blob: 0cb47d47125359d5b4a0127becde910998ecedf3 [file] [log] [blame]
Jarno Lamsa18987a42019-04-24 15:40:43 +03001/* ecc.h - TinyCrypt interface to common ECC functions */
2
Simon Butcher92c3d1f2019-09-09 17:25:08 +01003/*
4 * Copyright (c) 2019, Arm Limited (or its affiliates), All Rights Reserved.
5 * SPDX-License-Identifier: BSD-3-Clause
6 */
7
Jarno Lamsa18987a42019-04-24 15:40:43 +03008/* Copyright (c) 2014, Kenneth MacKay
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions are met:
13 *
14 * * Redistributions of source code must retain the above copyright notice, this
15 * list of conditions and the following disclaimer.
16 *
17 * * Redistributions in binary form must reproduce the above copyright notice,
18 * this list of conditions and the following disclaimer in the documentation
19 * and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
25 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34/*
35 * Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions are met:
39 *
40 * - Redistributions of source code must retain the above copyright notice,
41 * this list of conditions and the following disclaimer.
42 *
43 * - Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 *
47 * - Neither the name of Intel Corporation nor the names of its contributors
48 * may be used to endorse or promote products derived from this software
49 * without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
52 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
55 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
56 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
57 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
58 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
59 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61 * POSSIBILITY OF SUCH DAMAGE.
62 */
63
64/**
65 * @file
66 * @brief -- Interface to common ECC functions.
67 *
68 * Overview: This software is an implementation of common functions
69 * necessary to elliptic curve cryptography. This implementation uses
70 * curve NIST p-256.
71 *
72 * Security: The curve NIST p-256 provides approximately 128 bits of security.
73 *
74 */
75
Manuel Pégourié-Gonnardafdc1b52019-05-09 11:24:11 +020076#if defined(MBEDTLS_USE_TINYCRYPT)
Jarno Lamsa18987a42019-04-24 15:40:43 +030077#ifndef __TC_UECC_H__
78#define __TC_UECC_H__
79
80#include <stdint.h>
81
82#ifdef __cplusplus
83extern "C" {
84#endif
85
Manuel Pégourié-Gonnardc05f1502019-11-06 10:15:26 +010086/* Return values for functions, chosen with large Hamming distances between
87 * them (especially to SUCESS) to mitigate the impact of fault injection
88 * attacks flipping a low number of bits. */
89#define UECC_SUCCESS 0
90#define UECC_FAILURE 0x75555555
91#define UECC_ATTACK_DETECTED 0x7aaaaaaa
92
Jarno Lamsa18987a42019-04-24 15:40:43 +030093/* Word size (4 bytes considering 32-bits architectures) */
94#define uECC_WORD_SIZE 4
95
96/* setting max number of calls to prng: */
97#ifndef uECC_RNG_MAX_TRIES
98#define uECC_RNG_MAX_TRIES 64
99#endif
100
101/* defining data types to store word and bit counts: */
102typedef int8_t wordcount_t;
103typedef int16_t bitcount_t;
104/* defining data type for comparison result: */
105typedef int8_t cmpresult_t;
106/* defining data type to store ECC coordinate/point in 32bits words: */
107typedef unsigned int uECC_word_t;
108/* defining data type to store an ECC coordinate/point in 64bits words: */
109typedef uint64_t uECC_dword_t;
110
111/* defining masks useful for ecc computations: */
112#define HIGH_BIT_SET 0x80000000
113#define uECC_WORD_BITS 32
114#define uECC_WORD_BITS_SHIFT 5
115#define uECC_WORD_BITS_MASK 0x01F
116
117/* Number of words of 32 bits to represent an element of the the curve p-256: */
118#define NUM_ECC_WORDS 8
119/* Number of bytes to represent an element of the the curve p-256: */
120#define NUM_ECC_BYTES (uECC_WORD_SIZE*NUM_ECC_WORDS)
Manuel Pégourié-Gonnard78a7e352019-11-04 12:31:06 +0100121#define NUM_ECC_BITS 256
Jarno Lamsa18987a42019-04-24 15:40:43 +0300122
123/* structure that represents an elliptic curve (e.g. p256):*/
124struct uECC_Curve_t;
125typedef const struct uECC_Curve_t * uECC_Curve;
126struct uECC_Curve_t {
Jarno Lamsa18987a42019-04-24 15:40:43 +0300127 bitcount_t num_n_bits;
128 uECC_word_t p[NUM_ECC_WORDS];
129 uECC_word_t n[NUM_ECC_WORDS];
130 uECC_word_t G[NUM_ECC_WORDS * 2];
131 uECC_word_t b[NUM_ECC_WORDS];
Jarno Lamsa18987a42019-04-24 15:40:43 +0300132};
133
134/*
135 * @brief computes doubling of point ion jacobian coordinates, in place.
136 * @param X1 IN/OUT -- x coordinate
137 * @param Y1 IN/OUT -- y coordinate
138 * @param Z1 IN/OUT -- z coordinate
139 * @param curve IN -- elliptic curve
140 */
141void double_jacobian_default(uECC_word_t * X1, uECC_word_t * Y1,
142 uECC_word_t * Z1, uECC_Curve curve);
143
144/*
Jarno Lamsa18987a42019-04-24 15:40:43 +0300145 * @brief Computes result = product % curve_p
146 * from http://www.nsa.gov/ia/_files/nist-routines.pdf
147 * @param result OUT -- product % curve_p
148 * @param product IN -- value to be reduced mod curve_p
149 */
150void vli_mmod_fast_secp256r1(unsigned int *result, unsigned int *product);
151
152/* Bytes to words ordering: */
153#define BYTES_TO_WORDS_8(a, b, c, d, e, f, g, h) 0x##d##c##b##a, 0x##h##g##f##e
154#define BYTES_TO_WORDS_4(a, b, c, d) 0x##d##c##b##a
155#define BITS_TO_WORDS(num_bits) \
156 ((num_bits + ((uECC_WORD_SIZE * 8) - 1)) / (uECC_WORD_SIZE * 8))
157#define BITS_TO_BYTES(num_bits) ((num_bits + 7) / 8)
158
159/* definition of curve NIST p-256: */
160static const struct uECC_Curve_t curve_secp256r1 = {
Jarno Lamsa18987a42019-04-24 15:40:43 +0300161 256, /* num_n_bits */ {
162 BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF),
163 BYTES_TO_WORDS_8(FF, FF, FF, FF, 00, 00, 00, 00),
164 BYTES_TO_WORDS_8(00, 00, 00, 00, 00, 00, 00, 00),
165 BYTES_TO_WORDS_8(01, 00, 00, 00, FF, FF, FF, FF)
166 }, {
167 BYTES_TO_WORDS_8(51, 25, 63, FC, C2, CA, B9, F3),
168 BYTES_TO_WORDS_8(84, 9E, 17, A7, AD, FA, E6, BC),
169 BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF),
170 BYTES_TO_WORDS_8(00, 00, 00, 00, FF, FF, FF, FF)
171 }, {
172 BYTES_TO_WORDS_8(96, C2, 98, D8, 45, 39, A1, F4),
173 BYTES_TO_WORDS_8(A0, 33, EB, 2D, 81, 7D, 03, 77),
174 BYTES_TO_WORDS_8(F2, 40, A4, 63, E5, E6, BC, F8),
175 BYTES_TO_WORDS_8(47, 42, 2C, E1, F2, D1, 17, 6B),
176
177 BYTES_TO_WORDS_8(F5, 51, BF, 37, 68, 40, B6, CB),
178 BYTES_TO_WORDS_8(CE, 5E, 31, 6B, 57, 33, CE, 2B),
179 BYTES_TO_WORDS_8(16, 9E, 0F, 7C, 4A, EB, E7, 8E),
180 BYTES_TO_WORDS_8(9B, 7F, 1A, FE, E2, 42, E3, 4F)
181 }, {
182 BYTES_TO_WORDS_8(4B, 60, D2, 27, 3E, 3C, CE, 3B),
183 BYTES_TO_WORDS_8(F6, B0, 53, CC, B0, 06, 1D, 65),
184 BYTES_TO_WORDS_8(BC, 86, 98, 76, 55, BD, EB, B3),
185 BYTES_TO_WORDS_8(E7, 93, 3A, AA, D8, 35, C6, 5A)
186 },
Jarno Lamsa18987a42019-04-24 15:40:43 +0300187};
188
189uECC_Curve uECC_secp256r1(void);
190
191/*
192 * @brief Generates a random integer in the range 0 < random < top.
193 * Both random and top have num_words words.
194 * @param random OUT -- random integer in the range 0 < random < top
195 * @param top IN -- upper limit
196 * @param num_words IN -- number of words
197 * @return a random integer in the range 0 < random < top
198 */
199int uECC_generate_random_int(uECC_word_t *random, const uECC_word_t *top,
200 wordcount_t num_words);
201
202
203/* uECC_RNG_Function type
204 * The RNG function should fill 'size' random bytes into 'dest'. It should
205 * return 1 if 'dest' was filled with random data, or 0 if the random data could
206 * not be generated. The filled-in values should be either truly random, or from
207 * a cryptographically-secure PRNG.
208 *
209 * A correctly functioning RNG function must be set (using uECC_set_rng())
210 * before calling uECC_make_key() or uECC_sign().
211 *
212 * Setting a correctly functioning RNG function improves the resistance to
213 * side-channel attacks for uECC_shared_secret().
214 *
215 * A correct RNG function is set by default. If you are building on another
216 * POSIX-compliant system that supports /dev/random or /dev/urandom, you can
217 * define uECC_POSIX to use the predefined RNG.
218 */
219typedef int(*uECC_RNG_Function)(uint8_t *dest, unsigned int size);
220
221/*
222 * @brief Set the function that will be used to generate random bytes. The RNG
223 * function should return 1 if the random data was generated, or 0 if the random
224 * data could not be generated.
225 *
226 * @note On platforms where there is no predefined RNG function, this must be
227 * called before uECC_make_key() or uECC_sign() are used.
228 *
229 * @param rng_function IN -- function that will be used to generate random bytes
230 */
231void uECC_set_rng(uECC_RNG_Function rng_function);
232
233/*
234 * @brief provides current uECC_RNG_Function.
235 * @return Returns the function that will be used to generate random bytes.
236 */
237uECC_RNG_Function uECC_get_rng(void);
238
239/*
240 * @brief computes the size of a private key for the curve in bytes.
241 * @param curve IN -- elliptic curve
242 * @return size of a private key for the curve in bytes.
243 */
244int uECC_curve_private_key_size(uECC_Curve curve);
245
246/*
247 * @brief computes the size of a public key for the curve in bytes.
248 * @param curve IN -- elliptic curve
249 * @return the size of a public key for the curve in bytes.
250 */
251int uECC_curve_public_key_size(uECC_Curve curve);
252
253/*
254 * @brief Compute the corresponding public key for a private key.
255 * @param private_key IN -- The private key to compute the public key for
256 * @param public_key OUT -- Will be filled in with the corresponding public key
257 * @param curve
258 * @return Returns 1 if key was computed successfully, 0 if an error occurred.
259 */
260int uECC_compute_public_key(const uint8_t *private_key,
261 uint8_t *public_key, uECC_Curve curve);
262
263/*
264 * @brief Compute public-key.
265 * @return corresponding public-key.
266 * @param result OUT -- public-key
267 * @param private_key IN -- private-key
268 * @param curve IN -- elliptic curve
269 */
270uECC_word_t EccPoint_compute_public_key(uECC_word_t *result,
271 uECC_word_t *private_key, uECC_Curve curve);
272
273/*
Manuel Pégourié-Gonnardef238282019-11-04 11:19:30 +0100274 * @brief Point multiplication algorithm using Montgomery's ladder with co-Z
275 * coordinates. See http://eprint.iacr.org/2011/338.pdf.
276 * Uses scalar regularization and coordinate randomization (if a global RNG
277 * function is set) in order to protect against some side channel attacks.
278 * @note Result may overlap point.
279 * @param result OUT -- returns scalar*point
280 * @param point IN -- elliptic curve point
281 * @param scalar IN -- scalar
282 * @param curve IN -- elliptic curve
283 */
284int EccPoint_mult_safer(uECC_word_t * result, const uECC_word_t * point,
285 const uECC_word_t * scalar, uECC_Curve curve);
286
287/*
Jarno Lamsa18987a42019-04-24 15:40:43 +0300288 * @brief Constant-time comparison to zero - secure way to compare long integers
289 * @param vli IN -- very long integer
290 * @param num_words IN -- number of words in the vli
291 * @return 1 if vli == 0, 0 otherwise.
292 */
Manuel Pégourié-Gonnardf3899fc2019-11-04 12:44:43 +0100293uECC_word_t uECC_vli_isZero(const uECC_word_t *vli);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300294
295/*
296 * @brief Check if 'point' is the point at infinity
297 * @param point IN -- elliptic curve point
298 * @param curve IN -- elliptic curve
299 * @return if 'point' is the point at infinity, 0 otherwise.
300 */
301uECC_word_t EccPoint_isZero(const uECC_word_t *point, uECC_Curve curve);
302
303/*
304 * @brief computes the sign of left - right, in constant time.
305 * @param left IN -- left term to be compared
306 * @param right IN -- right term to be compared
307 * @param num_words IN -- number of words
308 * @return the sign of left - right
309 */
Manuel Pégourié-Gonnard2cb3eea2019-11-04 14:43:35 +0100310cmpresult_t uECC_vli_cmp(const uECC_word_t *left, const uECC_word_t *right);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300311
312/*
313 * @brief computes sign of left - right, not in constant time.
314 * @note should not be used if inputs are part of a secret
315 * @param left IN -- left term to be compared
316 * @param right IN -- right term to be compared
317 * @param num_words IN -- number of words
318 * @return the sign of left - right
319 */
Manuel Pégourié-Gonnarda7521912019-11-04 14:31:35 +0100320cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left, const uECC_word_t *right);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300321
322/*
323 * @brief Computes result = (left - right) % mod.
324 * @note Assumes that (left < mod) and (right < mod), and that result does not
325 * overlap mod.
326 * @param result OUT -- (left - right) % mod
327 * @param left IN -- leftright term in modular subtraction
328 * @param right IN -- right term in modular subtraction
329 * @param mod IN -- mod
330 * @param num_words IN -- number of words
331 */
332void uECC_vli_modSub(uECC_word_t *result, const uECC_word_t *left,
Manuel Pégourié-Gonnard1b0875d2019-11-04 14:50:54 +0100333 const uECC_word_t *right, const uECC_word_t *mod);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300334
335/*
336 * @brief Computes P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) or
337 * P => P', Q => P + Q
338 * @note assumes Input P = (x1, y1, Z), Q = (x2, y2, Z)
339 * @param X1 IN -- x coordinate of P
340 * @param Y1 IN -- y coordinate of P
341 * @param X2 IN -- x coordinate of Q
342 * @param Y2 IN -- y coordinate of Q
343 * @param curve IN -- elliptic curve
344 */
345void XYcZ_add(uECC_word_t * X1, uECC_word_t * Y1, uECC_word_t * X2,
346 uECC_word_t * Y2, uECC_Curve curve);
347
348/*
349 * @brief Computes (x1 * z^2, y1 * z^3)
350 * @param X1 IN -- previous x1 coordinate
351 * @param Y1 IN -- previous y1 coordinate
352 * @param Z IN -- z value
353 * @param curve IN -- elliptic curve
354 */
Manuel Pégourié-Gonnardc3ec14c2019-11-04 12:12:00 +0100355void apply_z(uECC_word_t * X1, uECC_word_t * Y1, const uECC_word_t * const Z);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300356
357/*
358 * @brief Check if bit is set.
359 * @return Returns nonzero if bit 'bit' of vli is set.
360 * @warning It is assumed that the value provided in 'bit' is within the
361 * boundaries of the word-array 'vli'.
362 * @note The bit ordering layout assumed for vli is: {31, 30, ..., 0},
363 * {63, 62, ..., 32}, {95, 94, ..., 64}, {127, 126,..., 96} for a vli consisting
364 * of 4 uECC_word_t elements.
365 */
366uECC_word_t uECC_vli_testBit(const uECC_word_t *vli, bitcount_t bit);
367
368/*
369 * @brief Computes result = product % mod, where product is 2N words long.
370 * @param result OUT -- product % mod
371 * @param mod IN -- module
372 * @param num_words IN -- number of words
373 * @warning Currently only designed to work for curve_p or curve_n.
374 */
375void uECC_vli_mmod(uECC_word_t *result, uECC_word_t *product,
Manuel Pégourié-Gonnard10349e42019-11-04 14:57:53 +0100376 const uECC_word_t *mod);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300377
378/*
379 * @brief Computes modular product (using curve->mmod_fast)
380 * @param result OUT -- (left * right) mod % curve_p
381 * @param left IN -- left term in product
382 * @param right IN -- right term in product
383 * @param curve IN -- elliptic curve
384 */
385void uECC_vli_modMult_fast(uECC_word_t *result, const uECC_word_t *left,
Manuel Pégourié-Gonnardc3ec14c2019-11-04 12:12:00 +0100386 const uECC_word_t *right);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300387
388/*
389 * @brief Computes result = left - right.
390 * @note Can modify in place.
391 * @param result OUT -- left - right
392 * @param left IN -- left term in subtraction
393 * @param right IN -- right term in subtraction
394 * @param num_words IN -- number of words
395 * @return borrow
396 */
397uECC_word_t uECC_vli_sub(uECC_word_t *result, const uECC_word_t *left,
Manuel Pégourié-Gonnard129b42e2019-11-04 14:41:45 +0100398 const uECC_word_t *right);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300399
400/*
401 * @brief Constant-time comparison function(secure way to compare long ints)
402 * @param left IN -- left term in comparison
403 * @param right IN -- right term in comparison
404 * @param num_words IN -- number of words
Manuel Pégourié-Gonnard2b6312b2019-11-06 10:42:02 +0100405 * @return Returns 0 if left == right, non-zero otherwise.
Jarno Lamsa18987a42019-04-24 15:40:43 +0300406 */
Manuel Pégourié-Gonnard2eca3d32019-11-04 14:33:09 +0100407uECC_word_t uECC_vli_equal(const uECC_word_t *left, const uECC_word_t *right);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300408
409/*
410 * @brief Computes (left * right) % mod
411 * @param result OUT -- (left * right) % mod
412 * @param left IN -- left term in product
413 * @param right IN -- right term in product
414 * @param mod IN -- mod
415 * @param num_words IN -- number of words
416 */
417void uECC_vli_modMult(uECC_word_t *result, const uECC_word_t *left,
Manuel Pégourié-Gonnard3e20adf2019-11-04 15:00:43 +0100418 const uECC_word_t *right, const uECC_word_t *mod);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300419
420/*
421 * @brief Computes (1 / input) % mod
422 * @note All VLIs are the same size.
423 * @note See "Euclid's GCD to Montgomery Multiplication to the Great Divide"
424 * @param result OUT -- (1 / input) % mod
425 * @param input IN -- value to be modular inverted
426 * @param mod IN -- mod
427 * @param num_words -- number of words
428 */
429void uECC_vli_modInv(uECC_word_t *result, const uECC_word_t *input,
Manuel Pégourié-Gonnard91353482019-11-04 15:04:20 +0100430 const uECC_word_t *mod);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300431
432/*
433 * @brief Sets dest = src.
434 * @param dest OUT -- destination buffer
435 * @param src IN -- origin buffer
436 * @param num_words IN -- number of words
437 */
Manuel Pégourié-Gonnardcbbb0f02019-11-04 13:02:04 +0100438void uECC_vli_set(uECC_word_t *dest, const uECC_word_t *src);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300439
440/*
441 * @brief Computes (left + right) % mod.
442 * @note Assumes that (left < mod) and right < mod), and that result does not
443 * overlap mod.
444 * @param result OUT -- (left + right) % mod.
445 * @param left IN -- left term in addition
446 * @param right IN -- right term in addition
447 * @param mod IN -- mod
448 * @param num_words IN -- number of words
449 */
450void uECC_vli_modAdd(uECC_word_t *result, const uECC_word_t *left,
Manuel Pégourié-Gonnard0779be72019-11-04 14:48:22 +0100451 const uECC_word_t *right, const uECC_word_t *mod);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300452
453/*
454 * @brief Counts the number of bits required to represent vli.
455 * @param vli IN -- very long integer
456 * @param max_words IN -- number of words
457 * @return number of bits in given vli
458 */
Manuel Pégourié-Gonnard2bf5a122019-11-04 12:56:59 +0100459bitcount_t uECC_vli_numBits(const uECC_word_t *vli);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300460
461/*
462 * @brief Erases (set to 0) vli
463 * @param vli IN -- very long integer
464 * @param num_words IN -- number of words
465 */
Manuel Pégourié-Gonnard94e48492019-11-04 12:47:28 +0100466void uECC_vli_clear(uECC_word_t *vli);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300467
468/*
469 * @brief check if it is a valid point in the curve
470 * @param point IN -- point to be checked
471 * @param curve IN -- elliptic curve
472 * @return 0 if point is valid
473 * @exception returns -1 if it is a point at infinity
474 * @exception returns -2 if x or y is smaller than p,
475 * @exception returns -3 if y^2 != x^3 + ax + b.
476 */
477int uECC_valid_point(const uECC_word_t *point, uECC_Curve curve);
478
479/*
480 * @brief Check if a public key is valid.
481 * @param public_key IN -- The public key to be checked.
482 * @return returns 0 if the public key is valid
483 * @exception returns -1 if it is a point at infinity
484 * @exception returns -2 if x or y is smaller than p,
485 * @exception returns -3 if y^2 != x^3 + ax + b.
486 * @exception returns -4 if public key is the group generator.
487 *
488 * @note Note that you are not required to check for a valid public key before
489 * using any other uECC functions. However, you may wish to avoid spending CPU
490 * time computing a shared secret or verifying a signature using an invalid
491 * public key.
492 */
493int uECC_valid_public_key(const uint8_t *public_key, uECC_Curve curve);
494
495 /*
496 * @brief Converts an integer in uECC native format to big-endian bytes.
497 * @param bytes OUT -- bytes representation
498 * @param num_bytes IN -- number of bytes
499 * @param native IN -- uECC native representation
500 */
501void uECC_vli_nativeToBytes(uint8_t *bytes, int num_bytes,
502 const unsigned int *native);
503
504/*
505 * @brief Converts big-endian bytes to an integer in uECC native format.
506 * @param native OUT -- uECC native representation
507 * @param bytes IN -- bytes representation
508 * @param num_bytes IN -- number of bytes
509 */
510void uECC_vli_bytesToNative(unsigned int *native, const uint8_t *bytes,
511 int num_bytes);
512
513#ifdef __cplusplus
514}
515#endif
516
517#endif /* __TC_UECC_H__ */
Manuel Pégourié-Gonnardafdc1b52019-05-09 11:24:11 +0200518#endif /* MBEDTLS_USE_TINYCRYPT */