blob: e20a1debd0e08e34697bc30240256b59d0c039ed [file] [log] [blame]
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +01001/*
2 * Elliptic curves over GF(p): curve-specific data and functions
3 *
4 * Copyright (C) 2006-2013, Brainspark B.V.
5 *
6 * This file is part of PolarSSL (http://www.polarssl.org)
7 * Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
8 *
9 * All rights reserved.
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 */
25
26#include "polarssl/config.h"
27
28#if defined(POLARSSL_ECP_C)
29
30#include "polarssl/ecp.h"
31
Paul Bakker498fd352013-12-02 22:17:24 +010032#if defined(_MSC_VER) && !defined(inline)
33#define inline _inline
34#else
35#if defined(__ARMCC_VERSION) && !defined(inline)
36#define inline __inline
37#endif /* __ARMCC_VERSION */
38#endif /*_MSC_VER */
39
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +010040#if defined(POLARSSL_HAVE_INT8)
41
42#define BYTES_TO_T_UINT( a, b, c, d, e, f, g, h ) \
43 a, b, c, d, e, f, g, h
44
45#elif defined(POLARSSL_HAVE_INT16)
46
47#define TWO_BYTES_TO_T_UINT( a, b ) \
48 ( (t_uint) a << 0 ) | \
49 ( (t_uint) b << 8 )
50#define BYTES_TO_T_UINT( a, b, c, d, e, f, g, h ) \
51 TWO_BYTES_TO_T_UINT( a, b ), \
52 TWO_BYTES_TO_T_UINT( c, d ), \
53 TWO_BYTES_TO_T_UINT( e, f ), \
54 TWO_BYTES_TO_T_UINT( g, h )
55
56#elif defined(POLARSSL_HAVE_INT32)
57
58#define FOUR_BYTES_TO_T_UINT( a, b, c, d ) \
59 ( (t_uint) a << 0 ) | \
60 ( (t_uint) b << 8 ) | \
61 ( (t_uint) c << 16 ) | \
62 ( (t_uint) d << 24 )
63#define BYTES_TO_T_UINT( a, b, c, d, e, f, g, h ) \
64 FOUR_BYTES_TO_T_UINT( a, b, c, d ) \
65 FOUR_BYTES_TO_T_UINT( e, f, g, h )
66
67#else /* 64-bits */
68
69#define BYTES_TO_T_UINT( a, b, c, d, e, f, g, h ) \
70 ( (t_uint) a << 0 ) | \
71 ( (t_uint) b << 8 ) | \
72 ( (t_uint) c << 16 ) | \
73 ( (t_uint) d << 24 ) | \
74 ( (t_uint) e << 32 ) | \
75 ( (t_uint) f << 40 ) | \
76 ( (t_uint) g << 48 ) | \
77 ( (t_uint) h << 56 )
78
79#endif /* bits in t_uint */
80
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +010081/*
82 * Domain parameters for secp192r1
83 */
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +010084static t_uint secp192r1_p[] = {
85 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
86 BYTES_TO_T_UINT( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
87 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
88};
89static t_uint *secp192r1_a = NULL;
90static t_uint secp192r1_b[] = {
91 BYTES_TO_T_UINT( 0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE ),
92 BYTES_TO_T_UINT( 0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F ),
93 BYTES_TO_T_UINT( 0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64 ),
94};
95static t_uint secp192r1_gx[] = {
96 BYTES_TO_T_UINT( 0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4 ),
97 BYTES_TO_T_UINT( 0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C ),
98 BYTES_TO_T_UINT( 0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18 ),
99};
100static t_uint secp192r1_gy[] = {
101 BYTES_TO_T_UINT( 0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73 ),
102 BYTES_TO_T_UINT( 0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63 ),
103 BYTES_TO_T_UINT( 0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07 ),
104};
105static t_uint secp192r1_n[] = {
106 BYTES_TO_T_UINT( 0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14 ),
107 BYTES_TO_T_UINT( 0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF ),
108 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
109};
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100110
111/*
112 * Domain parameters for secp224r1
113 */
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100114static t_uint secp224r1_p[] = {
115 BYTES_TO_T_UINT( 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
116 BYTES_TO_T_UINT( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
117 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
118 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
119};
120static t_uint *secp224r1_a = NULL;
121static t_uint secp224r1_b[] = {
122 BYTES_TO_T_UINT( 0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27 ),
123 BYTES_TO_T_UINT( 0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50 ),
124 BYTES_TO_T_UINT( 0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C ),
125 BYTES_TO_T_UINT( 0x85, 0x0A, 0x05, 0xB4, 0x00, 0x00, 0x00, 0x00 ),
126};
127static t_uint secp224r1_gx[] = {
128 BYTES_TO_T_UINT( 0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34 ),
129 BYTES_TO_T_UINT( 0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A ),
130 BYTES_TO_T_UINT( 0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B ),
131 BYTES_TO_T_UINT( 0xBD, 0x0C, 0x0E, 0xB7, 0x00, 0x00, 0x00, 0x00 ),
132};
133static t_uint secp224r1_gy[] = {
134 BYTES_TO_T_UINT( 0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44 ),
135 BYTES_TO_T_UINT( 0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD ),
136 BYTES_TO_T_UINT( 0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5 ),
137 BYTES_TO_T_UINT( 0x88, 0x63, 0x37, 0xBD, 0x00, 0x00, 0x00, 0x00 ),
138};
139static t_uint secp224r1_n[] = {
140 BYTES_TO_T_UINT( 0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13 ),
141 BYTES_TO_T_UINT( 0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF ),
142 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
143 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
144};
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100145
146/*
147 * Domain parameters for secp256r1
148 */
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100149static t_uint secp256r1_p[] = {
150 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
151 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
152 BYTES_TO_T_UINT( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
153 BYTES_TO_T_UINT( 0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
154};
155static t_uint *secp256r1_a = NULL;
156static t_uint secp256r1_b[] = {
157 BYTES_TO_T_UINT( 0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B ),
158 BYTES_TO_T_UINT( 0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65 ),
159 BYTES_TO_T_UINT( 0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3 ),
160 BYTES_TO_T_UINT( 0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A ),
161};
162static t_uint secp256r1_gx[] = {
163 BYTES_TO_T_UINT( 0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4 ),
164 BYTES_TO_T_UINT( 0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77 ),
165 BYTES_TO_T_UINT( 0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8 ),
166 BYTES_TO_T_UINT( 0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B ),
167};
168static t_uint secp256r1_gy[] = {
169 BYTES_TO_T_UINT( 0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB ),
170 BYTES_TO_T_UINT( 0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B ),
171 BYTES_TO_T_UINT( 0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E ),
172 BYTES_TO_T_UINT( 0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F ),
173};
174static t_uint secp256r1_n[] = {
175 BYTES_TO_T_UINT( 0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3 ),
176 BYTES_TO_T_UINT( 0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC ),
177 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
178 BYTES_TO_T_UINT( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
179};
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100180
181/*
182 * Domain parameters for secp384r1
183 */
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100184static t_uint secp384r1_p[] = {
185 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
186 BYTES_TO_T_UINT( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
187 BYTES_TO_T_UINT( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
188 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
189 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
190 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
191};
192static t_uint *secp384r1_a = NULL;
193static t_uint secp384r1_b[] = {
194 BYTES_TO_T_UINT( 0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A ),
195 BYTES_TO_T_UINT( 0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6 ),
196 BYTES_TO_T_UINT( 0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03 ),
197 BYTES_TO_T_UINT( 0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18 ),
198 BYTES_TO_T_UINT( 0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98 ),
199 BYTES_TO_T_UINT( 0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3 ),
200};
201static t_uint secp384r1_gx[] = {
202 BYTES_TO_T_UINT( 0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A ),
203 BYTES_TO_T_UINT( 0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55 ),
204 BYTES_TO_T_UINT( 0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59 ),
205 BYTES_TO_T_UINT( 0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E ),
206 BYTES_TO_T_UINT( 0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E ),
207 BYTES_TO_T_UINT( 0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA ),
208};
209static t_uint secp384r1_gy[] = {
210 BYTES_TO_T_UINT( 0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A ),
211 BYTES_TO_T_UINT( 0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A ),
212 BYTES_TO_T_UINT( 0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9 ),
213 BYTES_TO_T_UINT( 0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8 ),
214 BYTES_TO_T_UINT( 0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D ),
215 BYTES_TO_T_UINT( 0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36 ),
216};
217static t_uint secp384r1_n[] = {
218 BYTES_TO_T_UINT( 0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC ),
219 BYTES_TO_T_UINT( 0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58 ),
220 BYTES_TO_T_UINT( 0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7 ),
221 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
222 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
223 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
224};
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100225
226/*
227 * Domain parameters for secp521r1
228 */
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100229static t_uint secp521r1_p[] = {
230 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
231 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
232 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
233 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
234 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
235 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
236 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
237 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
238 BYTES_TO_T_UINT( 0xFF, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
239};
240static t_uint *secp521r1_a = NULL;
241static t_uint secp521r1_b[] = {
242 BYTES_TO_T_UINT( 0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF ),
243 BYTES_TO_T_UINT( 0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35 ),
244 BYTES_TO_T_UINT( 0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16 ),
245 BYTES_TO_T_UINT( 0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56 ),
246 BYTES_TO_T_UINT( 0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8 ),
247 BYTES_TO_T_UINT( 0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2 ),
248 BYTES_TO_T_UINT( 0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92 ),
249 BYTES_TO_T_UINT( 0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95 ),
250 BYTES_TO_T_UINT( 0x51, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
251};
252static t_uint secp521r1_gx[] = {
253 BYTES_TO_T_UINT( 0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9 ),
254 BYTES_TO_T_UINT( 0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33 ),
255 BYTES_TO_T_UINT( 0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE ),
256 BYTES_TO_T_UINT( 0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1 ),
257 BYTES_TO_T_UINT( 0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8 ),
258 BYTES_TO_T_UINT( 0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C ),
259 BYTES_TO_T_UINT( 0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E ),
260 BYTES_TO_T_UINT( 0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85 ),
261 BYTES_TO_T_UINT( 0xC6, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
262};
263static t_uint secp521r1_gy[] = {
264 BYTES_TO_T_UINT( 0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88 ),
265 BYTES_TO_T_UINT( 0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35 ),
266 BYTES_TO_T_UINT( 0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5 ),
267 BYTES_TO_T_UINT( 0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97 ),
268 BYTES_TO_T_UINT( 0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17 ),
269 BYTES_TO_T_UINT( 0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98 ),
270 BYTES_TO_T_UINT( 0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C ),
271 BYTES_TO_T_UINT( 0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39 ),
272 BYTES_TO_T_UINT( 0x18, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
273};
274static t_uint secp521r1_n[] = {
275 BYTES_TO_T_UINT( 0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB ),
276 BYTES_TO_T_UINT( 0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B ),
277 BYTES_TO_T_UINT( 0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F ),
278 BYTES_TO_T_UINT( 0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51 ),
279 BYTES_TO_T_UINT( 0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
280 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
281 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
282 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
283 BYTES_TO_T_UINT( 0xFF, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
284};
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100285
286/*
287 * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
288 */
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100289static t_uint brainpoolP256r1_p[] = {
290 BYTES_TO_T_UINT( 0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20 ),
291 BYTES_TO_T_UINT( 0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E ),
292 BYTES_TO_T_UINT( 0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
293 BYTES_TO_T_UINT( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
294};
295static t_uint brainpoolP256r1_a[] = {
296 BYTES_TO_T_UINT( 0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9 ),
297 BYTES_TO_T_UINT( 0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB ),
298 BYTES_TO_T_UINT( 0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE ),
299 BYTES_TO_T_UINT( 0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D ),
300};
301static t_uint brainpoolP256r1_b[] = {
302 BYTES_TO_T_UINT( 0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B ),
303 BYTES_TO_T_UINT( 0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95 ),
304 BYTES_TO_T_UINT( 0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3 ),
305 BYTES_TO_T_UINT( 0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26 ),
306};
307static t_uint brainpoolP256r1_gx[] = {
308 BYTES_TO_T_UINT( 0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A ),
309 BYTES_TO_T_UINT( 0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9 ),
310 BYTES_TO_T_UINT( 0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C ),
311 BYTES_TO_T_UINT( 0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B ),
312};
313static t_uint brainpoolP256r1_gy[] = {
314 BYTES_TO_T_UINT( 0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C ),
315 BYTES_TO_T_UINT( 0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2 ),
316 BYTES_TO_T_UINT( 0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97 ),
317 BYTES_TO_T_UINT( 0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54 ),
318};
319static t_uint brainpoolP256r1_n[] = {
320 BYTES_TO_T_UINT( 0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90 ),
321 BYTES_TO_T_UINT( 0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C ),
322 BYTES_TO_T_UINT( 0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
323 BYTES_TO_T_UINT( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
324};
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100325
326/*
327 * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
328 */
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100329static t_uint brainpoolP384r1_p[] = {
330 BYTES_TO_T_UINT( 0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87 ),
331 BYTES_TO_T_UINT( 0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC ),
332 BYTES_TO_T_UINT( 0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12 ),
333 BYTES_TO_T_UINT( 0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
334 BYTES_TO_T_UINT( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
335 BYTES_TO_T_UINT( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
336};
337static t_uint brainpoolP384r1_a[] = {
338 BYTES_TO_T_UINT( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
339 BYTES_TO_T_UINT( 0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A ),
340 BYTES_TO_T_UINT( 0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13 ),
341 BYTES_TO_T_UINT( 0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2 ),
342 BYTES_TO_T_UINT( 0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C ),
343 BYTES_TO_T_UINT( 0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B ),
344};
345static t_uint brainpoolP384r1_b[] = {
346 BYTES_TO_T_UINT( 0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A ),
347 BYTES_TO_T_UINT( 0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C ),
348 BYTES_TO_T_UINT( 0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E ),
349 BYTES_TO_T_UINT( 0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F ),
350 BYTES_TO_T_UINT( 0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B ),
351 BYTES_TO_T_UINT( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
352};
353static t_uint brainpoolP384r1_gx[] = {
354 BYTES_TO_T_UINT( 0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF ),
355 BYTES_TO_T_UINT( 0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8 ),
356 BYTES_TO_T_UINT( 0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB ),
357 BYTES_TO_T_UINT( 0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88 ),
358 BYTES_TO_T_UINT( 0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2 ),
359 BYTES_TO_T_UINT( 0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D ),
360};
361static t_uint brainpoolP384r1_gy[] = {
362 BYTES_TO_T_UINT( 0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42 ),
363 BYTES_TO_T_UINT( 0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E ),
364 BYTES_TO_T_UINT( 0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1 ),
365 BYTES_TO_T_UINT( 0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62 ),
366 BYTES_TO_T_UINT( 0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C ),
367 BYTES_TO_T_UINT( 0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A ),
368};
369static t_uint brainpoolP384r1_n[] = {
370 BYTES_TO_T_UINT( 0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B ),
371 BYTES_TO_T_UINT( 0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF ),
372 BYTES_TO_T_UINT( 0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F ),
373 BYTES_TO_T_UINT( 0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
374 BYTES_TO_T_UINT( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
375 BYTES_TO_T_UINT( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
376};
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100377
378/*
379 * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
380 */
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100381static t_uint brainpoolP512r1_p[] = {
382 BYTES_TO_T_UINT( 0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28 ),
383 BYTES_TO_T_UINT( 0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28 ),
384 BYTES_TO_T_UINT( 0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE ),
385 BYTES_TO_T_UINT( 0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D ),
386 BYTES_TO_T_UINT( 0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
387 BYTES_TO_T_UINT( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
388 BYTES_TO_T_UINT( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
389 BYTES_TO_T_UINT( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
390};
391static t_uint brainpoolP512r1_a[] = {
392 BYTES_TO_T_UINT( 0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7 ),
393 BYTES_TO_T_UINT( 0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F ),
394 BYTES_TO_T_UINT( 0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A ),
395 BYTES_TO_T_UINT( 0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D ),
396 BYTES_TO_T_UINT( 0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8 ),
397 BYTES_TO_T_UINT( 0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94 ),
398 BYTES_TO_T_UINT( 0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2 ),
399 BYTES_TO_T_UINT( 0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78 ),
400};
401static t_uint brainpoolP512r1_b[] = {
402 BYTES_TO_T_UINT( 0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28 ),
403 BYTES_TO_T_UINT( 0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98 ),
404 BYTES_TO_T_UINT( 0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77 ),
405 BYTES_TO_T_UINT( 0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B ),
406 BYTES_TO_T_UINT( 0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B ),
407 BYTES_TO_T_UINT( 0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8 ),
408 BYTES_TO_T_UINT( 0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA ),
409 BYTES_TO_T_UINT( 0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D ),
410};
411static t_uint brainpoolP512r1_gx[] = {
412 BYTES_TO_T_UINT( 0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B ),
413 BYTES_TO_T_UINT( 0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C ),
414 BYTES_TO_T_UINT( 0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50 ),
415 BYTES_TO_T_UINT( 0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF ),
416 BYTES_TO_T_UINT( 0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4 ),
417 BYTES_TO_T_UINT( 0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85 ),
418 BYTES_TO_T_UINT( 0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A ),
419 BYTES_TO_T_UINT( 0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81 ),
420};
421static t_uint brainpoolP512r1_gy[] = {
422 BYTES_TO_T_UINT( 0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78 ),
423 BYTES_TO_T_UINT( 0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1 ),
424 BYTES_TO_T_UINT( 0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B ),
425 BYTES_TO_T_UINT( 0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2 ),
426 BYTES_TO_T_UINT( 0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0 ),
427 BYTES_TO_T_UINT( 0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2 ),
428 BYTES_TO_T_UINT( 0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0 ),
429 BYTES_TO_T_UINT( 0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D ),
430};
431static t_uint brainpoolP512r1_n[] = {
432 BYTES_TO_T_UINT( 0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5 ),
433 BYTES_TO_T_UINT( 0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D ),
434 BYTES_TO_T_UINT( 0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41 ),
435 BYTES_TO_T_UINT( 0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55 ),
436 BYTES_TO_T_UINT( 0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
437 BYTES_TO_T_UINT( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
438 BYTES_TO_T_UINT( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
439 BYTES_TO_T_UINT( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
440};
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100441
442/*
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100443 * Create an MPI from embedded constants
444 * (assumes len is an exact multiple of sizeof t_uint)
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100445 */
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100446static inline void ecp_mpi_load( mpi *X, const t_uint *p, size_t len )
447{
448 X->s = 1;
449 X->n = len / sizeof( t_uint );
450 X->p = (t_uint *) p;
451}
452
453/*
Manuel Pégourié-Gonnard73cc01d2013-12-06 12:41:30 +0100454 * Set an MPI to static value 1
455 */
456static inline void ecp_mpi_set1( mpi *X )
457{
458 static t_uint one[] = { 1 };
459 X->s = 1;
460 X->n = 1;
461 X->p = one;
462}
463
464/*
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100465 * Make group available from embedded constants
466 */
467static int ecp_group_load( ecp_group *grp,
468 const t_uint *p, size_t plen,
469 const t_uint *a, size_t alen,
470 const t_uint *b, size_t blen,
471 const t_uint *gx, size_t gxlen,
472 const t_uint *gy, size_t gylen,
473 const t_uint *n, size_t nlen)
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100474{
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100475 ecp_mpi_load( &grp->P, p, plen );
Manuel Pégourié-Gonnard9854fe92013-12-02 16:30:43 +0100476 if( a != NULL )
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100477 ecp_mpi_load( &grp->A, a, alen );
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100478 ecp_mpi_load( &grp->B, b, blen );
479 ecp_mpi_load( &grp->N, n, nlen );
Manuel Pégourié-Gonnard9854fe92013-12-02 16:30:43 +0100480
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100481 ecp_mpi_load( &grp->G.X, gx, gxlen );
482 ecp_mpi_load( &grp->G.Y, gy, gylen );
Manuel Pégourié-Gonnard73cc01d2013-12-06 12:41:30 +0100483 ecp_mpi_set1( &grp->G.Z );
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100484
485 grp->pbits = mpi_msb( &grp->P );
486 grp->nbits = mpi_msb( &grp->N );
487
Manuel Pégourié-Gonnard1f82b042013-12-06 12:51:50 +0100488 grp->h = 1;
489
Manuel Pégourié-Gonnard73cc01d2013-12-06 12:41:30 +0100490 return( 0 );
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100491}
492
493#if defined(POLARSSL_ECP_NIST_OPTIM)
494/* Forward declarations */
Manuel Pégourié-Gonnard3d7053a2013-12-04 20:51:13 +0100495#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100496static int ecp_mod_p192( mpi * );
Manuel Pégourié-Gonnard3d7053a2013-12-04 20:51:13 +0100497#endif
498#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100499static int ecp_mod_p224( mpi * );
Manuel Pégourié-Gonnard3d7053a2013-12-04 20:51:13 +0100500#endif
501#if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100502static int ecp_mod_p256( mpi * );
Manuel Pégourié-Gonnard3d7053a2013-12-04 20:51:13 +0100503#endif
504#if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100505static int ecp_mod_p384( mpi * );
Manuel Pégourié-Gonnard3d7053a2013-12-04 20:51:13 +0100506#endif
507#if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100508static int ecp_mod_p521( mpi * );
Manuel Pégourié-Gonnard3d7053a2013-12-04 20:51:13 +0100509#endif
510#if defined(POLARSSL_ECP_DP_M255_ENABLED)
511static int ecp_mod_p255( mpi * );
512#endif
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100513
514#define NIST_MODP( P ) grp->modp = ecp_mod_ ## P;
515#else
516#define NIST_MODP( P )
Manuel Pégourié-Gonnard3d7053a2013-12-04 20:51:13 +0100517#endif /* POLARSSL_ECP_NIST_OPTIM */
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100518
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100519#define LOAD_GROUP( G ) ecp_group_load( grp, \
520 G ## _p, sizeof( G ## _p ), \
521 G ## _a, sizeof( G ## _a ), \
522 G ## _b, sizeof( G ## _b ), \
523 G ## _gx, sizeof( G ## _gx ), \
524 G ## _gy, sizeof( G ## _gy ), \
525 G ## _n, sizeof( G ## _n ) )
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100526/*
Manuel Pégourié-Gonnard66153662013-12-03 14:12:26 +0100527 * Specialized function for creating the Curve25519 group
528 */
529static int ecp_use_curve25519( ecp_group *grp )
530{
531 int ret;
532
533 /* Actually ( A + 2 ) / 4 */
534 MPI_CHK( mpi_read_string( &grp->A, 16, "01DB42" ) );
535
536 /* P = 2^255 - 19 */
537 MPI_CHK( mpi_lset( &grp->P, 1 ) );
538 MPI_CHK( mpi_shift_l( &grp->P, 255 ) );
539 MPI_CHK( mpi_sub_int( &grp->P, &grp->P, 19 ) );
540 grp->pbits = mpi_msb( &grp->P );
541
Manuel Pégourié-Gonnard312d2e82013-12-04 11:08:01 +0100542 /* Y intentionaly not set, since we use x/z coordinates.
543 * This is used as a marker to identify Montgomery curves! */
544 MPI_CHK( mpi_lset( &grp->G.X, 9 ) );
545 MPI_CHK( mpi_lset( &grp->G.Z, 1 ) );
546 mpi_free( &grp->G.Y );
547
Manuel Pégourié-Gonnard66153662013-12-03 14:12:26 +0100548 /* Actually, the required msb for private keys */
549 grp->nbits = 254;
550
551cleanup:
552 if( ret != 0 )
553 ecp_group_free( grp );
554
555 return( ret );
556}
557
558/*
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100559 * Set a group using well-known domain parameters
560 */
561int ecp_use_known_dp( ecp_group *grp, ecp_group_id id )
562{
Manuel Pégourié-Gonnard66153662013-12-03 14:12:26 +0100563 ecp_group_free( grp );
564
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100565 grp->id = id;
566
567 switch( id )
568 {
569#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
570 case POLARSSL_ECP_DP_SECP192R1:
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100571 NIST_MODP( p192 );
Manuel Pégourié-Gonnard9854fe92013-12-02 16:30:43 +0100572 return( LOAD_GROUP( secp192r1 ) );
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100573#endif /* POLARSSL_ECP_DP_SECP192R1_ENABLED */
574
575#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
576 case POLARSSL_ECP_DP_SECP224R1:
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100577 NIST_MODP( p224 );
Manuel Pégourié-Gonnard9854fe92013-12-02 16:30:43 +0100578 return( LOAD_GROUP( secp224r1 ) );
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100579#endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED */
580
581#if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
582 case POLARSSL_ECP_DP_SECP256R1:
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100583 NIST_MODP( p256 );
Manuel Pégourié-Gonnard9854fe92013-12-02 16:30:43 +0100584 return( LOAD_GROUP( secp256r1 ) );
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100585#endif /* POLARSSL_ECP_DP_SECP256R1_ENABLED */
586
587#if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
588 case POLARSSL_ECP_DP_SECP384R1:
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100589 NIST_MODP( p384 );
Manuel Pégourié-Gonnard9854fe92013-12-02 16:30:43 +0100590 return( LOAD_GROUP( secp384r1 ) );
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100591#endif /* POLARSSL_ECP_DP_SECP384R1_ENABLED */
592
593#if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
594 case POLARSSL_ECP_DP_SECP521R1:
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100595 NIST_MODP( p521 );
Manuel Pégourié-Gonnard9854fe92013-12-02 16:30:43 +0100596 return( LOAD_GROUP( secp521r1 ) );
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100597#endif /* POLARSSL_ECP_DP_SECP521R1_ENABLED */
598
599#if defined(POLARSSL_ECP_DP_BP256R1_ENABLED)
600 case POLARSSL_ECP_DP_BP256R1:
Manuel Pégourié-Gonnard9854fe92013-12-02 16:30:43 +0100601 return( LOAD_GROUP( brainpoolP256r1 ) );
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100602#endif /* POLARSSL_ECP_DP_BP256R1_ENABLED */
603
604#if defined(POLARSSL_ECP_DP_BP384R1_ENABLED)
605 case POLARSSL_ECP_DP_BP384R1:
Manuel Pégourié-Gonnard9854fe92013-12-02 16:30:43 +0100606 return( LOAD_GROUP( brainpoolP384r1 ) );
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100607#endif /* POLARSSL_ECP_DP_BP384R1_ENABLED */
608
609#if defined(POLARSSL_ECP_DP_BP512R1_ENABLED)
610 case POLARSSL_ECP_DP_BP512R1:
Manuel Pégourié-Gonnard9854fe92013-12-02 16:30:43 +0100611 return( LOAD_GROUP( brainpoolP512r1 ) );
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100612#endif /* POLARSSL_ECP_DP_BP512R1_ENABLED */
613
Manuel Pégourié-Gonnard66153662013-12-03 14:12:26 +0100614#if defined(POLARSSL_ECP_DP_M255_ENABLED)
615 case POLARSSL_ECP_DP_M255:
Manuel Pégourié-Gonnard3d7053a2013-12-04 20:51:13 +0100616 grp->modp = ecp_mod_p255;
Manuel Pégourié-Gonnard66153662013-12-03 14:12:26 +0100617 return( ecp_use_curve25519( grp ) );
618#endif /* POLARSSL_ECP_DP_M255_ENABLED */
619
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100620 default:
621 ecp_group_free( grp );
622 return( POLARSSL_ERR_ECP_FEATURE_UNAVAILABLE );
623 }
624}
625
626#if defined(POLARSSL_ECP_NIST_OPTIM)
627/*
628 * Fast reduction modulo the primes used by the NIST curves.
629 *
630 * These functions are critical for speed, but not needed for correct
631 * operations. So, we make the choice to heavily rely on the internals of our
632 * bignum library, which creates a tight coupling between these functions and
633 * our MPI implementation. However, the coupling between the ECP module and
634 * MPI remains loose, since these functions can be deactivated at will.
635 */
636
637#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
638/*
639 * Compared to the way things are presented in FIPS 186-3 D.2,
640 * we proceed in columns, from right (least significant chunk) to left,
641 * adding chunks to N in place, and keeping a carry for the next chunk.
642 * This avoids moving things around in memory, and uselessly adding zeros,
643 * compared to the more straightforward, line-oriented approach.
644 *
645 * For this prime we need to handle data in chunks of 64 bits.
646 * Since this is always a multiple of our basic t_uint, we can
647 * use a t_uint * to designate such a chunk, and small loops to handle it.
648 */
649
650/* Add 64-bit chunks (dst += src) and update carry */
651static inline void add64( t_uint *dst, t_uint *src, t_uint *carry )
652{
653 unsigned char i;
654 t_uint c = 0;
655 for( i = 0; i < 8 / sizeof( t_uint ); i++, dst++, src++ )
656 {
657 *dst += c; c = ( *dst < c );
658 *dst += *src; c += ( *dst < *src );
659 }
660 *carry += c;
661}
662
663/* Add carry to a 64-bit chunk and update carry */
664static inline void carry64( t_uint *dst, t_uint *carry )
665{
666 unsigned char i;
667 for( i = 0; i < 8 / sizeof( t_uint ); i++, dst++ )
668 {
669 *dst += *carry;
670 *carry = ( *dst < *carry );
671 }
672}
673
674#define WIDTH 8 / sizeof( t_uint )
675#define A( i ) N->p + i * WIDTH
676#define ADD( i ) add64( p, A( i ), &c )
677#define NEXT p += WIDTH; carry64( p, &c )
678#define LAST p += WIDTH; *p = c; while( ++p < end ) *p = 0
679
680/*
681 * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
682 */
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100683static int ecp_mod_p192( mpi *N )
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100684{
685 int ret;
686 t_uint c = 0;
687 t_uint *p, *end;
688
689 /* Make sure we have enough blocks so that A(5) is legal */
690 MPI_CHK( mpi_grow( N, 6 * WIDTH ) );
691
692 p = N->p;
693 end = p + N->n;
694
695 ADD( 3 ); ADD( 5 ); NEXT; // A0 += A3 + A5
696 ADD( 3 ); ADD( 4 ); ADD( 5 ); NEXT; // A1 += A3 + A4 + A5
697 ADD( 4 ); ADD( 5 ); LAST; // A2 += A4 + A5
698
699cleanup:
700 return( ret );
701}
702
703#undef WIDTH
704#undef A
705#undef ADD
706#undef NEXT
707#undef LAST
708#endif /* POLARSSL_ECP_DP_SECP192R1_ENABLED */
709
710#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED) || \
711 defined(POLARSSL_ECP_DP_SECP256R1_ENABLED) || \
712 defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
713/*
714 * The reader is advised to first understand ecp_mod_p192() since the same
715 * general structure is used here, but with additional complications:
716 * (1) chunks of 32 bits, and (2) subtractions.
717 */
718
719/*
720 * For these primes, we need to handle data in chunks of 32 bits.
721 * This makes it more complicated if we use 64 bits limbs in MPI,
722 * which prevents us from using a uniform access method as for p192.
723 *
724 * So, we define a mini abstraction layer to access 32 bit chunks,
725 * load them in 'cur' for work, and store them back from 'cur' when done.
726 *
727 * While at it, also define the size of N in terms of 32-bit chunks.
728 */
729#define LOAD32 cur = A( i );
730
731#if defined(POLARSSL_HAVE_INT8) /* 8 bit */
732
733#define MAX32 N->n / 4
734#define A( j ) (uint32_t)( N->p[4*j+0] ) | \
735 ( N->p[4*j+1] << 8 ) | \
736 ( N->p[4*j+2] << 16 ) | \
737 ( N->p[4*j+3] << 24 )
738#define STORE32 N->p[4*i+0] = (t_uint)( cur ); \
739 N->p[4*i+1] = (t_uint)( cur >> 8 ); \
740 N->p[4*i+2] = (t_uint)( cur >> 16 ); \
741 N->p[4*i+3] = (t_uint)( cur >> 24 );
742
743#elif defined(POLARSSL_HAVE_INT16) /* 16 bit */
744
745#define MAX32 N->n / 2
746#define A( j ) (uint32_t)( N->p[2*j] ) | ( N->p[2*j+1] << 16 )
747#define STORE32 N->p[2*i+0] = (t_uint)( cur ); \
748 N->p[2*i+1] = (t_uint)( cur >> 16 );
749
750#elif defined(POLARSSL_HAVE_INT32) /* 32 bit */
751
752#define MAX32 N->n
753#define A( j ) N->p[j]
754#define STORE32 N->p[i] = cur;
755
756#else /* 64-bit */
757
758#define MAX32 N->n * 2
759#define A( j ) j % 2 ? (uint32_t)( N->p[j/2] >> 32 ) : (uint32_t)( N->p[j/2] )
760#define STORE32 \
761 if( i % 2 ) { \
762 N->p[i/2] &= 0x00000000FFFFFFFF; \
763 N->p[i/2] |= ((t_uint) cur) << 32; \
764 } else { \
765 N->p[i/2] &= 0xFFFFFFFF00000000; \
766 N->p[i/2] |= (t_uint) cur; \
767 }
768
769#endif /* sizeof( t_uint ) */
770
771/*
772 * Helpers for addition and subtraction of chunks, with signed carry.
773 */
774static inline void add32( uint32_t *dst, uint32_t src, signed char *carry )
775{
776 *dst += src;
777 *carry += ( *dst < src );
778}
779
780static inline void sub32( uint32_t *dst, uint32_t src, signed char *carry )
781{
782 *carry -= ( *dst < src );
783 *dst -= src;
784}
785
786#define ADD( j ) add32( &cur, A( j ), &c );
787#define SUB( j ) sub32( &cur, A( j ), &c );
788
789/*
790 * Helpers for the main 'loop'
791 * (see fix_negative for the motivation of C)
792 */
793#define INIT( b ) \
794 int ret; \
795 signed char c = 0, cc; \
796 uint32_t cur; \
797 size_t i = 0, bits = b; \
798 mpi C; \
799 t_uint Cp[ b / 8 / sizeof( t_uint) + 1 ]; \
800 \
801 C.s = 1; \
802 C.n = b / 8 / sizeof( t_uint) + 1; \
803 C.p = Cp; \
804 memset( Cp, 0, C.n * sizeof( t_uint ) ); \
805 \
806 MPI_CHK( mpi_grow( N, b * 2 / 8 / sizeof( t_uint ) ) ); \
807 LOAD32;
808
809#define NEXT \
810 STORE32; i++; LOAD32; \
811 cc = c; c = 0; \
812 if( cc < 0 ) \
813 sub32( &cur, -cc, &c ); \
814 else \
815 add32( &cur, cc, &c ); \
816
817#define LAST \
818 STORE32; i++; \
819 cur = c > 0 ? c : 0; STORE32; \
820 cur = 0; while( ++i < MAX32 ) { STORE32; } \
821 if( c < 0 ) fix_negative( N, c, &C, bits );
822
823/*
824 * If the result is negative, we get it in the form
825 * c * 2^(bits + 32) + N, with c negative and N positive shorter than 'bits'
826 */
827static inline int fix_negative( mpi *N, signed char c, mpi *C, size_t bits )
828{
829 int ret;
830
831 /* C = - c * 2^(bits + 32) */
832#if !defined(POLARSSL_HAVE_INT64)
833 ((void) bits);
834#else
835 if( bits == 224 )
836 C->p[ C->n - 1 ] = ((t_uint) -c) << 32;
837 else
838#endif
839 C->p[ C->n - 1 ] = (t_uint) -c;
840
841 /* N = - ( C - N ) */
842 MPI_CHK( mpi_sub_abs( N, C, N ) );
843 N->s = -1;
844
845cleanup:
846
847 return( ret );
848}
849
850#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
851/*
852 * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
853 */
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100854static int ecp_mod_p224( mpi *N )
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100855{
856 INIT( 224 );
857
858 SUB( 7 ); SUB( 11 ); NEXT; // A0 += -A7 - A11
859 SUB( 8 ); SUB( 12 ); NEXT; // A1 += -A8 - A12
860 SUB( 9 ); SUB( 13 ); NEXT; // A2 += -A9 - A13
861 SUB( 10 ); ADD( 7 ); ADD( 11 ); NEXT; // A3 += -A10 + A7 + A11
862 SUB( 11 ); ADD( 8 ); ADD( 12 ); NEXT; // A4 += -A11 + A8 + A12
863 SUB( 12 ); ADD( 9 ); ADD( 13 ); NEXT; // A5 += -A12 + A9 + A13
864 SUB( 13 ); ADD( 10 ); LAST; // A6 += -A13 + A10
865
866cleanup:
867 return( ret );
868}
869#endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED */
870
871#if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
872/*
873 * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
874 */
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100875static int ecp_mod_p256( mpi *N )
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100876{
877 INIT( 256 );
878
879 ADD( 8 ); ADD( 9 );
880 SUB( 11 ); SUB( 12 ); SUB( 13 ); SUB( 14 ); NEXT; // A0
881
882 ADD( 9 ); ADD( 10 );
883 SUB( 12 ); SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A1
884
885 ADD( 10 ); ADD( 11 );
886 SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A2
887
888 ADD( 11 ); ADD( 11 ); ADD( 12 ); ADD( 12 ); ADD( 13 );
889 SUB( 15 ); SUB( 8 ); SUB( 9 ); NEXT; // A3
890
891 ADD( 12 ); ADD( 12 ); ADD( 13 ); ADD( 13 ); ADD( 14 );
892 SUB( 9 ); SUB( 10 ); NEXT; // A4
893
894 ADD( 13 ); ADD( 13 ); ADD( 14 ); ADD( 14 ); ADD( 15 );
895 SUB( 10 ); SUB( 11 ); NEXT; // A5
896
897 ADD( 14 ); ADD( 14 ); ADD( 15 ); ADD( 15 ); ADD( 14 ); ADD( 13 );
898 SUB( 8 ); SUB( 9 ); NEXT; // A6
899
900 ADD( 15 ); ADD( 15 ); ADD( 15 ); ADD( 8 );
901 SUB( 10 ); SUB( 11 ); SUB( 12 ); SUB( 13 ); LAST; // A7
902
903cleanup:
904 return( ret );
905}
906#endif /* POLARSSL_ECP_DP_SECP256R1_ENABLED */
907
908#if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
909/*
910 * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
911 */
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100912static int ecp_mod_p384( mpi *N )
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100913{
914 INIT( 384 );
915
916 ADD( 12 ); ADD( 21 ); ADD( 20 );
917 SUB( 23 ); NEXT; // A0
918
919 ADD( 13 ); ADD( 22 ); ADD( 23 );
920 SUB( 12 ); SUB( 20 ); NEXT; // A2
921
922 ADD( 14 ); ADD( 23 );
923 SUB( 13 ); SUB( 21 ); NEXT; // A2
924
925 ADD( 15 ); ADD( 12 ); ADD( 20 ); ADD( 21 );
926 SUB( 14 ); SUB( 22 ); SUB( 23 ); NEXT; // A3
927
928 ADD( 21 ); ADD( 21 ); ADD( 16 ); ADD( 13 ); ADD( 12 ); ADD( 20 ); ADD( 22 );
929 SUB( 15 ); SUB( 23 ); SUB( 23 ); NEXT; // A4
930
931 ADD( 22 ); ADD( 22 ); ADD( 17 ); ADD( 14 ); ADD( 13 ); ADD( 21 ); ADD( 23 );
932 SUB( 16 ); NEXT; // A5
933
934 ADD( 23 ); ADD( 23 ); ADD( 18 ); ADD( 15 ); ADD( 14 ); ADD( 22 );
935 SUB( 17 ); NEXT; // A6
936
937 ADD( 19 ); ADD( 16 ); ADD( 15 ); ADD( 23 );
938 SUB( 18 ); NEXT; // A7
939
940 ADD( 20 ); ADD( 17 ); ADD( 16 );
941 SUB( 19 ); NEXT; // A8
942
943 ADD( 21 ); ADD( 18 ); ADD( 17 );
944 SUB( 20 ); NEXT; // A9
945
946 ADD( 22 ); ADD( 19 ); ADD( 18 );
947 SUB( 21 ); NEXT; // A10
948
949 ADD( 23 ); ADD( 20 ); ADD( 19 );
950 SUB( 22 ); LAST; // A11
951
952cleanup:
953 return( ret );
954}
955#endif /* POLARSSL_ECP_DP_SECP384R1_ENABLED */
956
957#undef A
958#undef LOAD32
959#undef STORE32
960#undef MAX32
961#undef INIT
962#undef NEXT
963#undef LAST
964
965#endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED ||
966 POLARSSL_ECP_DP_SECP256R1_ENABLED ||
967 POLARSSL_ECP_DP_SECP384R1_ENABLED */
968
969#if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
970/*
971 * Here we have an actual Mersenne prime, so things are more straightforward.
972 * However, chunks are aligned on a 'weird' boundary (521 bits).
973 */
974
975/* Size of p521 in terms of t_uint */
976#define P521_WIDTH ( 521 / 8 / sizeof( t_uint ) + 1 )
977
978/* Bits to keep in the most significant t_uint */
979#if defined(POLARSSL_HAVE_INT8)
980#define P521_MASK 0x01
981#else
982#define P521_MASK 0x01FF
983#endif
984
985/*
986 * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
987 * Write N as A1 + 2^521 A0, return A0 + A1
988 */
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100989static int ecp_mod_p521( mpi *N )
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100990{
991 int ret;
992 size_t i;
993 mpi M;
994 t_uint Mp[P521_WIDTH + 1];
995 /* Worst case for the size of M is when t_uint is 16 bits:
996 * we need to hold bits 513 to 1056, which is 34 limbs, that is
997 * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */
998
999 if( N->n < P521_WIDTH )
1000 return( 0 );
1001
1002 /* M = A1 */
1003 M.s = 1;
1004 M.n = N->n - ( P521_WIDTH - 1 );
1005 if( M.n > P521_WIDTH + 1 )
1006 M.n = P521_WIDTH + 1;
1007 M.p = Mp;
1008 memcpy( Mp, N->p + P521_WIDTH - 1, M.n * sizeof( t_uint ) );
1009 MPI_CHK( mpi_shift_r( &M, 521 % ( 8 * sizeof( t_uint ) ) ) );
1010
1011 /* N = A0 */
1012 N->p[P521_WIDTH - 1] &= P521_MASK;
1013 for( i = P521_WIDTH; i < N->n; i++ )
1014 N->p[i] = 0;
1015
1016 /* N = A0 + A1 */
1017 MPI_CHK( mpi_add_abs( N, N, &M ) );
1018
1019cleanup:
1020 return( ret );
1021}
1022
1023#undef P521_WIDTH
1024#undef P521_MASK
1025#endif /* POLARSSL_ECP_DP_SECP521R1_ENABLED */
1026
1027#endif /* POLARSSL_ECP_NIST_OPTIM */
1028
Manuel Pégourié-Gonnard3d7053a2013-12-04 20:51:13 +01001029#if defined(POLARSSL_ECP_DP_M255_ENABLED)
1030
1031/* Size of p255 in terms of t_uint */
1032#define P255_WIDTH ( 255 / 8 / sizeof( t_uint ) + 1 )
1033
1034/*
1035 * Fast quasi-reduction modulo p255 = 2^255 - 19
1036 * Write N as A1 + 2^255 A1, return A0 + 19 * A1
1037 */
1038static int ecp_mod_p255( mpi *N )
1039{
1040 int ret;
1041 size_t i;
1042 mpi M;
1043 t_uint Mp[P255_WIDTH + 2];
1044
1045 if( N->n < P255_WIDTH )
1046 return( 0 );
1047
1048 /* M = A1 */
1049 M.s = 1;
1050 M.n = N->n - ( P255_WIDTH - 1 );
1051 if( M.n > P255_WIDTH + 1 )
1052 M.n = P255_WIDTH + 1;
1053 M.p = Mp;
1054 memset( Mp, 0, sizeof Mp );
1055 memcpy( Mp, N->p + P255_WIDTH - 1, M.n * sizeof( t_uint ) );
1056 MPI_CHK( mpi_shift_r( &M, 255 % ( 8 * sizeof( t_uint ) ) ) );
1057 M.n++; /* Make room for multiplication by 19 */
1058
1059 /* N = A0 */
1060 mpi_set_bit( N, 255, 0 );
1061 for( i = P255_WIDTH; i < N->n; i++ )
1062 N->p[i] = 0;
1063
1064 /* N = A0 + 19 * A1 */
1065 MPI_CHK( mpi_mul_int( &M, &M, 19 ) );
1066 MPI_CHK( mpi_add_abs( N, N, &M ) );
1067
1068cleanup:
1069 return( ret );
1070}
1071#endif /* POLARSSL_ECP_DP_M255_ENABLED */
1072
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +01001073#endif