Jarno Lamsa | 18987a4 | 2019-04-24 15:40:43 +0300 | [diff] [blame] | 1 | /* ecc.h - TinyCrypt interface to common ECC functions */ |
| 2 | |
Simon Butcher | 92c3d1f | 2019-09-09 17:25:08 +0100 | [diff] [blame] | 3 | /* |
| 4 | * Copyright (c) 2019, Arm Limited (or its affiliates), All Rights Reserved. |
| 5 | * SPDX-License-Identifier: BSD-3-Clause |
| 6 | */ |
| 7 | |
Jarno Lamsa | 18987a4 | 2019-04-24 15:40:43 +0300 | [diff] [blame] | 8 | /* Copyright (c) 2014, Kenneth MacKay |
| 9 | * All rights reserved. |
| 10 | * |
| 11 | * Redistribution and use in source and binary forms, with or without |
| 12 | * modification, are permitted provided that the following conditions are met: |
| 13 | * |
| 14 | * * Redistributions of source code must retain the above copyright notice, this |
| 15 | * list of conditions and the following disclaimer. |
| 16 | * |
| 17 | * * Redistributions in binary form must reproduce the above copyright notice, |
| 18 | * this list of conditions and the following disclaimer in the documentation |
| 19 | * and/or other materials provided with the distribution. |
| 20 | * |
| 21 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 22 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 23 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 24 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE |
| 25 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 26 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 27 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 28 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 29 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 30 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 31 | * POSSIBILITY OF SUCH DAMAGE. |
| 32 | */ |
| 33 | |
| 34 | /* |
| 35 | * Copyright (C) 2017 by Intel Corporation, All Rights Reserved. |
| 36 | * |
| 37 | * Redistribution and use in source and binary forms, with or without |
| 38 | * modification, are permitted provided that the following conditions are met: |
| 39 | * |
| 40 | * - Redistributions of source code must retain the above copyright notice, |
| 41 | * this list of conditions and the following disclaimer. |
| 42 | * |
| 43 | * - Redistributions in binary form must reproduce the above copyright |
| 44 | * notice, this list of conditions and the following disclaimer in the |
| 45 | * documentation and/or other materials provided with the distribution. |
| 46 | * |
| 47 | * - Neither the name of Intel Corporation nor the names of its contributors |
| 48 | * may be used to endorse or promote products derived from this software |
| 49 | * without specific prior written permission. |
| 50 | * |
| 51 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 52 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 53 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 54 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 55 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 56 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 57 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 58 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 59 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 60 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 61 | * POSSIBILITY OF SUCH DAMAGE. |
| 62 | */ |
| 63 | |
| 64 | /** |
| 65 | * @file |
| 66 | * @brief -- Interface to common ECC functions. |
| 67 | * |
| 68 | * Overview: This software is an implementation of common functions |
| 69 | * necessary to elliptic curve cryptography. This implementation uses |
| 70 | * curve NIST p-256. |
| 71 | * |
| 72 | * Security: The curve NIST p-256 provides approximately 128 bits of security. |
| 73 | * |
| 74 | */ |
| 75 | |
Manuel Pégourié-Gonnard | afdc1b5 | 2019-05-09 11:24:11 +0200 | [diff] [blame] | 76 | #if defined(MBEDTLS_USE_TINYCRYPT) |
Jarno Lamsa | 18987a4 | 2019-04-24 15:40:43 +0300 | [diff] [blame] | 77 | #ifndef __TC_UECC_H__ |
| 78 | #define __TC_UECC_H__ |
| 79 | |
| 80 | #include <stdint.h> |
| 81 | |
| 82 | #ifdef __cplusplus |
| 83 | extern "C" { |
| 84 | #endif |
| 85 | |
Manuel Pégourié-Gonnard | c05f150 | 2019-11-06 10:15:26 +0100 | [diff] [blame] | 86 | /* Return values for functions, chosen with large Hamming distances between |
| 87 | * them (especially to SUCESS) to mitigate the impact of fault injection |
| 88 | * attacks flipping a low number of bits. */ |
| 89 | #define UECC_SUCCESS 0 |
| 90 | #define UECC_FAILURE 0x75555555 |
| 91 | #define UECC_ATTACK_DETECTED 0x7aaaaaaa |
| 92 | |
Jarno Lamsa | 18987a4 | 2019-04-24 15:40:43 +0300 | [diff] [blame] | 93 | /* Word size (4 bytes considering 32-bits architectures) */ |
| 94 | #define uECC_WORD_SIZE 4 |
| 95 | |
| 96 | /* setting max number of calls to prng: */ |
| 97 | #ifndef uECC_RNG_MAX_TRIES |
| 98 | #define uECC_RNG_MAX_TRIES 64 |
| 99 | #endif |
| 100 | |
| 101 | /* defining data types to store word and bit counts: */ |
| 102 | typedef int8_t wordcount_t; |
| 103 | typedef int16_t bitcount_t; |
| 104 | /* defining data type for comparison result: */ |
| 105 | typedef int8_t cmpresult_t; |
| 106 | /* defining data type to store ECC coordinate/point in 32bits words: */ |
| 107 | typedef unsigned int uECC_word_t; |
| 108 | /* defining data type to store an ECC coordinate/point in 64bits words: */ |
| 109 | typedef uint64_t uECC_dword_t; |
| 110 | |
| 111 | /* defining masks useful for ecc computations: */ |
| 112 | #define HIGH_BIT_SET 0x80000000 |
| 113 | #define uECC_WORD_BITS 32 |
| 114 | #define uECC_WORD_BITS_SHIFT 5 |
| 115 | #define uECC_WORD_BITS_MASK 0x01F |
| 116 | |
| 117 | /* Number of words of 32 bits to represent an element of the the curve p-256: */ |
| 118 | #define NUM_ECC_WORDS 8 |
| 119 | /* Number of bytes to represent an element of the the curve p-256: */ |
| 120 | #define NUM_ECC_BYTES (uECC_WORD_SIZE*NUM_ECC_WORDS) |
Manuel Pégourié-Gonnard | 78a7e35 | 2019-11-04 12:31:06 +0100 | [diff] [blame] | 121 | #define NUM_ECC_BITS 256 |
Jarno Lamsa | 18987a4 | 2019-04-24 15:40:43 +0300 | [diff] [blame] | 122 | |
| 123 | /* structure that represents an elliptic curve (e.g. p256):*/ |
| 124 | struct uECC_Curve_t; |
| 125 | typedef const struct uECC_Curve_t * uECC_Curve; |
| 126 | struct uECC_Curve_t { |
| 127 | wordcount_t num_words; |
| 128 | wordcount_t num_bytes; |
| 129 | bitcount_t num_n_bits; |
| 130 | uECC_word_t p[NUM_ECC_WORDS]; |
| 131 | uECC_word_t n[NUM_ECC_WORDS]; |
| 132 | uECC_word_t G[NUM_ECC_WORDS * 2]; |
| 133 | uECC_word_t b[NUM_ECC_WORDS]; |
| 134 | void (*double_jacobian)(uECC_word_t * X1, uECC_word_t * Y1, uECC_word_t * Z1, |
| 135 | uECC_Curve curve); |
| 136 | void (*x_side)(uECC_word_t *result, const uECC_word_t *x, uECC_Curve curve); |
| 137 | void (*mmod_fast)(uECC_word_t *result, uECC_word_t *product); |
| 138 | }; |
| 139 | |
| 140 | /* |
| 141 | * @brief computes doubling of point ion jacobian coordinates, in place. |
| 142 | * @param X1 IN/OUT -- x coordinate |
| 143 | * @param Y1 IN/OUT -- y coordinate |
| 144 | * @param Z1 IN/OUT -- z coordinate |
| 145 | * @param curve IN -- elliptic curve |
| 146 | */ |
| 147 | void double_jacobian_default(uECC_word_t * X1, uECC_word_t * Y1, |
| 148 | uECC_word_t * Z1, uECC_Curve curve); |
| 149 | |
| 150 | /* |
| 151 | * @brief Computes x^3 + ax + b. result must not overlap x. |
| 152 | * @param result OUT -- x^3 + ax + b |
| 153 | * @param x IN -- value of x |
| 154 | * @param curve IN -- elliptic curve |
| 155 | */ |
| 156 | void x_side_default(uECC_word_t *result, const uECC_word_t *x, |
| 157 | uECC_Curve curve); |
| 158 | |
| 159 | /* |
| 160 | * @brief Computes result = product % curve_p |
| 161 | * from http://www.nsa.gov/ia/_files/nist-routines.pdf |
| 162 | * @param result OUT -- product % curve_p |
| 163 | * @param product IN -- value to be reduced mod curve_p |
| 164 | */ |
| 165 | void vli_mmod_fast_secp256r1(unsigned int *result, unsigned int *product); |
| 166 | |
| 167 | /* Bytes to words ordering: */ |
| 168 | #define BYTES_TO_WORDS_8(a, b, c, d, e, f, g, h) 0x##d##c##b##a, 0x##h##g##f##e |
| 169 | #define BYTES_TO_WORDS_4(a, b, c, d) 0x##d##c##b##a |
| 170 | #define BITS_TO_WORDS(num_bits) \ |
| 171 | ((num_bits + ((uECC_WORD_SIZE * 8) - 1)) / (uECC_WORD_SIZE * 8)) |
| 172 | #define BITS_TO_BYTES(num_bits) ((num_bits + 7) / 8) |
| 173 | |
| 174 | /* definition of curve NIST p-256: */ |
| 175 | static const struct uECC_Curve_t curve_secp256r1 = { |
| 176 | NUM_ECC_WORDS, |
| 177 | NUM_ECC_BYTES, |
| 178 | 256, /* num_n_bits */ { |
| 179 | BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF), |
| 180 | BYTES_TO_WORDS_8(FF, FF, FF, FF, 00, 00, 00, 00), |
| 181 | BYTES_TO_WORDS_8(00, 00, 00, 00, 00, 00, 00, 00), |
| 182 | BYTES_TO_WORDS_8(01, 00, 00, 00, FF, FF, FF, FF) |
| 183 | }, { |
| 184 | BYTES_TO_WORDS_8(51, 25, 63, FC, C2, CA, B9, F3), |
| 185 | BYTES_TO_WORDS_8(84, 9E, 17, A7, AD, FA, E6, BC), |
| 186 | BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF), |
| 187 | BYTES_TO_WORDS_8(00, 00, 00, 00, FF, FF, FF, FF) |
| 188 | }, { |
| 189 | BYTES_TO_WORDS_8(96, C2, 98, D8, 45, 39, A1, F4), |
| 190 | BYTES_TO_WORDS_8(A0, 33, EB, 2D, 81, 7D, 03, 77), |
| 191 | BYTES_TO_WORDS_8(F2, 40, A4, 63, E5, E6, BC, F8), |
| 192 | BYTES_TO_WORDS_8(47, 42, 2C, E1, F2, D1, 17, 6B), |
| 193 | |
| 194 | BYTES_TO_WORDS_8(F5, 51, BF, 37, 68, 40, B6, CB), |
| 195 | BYTES_TO_WORDS_8(CE, 5E, 31, 6B, 57, 33, CE, 2B), |
| 196 | BYTES_TO_WORDS_8(16, 9E, 0F, 7C, 4A, EB, E7, 8E), |
| 197 | BYTES_TO_WORDS_8(9B, 7F, 1A, FE, E2, 42, E3, 4F) |
| 198 | }, { |
| 199 | BYTES_TO_WORDS_8(4B, 60, D2, 27, 3E, 3C, CE, 3B), |
| 200 | BYTES_TO_WORDS_8(F6, B0, 53, CC, B0, 06, 1D, 65), |
| 201 | BYTES_TO_WORDS_8(BC, 86, 98, 76, 55, BD, EB, B3), |
| 202 | BYTES_TO_WORDS_8(E7, 93, 3A, AA, D8, 35, C6, 5A) |
| 203 | }, |
| 204 | &double_jacobian_default, |
| 205 | &x_side_default, |
| 206 | &vli_mmod_fast_secp256r1 |
| 207 | }; |
| 208 | |
| 209 | uECC_Curve uECC_secp256r1(void); |
| 210 | |
| 211 | /* |
| 212 | * @brief Generates a random integer in the range 0 < random < top. |
| 213 | * Both random and top have num_words words. |
| 214 | * @param random OUT -- random integer in the range 0 < random < top |
| 215 | * @param top IN -- upper limit |
| 216 | * @param num_words IN -- number of words |
| 217 | * @return a random integer in the range 0 < random < top |
| 218 | */ |
| 219 | int uECC_generate_random_int(uECC_word_t *random, const uECC_word_t *top, |
| 220 | wordcount_t num_words); |
| 221 | |
| 222 | |
| 223 | /* uECC_RNG_Function type |
| 224 | * The RNG function should fill 'size' random bytes into 'dest'. It should |
| 225 | * return 1 if 'dest' was filled with random data, or 0 if the random data could |
| 226 | * not be generated. The filled-in values should be either truly random, or from |
| 227 | * a cryptographically-secure PRNG. |
| 228 | * |
| 229 | * A correctly functioning RNG function must be set (using uECC_set_rng()) |
| 230 | * before calling uECC_make_key() or uECC_sign(). |
| 231 | * |
| 232 | * Setting a correctly functioning RNG function improves the resistance to |
| 233 | * side-channel attacks for uECC_shared_secret(). |
| 234 | * |
| 235 | * A correct RNG function is set by default. If you are building on another |
| 236 | * POSIX-compliant system that supports /dev/random or /dev/urandom, you can |
| 237 | * define uECC_POSIX to use the predefined RNG. |
| 238 | */ |
| 239 | typedef int(*uECC_RNG_Function)(uint8_t *dest, unsigned int size); |
| 240 | |
| 241 | /* |
| 242 | * @brief Set the function that will be used to generate random bytes. The RNG |
| 243 | * function should return 1 if the random data was generated, or 0 if the random |
| 244 | * data could not be generated. |
| 245 | * |
| 246 | * @note On platforms where there is no predefined RNG function, this must be |
| 247 | * called before uECC_make_key() or uECC_sign() are used. |
| 248 | * |
| 249 | * @param rng_function IN -- function that will be used to generate random bytes |
| 250 | */ |
| 251 | void uECC_set_rng(uECC_RNG_Function rng_function); |
| 252 | |
| 253 | /* |
| 254 | * @brief provides current uECC_RNG_Function. |
| 255 | * @return Returns the function that will be used to generate random bytes. |
| 256 | */ |
| 257 | uECC_RNG_Function uECC_get_rng(void); |
| 258 | |
| 259 | /* |
| 260 | * @brief computes the size of a private key for the curve in bytes. |
| 261 | * @param curve IN -- elliptic curve |
| 262 | * @return size of a private key for the curve in bytes. |
| 263 | */ |
| 264 | int uECC_curve_private_key_size(uECC_Curve curve); |
| 265 | |
| 266 | /* |
| 267 | * @brief computes the size of a public key for the curve in bytes. |
| 268 | * @param curve IN -- elliptic curve |
| 269 | * @return the size of a public key for the curve in bytes. |
| 270 | */ |
| 271 | int uECC_curve_public_key_size(uECC_Curve curve); |
| 272 | |
| 273 | /* |
| 274 | * @brief Compute the corresponding public key for a private key. |
| 275 | * @param private_key IN -- The private key to compute the public key for |
| 276 | * @param public_key OUT -- Will be filled in with the corresponding public key |
| 277 | * @param curve |
| 278 | * @return Returns 1 if key was computed successfully, 0 if an error occurred. |
| 279 | */ |
| 280 | int uECC_compute_public_key(const uint8_t *private_key, |
| 281 | uint8_t *public_key, uECC_Curve curve); |
| 282 | |
| 283 | /* |
| 284 | * @brief Compute public-key. |
| 285 | * @return corresponding public-key. |
| 286 | * @param result OUT -- public-key |
| 287 | * @param private_key IN -- private-key |
| 288 | * @param curve IN -- elliptic curve |
| 289 | */ |
| 290 | uECC_word_t EccPoint_compute_public_key(uECC_word_t *result, |
| 291 | uECC_word_t *private_key, uECC_Curve curve); |
| 292 | |
| 293 | /* |
Manuel Pégourié-Gonnard | ef23828 | 2019-11-04 11:19:30 +0100 | [diff] [blame] | 294 | * @brief Point multiplication algorithm using Montgomery's ladder with co-Z |
| 295 | * coordinates. See http://eprint.iacr.org/2011/338.pdf. |
| 296 | * Uses scalar regularization and coordinate randomization (if a global RNG |
| 297 | * function is set) in order to protect against some side channel attacks. |
| 298 | * @note Result may overlap point. |
| 299 | * @param result OUT -- returns scalar*point |
| 300 | * @param point IN -- elliptic curve point |
| 301 | * @param scalar IN -- scalar |
| 302 | * @param curve IN -- elliptic curve |
| 303 | */ |
| 304 | int EccPoint_mult_safer(uECC_word_t * result, const uECC_word_t * point, |
| 305 | const uECC_word_t * scalar, uECC_Curve curve); |
| 306 | |
| 307 | /* |
Jarno Lamsa | 18987a4 | 2019-04-24 15:40:43 +0300 | [diff] [blame] | 308 | * @brief Constant-time comparison to zero - secure way to compare long integers |
| 309 | * @param vli IN -- very long integer |
| 310 | * @param num_words IN -- number of words in the vli |
| 311 | * @return 1 if vli == 0, 0 otherwise. |
| 312 | */ |
Manuel Pégourié-Gonnard | f3899fc | 2019-11-04 12:44:43 +0100 | [diff] [blame] | 313 | uECC_word_t uECC_vli_isZero(const uECC_word_t *vli); |
Jarno Lamsa | 18987a4 | 2019-04-24 15:40:43 +0300 | [diff] [blame] | 314 | |
| 315 | /* |
| 316 | * @brief Check if 'point' is the point at infinity |
| 317 | * @param point IN -- elliptic curve point |
| 318 | * @param curve IN -- elliptic curve |
| 319 | * @return if 'point' is the point at infinity, 0 otherwise. |
| 320 | */ |
| 321 | uECC_word_t EccPoint_isZero(const uECC_word_t *point, uECC_Curve curve); |
| 322 | |
| 323 | /* |
| 324 | * @brief computes the sign of left - right, in constant time. |
| 325 | * @param left IN -- left term to be compared |
| 326 | * @param right IN -- right term to be compared |
| 327 | * @param num_words IN -- number of words |
| 328 | * @return the sign of left - right |
| 329 | */ |
Manuel Pégourié-Gonnard | 2cb3eea | 2019-11-04 14:43:35 +0100 | [diff] [blame] | 330 | cmpresult_t uECC_vli_cmp(const uECC_word_t *left, const uECC_word_t *right); |
Jarno Lamsa | 18987a4 | 2019-04-24 15:40:43 +0300 | [diff] [blame] | 331 | |
| 332 | /* |
| 333 | * @brief computes sign of left - right, not in constant time. |
| 334 | * @note should not be used if inputs are part of a secret |
| 335 | * @param left IN -- left term to be compared |
| 336 | * @param right IN -- right term to be compared |
| 337 | * @param num_words IN -- number of words |
| 338 | * @return the sign of left - right |
| 339 | */ |
Manuel Pégourié-Gonnard | a752191 | 2019-11-04 14:31:35 +0100 | [diff] [blame] | 340 | cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left, const uECC_word_t *right); |
Jarno Lamsa | 18987a4 | 2019-04-24 15:40:43 +0300 | [diff] [blame] | 341 | |
| 342 | /* |
| 343 | * @brief Computes result = (left - right) % mod. |
| 344 | * @note Assumes that (left < mod) and (right < mod), and that result does not |
| 345 | * overlap mod. |
| 346 | * @param result OUT -- (left - right) % mod |
| 347 | * @param left IN -- leftright term in modular subtraction |
| 348 | * @param right IN -- right term in modular subtraction |
| 349 | * @param mod IN -- mod |
| 350 | * @param num_words IN -- number of words |
| 351 | */ |
| 352 | void uECC_vli_modSub(uECC_word_t *result, const uECC_word_t *left, |
Manuel Pégourié-Gonnard | 1b0875d | 2019-11-04 14:50:54 +0100 | [diff] [blame] | 353 | const uECC_word_t *right, const uECC_word_t *mod); |
Jarno Lamsa | 18987a4 | 2019-04-24 15:40:43 +0300 | [diff] [blame] | 354 | |
| 355 | /* |
| 356 | * @brief Computes P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) or |
| 357 | * P => P', Q => P + Q |
| 358 | * @note assumes Input P = (x1, y1, Z), Q = (x2, y2, Z) |
| 359 | * @param X1 IN -- x coordinate of P |
| 360 | * @param Y1 IN -- y coordinate of P |
| 361 | * @param X2 IN -- x coordinate of Q |
| 362 | * @param Y2 IN -- y coordinate of Q |
| 363 | * @param curve IN -- elliptic curve |
| 364 | */ |
| 365 | void XYcZ_add(uECC_word_t * X1, uECC_word_t * Y1, uECC_word_t * X2, |
| 366 | uECC_word_t * Y2, uECC_Curve curve); |
| 367 | |
| 368 | /* |
| 369 | * @brief Computes (x1 * z^2, y1 * z^3) |
| 370 | * @param X1 IN -- previous x1 coordinate |
| 371 | * @param Y1 IN -- previous y1 coordinate |
| 372 | * @param Z IN -- z value |
| 373 | * @param curve IN -- elliptic curve |
| 374 | */ |
Manuel Pégourié-Gonnard | c3ec14c | 2019-11-04 12:12:00 +0100 | [diff] [blame] | 375 | void apply_z(uECC_word_t * X1, uECC_word_t * Y1, const uECC_word_t * const Z); |
Jarno Lamsa | 18987a4 | 2019-04-24 15:40:43 +0300 | [diff] [blame] | 376 | |
| 377 | /* |
| 378 | * @brief Check if bit is set. |
| 379 | * @return Returns nonzero if bit 'bit' of vli is set. |
| 380 | * @warning It is assumed that the value provided in 'bit' is within the |
| 381 | * boundaries of the word-array 'vli'. |
| 382 | * @note The bit ordering layout assumed for vli is: {31, 30, ..., 0}, |
| 383 | * {63, 62, ..., 32}, {95, 94, ..., 64}, {127, 126,..., 96} for a vli consisting |
| 384 | * of 4 uECC_word_t elements. |
| 385 | */ |
| 386 | uECC_word_t uECC_vli_testBit(const uECC_word_t *vli, bitcount_t bit); |
| 387 | |
| 388 | /* |
| 389 | * @brief Computes result = product % mod, where product is 2N words long. |
| 390 | * @param result OUT -- product % mod |
| 391 | * @param mod IN -- module |
| 392 | * @param num_words IN -- number of words |
| 393 | * @warning Currently only designed to work for curve_p or curve_n. |
| 394 | */ |
| 395 | void uECC_vli_mmod(uECC_word_t *result, uECC_word_t *product, |
Manuel Pégourié-Gonnard | 10349e4 | 2019-11-04 14:57:53 +0100 | [diff] [blame] | 396 | const uECC_word_t *mod); |
Jarno Lamsa | 18987a4 | 2019-04-24 15:40:43 +0300 | [diff] [blame] | 397 | |
| 398 | /* |
| 399 | * @brief Computes modular product (using curve->mmod_fast) |
| 400 | * @param result OUT -- (left * right) mod % curve_p |
| 401 | * @param left IN -- left term in product |
| 402 | * @param right IN -- right term in product |
| 403 | * @param curve IN -- elliptic curve |
| 404 | */ |
| 405 | void uECC_vli_modMult_fast(uECC_word_t *result, const uECC_word_t *left, |
Manuel Pégourié-Gonnard | c3ec14c | 2019-11-04 12:12:00 +0100 | [diff] [blame] | 406 | const uECC_word_t *right); |
Jarno Lamsa | 18987a4 | 2019-04-24 15:40:43 +0300 | [diff] [blame] | 407 | |
| 408 | /* |
| 409 | * @brief Computes result = left - right. |
| 410 | * @note Can modify in place. |
| 411 | * @param result OUT -- left - right |
| 412 | * @param left IN -- left term in subtraction |
| 413 | * @param right IN -- right term in subtraction |
| 414 | * @param num_words IN -- number of words |
| 415 | * @return borrow |
| 416 | */ |
| 417 | uECC_word_t uECC_vli_sub(uECC_word_t *result, const uECC_word_t *left, |
Manuel Pégourié-Gonnard | 129b42e | 2019-11-04 14:41:45 +0100 | [diff] [blame] | 418 | const uECC_word_t *right); |
Jarno Lamsa | 18987a4 | 2019-04-24 15:40:43 +0300 | [diff] [blame] | 419 | |
| 420 | /* |
| 421 | * @brief Constant-time comparison function(secure way to compare long ints) |
| 422 | * @param left IN -- left term in comparison |
| 423 | * @param right IN -- right term in comparison |
| 424 | * @param num_words IN -- number of words |
Manuel Pégourié-Gonnard | 2b6312b | 2019-11-06 10:42:02 +0100 | [diff] [blame^] | 425 | * @return Returns 0 if left == right, non-zero otherwise. |
Jarno Lamsa | 18987a4 | 2019-04-24 15:40:43 +0300 | [diff] [blame] | 426 | */ |
Manuel Pégourié-Gonnard | 2eca3d3 | 2019-11-04 14:33:09 +0100 | [diff] [blame] | 427 | uECC_word_t uECC_vli_equal(const uECC_word_t *left, const uECC_word_t *right); |
Jarno Lamsa | 18987a4 | 2019-04-24 15:40:43 +0300 | [diff] [blame] | 428 | |
| 429 | /* |
| 430 | * @brief Computes (left * right) % mod |
| 431 | * @param result OUT -- (left * right) % mod |
| 432 | * @param left IN -- left term in product |
| 433 | * @param right IN -- right term in product |
| 434 | * @param mod IN -- mod |
| 435 | * @param num_words IN -- number of words |
| 436 | */ |
| 437 | void uECC_vli_modMult(uECC_word_t *result, const uECC_word_t *left, |
Manuel Pégourié-Gonnard | 3e20adf | 2019-11-04 15:00:43 +0100 | [diff] [blame] | 438 | const uECC_word_t *right, const uECC_word_t *mod); |
Jarno Lamsa | 18987a4 | 2019-04-24 15:40:43 +0300 | [diff] [blame] | 439 | |
| 440 | /* |
| 441 | * @brief Computes (1 / input) % mod |
| 442 | * @note All VLIs are the same size. |
| 443 | * @note See "Euclid's GCD to Montgomery Multiplication to the Great Divide" |
| 444 | * @param result OUT -- (1 / input) % mod |
| 445 | * @param input IN -- value to be modular inverted |
| 446 | * @param mod IN -- mod |
| 447 | * @param num_words -- number of words |
| 448 | */ |
| 449 | void uECC_vli_modInv(uECC_word_t *result, const uECC_word_t *input, |
Manuel Pégourié-Gonnard | 9135348 | 2019-11-04 15:04:20 +0100 | [diff] [blame] | 450 | const uECC_word_t *mod); |
Jarno Lamsa | 18987a4 | 2019-04-24 15:40:43 +0300 | [diff] [blame] | 451 | |
| 452 | /* |
| 453 | * @brief Sets dest = src. |
| 454 | * @param dest OUT -- destination buffer |
| 455 | * @param src IN -- origin buffer |
| 456 | * @param num_words IN -- number of words |
| 457 | */ |
Manuel Pégourié-Gonnard | cbbb0f0 | 2019-11-04 13:02:04 +0100 | [diff] [blame] | 458 | void uECC_vli_set(uECC_word_t *dest, const uECC_word_t *src); |
Jarno Lamsa | 18987a4 | 2019-04-24 15:40:43 +0300 | [diff] [blame] | 459 | |
| 460 | /* |
| 461 | * @brief Computes (left + right) % mod. |
| 462 | * @note Assumes that (left < mod) and right < mod), and that result does not |
| 463 | * overlap mod. |
| 464 | * @param result OUT -- (left + right) % mod. |
| 465 | * @param left IN -- left term in addition |
| 466 | * @param right IN -- right term in addition |
| 467 | * @param mod IN -- mod |
| 468 | * @param num_words IN -- number of words |
| 469 | */ |
| 470 | void uECC_vli_modAdd(uECC_word_t *result, const uECC_word_t *left, |
Manuel Pégourié-Gonnard | 0779be7 | 2019-11-04 14:48:22 +0100 | [diff] [blame] | 471 | const uECC_word_t *right, const uECC_word_t *mod); |
Jarno Lamsa | 18987a4 | 2019-04-24 15:40:43 +0300 | [diff] [blame] | 472 | |
| 473 | /* |
| 474 | * @brief Counts the number of bits required to represent vli. |
| 475 | * @param vli IN -- very long integer |
| 476 | * @param max_words IN -- number of words |
| 477 | * @return number of bits in given vli |
| 478 | */ |
Manuel Pégourié-Gonnard | 2bf5a12 | 2019-11-04 12:56:59 +0100 | [diff] [blame] | 479 | bitcount_t uECC_vli_numBits(const uECC_word_t *vli); |
Jarno Lamsa | 18987a4 | 2019-04-24 15:40:43 +0300 | [diff] [blame] | 480 | |
| 481 | /* |
| 482 | * @brief Erases (set to 0) vli |
| 483 | * @param vli IN -- very long integer |
| 484 | * @param num_words IN -- number of words |
| 485 | */ |
Manuel Pégourié-Gonnard | 94e4849 | 2019-11-04 12:47:28 +0100 | [diff] [blame] | 486 | void uECC_vli_clear(uECC_word_t *vli); |
Jarno Lamsa | 18987a4 | 2019-04-24 15:40:43 +0300 | [diff] [blame] | 487 | |
| 488 | /* |
| 489 | * @brief check if it is a valid point in the curve |
| 490 | * @param point IN -- point to be checked |
| 491 | * @param curve IN -- elliptic curve |
| 492 | * @return 0 if point is valid |
| 493 | * @exception returns -1 if it is a point at infinity |
| 494 | * @exception returns -2 if x or y is smaller than p, |
| 495 | * @exception returns -3 if y^2 != x^3 + ax + b. |
| 496 | */ |
| 497 | int uECC_valid_point(const uECC_word_t *point, uECC_Curve curve); |
| 498 | |
| 499 | /* |
| 500 | * @brief Check if a public key is valid. |
| 501 | * @param public_key IN -- The public key to be checked. |
| 502 | * @return returns 0 if the public key is valid |
| 503 | * @exception returns -1 if it is a point at infinity |
| 504 | * @exception returns -2 if x or y is smaller than p, |
| 505 | * @exception returns -3 if y^2 != x^3 + ax + b. |
| 506 | * @exception returns -4 if public key is the group generator. |
| 507 | * |
| 508 | * @note Note that you are not required to check for a valid public key before |
| 509 | * using any other uECC functions. However, you may wish to avoid spending CPU |
| 510 | * time computing a shared secret or verifying a signature using an invalid |
| 511 | * public key. |
| 512 | */ |
| 513 | int uECC_valid_public_key(const uint8_t *public_key, uECC_Curve curve); |
| 514 | |
| 515 | /* |
| 516 | * @brief Converts an integer in uECC native format to big-endian bytes. |
| 517 | * @param bytes OUT -- bytes representation |
| 518 | * @param num_bytes IN -- number of bytes |
| 519 | * @param native IN -- uECC native representation |
| 520 | */ |
| 521 | void uECC_vli_nativeToBytes(uint8_t *bytes, int num_bytes, |
| 522 | const unsigned int *native); |
| 523 | |
| 524 | /* |
| 525 | * @brief Converts big-endian bytes to an integer in uECC native format. |
| 526 | * @param native OUT -- uECC native representation |
| 527 | * @param bytes IN -- bytes representation |
| 528 | * @param num_bytes IN -- number of bytes |
| 529 | */ |
| 530 | void uECC_vli_bytesToNative(unsigned int *native, const uint8_t *bytes, |
| 531 | int num_bytes); |
| 532 | |
| 533 | #ifdef __cplusplus |
| 534 | } |
| 535 | #endif |
| 536 | |
| 537 | #endif /* __TC_UECC_H__ */ |
Manuel Pégourié-Gonnard | afdc1b5 | 2019-05-09 11:24:11 +0200 | [diff] [blame] | 538 | #endif /* MBEDTLS_USE_TINYCRYPT */ |