
+ mbedtls_ecp_point_free(&grp->G);
+ }
+
+ if (!ecp_group_is_static_comb_table(grp) && grp->T != NULL) {
+ for (i = 0; i < grp->T_size; i++) {
+ mbedtls_ecp_point_free(&grp->T[i]);
+ }
+ mbedtls_free(grp->T);
+ }
+
+ mbedtls_platform_zeroize(grp, sizeof(mbedtls_ecp_group));
+}
+
+/*
+ * Unallocate (the components of) a key pair
+ */
+void mbedtls_ecp_keypair_free(mbedtls_ecp_keypair *key)
+{
+ if (key == NULL) {
+ return;
+ }
+
+ mbedtls_ecp_group_free(&key->grp);
+ mbedtls_mpi_free(&key->d);
+ mbedtls_ecp_point_free(&key->Q);
+}
+
+/*
+ * Copy the contents of a point
+ */
+int mbedtls_ecp_copy(mbedtls_ecp_point *P, const mbedtls_ecp_point *Q)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->X, &Q->X));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Y, &Q->Y));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Z, &Q->Z));
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Copy the contents of a group object
+ */
+int mbedtls_ecp_group_copy(mbedtls_ecp_group *dst, const mbedtls_ecp_group *src)
+{
+ return mbedtls_ecp_group_load(dst, src->id);
+}
+
+/*
+ * Set point to zero
+ */
+int mbedtls_ecp_set_zero(mbedtls_ecp_point *pt)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->X, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Y, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 0));
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Tell if a point is zero
+ */
+int mbedtls_ecp_is_zero(mbedtls_ecp_point *pt)
+{
+ return mbedtls_mpi_cmp_int(&pt->Z, 0) == 0;
+}
+
+/*
+ * Compare two points lazily
+ */
+int mbedtls_ecp_point_cmp(const mbedtls_ecp_point *P,
+ const mbedtls_ecp_point *Q)
+{
+ if (mbedtls_mpi_cmp_mpi(&P->X, &Q->X) == 0 &&
+ mbedtls_mpi_cmp_mpi(&P->Y, &Q->Y) == 0 &&
+ mbedtls_mpi_cmp_mpi(&P->Z, &Q->Z) == 0) {
+ return 0;
+ }
+
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+}
+
+/*
+ * Import a non-zero point from ASCII strings
+ */
+int mbedtls_ecp_point_read_string(mbedtls_ecp_point *P, int radix,
+ const char *x, const char *y)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->X, radix, x));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->Y, radix, y));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&P->Z, 1));
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Export a point into unsigned binary data (SEC1 2.3.3 and RFC7748)
+ */
+int mbedtls_ecp_point_write_binary(const mbedtls_ecp_group *grp,
+ const mbedtls_ecp_point *P,
+ int format, size_t *olen,
+ unsigned char *buf, size_t buflen)
+{
+ int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+ size_t plen;
+ if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
+ format != MBEDTLS_ECP_PF_COMPRESSED) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ plen = mbedtls_mpi_size(&grp->P);
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+ (void) format; /* Montgomery curves always use the same point format */
+ if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
+ *olen = plen;
+ if (buflen < *olen) {
+ return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&P->X, buf, plen));
+ }
+#endif
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+ if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
+ /*
+ * Common case: P == 0
+ */
+ if (mbedtls_mpi_cmp_int(&P->Z, 0) == 0) {
+ if (buflen < 1) {
+ return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+ }
+
+ buf[0] = 0x00;
+ *olen = 1;
+
+ return 0;
+ }
+
+ if (format == MBEDTLS_ECP_PF_UNCOMPRESSED) {
+ *olen = 2 * plen + 1;
+
+ if (buflen < *olen) {
+ return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+ }
+
+ buf[0] = 0x04;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->Y, buf + 1 + plen, plen));
+ } else if (format == MBEDTLS_ECP_PF_COMPRESSED) {
+ *olen = plen + 1;
+
+ if (buflen < *olen) {
+ return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+ }
+
+ buf[0] = 0x02 + mbedtls_mpi_get_bit(&P->Y, 0);
+ MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
+ }
+ }
+#endif
+
+cleanup:
+ return ret;
+}
+
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
+ const mbedtls_mpi *X,
+ mbedtls_mpi *Y,
+ int parity_bit);
+#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
+
+/*
+ * Import a point from unsigned binary data (SEC1 2.3.4 and RFC7748)
+ */
+int mbedtls_ecp_point_read_binary(const mbedtls_ecp_group *grp,
+ mbedtls_ecp_point *pt,
+ const unsigned char *buf, size_t ilen)
+{
+ int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+ size_t plen;
+ if (ilen < 1) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ plen = mbedtls_mpi_size(&grp->P);
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+ if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
+ if (plen != ilen) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&pt->X, buf, plen));
+ mbedtls_mpi_free(&pt->Y);
+
+ if (grp->id == MBEDTLS_ECP_DP_CURVE25519) {
+ /* Set most significant bit to 0 as prescribed in RFC7748 §5 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&pt->X, plen * 8 - 1, 0));
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
+ }
+#endif
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+ if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
+ if (buf[0] == 0x00) {
+ if (ilen == 1) {
+ return mbedtls_ecp_set_zero(pt);
+ } else {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+ }
+
+ if (ilen < 1 + plen) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&pt->X, buf + 1, plen));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
+
+ if (buf[0] == 0x04) {
+ /* format == MBEDTLS_ECP_PF_UNCOMPRESSED */
+ if (ilen != 1 + plen * 2) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+ return mbedtls_mpi_read_binary(&pt->Y, buf + 1 + plen, plen);
+ } else if (buf[0] == 0x02 || buf[0] == 0x03) {
+ /* format == MBEDTLS_ECP_PF_COMPRESSED */
+ if (ilen != 1 + plen) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+ return mbedtls_ecp_sw_derive_y(grp, &pt->X, &pt->Y,
+ (buf[0] & 1));
+ } else {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+ }
+#endif
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Import a point from a TLS ECPoint record (RFC 4492)
+ * struct {
+ * opaque point <1..2^8-1>;
+ * } ECPoint;
+ */
+int mbedtls_ecp_tls_read_point(const mbedtls_ecp_group *grp,
+ mbedtls_ecp_point *pt,
+ const unsigned char **buf, size_t buf_len)
+{
+ unsigned char data_len;
+ const unsigned char *buf_start;
+ /*
+ * We must have at least two bytes (1 for length, at least one for data)
+ */
+ if (buf_len < 2) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ data_len = *(*buf)++;
+ if (data_len < 1 || data_len > buf_len - 1) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ /*
+ * Save buffer start for read_binary and update buf
+ */
+ buf_start = *buf;
+ *buf += data_len;
+
+ return mbedtls_ecp_point_read_binary(grp, pt, buf_start, data_len);
+}
+
+/*
+ * Export a point as a TLS ECPoint record (RFC 4492)
+ * struct {
+ * opaque point <1..2^8-1>;
+ * } ECPoint;
+ */
+int mbedtls_ecp_tls_write_point(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
+ int format, size_t *olen,
+ unsigned char *buf, size_t blen)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
+ format != MBEDTLS_ECP_PF_COMPRESSED) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ /*
+ * buffer length must be at least one, for our length byte
+ */
+ if (blen < 1) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ if ((ret = mbedtls_ecp_point_write_binary(grp, pt, format,
+ olen, buf + 1, blen - 1)) != 0) {
+ return ret;
+ }
+
+ /*
+ * write length to the first byte and update total length
+ */
+ buf[0] = (unsigned char) *olen;
+ ++*olen;
+
+ return 0;
+}
+
+/*
+ * Set a group from an ECParameters record (RFC 4492)
+ */
+int mbedtls_ecp_tls_read_group(mbedtls_ecp_group *grp,
+ const unsigned char **buf, size_t len)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_ecp_group_id grp_id;
+ if ((ret = mbedtls_ecp_tls_read_group_id(&grp_id, buf, len)) != 0) {
+ return ret;
+ }
+
+ return mbedtls_ecp_group_load(grp, grp_id);
+}
+
+/*
+ * Read a group id from an ECParameters record (RFC 4492) and convert it to
+ * mbedtls_ecp_group_id.
+ */
+int mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id *grp,
+ const unsigned char **buf, size_t len)
+{
+ uint16_t tls_id;
+ const mbedtls_ecp_curve_info *curve_info;
+ /*
+ * We expect at least three bytes (see below)
+ */
+ if (len < 3) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ /*
+ * First byte is curve_type; only named_curve is handled
+ */
+ if (*(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ /*
+ * Next two bytes are the namedcurve value
+ */
+ tls_id = *(*buf)++;
+ tls_id <<= 8;
+ tls_id |= *(*buf)++;
+
+ if ((curve_info = mbedtls_ecp_curve_info_from_tls_id(tls_id)) == NULL) {
+ return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+ }
+
+ *grp = curve_info->grp_id;
+
+ return 0;
+}
+
+/*
+ * Write the ECParameters record corresponding to a group (RFC 4492)
+ */
+int mbedtls_ecp_tls_write_group(const mbedtls_ecp_group *grp, size_t *olen,
+ unsigned char *buf, size_t blen)
+{
+ const mbedtls_ecp_curve_info *curve_info;
+ if ((curve_info = mbedtls_ecp_curve_info_from_grp_id(grp->id)) == NULL) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ /*
+ * We are going to write 3 bytes (see below)
+ */
+ *olen = 3;
+ if (blen < *olen) {
+ return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+ }
+
+ /*
+ * First byte is curve_type, always named_curve
+ */
+ *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
+
+ /*
+ * Next two bytes are the namedcurve value
+ */
+ MBEDTLS_PUT_UINT16_BE(curve_info->tls_id, buf, 0);
+
+ return 0;
+}
+
+/*
+ * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
+ * See the documentation of struct mbedtls_ecp_group.
+ *
+ * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
+ */
+static int ecp_modp(mbedtls_mpi *N, const mbedtls_ecp_group *grp)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if (grp->modp == NULL) {
+ return mbedtls_mpi_mod_mpi(N, N, &grp->P);
+ }
+
+ /* N->s < 0 is a much faster test, which fails only if N is 0 */
+ if ((N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) ||
+ mbedtls_mpi_bitlen(N) > 2 * grp->pbits) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ MBEDTLS_MPI_CHK(grp->modp(N));
+
+ /* N->s < 0 is a much faster test, which fails only if N is 0 */
+ while (N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &grp->P));
+ }
+
+ while (mbedtls_mpi_cmp_mpi(N, &grp->P) >= 0) {
+ /* we known P, N and the result are positive */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(N, N, &grp->P));
+ }
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Fast mod-p functions expect their argument to be in the 0..p^2 range.
+ *
+ * In order to guarantee that, we need to ensure that operands of
+ * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
+ * bring the result back to this range.
+ *
+ * The following macros are shortcuts for doing that.
+ */
+
+/*
+ * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
+ */
+#if defined(MBEDTLS_SELF_TEST)
+#define INC_MUL_COUNT mul_count++;
+#else
+#define INC_MUL_COUNT
+#endif
+
+#define MOD_MUL(N) \
+ do \
+ { \
+ MBEDTLS_MPI_CHK(ecp_modp(&(N), grp)); \
+ INC_MUL_COUNT \
+ } while (0)
+
+static inline int mbedtls_mpi_mul_mod(const mbedtls_ecp_group *grp,
+ mbedtls_mpi *X,
+ const mbedtls_mpi *A,
+ const mbedtls_mpi *B)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(X, A, B));
+ MOD_MUL(*X);
+cleanup:
+ return ret;
+}
+
+/*
+ * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
+ * N->s < 0 is a very fast test, which fails only if N is 0
+ */
+#define MOD_SUB(N) \
+ do { \
+ while ((N)->s < 0 && mbedtls_mpi_cmp_int((N), 0) != 0) \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi((N), (N), &grp->P)); \
+ } while (0)
+
+#if (defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) && \
+ !(defined(MBEDTLS_ECP_NO_FALLBACK) && \
+ defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) && \
+ defined(MBEDTLS_ECP_ADD_MIXED_ALT))) || \
+ (defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) && \
+ !(defined(MBEDTLS_ECP_NO_FALLBACK) && \
+ defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)))
+static inline int mbedtls_mpi_sub_mod(const mbedtls_ecp_group *grp,
+ mbedtls_mpi *X,
+ const mbedtls_mpi *A,
+ const mbedtls_mpi *B)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(X, A, B));
+ MOD_SUB(X);
+cleanup:
+ return ret;
+}
+#endif /* All functions referencing mbedtls_mpi_sub_mod() are alt-implemented without fallback */
+
+/*
+ * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
+ * We known P, N and the result are positive, so sub_abs is correct, and
+ * a bit faster.
+ */
+#define MOD_ADD(N) \
+ while (mbedtls_mpi_cmp_mpi((N), &grp->P) >= 0) \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs((N), (N), &grp->P))
+
+static inline int mbedtls_mpi_add_mod(const mbedtls_ecp_group *grp,
+ mbedtls_mpi *X,
+ const mbedtls_mpi *A,
+ const mbedtls_mpi *B)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(X, A, B));
+ MOD_ADD(X);
+cleanup:
+ return ret;
+}
+
+static inline int mbedtls_mpi_mul_int_mod(const mbedtls_ecp_group *grp,
+ mbedtls_mpi *X,
+ const mbedtls_mpi *A,
+ mbedtls_mpi_uint c)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(X, A, c));
+ MOD_ADD(X);
+cleanup:
+ return ret;
+}
+
+static inline int mbedtls_mpi_sub_int_mod(const mbedtls_ecp_group *grp,
+ mbedtls_mpi *X,
+ const mbedtls_mpi *A,
+ mbedtls_mpi_uint c)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(X, A, c));
+ MOD_SUB(X);
+cleanup:
+ return ret;
+}
+
+#define MPI_ECP_SUB_INT(X, A, c) \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int_mod(grp, X, A, c))
+
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) && \
+ !(defined(MBEDTLS_ECP_NO_FALLBACK) && \
+ defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) && \
+ defined(MBEDTLS_ECP_ADD_MIXED_ALT))
+static inline int mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group *grp,
+ mbedtls_mpi *X,
+ size_t count)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, count));
+ MOD_ADD(X);
+cleanup:
+ return ret;
+}
+#endif \
+ /* All functions referencing mbedtls_mpi_shift_l_mod() are alt-implemented without fallback */
+
+/*
+ * Macro wrappers around ECP modular arithmetic
+ *
+ * Currently, these wrappers are defined via the bignum module.
+ */
+
+#define MPI_ECP_ADD(X, A, B) \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, X, A, B))
+
+#define MPI_ECP_SUB(X, A, B) \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, X, A, B))
+
+#define MPI_ECP_MUL(X, A, B) \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, B))
+
+#define MPI_ECP_SQR(X, A) \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, A))
+
+#define MPI_ECP_MUL_INT(X, A, c) \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int_mod(grp, X, A, c))
+
+#define MPI_ECP_INV(dst, src) \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod((dst), (src), &grp->P))
+
+#define MPI_ECP_MOV(X, A) \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A))
+
+#define MPI_ECP_SHIFT_L(X, count) \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, X, count))
+
+#define MPI_ECP_LSET(X, c) \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, c))
+
+#define MPI_ECP_CMP_INT(X, c) \
+ mbedtls_mpi_cmp_int(X, c)
+
+#define MPI_ECP_CMP(X, Y) \
+ mbedtls_mpi_cmp_mpi(X, Y)
+
+/* Needs f_rng, p_rng to be defined. */
+#define MPI_ECP_RAND(X) \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_random((X), 2, &grp->P, f_rng, p_rng))
+
+/* Conditional negation
+ * Needs grp and a temporary MPI tmp to be defined. */
+#define MPI_ECP_COND_NEG(X, cond) \
+ do \
+ { \
+ unsigned char nonzero = mbedtls_mpi_cmp_int((X), 0) != 0; \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&tmp, &grp->P, (X))); \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), &tmp, \
+ nonzero & cond)); \
+ } while (0)
+
+#define MPI_ECP_NEG(X) MPI_ECP_COND_NEG((X), 1)
+
+#define MPI_ECP_VALID(X) \
+ ((X)->p != NULL)
+
+#define MPI_ECP_COND_ASSIGN(X, Y, cond) \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), (Y), (cond)))
+
+#define MPI_ECP_COND_SWAP(X, Y, cond) \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_swap((X), (Y), (cond)))
+
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+
+/*
+ * Computes the right-hand side of the Short Weierstrass equation
+ * RHS = X^3 + A X + B
+ */
+static int ecp_sw_rhs(const mbedtls_ecp_group *grp,
+ mbedtls_mpi *rhs,
+ const mbedtls_mpi *X)
+{
+ int ret;
+
+ /* Compute X^3 + A X + B as X (X^2 + A) + B */
+ MPI_ECP_SQR(rhs, X);
+
+ /* Special case for A = -3 */
+ if (grp->A.p == NULL) {
+ MPI_ECP_SUB_INT(rhs, rhs, 3);
+ } else {
+ MPI_ECP_ADD(rhs, rhs, &grp->A);
+ }
+
+ MPI_ECP_MUL(rhs, rhs, X);
+ MPI_ECP_ADD(rhs, rhs, &grp->B);
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Derive Y from X and a parity bit
+ */
+static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
+ const mbedtls_mpi *X,
+ mbedtls_mpi *Y,
+ int parity_bit)
+{
+ /* w = y^2 = x^3 + ax + b
+ * y = sqrt(w) = w^((p+1)/4) mod p (for prime p where p = 3 mod 4)
+ *
+ * Note: this method for extracting square root does not validate that w
+ * was indeed a square so this function will return garbage in Y if X
+ * does not correspond to a point on the curve.
+ */
+
+ /* Check prerequisite p = 3 mod 4 */
+ if (mbedtls_mpi_get_bit(&grp->P, 0) != 1 ||
+ mbedtls_mpi_get_bit(&grp->P, 1) != 1) {
+ return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+ }
+
+ int ret;
+ mbedtls_mpi exp;
+ mbedtls_mpi_init(&exp);
+
+ /* use Y to store intermediate result, actually w above */
+ MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, Y, X));
+
+ /* w = y^2 */ /* Y contains y^2 intermediate result */
+ /* exp = ((p+1)/4) */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&exp, &grp->P, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&exp, 2));
+ /* sqrt(w) = w^((p+1)/4) mod p (for prime p where p = 3 mod 4) */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(Y, Y /*y^2*/, &exp, &grp->P, NULL));
+
+ /* check parity bit match or else invert Y */
+ /* This quick inversion implementation is valid because Y != 0 for all
+ * Short Weierstrass curves supported by mbedtls, as each supported curve
+ * has an order that is a large prime, so each supported curve does not
+ * have any point of order 2, and a point with Y == 0 would be of order 2 */
+ if (mbedtls_mpi_get_bit(Y, 0) != parity_bit) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Y, &grp->P, Y));
+ }
+
+cleanup:
+
+ mbedtls_mpi_free(&exp);
+ return ret;
+}
+#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
+
+#if defined(MBEDTLS_ECP_C)
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+/*
+ * For curves in short Weierstrass form, we do all the internal operations in
+ * Jacobian coordinates.
+ *
+ * For multiplication, we'll use a comb method with countermeasures against
+ * SPA, hence timing attacks.
+ */
+
+/*
+ * Normalize jacobian coordinates so that Z == 0 || Z == 1 (GECC 3.2.1)
+ * Cost: 1N := 1I + 3M + 1S
+ */
+static int ecp_normalize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt)
+{
+ if (MPI_ECP_CMP_INT(&pt->Z, 0) == 0) {
+ return 0;
+ }
+
+#if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
+ if (mbedtls_internal_ecp_grp_capable(grp)) {
+ return mbedtls_internal_ecp_normalize_jac(grp, pt);
+ }
+#endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */
+
+#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
+ return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+#else
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi T;
+ mbedtls_mpi_init(&T);
+
+ MPI_ECP_INV(&T, &pt->Z); /* T <- 1 / Z */
+ MPI_ECP_MUL(&pt->Y, &pt->Y, &T); /* Y' <- Y*T = Y / Z */
+ MPI_ECP_SQR(&T, &T); /* T <- T^2 = 1 / Z^2 */
+ MPI_ECP_MUL(&pt->X, &pt->X, &T); /* X <- X * T = X / Z^2 */
+ MPI_ECP_MUL(&pt->Y, &pt->Y, &T); /* Y'' <- Y' * T = Y / Z^3 */
+
+ MPI_ECP_LSET(&pt->Z, 1);
+
+cleanup:
+
+ mbedtls_mpi_free(&T);
+
+ return ret;
+#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) */
+}
+
+/*
+ * Normalize jacobian coordinates of an array of (pointers to) points,
+ * using Montgomery's trick to perform only one inversion mod P.
+ * (See for example Cohen's "A Course in Computational Algebraic Number
+ * Theory", Algorithm 10.3.4.)
+ *
+ * Warning: fails (returning an error) if one of the points is zero!
+ * This should never happen, see choice of w in ecp_mul_comb().
+ *
+ * Cost: 1N(t) := 1I + (6t - 3)M + 1S
+ */
+static int ecp_normalize_jac_many(const mbedtls_ecp_group *grp,
+ mbedtls_ecp_point *T[], size_t T_size)
+{
+ if (T_size < 2) {
+ return ecp_normalize_jac(grp, *T);
+ }
+
+#if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
+ if (mbedtls_internal_ecp_grp_capable(grp)) {
+ return mbedtls_internal_ecp_normalize_jac_many(grp, T, T_size);
+ }
+#endif
+
+#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
+ return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+#else
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t i;
+ mbedtls_mpi *c, t;
+
+ if ((c = mbedtls_calloc(T_size, sizeof(mbedtls_mpi))) == NULL) {
+ return MBEDTLS_ERR_ECP_ALLOC_FAILED;
+ }
+
+ mbedtls_mpi_init(&t);
+
+ mpi_init_many(c, T_size);
+ /*
+ * c[i] = Z_0 * ... * Z_i, i = 0,..,n := T_size-1
+ */
+ MPI_ECP_MOV(&c[0], &T[0]->Z);
+ for (i = 1; i < T_size; i++) {
+ MPI_ECP_MUL(&c[i], &c[i-1], &T[i]->Z);
+ }
+
+ /*
+ * c[n] = 1 / (Z_0 * ... * Z_n) mod P
+ */
+ MPI_ECP_INV(&c[T_size-1], &c[T_size-1]);
+
+ for (i = T_size - 1;; i--) {
+ /* At the start of iteration i (note that i decrements), we have
+ * - c[j] = Z_0 * .... * Z_j for j < i,
+ * - c[j] = 1 / (Z_0 * .... * Z_j) for j == i,
+ *
+ * This is maintained via
+ * - c[i-1] <- c[i] * Z_i
+ *
+ * We also derive 1/Z_i = c[i] * c[i-1] for i>0 and use that
+ * to do the actual normalization. For i==0, we already have
+ * c[0] = 1 / Z_0.
+ */
+
+ if (i > 0) {
+ /* Compute 1/Z_i and establish invariant for the next iteration. */
+ MPI_ECP_MUL(&t, &c[i], &c[i-1]);
+ MPI_ECP_MUL(&c[i-1], &c[i], &T[i]->Z);
+ } else {
+ MPI_ECP_MOV(&t, &c[0]);
+ }
+
+ /* Now t holds 1 / Z_i; normalize as in ecp_normalize_jac() */
+ MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
+ MPI_ECP_SQR(&t, &t);
+ MPI_ECP_MUL(&T[i]->X, &T[i]->X, &t);
+ MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
+
+ /*
+ * Post-precessing: reclaim some memory by shrinking coordinates
+ * - not storing Z (always 1)
+ * - shrinking other coordinates, but still keeping the same number of
+ * limbs as P, as otherwise it will too likely be regrown too fast.
+ */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->X, grp->P.n));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->Y, grp->P.n));
+
+ MPI_ECP_LSET(&T[i]->Z, 1);
+
+ if (i == 0) {
+ break;
+ }
+ }
+
+cleanup:
+
+ mbedtls_mpi_free(&t);
+ mpi_free_many(c, T_size);
+ mbedtls_free(c);
+
+ return ret;
+#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) */
+}
+
+/*
+ * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
+ * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
+ */
+static int ecp_safe_invert_jac(const mbedtls_ecp_group *grp,
+ mbedtls_ecp_point *Q,
+ unsigned char inv)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi tmp;
+ mbedtls_mpi_init(&tmp);
+
+ MPI_ECP_COND_NEG(&Q->Y, inv);
+
+cleanup:
+ mbedtls_mpi_free(&tmp);
+ return ret;
+}
+
+/*
+ * Point doubling R = 2 P, Jacobian coordinates
+ *
+ * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
+ *
+ * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
+ * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
+ *
+ * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
+ *
+ * Cost: 1D := 3M + 4S (A == 0)
+ * 4M + 4S (A == -3)
+ * 3M + 6S + 1a otherwise
+ */
+static int ecp_double_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+ const mbedtls_ecp_point *P,
+ mbedtls_mpi tmp[4])
+{
+#if defined(MBEDTLS_SELF_TEST)
+ dbl_count++;
+#endif
+
+#if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
+ if (mbedtls_internal_ecp_grp_capable(grp)) {
+ return mbedtls_internal_ecp_double_jac(grp, R, P);
+ }
+#endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */
+
+#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
+ return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+#else
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ /* Special case for A = -3 */
+ if (grp->A.p == NULL) {
+ /* tmp[0] <- M = 3(X + Z^2)(X - Z^2) */
+ MPI_ECP_SQR(&tmp[1], &P->Z);
+ MPI_ECP_ADD(&tmp[2], &P->X, &tmp[1]);
+ MPI_ECP_SUB(&tmp[3], &P->X, &tmp[1]);
+ MPI_ECP_MUL(&tmp[1], &tmp[2], &tmp[3]);
+ MPI_ECP_MUL_INT(&tmp[0], &tmp[1], 3);
+ } else {
+ /* tmp[0] <- M = 3.X^2 + A.Z^4 */
+ MPI_ECP_SQR(&tmp[1], &P->X);
+ MPI_ECP_MUL_INT(&tmp[0], &tmp[1], 3);
+
+ /* Optimize away for "koblitz" curves with A = 0 */
+ if (MPI_ECP_CMP_INT(&grp->A, 0) != 0) {
+ /* M += A.Z^4 */
+ MPI_ECP_SQR(&tmp[1], &P->Z);
+ MPI_ECP_SQR(&tmp[2], &tmp[1]);
+ MPI_ECP_MUL(&tmp[1], &tmp[2], &grp->A);
+ MPI_ECP_ADD(&tmp[0], &tmp[0], &tmp[1]);
+ }
+ }
+
+ /* tmp[1] <- S = 4.X.Y^2 */
+ MPI_ECP_SQR(&tmp[2], &P->Y);
+ MPI_ECP_SHIFT_L(&tmp[2], 1);
+ MPI_ECP_MUL(&tmp[1], &P->X, &tmp[2]);
+ MPI_ECP_SHIFT_L(&tmp[1], 1);
+
+ /* tmp[3] <- U = 8.Y^4 */
+ MPI_ECP_SQR(&tmp[3], &tmp[2]);
+ MPI_ECP_SHIFT_L(&tmp[3], 1);
+
+ /* tmp[2] <- T = M^2 - 2.S */
+ MPI_ECP_SQR(&tmp[2], &tmp[0]);
+ MPI_ECP_SUB(&tmp[2], &tmp[2], &tmp[1]);
+ MPI_ECP_SUB(&tmp[2], &tmp[2], &tmp[1]);
+
+ /* tmp[1] <- S = M(S - T) - U */
+ MPI_ECP_SUB(&tmp[1], &tmp[1], &tmp[2]);
+ MPI_ECP_MUL(&tmp[1], &tmp[1], &tmp[0]);
+ MPI_ECP_SUB(&tmp[1], &tmp[1], &tmp[3]);
+
+ /* tmp[3] <- U = 2.Y.Z */
+ MPI_ECP_MUL(&tmp[3], &P->Y, &P->Z);
+ MPI_ECP_SHIFT_L(&tmp[3], 1);
+
+ /* Store results */
+ MPI_ECP_MOV(&R->X, &tmp[2]);
+ MPI_ECP_MOV(&R->Y, &tmp[1]);
+ MPI_ECP_MOV(&R->Z, &tmp[3]);
+
+cleanup:
+
+ return ret;
+#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) */
+}
+
+/*
+ * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
+ *
+ * The coordinates of Q must be normalized (= affine),
+ * but those of P don't need to. R is not normalized.
+ *
+ * P,Q,R may alias, but only at the level of EC points: they must be either
+ * equal as pointers, or disjoint (including the coordinate data buffers).
+ * Fine-grained aliasing at the level of coordinates is not supported.
+ *
+ * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
+ * None of these cases can happen as intermediate step in ecp_mul_comb():
+ * - at each step, P, Q and R are multiples of the base point, the factor
+ * being less than its order, so none of them is zero;
+ * - Q is an odd multiple of the base point, P an even multiple,
+ * due to the choice of precomputed points in the modified comb method.
+ * So branches for these cases do not leak secret information.
+ *
+ * Cost: 1A := 8M + 3S
+ */
+static int ecp_add_mixed(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+ const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
+ mbedtls_mpi tmp[4])
+{
+#if defined(MBEDTLS_SELF_TEST)
+ add_count++;
+#endif
+
+#if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
+ if (mbedtls_internal_ecp_grp_capable(grp)) {
+ return mbedtls_internal_ecp_add_mixed(grp, R, P, Q);
+ }
+#endif /* MBEDTLS_ECP_ADD_MIXED_ALT */
+
+#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_ADD_MIXED_ALT)
+ return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+#else
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ /* NOTE: Aliasing between input and output is allowed, so one has to make
+ * sure that at the point X,Y,Z are written, {P,Q}->{X,Y,Z} are no
+ * longer read from. */
+ mbedtls_mpi * const X = &R->X;
+ mbedtls_mpi * const Y = &R->Y;
+ mbedtls_mpi * const Z = &R->Z;
+
+ if (!MPI_ECP_VALID(&Q->Z)) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ /*
+ * Trivial cases: P == 0 or Q == 0 (case 1)
+ */
+ if (MPI_ECP_CMP_INT(&P->Z, 0) == 0) {
+ return mbedtls_ecp_copy(R, Q);
+ }
+
+ if (MPI_ECP_CMP_INT(&Q->Z, 0) == 0) {
+ return mbedtls_ecp_copy(R, P);
+ }
+
+ /*
+ * Make sure Q coordinates are normalized
+ */
+ if (MPI_ECP_CMP_INT(&Q->Z, 1) != 0) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ MPI_ECP_SQR(&tmp[0], &P->Z);
+ MPI_ECP_MUL(&tmp[1], &tmp[0], &P->Z);
+ MPI_ECP_MUL(&tmp[0], &tmp[0], &Q->X);
+ MPI_ECP_MUL(&tmp[1], &tmp[1], &Q->Y);
+ MPI_ECP_SUB(&tmp[0], &tmp[0], &P->X);
+ MPI_ECP_SUB(&tmp[1], &tmp[1], &P->Y);
+
+ /* Special cases (2) and (3) */
+ if (MPI_ECP_CMP_INT(&tmp[0], 0) == 0) {
+ if (MPI_ECP_CMP_INT(&tmp[1], 0) == 0) {
+ ret = ecp_double_jac(grp, R, P, tmp);
+ goto cleanup;
+ } else {
+ ret = mbedtls_ecp_set_zero(R);
+ goto cleanup;
+ }
+ }
+
+ /* {P,Q}->Z no longer used, so OK to write to Z even if there's aliasing. */
+ MPI_ECP_MUL(Z, &P->Z, &tmp[0]);
+ MPI_ECP_SQR(&tmp[2], &tmp[0]);
+ MPI_ECP_MUL(&tmp[3], &tmp[2], &tmp[0]);
+ MPI_ECP_MUL(&tmp[2], &tmp[2], &P->X);
+
+ MPI_ECP_MOV(&tmp[0], &tmp[2]);
+ MPI_ECP_SHIFT_L(&tmp[0], 1);
+
+ /* {P,Q}->X no longer used, so OK to write to X even if there's aliasing. */
+ MPI_ECP_SQR(X, &tmp[1]);
+ MPI_ECP_SUB(X, X, &tmp[0]);
+ MPI_ECP_SUB(X, X, &tmp[3]);
+ MPI_ECP_SUB(&tmp[2], &tmp[2], X);
+ MPI_ECP_MUL(&tmp[2], &tmp[2], &tmp[1]);
+ MPI_ECP_MUL(&tmp[3], &tmp[3], &P->Y);
+ /* {P,Q}->Y no longer used, so OK to write to Y even if there's aliasing. */
+ MPI_ECP_SUB(Y, &tmp[2], &tmp[3]);
+
+cleanup:
+
+ return ret;
+#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_ADD_MIXED_ALT) */
+}
+
+/*
+ * Randomize jacobian coordinates:
+ * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
+ * This is sort of the reverse operation of ecp_normalize_jac().
+ *
+ * This countermeasure was first suggested in [2].
+ */
+static int ecp_randomize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+#if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
+ if (mbedtls_internal_ecp_grp_capable(grp)) {
+ return mbedtls_internal_ecp_randomize_jac(grp, pt, f_rng, p_rng);
+ }
+#endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */
+
+#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
+ return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+#else
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi l;
+
+ mbedtls_mpi_init(&l);
+
+ /* Generate l such that 1 < l < p */
+ MPI_ECP_RAND(&l);
+
+ /* Z' = l * Z */
+ MPI_ECP_MUL(&pt->Z, &pt->Z, &l);
+
+ /* Y' = l * Y */
+ MPI_ECP_MUL(&pt->Y, &pt->Y, &l);
+
+ /* X' = l^2 * X */
+ MPI_ECP_SQR(&l, &l);
+ MPI_ECP_MUL(&pt->X, &pt->X, &l);
+
+ /* Y'' = l^2 * Y' = l^3 * Y */
+ MPI_ECP_MUL(&pt->Y, &pt->Y, &l);
+
+cleanup:
+ mbedtls_mpi_free(&l);
+
+ if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
+ ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
+ }
+ return ret;
+#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) */
+}
+
+/*
+ * Check and define parameters used by the comb method (see below for details)
+ */
+#if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
+#error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
+#endif
+
+/* d = ceil( n / w ) */
+#define COMB_MAX_D (MBEDTLS_ECP_MAX_BITS + 1) / 2
+
+/* number of precomputed points */
+#define COMB_MAX_PRE (1 << (MBEDTLS_ECP_WINDOW_SIZE - 1))
+
+/*
+ * Compute the representation of m that will be used with our comb method.
+ *
+ * The basic comb method is described in GECC 3.44 for example. We use a
+ * modified version that provides resistance to SPA by avoiding zero
+ * digits in the representation as in [3]. We modify the method further by
+ * requiring that all K_i be odd, which has the small cost that our
+ * representation uses one more K_i, due to carries, but saves on the size of
+ * the precomputed table.
+ *
+ * Summary of the comb method and its modifications:
+ *
+ * - The goal is to compute m*P for some w*d-bit integer m.
+ *
+ * - The basic comb method splits m into the w-bit integers
+ * x[0] .. x[d-1] where x[i] consists of the bits in m whose
+ * index has residue i modulo d, and computes m * P as
+ * S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where
+ * S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P.
+ *
+ * - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by
+ * .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] ..,
+ * thereby successively converting it into a form where all summands
+ * are nonzero, at the cost of negative summands. This is the basic idea of [3].
+ *
+ * - More generally, even if x[i+1] != 0, we can first transform the sum as
+ * .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] ..,
+ * and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]].
+ * Performing and iterating this procedure for those x[i] that are even
+ * (keeping track of carry), we can transform the original sum into one of the form
+ * S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]]
+ * with all x'[i] odd. It is therefore only necessary to know S at odd indices,
+ * which is why we are only computing half of it in the first place in
+ * ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb.
+ *
+ * - For the sake of compactness, only the seven low-order bits of x[i]
+ * are used to represent its absolute value (K_i in the paper), and the msb
+ * of x[i] encodes the sign (s_i in the paper): it is set if and only if
+ * if s_i == -1;
+ *
+ * Calling conventions:
+ * - x is an array of size d + 1
+ * - w is the size, ie number of teeth, of the comb, and must be between
+ * 2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
+ * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
+ * (the result will be incorrect if these assumptions are not satisfied)
+ */
+static void ecp_comb_recode_core(unsigned char x[], size_t d,
+ unsigned char w, const mbedtls_mpi *m)
+{
+ size_t i, j;
+ unsigned char c, cc, adjust;
+
+ memset(x, 0, d+1);
+
+ /* First get the classical comb values (except for x_d = 0) */
+ for (i = 0; i < d; i++) {
+ for (j = 0; j < w; j++) {
+ x[i] |= mbedtls_mpi_get_bit(m, i + d * j) << j;
+ }
+ }
+
+ /* Now make sure x_1 .. x_d are odd */
+ c = 0;
+ for (i = 1; i <= d; i++) {
+ /* Add carry and update it */
+ cc = x[i] & c;
+ x[i] = x[i] ^ c;
+ c = cc;
+
+ /* Adjust if needed, avoiding branches */
+ adjust = 1 - (x[i] & 0x01);
+ c |= x[i] & (x[i-1] * adjust);
+ x[i] = x[i] ^ (x[i-1] * adjust);
+ x[i-1] |= adjust << 7;
+ }
+}
+
+/*
+ * Precompute points for the adapted comb method
+ *
+ * Assumption: T must be able to hold 2^{w - 1} elements.
+ *
+ * Operation: If i = i_{w-1} ... i_1 is the binary representation of i,
+ * sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P.
+ *
+ * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
+ *
+ * Note: Even comb values (those where P would be omitted from the
+ * sum defining T[i] above) are not needed in our adaption
+ * the comb method. See ecp_comb_recode_core().
+ *
+ * This function currently works in four steps:
+ * (1) [dbl] Computation of intermediate T[i] for 2-power values of i
+ * (2) [norm_dbl] Normalization of coordinates of these T[i]
+ * (3) [add] Computation of all T[i]
+ * (4) [norm_add] Normalization of all T[i]
+ *
+ * Step 1 can be interrupted but not the others; together with the final
+ * coordinate normalization they are the largest steps done at once, depending
+ * on the window size. Here are operation counts for P-256:
+ *
+ * step (2) (3) (4)
+ * w = 5 142 165 208
+ * w = 4 136 77 160
+ * w = 3 130 33 136
+ * w = 2 124 11 124
+ *
+ * So if ECC operations are blocking for too long even with a low max_ops
+ * value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order
+ * to minimize maximum blocking time.
+ */
+static int ecp_precompute_comb(const mbedtls_ecp_group *grp,
+ mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
+ unsigned char w, size_t d,
+ mbedtls_ecp_restart_ctx *rs_ctx)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char i;
+ size_t j = 0;
+ const unsigned char T_size = 1U << (w - 1);
+ mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1] = { NULL };
+
+ mbedtls_mpi tmp[4];
+
+ mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
+ if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
+ goto dbl;
+ }
+ if (rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl) {
+ goto norm_dbl;
+ }
+ if (rs_ctx->rsm->state == ecp_rsm_pre_add) {
+ goto add;
+ }
+ if (rs_ctx->rsm->state == ecp_rsm_pre_norm_add) {
+ goto norm_add;
+ }
+ }
+#else
+ (void) rs_ctx;
+#endif
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
+ rs_ctx->rsm->state = ecp_rsm_pre_dbl;
+
+ /* initial state for the loop */
+ rs_ctx->rsm->i = 0;
+ }
+
+dbl:
+#endif
+ /*
+ * Set T[0] = P and
+ * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
+ */
+ MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&T[0], P));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
+ j = rs_ctx->rsm->i;
+ } else
+#endif
+ j = 0;
+
+ for (; j < d * (w - 1); j++) {
+ MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL);
+
+ i = 1U << (j / d);
+ cur = T + i;
+
+ if (j % d == 0) {
+ MBEDTLS_MPI_CHK(mbedtls_ecp_copy(cur, T + (i >> 1)));
+ }
+
+ MBEDTLS_MPI_CHK(ecp_double_jac(grp, cur, cur, tmp));
+ }
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
+ rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl;
+ }
+
+norm_dbl:
+#endif
+ /*
+ * Normalize current elements in T to allow them to be used in
+ * ecp_add_mixed() below, which requires one normalized input.
+ *
+ * As T has holes, use an auxiliary array of pointers to elements in T.
+ *
+ */
+ j = 0;
+ for (i = 1; i < T_size; i <<= 1) {
+ TT[j++] = T + i;
+ }
+
+ MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
+
+ MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
+ rs_ctx->rsm->state = ecp_rsm_pre_add;
+ }
+
+add:
+#endif
+ /*
+ * Compute the remaining ones using the minimal number of additions
+ * Be careful to update T[2^l] only after using it!
+ */
+ MBEDTLS_ECP_BUDGET((T_size - 1) * MBEDTLS_ECP_OPS_ADD);
+
+ for (i = 1; i < T_size; i <<= 1) {
+ j = i;
+ while (j--) {
+ MBEDTLS_MPI_CHK(ecp_add_mixed(grp, &T[i + j], &T[j], &T[i], tmp));
+ }
+ }
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
+ rs_ctx->rsm->state = ecp_rsm_pre_norm_add;
+ }
+
+norm_add:
+#endif
+ /*
+ * Normalize final elements in T. Even though there are no holes now, we
+ * still need the auxiliary array for homogeneity with the previous
+ * call. Also, skip T[0] which is already normalised, being a copy of P.
+ */
+ for (j = 0; j + 1 < T_size; j++) {
+ TT[j] = T + j + 1;
+ }
+
+ MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
+
+ MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
+
+ /* Free Z coordinate (=1 after normalization) to save RAM.
+ * This makes T[i] invalid as mbedtls_ecp_points, but this is OK
+ * since from this point onwards, they are only accessed indirectly
+ * via the getter function ecp_select_comb() which does set the
+ * target's Z coordinate to 1. */
+ for (i = 0; i < T_size; i++) {
+ mbedtls_mpi_free(&T[i].Z);
+ }
+
+cleanup:
+
+ mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
+ ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
+ if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
+ rs_ctx->rsm->i = j;
+ }
+ }
+#endif
+
+ return ret;
+}
+
+/*
+ * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
+ *
+ * See ecp_comb_recode_core() for background
+ */
+static int ecp_select_comb(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+ const mbedtls_ecp_point T[], unsigned char T_size,
+ unsigned char i)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char ii, j;
+
+ /* Ignore the "sign" bit and scale down */
+ ii = (i & 0x7Fu) >> 1;
+
+ /* Read the whole table to thwart cache-based timing attacks */
+ for (j = 0; j < T_size; j++) {
+ MPI_ECP_COND_ASSIGN(&R->X, &T[j].X, j == ii);
+ MPI_ECP_COND_ASSIGN(&R->Y, &T[j].Y, j == ii);
+ }
+
+ /* Safely invert result if i is "negative" */
+ MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, R, i >> 7));
+
+ MPI_ECP_LSET(&R->Z, 1);
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Core multiplication algorithm for the (modified) comb method.
+ * This part is actually common with the basic comb method (GECC 3.44)
+ *
+ * Cost: d A + d D + 1 R
+ */
+static int ecp_mul_comb_core(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+ const mbedtls_ecp_point T[], unsigned char T_size,
+ const unsigned char x[], size_t d,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng,
+ mbedtls_ecp_restart_ctx *rs_ctx)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_ecp_point Txi;
+ mbedtls_mpi tmp[4];
+ size_t i;
+
+ mbedtls_ecp_point_init(&Txi);
+ mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
+
+#if !defined(MBEDTLS_ECP_RESTARTABLE)
+ (void) rs_ctx;
+#endif
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
+ rs_ctx->rsm->state != ecp_rsm_comb_core) {
+ rs_ctx->rsm->i = 0;
+ rs_ctx->rsm->state = ecp_rsm_comb_core;
+ }
+
+ /* new 'if' instead of nested for the sake of the 'else' branch */
+ if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
+ /* restore current index (R already pointing to rs_ctx->rsm->R) */
+ i = rs_ctx->rsm->i;
+ } else
+#endif
+ {
+ /* Start with a non-zero point and randomize its coordinates */
+ i = d;
+ MBEDTLS_MPI_CHK(ecp_select_comb(grp, R, T, T_size, x[i]));
+ if (f_rng != 0) {
+ MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, R, f_rng, p_rng));
+ }
+ }
+
+ while (i != 0) {
+ MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD);
+ --i;
+
+ MBEDTLS_MPI_CHK(ecp_double_jac(grp, R, R, tmp));
+ MBEDTLS_MPI_CHK(ecp_select_comb(grp, &Txi, T, T_size, x[i]));
+ MBEDTLS_MPI_CHK(ecp_add_mixed(grp, R, R, &Txi, tmp));
+ }
+
+cleanup:
+
+ mbedtls_ecp_point_free(&Txi);
+ mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
+ ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
+ rs_ctx->rsm->i = i;
+ /* no need to save R, already pointing to rs_ctx->rsm->R */
+ }
+#endif
+
+ return ret;
+}
+
+/*
+ * Recode the scalar to get constant-time comb multiplication
+ *
+ * As the actual scalar recoding needs an odd scalar as a starting point,
+ * this wrapper ensures that by replacing m by N - m if necessary, and
+ * informs the caller that the result of multiplication will be negated.
+ *
+ * This works because we only support large prime order for Short Weierstrass
+ * curves, so N is always odd hence either m or N - m is.
+ *
+ * See ecp_comb_recode_core() for background.
+ */
+static int ecp_comb_recode_scalar(const mbedtls_ecp_group *grp,
+ const mbedtls_mpi *m,
+ unsigned char k[COMB_MAX_D + 1],
+ size_t d,
+ unsigned char w,
+ unsigned char *parity_trick)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi M, mm;
+
+ mbedtls_mpi_init(&M);
+ mbedtls_mpi_init(&mm);
+
+ /* N is always odd (see above), just make extra sure */
+ if (mbedtls_mpi_get_bit(&grp->N, 0) != 1) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ /* do we need the parity trick? */
+ *parity_trick = (mbedtls_mpi_get_bit(m, 0) == 0);
+
+ /* execute parity fix in constant time */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&M, m));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&mm, &grp->N, m));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(&M, &mm, *parity_trick));
+
+ /* actual scalar recoding */
+ ecp_comb_recode_core(k, d, w, &M);
+
+cleanup:
+ mbedtls_mpi_free(&mm);
+ mbedtls_mpi_free(&M);
+
+ return ret;
+}
+
+/*
+ * Perform comb multiplication (for short Weierstrass curves)
+ * once the auxiliary table has been pre-computed.
+ *
+ * Scalar recoding may use a parity trick that makes us compute -m * P,
+ * if that is the case we'll need to recover m * P at the end.
+ */
+static int ecp_mul_comb_after_precomp(const mbedtls_ecp_group *grp,
+ mbedtls_ecp_point *R,
+ const mbedtls_mpi *m,
+ const mbedtls_ecp_point *T,
+ unsigned char T_size,
+ unsigned char w,
+ size_t d,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng,
+ mbedtls_ecp_restart_ctx *rs_ctx)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char parity_trick;
+ unsigned char k[COMB_MAX_D + 1];
+ mbedtls_ecp_point *RR = R;
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
+ RR = &rs_ctx->rsm->R;
+
+ if (rs_ctx->rsm->state == ecp_rsm_final_norm) {
+ goto final_norm;
+ }
+ }
+#endif
+
+ MBEDTLS_MPI_CHK(ecp_comb_recode_scalar(grp, m, k, d, w,
+ &parity_trick));
+ MBEDTLS_MPI_CHK(ecp_mul_comb_core(grp, RR, T, T_size, k, d,
+ f_rng, p_rng, rs_ctx));
+ MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, RR, parity_trick));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
+ rs_ctx->rsm->state = ecp_rsm_final_norm;
+ }
+
+final_norm:
+ MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
+#endif
+ /*
+ * Knowledge of the jacobian coordinates may leak the last few bits of the
+ * scalar [1], and since our MPI implementation isn't constant-flow,
+ * inversion (used for coordinate normalization) may leak the full value
+ * of its input via side-channels [2].
+ *
+ * [1] https://eprint.iacr.org/2003/191
+ * [2] https://eprint.iacr.org/2020/055
+ *
+ * Avoid the leak by randomizing coordinates before we normalize them.
+ */
+ if (f_rng != 0) {
+ MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, RR, f_rng, p_rng));
+ }
+
+ MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, RR));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, RR));
+ }
+#endif
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Pick window size based on curve size and whether we optimize for base point
+ */
+static unsigned char ecp_pick_window_size(const mbedtls_ecp_group *grp,
+ unsigned char p_eq_g)
+{
+ unsigned char w;
+
+ /*
+ * Minimize the number of multiplications, that is minimize
+ * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
+ * (see costs of the various parts, with 1S = 1M)
+ */
+ w = grp->nbits >= 384 ? 5 : 4;
+
+ /*
+ * If P == G, pre-compute a bit more, since this may be re-used later.
+ * Just adding one avoids upping the cost of the first mul too much,
+ * and the memory cost too.
+ */
+ if (p_eq_g) {
+ w++;
+ }
+
+ /*
+ * If static comb table may not be used (!p_eq_g) or static comb table does
+ * not exists, make sure w is within bounds.
+ * (The last test is useful only for very small curves in the test suite.)
+ *
+ * The user reduces MBEDTLS_ECP_WINDOW_SIZE does not changes the size of
+ * static comb table, because the size of static comb table is fixed when
+ * it is generated.
+ */
+#if (MBEDTLS_ECP_WINDOW_SIZE < 6)
+ if ((!p_eq_g || !ecp_group_is_static_comb_table(grp)) && w > MBEDTLS_ECP_WINDOW_SIZE) {
+ w = MBEDTLS_ECP_WINDOW_SIZE;
+ }
+#endif
+ if (w >= grp->nbits) {
+ w = 2;
+ }
+
+ return w;
+}
+
+/*
+ * Multiplication using the comb method - for curves in short Weierstrass form
+ *
+ * This function is mainly responsible for administrative work:
+ * - managing the restart context if enabled
+ * - managing the table of precomputed points (passed between the below two
+ * functions): allocation, computation, ownership transfer, freeing.
+ *
+ * It delegates the actual arithmetic work to:
+ * ecp_precompute_comb() and ecp_mul_comb_with_precomp()
+ *
+ * See comments on ecp_comb_recode_core() regarding the computation strategy.
+ */
+static int ecp_mul_comb(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+ const mbedtls_mpi *m, const mbedtls_ecp_point *P,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng,
+ mbedtls_ecp_restart_ctx *rs_ctx)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char w, p_eq_g, i;
+ size_t d;
+ unsigned char T_size = 0, T_ok = 0;
+ mbedtls_ecp_point *T = NULL;
+
+ ECP_RS_ENTER(rsm);
+
+ /* Is P the base point ? */
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+ p_eq_g = (MPI_ECP_CMP(&P->Y, &grp->G.Y) == 0 &&
+ MPI_ECP_CMP(&P->X, &grp->G.X) == 0);
+#else
+ p_eq_g = 0;
+#endif
+
+ /* Pick window size and deduce related sizes */
+ w = ecp_pick_window_size(grp, p_eq_g);
+ T_size = 1U << (w - 1);
+ d = (grp->nbits + w - 1) / w;
+
+ /* Pre-computed table: do we have it already for the base point? */
+ if (p_eq_g && grp->T != NULL) {
+ /* second pointer to the same table, will be deleted on exit */
+ T = grp->T;
+ T_ok = 1;
+ } else
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ /* Pre-computed table: do we have one in progress? complete? */
+ if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL) {
+ /* transfer ownership of T from rsm to local function */
+ T = rs_ctx->rsm->T;
+ rs_ctx->rsm->T = NULL;
+ rs_ctx->rsm->T_size = 0;
+
+ /* This effectively jumps to the call to mul_comb_after_precomp() */
+ T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core;
+ } else
+#endif
+ /* Allocate table if we didn't have any */
+ {
+ T = mbedtls_calloc(T_size, sizeof(mbedtls_ecp_point));
+ if (T == NULL) {
+ ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
+ goto cleanup;
+ }
+
+ for (i = 0; i < T_size; i++) {
+ mbedtls_ecp_point_init(&T[i]);
+ }
+
+ T_ok = 0;
+ }
+
+ /* Compute table (or finish computing it) if not done already */
+ if (!T_ok) {
+ MBEDTLS_MPI_CHK(ecp_precompute_comb(grp, T, P, w, d, rs_ctx));
+
+ if (p_eq_g) {
+ /* almost transfer ownership of T to the group, but keep a copy of
+ * the pointer to use for calling the next function more easily */
+ grp->T = T;
+ grp->T_size = T_size;
+ }
+ }
+
+ /* Actual comb multiplication using precomputed points */
+ MBEDTLS_MPI_CHK(ecp_mul_comb_after_precomp(grp, R, m,
+ T, T_size, w, d,
+ f_rng, p_rng, rs_ctx));
+
+cleanup:
+
+ /* does T belong to the group? */
+ if (T == grp->T) {
+ T = NULL;
+ }
+
+ /* does T belong to the restart context? */
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL) {
+ /* transfer ownership of T from local function to rsm */
+ rs_ctx->rsm->T_size = T_size;
+ rs_ctx->rsm->T = T;
+ T = NULL;
+ }
+#endif
+
+ /* did T belong to us? then let's destroy it! */
+ if (T != NULL) {
+ for (i = 0; i < T_size; i++) {
+ mbedtls_ecp_point_free(&T[i]);
+ }
+ mbedtls_free(T);
+ }
+
+ /* prevent caller from using invalid value */
+ int should_free_R = (ret != 0);
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ /* don't free R while in progress in case R == P */
+ if (ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
+ should_free_R = 0;
+ }
+#endif
+ if (should_free_R) {
+ mbedtls_ecp_point_free(R);
+ }
+
+ ECP_RS_LEAVE(rsm);
+
+ return ret;
+}
+
+#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+/*
+ * For Montgomery curves, we do all the internal arithmetic in projective
+ * coordinates. Import/export of points uses only the x coordinates, which is
+ * internally represented as X / Z.
+ *
+ * For scalar multiplication, we'll use a Montgomery ladder.
+ */
+
+/*
+ * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
+ * Cost: 1M + 1I
+ */
+static int ecp_normalize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P)
+{
+#if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
+ if (mbedtls_internal_ecp_grp_capable(grp)) {
+ return mbedtls_internal_ecp_normalize_mxz(grp, P);
+ }
+#endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */
+
+#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
+ return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+#else
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ MPI_ECP_INV(&P->Z, &P->Z);
+ MPI_ECP_MUL(&P->X, &P->X, &P->Z);
+ MPI_ECP_LSET(&P->Z, 1);
+
+cleanup:
+ return ret;
+#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) */
+}
+
+/*
+ * Randomize projective x/z coordinates:
+ * (X, Z) -> (l X, l Z) for random l
+ * This is sort of the reverse operation of ecp_normalize_mxz().
+ *
+ * This countermeasure was first suggested in [2].
+ * Cost: 2M
+ */
+static int ecp_randomize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+#if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
+ if (mbedtls_internal_ecp_grp_capable(grp)) {
+ return mbedtls_internal_ecp_randomize_mxz(grp, P, f_rng, p_rng);
+ }
+#endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */
+
+#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
+ return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+#else
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi l;
+ mbedtls_mpi_init(&l);
+
+ /* Generate l such that 1 < l < p */
+ MPI_ECP_RAND(&l);
+
+ MPI_ECP_MUL(&P->X, &P->X, &l);
+ MPI_ECP_MUL(&P->Z, &P->Z, &l);
+
+cleanup:
+ mbedtls_mpi_free(&l);
+
+ if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
+ ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
+ }
+ return ret;
+#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) */
+}
+
+/*
+ * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
+ * for Montgomery curves in x/z coordinates.
+ *
+ * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
+ * with
+ * d = X1
+ * P = (X2, Z2)
+ * Q = (X3, Z3)
+ * R = (X4, Z4)
+ * S = (X5, Z5)
+ * and eliminating temporary variables tO, ..., t4.
+ *
+ * Cost: 5M + 4S
+ */
+static int ecp_double_add_mxz(const mbedtls_ecp_group *grp,
+ mbedtls_ecp_point *R, mbedtls_ecp_point *S,
+ const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
+ const mbedtls_mpi *d,
+ mbedtls_mpi T[4])
+{
+#if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
+ if (mbedtls_internal_ecp_grp_capable(grp)) {
+ return mbedtls_internal_ecp_double_add_mxz(grp, R, S, P, Q, d);
+ }
+#endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */
+
+#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
+ return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+#else
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ MPI_ECP_ADD(&T[0], &P->X, &P->Z); /* Pp := PX + PZ */
+ MPI_ECP_SUB(&T[1], &P->X, &P->Z); /* Pm := PX - PZ */
+ MPI_ECP_ADD(&T[2], &Q->X, &Q->Z); /* Qp := QX + XZ */
+ MPI_ECP_SUB(&T[3], &Q->X, &Q->Z); /* Qm := QX - QZ */
+ MPI_ECP_MUL(&T[3], &T[3], &T[0]); /* Qm * Pp */
+ MPI_ECP_MUL(&T[2], &T[2], &T[1]); /* Qp * Pm */
+ MPI_ECP_SQR(&T[0], &T[0]); /* Pp^2 */
+ MPI_ECP_SQR(&T[1], &T[1]); /* Pm^2 */
+ MPI_ECP_MUL(&R->X, &T[0], &T[1]); /* Pp^2 * Pm^2 */
+ MPI_ECP_SUB(&T[0], &T[0], &T[1]); /* Pp^2 - Pm^2 */
+ MPI_ECP_MUL(&R->Z, &grp->A, &T[0]); /* A * (Pp^2 - Pm^2) */
+ MPI_ECP_ADD(&R->Z, &T[1], &R->Z); /* [ A * (Pp^2-Pm^2) ] + Pm^2 */
+ MPI_ECP_ADD(&S->X, &T[3], &T[2]); /* Qm*Pp + Qp*Pm */
+ MPI_ECP_SQR(&S->X, &S->X); /* (Qm*Pp + Qp*Pm)^2 */
+ MPI_ECP_SUB(&S->Z, &T[3], &T[2]); /* Qm*Pp - Qp*Pm */
+ MPI_ECP_SQR(&S->Z, &S->Z); /* (Qm*Pp - Qp*Pm)^2 */
+ MPI_ECP_MUL(&S->Z, d, &S->Z); /* d * ( Qm*Pp - Qp*Pm )^2 */
+ MPI_ECP_MUL(&R->Z, &T[0], &R->Z); /* [A*(Pp^2-Pm^2)+Pm^2]*(Pp^2-Pm^2) */
+
+cleanup:
+
+ return ret;
+#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) */
+}
+
+/*
+ * Multiplication with Montgomery ladder in x/z coordinates,
+ * for curves in Montgomery form
+ */
+static int ecp_mul_mxz(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+ const mbedtls_mpi *m, const mbedtls_ecp_point *P,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t i;
+ unsigned char b;
+ mbedtls_ecp_point RP;
+ mbedtls_mpi PX;
+ mbedtls_mpi tmp[4];
+ mbedtls_ecp_point_init(&RP); mbedtls_mpi_init(&PX);
+
+ mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
+
+ if (f_rng == NULL) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ /* Save PX and read from P before writing to R, in case P == R */
+ MPI_ECP_MOV(&PX, &P->X);
+ MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&RP, P));
+
+ /* Set R to zero in modified x/z coordinates */
+ MPI_ECP_LSET(&R->X, 1);
+ MPI_ECP_LSET(&R->Z, 0);
+ mbedtls_mpi_free(&R->Y);
+
+ /* RP.X might be slightly larger than P, so reduce it */
+ MOD_ADD(&RP.X);
+
+ /* Randomize coordinates of the starting point */
+ MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, &RP, f_rng, p_rng));
+
+ /* Loop invariant: R = result so far, RP = R + P */
+ i = grp->nbits + 1; /* one past the (zero-based) required msb for private keys */
+ while (i-- > 0) {
+ b = mbedtls_mpi_get_bit(m, i);
+ /*
+ * if (b) R = 2R + P else R = 2R,
+ * which is:
+ * if (b) double_add( RP, R, RP, R )
+ * else double_add( R, RP, R, RP )
+ * but using safe conditional swaps to avoid leaks
+ */
+ MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
+ MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
+ MBEDTLS_MPI_CHK(ecp_double_add_mxz(grp, R, &RP, R, &RP, &PX, tmp));
+ MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
+ MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
+ }
+
+ /*
+ * Knowledge of the projective coordinates may leak the last few bits of the
+ * scalar [1], and since our MPI implementation isn't constant-flow,
+ * inversion (used for coordinate normalization) may leak the full value
+ * of its input via side-channels [2].
+ *
+ * [1] https://eprint.iacr.org/2003/191
+ * [2] https://eprint.iacr.org/2020/055
+ *
+ * Avoid the leak by randomizing coordinates before we normalize them.
+ */
+ MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, R, f_rng, p_rng));
+ MBEDTLS_MPI_CHK(ecp_normalize_mxz(grp, R));
+
+cleanup:
+ mbedtls_ecp_point_free(&RP); mbedtls_mpi_free(&PX);
+
+ mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
+ return ret;
+}
+
+#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
+
+/*
+ * Restartable multiplication R = m * P
+ *
+ * This internal function can be called without an RNG in case where we know
+ * the inputs are not sensitive.
+ */
+static int ecp_mul_restartable_internal(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+ const mbedtls_mpi *m, const mbedtls_ecp_point *P,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
+ mbedtls_ecp_restart_ctx *rs_ctx)
+{
+ int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+#if defined(MBEDTLS_ECP_INTERNAL_ALT)
+ char is_grp_capable = 0;
+#endif
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ /* reset ops count for this call if top-level */
+ if (rs_ctx != NULL && rs_ctx->depth++ == 0) {
+ rs_ctx->ops_done = 0;
+ }
+#else
+ (void) rs_ctx;
+#endif
+
+#if defined(MBEDTLS_ECP_INTERNAL_ALT)
+ if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
+ MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
+ }
+#endif /* MBEDTLS_ECP_INTERNAL_ALT */
+
+ int restarting = 0;
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ restarting = (rs_ctx != NULL && rs_ctx->rsm != NULL);
+#endif
+ /* skip argument check when restarting */
+ if (!restarting) {
+ /* check_privkey is free */
+ MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_CHK);
+
+ /* Common sanity checks */
+ MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(grp, m));
+ MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
+ }
+
+ ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+ if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
+ MBEDTLS_MPI_CHK(ecp_mul_mxz(grp, R, m, P, f_rng, p_rng));
+ }
+#endif
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+ if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
+ MBEDTLS_MPI_CHK(ecp_mul_comb(grp, R, m, P, f_rng, p_rng, rs_ctx));
+ }
+#endif
+
+cleanup:
+
+#if defined(MBEDTLS_ECP_INTERNAL_ALT)
+ if (is_grp_capable) {
+ mbedtls_internal_ecp_free(grp);
+ }
+#endif /* MBEDTLS_ECP_INTERNAL_ALT */
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL) {
+ rs_ctx->depth--;
+ }
+#endif
+
+ return ret;
+}
+
+/*
+ * Restartable multiplication R = m * P
+ */
+int mbedtls_ecp_mul_restartable(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+ const mbedtls_mpi *m, const mbedtls_ecp_point *P,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
+ mbedtls_ecp_restart_ctx *rs_ctx)
+{
+ if (f_rng == NULL) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ return ecp_mul_restartable_internal(grp, R, m, P, f_rng, p_rng, rs_ctx);
+}
+
+/*
+ * Multiplication R = m * P
+ */
+int mbedtls_ecp_mul(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+ const mbedtls_mpi *m, const mbedtls_ecp_point *P,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ return mbedtls_ecp_mul_restartable(grp, R, m, P, f_rng, p_rng, NULL);
+}
+#endif /* MBEDTLS_ECP_C */
+
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+/*
+ * Check that an affine point is valid as a public key,
+ * short weierstrass curves (SEC1 3.2.3.1)
+ */
+static int ecp_check_pubkey_sw(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi YY, RHS;
+
+ /* pt coordinates must be normalized for our checks */
+ if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0 ||
+ mbedtls_mpi_cmp_int(&pt->Y, 0) < 0 ||
+ mbedtls_mpi_cmp_mpi(&pt->X, &grp->P) >= 0 ||
+ mbedtls_mpi_cmp_mpi(&pt->Y, &grp->P) >= 0) {
+ return MBEDTLS_ERR_ECP_INVALID_KEY;
+ }
+
+ mbedtls_mpi_init(&YY); mbedtls_mpi_init(&RHS);
+
+ /*
+ * YY = Y^2
+ * RHS = X^3 + A X + B
+ */
+ MPI_ECP_SQR(&YY, &pt->Y);
+ MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, &RHS, &pt->X));
+
+ if (MPI_ECP_CMP(&YY, &RHS) != 0) {
+ ret = MBEDTLS_ERR_ECP_INVALID_KEY;
+ }
+
+cleanup:
+
+ mbedtls_mpi_free(&YY); mbedtls_mpi_free(&RHS);
+
+ return ret;
+}
+#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
+
+#if defined(MBEDTLS_ECP_C)
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+/*
+ * R = m * P with shortcuts for m == 0, m == 1 and m == -1
+ * NOT constant-time - ONLY for short Weierstrass!
+ */
+static int mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group *grp,
+ mbedtls_ecp_point *R,
+ const mbedtls_mpi *m,
+ const mbedtls_ecp_point *P,
+ mbedtls_ecp_restart_ctx *rs_ctx)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi tmp;
+ mbedtls_mpi_init(&tmp);
+
+ if (mbedtls_mpi_cmp_int(m, 0) == 0) {
+ MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
+ MBEDTLS_MPI_CHK(mbedtls_ecp_set_zero(R));
+ } else if (mbedtls_mpi_cmp_int(m, 1) == 0) {
+ MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
+ MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
+ } else if (mbedtls_mpi_cmp_int(m, -1) == 0) {
+ MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
+ MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
+ MPI_ECP_NEG(&R->Y);
+ } else {
+ MBEDTLS_MPI_CHK(ecp_mul_restartable_internal(grp, R, m, P,
+ NULL, NULL, rs_ctx));
+ }
+
+cleanup:
+ mbedtls_mpi_free(&tmp);
+
+ return ret;
+}
+
+/*
+ * Restartable linear combination
+ * NOT constant-time
+ */
+int mbedtls_ecp_muladd_restartable(
+ mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+ const mbedtls_mpi *m, const mbedtls_ecp_point *P,
+ const mbedtls_mpi *n, const mbedtls_ecp_point *Q,
+ mbedtls_ecp_restart_ctx *rs_ctx)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_ecp_point mP;
+ mbedtls_ecp_point *pmP = &mP;
+ mbedtls_ecp_point *pR = R;
+ mbedtls_mpi tmp[4];
+#if defined(MBEDTLS_ECP_INTERNAL_ALT)
+ char is_grp_capable = 0;
+#endif
+ if (mbedtls_ecp_get_type(grp) != MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
+ return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+ }
+
+ mbedtls_ecp_point_init(&mP);
+ mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
+
+ ECP_RS_ENTER(ma);
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->ma != NULL) {
+ /* redirect intermediate results to restart context */
+ pmP = &rs_ctx->ma->mP;
+ pR = &rs_ctx->ma->R;
+
+ /* jump to next operation */
+ if (rs_ctx->ma->state == ecp_rsma_mul2) {
+ goto mul2;
+ }
+ if (rs_ctx->ma->state == ecp_rsma_add) {
+ goto add;
+ }
+ if (rs_ctx->ma->state == ecp_rsma_norm) {
+ goto norm;
+ }
+ }
+#endif /* MBEDTLS_ECP_RESTARTABLE */
+
+ MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pmP, m, P, rs_ctx));
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->ma != NULL) {
+ rs_ctx->ma->state = ecp_rsma_mul2;
+ }
+
+mul2:
+#endif
+ MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pR, n, Q, rs_ctx));
+
+#if defined(MBEDTLS_ECP_INTERNAL_ALT)
+ if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
+ MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
+ }
+#endif /* MBEDTLS_ECP_INTERNAL_ALT */
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->ma != NULL) {
+ rs_ctx->ma->state = ecp_rsma_add;
+ }
+
+add:
+#endif
+ MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_ADD);
+ MBEDTLS_MPI_CHK(ecp_add_mixed(grp, pR, pmP, pR, tmp));
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->ma != NULL) {
+ rs_ctx->ma->state = ecp_rsma_norm;
+ }
+
+norm:
+#endif
+ MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
+ MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, pR));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->ma != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, pR));
+ }
+#endif
+
+cleanup:
+
+ mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
+
+#if defined(MBEDTLS_ECP_INTERNAL_ALT)
+ if (is_grp_capable) {
+ mbedtls_internal_ecp_free(grp);
+ }
+#endif /* MBEDTLS_ECP_INTERNAL_ALT */
+
+ mbedtls_ecp_point_free(&mP);
+
+ ECP_RS_LEAVE(ma);
+
+ return ret;
+}
+
+/*
+ * Linear combination
+ * NOT constant-time
+ */
+int mbedtls_ecp_muladd(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+ const mbedtls_mpi *m, const mbedtls_ecp_point *P,
+ const mbedtls_mpi *n, const mbedtls_ecp_point *Q)
+{
+ return mbedtls_ecp_muladd_restartable(grp, R, m, P, n, Q, NULL);
+}
+#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
+#endif /* MBEDTLS_ECP_C */
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+#define ECP_MPI_INIT(s, n, p) { s, (n), (mbedtls_mpi_uint *) (p) }
+#define ECP_MPI_INIT_ARRAY(x) \
+ ECP_MPI_INIT(1, sizeof(x) / sizeof(mbedtls_mpi_uint), x)
+/*
+ * Constants for the two points other than 0, 1, -1 (mod p) in
+ * https://cr.yp.to/ecdh.html#validate
+ * See ecp_check_pubkey_x25519().
+ */
+static const mbedtls_mpi_uint x25519_bad_point_1[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00),
+};
+static const mbedtls_mpi_uint x25519_bad_point_2[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57),
+};
+static const mbedtls_mpi ecp_x25519_bad_point_1 = ECP_MPI_INIT_ARRAY(
+ x25519_bad_point_1);
+static const mbedtls_mpi ecp_x25519_bad_point_2 = ECP_MPI_INIT_ARRAY(
+ x25519_bad_point_2);
+#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
+
+/*
+ * Check that the input point is not one of the low-order points.
+ * This is recommended by the "May the Fourth" paper:
+ * https://eprint.iacr.org/2017/806.pdf
+ * Those points are never sent by an honest peer.
+ */
+static int ecp_check_bad_points_mx(const mbedtls_mpi *X, const mbedtls_mpi *P,
+ const mbedtls_ecp_group_id grp_id)
+{
+ int ret;
+ mbedtls_mpi XmP;
+
+ mbedtls_mpi_init(&XmP);
+
+ /* Reduce X mod P so that we only need to check values less than P.
+ * We know X < 2^256 so we can proceed by subtraction. */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&XmP, X));
+ while (mbedtls_mpi_cmp_mpi(&XmP, P) >= 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&XmP, &XmP, P));
+ }
+
+ /* Check against the known bad values that are less than P. For Curve448
+ * these are 0, 1 and -1. For Curve25519 we check the values less than P
+ * from the following list: https://cr.yp.to/ecdh.html#validate */
+ if (mbedtls_mpi_cmp_int(&XmP, 1) <= 0) { /* takes care of 0 and 1 */
+ ret = MBEDTLS_ERR_ECP_INVALID_KEY;
+ goto cleanup;
+ }
+
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+ if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
+ if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_1) == 0) {
+ ret = MBEDTLS_ERR_ECP_INVALID_KEY;
+ goto cleanup;
+ }
+
+ if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_2) == 0) {
+ ret = MBEDTLS_ERR_ECP_INVALID_KEY;
+ goto cleanup;
+ }
+ }
+#else
+ (void) grp_id;
+#endif
+
+ /* Final check: check if XmP + 1 is P (final because it changes XmP!) */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&XmP, &XmP, 1));
+ if (mbedtls_mpi_cmp_mpi(&XmP, P) == 0) {
+ ret = MBEDTLS_ERR_ECP_INVALID_KEY;
+ goto cleanup;
+ }
+
+ ret = 0;
+
+cleanup:
+ mbedtls_mpi_free(&XmP);
+
+ return ret;
+}
+
+/*
+ * Check validity of a public key for Montgomery curves with x-only schemes
+ */
+static int ecp_check_pubkey_mx(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
+{
+ /* [Curve25519 p. 5] Just check X is the correct number of bytes */
+ /* Allow any public value, if it's too big then we'll just reduce it mod p
+ * (RFC 7748 sec. 5 para. 3). */
+ if (mbedtls_mpi_size(&pt->X) > (grp->nbits + 7) / 8) {
+ return MBEDTLS_ERR_ECP_INVALID_KEY;
+ }
+
+ /* Implicit in all standards (as they don't consider negative numbers):
+ * X must be non-negative. This is normally ensured by the way it's
+ * encoded for transmission, but let's be extra sure. */
+ if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0) {
+ return MBEDTLS_ERR_ECP_INVALID_KEY;
+ }
+
+ return ecp_check_bad_points_mx(&pt->X, &grp->P, grp->id);
+}
+#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
+
+/*
+ * Check that a point is valid as a public key
+ */
+int mbedtls_ecp_check_pubkey(const mbedtls_ecp_group *grp,
+ const mbedtls_ecp_point *pt)
+{
+ /* Must use affine coordinates */
+ if (mbedtls_mpi_cmp_int(&pt->Z, 1) != 0) {
+ return MBEDTLS_ERR_ECP_INVALID_KEY;
+ }
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+ if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
+ return ecp_check_pubkey_mx(grp, pt);
+ }
+#endif
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+ if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
+ return ecp_check_pubkey_sw(grp, pt);
+ }
+#endif
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+}
+
+/*
+ * Check that an mbedtls_mpi is valid as a private key
+ */
+int mbedtls_ecp_check_privkey(const mbedtls_ecp_group *grp,
+ const mbedtls_mpi *d)
+{
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+ if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
+ /* see RFC 7748 sec. 5 para. 5 */
+ if (mbedtls_mpi_get_bit(d, 0) != 0 ||
+ mbedtls_mpi_get_bit(d, 1) != 0 ||
+ mbedtls_mpi_bitlen(d) - 1 != grp->nbits) { /* mbedtls_mpi_bitlen is one-based! */
+ return MBEDTLS_ERR_ECP_INVALID_KEY;
+ }
+
+ /* see [Curve25519] page 5 */
+ if (grp->nbits == 254 && mbedtls_mpi_get_bit(d, 2) != 0) {
+ return MBEDTLS_ERR_ECP_INVALID_KEY;
+ }
+
+ return 0;
+ }
+#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+ if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
+ /* see SEC1 3.2 */
+ if (mbedtls_mpi_cmp_int(d, 1) < 0 ||
+ mbedtls_mpi_cmp_mpi(d, &grp->N) >= 0) {
+ return MBEDTLS_ERR_ECP_INVALID_KEY;
+ } else {
+ return 0;
+ }
+ }
+#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
+
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+}
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_gen_privkey_mx(size_t high_bit,
+ mbedtls_mpi *d,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ size_t n_random_bytes = high_bit / 8 + 1;
+
+ /* [Curve25519] page 5 */
+ /* Generate a (high_bit+1)-bit random number by generating just enough
+ * random bytes, then shifting out extra bits from the top (necessary
+ * when (high_bit+1) is not a multiple of 8). */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(d, n_random_bytes,
+ f_rng, p_rng));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(d, 8 * n_random_bytes - high_bit - 1));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, high_bit, 1));
+
+ /* Make sure the last two bits are unset for Curve448, three bits for
+ Curve25519 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 0, 0));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 1, 0));
+ if (high_bit == 254) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 2, 0));
+ }
+
+cleanup:
+ return ret;
+}
+#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
+
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+static int mbedtls_ecp_gen_privkey_sw(
+ const mbedtls_mpi *N, mbedtls_mpi *d,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ int ret = mbedtls_mpi_random(d, 1, N, f_rng, p_rng);
+ switch (ret) {
+ case MBEDTLS_ERR_MPI_NOT_ACCEPTABLE:
+ return MBEDTLS_ERR_ECP_RANDOM_FAILED;
+ default:
+ return ret;
+ }
+}
+#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
+
+/*
+ * Generate a private key
+ */
+int mbedtls_ecp_gen_privkey(const mbedtls_ecp_group *grp,
+ mbedtls_mpi *d,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+ if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
+ return mbedtls_ecp_gen_privkey_mx(grp->nbits, d, f_rng, p_rng);
+ }
+#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
+
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+ if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
+ return mbedtls_ecp_gen_privkey_sw(&grp->N, d, f_rng, p_rng);
+ }
+#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
+
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+}
+
+#if defined(MBEDTLS_ECP_C)
+/*
+ * Generate a keypair with configurable base point
+ */
+int mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group *grp,
+ const mbedtls_ecp_point *G,
+ mbedtls_mpi *d, mbedtls_ecp_point *Q,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ MBEDTLS_MPI_CHK(mbedtls_ecp_gen_privkey(grp, d, f_rng, p_rng));
+ MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, Q, d, G, f_rng, p_rng));
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Generate key pair, wrapper for conventional base point
+ */
+int mbedtls_ecp_gen_keypair(mbedtls_ecp_group *grp,
+ mbedtls_mpi *d, mbedtls_ecp_point *Q,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ return mbedtls_ecp_gen_keypair_base(grp, &grp->G, d, Q, f_rng, p_rng);
+}
+
+/*
+ * Generate a keypair, prettier wrapper
+ */
+int mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
+ return ret;
+ }
+
+ return mbedtls_ecp_gen_keypair(&key->grp, &key->d, &key->Q, f_rng, p_rng);
+}
+#endif /* MBEDTLS_ECP_C */
+
+#define ECP_CURVE25519_KEY_SIZE 32
+#define ECP_CURVE448_KEY_SIZE 56
+/*
+ * Read a private key.
+ */
+int mbedtls_ecp_read_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
+ const unsigned char *buf, size_t buflen)
+{
+ int ret = 0;
+
+ if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
+ return ret;
+ }
+
+ ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+ if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
+ /*
+ * Mask the key as mandated by RFC7748 for Curve25519 and Curve448.
+ */
+ if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
+ if (buflen != ECP_CURVE25519_KEY_SIZE) {
+ return MBEDTLS_ERR_ECP_INVALID_KEY;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
+
+ /* Set the three least significant bits to 0 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 2, 0));
+
+ /* Set the most significant bit to 0 */
+ MBEDTLS_MPI_CHK(
+ mbedtls_mpi_set_bit(&key->d,
+ ECP_CURVE25519_KEY_SIZE * 8 - 1, 0)
+ );
+
+ /* Set the second most significant bit to 1 */
+ MBEDTLS_MPI_CHK(
+ mbedtls_mpi_set_bit(&key->d,
+ ECP_CURVE25519_KEY_SIZE * 8 - 2, 1)
+ );
+ } else if (grp_id == MBEDTLS_ECP_DP_CURVE448) {
+ if (buflen != ECP_CURVE448_KEY_SIZE) {
+ return MBEDTLS_ERR_ECP_INVALID_KEY;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
+
+ /* Set the two least significant bits to 0 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
+
+ /* Set the most significant bit to 1 */
+ MBEDTLS_MPI_CHK(
+ mbedtls_mpi_set_bit(&key->d,
+ ECP_CURVE448_KEY_SIZE * 8 - 1, 1)
+ );
+ }
+ }
+
+#endif
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+ if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&key->d, buf, buflen));
+
+ MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(&key->grp, &key->d));
+ }
+
+#endif
+cleanup:
+
+ if (ret != 0) {
+ mbedtls_mpi_free(&key->d);
+ }
+
+ return ret;
+}
+
+/*
+ * Write a private key.
+ */
+int mbedtls_ecp_write_key(mbedtls_ecp_keypair *key,
+ unsigned char *buf, size_t buflen)
+{
+ int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+ if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
+ if (key->grp.id == MBEDTLS_ECP_DP_CURVE25519) {
+ if (buflen < ECP_CURVE25519_KEY_SIZE) {
+ return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+ }
+
+ } else if (key->grp.id == MBEDTLS_ECP_DP_CURVE448) {
+ if (buflen < ECP_CURVE448_KEY_SIZE) {
+ return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+ }
+ }
+ MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&key->d, buf, buflen));
+ }
+#endif
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+ if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&key->d, buf, buflen));
+ }
+
+#endif
+cleanup:
+
+ return ret;
+}
+
+#if defined(MBEDTLS_ECP_C)
+/*
+ * Check a public-private key pair
+ */
+int mbedtls_ecp_check_pub_priv(
+ const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_ecp_point Q;
+ mbedtls_ecp_group grp;
+ if (pub->grp.id == MBEDTLS_ECP_DP_NONE ||
+ pub->grp.id != prv->grp.id ||
+ mbedtls_mpi_cmp_mpi(&pub->Q.X, &prv->Q.X) ||
+ mbedtls_mpi_cmp_mpi(&pub->Q.Y, &prv->Q.Y) ||
+ mbedtls_mpi_cmp_mpi(&pub->Q.Z, &prv->Q.Z)) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ mbedtls_ecp_point_init(&Q);
+ mbedtls_ecp_group_init(&grp);
+
+ /* mbedtls_ecp_mul() needs a non-const group... */
+ mbedtls_ecp_group_copy(&grp, &prv->grp);
+
+ /* Also checks d is valid */
+ MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &Q, &prv->d, &prv->grp.G, f_rng, p_rng));
+
+ if (mbedtls_mpi_cmp_mpi(&Q.X, &prv->Q.X) ||
+ mbedtls_mpi_cmp_mpi(&Q.Y, &prv->Q.Y) ||
+ mbedtls_mpi_cmp_mpi(&Q.Z, &prv->Q.Z)) {
+ ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ goto cleanup;
+ }
+
+cleanup:
+ mbedtls_ecp_point_free(&Q);
+ mbedtls_ecp_group_free(&grp);
+
+ return ret;
+}
+#endif /* MBEDTLS_ECP_C */
+
+/*
+ * Export generic key-pair parameters.
+ */
+int mbedtls_ecp_export(const mbedtls_ecp_keypair *key, mbedtls_ecp_group *grp,
+ mbedtls_mpi *d, mbedtls_ecp_point *Q)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if ((ret = mbedtls_ecp_group_copy(grp, &key->grp)) != 0) {
+ return ret;
+ }
+
+ if ((ret = mbedtls_mpi_copy(d, &key->d)) != 0) {
+ return ret;
+ }
+
+ if ((ret = mbedtls_ecp_copy(Q, &key->Q)) != 0) {
+ return ret;
+ }
+
+ return 0;
+}
+
+#if defined(MBEDTLS_SELF_TEST)
+
+#if defined(MBEDTLS_ECP_C)
+/*
+ * PRNG for test - !!!INSECURE NEVER USE IN PRODUCTION!!!
+ *
+ * This is the linear congruential generator from numerical recipes,
+ * except we only use the low byte as the output. See
+ * https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use
+ */
+static int self_test_rng(void *ctx, unsigned char *out, size_t len)
+{
+ static uint32_t state = 42;
+
+ (void) ctx;
+
+ for (size_t i = 0; i < len; i++) {
+ state = state * 1664525u + 1013904223u;
+ out[i] = (unsigned char) state;
+ }
+
+ return 0;
+}
+
+/* Adjust the exponent to be a valid private point for the specified curve.
+ * This is sometimes necessary because we use a single set of exponents
+ * for all curves but the validity of values depends on the curve. */
+static int self_test_adjust_exponent(const mbedtls_ecp_group *grp,
+ mbedtls_mpi *m)
+{
+ int ret = 0;
+ switch (grp->id) {
+ /* If Curve25519 is available, then that's what we use for the
+ * Montgomery test, so we don't need the adjustment code. */
+#if !defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+ case MBEDTLS_ECP_DP_CURVE448:
+ /* Move highest bit from 254 to N-1. Setting bit N-1 is
+ * necessary to enforce the highest-bit-set constraint. */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, 254, 0));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, grp->nbits, 1));
+ /* Copy second-highest bit from 253 to N-2. This is not
+ * necessary but improves the test variety a bit. */
+ MBEDTLS_MPI_CHK(
+ mbedtls_mpi_set_bit(m, grp->nbits - 1,
+ mbedtls_mpi_get_bit(m, 253)));
+ break;
+#endif
+#endif /* ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) */
+ default:
+ /* Non-Montgomery curves and Curve25519 need no adjustment. */
+ (void) grp;
+ (void) m;
+ goto cleanup;
+ }
+cleanup:
+ return ret;
+}
+
+/* Calculate R = m.P for each m in exponents. Check that the number of
+ * basic operations doesn't depend on the value of m. */
+static int self_test_point(int verbose,
+ mbedtls_ecp_group *grp,
+ mbedtls_ecp_point *R,
+ mbedtls_mpi *m,
+ const mbedtls_ecp_point *P,
+ const char *const *exponents,
+ size_t n_exponents)
+{
+ int ret = 0;
+ size_t i = 0;
+ unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
+ add_count = 0;
+ dbl_count = 0;
+ mul_count = 0;
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[0]));
+ MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
+ MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
+
+ for (i = 1; i < n_exponents; i++) {
+ add_c_prev = add_count;
+ dbl_c_prev = dbl_count;
+ mul_c_prev = mul_count;
+ add_count = 0;
+ dbl_count = 0;
+ mul_count = 0;
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[i]));
+ MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
+ MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
+
+ if (add_count != add_c_prev ||
+ dbl_count != dbl_c_prev ||
+ mul_count != mul_c_prev) {
+ ret = 1;
+ break;
+ }
+ }
+
+cleanup:
+ if (verbose != 0) {
+ if (ret != 0) {
+ mbedtls_printf("failed (%u)\n", (unsigned int) i);
+ } else {
+ mbedtls_printf("passed\n");
+ }
+ }
+ return ret;
+}
+#endif /* MBEDTLS_ECP_C */
+
+/*
+ * Checkup routine
+ */
+int mbedtls_ecp_self_test(int verbose)
+{
+#if defined(MBEDTLS_ECP_C)
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_ecp_group grp;
+ mbedtls_ecp_point R, P;
+ mbedtls_mpi m;
+
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+ /* Exponents especially adapted for secp192k1, which has the lowest
+ * order n of all supported curves (secp192r1 is in a slightly larger
+ * field but the order of its base point is slightly smaller). */
+ const char *sw_exponents[] =
+ {
+ "000000000000000000000000000000000000000000000001", /* one */
+ "FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8C", /* n - 1 */
+ "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
+ "400000000000000000000000000000000000000000000000", /* one and zeros */
+ "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
+ "555555555555555555555555555555555555555555555555", /* 101010... */
+ };
+#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+ const char *m_exponents[] =
+ {
+ /* Valid private values for Curve25519. In a build with Curve448
+ * but not Curve25519, they will be adjusted in
+ * self_test_adjust_exponent(). */
+ "4000000000000000000000000000000000000000000000000000000000000000",
+ "5C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C30",
+ "5715ECCE24583F7A7023C24164390586842E816D7280A49EF6DF4EAE6B280BF8",
+ "41A2B017516F6D254E1F002BCCBADD54BE30F8CEC737A0E912B4963B6BA74460",
+ "5555555555555555555555555555555555555555555555555555555555555550",
+ "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8",
+ };
+#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
+
+ mbedtls_ecp_group_init(&grp);
+ mbedtls_ecp_point_init(&R);
+ mbedtls_ecp_point_init(&P);
+ mbedtls_mpi_init(&m);
+
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+ /* Use secp192r1 if available, or any available curve */
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
+ MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP192R1));
+#else
+ MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, mbedtls_ecp_curve_list()->grp_id));
+#endif
+
+ if (verbose != 0) {
+ mbedtls_printf(" ECP SW test #1 (constant op_count, base point G): ");
+ }
+ /* Do a dummy multiplication first to trigger precomputation */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&m, 2));
+ MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &P, &m, &grp.G, self_test_rng, NULL));
+ ret = self_test_point(verbose,
+ &grp, &R, &m, &grp.G,
+ sw_exponents,
+ sizeof(sw_exponents) / sizeof(sw_exponents[0]));
+ if (ret != 0) {
+ goto cleanup;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf(" ECP SW test #2 (constant op_count, other point): ");
+ }
+ /* We computed P = 2G last time, use it */
+ ret = self_test_point(verbose,
+ &grp, &R, &m, &P,
+ sw_exponents,
+ sizeof(sw_exponents) / sizeof(sw_exponents[0]));
+ if (ret != 0) {
+ goto cleanup;
+ }
+
+ mbedtls_ecp_group_free(&grp);
+ mbedtls_ecp_point_free(&R);
+#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+ if (verbose != 0) {
+ mbedtls_printf(" ECP Montgomery test (constant op_count): ");
+ }
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+ MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE25519));
+#elif defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+ MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE448));
+#else
+#error "MBEDTLS_ECP_MONTGOMERY_ENABLED is defined, but no curve is supported for self-test"
+#endif
+ ret = self_test_point(verbose,
+ &grp, &R, &m, &grp.G,
+ m_exponents,
+ sizeof(m_exponents) / sizeof(m_exponents[0]));
+ if (ret != 0) {
+ goto cleanup;
+ }
+#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
+
+cleanup:
+
+ if (ret < 0 && verbose != 0) {
+ mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
+ }
+
+ mbedtls_ecp_group_free(&grp);
+ mbedtls_ecp_point_free(&R);
+ mbedtls_ecp_point_free(&P);
+ mbedtls_mpi_free(&m);
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+
+ return ret;
+#else /* MBEDTLS_ECP_C */
+ (void) verbose;
+ return 0;
+#endif /* MBEDTLS_ECP_C */
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+MBEDTLS_STATIC_TESTABLE
+mbedtls_ecp_variant mbedtls_ecp_get_variant()
+{
+ return MBEDTLS_ECP_VARIANT_WITH_MPI_UINT;
+}
+
+#endif /* !MBEDTLS_ECP_ALT */
+
+#endif /* MBEDTLS_ECP_LIGHT */
+
+#endif /* MBEDTLS_ECP_WITH_MPI_UINT */