blob: f7b5eb94e598741a6cb5b7ac4303ead211109d4a [file] [log] [blame]
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +01001/*
2 * Elliptic curves over GF(p): curve-specific data and functions
3 *
4 * Copyright (C) 2006-2013, Brainspark B.V.
5 *
6 * This file is part of PolarSSL (http://www.polarssl.org)
7 * Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
8 *
9 * All rights reserved.
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 */
25
26#include "polarssl/config.h"
27
28#if defined(POLARSSL_ECP_C)
29
30#include "polarssl/ecp.h"
31
Paul Bakker498fd352013-12-02 22:17:24 +010032#if defined(_MSC_VER) && !defined(inline)
33#define inline _inline
34#else
35#if defined(__ARMCC_VERSION) && !defined(inline)
36#define inline __inline
37#endif /* __ARMCC_VERSION */
38#endif /*_MSC_VER */
39
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +010040#if defined(POLARSSL_HAVE_INT8)
41
42#define BYTES_TO_T_UINT( a, b, c, d, e, f, g, h ) \
43 a, b, c, d, e, f, g, h
44
45#elif defined(POLARSSL_HAVE_INT16)
46
47#define TWO_BYTES_TO_T_UINT( a, b ) \
48 ( (t_uint) a << 0 ) | \
49 ( (t_uint) b << 8 )
50#define BYTES_TO_T_UINT( a, b, c, d, e, f, g, h ) \
51 TWO_BYTES_TO_T_UINT( a, b ), \
52 TWO_BYTES_TO_T_UINT( c, d ), \
53 TWO_BYTES_TO_T_UINT( e, f ), \
54 TWO_BYTES_TO_T_UINT( g, h )
55
56#elif defined(POLARSSL_HAVE_INT32)
57
58#define FOUR_BYTES_TO_T_UINT( a, b, c, d ) \
59 ( (t_uint) a << 0 ) | \
60 ( (t_uint) b << 8 ) | \
61 ( (t_uint) c << 16 ) | \
62 ( (t_uint) d << 24 )
63#define BYTES_TO_T_UINT( a, b, c, d, e, f, g, h ) \
64 FOUR_BYTES_TO_T_UINT( a, b, c, d ) \
65 FOUR_BYTES_TO_T_UINT( e, f, g, h )
66
67#else /* 64-bits */
68
69#define BYTES_TO_T_UINT( a, b, c, d, e, f, g, h ) \
70 ( (t_uint) a << 0 ) | \
71 ( (t_uint) b << 8 ) | \
72 ( (t_uint) c << 16 ) | \
73 ( (t_uint) d << 24 ) | \
74 ( (t_uint) e << 32 ) | \
75 ( (t_uint) f << 40 ) | \
76 ( (t_uint) g << 48 ) | \
77 ( (t_uint) h << 56 )
78
79#endif /* bits in t_uint */
80
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +010081/*
82 * Domain parameters for secp192r1
83 */
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +010084static t_uint secp192r1_p[] = {
85 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
86 BYTES_TO_T_UINT( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
87 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
88};
89static t_uint *secp192r1_a = NULL;
90static t_uint secp192r1_b[] = {
91 BYTES_TO_T_UINT( 0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE ),
92 BYTES_TO_T_UINT( 0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F ),
93 BYTES_TO_T_UINT( 0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64 ),
94};
95static t_uint secp192r1_gx[] = {
96 BYTES_TO_T_UINT( 0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4 ),
97 BYTES_TO_T_UINT( 0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C ),
98 BYTES_TO_T_UINT( 0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18 ),
99};
100static t_uint secp192r1_gy[] = {
101 BYTES_TO_T_UINT( 0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73 ),
102 BYTES_TO_T_UINT( 0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63 ),
103 BYTES_TO_T_UINT( 0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07 ),
104};
105static t_uint secp192r1_n[] = {
106 BYTES_TO_T_UINT( 0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14 ),
107 BYTES_TO_T_UINT( 0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF ),
108 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
109};
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100110
111/*
112 * Domain parameters for secp224r1
113 */
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100114static t_uint secp224r1_p[] = {
115 BYTES_TO_T_UINT( 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
116 BYTES_TO_T_UINT( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
117 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
118 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
119};
120static t_uint *secp224r1_a = NULL;
121static t_uint secp224r1_b[] = {
122 BYTES_TO_T_UINT( 0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27 ),
123 BYTES_TO_T_UINT( 0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50 ),
124 BYTES_TO_T_UINT( 0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C ),
125 BYTES_TO_T_UINT( 0x85, 0x0A, 0x05, 0xB4, 0x00, 0x00, 0x00, 0x00 ),
126};
127static t_uint secp224r1_gx[] = {
128 BYTES_TO_T_UINT( 0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34 ),
129 BYTES_TO_T_UINT( 0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A ),
130 BYTES_TO_T_UINT( 0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B ),
131 BYTES_TO_T_UINT( 0xBD, 0x0C, 0x0E, 0xB7, 0x00, 0x00, 0x00, 0x00 ),
132};
133static t_uint secp224r1_gy[] = {
134 BYTES_TO_T_UINT( 0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44 ),
135 BYTES_TO_T_UINT( 0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD ),
136 BYTES_TO_T_UINT( 0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5 ),
137 BYTES_TO_T_UINT( 0x88, 0x63, 0x37, 0xBD, 0x00, 0x00, 0x00, 0x00 ),
138};
139static t_uint secp224r1_n[] = {
140 BYTES_TO_T_UINT( 0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13 ),
141 BYTES_TO_T_UINT( 0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF ),
142 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
143 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
144};
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100145
146/*
147 * Domain parameters for secp256r1
148 */
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100149static t_uint secp256r1_p[] = {
150 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
151 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
152 BYTES_TO_T_UINT( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
153 BYTES_TO_T_UINT( 0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
154};
155static t_uint *secp256r1_a = NULL;
156static t_uint secp256r1_b[] = {
157 BYTES_TO_T_UINT( 0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B ),
158 BYTES_TO_T_UINT( 0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65 ),
159 BYTES_TO_T_UINT( 0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3 ),
160 BYTES_TO_T_UINT( 0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A ),
161};
162static t_uint secp256r1_gx[] = {
163 BYTES_TO_T_UINT( 0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4 ),
164 BYTES_TO_T_UINT( 0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77 ),
165 BYTES_TO_T_UINT( 0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8 ),
166 BYTES_TO_T_UINT( 0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B ),
167};
168static t_uint secp256r1_gy[] = {
169 BYTES_TO_T_UINT( 0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB ),
170 BYTES_TO_T_UINT( 0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B ),
171 BYTES_TO_T_UINT( 0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E ),
172 BYTES_TO_T_UINT( 0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F ),
173};
174static t_uint secp256r1_n[] = {
175 BYTES_TO_T_UINT( 0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3 ),
176 BYTES_TO_T_UINT( 0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC ),
177 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
178 BYTES_TO_T_UINT( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
179};
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100180
181/*
182 * Domain parameters for secp384r1
183 */
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100184static t_uint secp384r1_p[] = {
185 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
186 BYTES_TO_T_UINT( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
187 BYTES_TO_T_UINT( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
188 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
189 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
190 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
191};
192static t_uint *secp384r1_a = NULL;
193static t_uint secp384r1_b[] = {
194 BYTES_TO_T_UINT( 0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A ),
195 BYTES_TO_T_UINT( 0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6 ),
196 BYTES_TO_T_UINT( 0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03 ),
197 BYTES_TO_T_UINT( 0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18 ),
198 BYTES_TO_T_UINT( 0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98 ),
199 BYTES_TO_T_UINT( 0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3 ),
200};
201static t_uint secp384r1_gx[] = {
202 BYTES_TO_T_UINT( 0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A ),
203 BYTES_TO_T_UINT( 0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55 ),
204 BYTES_TO_T_UINT( 0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59 ),
205 BYTES_TO_T_UINT( 0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E ),
206 BYTES_TO_T_UINT( 0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E ),
207 BYTES_TO_T_UINT( 0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA ),
208};
209static t_uint secp384r1_gy[] = {
210 BYTES_TO_T_UINT( 0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A ),
211 BYTES_TO_T_UINT( 0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A ),
212 BYTES_TO_T_UINT( 0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9 ),
213 BYTES_TO_T_UINT( 0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8 ),
214 BYTES_TO_T_UINT( 0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D ),
215 BYTES_TO_T_UINT( 0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36 ),
216};
217static t_uint secp384r1_n[] = {
218 BYTES_TO_T_UINT( 0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC ),
219 BYTES_TO_T_UINT( 0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58 ),
220 BYTES_TO_T_UINT( 0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7 ),
221 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
222 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
223 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
224};
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100225
226/*
227 * Domain parameters for secp521r1
228 */
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100229static t_uint secp521r1_p[] = {
230 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
231 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
232 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
233 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
234 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
235 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
236 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
237 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
238 BYTES_TO_T_UINT( 0xFF, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
239};
240static t_uint *secp521r1_a = NULL;
241static t_uint secp521r1_b[] = {
242 BYTES_TO_T_UINT( 0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF ),
243 BYTES_TO_T_UINT( 0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35 ),
244 BYTES_TO_T_UINT( 0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16 ),
245 BYTES_TO_T_UINT( 0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56 ),
246 BYTES_TO_T_UINT( 0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8 ),
247 BYTES_TO_T_UINT( 0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2 ),
248 BYTES_TO_T_UINT( 0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92 ),
249 BYTES_TO_T_UINT( 0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95 ),
250 BYTES_TO_T_UINT( 0x51, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
251};
252static t_uint secp521r1_gx[] = {
253 BYTES_TO_T_UINT( 0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9 ),
254 BYTES_TO_T_UINT( 0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33 ),
255 BYTES_TO_T_UINT( 0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE ),
256 BYTES_TO_T_UINT( 0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1 ),
257 BYTES_TO_T_UINT( 0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8 ),
258 BYTES_TO_T_UINT( 0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C ),
259 BYTES_TO_T_UINT( 0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E ),
260 BYTES_TO_T_UINT( 0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85 ),
261 BYTES_TO_T_UINT( 0xC6, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
262};
263static t_uint secp521r1_gy[] = {
264 BYTES_TO_T_UINT( 0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88 ),
265 BYTES_TO_T_UINT( 0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35 ),
266 BYTES_TO_T_UINT( 0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5 ),
267 BYTES_TO_T_UINT( 0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97 ),
268 BYTES_TO_T_UINT( 0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17 ),
269 BYTES_TO_T_UINT( 0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98 ),
270 BYTES_TO_T_UINT( 0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C ),
271 BYTES_TO_T_UINT( 0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39 ),
272 BYTES_TO_T_UINT( 0x18, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
273};
274static t_uint secp521r1_n[] = {
275 BYTES_TO_T_UINT( 0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB ),
276 BYTES_TO_T_UINT( 0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B ),
277 BYTES_TO_T_UINT( 0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F ),
278 BYTES_TO_T_UINT( 0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51 ),
279 BYTES_TO_T_UINT( 0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
280 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
281 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
282 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
283 BYTES_TO_T_UINT( 0xFF, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
284};
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100285
286/*
287 * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
288 */
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100289static t_uint brainpoolP256r1_p[] = {
290 BYTES_TO_T_UINT( 0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20 ),
291 BYTES_TO_T_UINT( 0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E ),
292 BYTES_TO_T_UINT( 0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
293 BYTES_TO_T_UINT( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
294};
295static t_uint brainpoolP256r1_a[] = {
296 BYTES_TO_T_UINT( 0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9 ),
297 BYTES_TO_T_UINT( 0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB ),
298 BYTES_TO_T_UINT( 0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE ),
299 BYTES_TO_T_UINT( 0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D ),
300};
301static t_uint brainpoolP256r1_b[] = {
302 BYTES_TO_T_UINT( 0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B ),
303 BYTES_TO_T_UINT( 0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95 ),
304 BYTES_TO_T_UINT( 0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3 ),
305 BYTES_TO_T_UINT( 0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26 ),
306};
307static t_uint brainpoolP256r1_gx[] = {
308 BYTES_TO_T_UINT( 0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A ),
309 BYTES_TO_T_UINT( 0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9 ),
310 BYTES_TO_T_UINT( 0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C ),
311 BYTES_TO_T_UINT( 0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B ),
312};
313static t_uint brainpoolP256r1_gy[] = {
314 BYTES_TO_T_UINT( 0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C ),
315 BYTES_TO_T_UINT( 0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2 ),
316 BYTES_TO_T_UINT( 0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97 ),
317 BYTES_TO_T_UINT( 0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54 ),
318};
319static t_uint brainpoolP256r1_n[] = {
320 BYTES_TO_T_UINT( 0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90 ),
321 BYTES_TO_T_UINT( 0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C ),
322 BYTES_TO_T_UINT( 0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
323 BYTES_TO_T_UINT( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
324};
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100325
326/*
327 * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
328 */
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100329static t_uint brainpoolP384r1_p[] = {
330 BYTES_TO_T_UINT( 0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87 ),
331 BYTES_TO_T_UINT( 0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC ),
332 BYTES_TO_T_UINT( 0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12 ),
333 BYTES_TO_T_UINT( 0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
334 BYTES_TO_T_UINT( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
335 BYTES_TO_T_UINT( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
336};
337static t_uint brainpoolP384r1_a[] = {
338 BYTES_TO_T_UINT( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
339 BYTES_TO_T_UINT( 0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A ),
340 BYTES_TO_T_UINT( 0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13 ),
341 BYTES_TO_T_UINT( 0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2 ),
342 BYTES_TO_T_UINT( 0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C ),
343 BYTES_TO_T_UINT( 0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B ),
344};
345static t_uint brainpoolP384r1_b[] = {
346 BYTES_TO_T_UINT( 0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A ),
347 BYTES_TO_T_UINT( 0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C ),
348 BYTES_TO_T_UINT( 0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E ),
349 BYTES_TO_T_UINT( 0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F ),
350 BYTES_TO_T_UINT( 0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B ),
351 BYTES_TO_T_UINT( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
352};
353static t_uint brainpoolP384r1_gx[] = {
354 BYTES_TO_T_UINT( 0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF ),
355 BYTES_TO_T_UINT( 0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8 ),
356 BYTES_TO_T_UINT( 0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB ),
357 BYTES_TO_T_UINT( 0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88 ),
358 BYTES_TO_T_UINT( 0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2 ),
359 BYTES_TO_T_UINT( 0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D ),
360};
361static t_uint brainpoolP384r1_gy[] = {
362 BYTES_TO_T_UINT( 0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42 ),
363 BYTES_TO_T_UINT( 0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E ),
364 BYTES_TO_T_UINT( 0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1 ),
365 BYTES_TO_T_UINT( 0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62 ),
366 BYTES_TO_T_UINT( 0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C ),
367 BYTES_TO_T_UINT( 0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A ),
368};
369static t_uint brainpoolP384r1_n[] = {
370 BYTES_TO_T_UINT( 0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B ),
371 BYTES_TO_T_UINT( 0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF ),
372 BYTES_TO_T_UINT( 0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F ),
373 BYTES_TO_T_UINT( 0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
374 BYTES_TO_T_UINT( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
375 BYTES_TO_T_UINT( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
376};
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100377
378/*
379 * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
380 */
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100381static t_uint brainpoolP512r1_p[] = {
382 BYTES_TO_T_UINT( 0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28 ),
383 BYTES_TO_T_UINT( 0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28 ),
384 BYTES_TO_T_UINT( 0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE ),
385 BYTES_TO_T_UINT( 0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D ),
386 BYTES_TO_T_UINT( 0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
387 BYTES_TO_T_UINT( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
388 BYTES_TO_T_UINT( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
389 BYTES_TO_T_UINT( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
390};
391static t_uint brainpoolP512r1_a[] = {
392 BYTES_TO_T_UINT( 0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7 ),
393 BYTES_TO_T_UINT( 0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F ),
394 BYTES_TO_T_UINT( 0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A ),
395 BYTES_TO_T_UINT( 0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D ),
396 BYTES_TO_T_UINT( 0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8 ),
397 BYTES_TO_T_UINT( 0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94 ),
398 BYTES_TO_T_UINT( 0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2 ),
399 BYTES_TO_T_UINT( 0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78 ),
400};
401static t_uint brainpoolP512r1_b[] = {
402 BYTES_TO_T_UINT( 0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28 ),
403 BYTES_TO_T_UINT( 0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98 ),
404 BYTES_TO_T_UINT( 0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77 ),
405 BYTES_TO_T_UINT( 0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B ),
406 BYTES_TO_T_UINT( 0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B ),
407 BYTES_TO_T_UINT( 0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8 ),
408 BYTES_TO_T_UINT( 0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA ),
409 BYTES_TO_T_UINT( 0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D ),
410};
411static t_uint brainpoolP512r1_gx[] = {
412 BYTES_TO_T_UINT( 0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B ),
413 BYTES_TO_T_UINT( 0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C ),
414 BYTES_TO_T_UINT( 0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50 ),
415 BYTES_TO_T_UINT( 0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF ),
416 BYTES_TO_T_UINT( 0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4 ),
417 BYTES_TO_T_UINT( 0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85 ),
418 BYTES_TO_T_UINT( 0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A ),
419 BYTES_TO_T_UINT( 0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81 ),
420};
421static t_uint brainpoolP512r1_gy[] = {
422 BYTES_TO_T_UINT( 0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78 ),
423 BYTES_TO_T_UINT( 0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1 ),
424 BYTES_TO_T_UINT( 0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B ),
425 BYTES_TO_T_UINT( 0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2 ),
426 BYTES_TO_T_UINT( 0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0 ),
427 BYTES_TO_T_UINT( 0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2 ),
428 BYTES_TO_T_UINT( 0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0 ),
429 BYTES_TO_T_UINT( 0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D ),
430};
431static t_uint brainpoolP512r1_n[] = {
432 BYTES_TO_T_UINT( 0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5 ),
433 BYTES_TO_T_UINT( 0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D ),
434 BYTES_TO_T_UINT( 0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41 ),
435 BYTES_TO_T_UINT( 0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55 ),
436 BYTES_TO_T_UINT( 0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
437 BYTES_TO_T_UINT( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
438 BYTES_TO_T_UINT( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
439 BYTES_TO_T_UINT( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
440};
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100441
442/*
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100443 * Create an MPI from embedded constants
444 * (assumes len is an exact multiple of sizeof t_uint)
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100445 */
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100446static inline void ecp_mpi_load( mpi *X, const t_uint *p, size_t len )
447{
448 X->s = 1;
449 X->n = len / sizeof( t_uint );
450 X->p = (t_uint *) p;
451}
452
453/*
454 * Make group available from embedded constants
455 */
456static int ecp_group_load( ecp_group *grp,
457 const t_uint *p, size_t plen,
458 const t_uint *a, size_t alen,
459 const t_uint *b, size_t blen,
460 const t_uint *gx, size_t gxlen,
461 const t_uint *gy, size_t gylen,
462 const t_uint *n, size_t nlen)
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100463{
464 int ret;
465
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100466 ecp_mpi_load( &grp->P, p, plen );
Manuel Pégourié-Gonnard9854fe92013-12-02 16:30:43 +0100467 if( a != NULL )
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100468 ecp_mpi_load( &grp->A, a, alen );
Manuel Pégourié-Gonnard9854fe92013-12-02 16:30:43 +0100469 else
470 MPI_CHK( mpi_sub_int( &grp->A, &grp->P, 3 ) );
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100471 ecp_mpi_load( &grp->B, b, blen );
472 ecp_mpi_load( &grp->N, n, nlen );
Manuel Pégourié-Gonnard9854fe92013-12-02 16:30:43 +0100473
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100474 ecp_mpi_load( &grp->G.X, gx, gxlen );
475 ecp_mpi_load( &grp->G.Y, gy, gylen );
Manuel Pégourié-Gonnard9854fe92013-12-02 16:30:43 +0100476 MPI_CHK( mpi_lset( &grp->G.Z, 1 ) );
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100477
478 grp->pbits = mpi_msb( &grp->P );
479 grp->nbits = mpi_msb( &grp->N );
480
481cleanup:
482 if( ret != 0 )
483 ecp_group_free( grp );
484
485 return( ret );
486}
487
488#if defined(POLARSSL_ECP_NIST_OPTIM)
489/* Forward declarations */
Manuel Pégourié-Gonnard3d7053a2013-12-04 20:51:13 +0100490#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100491static int ecp_mod_p192( mpi * );
Manuel Pégourié-Gonnard3d7053a2013-12-04 20:51:13 +0100492#endif
493#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100494static int ecp_mod_p224( mpi * );
Manuel Pégourié-Gonnard3d7053a2013-12-04 20:51:13 +0100495#endif
496#if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100497static int ecp_mod_p256( mpi * );
Manuel Pégourié-Gonnard3d7053a2013-12-04 20:51:13 +0100498#endif
499#if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100500static int ecp_mod_p384( mpi * );
Manuel Pégourié-Gonnard3d7053a2013-12-04 20:51:13 +0100501#endif
502#if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100503static int ecp_mod_p521( mpi * );
Manuel Pégourié-Gonnard3d7053a2013-12-04 20:51:13 +0100504#endif
505#if defined(POLARSSL_ECP_DP_M255_ENABLED)
506static int ecp_mod_p255( mpi * );
507#endif
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100508
509#define NIST_MODP( P ) grp->modp = ecp_mod_ ## P;
510#else
511#define NIST_MODP( P )
Manuel Pégourié-Gonnard3d7053a2013-12-04 20:51:13 +0100512#endif /* POLARSSL_ECP_NIST_OPTIM */
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100513
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100514#define LOAD_GROUP( G ) ecp_group_load( grp, \
515 G ## _p, sizeof( G ## _p ), \
516 G ## _a, sizeof( G ## _a ), \
517 G ## _b, sizeof( G ## _b ), \
518 G ## _gx, sizeof( G ## _gx ), \
519 G ## _gy, sizeof( G ## _gy ), \
520 G ## _n, sizeof( G ## _n ) )
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100521/*
Manuel Pégourié-Gonnard66153662013-12-03 14:12:26 +0100522 * Specialized function for creating the Curve25519 group
523 */
524static int ecp_use_curve25519( ecp_group *grp )
525{
526 int ret;
527
528 /* Actually ( A + 2 ) / 4 */
529 MPI_CHK( mpi_read_string( &grp->A, 16, "01DB42" ) );
530
531 /* P = 2^255 - 19 */
532 MPI_CHK( mpi_lset( &grp->P, 1 ) );
533 MPI_CHK( mpi_shift_l( &grp->P, 255 ) );
534 MPI_CHK( mpi_sub_int( &grp->P, &grp->P, 19 ) );
535 grp->pbits = mpi_msb( &grp->P );
536
Manuel Pégourié-Gonnard312d2e82013-12-04 11:08:01 +0100537 /* Y intentionaly not set, since we use x/z coordinates.
538 * This is used as a marker to identify Montgomery curves! */
539 MPI_CHK( mpi_lset( &grp->G.X, 9 ) );
540 MPI_CHK( mpi_lset( &grp->G.Z, 1 ) );
541 mpi_free( &grp->G.Y );
542
Manuel Pégourié-Gonnard66153662013-12-03 14:12:26 +0100543 /* Actually, the required msb for private keys */
544 grp->nbits = 254;
545
546cleanup:
547 if( ret != 0 )
548 ecp_group_free( grp );
549
550 return( ret );
551}
552
553/*
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100554 * Set a group using well-known domain parameters
555 */
556int ecp_use_known_dp( ecp_group *grp, ecp_group_id id )
557{
Manuel Pégourié-Gonnard66153662013-12-03 14:12:26 +0100558 ecp_group_free( grp );
559
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100560 grp->id = id;
561
562 switch( id )
563 {
564#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
565 case POLARSSL_ECP_DP_SECP192R1:
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100566 NIST_MODP( p192 );
Manuel Pégourié-Gonnard9854fe92013-12-02 16:30:43 +0100567 return( LOAD_GROUP( secp192r1 ) );
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100568#endif /* POLARSSL_ECP_DP_SECP192R1_ENABLED */
569
570#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
571 case POLARSSL_ECP_DP_SECP224R1:
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100572 NIST_MODP( p224 );
Manuel Pégourié-Gonnard9854fe92013-12-02 16:30:43 +0100573 return( LOAD_GROUP( secp224r1 ) );
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100574#endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED */
575
576#if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
577 case POLARSSL_ECP_DP_SECP256R1:
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100578 NIST_MODP( p256 );
Manuel Pégourié-Gonnard9854fe92013-12-02 16:30:43 +0100579 return( LOAD_GROUP( secp256r1 ) );
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100580#endif /* POLARSSL_ECP_DP_SECP256R1_ENABLED */
581
582#if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
583 case POLARSSL_ECP_DP_SECP384R1:
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100584 NIST_MODP( p384 );
Manuel Pégourié-Gonnard9854fe92013-12-02 16:30:43 +0100585 return( LOAD_GROUP( secp384r1 ) );
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100586#endif /* POLARSSL_ECP_DP_SECP384R1_ENABLED */
587
588#if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
589 case POLARSSL_ECP_DP_SECP521R1:
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100590 NIST_MODP( p521 );
Manuel Pégourié-Gonnard9854fe92013-12-02 16:30:43 +0100591 return( LOAD_GROUP( secp521r1 ) );
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100592#endif /* POLARSSL_ECP_DP_SECP521R1_ENABLED */
593
594#if defined(POLARSSL_ECP_DP_BP256R1_ENABLED)
595 case POLARSSL_ECP_DP_BP256R1:
Manuel Pégourié-Gonnard9854fe92013-12-02 16:30:43 +0100596 return( LOAD_GROUP( brainpoolP256r1 ) );
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100597#endif /* POLARSSL_ECP_DP_BP256R1_ENABLED */
598
599#if defined(POLARSSL_ECP_DP_BP384R1_ENABLED)
600 case POLARSSL_ECP_DP_BP384R1:
Manuel Pégourié-Gonnard9854fe92013-12-02 16:30:43 +0100601 return( LOAD_GROUP( brainpoolP384r1 ) );
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100602#endif /* POLARSSL_ECP_DP_BP384R1_ENABLED */
603
604#if defined(POLARSSL_ECP_DP_BP512R1_ENABLED)
605 case POLARSSL_ECP_DP_BP512R1:
Manuel Pégourié-Gonnard9854fe92013-12-02 16:30:43 +0100606 return( LOAD_GROUP( brainpoolP512r1 ) );
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100607#endif /* POLARSSL_ECP_DP_BP512R1_ENABLED */
608
Manuel Pégourié-Gonnard66153662013-12-03 14:12:26 +0100609#if defined(POLARSSL_ECP_DP_M255_ENABLED)
610 case POLARSSL_ECP_DP_M255:
Manuel Pégourié-Gonnard3d7053a2013-12-04 20:51:13 +0100611 grp->modp = ecp_mod_p255;
Manuel Pégourié-Gonnard66153662013-12-03 14:12:26 +0100612 return( ecp_use_curve25519( grp ) );
613#endif /* POLARSSL_ECP_DP_M255_ENABLED */
614
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100615 default:
616 ecp_group_free( grp );
617 return( POLARSSL_ERR_ECP_FEATURE_UNAVAILABLE );
618 }
619}
620
621#if defined(POLARSSL_ECP_NIST_OPTIM)
622/*
623 * Fast reduction modulo the primes used by the NIST curves.
624 *
625 * These functions are critical for speed, but not needed for correct
626 * operations. So, we make the choice to heavily rely on the internals of our
627 * bignum library, which creates a tight coupling between these functions and
628 * our MPI implementation. However, the coupling between the ECP module and
629 * MPI remains loose, since these functions can be deactivated at will.
630 */
631
632#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
633/*
634 * Compared to the way things are presented in FIPS 186-3 D.2,
635 * we proceed in columns, from right (least significant chunk) to left,
636 * adding chunks to N in place, and keeping a carry for the next chunk.
637 * This avoids moving things around in memory, and uselessly adding zeros,
638 * compared to the more straightforward, line-oriented approach.
639 *
640 * For this prime we need to handle data in chunks of 64 bits.
641 * Since this is always a multiple of our basic t_uint, we can
642 * use a t_uint * to designate such a chunk, and small loops to handle it.
643 */
644
645/* Add 64-bit chunks (dst += src) and update carry */
646static inline void add64( t_uint *dst, t_uint *src, t_uint *carry )
647{
648 unsigned char i;
649 t_uint c = 0;
650 for( i = 0; i < 8 / sizeof( t_uint ); i++, dst++, src++ )
651 {
652 *dst += c; c = ( *dst < c );
653 *dst += *src; c += ( *dst < *src );
654 }
655 *carry += c;
656}
657
658/* Add carry to a 64-bit chunk and update carry */
659static inline void carry64( t_uint *dst, t_uint *carry )
660{
661 unsigned char i;
662 for( i = 0; i < 8 / sizeof( t_uint ); i++, dst++ )
663 {
664 *dst += *carry;
665 *carry = ( *dst < *carry );
666 }
667}
668
669#define WIDTH 8 / sizeof( t_uint )
670#define A( i ) N->p + i * WIDTH
671#define ADD( i ) add64( p, A( i ), &c )
672#define NEXT p += WIDTH; carry64( p, &c )
673#define LAST p += WIDTH; *p = c; while( ++p < end ) *p = 0
674
675/*
676 * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
677 */
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100678static int ecp_mod_p192( mpi *N )
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100679{
680 int ret;
681 t_uint c = 0;
682 t_uint *p, *end;
683
684 /* Make sure we have enough blocks so that A(5) is legal */
685 MPI_CHK( mpi_grow( N, 6 * WIDTH ) );
686
687 p = N->p;
688 end = p + N->n;
689
690 ADD( 3 ); ADD( 5 ); NEXT; // A0 += A3 + A5
691 ADD( 3 ); ADD( 4 ); ADD( 5 ); NEXT; // A1 += A3 + A4 + A5
692 ADD( 4 ); ADD( 5 ); LAST; // A2 += A4 + A5
693
694cleanup:
695 return( ret );
696}
697
698#undef WIDTH
699#undef A
700#undef ADD
701#undef NEXT
702#undef LAST
703#endif /* POLARSSL_ECP_DP_SECP192R1_ENABLED */
704
705#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED) || \
706 defined(POLARSSL_ECP_DP_SECP256R1_ENABLED) || \
707 defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
708/*
709 * The reader is advised to first understand ecp_mod_p192() since the same
710 * general structure is used here, but with additional complications:
711 * (1) chunks of 32 bits, and (2) subtractions.
712 */
713
714/*
715 * For these primes, we need to handle data in chunks of 32 bits.
716 * This makes it more complicated if we use 64 bits limbs in MPI,
717 * which prevents us from using a uniform access method as for p192.
718 *
719 * So, we define a mini abstraction layer to access 32 bit chunks,
720 * load them in 'cur' for work, and store them back from 'cur' when done.
721 *
722 * While at it, also define the size of N in terms of 32-bit chunks.
723 */
724#define LOAD32 cur = A( i );
725
726#if defined(POLARSSL_HAVE_INT8) /* 8 bit */
727
728#define MAX32 N->n / 4
729#define A( j ) (uint32_t)( N->p[4*j+0] ) | \
730 ( N->p[4*j+1] << 8 ) | \
731 ( N->p[4*j+2] << 16 ) | \
732 ( N->p[4*j+3] << 24 )
733#define STORE32 N->p[4*i+0] = (t_uint)( cur ); \
734 N->p[4*i+1] = (t_uint)( cur >> 8 ); \
735 N->p[4*i+2] = (t_uint)( cur >> 16 ); \
736 N->p[4*i+3] = (t_uint)( cur >> 24 );
737
738#elif defined(POLARSSL_HAVE_INT16) /* 16 bit */
739
740#define MAX32 N->n / 2
741#define A( j ) (uint32_t)( N->p[2*j] ) | ( N->p[2*j+1] << 16 )
742#define STORE32 N->p[2*i+0] = (t_uint)( cur ); \
743 N->p[2*i+1] = (t_uint)( cur >> 16 );
744
745#elif defined(POLARSSL_HAVE_INT32) /* 32 bit */
746
747#define MAX32 N->n
748#define A( j ) N->p[j]
749#define STORE32 N->p[i] = cur;
750
751#else /* 64-bit */
752
753#define MAX32 N->n * 2
754#define A( j ) j % 2 ? (uint32_t)( N->p[j/2] >> 32 ) : (uint32_t)( N->p[j/2] )
755#define STORE32 \
756 if( i % 2 ) { \
757 N->p[i/2] &= 0x00000000FFFFFFFF; \
758 N->p[i/2] |= ((t_uint) cur) << 32; \
759 } else { \
760 N->p[i/2] &= 0xFFFFFFFF00000000; \
761 N->p[i/2] |= (t_uint) cur; \
762 }
763
764#endif /* sizeof( t_uint ) */
765
766/*
767 * Helpers for addition and subtraction of chunks, with signed carry.
768 */
769static inline void add32( uint32_t *dst, uint32_t src, signed char *carry )
770{
771 *dst += src;
772 *carry += ( *dst < src );
773}
774
775static inline void sub32( uint32_t *dst, uint32_t src, signed char *carry )
776{
777 *carry -= ( *dst < src );
778 *dst -= src;
779}
780
781#define ADD( j ) add32( &cur, A( j ), &c );
782#define SUB( j ) sub32( &cur, A( j ), &c );
783
784/*
785 * Helpers for the main 'loop'
786 * (see fix_negative for the motivation of C)
787 */
788#define INIT( b ) \
789 int ret; \
790 signed char c = 0, cc; \
791 uint32_t cur; \
792 size_t i = 0, bits = b; \
793 mpi C; \
794 t_uint Cp[ b / 8 / sizeof( t_uint) + 1 ]; \
795 \
796 C.s = 1; \
797 C.n = b / 8 / sizeof( t_uint) + 1; \
798 C.p = Cp; \
799 memset( Cp, 0, C.n * sizeof( t_uint ) ); \
800 \
801 MPI_CHK( mpi_grow( N, b * 2 / 8 / sizeof( t_uint ) ) ); \
802 LOAD32;
803
804#define NEXT \
805 STORE32; i++; LOAD32; \
806 cc = c; c = 0; \
807 if( cc < 0 ) \
808 sub32( &cur, -cc, &c ); \
809 else \
810 add32( &cur, cc, &c ); \
811
812#define LAST \
813 STORE32; i++; \
814 cur = c > 0 ? c : 0; STORE32; \
815 cur = 0; while( ++i < MAX32 ) { STORE32; } \
816 if( c < 0 ) fix_negative( N, c, &C, bits );
817
818/*
819 * If the result is negative, we get it in the form
820 * c * 2^(bits + 32) + N, with c negative and N positive shorter than 'bits'
821 */
822static inline int fix_negative( mpi *N, signed char c, mpi *C, size_t bits )
823{
824 int ret;
825
826 /* C = - c * 2^(bits + 32) */
827#if !defined(POLARSSL_HAVE_INT64)
828 ((void) bits);
829#else
830 if( bits == 224 )
831 C->p[ C->n - 1 ] = ((t_uint) -c) << 32;
832 else
833#endif
834 C->p[ C->n - 1 ] = (t_uint) -c;
835
836 /* N = - ( C - N ) */
837 MPI_CHK( mpi_sub_abs( N, C, N ) );
838 N->s = -1;
839
840cleanup:
841
842 return( ret );
843}
844
845#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
846/*
847 * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
848 */
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100849static int ecp_mod_p224( mpi *N )
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100850{
851 INIT( 224 );
852
853 SUB( 7 ); SUB( 11 ); NEXT; // A0 += -A7 - A11
854 SUB( 8 ); SUB( 12 ); NEXT; // A1 += -A8 - A12
855 SUB( 9 ); SUB( 13 ); NEXT; // A2 += -A9 - A13
856 SUB( 10 ); ADD( 7 ); ADD( 11 ); NEXT; // A3 += -A10 + A7 + A11
857 SUB( 11 ); ADD( 8 ); ADD( 12 ); NEXT; // A4 += -A11 + A8 + A12
858 SUB( 12 ); ADD( 9 ); ADD( 13 ); NEXT; // A5 += -A12 + A9 + A13
859 SUB( 13 ); ADD( 10 ); LAST; // A6 += -A13 + A10
860
861cleanup:
862 return( ret );
863}
864#endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED */
865
866#if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
867/*
868 * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
869 */
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100870static int ecp_mod_p256( mpi *N )
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100871{
872 INIT( 256 );
873
874 ADD( 8 ); ADD( 9 );
875 SUB( 11 ); SUB( 12 ); SUB( 13 ); SUB( 14 ); NEXT; // A0
876
877 ADD( 9 ); ADD( 10 );
878 SUB( 12 ); SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A1
879
880 ADD( 10 ); ADD( 11 );
881 SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A2
882
883 ADD( 11 ); ADD( 11 ); ADD( 12 ); ADD( 12 ); ADD( 13 );
884 SUB( 15 ); SUB( 8 ); SUB( 9 ); NEXT; // A3
885
886 ADD( 12 ); ADD( 12 ); ADD( 13 ); ADD( 13 ); ADD( 14 );
887 SUB( 9 ); SUB( 10 ); NEXT; // A4
888
889 ADD( 13 ); ADD( 13 ); ADD( 14 ); ADD( 14 ); ADD( 15 );
890 SUB( 10 ); SUB( 11 ); NEXT; // A5
891
892 ADD( 14 ); ADD( 14 ); ADD( 15 ); ADD( 15 ); ADD( 14 ); ADD( 13 );
893 SUB( 8 ); SUB( 9 ); NEXT; // A6
894
895 ADD( 15 ); ADD( 15 ); ADD( 15 ); ADD( 8 );
896 SUB( 10 ); SUB( 11 ); SUB( 12 ); SUB( 13 ); LAST; // A7
897
898cleanup:
899 return( ret );
900}
901#endif /* POLARSSL_ECP_DP_SECP256R1_ENABLED */
902
903#if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
904/*
905 * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
906 */
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100907static int ecp_mod_p384( mpi *N )
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100908{
909 INIT( 384 );
910
911 ADD( 12 ); ADD( 21 ); ADD( 20 );
912 SUB( 23 ); NEXT; // A0
913
914 ADD( 13 ); ADD( 22 ); ADD( 23 );
915 SUB( 12 ); SUB( 20 ); NEXT; // A2
916
917 ADD( 14 ); ADD( 23 );
918 SUB( 13 ); SUB( 21 ); NEXT; // A2
919
920 ADD( 15 ); ADD( 12 ); ADD( 20 ); ADD( 21 );
921 SUB( 14 ); SUB( 22 ); SUB( 23 ); NEXT; // A3
922
923 ADD( 21 ); ADD( 21 ); ADD( 16 ); ADD( 13 ); ADD( 12 ); ADD( 20 ); ADD( 22 );
924 SUB( 15 ); SUB( 23 ); SUB( 23 ); NEXT; // A4
925
926 ADD( 22 ); ADD( 22 ); ADD( 17 ); ADD( 14 ); ADD( 13 ); ADD( 21 ); ADD( 23 );
927 SUB( 16 ); NEXT; // A5
928
929 ADD( 23 ); ADD( 23 ); ADD( 18 ); ADD( 15 ); ADD( 14 ); ADD( 22 );
930 SUB( 17 ); NEXT; // A6
931
932 ADD( 19 ); ADD( 16 ); ADD( 15 ); ADD( 23 );
933 SUB( 18 ); NEXT; // A7
934
935 ADD( 20 ); ADD( 17 ); ADD( 16 );
936 SUB( 19 ); NEXT; // A8
937
938 ADD( 21 ); ADD( 18 ); ADD( 17 );
939 SUB( 20 ); NEXT; // A9
940
941 ADD( 22 ); ADD( 19 ); ADD( 18 );
942 SUB( 21 ); NEXT; // A10
943
944 ADD( 23 ); ADD( 20 ); ADD( 19 );
945 SUB( 22 ); LAST; // A11
946
947cleanup:
948 return( ret );
949}
950#endif /* POLARSSL_ECP_DP_SECP384R1_ENABLED */
951
952#undef A
953#undef LOAD32
954#undef STORE32
955#undef MAX32
956#undef INIT
957#undef NEXT
958#undef LAST
959
960#endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED ||
961 POLARSSL_ECP_DP_SECP256R1_ENABLED ||
962 POLARSSL_ECP_DP_SECP384R1_ENABLED */
963
964#if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
965/*
966 * Here we have an actual Mersenne prime, so things are more straightforward.
967 * However, chunks are aligned on a 'weird' boundary (521 bits).
968 */
969
970/* Size of p521 in terms of t_uint */
971#define P521_WIDTH ( 521 / 8 / sizeof( t_uint ) + 1 )
972
973/* Bits to keep in the most significant t_uint */
974#if defined(POLARSSL_HAVE_INT8)
975#define P521_MASK 0x01
976#else
977#define P521_MASK 0x01FF
978#endif
979
980/*
981 * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
982 * Write N as A1 + 2^521 A0, return A0 + A1
983 */
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100984static int ecp_mod_p521( mpi *N )
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100985{
986 int ret;
987 size_t i;
988 mpi M;
989 t_uint Mp[P521_WIDTH + 1];
990 /* Worst case for the size of M is when t_uint is 16 bits:
991 * we need to hold bits 513 to 1056, which is 34 limbs, that is
992 * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */
993
994 if( N->n < P521_WIDTH )
995 return( 0 );
996
997 /* M = A1 */
998 M.s = 1;
999 M.n = N->n - ( P521_WIDTH - 1 );
1000 if( M.n > P521_WIDTH + 1 )
1001 M.n = P521_WIDTH + 1;
1002 M.p = Mp;
1003 memcpy( Mp, N->p + P521_WIDTH - 1, M.n * sizeof( t_uint ) );
1004 MPI_CHK( mpi_shift_r( &M, 521 % ( 8 * sizeof( t_uint ) ) ) );
1005
1006 /* N = A0 */
1007 N->p[P521_WIDTH - 1] &= P521_MASK;
1008 for( i = P521_WIDTH; i < N->n; i++ )
1009 N->p[i] = 0;
1010
1011 /* N = A0 + A1 */
1012 MPI_CHK( mpi_add_abs( N, N, &M ) );
1013
1014cleanup:
1015 return( ret );
1016}
1017
1018#undef P521_WIDTH
1019#undef P521_MASK
1020#endif /* POLARSSL_ECP_DP_SECP521R1_ENABLED */
1021
1022#endif /* POLARSSL_ECP_NIST_OPTIM */
1023
Manuel Pégourié-Gonnard3d7053a2013-12-04 20:51:13 +01001024#if defined(POLARSSL_ECP_DP_M255_ENABLED)
1025
1026/* Size of p255 in terms of t_uint */
1027#define P255_WIDTH ( 255 / 8 / sizeof( t_uint ) + 1 )
1028
1029/*
1030 * Fast quasi-reduction modulo p255 = 2^255 - 19
1031 * Write N as A1 + 2^255 A1, return A0 + 19 * A1
1032 */
1033static int ecp_mod_p255( mpi *N )
1034{
1035 int ret;
1036 size_t i;
1037 mpi M;
1038 t_uint Mp[P255_WIDTH + 2];
1039
1040 if( N->n < P255_WIDTH )
1041 return( 0 );
1042
1043 /* M = A1 */
1044 M.s = 1;
1045 M.n = N->n - ( P255_WIDTH - 1 );
1046 if( M.n > P255_WIDTH + 1 )
1047 M.n = P255_WIDTH + 1;
1048 M.p = Mp;
1049 memset( Mp, 0, sizeof Mp );
1050 memcpy( Mp, N->p + P255_WIDTH - 1, M.n * sizeof( t_uint ) );
1051 MPI_CHK( mpi_shift_r( &M, 255 % ( 8 * sizeof( t_uint ) ) ) );
1052 M.n++; /* Make room for multiplication by 19 */
1053
1054 /* N = A0 */
1055 mpi_set_bit( N, 255, 0 );
1056 for( i = P255_WIDTH; i < N->n; i++ )
1057 N->p[i] = 0;
1058
1059 /* N = A0 + 19 * A1 */
1060 MPI_CHK( mpi_mul_int( &M, &M, 19 ) );
1061 MPI_CHK( mpi_add_abs( N, N, &M ) );
1062
1063cleanup:
1064 return( ret );
1065}
1066#endif /* POLARSSL_ECP_DP_M255_ENABLED */
1067
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +01001068#endif