blob: a56f2b9df5a012fe9d92536c6b4ed749123b87dc [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0-only
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18#include <linux/stddef.h>
19#include <linux/mm.h>
David Brazdil0f672f62019-12-10 10:32:29 +000020#include <linux/highmem.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000021#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
24#include <linux/jiffies.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000025#include <linux/memblock.h>
26#include <linux/compiler.h>
27#include <linux/kernel.h>
28#include <linux/kasan.h>
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
34#include <linux/ratelimit.h>
35#include <linux/oom.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
40#include <linux/memory_hotplug.h>
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
43#include <linux/vmstat.h>
44#include <linux/mempolicy.h>
45#include <linux/memremap.h>
46#include <linux/stop_machine.h>
David Brazdil0f672f62019-12-10 10:32:29 +000047#include <linux/random.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000048#include <linux/sort.h>
49#include <linux/pfn.h>
50#include <linux/backing-dev.h>
51#include <linux/fault-inject.h>
52#include <linux/page-isolation.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000053#include <linux/debugobjects.h>
54#include <linux/kmemleak.h>
55#include <linux/compaction.h>
56#include <trace/events/kmem.h>
57#include <trace/events/oom.h>
58#include <linux/prefetch.h>
59#include <linux/mm_inline.h>
60#include <linux/migrate.h>
61#include <linux/hugetlb.h>
62#include <linux/sched/rt.h>
63#include <linux/sched/mm.h>
64#include <linux/page_owner.h>
65#include <linux/kthread.h>
66#include <linux/memcontrol.h>
67#include <linux/ftrace.h>
68#include <linux/lockdep.h>
69#include <linux/nmi.h>
David Brazdil0f672f62019-12-10 10:32:29 +000070#include <linux/psi.h>
Olivier Deprez157378f2022-04-04 15:47:50 +020071#include <linux/padata.h>
Olivier Deprez0e641232021-09-23 10:07:05 +020072#include <linux/khugepaged.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000073
74#include <asm/sections.h>
75#include <asm/tlbflush.h>
76#include <asm/div64.h>
77#include "internal.h"
David Brazdil0f672f62019-12-10 10:32:29 +000078#include "shuffle.h"
Olivier Deprez157378f2022-04-04 15:47:50 +020079#include "page_reporting.h"
80
81/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
82typedef int __bitwise fpi_t;
83
84/* No special request */
85#define FPI_NONE ((__force fpi_t)0)
86
87/*
88 * Skip free page reporting notification for the (possibly merged) page.
89 * This does not hinder free page reporting from grabbing the page,
90 * reporting it and marking it "reported" - it only skips notifying
91 * the free page reporting infrastructure about a newly freed page. For
92 * example, used when temporarily pulling a page from a freelist and
93 * putting it back unmodified.
94 */
95#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
96
97/*
98 * Place the (possibly merged) page to the tail of the freelist. Will ignore
99 * page shuffling (relevant code - e.g., memory onlining - is expected to
100 * shuffle the whole zone).
101 *
102 * Note: No code should rely on this flag for correctness - it's purely
103 * to allow for optimizations when handing back either fresh pages
104 * (memory onlining) or untouched pages (page isolation, free page
105 * reporting).
106 */
107#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000108
109/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
110static DEFINE_MUTEX(pcp_batch_high_lock);
111#define MIN_PERCPU_PAGELIST_FRACTION (8)
112
113#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
114DEFINE_PER_CPU(int, numa_node);
115EXPORT_PER_CPU_SYMBOL(numa_node);
116#endif
117
118DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
119
120#ifdef CONFIG_HAVE_MEMORYLESS_NODES
121/*
122 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
123 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
124 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
125 * defined in <linux/topology.h>.
126 */
127DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
128EXPORT_PER_CPU_SYMBOL(_numa_mem_);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000129#endif
130
131/* work_structs for global per-cpu drains */
David Brazdil0f672f62019-12-10 10:32:29 +0000132struct pcpu_drain {
133 struct zone *zone;
134 struct work_struct work;
135};
Olivier Deprez157378f2022-04-04 15:47:50 +0200136static DEFINE_MUTEX(pcpu_drain_mutex);
137static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000138
139#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
140volatile unsigned long latent_entropy __latent_entropy;
141EXPORT_SYMBOL(latent_entropy);
142#endif
143
144/*
145 * Array of node states.
146 */
147nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
148 [N_POSSIBLE] = NODE_MASK_ALL,
149 [N_ONLINE] = { { [0] = 1UL } },
150#ifndef CONFIG_NUMA
151 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
152#ifdef CONFIG_HIGHMEM
153 [N_HIGH_MEMORY] = { { [0] = 1UL } },
154#endif
155 [N_MEMORY] = { { [0] = 1UL } },
156 [N_CPU] = { { [0] = 1UL } },
157#endif /* NUMA */
158};
159EXPORT_SYMBOL(node_states);
160
David Brazdil0f672f62019-12-10 10:32:29 +0000161atomic_long_t _totalram_pages __read_mostly;
162EXPORT_SYMBOL(_totalram_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000163unsigned long totalreserve_pages __read_mostly;
164unsigned long totalcma_pages __read_mostly;
165
166int percpu_pagelist_fraction;
167gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
David Brazdil0f672f62019-12-10 10:32:29 +0000168#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
169DEFINE_STATIC_KEY_TRUE(init_on_alloc);
170#else
171DEFINE_STATIC_KEY_FALSE(init_on_alloc);
172#endif
173EXPORT_SYMBOL(init_on_alloc);
174
175#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
176DEFINE_STATIC_KEY_TRUE(init_on_free);
177#else
178DEFINE_STATIC_KEY_FALSE(init_on_free);
179#endif
180EXPORT_SYMBOL(init_on_free);
181
182static int __init early_init_on_alloc(char *buf)
183{
184 int ret;
185 bool bool_result;
186
David Brazdil0f672f62019-12-10 10:32:29 +0000187 ret = kstrtobool(buf, &bool_result);
Olivier Deprez157378f2022-04-04 15:47:50 +0200188 if (ret)
189 return ret;
David Brazdil0f672f62019-12-10 10:32:29 +0000190 if (bool_result && page_poisoning_enabled())
191 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
192 if (bool_result)
193 static_branch_enable(&init_on_alloc);
194 else
195 static_branch_disable(&init_on_alloc);
Olivier Deprez157378f2022-04-04 15:47:50 +0200196 return 0;
David Brazdil0f672f62019-12-10 10:32:29 +0000197}
198early_param("init_on_alloc", early_init_on_alloc);
199
200static int __init early_init_on_free(char *buf)
201{
202 int ret;
203 bool bool_result;
204
David Brazdil0f672f62019-12-10 10:32:29 +0000205 ret = kstrtobool(buf, &bool_result);
Olivier Deprez157378f2022-04-04 15:47:50 +0200206 if (ret)
207 return ret;
David Brazdil0f672f62019-12-10 10:32:29 +0000208 if (bool_result && page_poisoning_enabled())
209 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
210 if (bool_result)
211 static_branch_enable(&init_on_free);
212 else
213 static_branch_disable(&init_on_free);
Olivier Deprez157378f2022-04-04 15:47:50 +0200214 return 0;
David Brazdil0f672f62019-12-10 10:32:29 +0000215}
216early_param("init_on_free", early_init_on_free);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000217
218/*
219 * A cached value of the page's pageblock's migratetype, used when the page is
220 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
221 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
222 * Also the migratetype set in the page does not necessarily match the pcplist
223 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
224 * other index - this ensures that it will be put on the correct CMA freelist.
225 */
226static inline int get_pcppage_migratetype(struct page *page)
227{
228 return page->index;
229}
230
231static inline void set_pcppage_migratetype(struct page *page, int migratetype)
232{
233 page->index = migratetype;
234}
235
236#ifdef CONFIG_PM_SLEEP
237/*
238 * The following functions are used by the suspend/hibernate code to temporarily
239 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
240 * while devices are suspended. To avoid races with the suspend/hibernate code,
241 * they should always be called with system_transition_mutex held
242 * (gfp_allowed_mask also should only be modified with system_transition_mutex
243 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
244 * with that modification).
245 */
246
247static gfp_t saved_gfp_mask;
248
249void pm_restore_gfp_mask(void)
250{
251 WARN_ON(!mutex_is_locked(&system_transition_mutex));
252 if (saved_gfp_mask) {
253 gfp_allowed_mask = saved_gfp_mask;
254 saved_gfp_mask = 0;
255 }
256}
257
258void pm_restrict_gfp_mask(void)
259{
260 WARN_ON(!mutex_is_locked(&system_transition_mutex));
261 WARN_ON(saved_gfp_mask);
262 saved_gfp_mask = gfp_allowed_mask;
263 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
264}
265
266bool pm_suspended_storage(void)
267{
268 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
269 return false;
270 return true;
271}
272#endif /* CONFIG_PM_SLEEP */
273
274#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
275unsigned int pageblock_order __read_mostly;
276#endif
277
Olivier Deprez157378f2022-04-04 15:47:50 +0200278static void __free_pages_ok(struct page *page, unsigned int order,
279 fpi_t fpi_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000280
281/*
282 * results with 256, 32 in the lowmem_reserve sysctl:
283 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
284 * 1G machine -> (16M dma, 784M normal, 224M high)
285 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
286 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
287 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
288 *
289 * TBD: should special case ZONE_DMA32 machines here - in those we normally
290 * don't need any ZONE_NORMAL reservation
291 */
292int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
293#ifdef CONFIG_ZONE_DMA
294 [ZONE_DMA] = 256,
295#endif
296#ifdef CONFIG_ZONE_DMA32
297 [ZONE_DMA32] = 256,
298#endif
299 [ZONE_NORMAL] = 32,
300#ifdef CONFIG_HIGHMEM
301 [ZONE_HIGHMEM] = 0,
302#endif
303 [ZONE_MOVABLE] = 0,
304};
305
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000306static char * const zone_names[MAX_NR_ZONES] = {
307#ifdef CONFIG_ZONE_DMA
308 "DMA",
309#endif
310#ifdef CONFIG_ZONE_DMA32
311 "DMA32",
312#endif
313 "Normal",
314#ifdef CONFIG_HIGHMEM
315 "HighMem",
316#endif
317 "Movable",
318#ifdef CONFIG_ZONE_DEVICE
319 "Device",
320#endif
321};
322
David Brazdil0f672f62019-12-10 10:32:29 +0000323const char * const migratetype_names[MIGRATE_TYPES] = {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000324 "Unmovable",
325 "Movable",
326 "Reclaimable",
327 "HighAtomic",
328#ifdef CONFIG_CMA
329 "CMA",
330#endif
331#ifdef CONFIG_MEMORY_ISOLATION
332 "Isolate",
333#endif
334};
335
Olivier Deprez157378f2022-04-04 15:47:50 +0200336compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
337 [NULL_COMPOUND_DTOR] = NULL,
338 [COMPOUND_PAGE_DTOR] = free_compound_page,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000339#ifdef CONFIG_HUGETLB_PAGE
Olivier Deprez157378f2022-04-04 15:47:50 +0200340 [HUGETLB_PAGE_DTOR] = free_huge_page,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000341#endif
342#ifdef CONFIG_TRANSPARENT_HUGEPAGE
Olivier Deprez157378f2022-04-04 15:47:50 +0200343 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000344#endif
345};
346
347int min_free_kbytes = 1024;
348int user_min_free_kbytes = -1;
David Brazdil0f672f62019-12-10 10:32:29 +0000349#ifdef CONFIG_DISCONTIGMEM
350/*
351 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
352 * are not on separate NUMA nodes. Functionally this works but with
353 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
354 * quite small. By default, do not boost watermarks on discontigmem as in
355 * many cases very high-order allocations like THP are likely to be
356 * unsupported and the premature reclaim offsets the advantage of long-term
357 * fragmentation avoidance.
358 */
359int watermark_boost_factor __read_mostly;
360#else
361int watermark_boost_factor __read_mostly = 15000;
362#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000363int watermark_scale_factor = 10;
364
David Brazdil0f672f62019-12-10 10:32:29 +0000365static unsigned long nr_kernel_pages __initdata;
366static unsigned long nr_all_pages __initdata;
367static unsigned long dma_reserve __initdata;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000368
David Brazdil0f672f62019-12-10 10:32:29 +0000369static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
370static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000371static unsigned long required_kernelcore __initdata;
372static unsigned long required_kernelcore_percent __initdata;
373static unsigned long required_movablecore __initdata;
374static unsigned long required_movablecore_percent __initdata;
David Brazdil0f672f62019-12-10 10:32:29 +0000375static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000376static bool mirrored_kernelcore __meminitdata;
377
378/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
379int movable_zone;
380EXPORT_SYMBOL(movable_zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000381
382#if MAX_NUMNODES > 1
David Brazdil0f672f62019-12-10 10:32:29 +0000383unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
384unsigned int nr_online_nodes __read_mostly = 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000385EXPORT_SYMBOL(nr_node_ids);
386EXPORT_SYMBOL(nr_online_nodes);
387#endif
388
389int page_group_by_mobility_disabled __read_mostly;
390
391#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
David Brazdil0f672f62019-12-10 10:32:29 +0000392/*
393 * During boot we initialize deferred pages on-demand, as needed, but once
394 * page_alloc_init_late() has finished, the deferred pages are all initialized,
395 * and we can permanently disable that path.
396 */
397static DEFINE_STATIC_KEY_TRUE(deferred_pages);
398
399/*
400 * Calling kasan_free_pages() only after deferred memory initialization
401 * has completed. Poisoning pages during deferred memory init will greatly
402 * lengthen the process and cause problem in large memory systems as the
403 * deferred pages initialization is done with interrupt disabled.
404 *
405 * Assuming that there will be no reference to those newly initialized
406 * pages before they are ever allocated, this should have no effect on
407 * KASAN memory tracking as the poison will be properly inserted at page
408 * allocation time. The only corner case is when pages are allocated by
409 * on-demand allocation and then freed again before the deferred pages
410 * initialization is done, but this is not likely to happen.
411 */
412static inline void kasan_free_nondeferred_pages(struct page *page, int order)
413{
414 if (!static_branch_unlikely(&deferred_pages))
415 kasan_free_pages(page, order);
416}
417
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000418/* Returns true if the struct page for the pfn is uninitialised */
419static inline bool __meminit early_page_uninitialised(unsigned long pfn)
420{
421 int nid = early_pfn_to_nid(pfn);
422
423 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
424 return true;
425
426 return false;
427}
428
429/*
David Brazdil0f672f62019-12-10 10:32:29 +0000430 * Returns true when the remaining initialisation should be deferred until
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000431 * later in the boot cycle when it can be parallelised.
432 */
David Brazdil0f672f62019-12-10 10:32:29 +0000433static bool __meminit
434defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000435{
David Brazdil0f672f62019-12-10 10:32:29 +0000436 static unsigned long prev_end_pfn, nr_initialised;
437
438 /*
439 * prev_end_pfn static that contains the end of previous zone
440 * No need to protect because called very early in boot before smp_init.
441 */
442 if (prev_end_pfn != end_pfn) {
443 prev_end_pfn = end_pfn;
444 nr_initialised = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000445 }
446
David Brazdil0f672f62019-12-10 10:32:29 +0000447 /* Always populate low zones for address-constrained allocations */
448 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
449 return false;
450
Olivier Deprez157378f2022-04-04 15:47:50 +0200451 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
452 return true;
David Brazdil0f672f62019-12-10 10:32:29 +0000453 /*
454 * We start only with one section of pages, more pages are added as
455 * needed until the rest of deferred pages are initialized.
456 */
457 nr_initialised++;
458 if ((nr_initialised > PAGES_PER_SECTION) &&
459 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
460 NODE_DATA(nid)->first_deferred_pfn = pfn;
461 return true;
462 }
463 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000464}
465#else
David Brazdil0f672f62019-12-10 10:32:29 +0000466#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
467
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000468static inline bool early_page_uninitialised(unsigned long pfn)
469{
470 return false;
471}
472
David Brazdil0f672f62019-12-10 10:32:29 +0000473static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000474{
David Brazdil0f672f62019-12-10 10:32:29 +0000475 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000476}
477#endif
478
479/* Return a pointer to the bitmap storing bits affecting a block of pages */
480static inline unsigned long *get_pageblock_bitmap(struct page *page,
481 unsigned long pfn)
482{
483#ifdef CONFIG_SPARSEMEM
David Brazdil0f672f62019-12-10 10:32:29 +0000484 return section_to_usemap(__pfn_to_section(pfn));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000485#else
486 return page_zone(page)->pageblock_flags;
487#endif /* CONFIG_SPARSEMEM */
488}
489
490static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
491{
492#ifdef CONFIG_SPARSEMEM
493 pfn &= (PAGES_PER_SECTION-1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000494#else
495 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000496#endif /* CONFIG_SPARSEMEM */
Olivier Deprez157378f2022-04-04 15:47:50 +0200497 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000498}
499
500/**
501 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
502 * @page: The page within the block of interest
503 * @pfn: The target page frame number
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000504 * @mask: mask of bits that the caller is interested in
505 *
506 * Return: pageblock_bits flags
507 */
Olivier Deprez157378f2022-04-04 15:47:50 +0200508static __always_inline
509unsigned long __get_pfnblock_flags_mask(struct page *page,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000510 unsigned long pfn,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000511 unsigned long mask)
512{
513 unsigned long *bitmap;
514 unsigned long bitidx, word_bitidx;
515 unsigned long word;
516
517 bitmap = get_pageblock_bitmap(page, pfn);
518 bitidx = pfn_to_bitidx(page, pfn);
519 word_bitidx = bitidx / BITS_PER_LONG;
520 bitidx &= (BITS_PER_LONG-1);
521
522 word = bitmap[word_bitidx];
Olivier Deprez157378f2022-04-04 15:47:50 +0200523 return (word >> bitidx) & mask;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000524}
525
526unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000527 unsigned long mask)
528{
Olivier Deprez157378f2022-04-04 15:47:50 +0200529 return __get_pfnblock_flags_mask(page, pfn, mask);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000530}
531
532static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
533{
Olivier Deprez157378f2022-04-04 15:47:50 +0200534 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000535}
536
537/**
538 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
539 * @page: The page within the block of interest
540 * @flags: The flags to set
541 * @pfn: The target page frame number
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000542 * @mask: mask of bits that the caller is interested in
543 */
544void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
545 unsigned long pfn,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000546 unsigned long mask)
547{
548 unsigned long *bitmap;
549 unsigned long bitidx, word_bitidx;
550 unsigned long old_word, word;
551
552 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
David Brazdil0f672f62019-12-10 10:32:29 +0000553 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000554
555 bitmap = get_pageblock_bitmap(page, pfn);
556 bitidx = pfn_to_bitidx(page, pfn);
557 word_bitidx = bitidx / BITS_PER_LONG;
558 bitidx &= (BITS_PER_LONG-1);
559
560 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
561
Olivier Deprez157378f2022-04-04 15:47:50 +0200562 mask <<= bitidx;
563 flags <<= bitidx;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000564
565 word = READ_ONCE(bitmap[word_bitidx]);
566 for (;;) {
567 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
568 if (word == old_word)
569 break;
570 word = old_word;
571 }
572}
573
574void set_pageblock_migratetype(struct page *page, int migratetype)
575{
576 if (unlikely(page_group_by_mobility_disabled &&
577 migratetype < MIGRATE_PCPTYPES))
578 migratetype = MIGRATE_UNMOVABLE;
579
Olivier Deprez157378f2022-04-04 15:47:50 +0200580 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
581 page_to_pfn(page), MIGRATETYPE_MASK);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000582}
583
584#ifdef CONFIG_DEBUG_VM
585static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
586{
587 int ret = 0;
588 unsigned seq;
589 unsigned long pfn = page_to_pfn(page);
590 unsigned long sp, start_pfn;
591
592 do {
593 seq = zone_span_seqbegin(zone);
594 start_pfn = zone->zone_start_pfn;
595 sp = zone->spanned_pages;
596 if (!zone_spans_pfn(zone, pfn))
597 ret = 1;
598 } while (zone_span_seqretry(zone, seq));
599
600 if (ret)
601 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
602 pfn, zone_to_nid(zone), zone->name,
603 start_pfn, start_pfn + sp);
604
605 return ret;
606}
607
608static int page_is_consistent(struct zone *zone, struct page *page)
609{
610 if (!pfn_valid_within(page_to_pfn(page)))
611 return 0;
612 if (zone != page_zone(page))
613 return 0;
614
615 return 1;
616}
617/*
618 * Temporary debugging check for pages not lying within a given zone.
619 */
620static int __maybe_unused bad_range(struct zone *zone, struct page *page)
621{
622 if (page_outside_zone_boundaries(zone, page))
623 return 1;
624 if (!page_is_consistent(zone, page))
625 return 1;
626
627 return 0;
628}
629#else
630static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
631{
632 return 0;
633}
634#endif
635
Olivier Deprez157378f2022-04-04 15:47:50 +0200636static void bad_page(struct page *page, const char *reason)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000637{
638 static unsigned long resume;
639 static unsigned long nr_shown;
640 static unsigned long nr_unshown;
641
642 /*
643 * Allow a burst of 60 reports, then keep quiet for that minute;
644 * or allow a steady drip of one report per second.
645 */
646 if (nr_shown == 60) {
647 if (time_before(jiffies, resume)) {
648 nr_unshown++;
649 goto out;
650 }
651 if (nr_unshown) {
652 pr_alert(
653 "BUG: Bad page state: %lu messages suppressed\n",
654 nr_unshown);
655 nr_unshown = 0;
656 }
657 nr_shown = 0;
658 }
659 if (nr_shown++ == 0)
660 resume = jiffies + 60 * HZ;
661
662 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
663 current->comm, page_to_pfn(page));
664 __dump_page(page, reason);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000665 dump_page_owner(page);
666
667 print_modules();
668 dump_stack();
669out:
670 /* Leave bad fields for debug, except PageBuddy could make trouble */
671 page_mapcount_reset(page); /* remove PageBuddy */
672 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
673}
674
675/*
676 * Higher-order pages are called "compound pages". They are structured thusly:
677 *
678 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
679 *
680 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
681 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
682 *
683 * The first tail page's ->compound_dtor holds the offset in array of compound
684 * page destructors. See compound_page_dtors.
685 *
686 * The first tail page's ->compound_order holds the order of allocation.
687 * This usage means that zero-order pages may not be compound.
688 */
689
690void free_compound_page(struct page *page)
691{
David Brazdil0f672f62019-12-10 10:32:29 +0000692 mem_cgroup_uncharge(page);
Olivier Deprez157378f2022-04-04 15:47:50 +0200693 __free_pages_ok(page, compound_order(page), FPI_NONE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000694}
695
696void prep_compound_page(struct page *page, unsigned int order)
697{
698 int i;
699 int nr_pages = 1 << order;
700
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000701 __SetPageHead(page);
702 for (i = 1; i < nr_pages; i++) {
703 struct page *p = page + i;
704 set_page_count(p, 0);
705 p->mapping = TAIL_MAPPING;
706 set_compound_head(p, page);
707 }
Olivier Deprez157378f2022-04-04 15:47:50 +0200708
709 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
710 set_compound_order(page, order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000711 atomic_set(compound_mapcount_ptr(page), -1);
Olivier Deprez157378f2022-04-04 15:47:50 +0200712 if (hpage_pincount_available(page))
713 atomic_set(compound_pincount_ptr(page), 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000714}
715
716#ifdef CONFIG_DEBUG_PAGEALLOC
717unsigned int _debug_guardpage_minorder;
David Brazdil0f672f62019-12-10 10:32:29 +0000718
Olivier Deprez0e641232021-09-23 10:07:05 +0200719bool _debug_pagealloc_enabled_early __read_mostly
720 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
721EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
David Brazdil0f672f62019-12-10 10:32:29 +0000722DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000723EXPORT_SYMBOL(_debug_pagealloc_enabled);
David Brazdil0f672f62019-12-10 10:32:29 +0000724
725DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000726
727static int __init early_debug_pagealloc(char *buf)
728{
Olivier Deprez0e641232021-09-23 10:07:05 +0200729 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000730}
731early_param("debug_pagealloc", early_debug_pagealloc);
732
Olivier Deprez0e641232021-09-23 10:07:05 +0200733void init_debug_pagealloc(void)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000734{
735 if (!debug_pagealloc_enabled())
736 return;
737
Olivier Deprez0e641232021-09-23 10:07:05 +0200738 static_branch_enable(&_debug_pagealloc_enabled);
739
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000740 if (!debug_guardpage_minorder())
741 return;
742
David Brazdil0f672f62019-12-10 10:32:29 +0000743 static_branch_enable(&_debug_guardpage_enabled);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000744}
745
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000746static int __init debug_guardpage_minorder_setup(char *buf)
747{
748 unsigned long res;
749
750 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
751 pr_err("Bad debug_guardpage_minorder value\n");
752 return 0;
753 }
754 _debug_guardpage_minorder = res;
755 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
756 return 0;
757}
758early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
759
760static inline bool set_page_guard(struct zone *zone, struct page *page,
761 unsigned int order, int migratetype)
762{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000763 if (!debug_guardpage_enabled())
764 return false;
765
766 if (order >= debug_guardpage_minorder())
767 return false;
768
David Brazdil0f672f62019-12-10 10:32:29 +0000769 __SetPageGuard(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000770 INIT_LIST_HEAD(&page->lru);
771 set_page_private(page, order);
772 /* Guard pages are not available for any usage */
773 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
774
775 return true;
776}
777
778static inline void clear_page_guard(struct zone *zone, struct page *page,
779 unsigned int order, int migratetype)
780{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000781 if (!debug_guardpage_enabled())
782 return;
783
David Brazdil0f672f62019-12-10 10:32:29 +0000784 __ClearPageGuard(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000785
786 set_page_private(page, 0);
787 if (!is_migrate_isolate(migratetype))
788 __mod_zone_freepage_state(zone, (1 << order), migratetype);
789}
790#else
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000791static inline bool set_page_guard(struct zone *zone, struct page *page,
792 unsigned int order, int migratetype) { return false; }
793static inline void clear_page_guard(struct zone *zone, struct page *page,
794 unsigned int order, int migratetype) {}
795#endif
796
Olivier Deprez157378f2022-04-04 15:47:50 +0200797static inline void set_buddy_order(struct page *page, unsigned int order)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000798{
799 set_page_private(page, order);
800 __SetPageBuddy(page);
801}
802
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000803/*
804 * This function checks whether a page is free && is the buddy
805 * we can coalesce a page and its buddy if
806 * (a) the buddy is not in a hole (check before calling!) &&
807 * (b) the buddy is in the buddy system &&
808 * (c) a page and its buddy have the same order &&
809 * (d) a page and its buddy are in the same zone.
810 *
811 * For recording whether a page is in the buddy system, we set PageBuddy.
812 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
813 *
814 * For recording page's order, we use page_private(page).
815 */
Olivier Deprez157378f2022-04-04 15:47:50 +0200816static inline bool page_is_buddy(struct page *page, struct page *buddy,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000817 unsigned int order)
818{
Olivier Deprez157378f2022-04-04 15:47:50 +0200819 if (!page_is_guard(buddy) && !PageBuddy(buddy))
820 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000821
Olivier Deprez157378f2022-04-04 15:47:50 +0200822 if (buddy_order(buddy) != order)
823 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000824
Olivier Deprez157378f2022-04-04 15:47:50 +0200825 /*
826 * zone check is done late to avoid uselessly calculating
827 * zone/node ids for pages that could never merge.
828 */
829 if (page_zone_id(page) != page_zone_id(buddy))
830 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000831
Olivier Deprez157378f2022-04-04 15:47:50 +0200832 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000833
Olivier Deprez157378f2022-04-04 15:47:50 +0200834 return true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000835}
836
David Brazdil0f672f62019-12-10 10:32:29 +0000837#ifdef CONFIG_COMPACTION
838static inline struct capture_control *task_capc(struct zone *zone)
839{
840 struct capture_control *capc = current->capture_control;
841
Olivier Deprez157378f2022-04-04 15:47:50 +0200842 return unlikely(capc) &&
David Brazdil0f672f62019-12-10 10:32:29 +0000843 !(current->flags & PF_KTHREAD) &&
844 !capc->page &&
Olivier Deprez157378f2022-04-04 15:47:50 +0200845 capc->cc->zone == zone ? capc : NULL;
David Brazdil0f672f62019-12-10 10:32:29 +0000846}
847
848static inline bool
849compaction_capture(struct capture_control *capc, struct page *page,
850 int order, int migratetype)
851{
852 if (!capc || order != capc->cc->order)
853 return false;
854
855 /* Do not accidentally pollute CMA or isolated regions*/
856 if (is_migrate_cma(migratetype) ||
857 is_migrate_isolate(migratetype))
858 return false;
859
860 /*
861 * Do not let lower order allocations polluate a movable pageblock.
862 * This might let an unmovable request use a reclaimable pageblock
863 * and vice-versa but no more than normal fallback logic which can
864 * have trouble finding a high-order free page.
865 */
866 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
867 return false;
868
869 capc->page = page;
870 return true;
871}
872
873#else
874static inline struct capture_control *task_capc(struct zone *zone)
875{
876 return NULL;
877}
878
879static inline bool
880compaction_capture(struct capture_control *capc, struct page *page,
881 int order, int migratetype)
882{
883 return false;
884}
885#endif /* CONFIG_COMPACTION */
886
Olivier Deprez157378f2022-04-04 15:47:50 +0200887/* Used for pages not on another list */
888static inline void add_to_free_list(struct page *page, struct zone *zone,
889 unsigned int order, int migratetype)
890{
891 struct free_area *area = &zone->free_area[order];
892
893 list_add(&page->lru, &area->free_list[migratetype]);
894 area->nr_free++;
895}
896
897/* Used for pages not on another list */
898static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
899 unsigned int order, int migratetype)
900{
901 struct free_area *area = &zone->free_area[order];
902
903 list_add_tail(&page->lru, &area->free_list[migratetype]);
904 area->nr_free++;
905}
906
907/*
908 * Used for pages which are on another list. Move the pages to the tail
909 * of the list - so the moved pages won't immediately be considered for
910 * allocation again (e.g., optimization for memory onlining).
911 */
912static inline void move_to_free_list(struct page *page, struct zone *zone,
913 unsigned int order, int migratetype)
914{
915 struct free_area *area = &zone->free_area[order];
916
917 list_move_tail(&page->lru, &area->free_list[migratetype]);
918}
919
920static inline void del_page_from_free_list(struct page *page, struct zone *zone,
921 unsigned int order)
922{
923 /* clear reported state and update reported page count */
924 if (page_reported(page))
925 __ClearPageReported(page);
926
927 list_del(&page->lru);
928 __ClearPageBuddy(page);
929 set_page_private(page, 0);
930 zone->free_area[order].nr_free--;
931}
932
933/*
934 * If this is not the largest possible page, check if the buddy
935 * of the next-highest order is free. If it is, it's possible
936 * that pages are being freed that will coalesce soon. In case,
937 * that is happening, add the free page to the tail of the list
938 * so it's less likely to be used soon and more likely to be merged
939 * as a higher order page
940 */
941static inline bool
942buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
943 struct page *page, unsigned int order)
944{
945 struct page *higher_page, *higher_buddy;
946 unsigned long combined_pfn;
947
948 if (order >= MAX_ORDER - 2)
949 return false;
950
951 if (!pfn_valid_within(buddy_pfn))
952 return false;
953
954 combined_pfn = buddy_pfn & pfn;
955 higher_page = page + (combined_pfn - pfn);
956 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
957 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
958
959 return pfn_valid_within(buddy_pfn) &&
960 page_is_buddy(higher_page, higher_buddy, order + 1);
961}
962
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000963/*
964 * Freeing function for a buddy system allocator.
965 *
966 * The concept of a buddy system is to maintain direct-mapped table
967 * (containing bit values) for memory blocks of various "orders".
968 * The bottom level table contains the map for the smallest allocatable
969 * units of memory (here, pages), and each level above it describes
970 * pairs of units from the levels below, hence, "buddies".
971 * At a high level, all that happens here is marking the table entry
972 * at the bottom level available, and propagating the changes upward
973 * as necessary, plus some accounting needed to play nicely with other
974 * parts of the VM system.
975 * At each level, we keep a list of pages, which are heads of continuous
976 * free pages of length of (1 << order) and marked with PageBuddy.
977 * Page's order is recorded in page_private(page) field.
978 * So when we are allocating or freeing one, we can derive the state of the
979 * other. That is, if we allocate a small block, and both were
980 * free, the remainder of the region must be split into blocks.
981 * If a block is freed, and its buddy is also free, then this
982 * triggers coalescing into a block of larger size.
983 *
984 * -- nyc
985 */
986
987static inline void __free_one_page(struct page *page,
988 unsigned long pfn,
989 struct zone *zone, unsigned int order,
Olivier Deprez157378f2022-04-04 15:47:50 +0200990 int migratetype, fpi_t fpi_flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000991{
David Brazdil0f672f62019-12-10 10:32:29 +0000992 struct capture_control *capc = task_capc(zone);
Olivier Deprez157378f2022-04-04 15:47:50 +0200993 unsigned long buddy_pfn;
994 unsigned long combined_pfn;
995 unsigned int max_order;
996 struct page *buddy;
997 bool to_tail;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000998
Olivier Deprez0e641232021-09-23 10:07:05 +0200999 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001000
1001 VM_BUG_ON(!zone_is_initialized(zone));
1002 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1003
1004 VM_BUG_ON(migratetype == -1);
1005 if (likely(!is_migrate_isolate(migratetype)))
1006 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1007
1008 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1009 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1010
1011continue_merging:
Olivier Deprez0e641232021-09-23 10:07:05 +02001012 while (order < max_order) {
David Brazdil0f672f62019-12-10 10:32:29 +00001013 if (compaction_capture(capc, page, order, migratetype)) {
1014 __mod_zone_freepage_state(zone, -(1 << order),
1015 migratetype);
1016 return;
1017 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001018 buddy_pfn = __find_buddy_pfn(pfn, order);
1019 buddy = page + (buddy_pfn - pfn);
1020
1021 if (!pfn_valid_within(buddy_pfn))
1022 goto done_merging;
1023 if (!page_is_buddy(page, buddy, order))
1024 goto done_merging;
1025 /*
1026 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1027 * merge with it and move up one order.
1028 */
David Brazdil0f672f62019-12-10 10:32:29 +00001029 if (page_is_guard(buddy))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001030 clear_page_guard(zone, buddy, order, migratetype);
David Brazdil0f672f62019-12-10 10:32:29 +00001031 else
Olivier Deprez157378f2022-04-04 15:47:50 +02001032 del_page_from_free_list(buddy, zone, order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001033 combined_pfn = buddy_pfn & pfn;
1034 page = page + (combined_pfn - pfn);
1035 pfn = combined_pfn;
1036 order++;
1037 }
Olivier Deprez0e641232021-09-23 10:07:05 +02001038 if (order < MAX_ORDER - 1) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001039 /* If we are here, it means order is >= pageblock_order.
1040 * We want to prevent merge between freepages on isolate
1041 * pageblock and normal pageblock. Without this, pageblock
1042 * isolation could cause incorrect freepage or CMA accounting.
1043 *
1044 * We don't want to hit this code for the more frequent
1045 * low-order merging.
1046 */
1047 if (unlikely(has_isolate_pageblock(zone))) {
1048 int buddy_mt;
1049
1050 buddy_pfn = __find_buddy_pfn(pfn, order);
1051 buddy = page + (buddy_pfn - pfn);
1052 buddy_mt = get_pageblock_migratetype(buddy);
1053
1054 if (migratetype != buddy_mt
1055 && (is_migrate_isolate(migratetype) ||
1056 is_migrate_isolate(buddy_mt)))
1057 goto done_merging;
1058 }
Olivier Deprez0e641232021-09-23 10:07:05 +02001059 max_order = order + 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001060 goto continue_merging;
1061 }
1062
1063done_merging:
Olivier Deprez157378f2022-04-04 15:47:50 +02001064 set_buddy_order(page, order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001065
Olivier Deprez157378f2022-04-04 15:47:50 +02001066 if (fpi_flags & FPI_TO_TAIL)
1067 to_tail = true;
1068 else if (is_shuffle_order(order))
1069 to_tail = shuffle_pick_tail();
David Brazdil0f672f62019-12-10 10:32:29 +00001070 else
Olivier Deprez157378f2022-04-04 15:47:50 +02001071 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
David Brazdil0f672f62019-12-10 10:32:29 +00001072
Olivier Deprez157378f2022-04-04 15:47:50 +02001073 if (to_tail)
1074 add_to_free_list_tail(page, zone, order, migratetype);
1075 else
1076 add_to_free_list(page, zone, order, migratetype);
1077
1078 /* Notify page reporting subsystem of freed page */
1079 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1080 page_reporting_notify_free(order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001081}
1082
1083/*
1084 * A bad page could be due to a number of fields. Instead of multiple branches,
1085 * try and check multiple fields with one check. The caller must do a detailed
1086 * check if necessary.
1087 */
1088static inline bool page_expected_state(struct page *page,
1089 unsigned long check_flags)
1090{
1091 if (unlikely(atomic_read(&page->_mapcount) != -1))
1092 return false;
1093
1094 if (unlikely((unsigned long)page->mapping |
1095 page_ref_count(page) |
1096#ifdef CONFIG_MEMCG
1097 (unsigned long)page->mem_cgroup |
1098#endif
1099 (page->flags & check_flags)))
1100 return false;
1101
1102 return true;
1103}
1104
Olivier Deprez157378f2022-04-04 15:47:50 +02001105static const char *page_bad_reason(struct page *page, unsigned long flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001106{
Olivier Deprez157378f2022-04-04 15:47:50 +02001107 const char *bad_reason = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001108
1109 if (unlikely(atomic_read(&page->_mapcount) != -1))
1110 bad_reason = "nonzero mapcount";
1111 if (unlikely(page->mapping != NULL))
1112 bad_reason = "non-NULL mapping";
1113 if (unlikely(page_ref_count(page) != 0))
1114 bad_reason = "nonzero _refcount";
Olivier Deprez157378f2022-04-04 15:47:50 +02001115 if (unlikely(page->flags & flags)) {
1116 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1117 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1118 else
1119 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001120 }
1121#ifdef CONFIG_MEMCG
1122 if (unlikely(page->mem_cgroup))
1123 bad_reason = "page still charged to cgroup";
1124#endif
Olivier Deprez157378f2022-04-04 15:47:50 +02001125 return bad_reason;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001126}
1127
Olivier Deprez157378f2022-04-04 15:47:50 +02001128static void check_free_page_bad(struct page *page)
1129{
1130 bad_page(page,
1131 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1132}
1133
1134static inline int check_free_page(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001135{
1136 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1137 return 0;
1138
1139 /* Something has gone sideways, find it */
Olivier Deprez157378f2022-04-04 15:47:50 +02001140 check_free_page_bad(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001141 return 1;
1142}
1143
1144static int free_tail_pages_check(struct page *head_page, struct page *page)
1145{
1146 int ret = 1;
1147
1148 /*
1149 * We rely page->lru.next never has bit 0 set, unless the page
1150 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1151 */
1152 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1153
1154 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1155 ret = 0;
1156 goto out;
1157 }
1158 switch (page - head_page) {
1159 case 1:
1160 /* the first tail page: ->mapping may be compound_mapcount() */
1161 if (unlikely(compound_mapcount(page))) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001162 bad_page(page, "nonzero compound_mapcount");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001163 goto out;
1164 }
1165 break;
1166 case 2:
1167 /*
1168 * the second tail page: ->mapping is
1169 * deferred_list.next -- ignore value.
1170 */
1171 break;
1172 default:
1173 if (page->mapping != TAIL_MAPPING) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001174 bad_page(page, "corrupted mapping in tail page");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001175 goto out;
1176 }
1177 break;
1178 }
1179 if (unlikely(!PageTail(page))) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001180 bad_page(page, "PageTail not set");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001181 goto out;
1182 }
1183 if (unlikely(compound_head(page) != head_page)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001184 bad_page(page, "compound_head not consistent");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001185 goto out;
1186 }
1187 ret = 0;
1188out:
1189 page->mapping = NULL;
1190 clear_compound_head(page);
1191 return ret;
1192}
1193
David Brazdil0f672f62019-12-10 10:32:29 +00001194static void kernel_init_free_pages(struct page *page, int numpages)
1195{
1196 int i;
1197
Olivier Deprez157378f2022-04-04 15:47:50 +02001198 /* s390's use of memset() could override KASAN redzones. */
1199 kasan_disable_current();
David Brazdil0f672f62019-12-10 10:32:29 +00001200 for (i = 0; i < numpages; i++)
1201 clear_highpage(page + i);
Olivier Deprez157378f2022-04-04 15:47:50 +02001202 kasan_enable_current();
David Brazdil0f672f62019-12-10 10:32:29 +00001203}
1204
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001205static __always_inline bool free_pages_prepare(struct page *page,
1206 unsigned int order, bool check_free)
1207{
1208 int bad = 0;
1209
1210 VM_BUG_ON_PAGE(PageTail(page), page);
1211
1212 trace_mm_page_free(page, order);
1213
Olivier Deprez157378f2022-04-04 15:47:50 +02001214 if (unlikely(PageHWPoison(page)) && !order) {
1215 /*
1216 * Do not let hwpoison pages hit pcplists/buddy
1217 * Untie memcg state and reset page's owner
1218 */
1219 if (memcg_kmem_enabled() && PageKmemcg(page))
1220 __memcg_kmem_uncharge_page(page, order);
1221 reset_page_owner(page, order);
1222 return false;
1223 }
1224
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001225 /*
1226 * Check tail pages before head page information is cleared to
1227 * avoid checking PageCompound for order-0 pages.
1228 */
1229 if (unlikely(order)) {
1230 bool compound = PageCompound(page);
1231 int i;
1232
1233 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1234
1235 if (compound)
1236 ClearPageDoubleMap(page);
1237 for (i = 1; i < (1 << order); i++) {
1238 if (compound)
1239 bad += free_tail_pages_check(page, page + i);
Olivier Deprez157378f2022-04-04 15:47:50 +02001240 if (unlikely(check_free_page(page + i))) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001241 bad++;
1242 continue;
1243 }
1244 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1245 }
1246 }
1247 if (PageMappingFlags(page))
1248 page->mapping = NULL;
1249 if (memcg_kmem_enabled() && PageKmemcg(page))
Olivier Deprez157378f2022-04-04 15:47:50 +02001250 __memcg_kmem_uncharge_page(page, order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001251 if (check_free)
Olivier Deprez157378f2022-04-04 15:47:50 +02001252 bad += check_free_page(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001253 if (bad)
1254 return false;
1255
1256 page_cpupid_reset_last(page);
1257 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1258 reset_page_owner(page, order);
1259
1260 if (!PageHighMem(page)) {
1261 debug_check_no_locks_freed(page_address(page),
1262 PAGE_SIZE << order);
1263 debug_check_no_obj_freed(page_address(page),
1264 PAGE_SIZE << order);
1265 }
David Brazdil0f672f62019-12-10 10:32:29 +00001266 if (want_init_on_free())
1267 kernel_init_free_pages(page, 1 << order);
1268
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001269 kernel_poison_pages(page, 1 << order, 0);
David Brazdil0f672f62019-12-10 10:32:29 +00001270 /*
1271 * arch_free_page() can make the page's contents inaccessible. s390
1272 * does this. So nothing which can access the page's contents should
1273 * happen after this.
1274 */
1275 arch_free_page(page, order);
1276
Olivier Deprez0e641232021-09-23 10:07:05 +02001277 if (debug_pagealloc_enabled_static())
David Brazdil0f672f62019-12-10 10:32:29 +00001278 kernel_map_pages(page, 1 << order, 0);
1279
1280 kasan_free_nondeferred_pages(page, order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001281
1282 return true;
1283}
1284
1285#ifdef CONFIG_DEBUG_VM
David Brazdil0f672f62019-12-10 10:32:29 +00001286/*
1287 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1288 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1289 * moved from pcp lists to free lists.
1290 */
1291static bool free_pcp_prepare(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001292{
1293 return free_pages_prepare(page, 0, true);
1294}
1295
David Brazdil0f672f62019-12-10 10:32:29 +00001296static bool bulkfree_pcp_prepare(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001297{
Olivier Deprez0e641232021-09-23 10:07:05 +02001298 if (debug_pagealloc_enabled_static())
Olivier Deprez157378f2022-04-04 15:47:50 +02001299 return check_free_page(page);
David Brazdil0f672f62019-12-10 10:32:29 +00001300 else
1301 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001302}
1303#else
David Brazdil0f672f62019-12-10 10:32:29 +00001304/*
1305 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1306 * moving from pcp lists to free list in order to reduce overhead. With
1307 * debug_pagealloc enabled, they are checked also immediately when being freed
1308 * to the pcp lists.
1309 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001310static bool free_pcp_prepare(struct page *page)
1311{
Olivier Deprez0e641232021-09-23 10:07:05 +02001312 if (debug_pagealloc_enabled_static())
David Brazdil0f672f62019-12-10 10:32:29 +00001313 return free_pages_prepare(page, 0, true);
1314 else
1315 return free_pages_prepare(page, 0, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001316}
1317
1318static bool bulkfree_pcp_prepare(struct page *page)
1319{
Olivier Deprez157378f2022-04-04 15:47:50 +02001320 return check_free_page(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001321}
1322#endif /* CONFIG_DEBUG_VM */
1323
1324static inline void prefetch_buddy(struct page *page)
1325{
1326 unsigned long pfn = page_to_pfn(page);
1327 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1328 struct page *buddy = page + (buddy_pfn - pfn);
1329
1330 prefetch(buddy);
1331}
1332
1333/*
1334 * Frees a number of pages from the PCP lists
1335 * Assumes all pages on list are in same zone, and of same order.
1336 * count is the number of pages to free.
1337 *
1338 * If the zone was previously in an "all pages pinned" state then look to
1339 * see if this freeing clears that state.
1340 *
1341 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1342 * pinned" detection logic.
1343 */
1344static void free_pcppages_bulk(struct zone *zone, int count,
1345 struct per_cpu_pages *pcp)
1346{
1347 int migratetype = 0;
1348 int batch_free = 0;
1349 int prefetch_nr = 0;
1350 bool isolated_pageblocks;
1351 struct page *page, *tmp;
1352 LIST_HEAD(head);
1353
Olivier Deprez0e641232021-09-23 10:07:05 +02001354 /*
1355 * Ensure proper count is passed which otherwise would stuck in the
1356 * below while (list_empty(list)) loop.
1357 */
1358 count = min(pcp->count, count);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001359 while (count) {
1360 struct list_head *list;
1361
1362 /*
1363 * Remove pages from lists in a round-robin fashion. A
1364 * batch_free count is maintained that is incremented when an
1365 * empty list is encountered. This is so more pages are freed
1366 * off fuller lists instead of spinning excessively around empty
1367 * lists
1368 */
1369 do {
1370 batch_free++;
1371 if (++migratetype == MIGRATE_PCPTYPES)
1372 migratetype = 0;
1373 list = &pcp->lists[migratetype];
1374 } while (list_empty(list));
1375
1376 /* This is the only non-empty list. Free them all. */
1377 if (batch_free == MIGRATE_PCPTYPES)
1378 batch_free = count;
1379
1380 do {
1381 page = list_last_entry(list, struct page, lru);
1382 /* must delete to avoid corrupting pcp list */
1383 list_del(&page->lru);
1384 pcp->count--;
1385
1386 if (bulkfree_pcp_prepare(page))
1387 continue;
1388
1389 list_add_tail(&page->lru, &head);
1390
1391 /*
1392 * We are going to put the page back to the global
1393 * pool, prefetch its buddy to speed up later access
1394 * under zone->lock. It is believed the overhead of
1395 * an additional test and calculating buddy_pfn here
1396 * can be offset by reduced memory latency later. To
1397 * avoid excessive prefetching due to large count, only
1398 * prefetch buddy for the first pcp->batch nr of pages.
1399 */
1400 if (prefetch_nr++ < pcp->batch)
1401 prefetch_buddy(page);
1402 } while (--count && --batch_free && !list_empty(list));
1403 }
1404
1405 spin_lock(&zone->lock);
1406 isolated_pageblocks = has_isolate_pageblock(zone);
1407
1408 /*
1409 * Use safe version since after __free_one_page(),
1410 * page->lru.next will not point to original list.
1411 */
1412 list_for_each_entry_safe(page, tmp, &head, lru) {
1413 int mt = get_pcppage_migratetype(page);
1414 /* MIGRATE_ISOLATE page should not go to pcplists */
1415 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1416 /* Pageblock could have been isolated meanwhile */
1417 if (unlikely(isolated_pageblocks))
1418 mt = get_pageblock_migratetype(page);
1419
Olivier Deprez157378f2022-04-04 15:47:50 +02001420 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001421 trace_mm_page_pcpu_drain(page, 0, mt);
1422 }
1423 spin_unlock(&zone->lock);
1424}
1425
1426static void free_one_page(struct zone *zone,
1427 struct page *page, unsigned long pfn,
1428 unsigned int order,
Olivier Deprez157378f2022-04-04 15:47:50 +02001429 int migratetype, fpi_t fpi_flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001430{
1431 spin_lock(&zone->lock);
1432 if (unlikely(has_isolate_pageblock(zone) ||
1433 is_migrate_isolate(migratetype))) {
1434 migratetype = get_pfnblock_migratetype(page, pfn);
1435 }
Olivier Deprez157378f2022-04-04 15:47:50 +02001436 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001437 spin_unlock(&zone->lock);
1438}
1439
1440static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1441 unsigned long zone, int nid)
1442{
1443 mm_zero_struct_page(page);
1444 set_page_links(page, zone, nid, pfn);
1445 init_page_count(page);
1446 page_mapcount_reset(page);
1447 page_cpupid_reset_last(page);
David Brazdil0f672f62019-12-10 10:32:29 +00001448 page_kasan_tag_reset(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001449
1450 INIT_LIST_HEAD(&page->lru);
1451#ifdef WANT_PAGE_VIRTUAL
1452 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1453 if (!is_highmem_idx(zone))
1454 set_page_address(page, __va(pfn << PAGE_SHIFT));
1455#endif
1456}
1457
1458#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1459static void __meminit init_reserved_page(unsigned long pfn)
1460{
1461 pg_data_t *pgdat;
1462 int nid, zid;
1463
1464 if (!early_page_uninitialised(pfn))
1465 return;
1466
1467 nid = early_pfn_to_nid(pfn);
1468 pgdat = NODE_DATA(nid);
1469
1470 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1471 struct zone *zone = &pgdat->node_zones[zid];
1472
1473 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1474 break;
1475 }
1476 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1477}
1478#else
1479static inline void init_reserved_page(unsigned long pfn)
1480{
1481}
1482#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1483
1484/*
1485 * Initialised pages do not have PageReserved set. This function is
1486 * called for each range allocated by the bootmem allocator and
1487 * marks the pages PageReserved. The remaining valid pages are later
1488 * sent to the buddy page allocator.
1489 */
1490void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1491{
1492 unsigned long start_pfn = PFN_DOWN(start);
1493 unsigned long end_pfn = PFN_UP(end);
1494
1495 for (; start_pfn < end_pfn; start_pfn++) {
1496 if (pfn_valid(start_pfn)) {
1497 struct page *page = pfn_to_page(start_pfn);
1498
1499 init_reserved_page(start_pfn);
1500
1501 /* Avoid false-positive PageTail() */
1502 INIT_LIST_HEAD(&page->lru);
1503
David Brazdil0f672f62019-12-10 10:32:29 +00001504 /*
1505 * no need for atomic set_bit because the struct
1506 * page is not visible yet so nobody should
1507 * access it yet.
1508 */
1509 __SetPageReserved(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001510 }
1511 }
1512}
1513
Olivier Deprez157378f2022-04-04 15:47:50 +02001514static void __free_pages_ok(struct page *page, unsigned int order,
1515 fpi_t fpi_flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001516{
1517 unsigned long flags;
1518 int migratetype;
1519 unsigned long pfn = page_to_pfn(page);
1520
1521 if (!free_pages_prepare(page, order, true))
1522 return;
1523
1524 migratetype = get_pfnblock_migratetype(page, pfn);
1525 local_irq_save(flags);
1526 __count_vm_events(PGFREE, 1 << order);
Olivier Deprez157378f2022-04-04 15:47:50 +02001527 free_one_page(page_zone(page), page, pfn, order, migratetype,
1528 fpi_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001529 local_irq_restore(flags);
1530}
1531
David Brazdil0f672f62019-12-10 10:32:29 +00001532void __free_pages_core(struct page *page, unsigned int order)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001533{
1534 unsigned int nr_pages = 1 << order;
1535 struct page *p = page;
1536 unsigned int loop;
1537
Olivier Deprez157378f2022-04-04 15:47:50 +02001538 /*
1539 * When initializing the memmap, __init_single_page() sets the refcount
1540 * of all pages to 1 ("allocated"/"not free"). We have to set the
1541 * refcount of all involved pages to 0.
1542 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001543 prefetchw(p);
1544 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1545 prefetchw(p + 1);
1546 __ClearPageReserved(p);
1547 set_page_count(p, 0);
1548 }
1549 __ClearPageReserved(p);
1550 set_page_count(p, 0);
1551
David Brazdil0f672f62019-12-10 10:32:29 +00001552 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
Olivier Deprez157378f2022-04-04 15:47:50 +02001553
1554 /*
1555 * Bypass PCP and place fresh pages right to the tail, primarily
1556 * relevant for memory onlining.
1557 */
1558 __free_pages_ok(page, order, FPI_TO_TAIL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001559}
1560
Olivier Deprez157378f2022-04-04 15:47:50 +02001561#ifdef CONFIG_NEED_MULTIPLE_NODES
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001562
1563static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1564
Olivier Deprez157378f2022-04-04 15:47:50 +02001565#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1566
1567/*
1568 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1569 */
1570int __meminit __early_pfn_to_nid(unsigned long pfn,
1571 struct mminit_pfnnid_cache *state)
1572{
1573 unsigned long start_pfn, end_pfn;
1574 int nid;
1575
1576 if (state->last_start <= pfn && pfn < state->last_end)
1577 return state->last_nid;
1578
1579 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1580 if (nid != NUMA_NO_NODE) {
1581 state->last_start = start_pfn;
1582 state->last_end = end_pfn;
1583 state->last_nid = nid;
1584 }
1585
1586 return nid;
1587}
1588#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1589
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001590int __meminit early_pfn_to_nid(unsigned long pfn)
1591{
1592 static DEFINE_SPINLOCK(early_pfn_lock);
1593 int nid;
1594
1595 spin_lock(&early_pfn_lock);
1596 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1597 if (nid < 0)
1598 nid = first_online_node;
1599 spin_unlock(&early_pfn_lock);
1600
1601 return nid;
1602}
Olivier Deprez157378f2022-04-04 15:47:50 +02001603#endif /* CONFIG_NEED_MULTIPLE_NODES */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001604
David Brazdil0f672f62019-12-10 10:32:29 +00001605void __init memblock_free_pages(struct page *page, unsigned long pfn,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001606 unsigned int order)
1607{
1608 if (early_page_uninitialised(pfn))
1609 return;
David Brazdil0f672f62019-12-10 10:32:29 +00001610 __free_pages_core(page, order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001611}
1612
1613/*
1614 * Check that the whole (or subset of) a pageblock given by the interval of
1615 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1616 * with the migration of free compaction scanner. The scanners then need to
1617 * use only pfn_valid_within() check for arches that allow holes within
1618 * pageblocks.
1619 *
1620 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1621 *
1622 * It's possible on some configurations to have a setup like node0 node1 node0
1623 * i.e. it's possible that all pages within a zones range of pages do not
1624 * belong to a single zone. We assume that a border between node0 and node1
1625 * can occur within a single pageblock, but not a node0 node1 node0
1626 * interleaving within a single pageblock. It is therefore sufficient to check
1627 * the first and last page of a pageblock and avoid checking each individual
1628 * page in a pageblock.
1629 */
1630struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1631 unsigned long end_pfn, struct zone *zone)
1632{
1633 struct page *start_page;
1634 struct page *end_page;
1635
1636 /* end_pfn is one past the range we are checking */
1637 end_pfn--;
1638
1639 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1640 return NULL;
1641
1642 start_page = pfn_to_online_page(start_pfn);
1643 if (!start_page)
1644 return NULL;
1645
1646 if (page_zone(start_page) != zone)
1647 return NULL;
1648
1649 end_page = pfn_to_page(end_pfn);
1650
1651 /* This gives a shorter code than deriving page_zone(end_page) */
1652 if (page_zone_id(start_page) != page_zone_id(end_page))
1653 return NULL;
1654
1655 return start_page;
1656}
1657
1658void set_zone_contiguous(struct zone *zone)
1659{
1660 unsigned long block_start_pfn = zone->zone_start_pfn;
1661 unsigned long block_end_pfn;
1662
1663 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1664 for (; block_start_pfn < zone_end_pfn(zone);
1665 block_start_pfn = block_end_pfn,
1666 block_end_pfn += pageblock_nr_pages) {
1667
1668 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1669
1670 if (!__pageblock_pfn_to_page(block_start_pfn,
1671 block_end_pfn, zone))
1672 return;
Olivier Deprez0e641232021-09-23 10:07:05 +02001673 cond_resched();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001674 }
1675
1676 /* We confirm that there is no hole */
1677 zone->contiguous = true;
1678}
1679
1680void clear_zone_contiguous(struct zone *zone)
1681{
1682 zone->contiguous = false;
1683}
1684
1685#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1686static void __init deferred_free_range(unsigned long pfn,
1687 unsigned long nr_pages)
1688{
1689 struct page *page;
1690 unsigned long i;
1691
1692 if (!nr_pages)
1693 return;
1694
1695 page = pfn_to_page(pfn);
1696
1697 /* Free a large naturally-aligned chunk if possible */
1698 if (nr_pages == pageblock_nr_pages &&
1699 (pfn & (pageblock_nr_pages - 1)) == 0) {
1700 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
David Brazdil0f672f62019-12-10 10:32:29 +00001701 __free_pages_core(page, pageblock_order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001702 return;
1703 }
1704
1705 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1706 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1707 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
David Brazdil0f672f62019-12-10 10:32:29 +00001708 __free_pages_core(page, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001709 }
1710}
1711
1712/* Completion tracking for deferred_init_memmap() threads */
1713static atomic_t pgdat_init_n_undone __initdata;
1714static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1715
1716static inline void __init pgdat_init_report_one_done(void)
1717{
1718 if (atomic_dec_and_test(&pgdat_init_n_undone))
1719 complete(&pgdat_init_all_done_comp);
1720}
1721
1722/*
1723 * Returns true if page needs to be initialized or freed to buddy allocator.
1724 *
1725 * First we check if pfn is valid on architectures where it is possible to have
1726 * holes within pageblock_nr_pages. On systems where it is not possible, this
1727 * function is optimized out.
1728 *
1729 * Then, we check if a current large page is valid by only checking the validity
1730 * of the head pfn.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001731 */
David Brazdil0f672f62019-12-10 10:32:29 +00001732static inline bool __init deferred_pfn_valid(unsigned long pfn)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001733{
1734 if (!pfn_valid_within(pfn))
1735 return false;
1736 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1737 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001738 return true;
1739}
1740
1741/*
1742 * Free pages to buddy allocator. Try to free aligned pages in
1743 * pageblock_nr_pages sizes.
1744 */
David Brazdil0f672f62019-12-10 10:32:29 +00001745static void __init deferred_free_pages(unsigned long pfn,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001746 unsigned long end_pfn)
1747{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001748 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1749 unsigned long nr_free = 0;
1750
1751 for (; pfn < end_pfn; pfn++) {
David Brazdil0f672f62019-12-10 10:32:29 +00001752 if (!deferred_pfn_valid(pfn)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001753 deferred_free_range(pfn - nr_free, nr_free);
1754 nr_free = 0;
1755 } else if (!(pfn & nr_pgmask)) {
1756 deferred_free_range(pfn - nr_free, nr_free);
1757 nr_free = 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001758 } else {
1759 nr_free++;
1760 }
1761 }
1762 /* Free the last block of pages to allocator */
1763 deferred_free_range(pfn - nr_free, nr_free);
1764}
1765
1766/*
1767 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1768 * by performing it only once every pageblock_nr_pages.
1769 * Return number of pages initialized.
1770 */
David Brazdil0f672f62019-12-10 10:32:29 +00001771static unsigned long __init deferred_init_pages(struct zone *zone,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001772 unsigned long pfn,
1773 unsigned long end_pfn)
1774{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001775 unsigned long nr_pgmask = pageblock_nr_pages - 1;
David Brazdil0f672f62019-12-10 10:32:29 +00001776 int nid = zone_to_nid(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001777 unsigned long nr_pages = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00001778 int zid = zone_idx(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001779 struct page *page = NULL;
1780
1781 for (; pfn < end_pfn; pfn++) {
David Brazdil0f672f62019-12-10 10:32:29 +00001782 if (!deferred_pfn_valid(pfn)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001783 page = NULL;
1784 continue;
1785 } else if (!page || !(pfn & nr_pgmask)) {
1786 page = pfn_to_page(pfn);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001787 } else {
1788 page++;
1789 }
1790 __init_single_page(page, pfn, zid, nid);
1791 nr_pages++;
1792 }
1793 return (nr_pages);
1794}
1795
David Brazdil0f672f62019-12-10 10:32:29 +00001796/*
1797 * This function is meant to pre-load the iterator for the zone init.
1798 * Specifically it walks through the ranges until we are caught up to the
1799 * first_init_pfn value and exits there. If we never encounter the value we
1800 * return false indicating there are no valid ranges left.
1801 */
1802static bool __init
1803deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1804 unsigned long *spfn, unsigned long *epfn,
1805 unsigned long first_init_pfn)
1806{
1807 u64 j;
1808
1809 /*
1810 * Start out by walking through the ranges in this zone that have
1811 * already been initialized. We don't need to do anything with them
1812 * so we just need to flush them out of the system.
1813 */
1814 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1815 if (*epfn <= first_init_pfn)
1816 continue;
1817 if (*spfn < first_init_pfn)
1818 *spfn = first_init_pfn;
1819 *i = j;
1820 return true;
1821 }
1822
1823 return false;
1824}
1825
1826/*
1827 * Initialize and free pages. We do it in two loops: first we initialize
1828 * struct page, then free to buddy allocator, because while we are
1829 * freeing pages we can access pages that are ahead (computing buddy
1830 * page in __free_one_page()).
1831 *
1832 * In order to try and keep some memory in the cache we have the loop
1833 * broken along max page order boundaries. This way we will not cause
1834 * any issues with the buddy page computation.
1835 */
1836static unsigned long __init
1837deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1838 unsigned long *end_pfn)
1839{
1840 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1841 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1842 unsigned long nr_pages = 0;
1843 u64 j = *i;
1844
1845 /* First we loop through and initialize the page values */
1846 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1847 unsigned long t;
1848
1849 if (mo_pfn <= *start_pfn)
1850 break;
1851
1852 t = min(mo_pfn, *end_pfn);
1853 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1854
1855 if (mo_pfn < *end_pfn) {
1856 *start_pfn = mo_pfn;
1857 break;
1858 }
1859 }
1860
1861 /* Reset values and now loop through freeing pages as needed */
1862 swap(j, *i);
1863
1864 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1865 unsigned long t;
1866
1867 if (mo_pfn <= spfn)
1868 break;
1869
1870 t = min(mo_pfn, epfn);
1871 deferred_free_pages(spfn, t);
1872
1873 if (mo_pfn <= epfn)
1874 break;
1875 }
1876
1877 return nr_pages;
1878}
1879
Olivier Deprez157378f2022-04-04 15:47:50 +02001880static void __init
1881deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1882 void *arg)
1883{
1884 unsigned long spfn, epfn;
1885 struct zone *zone = arg;
1886 u64 i;
1887
1888 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1889
1890 /*
1891 * Initialize and free pages in MAX_ORDER sized increments so that we
1892 * can avoid introducing any issues with the buddy allocator.
1893 */
1894 while (spfn < end_pfn) {
1895 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1896 cond_resched();
1897 }
1898}
1899
1900/* An arch may override for more concurrency. */
1901__weak int __init
1902deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1903{
1904 return 1;
1905}
1906
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001907/* Initialise remaining memory on a node */
1908static int __init deferred_init_memmap(void *data)
1909{
1910 pg_data_t *pgdat = data;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001911 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
Olivier Deprez157378f2022-04-04 15:47:50 +02001912 unsigned long spfn = 0, epfn = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00001913 unsigned long first_init_pfn, flags;
1914 unsigned long start = jiffies;
1915 struct zone *zone;
Olivier Deprez157378f2022-04-04 15:47:50 +02001916 int zid, max_threads;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001917 u64 i;
1918
1919 /* Bind memory initialisation thread to a local node if possible */
1920 if (!cpumask_empty(cpumask))
1921 set_cpus_allowed_ptr(current, cpumask);
1922
1923 pgdat_resize_lock(pgdat, &flags);
1924 first_init_pfn = pgdat->first_deferred_pfn;
1925 if (first_init_pfn == ULONG_MAX) {
1926 pgdat_resize_unlock(pgdat, &flags);
1927 pgdat_init_report_one_done();
1928 return 0;
1929 }
1930
1931 /* Sanity check boundaries */
1932 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1933 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1934 pgdat->first_deferred_pfn = ULONG_MAX;
1935
Olivier Deprez0e641232021-09-23 10:07:05 +02001936 /*
1937 * Once we unlock here, the zone cannot be grown anymore, thus if an
1938 * interrupt thread must allocate this early in boot, zone must be
1939 * pre-grown prior to start of deferred page initialization.
1940 */
1941 pgdat_resize_unlock(pgdat, &flags);
1942
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001943 /* Only the highest zone is deferred so find it */
1944 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1945 zone = pgdat->node_zones + zid;
1946 if (first_init_pfn < zone_end_pfn(zone))
1947 break;
1948 }
David Brazdil0f672f62019-12-10 10:32:29 +00001949
1950 /* If the zone is empty somebody else may have cleared out the zone */
1951 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1952 first_init_pfn))
1953 goto zone_empty;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001954
Olivier Deprez157378f2022-04-04 15:47:50 +02001955 max_threads = deferred_page_init_max_threads(cpumask);
1956
Olivier Deprez0e641232021-09-23 10:07:05 +02001957 while (spfn < epfn) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001958 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1959 struct padata_mt_job job = {
1960 .thread_fn = deferred_init_memmap_chunk,
1961 .fn_arg = zone,
1962 .start = spfn,
1963 .size = epfn_align - spfn,
1964 .align = PAGES_PER_SECTION,
1965 .min_chunk = PAGES_PER_SECTION,
1966 .max_threads = max_threads,
1967 };
1968
1969 padata_do_multithreaded(&job);
1970 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1971 epfn_align);
Olivier Deprez0e641232021-09-23 10:07:05 +02001972 }
David Brazdil0f672f62019-12-10 10:32:29 +00001973zone_empty:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001974 /* Sanity check that the next zone really is unpopulated */
1975 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1976
Olivier Deprez157378f2022-04-04 15:47:50 +02001977 pr_info("node %d deferred pages initialised in %ums\n",
1978 pgdat->node_id, jiffies_to_msecs(jiffies - start));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001979
1980 pgdat_init_report_one_done();
1981 return 0;
1982}
1983
1984/*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001985 * If this zone has deferred pages, try to grow it by initializing enough
1986 * deferred pages to satisfy the allocation specified by order, rounded up to
1987 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1988 * of SECTION_SIZE bytes by initializing struct pages in increments of
1989 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1990 *
1991 * Return true when zone was grown, otherwise return false. We return true even
1992 * when we grow less than requested, to let the caller decide if there are
1993 * enough pages to satisfy the allocation.
1994 *
1995 * Note: We use noinline because this function is needed only during boot, and
1996 * it is called from a __ref function _deferred_grow_zone. This way we are
1997 * making sure that it is not inlined into permanent text section.
1998 */
1999static noinline bool __init
2000deferred_grow_zone(struct zone *zone, unsigned int order)
2001{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002002 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
David Brazdil0f672f62019-12-10 10:32:29 +00002003 pg_data_t *pgdat = zone->zone_pgdat;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002004 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
David Brazdil0f672f62019-12-10 10:32:29 +00002005 unsigned long spfn, epfn, flags;
2006 unsigned long nr_pages = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002007 u64 i;
2008
2009 /* Only the last zone may have deferred pages */
2010 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2011 return false;
2012
2013 pgdat_resize_lock(pgdat, &flags);
2014
2015 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002016 * If someone grew this zone while we were waiting for spinlock, return
2017 * true, as there might be enough pages already.
2018 */
2019 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2020 pgdat_resize_unlock(pgdat, &flags);
2021 return true;
2022 }
2023
David Brazdil0f672f62019-12-10 10:32:29 +00002024 /* If the zone is empty somebody else may have cleared out the zone */
2025 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2026 first_deferred_pfn)) {
2027 pgdat->first_deferred_pfn = ULONG_MAX;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002028 pgdat_resize_unlock(pgdat, &flags);
David Brazdil0f672f62019-12-10 10:32:29 +00002029 /* Retry only once. */
2030 return first_deferred_pfn != ULONG_MAX;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002031 }
2032
David Brazdil0f672f62019-12-10 10:32:29 +00002033 /*
2034 * Initialize and free pages in MAX_ORDER sized increments so
2035 * that we can avoid introducing any issues with the buddy
2036 * allocator.
2037 */
2038 while (spfn < epfn) {
2039 /* update our first deferred PFN for this section */
2040 first_deferred_pfn = spfn;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002041
David Brazdil0f672f62019-12-10 10:32:29 +00002042 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
Olivier Deprez0e641232021-09-23 10:07:05 +02002043 touch_nmi_watchdog();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002044
David Brazdil0f672f62019-12-10 10:32:29 +00002045 /* We should only stop along section boundaries */
2046 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2047 continue;
2048
2049 /* If our quota has been met we can stop here */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002050 if (nr_pages >= nr_pages_needed)
2051 break;
2052 }
2053
David Brazdil0f672f62019-12-10 10:32:29 +00002054 pgdat->first_deferred_pfn = spfn;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002055 pgdat_resize_unlock(pgdat, &flags);
2056
2057 return nr_pages > 0;
2058}
2059
2060/*
2061 * deferred_grow_zone() is __init, but it is called from
2062 * get_page_from_freelist() during early boot until deferred_pages permanently
2063 * disables this call. This is why we have refdata wrapper to avoid warning,
2064 * and to ensure that the function body gets unloaded.
2065 */
2066static bool __ref
2067_deferred_grow_zone(struct zone *zone, unsigned int order)
2068{
2069 return deferred_grow_zone(zone, order);
2070}
2071
2072#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2073
2074void __init page_alloc_init_late(void)
2075{
2076 struct zone *zone;
David Brazdil0f672f62019-12-10 10:32:29 +00002077 int nid;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002078
2079#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002080
2081 /* There will be num_node_state(N_MEMORY) threads */
2082 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2083 for_each_node_state(nid, N_MEMORY) {
2084 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2085 }
2086
2087 /* Block until all are initialised */
2088 wait_for_completion(&pgdat_init_all_done_comp);
2089
2090 /*
David Brazdil0f672f62019-12-10 10:32:29 +00002091 * The number of managed pages has changed due to the initialisation
2092 * so the pcpu batch and high limits needs to be updated or the limits
2093 * will be artificially small.
2094 */
2095 for_each_populated_zone(zone)
2096 zone_pcp_update(zone);
2097
2098 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002099 * We initialized the rest of the deferred pages. Permanently disable
2100 * on-demand struct page initialization.
2101 */
2102 static_branch_disable(&deferred_pages);
2103
2104 /* Reinit limits that are based on free pages after the kernel is up */
2105 files_maxfiles_init();
2106#endif
David Brazdil0f672f62019-12-10 10:32:29 +00002107
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002108 /* Discard memblock private memory */
2109 memblock_discard();
David Brazdil0f672f62019-12-10 10:32:29 +00002110
2111 for_each_node_state(nid, N_MEMORY)
2112 shuffle_free_memory(NODE_DATA(nid));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002113
2114 for_each_populated_zone(zone)
2115 set_zone_contiguous(zone);
2116}
2117
2118#ifdef CONFIG_CMA
2119/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2120void __init init_cma_reserved_pageblock(struct page *page)
2121{
2122 unsigned i = pageblock_nr_pages;
2123 struct page *p = page;
2124
2125 do {
2126 __ClearPageReserved(p);
2127 set_page_count(p, 0);
2128 } while (++p, --i);
2129
2130 set_pageblock_migratetype(page, MIGRATE_CMA);
2131
2132 if (pageblock_order >= MAX_ORDER) {
2133 i = pageblock_nr_pages;
2134 p = page;
2135 do {
2136 set_page_refcounted(p);
2137 __free_pages(p, MAX_ORDER - 1);
2138 p += MAX_ORDER_NR_PAGES;
2139 } while (i -= MAX_ORDER_NR_PAGES);
2140 } else {
2141 set_page_refcounted(page);
2142 __free_pages(page, pageblock_order);
2143 }
2144
2145 adjust_managed_page_count(page, pageblock_nr_pages);
2146}
2147#endif
2148
2149/*
2150 * The order of subdivision here is critical for the IO subsystem.
2151 * Please do not alter this order without good reasons and regression
2152 * testing. Specifically, as large blocks of memory are subdivided,
2153 * the order in which smaller blocks are delivered depends on the order
2154 * they're subdivided in this function. This is the primary factor
2155 * influencing the order in which pages are delivered to the IO
2156 * subsystem according to empirical testing, and this is also justified
2157 * by considering the behavior of a buddy system containing a single
2158 * large block of memory acted on by a series of small allocations.
2159 * This behavior is a critical factor in sglist merging's success.
2160 *
2161 * -- nyc
2162 */
2163static inline void expand(struct zone *zone, struct page *page,
Olivier Deprez157378f2022-04-04 15:47:50 +02002164 int low, int high, int migratetype)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002165{
2166 unsigned long size = 1 << high;
2167
2168 while (high > low) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002169 high--;
2170 size >>= 1;
2171 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2172
2173 /*
2174 * Mark as guard pages (or page), that will allow to
2175 * merge back to allocator when buddy will be freed.
2176 * Corresponding page table entries will not be touched,
2177 * pages will stay not present in virtual address space
2178 */
2179 if (set_page_guard(zone, &page[size], high, migratetype))
2180 continue;
2181
Olivier Deprez157378f2022-04-04 15:47:50 +02002182 add_to_free_list(&page[size], zone, high, migratetype);
2183 set_buddy_order(&page[size], high);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002184 }
2185}
2186
2187static void check_new_page_bad(struct page *page)
2188{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002189 if (unlikely(page->flags & __PG_HWPOISON)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002190 /* Don't complain about hwpoisoned pages */
2191 page_mapcount_reset(page); /* remove PageBuddy */
2192 return;
2193 }
Olivier Deprez157378f2022-04-04 15:47:50 +02002194
2195 bad_page(page,
2196 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002197}
2198
2199/*
2200 * This page is about to be returned from the page allocator
2201 */
2202static inline int check_new_page(struct page *page)
2203{
2204 if (likely(page_expected_state(page,
2205 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2206 return 0;
2207
2208 check_new_page_bad(page);
2209 return 1;
2210}
2211
2212static inline bool free_pages_prezeroed(void)
2213{
David Brazdil0f672f62019-12-10 10:32:29 +00002214 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2215 page_poisoning_enabled()) || want_init_on_free();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002216}
2217
2218#ifdef CONFIG_DEBUG_VM
David Brazdil0f672f62019-12-10 10:32:29 +00002219/*
2220 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2221 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2222 * also checked when pcp lists are refilled from the free lists.
2223 */
2224static inline bool check_pcp_refill(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002225{
Olivier Deprez0e641232021-09-23 10:07:05 +02002226 if (debug_pagealloc_enabled_static())
David Brazdil0f672f62019-12-10 10:32:29 +00002227 return check_new_page(page);
2228 else
2229 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002230}
2231
David Brazdil0f672f62019-12-10 10:32:29 +00002232static inline bool check_new_pcp(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002233{
2234 return check_new_page(page);
2235}
2236#else
David Brazdil0f672f62019-12-10 10:32:29 +00002237/*
2238 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2239 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2240 * enabled, they are also checked when being allocated from the pcp lists.
2241 */
2242static inline bool check_pcp_refill(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002243{
2244 return check_new_page(page);
2245}
David Brazdil0f672f62019-12-10 10:32:29 +00002246static inline bool check_new_pcp(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002247{
Olivier Deprez0e641232021-09-23 10:07:05 +02002248 if (debug_pagealloc_enabled_static())
David Brazdil0f672f62019-12-10 10:32:29 +00002249 return check_new_page(page);
2250 else
2251 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002252}
2253#endif /* CONFIG_DEBUG_VM */
2254
2255static bool check_new_pages(struct page *page, unsigned int order)
2256{
2257 int i;
2258 for (i = 0; i < (1 << order); i++) {
2259 struct page *p = page + i;
2260
2261 if (unlikely(check_new_page(p)))
2262 return true;
2263 }
2264
2265 return false;
2266}
2267
2268inline void post_alloc_hook(struct page *page, unsigned int order,
2269 gfp_t gfp_flags)
2270{
2271 set_page_private(page, 0);
2272 set_page_refcounted(page);
2273
2274 arch_alloc_page(page, order);
Olivier Deprez0e641232021-09-23 10:07:05 +02002275 if (debug_pagealloc_enabled_static())
David Brazdil0f672f62019-12-10 10:32:29 +00002276 kernel_map_pages(page, 1 << order, 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002277 kasan_alloc_pages(page, order);
David Brazdil0f672f62019-12-10 10:32:29 +00002278 kernel_poison_pages(page, 1 << order, 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002279 set_page_owner(page, order, gfp_flags);
2280}
2281
2282static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2283 unsigned int alloc_flags)
2284{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002285 post_alloc_hook(page, order, gfp_flags);
2286
David Brazdil0f672f62019-12-10 10:32:29 +00002287 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2288 kernel_init_free_pages(page, 1 << order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002289
2290 if (order && (gfp_flags & __GFP_COMP))
2291 prep_compound_page(page, order);
2292
2293 /*
2294 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2295 * allocate the page. The expectation is that the caller is taking
2296 * steps that will free more memory. The caller should avoid the page
2297 * being used for !PFMEMALLOC purposes.
2298 */
2299 if (alloc_flags & ALLOC_NO_WATERMARKS)
2300 set_page_pfmemalloc(page);
2301 else
2302 clear_page_pfmemalloc(page);
2303}
2304
2305/*
2306 * Go through the free lists for the given migratetype and remove
2307 * the smallest available page from the freelists
2308 */
2309static __always_inline
2310struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2311 int migratetype)
2312{
2313 unsigned int current_order;
2314 struct free_area *area;
2315 struct page *page;
2316
2317 /* Find a page of the appropriate size in the preferred list */
2318 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2319 area = &(zone->free_area[current_order]);
David Brazdil0f672f62019-12-10 10:32:29 +00002320 page = get_page_from_free_area(area, migratetype);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002321 if (!page)
2322 continue;
Olivier Deprez157378f2022-04-04 15:47:50 +02002323 del_page_from_free_list(page, zone, current_order);
2324 expand(zone, page, order, current_order, migratetype);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002325 set_pcppage_migratetype(page, migratetype);
2326 return page;
2327 }
2328
2329 return NULL;
2330}
2331
2332
2333/*
2334 * This array describes the order lists are fallen back to when
2335 * the free lists for the desirable migrate type are depleted
2336 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002337static int fallbacks[MIGRATE_TYPES][3] = {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002338 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002339 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
David Brazdil0f672f62019-12-10 10:32:29 +00002340 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002341#ifdef CONFIG_CMA
2342 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2343#endif
2344#ifdef CONFIG_MEMORY_ISOLATION
2345 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2346#endif
2347};
2348
2349#ifdef CONFIG_CMA
2350static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2351 unsigned int order)
2352{
2353 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2354}
2355#else
2356static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2357 unsigned int order) { return NULL; }
2358#endif
2359
2360/*
Olivier Deprez157378f2022-04-04 15:47:50 +02002361 * Move the free pages in a range to the freelist tail of the requested type.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002362 * Note that start_page and end_pages are not aligned on a pageblock
2363 * boundary. If alignment is required, use move_freepages_block()
2364 */
2365static int move_freepages(struct zone *zone,
2366 struct page *start_page, struct page *end_page,
2367 int migratetype, int *num_movable)
2368{
2369 struct page *page;
2370 unsigned int order;
2371 int pages_moved = 0;
2372
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002373 for (page = start_page; page <= end_page;) {
2374 if (!pfn_valid_within(page_to_pfn(page))) {
2375 page++;
2376 continue;
2377 }
2378
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002379 if (!PageBuddy(page)) {
2380 /*
2381 * We assume that pages that could be isolated for
2382 * migration are movable. But we don't actually try
2383 * isolating, as that would be expensive.
2384 */
2385 if (num_movable &&
2386 (PageLRU(page) || __PageMovable(page)))
2387 (*num_movable)++;
2388
2389 page++;
2390 continue;
2391 }
2392
David Brazdil0f672f62019-12-10 10:32:29 +00002393 /* Make sure we are not inadvertently changing nodes */
2394 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2395 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2396
Olivier Deprez157378f2022-04-04 15:47:50 +02002397 order = buddy_order(page);
2398 move_to_free_list(page, zone, order, migratetype);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002399 page += 1 << order;
2400 pages_moved += 1 << order;
2401 }
2402
2403 return pages_moved;
2404}
2405
2406int move_freepages_block(struct zone *zone, struct page *page,
2407 int migratetype, int *num_movable)
2408{
2409 unsigned long start_pfn, end_pfn;
2410 struct page *start_page, *end_page;
2411
David Brazdil0f672f62019-12-10 10:32:29 +00002412 if (num_movable)
2413 *num_movable = 0;
2414
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002415 start_pfn = page_to_pfn(page);
2416 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2417 start_page = pfn_to_page(start_pfn);
2418 end_page = start_page + pageblock_nr_pages - 1;
2419 end_pfn = start_pfn + pageblock_nr_pages - 1;
2420
2421 /* Do not cross zone boundaries */
2422 if (!zone_spans_pfn(zone, start_pfn))
2423 start_page = page;
2424 if (!zone_spans_pfn(zone, end_pfn))
2425 return 0;
2426
2427 return move_freepages(zone, start_page, end_page, migratetype,
2428 num_movable);
2429}
2430
2431static void change_pageblock_range(struct page *pageblock_page,
2432 int start_order, int migratetype)
2433{
2434 int nr_pageblocks = 1 << (start_order - pageblock_order);
2435
2436 while (nr_pageblocks--) {
2437 set_pageblock_migratetype(pageblock_page, migratetype);
2438 pageblock_page += pageblock_nr_pages;
2439 }
2440}
2441
2442/*
2443 * When we are falling back to another migratetype during allocation, try to
2444 * steal extra free pages from the same pageblocks to satisfy further
2445 * allocations, instead of polluting multiple pageblocks.
2446 *
2447 * If we are stealing a relatively large buddy page, it is likely there will
2448 * be more free pages in the pageblock, so try to steal them all. For
2449 * reclaimable and unmovable allocations, we steal regardless of page size,
2450 * as fragmentation caused by those allocations polluting movable pageblocks
2451 * is worse than movable allocations stealing from unmovable and reclaimable
2452 * pageblocks.
2453 */
2454static bool can_steal_fallback(unsigned int order, int start_mt)
2455{
2456 /*
2457 * Leaving this order check is intended, although there is
2458 * relaxed order check in next check. The reason is that
2459 * we can actually steal whole pageblock if this condition met,
2460 * but, below check doesn't guarantee it and that is just heuristic
2461 * so could be changed anytime.
2462 */
2463 if (order >= pageblock_order)
2464 return true;
2465
2466 if (order >= pageblock_order / 2 ||
2467 start_mt == MIGRATE_RECLAIMABLE ||
2468 start_mt == MIGRATE_UNMOVABLE ||
2469 page_group_by_mobility_disabled)
2470 return true;
2471
2472 return false;
2473}
2474
Olivier Deprez0e641232021-09-23 10:07:05 +02002475static inline bool boost_watermark(struct zone *zone)
David Brazdil0f672f62019-12-10 10:32:29 +00002476{
2477 unsigned long max_boost;
2478
2479 if (!watermark_boost_factor)
Olivier Deprez0e641232021-09-23 10:07:05 +02002480 return false;
2481 /*
2482 * Don't bother in zones that are unlikely to produce results.
2483 * On small machines, including kdump capture kernels running
2484 * in a small area, boosting the watermark can cause an out of
2485 * memory situation immediately.
2486 */
2487 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2488 return false;
David Brazdil0f672f62019-12-10 10:32:29 +00002489
2490 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2491 watermark_boost_factor, 10000);
2492
2493 /*
2494 * high watermark may be uninitialised if fragmentation occurs
2495 * very early in boot so do not boost. We do not fall
2496 * through and boost by pageblock_nr_pages as failing
2497 * allocations that early means that reclaim is not going
2498 * to help and it may even be impossible to reclaim the
2499 * boosted watermark resulting in a hang.
2500 */
2501 if (!max_boost)
Olivier Deprez0e641232021-09-23 10:07:05 +02002502 return false;
David Brazdil0f672f62019-12-10 10:32:29 +00002503
2504 max_boost = max(pageblock_nr_pages, max_boost);
2505
2506 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2507 max_boost);
Olivier Deprez0e641232021-09-23 10:07:05 +02002508
2509 return true;
David Brazdil0f672f62019-12-10 10:32:29 +00002510}
2511
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002512/*
2513 * This function implements actual steal behaviour. If order is large enough,
2514 * we can steal whole pageblock. If not, we first move freepages in this
2515 * pageblock to our migratetype and determine how many already-allocated pages
2516 * are there in the pageblock with a compatible migratetype. If at least half
2517 * of pages are free or compatible, we can change migratetype of the pageblock
2518 * itself, so pages freed in the future will be put on the correct free list.
2519 */
2520static void steal_suitable_fallback(struct zone *zone, struct page *page,
David Brazdil0f672f62019-12-10 10:32:29 +00002521 unsigned int alloc_flags, int start_type, bool whole_block)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002522{
Olivier Deprez157378f2022-04-04 15:47:50 +02002523 unsigned int current_order = buddy_order(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002524 int free_pages, movable_pages, alike_pages;
2525 int old_block_type;
2526
2527 old_block_type = get_pageblock_migratetype(page);
2528
2529 /*
2530 * This can happen due to races and we want to prevent broken
2531 * highatomic accounting.
2532 */
2533 if (is_migrate_highatomic(old_block_type))
2534 goto single_page;
2535
2536 /* Take ownership for orders >= pageblock_order */
2537 if (current_order >= pageblock_order) {
2538 change_pageblock_range(page, current_order, start_type);
2539 goto single_page;
2540 }
2541
David Brazdil0f672f62019-12-10 10:32:29 +00002542 /*
2543 * Boost watermarks to increase reclaim pressure to reduce the
2544 * likelihood of future fallbacks. Wake kswapd now as the node
2545 * may be balanced overall and kswapd will not wake naturally.
2546 */
Olivier Deprez0e641232021-09-23 10:07:05 +02002547 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
David Brazdil0f672f62019-12-10 10:32:29 +00002548 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2549
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002550 /* We are not allowed to try stealing from the whole block */
2551 if (!whole_block)
2552 goto single_page;
2553
2554 free_pages = move_freepages_block(zone, page, start_type,
2555 &movable_pages);
2556 /*
2557 * Determine how many pages are compatible with our allocation.
2558 * For movable allocation, it's the number of movable pages which
2559 * we just obtained. For other types it's a bit more tricky.
2560 */
2561 if (start_type == MIGRATE_MOVABLE) {
2562 alike_pages = movable_pages;
2563 } else {
2564 /*
2565 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2566 * to MOVABLE pageblock, consider all non-movable pages as
2567 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2568 * vice versa, be conservative since we can't distinguish the
2569 * exact migratetype of non-movable pages.
2570 */
2571 if (old_block_type == MIGRATE_MOVABLE)
2572 alike_pages = pageblock_nr_pages
2573 - (free_pages + movable_pages);
2574 else
2575 alike_pages = 0;
2576 }
2577
2578 /* moving whole block can fail due to zone boundary conditions */
2579 if (!free_pages)
2580 goto single_page;
2581
2582 /*
2583 * If a sufficient number of pages in the block are either free or of
2584 * comparable migratability as our allocation, claim the whole block.
2585 */
2586 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2587 page_group_by_mobility_disabled)
2588 set_pageblock_migratetype(page, start_type);
2589
2590 return;
2591
2592single_page:
Olivier Deprez157378f2022-04-04 15:47:50 +02002593 move_to_free_list(page, zone, current_order, start_type);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002594}
2595
2596/*
2597 * Check whether there is a suitable fallback freepage with requested order.
2598 * If only_stealable is true, this function returns fallback_mt only if
2599 * we can steal other freepages all together. This would help to reduce
2600 * fragmentation due to mixed migratetype pages in one pageblock.
2601 */
2602int find_suitable_fallback(struct free_area *area, unsigned int order,
2603 int migratetype, bool only_stealable, bool *can_steal)
2604{
2605 int i;
2606 int fallback_mt;
2607
2608 if (area->nr_free == 0)
2609 return -1;
2610
2611 *can_steal = false;
2612 for (i = 0;; i++) {
2613 fallback_mt = fallbacks[migratetype][i];
2614 if (fallback_mt == MIGRATE_TYPES)
2615 break;
2616
David Brazdil0f672f62019-12-10 10:32:29 +00002617 if (free_area_empty(area, fallback_mt))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002618 continue;
2619
2620 if (can_steal_fallback(order, migratetype))
2621 *can_steal = true;
2622
2623 if (!only_stealable)
2624 return fallback_mt;
2625
2626 if (*can_steal)
2627 return fallback_mt;
2628 }
2629
2630 return -1;
2631}
2632
2633/*
2634 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2635 * there are no empty page blocks that contain a page with a suitable order
2636 */
2637static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2638 unsigned int alloc_order)
2639{
2640 int mt;
2641 unsigned long max_managed, flags;
2642
2643 /*
2644 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2645 * Check is race-prone but harmless.
2646 */
David Brazdil0f672f62019-12-10 10:32:29 +00002647 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002648 if (zone->nr_reserved_highatomic >= max_managed)
2649 return;
2650
2651 spin_lock_irqsave(&zone->lock, flags);
2652
2653 /* Recheck the nr_reserved_highatomic limit under the lock */
2654 if (zone->nr_reserved_highatomic >= max_managed)
2655 goto out_unlock;
2656
2657 /* Yoink! */
2658 mt = get_pageblock_migratetype(page);
2659 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2660 && !is_migrate_cma(mt)) {
2661 zone->nr_reserved_highatomic += pageblock_nr_pages;
2662 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2663 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2664 }
2665
2666out_unlock:
2667 spin_unlock_irqrestore(&zone->lock, flags);
2668}
2669
2670/*
2671 * Used when an allocation is about to fail under memory pressure. This
2672 * potentially hurts the reliability of high-order allocations when under
2673 * intense memory pressure but failed atomic allocations should be easier
2674 * to recover from than an OOM.
2675 *
2676 * If @force is true, try to unreserve a pageblock even though highatomic
2677 * pageblock is exhausted.
2678 */
2679static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2680 bool force)
2681{
2682 struct zonelist *zonelist = ac->zonelist;
2683 unsigned long flags;
2684 struct zoneref *z;
2685 struct zone *zone;
2686 struct page *page;
2687 int order;
2688 bool ret;
2689
Olivier Deprez157378f2022-04-04 15:47:50 +02002690 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002691 ac->nodemask) {
2692 /*
2693 * Preserve at least one pageblock unless memory pressure
2694 * is really high.
2695 */
2696 if (!force && zone->nr_reserved_highatomic <=
2697 pageblock_nr_pages)
2698 continue;
2699
2700 spin_lock_irqsave(&zone->lock, flags);
2701 for (order = 0; order < MAX_ORDER; order++) {
2702 struct free_area *area = &(zone->free_area[order]);
2703
David Brazdil0f672f62019-12-10 10:32:29 +00002704 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002705 if (!page)
2706 continue;
2707
2708 /*
2709 * In page freeing path, migratetype change is racy so
2710 * we can counter several free pages in a pageblock
2711 * in this loop althoug we changed the pageblock type
2712 * from highatomic to ac->migratetype. So we should
2713 * adjust the count once.
2714 */
2715 if (is_migrate_highatomic_page(page)) {
2716 /*
2717 * It should never happen but changes to
2718 * locking could inadvertently allow a per-cpu
2719 * drain to add pages to MIGRATE_HIGHATOMIC
2720 * while unreserving so be safe and watch for
2721 * underflows.
2722 */
2723 zone->nr_reserved_highatomic -= min(
2724 pageblock_nr_pages,
2725 zone->nr_reserved_highatomic);
2726 }
2727
2728 /*
2729 * Convert to ac->migratetype and avoid the normal
2730 * pageblock stealing heuristics. Minimally, the caller
2731 * is doing the work and needs the pages. More
2732 * importantly, if the block was always converted to
2733 * MIGRATE_UNMOVABLE or another type then the number
2734 * of pageblocks that cannot be completely freed
2735 * may increase.
2736 */
2737 set_pageblock_migratetype(page, ac->migratetype);
2738 ret = move_freepages_block(zone, page, ac->migratetype,
2739 NULL);
2740 if (ret) {
2741 spin_unlock_irqrestore(&zone->lock, flags);
2742 return ret;
2743 }
2744 }
2745 spin_unlock_irqrestore(&zone->lock, flags);
2746 }
2747
2748 return false;
2749}
2750
2751/*
2752 * Try finding a free buddy page on the fallback list and put it on the free
2753 * list of requested migratetype, possibly along with other pages from the same
2754 * block, depending on fragmentation avoidance heuristics. Returns true if
2755 * fallback was found so that __rmqueue_smallest() can grab it.
2756 *
2757 * The use of signed ints for order and current_order is a deliberate
2758 * deviation from the rest of this file, to make the for loop
2759 * condition simpler.
2760 */
2761static __always_inline bool
David Brazdil0f672f62019-12-10 10:32:29 +00002762__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2763 unsigned int alloc_flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002764{
2765 struct free_area *area;
2766 int current_order;
David Brazdil0f672f62019-12-10 10:32:29 +00002767 int min_order = order;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002768 struct page *page;
2769 int fallback_mt;
2770 bool can_steal;
2771
2772 /*
David Brazdil0f672f62019-12-10 10:32:29 +00002773 * Do not steal pages from freelists belonging to other pageblocks
2774 * i.e. orders < pageblock_order. If there are no local zones free,
2775 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2776 */
2777 if (alloc_flags & ALLOC_NOFRAGMENT)
2778 min_order = pageblock_order;
2779
2780 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002781 * Find the largest available free page in the other list. This roughly
2782 * approximates finding the pageblock with the most free pages, which
2783 * would be too costly to do exactly.
2784 */
David Brazdil0f672f62019-12-10 10:32:29 +00002785 for (current_order = MAX_ORDER - 1; current_order >= min_order;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002786 --current_order) {
2787 area = &(zone->free_area[current_order]);
2788 fallback_mt = find_suitable_fallback(area, current_order,
2789 start_migratetype, false, &can_steal);
2790 if (fallback_mt == -1)
2791 continue;
2792
2793 /*
2794 * We cannot steal all free pages from the pageblock and the
2795 * requested migratetype is movable. In that case it's better to
2796 * steal and split the smallest available page instead of the
2797 * largest available page, because even if the next movable
2798 * allocation falls back into a different pageblock than this
2799 * one, it won't cause permanent fragmentation.
2800 */
2801 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2802 && current_order > order)
2803 goto find_smallest;
2804
2805 goto do_steal;
2806 }
2807
2808 return false;
2809
2810find_smallest:
2811 for (current_order = order; current_order < MAX_ORDER;
2812 current_order++) {
2813 area = &(zone->free_area[current_order]);
2814 fallback_mt = find_suitable_fallback(area, current_order,
2815 start_migratetype, false, &can_steal);
2816 if (fallback_mt != -1)
2817 break;
2818 }
2819
2820 /*
2821 * This should not happen - we already found a suitable fallback
2822 * when looking for the largest page.
2823 */
2824 VM_BUG_ON(current_order == MAX_ORDER);
2825
2826do_steal:
David Brazdil0f672f62019-12-10 10:32:29 +00002827 page = get_page_from_free_area(area, fallback_mt);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002828
David Brazdil0f672f62019-12-10 10:32:29 +00002829 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2830 can_steal);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002831
2832 trace_mm_page_alloc_extfrag(page, order, current_order,
2833 start_migratetype, fallback_mt);
2834
2835 return true;
2836
2837}
2838
2839/*
2840 * Do the hard work of removing an element from the buddy allocator.
2841 * Call me with the zone->lock already held.
2842 */
2843static __always_inline struct page *
David Brazdil0f672f62019-12-10 10:32:29 +00002844__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2845 unsigned int alloc_flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002846{
2847 struct page *page;
2848
Olivier Deprez157378f2022-04-04 15:47:50 +02002849 if (IS_ENABLED(CONFIG_CMA)) {
2850 /*
2851 * Balance movable allocations between regular and CMA areas by
2852 * allocating from CMA when over half of the zone's free memory
2853 * is in the CMA area.
2854 */
2855 if (alloc_flags & ALLOC_CMA &&
2856 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2857 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2858 page = __rmqueue_cma_fallback(zone, order);
2859 if (page)
2860 goto out;
2861 }
2862 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002863retry:
2864 page = __rmqueue_smallest(zone, order, migratetype);
2865 if (unlikely(!page)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02002866 if (alloc_flags & ALLOC_CMA)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002867 page = __rmqueue_cma_fallback(zone, order);
2868
David Brazdil0f672f62019-12-10 10:32:29 +00002869 if (!page && __rmqueue_fallback(zone, order, migratetype,
2870 alloc_flags))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002871 goto retry;
2872 }
Olivier Deprez157378f2022-04-04 15:47:50 +02002873out:
2874 if (page)
2875 trace_mm_page_alloc_zone_locked(page, order, migratetype);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002876 return page;
2877}
2878
2879/*
2880 * Obtain a specified number of elements from the buddy allocator, all under
2881 * a single hold of the lock, for efficiency. Add them to the supplied list.
2882 * Returns the number of new pages which were placed at *list.
2883 */
2884static int rmqueue_bulk(struct zone *zone, unsigned int order,
2885 unsigned long count, struct list_head *list,
David Brazdil0f672f62019-12-10 10:32:29 +00002886 int migratetype, unsigned int alloc_flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002887{
2888 int i, alloced = 0;
2889
2890 spin_lock(&zone->lock);
2891 for (i = 0; i < count; ++i) {
David Brazdil0f672f62019-12-10 10:32:29 +00002892 struct page *page = __rmqueue(zone, order, migratetype,
2893 alloc_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002894 if (unlikely(page == NULL))
2895 break;
2896
2897 if (unlikely(check_pcp_refill(page)))
2898 continue;
2899
2900 /*
2901 * Split buddy pages returned by expand() are received here in
2902 * physical page order. The page is added to the tail of
2903 * caller's list. From the callers perspective, the linked list
2904 * is ordered by page number under some conditions. This is
2905 * useful for IO devices that can forward direction from the
2906 * head, thus also in the physical page order. This is useful
2907 * for IO devices that can merge IO requests if the physical
2908 * pages are ordered properly.
2909 */
2910 list_add_tail(&page->lru, list);
2911 alloced++;
2912 if (is_migrate_cma(get_pcppage_migratetype(page)))
2913 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2914 -(1 << order));
2915 }
2916
2917 /*
2918 * i pages were removed from the buddy list even if some leak due
2919 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2920 * on i. Do not confuse with 'alloced' which is the number of
2921 * pages added to the pcp list.
2922 */
2923 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2924 spin_unlock(&zone->lock);
2925 return alloced;
2926}
2927
2928#ifdef CONFIG_NUMA
2929/*
2930 * Called from the vmstat counter updater to drain pagesets of this
2931 * currently executing processor on remote nodes after they have
2932 * expired.
2933 *
2934 * Note that this function must be called with the thread pinned to
2935 * a single processor.
2936 */
2937void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2938{
2939 unsigned long flags;
2940 int to_drain, batch;
2941
2942 local_irq_save(flags);
2943 batch = READ_ONCE(pcp->batch);
2944 to_drain = min(pcp->count, batch);
2945 if (to_drain > 0)
2946 free_pcppages_bulk(zone, to_drain, pcp);
2947 local_irq_restore(flags);
2948}
2949#endif
2950
2951/*
2952 * Drain pcplists of the indicated processor and zone.
2953 *
2954 * The processor must either be the current processor and the
2955 * thread pinned to the current processor or a processor that
2956 * is not online.
2957 */
2958static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2959{
2960 unsigned long flags;
2961 struct per_cpu_pageset *pset;
2962 struct per_cpu_pages *pcp;
2963
2964 local_irq_save(flags);
2965 pset = per_cpu_ptr(zone->pageset, cpu);
2966
2967 pcp = &pset->pcp;
2968 if (pcp->count)
2969 free_pcppages_bulk(zone, pcp->count, pcp);
2970 local_irq_restore(flags);
2971}
2972
2973/*
2974 * Drain pcplists of all zones on the indicated processor.
2975 *
2976 * The processor must either be the current processor and the
2977 * thread pinned to the current processor or a processor that
2978 * is not online.
2979 */
2980static void drain_pages(unsigned int cpu)
2981{
2982 struct zone *zone;
2983
2984 for_each_populated_zone(zone) {
2985 drain_pages_zone(cpu, zone);
2986 }
2987}
2988
2989/*
2990 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2991 *
2992 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2993 * the single zone's pages.
2994 */
2995void drain_local_pages(struct zone *zone)
2996{
2997 int cpu = smp_processor_id();
2998
2999 if (zone)
3000 drain_pages_zone(cpu, zone);
3001 else
3002 drain_pages(cpu);
3003}
3004
3005static void drain_local_pages_wq(struct work_struct *work)
3006{
David Brazdil0f672f62019-12-10 10:32:29 +00003007 struct pcpu_drain *drain;
3008
3009 drain = container_of(work, struct pcpu_drain, work);
3010
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003011 /*
3012 * drain_all_pages doesn't use proper cpu hotplug protection so
3013 * we can race with cpu offline when the WQ can move this from
3014 * a cpu pinned worker to an unbound one. We can operate on a different
3015 * cpu which is allright but we also have to make sure to not move to
3016 * a different one.
3017 */
3018 preempt_disable();
David Brazdil0f672f62019-12-10 10:32:29 +00003019 drain_local_pages(drain->zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003020 preempt_enable();
3021}
3022
3023/*
3024 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3025 *
3026 * When zone parameter is non-NULL, spill just the single zone's pages.
3027 *
3028 * Note that this can be extremely slow as the draining happens in a workqueue.
3029 */
3030void drain_all_pages(struct zone *zone)
3031{
3032 int cpu;
3033
3034 /*
3035 * Allocate in the BSS so we wont require allocation in
3036 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3037 */
3038 static cpumask_t cpus_with_pcps;
3039
3040 /*
3041 * Make sure nobody triggers this path before mm_percpu_wq is fully
3042 * initialized.
3043 */
3044 if (WARN_ON_ONCE(!mm_percpu_wq))
3045 return;
3046
3047 /*
3048 * Do not drain if one is already in progress unless it's specific to
3049 * a zone. Such callers are primarily CMA and memory hotplug and need
3050 * the drain to be complete when the call returns.
3051 */
3052 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3053 if (!zone)
3054 return;
3055 mutex_lock(&pcpu_drain_mutex);
3056 }
3057
3058 /*
3059 * We don't care about racing with CPU hotplug event
3060 * as offline notification will cause the notified
3061 * cpu to drain that CPU pcps and on_each_cpu_mask
3062 * disables preemption as part of its processing
3063 */
3064 for_each_online_cpu(cpu) {
3065 struct per_cpu_pageset *pcp;
3066 struct zone *z;
3067 bool has_pcps = false;
3068
3069 if (zone) {
3070 pcp = per_cpu_ptr(zone->pageset, cpu);
3071 if (pcp->pcp.count)
3072 has_pcps = true;
3073 } else {
3074 for_each_populated_zone(z) {
3075 pcp = per_cpu_ptr(z->pageset, cpu);
3076 if (pcp->pcp.count) {
3077 has_pcps = true;
3078 break;
3079 }
3080 }
3081 }
3082
3083 if (has_pcps)
3084 cpumask_set_cpu(cpu, &cpus_with_pcps);
3085 else
3086 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3087 }
3088
3089 for_each_cpu(cpu, &cpus_with_pcps) {
David Brazdil0f672f62019-12-10 10:32:29 +00003090 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3091
3092 drain->zone = zone;
3093 INIT_WORK(&drain->work, drain_local_pages_wq);
3094 queue_work_on(cpu, mm_percpu_wq, &drain->work);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003095 }
3096 for_each_cpu(cpu, &cpus_with_pcps)
David Brazdil0f672f62019-12-10 10:32:29 +00003097 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003098
3099 mutex_unlock(&pcpu_drain_mutex);
3100}
3101
3102#ifdef CONFIG_HIBERNATION
3103
3104/*
3105 * Touch the watchdog for every WD_PAGE_COUNT pages.
3106 */
3107#define WD_PAGE_COUNT (128*1024)
3108
3109void mark_free_pages(struct zone *zone)
3110{
3111 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3112 unsigned long flags;
3113 unsigned int order, t;
3114 struct page *page;
3115
3116 if (zone_is_empty(zone))
3117 return;
3118
3119 spin_lock_irqsave(&zone->lock, flags);
3120
3121 max_zone_pfn = zone_end_pfn(zone);
3122 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3123 if (pfn_valid(pfn)) {
3124 page = pfn_to_page(pfn);
3125
3126 if (!--page_count) {
3127 touch_nmi_watchdog();
3128 page_count = WD_PAGE_COUNT;
3129 }
3130
3131 if (page_zone(page) != zone)
3132 continue;
3133
3134 if (!swsusp_page_is_forbidden(page))
3135 swsusp_unset_page_free(page);
3136 }
3137
3138 for_each_migratetype_order(order, t) {
3139 list_for_each_entry(page,
3140 &zone->free_area[order].free_list[t], lru) {
3141 unsigned long i;
3142
3143 pfn = page_to_pfn(page);
3144 for (i = 0; i < (1UL << order); i++) {
3145 if (!--page_count) {
3146 touch_nmi_watchdog();
3147 page_count = WD_PAGE_COUNT;
3148 }
3149 swsusp_set_page_free(pfn_to_page(pfn + i));
3150 }
3151 }
3152 }
3153 spin_unlock_irqrestore(&zone->lock, flags);
3154}
3155#endif /* CONFIG_PM */
3156
3157static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3158{
3159 int migratetype;
3160
3161 if (!free_pcp_prepare(page))
3162 return false;
3163
3164 migratetype = get_pfnblock_migratetype(page, pfn);
3165 set_pcppage_migratetype(page, migratetype);
3166 return true;
3167}
3168
3169static void free_unref_page_commit(struct page *page, unsigned long pfn)
3170{
3171 struct zone *zone = page_zone(page);
3172 struct per_cpu_pages *pcp;
3173 int migratetype;
3174
3175 migratetype = get_pcppage_migratetype(page);
3176 __count_vm_event(PGFREE);
3177
3178 /*
3179 * We only track unmovable, reclaimable and movable on pcp lists.
3180 * Free ISOLATE pages back to the allocator because they are being
3181 * offlined but treat HIGHATOMIC as movable pages so we can get those
3182 * areas back if necessary. Otherwise, we may have to free
3183 * excessively into the page allocator
3184 */
3185 if (migratetype >= MIGRATE_PCPTYPES) {
3186 if (unlikely(is_migrate_isolate(migratetype))) {
Olivier Deprez157378f2022-04-04 15:47:50 +02003187 free_one_page(zone, page, pfn, 0, migratetype,
3188 FPI_NONE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003189 return;
3190 }
3191 migratetype = MIGRATE_MOVABLE;
3192 }
3193
3194 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3195 list_add(&page->lru, &pcp->lists[migratetype]);
3196 pcp->count++;
3197 if (pcp->count >= pcp->high) {
3198 unsigned long batch = READ_ONCE(pcp->batch);
3199 free_pcppages_bulk(zone, batch, pcp);
3200 }
3201}
3202
3203/*
3204 * Free a 0-order page
3205 */
3206void free_unref_page(struct page *page)
3207{
3208 unsigned long flags;
3209 unsigned long pfn = page_to_pfn(page);
3210
3211 if (!free_unref_page_prepare(page, pfn))
3212 return;
3213
3214 local_irq_save(flags);
3215 free_unref_page_commit(page, pfn);
3216 local_irq_restore(flags);
3217}
3218
3219/*
3220 * Free a list of 0-order pages
3221 */
3222void free_unref_page_list(struct list_head *list)
3223{
3224 struct page *page, *next;
3225 unsigned long flags, pfn;
3226 int batch_count = 0;
3227
3228 /* Prepare pages for freeing */
3229 list_for_each_entry_safe(page, next, list, lru) {
3230 pfn = page_to_pfn(page);
3231 if (!free_unref_page_prepare(page, pfn))
3232 list_del(&page->lru);
3233 set_page_private(page, pfn);
3234 }
3235
3236 local_irq_save(flags);
3237 list_for_each_entry_safe(page, next, list, lru) {
3238 unsigned long pfn = page_private(page);
3239
3240 set_page_private(page, 0);
3241 trace_mm_page_free_batched(page);
3242 free_unref_page_commit(page, pfn);
3243
3244 /*
3245 * Guard against excessive IRQ disabled times when we get
3246 * a large list of pages to free.
3247 */
3248 if (++batch_count == SWAP_CLUSTER_MAX) {
3249 local_irq_restore(flags);
3250 batch_count = 0;
3251 local_irq_save(flags);
3252 }
3253 }
3254 local_irq_restore(flags);
3255}
3256
3257/*
3258 * split_page takes a non-compound higher-order page, and splits it into
3259 * n (1<<order) sub-pages: page[0..n]
3260 * Each sub-page must be freed individually.
3261 *
3262 * Note: this is probably too low level an operation for use in drivers.
3263 * Please consult with lkml before using this in your driver.
3264 */
3265void split_page(struct page *page, unsigned int order)
3266{
3267 int i;
3268
3269 VM_BUG_ON_PAGE(PageCompound(page), page);
3270 VM_BUG_ON_PAGE(!page_count(page), page);
3271
3272 for (i = 1; i < (1 << order); i++)
3273 set_page_refcounted(page + i);
Olivier Deprez0e641232021-09-23 10:07:05 +02003274 split_page_owner(page, 1 << order);
Olivier Deprez157378f2022-04-04 15:47:50 +02003275 split_page_memcg(page, 1 << order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003276}
3277EXPORT_SYMBOL_GPL(split_page);
3278
3279int __isolate_free_page(struct page *page, unsigned int order)
3280{
3281 unsigned long watermark;
3282 struct zone *zone;
3283 int mt;
3284
3285 BUG_ON(!PageBuddy(page));
3286
3287 zone = page_zone(page);
3288 mt = get_pageblock_migratetype(page);
3289
3290 if (!is_migrate_isolate(mt)) {
3291 /*
3292 * Obey watermarks as if the page was being allocated. We can
3293 * emulate a high-order watermark check with a raised order-0
3294 * watermark, because we already know our high-order page
3295 * exists.
3296 */
David Brazdil0f672f62019-12-10 10:32:29 +00003297 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003298 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3299 return 0;
3300
3301 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3302 }
3303
3304 /* Remove page from free list */
David Brazdil0f672f62019-12-10 10:32:29 +00003305
Olivier Deprez157378f2022-04-04 15:47:50 +02003306 del_page_from_free_list(page, zone, order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003307
3308 /*
3309 * Set the pageblock if the isolated page is at least half of a
3310 * pageblock
3311 */
3312 if (order >= pageblock_order - 1) {
3313 struct page *endpage = page + (1 << order) - 1;
3314 for (; page < endpage; page += pageblock_nr_pages) {
3315 int mt = get_pageblock_migratetype(page);
3316 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3317 && !is_migrate_highatomic(mt))
3318 set_pageblock_migratetype(page,
3319 MIGRATE_MOVABLE);
3320 }
3321 }
3322
3323
3324 return 1UL << order;
3325}
3326
Olivier Deprez157378f2022-04-04 15:47:50 +02003327/**
3328 * __putback_isolated_page - Return a now-isolated page back where we got it
3329 * @page: Page that was isolated
3330 * @order: Order of the isolated page
3331 * @mt: The page's pageblock's migratetype
3332 *
3333 * This function is meant to return a page pulled from the free lists via
3334 * __isolate_free_page back to the free lists they were pulled from.
3335 */
3336void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3337{
3338 struct zone *zone = page_zone(page);
3339
3340 /* zone lock should be held when this function is called */
3341 lockdep_assert_held(&zone->lock);
3342
3343 /* Return isolated page to tail of freelist. */
3344 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3345 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3346}
3347
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003348/*
3349 * Update NUMA hit/miss statistics
3350 *
3351 * Must be called with interrupts disabled.
3352 */
3353static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3354{
3355#ifdef CONFIG_NUMA
3356 enum numa_stat_item local_stat = NUMA_LOCAL;
3357
3358 /* skip numa counters update if numa stats is disabled */
3359 if (!static_branch_likely(&vm_numa_stat_key))
3360 return;
3361
3362 if (zone_to_nid(z) != numa_node_id())
3363 local_stat = NUMA_OTHER;
3364
3365 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3366 __inc_numa_state(z, NUMA_HIT);
3367 else {
3368 __inc_numa_state(z, NUMA_MISS);
3369 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3370 }
3371 __inc_numa_state(z, local_stat);
3372#endif
3373}
3374
3375/* Remove page from the per-cpu list, caller must protect the list */
3376static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
David Brazdil0f672f62019-12-10 10:32:29 +00003377 unsigned int alloc_flags,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003378 struct per_cpu_pages *pcp,
3379 struct list_head *list)
3380{
3381 struct page *page;
3382
3383 do {
3384 if (list_empty(list)) {
3385 pcp->count += rmqueue_bulk(zone, 0,
3386 pcp->batch, list,
David Brazdil0f672f62019-12-10 10:32:29 +00003387 migratetype, alloc_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003388 if (unlikely(list_empty(list)))
3389 return NULL;
3390 }
3391
3392 page = list_first_entry(list, struct page, lru);
3393 list_del(&page->lru);
3394 pcp->count--;
3395 } while (check_new_pcp(page));
3396
3397 return page;
3398}
3399
3400/* Lock and remove page from the per-cpu list */
3401static struct page *rmqueue_pcplist(struct zone *preferred_zone,
David Brazdil0f672f62019-12-10 10:32:29 +00003402 struct zone *zone, gfp_t gfp_flags,
3403 int migratetype, unsigned int alloc_flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003404{
3405 struct per_cpu_pages *pcp;
3406 struct list_head *list;
3407 struct page *page;
3408 unsigned long flags;
3409
3410 local_irq_save(flags);
3411 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3412 list = &pcp->lists[migratetype];
David Brazdil0f672f62019-12-10 10:32:29 +00003413 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003414 if (page) {
David Brazdil0f672f62019-12-10 10:32:29 +00003415 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003416 zone_statistics(preferred_zone, zone);
3417 }
3418 local_irq_restore(flags);
3419 return page;
3420}
3421
3422/*
3423 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3424 */
3425static inline
3426struct page *rmqueue(struct zone *preferred_zone,
3427 struct zone *zone, unsigned int order,
3428 gfp_t gfp_flags, unsigned int alloc_flags,
3429 int migratetype)
3430{
3431 unsigned long flags;
3432 struct page *page;
3433
3434 if (likely(order == 0)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02003435 /*
3436 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3437 * we need to skip it when CMA area isn't allowed.
3438 */
3439 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3440 migratetype != MIGRATE_MOVABLE) {
3441 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
David Brazdil0f672f62019-12-10 10:32:29 +00003442 migratetype, alloc_flags);
Olivier Deprez157378f2022-04-04 15:47:50 +02003443 goto out;
3444 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003445 }
3446
3447 /*
3448 * We most definitely don't want callers attempting to
3449 * allocate greater than order-1 page units with __GFP_NOFAIL.
3450 */
3451 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3452 spin_lock_irqsave(&zone->lock, flags);
3453
3454 do {
3455 page = NULL;
Olivier Deprez157378f2022-04-04 15:47:50 +02003456 /*
3457 * order-0 request can reach here when the pcplist is skipped
3458 * due to non-CMA allocation context. HIGHATOMIC area is
3459 * reserved for high-order atomic allocation, so order-0
3460 * request should skip it.
3461 */
3462 if (order > 0 && alloc_flags & ALLOC_HARDER) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003463 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3464 if (page)
3465 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3466 }
3467 if (!page)
David Brazdil0f672f62019-12-10 10:32:29 +00003468 page = __rmqueue(zone, order, migratetype, alloc_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003469 } while (page && check_new_pages(page, order));
3470 spin_unlock(&zone->lock);
3471 if (!page)
3472 goto failed;
3473 __mod_zone_freepage_state(zone, -(1 << order),
3474 get_pcppage_migratetype(page));
3475
3476 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3477 zone_statistics(preferred_zone, zone);
3478 local_irq_restore(flags);
3479
3480out:
David Brazdil0f672f62019-12-10 10:32:29 +00003481 /* Separate test+clear to avoid unnecessary atomics */
3482 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3483 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3484 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3485 }
3486
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003487 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3488 return page;
3489
3490failed:
3491 local_irq_restore(flags);
3492 return NULL;
3493}
3494
3495#ifdef CONFIG_FAIL_PAGE_ALLOC
3496
3497static struct {
3498 struct fault_attr attr;
3499
3500 bool ignore_gfp_highmem;
3501 bool ignore_gfp_reclaim;
3502 u32 min_order;
3503} fail_page_alloc = {
3504 .attr = FAULT_ATTR_INITIALIZER,
3505 .ignore_gfp_reclaim = true,
3506 .ignore_gfp_highmem = true,
3507 .min_order = 1,
3508};
3509
3510static int __init setup_fail_page_alloc(char *str)
3511{
3512 return setup_fault_attr(&fail_page_alloc.attr, str);
3513}
3514__setup("fail_page_alloc=", setup_fail_page_alloc);
3515
David Brazdil0f672f62019-12-10 10:32:29 +00003516static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003517{
3518 if (order < fail_page_alloc.min_order)
3519 return false;
3520 if (gfp_mask & __GFP_NOFAIL)
3521 return false;
3522 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3523 return false;
3524 if (fail_page_alloc.ignore_gfp_reclaim &&
3525 (gfp_mask & __GFP_DIRECT_RECLAIM))
3526 return false;
3527
3528 return should_fail(&fail_page_alloc.attr, 1 << order);
3529}
3530
3531#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3532
3533static int __init fail_page_alloc_debugfs(void)
3534{
3535 umode_t mode = S_IFREG | 0600;
3536 struct dentry *dir;
3537
3538 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3539 &fail_page_alloc.attr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003540
David Brazdil0f672f62019-12-10 10:32:29 +00003541 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3542 &fail_page_alloc.ignore_gfp_reclaim);
3543 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3544 &fail_page_alloc.ignore_gfp_highmem);
3545 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003546
3547 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003548}
3549
3550late_initcall(fail_page_alloc_debugfs);
3551
3552#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3553
3554#else /* CONFIG_FAIL_PAGE_ALLOC */
3555
David Brazdil0f672f62019-12-10 10:32:29 +00003556static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003557{
3558 return false;
3559}
3560
3561#endif /* CONFIG_FAIL_PAGE_ALLOC */
3562
Olivier Deprez0e641232021-09-23 10:07:05 +02003563noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
David Brazdil0f672f62019-12-10 10:32:29 +00003564{
3565 return __should_fail_alloc_page(gfp_mask, order);
3566}
3567ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3568
Olivier Deprez157378f2022-04-04 15:47:50 +02003569static inline long __zone_watermark_unusable_free(struct zone *z,
3570 unsigned int order, unsigned int alloc_flags)
3571{
3572 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3573 long unusable_free = (1 << order) - 1;
3574
3575 /*
3576 * If the caller does not have rights to ALLOC_HARDER then subtract
3577 * the high-atomic reserves. This will over-estimate the size of the
3578 * atomic reserve but it avoids a search.
3579 */
3580 if (likely(!alloc_harder))
3581 unusable_free += z->nr_reserved_highatomic;
3582
3583#ifdef CONFIG_CMA
3584 /* If allocation can't use CMA areas don't use free CMA pages */
3585 if (!(alloc_flags & ALLOC_CMA))
3586 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3587#endif
3588
3589 return unusable_free;
3590}
3591
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003592/*
3593 * Return true if free base pages are above 'mark'. For high-order checks it
3594 * will return true of the order-0 watermark is reached and there is at least
3595 * one free page of a suitable size. Checking now avoids taking the zone lock
3596 * to check in the allocation paths if no pages are free.
3597 */
3598bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
Olivier Deprez157378f2022-04-04 15:47:50 +02003599 int highest_zoneidx, unsigned int alloc_flags,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003600 long free_pages)
3601{
3602 long min = mark;
3603 int o;
3604 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3605
3606 /* free_pages may go negative - that's OK */
Olivier Deprez157378f2022-04-04 15:47:50 +02003607 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003608
3609 if (alloc_flags & ALLOC_HIGH)
3610 min -= min / 2;
3611
Olivier Deprez157378f2022-04-04 15:47:50 +02003612 if (unlikely(alloc_harder)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003613 /*
3614 * OOM victims can try even harder than normal ALLOC_HARDER
3615 * users on the grounds that it's definitely going to be in
3616 * the exit path shortly and free memory. Any allocation it
3617 * makes during the free path will be small and short-lived.
3618 */
3619 if (alloc_flags & ALLOC_OOM)
3620 min -= min / 2;
3621 else
3622 min -= min / 4;
3623 }
3624
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003625 /*
3626 * Check watermarks for an order-0 allocation request. If these
3627 * are not met, then a high-order request also cannot go ahead
3628 * even if a suitable page happened to be free.
3629 */
Olivier Deprez157378f2022-04-04 15:47:50 +02003630 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003631 return false;
3632
3633 /* If this is an order-0 request then the watermark is fine */
3634 if (!order)
3635 return true;
3636
3637 /* For a high-order request, check at least one suitable page is free */
3638 for (o = order; o < MAX_ORDER; o++) {
3639 struct free_area *area = &z->free_area[o];
3640 int mt;
3641
3642 if (!area->nr_free)
3643 continue;
3644
3645 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
David Brazdil0f672f62019-12-10 10:32:29 +00003646 if (!free_area_empty(area, mt))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003647 return true;
3648 }
3649
3650#ifdef CONFIG_CMA
3651 if ((alloc_flags & ALLOC_CMA) &&
David Brazdil0f672f62019-12-10 10:32:29 +00003652 !free_area_empty(area, MIGRATE_CMA)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003653 return true;
3654 }
3655#endif
Olivier Deprez157378f2022-04-04 15:47:50 +02003656 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003657 return true;
3658 }
3659 return false;
3660}
3661
3662bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
Olivier Deprez157378f2022-04-04 15:47:50 +02003663 int highest_zoneidx, unsigned int alloc_flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003664{
Olivier Deprez157378f2022-04-04 15:47:50 +02003665 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003666 zone_page_state(z, NR_FREE_PAGES));
3667}
3668
3669static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
Olivier Deprez157378f2022-04-04 15:47:50 +02003670 unsigned long mark, int highest_zoneidx,
Olivier Deprez0e641232021-09-23 10:07:05 +02003671 unsigned int alloc_flags, gfp_t gfp_mask)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003672{
Olivier Deprez157378f2022-04-04 15:47:50 +02003673 long free_pages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003674
Olivier Deprez157378f2022-04-04 15:47:50 +02003675 free_pages = zone_page_state(z, NR_FREE_PAGES);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003676
3677 /*
3678 * Fast check for order-0 only. If this fails then the reserves
Olivier Deprez157378f2022-04-04 15:47:50 +02003679 * need to be calculated.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003680 */
Olivier Deprez157378f2022-04-04 15:47:50 +02003681 if (!order) {
Olivier Deprez92d4c212022-12-06 15:05:30 +01003682 long usable_free;
3683 long reserved;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003684
Olivier Deprez92d4c212022-12-06 15:05:30 +01003685 usable_free = free_pages;
3686 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3687
3688 /* reserved may over estimate high-atomic reserves. */
3689 usable_free -= min(usable_free, reserved);
3690 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
Olivier Deprez157378f2022-04-04 15:47:50 +02003691 return true;
3692 }
3693
3694 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
Olivier Deprez0e641232021-09-23 10:07:05 +02003695 free_pages))
3696 return true;
3697 /*
3698 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3699 * when checking the min watermark. The min watermark is the
3700 * point where boosting is ignored so that kswapd is woken up
3701 * when below the low watermark.
3702 */
3703 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3704 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3705 mark = z->_watermark[WMARK_MIN];
Olivier Deprez157378f2022-04-04 15:47:50 +02003706 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
Olivier Deprez0e641232021-09-23 10:07:05 +02003707 alloc_flags, free_pages);
3708 }
3709
3710 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003711}
3712
3713bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
Olivier Deprez157378f2022-04-04 15:47:50 +02003714 unsigned long mark, int highest_zoneidx)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003715{
3716 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3717
3718 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3719 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3720
Olivier Deprez157378f2022-04-04 15:47:50 +02003721 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003722 free_pages);
3723}
3724
3725#ifdef CONFIG_NUMA
3726static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3727{
3728 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
David Brazdil0f672f62019-12-10 10:32:29 +00003729 node_reclaim_distance;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003730}
3731#else /* CONFIG_NUMA */
3732static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3733{
3734 return true;
3735}
3736#endif /* CONFIG_NUMA */
3737
3738/*
David Brazdil0f672f62019-12-10 10:32:29 +00003739 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3740 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3741 * premature use of a lower zone may cause lowmem pressure problems that
3742 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3743 * probably too small. It only makes sense to spread allocations to avoid
3744 * fragmentation between the Normal and DMA32 zones.
3745 */
3746static inline unsigned int
3747alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3748{
Olivier Deprez157378f2022-04-04 15:47:50 +02003749 unsigned int alloc_flags;
David Brazdil0f672f62019-12-10 10:32:29 +00003750
Olivier Deprez157378f2022-04-04 15:47:50 +02003751 /*
3752 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3753 * to save a branch.
3754 */
3755 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
David Brazdil0f672f62019-12-10 10:32:29 +00003756
3757#ifdef CONFIG_ZONE_DMA32
3758 if (!zone)
3759 return alloc_flags;
3760
3761 if (zone_idx(zone) != ZONE_NORMAL)
3762 return alloc_flags;
3763
3764 /*
3765 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3766 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3767 * on UMA that if Normal is populated then so is DMA32.
3768 */
3769 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3770 if (nr_online_nodes > 1 && !populated_zone(--zone))
3771 return alloc_flags;
3772
3773 alloc_flags |= ALLOC_NOFRAGMENT;
3774#endif /* CONFIG_ZONE_DMA32 */
3775 return alloc_flags;
3776}
3777
Olivier Deprez157378f2022-04-04 15:47:50 +02003778static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3779 unsigned int alloc_flags)
3780{
3781#ifdef CONFIG_CMA
3782 unsigned int pflags = current->flags;
3783
3784 if (!(pflags & PF_MEMALLOC_NOCMA) &&
3785 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3786 alloc_flags |= ALLOC_CMA;
3787
3788#endif
3789 return alloc_flags;
3790}
3791
David Brazdil0f672f62019-12-10 10:32:29 +00003792/*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003793 * get_page_from_freelist goes through the zonelist trying to allocate
3794 * a page.
3795 */
3796static struct page *
3797get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3798 const struct alloc_context *ac)
3799{
David Brazdil0f672f62019-12-10 10:32:29 +00003800 struct zoneref *z;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003801 struct zone *zone;
3802 struct pglist_data *last_pgdat_dirty_limit = NULL;
David Brazdil0f672f62019-12-10 10:32:29 +00003803 bool no_fallback;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003804
David Brazdil0f672f62019-12-10 10:32:29 +00003805retry:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003806 /*
3807 * Scan zonelist, looking for a zone with enough free.
3808 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3809 */
David Brazdil0f672f62019-12-10 10:32:29 +00003810 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3811 z = ac->preferred_zoneref;
Olivier Deprez157378f2022-04-04 15:47:50 +02003812 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3813 ac->nodemask) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003814 struct page *page;
3815 unsigned long mark;
3816
3817 if (cpusets_enabled() &&
3818 (alloc_flags & ALLOC_CPUSET) &&
3819 !__cpuset_zone_allowed(zone, gfp_mask))
3820 continue;
3821 /*
3822 * When allocating a page cache page for writing, we
3823 * want to get it from a node that is within its dirty
3824 * limit, such that no single node holds more than its
3825 * proportional share of globally allowed dirty pages.
3826 * The dirty limits take into account the node's
3827 * lowmem reserves and high watermark so that kswapd
3828 * should be able to balance it without having to
3829 * write pages from its LRU list.
3830 *
3831 * XXX: For now, allow allocations to potentially
3832 * exceed the per-node dirty limit in the slowpath
3833 * (spread_dirty_pages unset) before going into reclaim,
3834 * which is important when on a NUMA setup the allowed
3835 * nodes are together not big enough to reach the
3836 * global limit. The proper fix for these situations
3837 * will require awareness of nodes in the
3838 * dirty-throttling and the flusher threads.
3839 */
3840 if (ac->spread_dirty_pages) {
3841 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3842 continue;
3843
3844 if (!node_dirty_ok(zone->zone_pgdat)) {
3845 last_pgdat_dirty_limit = zone->zone_pgdat;
3846 continue;
3847 }
3848 }
3849
David Brazdil0f672f62019-12-10 10:32:29 +00003850 if (no_fallback && nr_online_nodes > 1 &&
3851 zone != ac->preferred_zoneref->zone) {
3852 int local_nid;
3853
3854 /*
3855 * If moving to a remote node, retry but allow
3856 * fragmenting fallbacks. Locality is more important
3857 * than fragmentation avoidance.
3858 */
3859 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3860 if (zone_to_nid(zone) != local_nid) {
3861 alloc_flags &= ~ALLOC_NOFRAGMENT;
3862 goto retry;
3863 }
3864 }
3865
3866 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003867 if (!zone_watermark_fast(zone, order, mark,
Olivier Deprez157378f2022-04-04 15:47:50 +02003868 ac->highest_zoneidx, alloc_flags,
Olivier Deprez0e641232021-09-23 10:07:05 +02003869 gfp_mask)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003870 int ret;
3871
3872#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3873 /*
3874 * Watermark failed for this zone, but see if we can
3875 * grow this zone if it contains deferred pages.
3876 */
3877 if (static_branch_unlikely(&deferred_pages)) {
3878 if (_deferred_grow_zone(zone, order))
3879 goto try_this_zone;
3880 }
3881#endif
3882 /* Checked here to keep the fast path fast */
3883 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3884 if (alloc_flags & ALLOC_NO_WATERMARKS)
3885 goto try_this_zone;
3886
3887 if (node_reclaim_mode == 0 ||
3888 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3889 continue;
3890
3891 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3892 switch (ret) {
3893 case NODE_RECLAIM_NOSCAN:
3894 /* did not scan */
3895 continue;
3896 case NODE_RECLAIM_FULL:
3897 /* scanned but unreclaimable */
3898 continue;
3899 default:
3900 /* did we reclaim enough */
3901 if (zone_watermark_ok(zone, order, mark,
Olivier Deprez157378f2022-04-04 15:47:50 +02003902 ac->highest_zoneidx, alloc_flags))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003903 goto try_this_zone;
3904
3905 continue;
3906 }
3907 }
3908
3909try_this_zone:
3910 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3911 gfp_mask, alloc_flags, ac->migratetype);
3912 if (page) {
3913 prep_new_page(page, order, gfp_mask, alloc_flags);
3914
3915 /*
3916 * If this is a high-order atomic allocation then check
3917 * if the pageblock should be reserved for the future
3918 */
3919 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3920 reserve_highatomic_pageblock(page, zone, order);
3921
3922 return page;
3923 } else {
3924#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3925 /* Try again if zone has deferred pages */
3926 if (static_branch_unlikely(&deferred_pages)) {
3927 if (_deferred_grow_zone(zone, order))
3928 goto try_this_zone;
3929 }
3930#endif
3931 }
3932 }
3933
David Brazdil0f672f62019-12-10 10:32:29 +00003934 /*
3935 * It's possible on a UMA machine to get through all zones that are
3936 * fragmented. If avoiding fragmentation, reset and try again.
3937 */
3938 if (no_fallback) {
3939 alloc_flags &= ~ALLOC_NOFRAGMENT;
3940 goto retry;
3941 }
3942
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003943 return NULL;
3944}
3945
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003946static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3947{
3948 unsigned int filter = SHOW_MEM_FILTER_NODES;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003949
3950 /*
3951 * This documents exceptions given to allocations in certain
3952 * contexts that are allowed to allocate outside current's set
3953 * of allowed nodes.
3954 */
3955 if (!(gfp_mask & __GFP_NOMEMALLOC))
3956 if (tsk_is_oom_victim(current) ||
3957 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3958 filter &= ~SHOW_MEM_FILTER_NODES;
3959 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3960 filter &= ~SHOW_MEM_FILTER_NODES;
3961
3962 show_mem(filter, nodemask);
3963}
3964
3965void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3966{
3967 struct va_format vaf;
3968 va_list args;
David Brazdil0f672f62019-12-10 10:32:29 +00003969 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003970
Olivier Deprez157378f2022-04-04 15:47:50 +02003971 if ((gfp_mask & __GFP_NOWARN) ||
3972 !__ratelimit(&nopage_rs) ||
3973 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003974 return;
3975
3976 va_start(args, fmt);
3977 vaf.fmt = fmt;
3978 vaf.va = &args;
David Brazdil0f672f62019-12-10 10:32:29 +00003979 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003980 current->comm, &vaf, gfp_mask, &gfp_mask,
3981 nodemask_pr_args(nodemask));
3982 va_end(args);
3983
3984 cpuset_print_current_mems_allowed();
David Brazdil0f672f62019-12-10 10:32:29 +00003985 pr_cont("\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003986 dump_stack();
3987 warn_alloc_show_mem(gfp_mask, nodemask);
3988}
3989
3990static inline struct page *
3991__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3992 unsigned int alloc_flags,
3993 const struct alloc_context *ac)
3994{
3995 struct page *page;
3996
3997 page = get_page_from_freelist(gfp_mask, order,
3998 alloc_flags|ALLOC_CPUSET, ac);
3999 /*
4000 * fallback to ignore cpuset restriction if our nodes
4001 * are depleted
4002 */
4003 if (!page)
4004 page = get_page_from_freelist(gfp_mask, order,
4005 alloc_flags, ac);
4006
4007 return page;
4008}
4009
4010static inline struct page *
4011__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4012 const struct alloc_context *ac, unsigned long *did_some_progress)
4013{
4014 struct oom_control oc = {
4015 .zonelist = ac->zonelist,
4016 .nodemask = ac->nodemask,
4017 .memcg = NULL,
4018 .gfp_mask = gfp_mask,
4019 .order = order,
4020 };
4021 struct page *page;
4022
4023 *did_some_progress = 0;
4024
4025 /*
4026 * Acquire the oom lock. If that fails, somebody else is
4027 * making progress for us.
4028 */
4029 if (!mutex_trylock(&oom_lock)) {
4030 *did_some_progress = 1;
4031 schedule_timeout_uninterruptible(1);
4032 return NULL;
4033 }
4034
4035 /*
4036 * Go through the zonelist yet one more time, keep very high watermark
4037 * here, this is only to catch a parallel oom killing, we must fail if
4038 * we're still under heavy pressure. But make sure that this reclaim
4039 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4040 * allocation which will never fail due to oom_lock already held.
4041 */
4042 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4043 ~__GFP_DIRECT_RECLAIM, order,
4044 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4045 if (page)
4046 goto out;
4047
4048 /* Coredumps can quickly deplete all memory reserves */
4049 if (current->flags & PF_DUMPCORE)
4050 goto out;
4051 /* The OOM killer will not help higher order allocs */
4052 if (order > PAGE_ALLOC_COSTLY_ORDER)
4053 goto out;
4054 /*
4055 * We have already exhausted all our reclaim opportunities without any
4056 * success so it is time to admit defeat. We will skip the OOM killer
4057 * because it is very likely that the caller has a more reasonable
4058 * fallback than shooting a random task.
Olivier Deprez157378f2022-04-04 15:47:50 +02004059 *
4060 * The OOM killer may not free memory on a specific node.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004061 */
Olivier Deprez157378f2022-04-04 15:47:50 +02004062 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004063 goto out;
4064 /* The OOM killer does not needlessly kill tasks for lowmem */
Olivier Deprez157378f2022-04-04 15:47:50 +02004065 if (ac->highest_zoneidx < ZONE_NORMAL)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004066 goto out;
4067 if (pm_suspended_storage())
4068 goto out;
4069 /*
4070 * XXX: GFP_NOFS allocations should rather fail than rely on
4071 * other request to make a forward progress.
4072 * We are in an unfortunate situation where out_of_memory cannot
4073 * do much for this context but let's try it to at least get
4074 * access to memory reserved if the current task is killed (see
4075 * out_of_memory). Once filesystems are ready to handle allocation
4076 * failures more gracefully we should just bail out here.
4077 */
4078
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004079 /* Exhausted what can be done so it's blame time */
4080 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4081 *did_some_progress = 1;
4082
4083 /*
4084 * Help non-failing allocations by giving them access to memory
4085 * reserves
4086 */
4087 if (gfp_mask & __GFP_NOFAIL)
4088 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4089 ALLOC_NO_WATERMARKS, ac);
4090 }
4091out:
4092 mutex_unlock(&oom_lock);
4093 return page;
4094}
4095
4096/*
4097 * Maximum number of compaction retries wit a progress before OOM
4098 * killer is consider as the only way to move forward.
4099 */
4100#define MAX_COMPACT_RETRIES 16
4101
4102#ifdef CONFIG_COMPACTION
4103/* Try memory compaction for high-order allocations before reclaim */
4104static struct page *
4105__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4106 unsigned int alloc_flags, const struct alloc_context *ac,
4107 enum compact_priority prio, enum compact_result *compact_result)
4108{
David Brazdil0f672f62019-12-10 10:32:29 +00004109 struct page *page = NULL;
4110 unsigned long pflags;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004111 unsigned int noreclaim_flag;
4112
4113 if (!order)
4114 return NULL;
4115
David Brazdil0f672f62019-12-10 10:32:29 +00004116 psi_memstall_enter(&pflags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004117 noreclaim_flag = memalloc_noreclaim_save();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004118
David Brazdil0f672f62019-12-10 10:32:29 +00004119 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4120 prio, &page);
4121
4122 memalloc_noreclaim_restore(noreclaim_flag);
4123 psi_memstall_leave(&pflags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004124
4125 /*
4126 * At least in one zone compaction wasn't deferred or skipped, so let's
4127 * count a compaction stall
4128 */
4129 count_vm_event(COMPACTSTALL);
4130
David Brazdil0f672f62019-12-10 10:32:29 +00004131 /* Prep a captured page if available */
4132 if (page)
4133 prep_new_page(page, order, gfp_mask, alloc_flags);
4134
4135 /* Try get a page from the freelist if available */
4136 if (!page)
4137 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004138
4139 if (page) {
4140 struct zone *zone = page_zone(page);
4141
4142 zone->compact_blockskip_flush = false;
4143 compaction_defer_reset(zone, order, true);
4144 count_vm_event(COMPACTSUCCESS);
4145 return page;
4146 }
4147
4148 /*
4149 * It's bad if compaction run occurs and fails. The most likely reason
4150 * is that pages exist, but not enough to satisfy watermarks.
4151 */
4152 count_vm_event(COMPACTFAIL);
4153
4154 cond_resched();
4155
4156 return NULL;
4157}
4158
4159static inline bool
4160should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4161 enum compact_result compact_result,
4162 enum compact_priority *compact_priority,
4163 int *compaction_retries)
4164{
4165 int max_retries = MAX_COMPACT_RETRIES;
4166 int min_priority;
4167 bool ret = false;
4168 int retries = *compaction_retries;
4169 enum compact_priority priority = *compact_priority;
4170
4171 if (!order)
4172 return false;
4173
4174 if (compaction_made_progress(compact_result))
4175 (*compaction_retries)++;
4176
4177 /*
4178 * compaction considers all the zone as desperately out of memory
4179 * so it doesn't really make much sense to retry except when the
4180 * failure could be caused by insufficient priority
4181 */
4182 if (compaction_failed(compact_result))
4183 goto check_priority;
4184
4185 /*
David Brazdil0f672f62019-12-10 10:32:29 +00004186 * compaction was skipped because there are not enough order-0 pages
4187 * to work with, so we retry only if it looks like reclaim can help.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004188 */
David Brazdil0f672f62019-12-10 10:32:29 +00004189 if (compaction_needs_reclaim(compact_result)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004190 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4191 goto out;
4192 }
4193
4194 /*
David Brazdil0f672f62019-12-10 10:32:29 +00004195 * make sure the compaction wasn't deferred or didn't bail out early
4196 * due to locks contention before we declare that we should give up.
4197 * But the next retry should use a higher priority if allowed, so
4198 * we don't just keep bailing out endlessly.
4199 */
4200 if (compaction_withdrawn(compact_result)) {
4201 goto check_priority;
4202 }
4203
4204 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004205 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4206 * costly ones because they are de facto nofail and invoke OOM
4207 * killer to move on while costly can fail and users are ready
4208 * to cope with that. 1/4 retries is rather arbitrary but we
4209 * would need much more detailed feedback from compaction to
4210 * make a better decision.
4211 */
4212 if (order > PAGE_ALLOC_COSTLY_ORDER)
4213 max_retries /= 4;
4214 if (*compaction_retries <= max_retries) {
4215 ret = true;
4216 goto out;
4217 }
4218
4219 /*
4220 * Make sure there are attempts at the highest priority if we exhausted
4221 * all retries or failed at the lower priorities.
4222 */
4223check_priority:
4224 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4225 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4226
4227 if (*compact_priority > min_priority) {
4228 (*compact_priority)--;
4229 *compaction_retries = 0;
4230 ret = true;
4231 }
4232out:
4233 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4234 return ret;
4235}
4236#else
4237static inline struct page *
4238__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4239 unsigned int alloc_flags, const struct alloc_context *ac,
4240 enum compact_priority prio, enum compact_result *compact_result)
4241{
4242 *compact_result = COMPACT_SKIPPED;
4243 return NULL;
4244}
4245
4246static inline bool
4247should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4248 enum compact_result compact_result,
4249 enum compact_priority *compact_priority,
4250 int *compaction_retries)
4251{
4252 struct zone *zone;
4253 struct zoneref *z;
4254
4255 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4256 return false;
4257
4258 /*
4259 * There are setups with compaction disabled which would prefer to loop
4260 * inside the allocator rather than hit the oom killer prematurely.
4261 * Let's give them a good hope and keep retrying while the order-0
4262 * watermarks are OK.
4263 */
Olivier Deprez157378f2022-04-04 15:47:50 +02004264 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4265 ac->highest_zoneidx, ac->nodemask) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004266 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
Olivier Deprez157378f2022-04-04 15:47:50 +02004267 ac->highest_zoneidx, alloc_flags))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004268 return true;
4269 }
4270 return false;
4271}
4272#endif /* CONFIG_COMPACTION */
4273
4274#ifdef CONFIG_LOCKDEP
4275static struct lockdep_map __fs_reclaim_map =
4276 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4277
4278static bool __need_fs_reclaim(gfp_t gfp_mask)
4279{
4280 gfp_mask = current_gfp_context(gfp_mask);
4281
4282 /* no reclaim without waiting on it */
4283 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4284 return false;
4285
4286 /* this guy won't enter reclaim */
4287 if (current->flags & PF_MEMALLOC)
4288 return false;
4289
4290 /* We're only interested __GFP_FS allocations for now */
4291 if (!(gfp_mask & __GFP_FS))
4292 return false;
4293
4294 if (gfp_mask & __GFP_NOLOCKDEP)
4295 return false;
4296
4297 return true;
4298}
4299
4300void __fs_reclaim_acquire(void)
4301{
4302 lock_map_acquire(&__fs_reclaim_map);
4303}
4304
4305void __fs_reclaim_release(void)
4306{
4307 lock_map_release(&__fs_reclaim_map);
4308}
4309
4310void fs_reclaim_acquire(gfp_t gfp_mask)
4311{
4312 if (__need_fs_reclaim(gfp_mask))
4313 __fs_reclaim_acquire();
4314}
4315EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4316
4317void fs_reclaim_release(gfp_t gfp_mask)
4318{
4319 if (__need_fs_reclaim(gfp_mask))
4320 __fs_reclaim_release();
4321}
4322EXPORT_SYMBOL_GPL(fs_reclaim_release);
4323#endif
4324
Olivier Deprez92d4c212022-12-06 15:05:30 +01004325/*
4326 * Zonelists may change due to hotplug during allocation. Detect when zonelists
4327 * have been rebuilt so allocation retries. Reader side does not lock and
4328 * retries the allocation if zonelist changes. Writer side is protected by the
4329 * embedded spin_lock.
4330 */
4331static DEFINE_SEQLOCK(zonelist_update_seq);
4332
4333static unsigned int zonelist_iter_begin(void)
4334{
4335 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4336 return read_seqbegin(&zonelist_update_seq);
4337
4338 return 0;
4339}
4340
4341static unsigned int check_retry_zonelist(unsigned int seq)
4342{
4343 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4344 return read_seqretry(&zonelist_update_seq, seq);
4345
4346 return seq;
4347}
4348
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004349/* Perform direct synchronous page reclaim */
Olivier Deprez157378f2022-04-04 15:47:50 +02004350static unsigned long
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004351__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4352 const struct alloc_context *ac)
4353{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004354 unsigned int noreclaim_flag;
Olivier Deprez157378f2022-04-04 15:47:50 +02004355 unsigned long pflags, progress;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004356
4357 cond_resched();
4358
4359 /* We now go into synchronous reclaim */
4360 cpuset_memory_pressure_bump();
David Brazdil0f672f62019-12-10 10:32:29 +00004361 psi_memstall_enter(&pflags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004362 fs_reclaim_acquire(gfp_mask);
4363 noreclaim_flag = memalloc_noreclaim_save();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004364
4365 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4366 ac->nodemask);
4367
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004368 memalloc_noreclaim_restore(noreclaim_flag);
4369 fs_reclaim_release(gfp_mask);
David Brazdil0f672f62019-12-10 10:32:29 +00004370 psi_memstall_leave(&pflags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004371
4372 cond_resched();
4373
4374 return progress;
4375}
4376
4377/* The really slow allocator path where we enter direct reclaim */
4378static inline struct page *
4379__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4380 unsigned int alloc_flags, const struct alloc_context *ac,
4381 unsigned long *did_some_progress)
4382{
4383 struct page *page = NULL;
4384 bool drained = false;
4385
4386 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4387 if (unlikely(!(*did_some_progress)))
4388 return NULL;
4389
4390retry:
4391 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4392
4393 /*
4394 * If an allocation failed after direct reclaim, it could be because
4395 * pages are pinned on the per-cpu lists or in high alloc reserves.
Olivier Deprez157378f2022-04-04 15:47:50 +02004396 * Shrink them and try again
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004397 */
4398 if (!page && !drained) {
4399 unreserve_highatomic_pageblock(ac, false);
4400 drain_all_pages(NULL);
4401 drained = true;
4402 goto retry;
4403 }
4404
4405 return page;
4406}
4407
4408static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4409 const struct alloc_context *ac)
4410{
4411 struct zoneref *z;
4412 struct zone *zone;
4413 pg_data_t *last_pgdat = NULL;
Olivier Deprez157378f2022-04-04 15:47:50 +02004414 enum zone_type highest_zoneidx = ac->highest_zoneidx;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004415
Olivier Deprez157378f2022-04-04 15:47:50 +02004416 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004417 ac->nodemask) {
4418 if (last_pgdat != zone->zone_pgdat)
Olivier Deprez157378f2022-04-04 15:47:50 +02004419 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004420 last_pgdat = zone->zone_pgdat;
4421 }
4422}
4423
4424static inline unsigned int
4425gfp_to_alloc_flags(gfp_t gfp_mask)
4426{
4427 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4428
Olivier Deprez157378f2022-04-04 15:47:50 +02004429 /*
4430 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4431 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4432 * to save two branches.
4433 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004434 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
Olivier Deprez157378f2022-04-04 15:47:50 +02004435 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004436
4437 /*
4438 * The caller may dip into page reserves a bit more if the caller
4439 * cannot run direct reclaim, or if the caller has realtime scheduling
4440 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4441 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4442 */
Olivier Deprez157378f2022-04-04 15:47:50 +02004443 alloc_flags |= (__force int)
4444 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004445
4446 if (gfp_mask & __GFP_ATOMIC) {
4447 /*
4448 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4449 * if it can't schedule.
4450 */
4451 if (!(gfp_mask & __GFP_NOMEMALLOC))
4452 alloc_flags |= ALLOC_HARDER;
4453 /*
4454 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4455 * comment for __cpuset_node_allowed().
4456 */
4457 alloc_flags &= ~ALLOC_CPUSET;
4458 } else if (unlikely(rt_task(current)) && !in_interrupt())
4459 alloc_flags |= ALLOC_HARDER;
4460
Olivier Deprez157378f2022-04-04 15:47:50 +02004461 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
David Brazdil0f672f62019-12-10 10:32:29 +00004462
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004463 return alloc_flags;
4464}
4465
4466static bool oom_reserves_allowed(struct task_struct *tsk)
4467{
4468 if (!tsk_is_oom_victim(tsk))
4469 return false;
4470
4471 /*
4472 * !MMU doesn't have oom reaper so give access to memory reserves
4473 * only to the thread with TIF_MEMDIE set
4474 */
4475 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4476 return false;
4477
4478 return true;
4479}
4480
4481/*
4482 * Distinguish requests which really need access to full memory
4483 * reserves from oom victims which can live with a portion of it
4484 */
4485static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4486{
4487 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4488 return 0;
4489 if (gfp_mask & __GFP_MEMALLOC)
4490 return ALLOC_NO_WATERMARKS;
4491 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4492 return ALLOC_NO_WATERMARKS;
4493 if (!in_interrupt()) {
4494 if (current->flags & PF_MEMALLOC)
4495 return ALLOC_NO_WATERMARKS;
4496 else if (oom_reserves_allowed(current))
4497 return ALLOC_OOM;
4498 }
4499
4500 return 0;
4501}
4502
4503bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4504{
4505 return !!__gfp_pfmemalloc_flags(gfp_mask);
4506}
4507
4508/*
4509 * Checks whether it makes sense to retry the reclaim to make a forward progress
4510 * for the given allocation request.
4511 *
4512 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4513 * without success, or when we couldn't even meet the watermark if we
4514 * reclaimed all remaining pages on the LRU lists.
4515 *
4516 * Returns true if a retry is viable or false to enter the oom path.
4517 */
4518static inline bool
4519should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4520 struct alloc_context *ac, int alloc_flags,
4521 bool did_some_progress, int *no_progress_loops)
4522{
4523 struct zone *zone;
4524 struct zoneref *z;
David Brazdil0f672f62019-12-10 10:32:29 +00004525 bool ret = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004526
4527 /*
4528 * Costly allocations might have made a progress but this doesn't mean
4529 * their order will become available due to high fragmentation so
4530 * always increment the no progress counter for them
4531 */
4532 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4533 *no_progress_loops = 0;
4534 else
4535 (*no_progress_loops)++;
4536
4537 /*
4538 * Make sure we converge to OOM if we cannot make any progress
4539 * several times in the row.
4540 */
4541 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4542 /* Before OOM, exhaust highatomic_reserve */
4543 return unreserve_highatomic_pageblock(ac, true);
4544 }
4545
4546 /*
4547 * Keep reclaiming pages while there is a chance this will lead
4548 * somewhere. If none of the target zones can satisfy our allocation
4549 * request even if all reclaimable pages are considered then we are
4550 * screwed and have to go OOM.
4551 */
Olivier Deprez157378f2022-04-04 15:47:50 +02004552 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4553 ac->highest_zoneidx, ac->nodemask) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004554 unsigned long available;
4555 unsigned long reclaimable;
4556 unsigned long min_wmark = min_wmark_pages(zone);
4557 bool wmark;
4558
4559 available = reclaimable = zone_reclaimable_pages(zone);
4560 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4561
4562 /*
4563 * Would the allocation succeed if we reclaimed all
4564 * reclaimable pages?
4565 */
4566 wmark = __zone_watermark_ok(zone, order, min_wmark,
Olivier Deprez157378f2022-04-04 15:47:50 +02004567 ac->highest_zoneidx, alloc_flags, available);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004568 trace_reclaim_retry_zone(z, order, reclaimable,
4569 available, min_wmark, *no_progress_loops, wmark);
4570 if (wmark) {
4571 /*
4572 * If we didn't make any progress and have a lot of
4573 * dirty + writeback pages then we should wait for
4574 * an IO to complete to slow down the reclaim and
4575 * prevent from pre mature OOM
4576 */
4577 if (!did_some_progress) {
4578 unsigned long write_pending;
4579
4580 write_pending = zone_page_state_snapshot(zone,
4581 NR_ZONE_WRITE_PENDING);
4582
4583 if (2 * write_pending > reclaimable) {
4584 congestion_wait(BLK_RW_ASYNC, HZ/10);
4585 return true;
4586 }
4587 }
4588
David Brazdil0f672f62019-12-10 10:32:29 +00004589 ret = true;
4590 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004591 }
4592 }
4593
David Brazdil0f672f62019-12-10 10:32:29 +00004594out:
4595 /*
4596 * Memory allocation/reclaim might be called from a WQ context and the
4597 * current implementation of the WQ concurrency control doesn't
4598 * recognize that a particular WQ is congested if the worker thread is
4599 * looping without ever sleeping. Therefore we have to do a short sleep
4600 * here rather than calling cond_resched().
4601 */
4602 if (current->flags & PF_WQ_WORKER)
4603 schedule_timeout_uninterruptible(1);
4604 else
4605 cond_resched();
4606 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004607}
4608
4609static inline bool
4610check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4611{
4612 /*
4613 * It's possible that cpuset's mems_allowed and the nodemask from
4614 * mempolicy don't intersect. This should be normally dealt with by
4615 * policy_nodemask(), but it's possible to race with cpuset update in
4616 * such a way the check therein was true, and then it became false
4617 * before we got our cpuset_mems_cookie here.
4618 * This assumes that for all allocations, ac->nodemask can come only
4619 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4620 * when it does not intersect with the cpuset restrictions) or the
4621 * caller can deal with a violated nodemask.
4622 */
4623 if (cpusets_enabled() && ac->nodemask &&
4624 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4625 ac->nodemask = NULL;
4626 return true;
4627 }
4628
4629 /*
4630 * When updating a task's mems_allowed or mempolicy nodemask, it is
4631 * possible to race with parallel threads in such a way that our
4632 * allocation can fail while the mask is being updated. If we are about
4633 * to fail, check if the cpuset changed during allocation and if so,
4634 * retry.
4635 */
4636 if (read_mems_allowed_retry(cpuset_mems_cookie))
4637 return true;
4638
4639 return false;
4640}
4641
4642static inline struct page *
4643__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4644 struct alloc_context *ac)
4645{
4646 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4647 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4648 struct page *page = NULL;
4649 unsigned int alloc_flags;
4650 unsigned long did_some_progress;
4651 enum compact_priority compact_priority;
4652 enum compact_result compact_result;
4653 int compaction_retries;
4654 int no_progress_loops;
4655 unsigned int cpuset_mems_cookie;
Olivier Deprez92d4c212022-12-06 15:05:30 +01004656 unsigned int zonelist_iter_cookie;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004657 int reserve_flags;
4658
4659 /*
4660 * We also sanity check to catch abuse of atomic reserves being used by
4661 * callers that are not in atomic context.
4662 */
4663 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4664 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4665 gfp_mask &= ~__GFP_ATOMIC;
4666
Olivier Deprez92d4c212022-12-06 15:05:30 +01004667restart:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004668 compaction_retries = 0;
4669 no_progress_loops = 0;
4670 compact_priority = DEF_COMPACT_PRIORITY;
4671 cpuset_mems_cookie = read_mems_allowed_begin();
Olivier Deprez92d4c212022-12-06 15:05:30 +01004672 zonelist_iter_cookie = zonelist_iter_begin();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004673
4674 /*
4675 * The fast path uses conservative alloc_flags to succeed only until
4676 * kswapd needs to be woken up, and to avoid the cost of setting up
4677 * alloc_flags precisely. So we do that now.
4678 */
4679 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4680
4681 /*
4682 * We need to recalculate the starting point for the zonelist iterator
4683 * because we might have used different nodemask in the fast path, or
4684 * there was a cpuset modification and we are retrying - otherwise we
4685 * could end up iterating over non-eligible zones endlessly.
4686 */
4687 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
Olivier Deprez157378f2022-04-04 15:47:50 +02004688 ac->highest_zoneidx, ac->nodemask);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004689 if (!ac->preferred_zoneref->zone)
4690 goto nopage;
4691
David Brazdil0f672f62019-12-10 10:32:29 +00004692 if (alloc_flags & ALLOC_KSWAPD)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004693 wake_all_kswapds(order, gfp_mask, ac);
4694
4695 /*
4696 * The adjusted alloc_flags might result in immediate success, so try
4697 * that first
4698 */
4699 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4700 if (page)
4701 goto got_pg;
4702
4703 /*
4704 * For costly allocations, try direct compaction first, as it's likely
4705 * that we have enough base pages and don't need to reclaim. For non-
4706 * movable high-order allocations, do that as well, as compaction will
4707 * try prevent permanent fragmentation by migrating from blocks of the
4708 * same migratetype.
4709 * Don't try this for allocations that are allowed to ignore
4710 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4711 */
4712 if (can_direct_reclaim &&
4713 (costly_order ||
4714 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4715 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4716 page = __alloc_pages_direct_compact(gfp_mask, order,
4717 alloc_flags, ac,
4718 INIT_COMPACT_PRIORITY,
4719 &compact_result);
4720 if (page)
4721 goto got_pg;
4722
Olivier Deprez157378f2022-04-04 15:47:50 +02004723 /*
4724 * Checks for costly allocations with __GFP_NORETRY, which
4725 * includes some THP page fault allocations
4726 */
4727 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
David Brazdil0f672f62019-12-10 10:32:29 +00004728 /*
4729 * If allocating entire pageblock(s) and compaction
4730 * failed because all zones are below low watermarks
4731 * or is prohibited because it recently failed at this
4732 * order, fail immediately unless the allocator has
4733 * requested compaction and reclaim retry.
4734 *
4735 * Reclaim is
4736 * - potentially very expensive because zones are far
4737 * below their low watermarks or this is part of very
4738 * bursty high order allocations,
4739 * - not guaranteed to help because isolate_freepages()
4740 * may not iterate over freed pages as part of its
4741 * linear scan, and
4742 * - unlikely to make entire pageblocks free on its
4743 * own.
4744 */
4745 if (compact_result == COMPACT_SKIPPED ||
4746 compact_result == COMPACT_DEFERRED)
4747 goto nopage;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004748
4749 /*
4750 * Looks like reclaim/compaction is worth trying, but
4751 * sync compaction could be very expensive, so keep
4752 * using async compaction.
4753 */
4754 compact_priority = INIT_COMPACT_PRIORITY;
4755 }
4756 }
4757
4758retry:
4759 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
David Brazdil0f672f62019-12-10 10:32:29 +00004760 if (alloc_flags & ALLOC_KSWAPD)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004761 wake_all_kswapds(order, gfp_mask, ac);
4762
4763 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4764 if (reserve_flags)
Olivier Deprez157378f2022-04-04 15:47:50 +02004765 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004766
4767 /*
4768 * Reset the nodemask and zonelist iterators if memory policies can be
4769 * ignored. These allocations are high priority and system rather than
4770 * user oriented.
4771 */
4772 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4773 ac->nodemask = NULL;
4774 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
Olivier Deprez157378f2022-04-04 15:47:50 +02004775 ac->highest_zoneidx, ac->nodemask);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004776 }
4777
4778 /* Attempt with potentially adjusted zonelist and alloc_flags */
4779 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4780 if (page)
4781 goto got_pg;
4782
4783 /* Caller is not willing to reclaim, we can't balance anything */
4784 if (!can_direct_reclaim)
4785 goto nopage;
4786
4787 /* Avoid recursion of direct reclaim */
4788 if (current->flags & PF_MEMALLOC)
4789 goto nopage;
4790
4791 /* Try direct reclaim and then allocating */
4792 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4793 &did_some_progress);
4794 if (page)
4795 goto got_pg;
4796
4797 /* Try direct compaction and then allocating */
4798 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4799 compact_priority, &compact_result);
4800 if (page)
4801 goto got_pg;
4802
4803 /* Do not loop if specifically requested */
4804 if (gfp_mask & __GFP_NORETRY)
4805 goto nopage;
4806
4807 /*
4808 * Do not retry costly high order allocations unless they are
4809 * __GFP_RETRY_MAYFAIL
4810 */
4811 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4812 goto nopage;
4813
4814 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4815 did_some_progress > 0, &no_progress_loops))
4816 goto retry;
4817
4818 /*
4819 * It doesn't make any sense to retry for the compaction if the order-0
4820 * reclaim is not able to make any progress because the current
4821 * implementation of the compaction depends on the sufficient amount
4822 * of free memory (see __compaction_suitable)
4823 */
4824 if (did_some_progress > 0 &&
4825 should_compact_retry(ac, order, alloc_flags,
4826 compact_result, &compact_priority,
4827 &compaction_retries))
4828 goto retry;
4829
4830
Olivier Deprez92d4c212022-12-06 15:05:30 +01004831 /*
4832 * Deal with possible cpuset update races or zonelist updates to avoid
4833 * a unnecessary OOM kill.
4834 */
4835 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4836 check_retry_zonelist(zonelist_iter_cookie))
4837 goto restart;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004838
4839 /* Reclaim has failed us, start killing things */
4840 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4841 if (page)
4842 goto got_pg;
4843
4844 /* Avoid allocations with no watermarks from looping endlessly */
4845 if (tsk_is_oom_victim(current) &&
Olivier Deprez157378f2022-04-04 15:47:50 +02004846 (alloc_flags & ALLOC_OOM ||
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004847 (gfp_mask & __GFP_NOMEMALLOC)))
4848 goto nopage;
4849
4850 /* Retry as long as the OOM killer is making progress */
4851 if (did_some_progress) {
4852 no_progress_loops = 0;
4853 goto retry;
4854 }
4855
4856nopage:
Olivier Deprez92d4c212022-12-06 15:05:30 +01004857 /*
4858 * Deal with possible cpuset update races or zonelist updates to avoid
4859 * a unnecessary OOM kill.
4860 */
4861 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4862 check_retry_zonelist(zonelist_iter_cookie))
4863 goto restart;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004864
4865 /*
4866 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4867 * we always retry
4868 */
4869 if (gfp_mask & __GFP_NOFAIL) {
4870 /*
4871 * All existing users of the __GFP_NOFAIL are blockable, so warn
4872 * of any new users that actually require GFP_NOWAIT
4873 */
4874 if (WARN_ON_ONCE(!can_direct_reclaim))
4875 goto fail;
4876
4877 /*
4878 * PF_MEMALLOC request from this context is rather bizarre
4879 * because we cannot reclaim anything and only can loop waiting
4880 * for somebody to do a work for us
4881 */
4882 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4883
4884 /*
4885 * non failing costly orders are a hard requirement which we
4886 * are not prepared for much so let's warn about these users
4887 * so that we can identify them and convert them to something
4888 * else.
4889 */
4890 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4891
4892 /*
4893 * Help non-failing allocations by giving them access to memory
4894 * reserves but do not use ALLOC_NO_WATERMARKS because this
4895 * could deplete whole memory reserves which would just make
4896 * the situation worse
4897 */
4898 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4899 if (page)
4900 goto got_pg;
4901
4902 cond_resched();
4903 goto retry;
4904 }
4905fail:
4906 warn_alloc(gfp_mask, ac->nodemask,
4907 "page allocation failure: order:%u", order);
4908got_pg:
4909 return page;
4910}
4911
4912static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4913 int preferred_nid, nodemask_t *nodemask,
4914 struct alloc_context *ac, gfp_t *alloc_mask,
4915 unsigned int *alloc_flags)
4916{
Olivier Deprez157378f2022-04-04 15:47:50 +02004917 ac->highest_zoneidx = gfp_zone(gfp_mask);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004918 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4919 ac->nodemask = nodemask;
Olivier Deprez157378f2022-04-04 15:47:50 +02004920 ac->migratetype = gfp_migratetype(gfp_mask);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004921
4922 if (cpusets_enabled()) {
4923 *alloc_mask |= __GFP_HARDWALL;
Olivier Deprez157378f2022-04-04 15:47:50 +02004924 /*
4925 * When we are in the interrupt context, it is irrelevant
4926 * to the current task context. It means that any node ok.
4927 */
4928 if (!in_interrupt() && !ac->nodemask)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004929 ac->nodemask = &cpuset_current_mems_allowed;
4930 else
4931 *alloc_flags |= ALLOC_CPUSET;
4932 }
4933
4934 fs_reclaim_acquire(gfp_mask);
4935 fs_reclaim_release(gfp_mask);
4936
4937 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4938
4939 if (should_fail_alloc_page(gfp_mask, order))
4940 return false;
4941
Olivier Deprez157378f2022-04-04 15:47:50 +02004942 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004943
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004944 /* Dirty zone balancing only done in the fast path */
4945 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4946
4947 /*
4948 * The preferred zone is used for statistics but crucially it is
4949 * also used as the starting point for the zonelist iterator. It
4950 * may get reset for allocations that ignore memory policies.
4951 */
4952 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
Olivier Deprez157378f2022-04-04 15:47:50 +02004953 ac->highest_zoneidx, ac->nodemask);
4954
4955 return true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004956}
4957
4958/*
4959 * This is the 'heart' of the zoned buddy allocator.
4960 */
4961struct page *
4962__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4963 nodemask_t *nodemask)
4964{
4965 struct page *page;
4966 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4967 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4968 struct alloc_context ac = { };
4969
4970 /*
4971 * There are several places where we assume that the order value is sane
4972 * so bail out early if the request is out of bound.
4973 */
4974 if (unlikely(order >= MAX_ORDER)) {
4975 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4976 return NULL;
4977 }
4978
4979 gfp_mask &= gfp_allowed_mask;
4980 alloc_mask = gfp_mask;
4981 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4982 return NULL;
4983
David Brazdil0f672f62019-12-10 10:32:29 +00004984 /*
4985 * Forbid the first pass from falling back to types that fragment
4986 * memory until all local zones are considered.
4987 */
4988 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4989
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004990 /* First allocation attempt */
4991 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4992 if (likely(page))
4993 goto out;
4994
4995 /*
4996 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4997 * resp. GFP_NOIO which has to be inherited for all allocation requests
4998 * from a particular context which has been marked by
4999 * memalloc_no{fs,io}_{save,restore}.
5000 */
5001 alloc_mask = current_gfp_context(gfp_mask);
5002 ac.spread_dirty_pages = false;
5003
5004 /*
5005 * Restore the original nodemask if it was potentially replaced with
5006 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5007 */
Olivier Deprez157378f2022-04-04 15:47:50 +02005008 ac.nodemask = nodemask;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005009
5010 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
5011
5012out:
5013 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
Olivier Deprez157378f2022-04-04 15:47:50 +02005014 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005015 __free_pages(page, order);
5016 page = NULL;
5017 }
5018
5019 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
5020
5021 return page;
5022}
5023EXPORT_SYMBOL(__alloc_pages_nodemask);
5024
5025/*
5026 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5027 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5028 * you need to access high mem.
5029 */
5030unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5031{
5032 struct page *page;
5033
5034 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5035 if (!page)
5036 return 0;
5037 return (unsigned long) page_address(page);
5038}
5039EXPORT_SYMBOL(__get_free_pages);
5040
5041unsigned long get_zeroed_page(gfp_t gfp_mask)
5042{
5043 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5044}
5045EXPORT_SYMBOL(get_zeroed_page);
5046
David Brazdil0f672f62019-12-10 10:32:29 +00005047static inline void free_the_page(struct page *page, unsigned int order)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005048{
David Brazdil0f672f62019-12-10 10:32:29 +00005049 if (order == 0) /* Via pcp? */
5050 free_unref_page(page);
5051 else
Olivier Deprez157378f2022-04-04 15:47:50 +02005052 __free_pages_ok(page, order, FPI_NONE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005053}
5054
David Brazdil0f672f62019-12-10 10:32:29 +00005055void __free_pages(struct page *page, unsigned int order)
5056{
5057 if (put_page_testzero(page))
5058 free_the_page(page, order);
Olivier Deprez157378f2022-04-04 15:47:50 +02005059 else if (!PageHead(page))
5060 while (order-- > 0)
5061 free_the_page(page + (1 << order), order);
David Brazdil0f672f62019-12-10 10:32:29 +00005062}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005063EXPORT_SYMBOL(__free_pages);
5064
5065void free_pages(unsigned long addr, unsigned int order)
5066{
5067 if (addr != 0) {
5068 VM_BUG_ON(!virt_addr_valid((void *)addr));
5069 __free_pages(virt_to_page((void *)addr), order);
5070 }
5071}
5072
5073EXPORT_SYMBOL(free_pages);
5074
5075/*
5076 * Page Fragment:
5077 * An arbitrary-length arbitrary-offset area of memory which resides
5078 * within a 0 or higher order page. Multiple fragments within that page
5079 * are individually refcounted, in the page's reference counter.
5080 *
5081 * The page_frag functions below provide a simple allocation framework for
5082 * page fragments. This is used by the network stack and network device
5083 * drivers to provide a backing region of memory for use as either an
5084 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5085 */
5086static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5087 gfp_t gfp_mask)
5088{
5089 struct page *page = NULL;
5090 gfp_t gfp = gfp_mask;
5091
5092#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5093 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5094 __GFP_NOMEMALLOC;
5095 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5096 PAGE_FRAG_CACHE_MAX_ORDER);
5097 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5098#endif
5099 if (unlikely(!page))
5100 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5101
5102 nc->va = page ? page_address(page) : NULL;
5103
5104 return page;
5105}
5106
5107void __page_frag_cache_drain(struct page *page, unsigned int count)
5108{
5109 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5110
David Brazdil0f672f62019-12-10 10:32:29 +00005111 if (page_ref_sub_and_test(page, count))
5112 free_the_page(page, compound_order(page));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005113}
5114EXPORT_SYMBOL(__page_frag_cache_drain);
5115
5116void *page_frag_alloc(struct page_frag_cache *nc,
5117 unsigned int fragsz, gfp_t gfp_mask)
5118{
5119 unsigned int size = PAGE_SIZE;
5120 struct page *page;
5121 int offset;
5122
5123 if (unlikely(!nc->va)) {
5124refill:
5125 page = __page_frag_cache_refill(nc, gfp_mask);
5126 if (!page)
5127 return NULL;
5128
5129#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5130 /* if size can vary use size else just use PAGE_SIZE */
5131 size = nc->size;
5132#endif
5133 /* Even if we own the page, we do not use atomic_set().
5134 * This would break get_page_unless_zero() users.
5135 */
David Brazdil0f672f62019-12-10 10:32:29 +00005136 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005137
5138 /* reset page count bias and offset to start of new frag */
5139 nc->pfmemalloc = page_is_pfmemalloc(page);
David Brazdil0f672f62019-12-10 10:32:29 +00005140 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005141 nc->offset = size;
5142 }
5143
5144 offset = nc->offset - fragsz;
5145 if (unlikely(offset < 0)) {
5146 page = virt_to_page(nc->va);
5147
5148 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5149 goto refill;
5150
Olivier Deprez0e641232021-09-23 10:07:05 +02005151 if (unlikely(nc->pfmemalloc)) {
5152 free_the_page(page, compound_order(page));
5153 goto refill;
5154 }
5155
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005156#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5157 /* if size can vary use size else just use PAGE_SIZE */
5158 size = nc->size;
5159#endif
5160 /* OK, page count is 0, we can safely set it */
David Brazdil0f672f62019-12-10 10:32:29 +00005161 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005162
5163 /* reset page count bias and offset to start of new frag */
David Brazdil0f672f62019-12-10 10:32:29 +00005164 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005165 offset = size - fragsz;
Olivier Deprez92d4c212022-12-06 15:05:30 +01005166 if (unlikely(offset < 0)) {
5167 /*
5168 * The caller is trying to allocate a fragment
5169 * with fragsz > PAGE_SIZE but the cache isn't big
5170 * enough to satisfy the request, this may
5171 * happen in low memory conditions.
5172 * We don't release the cache page because
5173 * it could make memory pressure worse
5174 * so we simply return NULL here.
5175 */
5176 return NULL;
5177 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005178 }
5179
5180 nc->pagecnt_bias--;
5181 nc->offset = offset;
5182
5183 return nc->va + offset;
5184}
5185EXPORT_SYMBOL(page_frag_alloc);
5186
5187/*
5188 * Frees a page fragment allocated out of either a compound or order 0 page.
5189 */
5190void page_frag_free(void *addr)
5191{
5192 struct page *page = virt_to_head_page(addr);
5193
5194 if (unlikely(put_page_testzero(page)))
David Brazdil0f672f62019-12-10 10:32:29 +00005195 free_the_page(page, compound_order(page));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005196}
5197EXPORT_SYMBOL(page_frag_free);
5198
5199static void *make_alloc_exact(unsigned long addr, unsigned int order,
5200 size_t size)
5201{
5202 if (addr) {
5203 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5204 unsigned long used = addr + PAGE_ALIGN(size);
5205
5206 split_page(virt_to_page((void *)addr), order);
5207 while (used < alloc_end) {
5208 free_page(used);
5209 used += PAGE_SIZE;
5210 }
5211 }
5212 return (void *)addr;
5213}
5214
5215/**
5216 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5217 * @size: the number of bytes to allocate
David Brazdil0f672f62019-12-10 10:32:29 +00005218 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005219 *
5220 * This function is similar to alloc_pages(), except that it allocates the
5221 * minimum number of pages to satisfy the request. alloc_pages() can only
5222 * allocate memory in power-of-two pages.
5223 *
5224 * This function is also limited by MAX_ORDER.
5225 *
5226 * Memory allocated by this function must be released by free_pages_exact().
David Brazdil0f672f62019-12-10 10:32:29 +00005227 *
5228 * Return: pointer to the allocated area or %NULL in case of error.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005229 */
5230void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5231{
5232 unsigned int order = get_order(size);
5233 unsigned long addr;
5234
David Brazdil0f672f62019-12-10 10:32:29 +00005235 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5236 gfp_mask &= ~__GFP_COMP;
5237
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005238 addr = __get_free_pages(gfp_mask, order);
5239 return make_alloc_exact(addr, order, size);
5240}
5241EXPORT_SYMBOL(alloc_pages_exact);
5242
5243/**
5244 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5245 * pages on a node.
5246 * @nid: the preferred node ID where memory should be allocated
5247 * @size: the number of bytes to allocate
David Brazdil0f672f62019-12-10 10:32:29 +00005248 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005249 *
5250 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5251 * back.
David Brazdil0f672f62019-12-10 10:32:29 +00005252 *
5253 * Return: pointer to the allocated area or %NULL in case of error.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005254 */
5255void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5256{
5257 unsigned int order = get_order(size);
David Brazdil0f672f62019-12-10 10:32:29 +00005258 struct page *p;
5259
5260 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5261 gfp_mask &= ~__GFP_COMP;
5262
5263 p = alloc_pages_node(nid, gfp_mask, order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005264 if (!p)
5265 return NULL;
5266 return make_alloc_exact((unsigned long)page_address(p), order, size);
5267}
5268
5269/**
5270 * free_pages_exact - release memory allocated via alloc_pages_exact()
5271 * @virt: the value returned by alloc_pages_exact.
5272 * @size: size of allocation, same value as passed to alloc_pages_exact().
5273 *
5274 * Release the memory allocated by a previous call to alloc_pages_exact.
5275 */
5276void free_pages_exact(void *virt, size_t size)
5277{
5278 unsigned long addr = (unsigned long)virt;
5279 unsigned long end = addr + PAGE_ALIGN(size);
5280
5281 while (addr < end) {
5282 free_page(addr);
5283 addr += PAGE_SIZE;
5284 }
5285}
5286EXPORT_SYMBOL(free_pages_exact);
5287
5288/**
5289 * nr_free_zone_pages - count number of pages beyond high watermark
5290 * @offset: The zone index of the highest zone
5291 *
David Brazdil0f672f62019-12-10 10:32:29 +00005292 * nr_free_zone_pages() counts the number of pages which are beyond the
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005293 * high watermark within all zones at or below a given zone index. For each
5294 * zone, the number of pages is calculated as:
5295 *
5296 * nr_free_zone_pages = managed_pages - high_pages
David Brazdil0f672f62019-12-10 10:32:29 +00005297 *
5298 * Return: number of pages beyond high watermark.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005299 */
5300static unsigned long nr_free_zone_pages(int offset)
5301{
5302 struct zoneref *z;
5303 struct zone *zone;
5304
5305 /* Just pick one node, since fallback list is circular */
5306 unsigned long sum = 0;
5307
5308 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5309
5310 for_each_zone_zonelist(zone, z, zonelist, offset) {
David Brazdil0f672f62019-12-10 10:32:29 +00005311 unsigned long size = zone_managed_pages(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005312 unsigned long high = high_wmark_pages(zone);
5313 if (size > high)
5314 sum += size - high;
5315 }
5316
5317 return sum;
5318}
5319
5320/**
5321 * nr_free_buffer_pages - count number of pages beyond high watermark
5322 *
5323 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5324 * watermark within ZONE_DMA and ZONE_NORMAL.
David Brazdil0f672f62019-12-10 10:32:29 +00005325 *
5326 * Return: number of pages beyond high watermark within ZONE_DMA and
5327 * ZONE_NORMAL.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005328 */
5329unsigned long nr_free_buffer_pages(void)
5330{
5331 return nr_free_zone_pages(gfp_zone(GFP_USER));
5332}
5333EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5334
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005335static inline void show_node(struct zone *zone)
5336{
5337 if (IS_ENABLED(CONFIG_NUMA))
5338 printk("Node %d ", zone_to_nid(zone));
5339}
5340
5341long si_mem_available(void)
5342{
5343 long available;
5344 unsigned long pagecache;
5345 unsigned long wmark_low = 0;
5346 unsigned long pages[NR_LRU_LISTS];
David Brazdil0f672f62019-12-10 10:32:29 +00005347 unsigned long reclaimable;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005348 struct zone *zone;
5349 int lru;
5350
5351 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5352 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5353
5354 for_each_zone(zone)
David Brazdil0f672f62019-12-10 10:32:29 +00005355 wmark_low += low_wmark_pages(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005356
5357 /*
5358 * Estimate the amount of memory available for userspace allocations,
5359 * without causing swapping.
5360 */
5361 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5362
5363 /*
5364 * Not all the page cache can be freed, otherwise the system will
5365 * start swapping. Assume at least half of the page cache, or the
5366 * low watermark worth of cache, needs to stay.
5367 */
5368 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5369 pagecache -= min(pagecache / 2, wmark_low);
5370 available += pagecache;
5371
5372 /*
David Brazdil0f672f62019-12-10 10:32:29 +00005373 * Part of the reclaimable slab and other kernel memory consists of
5374 * items that are in use, and cannot be freed. Cap this estimate at the
5375 * low watermark.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005376 */
Olivier Deprez157378f2022-04-04 15:47:50 +02005377 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5378 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
David Brazdil0f672f62019-12-10 10:32:29 +00005379 available += reclaimable - min(reclaimable / 2, wmark_low);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005380
5381 if (available < 0)
5382 available = 0;
5383 return available;
5384}
5385EXPORT_SYMBOL_GPL(si_mem_available);
5386
5387void si_meminfo(struct sysinfo *val)
5388{
David Brazdil0f672f62019-12-10 10:32:29 +00005389 val->totalram = totalram_pages();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005390 val->sharedram = global_node_page_state(NR_SHMEM);
5391 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5392 val->bufferram = nr_blockdev_pages();
David Brazdil0f672f62019-12-10 10:32:29 +00005393 val->totalhigh = totalhigh_pages();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005394 val->freehigh = nr_free_highpages();
5395 val->mem_unit = PAGE_SIZE;
5396}
5397
5398EXPORT_SYMBOL(si_meminfo);
5399
5400#ifdef CONFIG_NUMA
5401void si_meminfo_node(struct sysinfo *val, int nid)
5402{
5403 int zone_type; /* needs to be signed */
5404 unsigned long managed_pages = 0;
5405 unsigned long managed_highpages = 0;
5406 unsigned long free_highpages = 0;
5407 pg_data_t *pgdat = NODE_DATA(nid);
5408
5409 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
David Brazdil0f672f62019-12-10 10:32:29 +00005410 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005411 val->totalram = managed_pages;
5412 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5413 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5414#ifdef CONFIG_HIGHMEM
5415 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5416 struct zone *zone = &pgdat->node_zones[zone_type];
5417
5418 if (is_highmem(zone)) {
David Brazdil0f672f62019-12-10 10:32:29 +00005419 managed_highpages += zone_managed_pages(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005420 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5421 }
5422 }
5423 val->totalhigh = managed_highpages;
5424 val->freehigh = free_highpages;
5425#else
5426 val->totalhigh = managed_highpages;
5427 val->freehigh = free_highpages;
5428#endif
5429 val->mem_unit = PAGE_SIZE;
5430}
5431#endif
5432
5433/*
5434 * Determine whether the node should be displayed or not, depending on whether
5435 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5436 */
5437static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5438{
5439 if (!(flags & SHOW_MEM_FILTER_NODES))
5440 return false;
5441
5442 /*
5443 * no node mask - aka implicit memory numa policy. Do not bother with
5444 * the synchronization - read_mems_allowed_begin - because we do not
5445 * have to be precise here.
5446 */
5447 if (!nodemask)
5448 nodemask = &cpuset_current_mems_allowed;
5449
5450 return !node_isset(nid, *nodemask);
5451}
5452
5453#define K(x) ((x) << (PAGE_SHIFT-10))
5454
5455static void show_migration_types(unsigned char type)
5456{
5457 static const char types[MIGRATE_TYPES] = {
5458 [MIGRATE_UNMOVABLE] = 'U',
5459 [MIGRATE_MOVABLE] = 'M',
5460 [MIGRATE_RECLAIMABLE] = 'E',
5461 [MIGRATE_HIGHATOMIC] = 'H',
5462#ifdef CONFIG_CMA
5463 [MIGRATE_CMA] = 'C',
5464#endif
5465#ifdef CONFIG_MEMORY_ISOLATION
5466 [MIGRATE_ISOLATE] = 'I',
5467#endif
5468 };
5469 char tmp[MIGRATE_TYPES + 1];
5470 char *p = tmp;
5471 int i;
5472
5473 for (i = 0; i < MIGRATE_TYPES; i++) {
5474 if (type & (1 << i))
5475 *p++ = types[i];
5476 }
5477
5478 *p = '\0';
5479 printk(KERN_CONT "(%s) ", tmp);
5480}
5481
5482/*
5483 * Show free area list (used inside shift_scroll-lock stuff)
5484 * We also calculate the percentage fragmentation. We do this by counting the
5485 * memory on each free list with the exception of the first item on the list.
5486 *
5487 * Bits in @filter:
5488 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5489 * cpuset.
5490 */
5491void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5492{
5493 unsigned long free_pcp = 0;
5494 int cpu;
5495 struct zone *zone;
5496 pg_data_t *pgdat;
5497
5498 for_each_populated_zone(zone) {
5499 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5500 continue;
5501
5502 for_each_online_cpu(cpu)
5503 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5504 }
5505
5506 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5507 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
Olivier Deprez157378f2022-04-04 15:47:50 +02005508 " unevictable:%lu dirty:%lu writeback:%lu\n"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005509 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5510 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5511 " free:%lu free_pcp:%lu free_cma:%lu\n",
5512 global_node_page_state(NR_ACTIVE_ANON),
5513 global_node_page_state(NR_INACTIVE_ANON),
5514 global_node_page_state(NR_ISOLATED_ANON),
5515 global_node_page_state(NR_ACTIVE_FILE),
5516 global_node_page_state(NR_INACTIVE_FILE),
5517 global_node_page_state(NR_ISOLATED_FILE),
5518 global_node_page_state(NR_UNEVICTABLE),
5519 global_node_page_state(NR_FILE_DIRTY),
5520 global_node_page_state(NR_WRITEBACK),
Olivier Deprez157378f2022-04-04 15:47:50 +02005521 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5522 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005523 global_node_page_state(NR_FILE_MAPPED),
5524 global_node_page_state(NR_SHMEM),
5525 global_zone_page_state(NR_PAGETABLE),
5526 global_zone_page_state(NR_BOUNCE),
5527 global_zone_page_state(NR_FREE_PAGES),
5528 free_pcp,
5529 global_zone_page_state(NR_FREE_CMA_PAGES));
5530
5531 for_each_online_pgdat(pgdat) {
5532 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5533 continue;
5534
5535 printk("Node %d"
5536 " active_anon:%lukB"
5537 " inactive_anon:%lukB"
5538 " active_file:%lukB"
5539 " inactive_file:%lukB"
5540 " unevictable:%lukB"
5541 " isolated(anon):%lukB"
5542 " isolated(file):%lukB"
5543 " mapped:%lukB"
5544 " dirty:%lukB"
5545 " writeback:%lukB"
5546 " shmem:%lukB"
5547#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5548 " shmem_thp: %lukB"
5549 " shmem_pmdmapped: %lukB"
5550 " anon_thp: %lukB"
5551#endif
5552 " writeback_tmp:%lukB"
Olivier Deprez157378f2022-04-04 15:47:50 +02005553 " kernel_stack:%lukB"
5554#ifdef CONFIG_SHADOW_CALL_STACK
5555 " shadow_call_stack:%lukB"
5556#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005557 " all_unreclaimable? %s"
5558 "\n",
5559 pgdat->node_id,
5560 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5561 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5562 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5563 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5564 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5565 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5566 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5567 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5568 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5569 K(node_page_state(pgdat, NR_WRITEBACK)),
5570 K(node_page_state(pgdat, NR_SHMEM)),
5571#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5572 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5573 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5574 * HPAGE_PMD_NR),
5575 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5576#endif
5577 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
Olivier Deprez157378f2022-04-04 15:47:50 +02005578 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5579#ifdef CONFIG_SHADOW_CALL_STACK
5580 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5581#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005582 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5583 "yes" : "no");
5584 }
5585
5586 for_each_populated_zone(zone) {
5587 int i;
5588
5589 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5590 continue;
5591
5592 free_pcp = 0;
5593 for_each_online_cpu(cpu)
5594 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5595
5596 show_node(zone);
5597 printk(KERN_CONT
5598 "%s"
5599 " free:%lukB"
5600 " min:%lukB"
5601 " low:%lukB"
5602 " high:%lukB"
Olivier Deprez157378f2022-04-04 15:47:50 +02005603 " reserved_highatomic:%luKB"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005604 " active_anon:%lukB"
5605 " inactive_anon:%lukB"
5606 " active_file:%lukB"
5607 " inactive_file:%lukB"
5608 " unevictable:%lukB"
5609 " writepending:%lukB"
5610 " present:%lukB"
5611 " managed:%lukB"
5612 " mlocked:%lukB"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005613 " pagetables:%lukB"
5614 " bounce:%lukB"
5615 " free_pcp:%lukB"
5616 " local_pcp:%ukB"
5617 " free_cma:%lukB"
5618 "\n",
5619 zone->name,
5620 K(zone_page_state(zone, NR_FREE_PAGES)),
5621 K(min_wmark_pages(zone)),
5622 K(low_wmark_pages(zone)),
5623 K(high_wmark_pages(zone)),
Olivier Deprez157378f2022-04-04 15:47:50 +02005624 K(zone->nr_reserved_highatomic),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005625 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5626 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5627 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5628 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5629 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5630 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5631 K(zone->present_pages),
David Brazdil0f672f62019-12-10 10:32:29 +00005632 K(zone_managed_pages(zone)),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005633 K(zone_page_state(zone, NR_MLOCK)),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005634 K(zone_page_state(zone, NR_PAGETABLE)),
5635 K(zone_page_state(zone, NR_BOUNCE)),
5636 K(free_pcp),
5637 K(this_cpu_read(zone->pageset->pcp.count)),
5638 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5639 printk("lowmem_reserve[]:");
5640 for (i = 0; i < MAX_NR_ZONES; i++)
5641 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5642 printk(KERN_CONT "\n");
5643 }
5644
5645 for_each_populated_zone(zone) {
5646 unsigned int order;
5647 unsigned long nr[MAX_ORDER], flags, total = 0;
5648 unsigned char types[MAX_ORDER];
5649
5650 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5651 continue;
5652 show_node(zone);
5653 printk(KERN_CONT "%s: ", zone->name);
5654
5655 spin_lock_irqsave(&zone->lock, flags);
5656 for (order = 0; order < MAX_ORDER; order++) {
5657 struct free_area *area = &zone->free_area[order];
5658 int type;
5659
5660 nr[order] = area->nr_free;
5661 total += nr[order] << order;
5662
5663 types[order] = 0;
5664 for (type = 0; type < MIGRATE_TYPES; type++) {
David Brazdil0f672f62019-12-10 10:32:29 +00005665 if (!free_area_empty(area, type))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005666 types[order] |= 1 << type;
5667 }
5668 }
5669 spin_unlock_irqrestore(&zone->lock, flags);
5670 for (order = 0; order < MAX_ORDER; order++) {
5671 printk(KERN_CONT "%lu*%lukB ",
5672 nr[order], K(1UL) << order);
5673 if (nr[order])
5674 show_migration_types(types[order]);
5675 }
5676 printk(KERN_CONT "= %lukB\n", K(total));
5677 }
5678
5679 hugetlb_show_meminfo();
5680
5681 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5682
5683 show_swap_cache_info();
5684}
5685
5686static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5687{
5688 zoneref->zone = zone;
5689 zoneref->zone_idx = zone_idx(zone);
5690}
5691
5692/*
5693 * Builds allocation fallback zone lists.
5694 *
5695 * Add all populated zones of a node to the zonelist.
5696 */
5697static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5698{
5699 struct zone *zone;
5700 enum zone_type zone_type = MAX_NR_ZONES;
5701 int nr_zones = 0;
5702
5703 do {
5704 zone_type--;
5705 zone = pgdat->node_zones + zone_type;
Olivier Deprez92d4c212022-12-06 15:05:30 +01005706 if (populated_zone(zone)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005707 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5708 check_highest_zone(zone_type);
5709 }
5710 } while (zone_type);
5711
5712 return nr_zones;
5713}
5714
5715#ifdef CONFIG_NUMA
5716
5717static int __parse_numa_zonelist_order(char *s)
5718{
5719 /*
5720 * We used to support different zonlists modes but they turned
5721 * out to be just not useful. Let's keep the warning in place
5722 * if somebody still use the cmd line parameter so that we do
5723 * not fail it silently
5724 */
5725 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5726 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5727 return -EINVAL;
5728 }
5729 return 0;
5730}
5731
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005732char numa_zonelist_order[] = "Node";
5733
5734/*
5735 * sysctl handler for numa_zonelist_order
5736 */
5737int numa_zonelist_order_handler(struct ctl_table *table, int write,
Olivier Deprez157378f2022-04-04 15:47:50 +02005738 void *buffer, size_t *length, loff_t *ppos)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005739{
Olivier Deprez157378f2022-04-04 15:47:50 +02005740 if (write)
5741 return __parse_numa_zonelist_order(buffer);
5742 return proc_dostring(table, write, buffer, length, ppos);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005743}
5744
5745
5746#define MAX_NODE_LOAD (nr_online_nodes)
5747static int node_load[MAX_NUMNODES];
5748
5749/**
5750 * find_next_best_node - find the next node that should appear in a given node's fallback list
5751 * @node: node whose fallback list we're appending
5752 * @used_node_mask: nodemask_t of already used nodes
5753 *
5754 * We use a number of factors to determine which is the next node that should
5755 * appear on a given node's fallback list. The node should not have appeared
5756 * already in @node's fallback list, and it should be the next closest node
5757 * according to the distance array (which contains arbitrary distance values
5758 * from each node to each node in the system), and should also prefer nodes
5759 * with no CPUs, since presumably they'll have very little allocation pressure
5760 * on them otherwise.
David Brazdil0f672f62019-12-10 10:32:29 +00005761 *
5762 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005763 */
5764static int find_next_best_node(int node, nodemask_t *used_node_mask)
5765{
5766 int n, val;
5767 int min_val = INT_MAX;
5768 int best_node = NUMA_NO_NODE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005769
5770 /* Use the local node if we haven't already */
5771 if (!node_isset(node, *used_node_mask)) {
5772 node_set(node, *used_node_mask);
5773 return node;
5774 }
5775
5776 for_each_node_state(n, N_MEMORY) {
5777
5778 /* Don't want a node to appear more than once */
5779 if (node_isset(n, *used_node_mask))
5780 continue;
5781
5782 /* Use the distance array to find the distance */
5783 val = node_distance(node, n);
5784
5785 /* Penalize nodes under us ("prefer the next node") */
5786 val += (n < node);
5787
5788 /* Give preference to headless and unused nodes */
Olivier Deprez157378f2022-04-04 15:47:50 +02005789 if (!cpumask_empty(cpumask_of_node(n)))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005790 val += PENALTY_FOR_NODE_WITH_CPUS;
5791
5792 /* Slight preference for less loaded node */
5793 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5794 val += node_load[n];
5795
5796 if (val < min_val) {
5797 min_val = val;
5798 best_node = n;
5799 }
5800 }
5801
5802 if (best_node >= 0)
5803 node_set(best_node, *used_node_mask);
5804
5805 return best_node;
5806}
5807
5808
5809/*
5810 * Build zonelists ordered by node and zones within node.
5811 * This results in maximum locality--normal zone overflows into local
5812 * DMA zone, if any--but risks exhausting DMA zone.
5813 */
5814static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5815 unsigned nr_nodes)
5816{
5817 struct zoneref *zonerefs;
5818 int i;
5819
5820 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5821
5822 for (i = 0; i < nr_nodes; i++) {
5823 int nr_zones;
5824
5825 pg_data_t *node = NODE_DATA(node_order[i]);
5826
5827 nr_zones = build_zonerefs_node(node, zonerefs);
5828 zonerefs += nr_zones;
5829 }
5830 zonerefs->zone = NULL;
5831 zonerefs->zone_idx = 0;
5832}
5833
5834/*
5835 * Build gfp_thisnode zonelists
5836 */
5837static void build_thisnode_zonelists(pg_data_t *pgdat)
5838{
5839 struct zoneref *zonerefs;
5840 int nr_zones;
5841
5842 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5843 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5844 zonerefs += nr_zones;
5845 zonerefs->zone = NULL;
5846 zonerefs->zone_idx = 0;
5847}
5848
5849/*
5850 * Build zonelists ordered by zone and nodes within zones.
5851 * This results in conserving DMA zone[s] until all Normal memory is
5852 * exhausted, but results in overflowing to remote node while memory
5853 * may still exist in local DMA zone.
5854 */
5855
5856static void build_zonelists(pg_data_t *pgdat)
5857{
5858 static int node_order[MAX_NUMNODES];
5859 int node, load, nr_nodes = 0;
Olivier Deprez157378f2022-04-04 15:47:50 +02005860 nodemask_t used_mask = NODE_MASK_NONE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005861 int local_node, prev_node;
5862
5863 /* NUMA-aware ordering of nodes */
5864 local_node = pgdat->node_id;
5865 load = nr_online_nodes;
5866 prev_node = local_node;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005867
5868 memset(node_order, 0, sizeof(node_order));
5869 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5870 /*
5871 * We don't want to pressure a particular node.
5872 * So adding penalty to the first node in same
5873 * distance group to make it round-robin.
5874 */
5875 if (node_distance(local_node, node) !=
5876 node_distance(local_node, prev_node))
5877 node_load[node] = load;
5878
5879 node_order[nr_nodes++] = node;
5880 prev_node = node;
5881 load--;
5882 }
5883
5884 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5885 build_thisnode_zonelists(pgdat);
5886}
5887
5888#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5889/*
5890 * Return node id of node used for "local" allocations.
5891 * I.e., first node id of first zone in arg node's generic zonelist.
5892 * Used for initializing percpu 'numa_mem', which is used primarily
5893 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5894 */
5895int local_memory_node(int node)
5896{
5897 struct zoneref *z;
5898
5899 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5900 gfp_zone(GFP_KERNEL),
5901 NULL);
5902 return zone_to_nid(z->zone);
5903}
5904#endif
5905
5906static void setup_min_unmapped_ratio(void);
5907static void setup_min_slab_ratio(void);
5908#else /* CONFIG_NUMA */
5909
5910static void build_zonelists(pg_data_t *pgdat)
5911{
5912 int node, local_node;
5913 struct zoneref *zonerefs;
5914 int nr_zones;
5915
5916 local_node = pgdat->node_id;
5917
5918 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5919 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5920 zonerefs += nr_zones;
5921
5922 /*
5923 * Now we build the zonelist so that it contains the zones
5924 * of all the other nodes.
5925 * We don't want to pressure a particular node, so when
5926 * building the zones for node N, we make sure that the
5927 * zones coming right after the local ones are those from
5928 * node N+1 (modulo N)
5929 */
5930 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5931 if (!node_online(node))
5932 continue;
5933 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5934 zonerefs += nr_zones;
5935 }
5936 for (node = 0; node < local_node; node++) {
5937 if (!node_online(node))
5938 continue;
5939 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5940 zonerefs += nr_zones;
5941 }
5942
5943 zonerefs->zone = NULL;
5944 zonerefs->zone_idx = 0;
5945}
5946
5947#endif /* CONFIG_NUMA */
5948
5949/*
5950 * Boot pageset table. One per cpu which is going to be used for all
5951 * zones and all nodes. The parameters will be set in such a way
5952 * that an item put on a list will immediately be handed over to
5953 * the buddy list. This is safe since pageset manipulation is done
5954 * with interrupts disabled.
5955 *
5956 * The boot_pagesets must be kept even after bootup is complete for
5957 * unused processors and/or zones. They do play a role for bootstrapping
5958 * hotplugged processors.
5959 *
5960 * zoneinfo_show() and maybe other functions do
5961 * not check if the processor is online before following the pageset pointer.
5962 * Other parts of the kernel may not check if the zone is available.
5963 */
5964static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5965static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5966static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5967
5968static void __build_all_zonelists(void *data)
5969{
5970 int nid;
5971 int __maybe_unused cpu;
5972 pg_data_t *self = data;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005973
Olivier Deprez92d4c212022-12-06 15:05:30 +01005974 write_seqlock(&zonelist_update_seq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005975
5976#ifdef CONFIG_NUMA
5977 memset(node_load, 0, sizeof(node_load));
5978#endif
5979
5980 /*
5981 * This node is hotadded and no memory is yet present. So just
5982 * building zonelists is fine - no need to touch other nodes.
5983 */
5984 if (self && !node_online(self->node_id)) {
5985 build_zonelists(self);
5986 } else {
5987 for_each_online_node(nid) {
5988 pg_data_t *pgdat = NODE_DATA(nid);
5989
5990 build_zonelists(pgdat);
5991 }
5992
5993#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5994 /*
5995 * We now know the "local memory node" for each node--
5996 * i.e., the node of the first zone in the generic zonelist.
5997 * Set up numa_mem percpu variable for on-line cpus. During
5998 * boot, only the boot cpu should be on-line; we'll init the
5999 * secondary cpus' numa_mem as they come on-line. During
6000 * node/memory hotplug, we'll fixup all on-line cpus.
6001 */
6002 for_each_online_cpu(cpu)
6003 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6004#endif
6005 }
6006
Olivier Deprez92d4c212022-12-06 15:05:30 +01006007 write_sequnlock(&zonelist_update_seq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006008}
6009
6010static noinline void __init
6011build_all_zonelists_init(void)
6012{
6013 int cpu;
6014
6015 __build_all_zonelists(NULL);
6016
6017 /*
6018 * Initialize the boot_pagesets that are going to be used
6019 * for bootstrapping processors. The real pagesets for
6020 * each zone will be allocated later when the per cpu
6021 * allocator is available.
6022 *
6023 * boot_pagesets are used also for bootstrapping offline
6024 * cpus if the system is already booted because the pagesets
6025 * are needed to initialize allocators on a specific cpu too.
6026 * F.e. the percpu allocator needs the page allocator which
6027 * needs the percpu allocator in order to allocate its pagesets
6028 * (a chicken-egg dilemma).
6029 */
6030 for_each_possible_cpu(cpu)
6031 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
6032
6033 mminit_verify_zonelist();
6034 cpuset_init_current_mems_allowed();
6035}
6036
6037/*
6038 * unless system_state == SYSTEM_BOOTING.
6039 *
6040 * __ref due to call of __init annotated helper build_all_zonelists_init
6041 * [protected by SYSTEM_BOOTING].
6042 */
6043void __ref build_all_zonelists(pg_data_t *pgdat)
6044{
Olivier Deprez157378f2022-04-04 15:47:50 +02006045 unsigned long vm_total_pages;
6046
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006047 if (system_state == SYSTEM_BOOTING) {
6048 build_all_zonelists_init();
6049 } else {
6050 __build_all_zonelists(pgdat);
6051 /* cpuset refresh routine should be here */
6052 }
Olivier Deprez157378f2022-04-04 15:47:50 +02006053 /* Get the number of free pages beyond high watermark in all zones. */
6054 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006055 /*
6056 * Disable grouping by mobility if the number of pages in the
6057 * system is too low to allow the mechanism to work. It would be
6058 * more accurate, but expensive to check per-zone. This check is
6059 * made on memory-hotadd so a system can start with mobility
6060 * disabled and enable it later
6061 */
6062 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6063 page_group_by_mobility_disabled = 1;
6064 else
6065 page_group_by_mobility_disabled = 0;
6066
David Brazdil0f672f62019-12-10 10:32:29 +00006067 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006068 nr_online_nodes,
6069 page_group_by_mobility_disabled ? "off" : "on",
6070 vm_total_pages);
6071#ifdef CONFIG_NUMA
6072 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6073#endif
6074}
6075
David Brazdil0f672f62019-12-10 10:32:29 +00006076/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6077static bool __meminit
6078overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6079{
David Brazdil0f672f62019-12-10 10:32:29 +00006080 static struct memblock_region *r;
6081
6082 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6083 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02006084 for_each_mem_region(r) {
David Brazdil0f672f62019-12-10 10:32:29 +00006085 if (*pfn < memblock_region_memory_end_pfn(r))
6086 break;
6087 }
6088 }
6089 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6090 memblock_is_mirror(r)) {
6091 *pfn = memblock_region_memory_end_pfn(r);
6092 return true;
6093 }
6094 }
David Brazdil0f672f62019-12-10 10:32:29 +00006095 return false;
6096}
6097
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006098/*
6099 * Initially all pages are reserved - free ones are freed
David Brazdil0f672f62019-12-10 10:32:29 +00006100 * up by memblock_free_all() once the early boot process is
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006101 * done. Non-atomic initialization, single-pass.
Olivier Deprez157378f2022-04-04 15:47:50 +02006102 *
6103 * All aligned pageblocks are initialized to the specified migratetype
6104 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6105 * zone stats (e.g., nr_isolate_pageblock) are touched.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006106 */
6107void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
Olivier Deprez157378f2022-04-04 15:47:50 +02006108 unsigned long start_pfn, unsigned long zone_end_pfn,
6109 enum meminit_context context,
6110 struct vmem_altmap *altmap, int migratetype)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006111{
David Brazdil0f672f62019-12-10 10:32:29 +00006112 unsigned long pfn, end_pfn = start_pfn + size;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006113 struct page *page;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006114
6115 if (highest_memmap_pfn < end_pfn - 1)
6116 highest_memmap_pfn = end_pfn - 1;
6117
David Brazdil0f672f62019-12-10 10:32:29 +00006118#ifdef CONFIG_ZONE_DEVICE
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006119 /*
6120 * Honor reservation requested by the driver for this ZONE_DEVICE
David Brazdil0f672f62019-12-10 10:32:29 +00006121 * memory. We limit the total number of pages to initialize to just
6122 * those that might contain the memory mapping. We will defer the
6123 * ZONE_DEVICE page initialization until after we have released
6124 * the hotplug lock.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006125 */
David Brazdil0f672f62019-12-10 10:32:29 +00006126 if (zone == ZONE_DEVICE) {
6127 if (!altmap)
6128 return;
6129
6130 if (start_pfn == altmap->base_pfn)
6131 start_pfn += altmap->reserve;
6132 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6133 }
6134#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006135
Olivier Deprez157378f2022-04-04 15:47:50 +02006136 for (pfn = start_pfn; pfn < end_pfn; ) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006137 /*
6138 * There can be holes in boot-time mem_map[]s handed to this
6139 * function. They do not exist on hotplugged memory.
6140 */
Olivier Deprez0e641232021-09-23 10:07:05 +02006141 if (context == MEMINIT_EARLY) {
David Brazdil0f672f62019-12-10 10:32:29 +00006142 if (overlap_memmap_init(zone, &pfn))
6143 continue;
Olivier Deprez157378f2022-04-04 15:47:50 +02006144 if (defer_init(nid, pfn, zone_end_pfn))
David Brazdil0f672f62019-12-10 10:32:29 +00006145 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006146 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006147
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006148 page = pfn_to_page(pfn);
6149 __init_single_page(page, pfn, zone, nid);
Olivier Deprez0e641232021-09-23 10:07:05 +02006150 if (context == MEMINIT_HOTPLUG)
David Brazdil0f672f62019-12-10 10:32:29 +00006151 __SetPageReserved(page);
6152
6153 /*
Olivier Deprez157378f2022-04-04 15:47:50 +02006154 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6155 * such that unmovable allocations won't be scattered all
6156 * over the place during system boot.
David Brazdil0f672f62019-12-10 10:32:29 +00006157 */
Olivier Deprez157378f2022-04-04 15:47:50 +02006158 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6159 set_pageblock_migratetype(page, migratetype);
David Brazdil0f672f62019-12-10 10:32:29 +00006160 cond_resched();
6161 }
Olivier Deprez157378f2022-04-04 15:47:50 +02006162 pfn++;
David Brazdil0f672f62019-12-10 10:32:29 +00006163 }
6164}
6165
6166#ifdef CONFIG_ZONE_DEVICE
6167void __ref memmap_init_zone_device(struct zone *zone,
6168 unsigned long start_pfn,
Olivier Deprez157378f2022-04-04 15:47:50 +02006169 unsigned long nr_pages,
David Brazdil0f672f62019-12-10 10:32:29 +00006170 struct dev_pagemap *pgmap)
6171{
Olivier Deprez157378f2022-04-04 15:47:50 +02006172 unsigned long pfn, end_pfn = start_pfn + nr_pages;
David Brazdil0f672f62019-12-10 10:32:29 +00006173 struct pglist_data *pgdat = zone->zone_pgdat;
6174 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6175 unsigned long zone_idx = zone_idx(zone);
6176 unsigned long start = jiffies;
6177 int nid = pgdat->node_id;
6178
6179 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6180 return;
6181
6182 /*
Olivier Deprez157378f2022-04-04 15:47:50 +02006183 * The call to memmap_init should have already taken care
David Brazdil0f672f62019-12-10 10:32:29 +00006184 * of the pages reserved for the memmap, so we can just jump to
6185 * the end of that region and start processing the device pages.
6186 */
6187 if (altmap) {
6188 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
Olivier Deprez157378f2022-04-04 15:47:50 +02006189 nr_pages = end_pfn - start_pfn;
David Brazdil0f672f62019-12-10 10:32:29 +00006190 }
6191
6192 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6193 struct page *page = pfn_to_page(pfn);
6194
6195 __init_single_page(page, pfn, zone_idx, nid);
6196
6197 /*
6198 * Mark page reserved as it will need to wait for onlining
6199 * phase for it to be fully associated with a zone.
6200 *
6201 * We can use the non-atomic __set_bit operation for setting
6202 * the flag as we are still initializing the pages.
6203 */
6204 __SetPageReserved(page);
6205
6206 /*
6207 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6208 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6209 * ever freed or placed on a driver-private list.
6210 */
6211 page->pgmap = pgmap;
6212 page->zone_device_data = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006213
6214 /*
6215 * Mark the block movable so that blocks are reserved for
6216 * movable at startup. This will force kernel allocations
6217 * to reserve their blocks rather than leaking throughout
6218 * the address space during boot when many long-lived
6219 * kernel allocations are made.
6220 *
Olivier Deprez0e641232021-09-23 10:07:05 +02006221 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
David Brazdil0f672f62019-12-10 10:32:29 +00006222 * because this is done early in section_activate()
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006223 */
Olivier Deprez157378f2022-04-04 15:47:50 +02006224 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006225 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6226 cond_resched();
6227 }
6228 }
David Brazdil0f672f62019-12-10 10:32:29 +00006229
6230 pr_info("%s initialised %lu pages in %ums\n", __func__,
Olivier Deprez157378f2022-04-04 15:47:50 +02006231 nr_pages, jiffies_to_msecs(jiffies - start));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006232}
6233
David Brazdil0f672f62019-12-10 10:32:29 +00006234#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006235static void __meminit zone_init_free_lists(struct zone *zone)
6236{
6237 unsigned int order, t;
6238 for_each_migratetype_order(order, t) {
6239 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6240 zone->free_area[order].nr_free = 0;
6241 }
6242}
6243
Olivier Deprez157378f2022-04-04 15:47:50 +02006244#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6245/*
6246 * Only struct pages that correspond to ranges defined by memblock.memory
6247 * are zeroed and initialized by going through __init_single_page() during
6248 * memmap_init_zone_range().
6249 *
6250 * But, there could be struct pages that correspond to holes in
6251 * memblock.memory. This can happen because of the following reasons:
6252 * - physical memory bank size is not necessarily the exact multiple of the
6253 * arbitrary section size
6254 * - early reserved memory may not be listed in memblock.memory
6255 * - memory layouts defined with memmap= kernel parameter may not align
6256 * nicely with memmap sections
6257 *
6258 * Explicitly initialize those struct pages so that:
6259 * - PG_Reserved is set
6260 * - zone and node links point to zone and node that span the page if the
6261 * hole is in the middle of a zone
6262 * - zone and node links point to adjacent zone/node if the hole falls on
6263 * the zone boundary; the pages in such holes will be prepended to the
6264 * zone/node above the hole except for the trailing pages in the last
6265 * section that will be appended to the zone/node below.
6266 */
6267static void __init init_unavailable_range(unsigned long spfn,
6268 unsigned long epfn,
6269 int zone, int node)
David Brazdil0f672f62019-12-10 10:32:29 +00006270{
Olivier Deprez157378f2022-04-04 15:47:50 +02006271 unsigned long pfn;
6272 u64 pgcnt = 0;
6273
6274 for (pfn = spfn; pfn < epfn; pfn++) {
6275 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6276 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6277 + pageblock_nr_pages - 1;
6278 continue;
6279 }
6280 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6281 __SetPageReserved(pfn_to_page(pfn));
6282 pgcnt++;
6283 }
6284
6285 if (pgcnt)
6286 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6287 node, zone_names[zone], pgcnt);
6288}
6289#else
6290static inline void init_unavailable_range(unsigned long spfn,
6291 unsigned long epfn,
6292 int zone, int node)
6293{
6294}
6295#endif
6296
6297static void __init memmap_init_zone_range(struct zone *zone,
6298 unsigned long start_pfn,
6299 unsigned long end_pfn,
6300 unsigned long *hole_pfn)
6301{
6302 unsigned long zone_start_pfn = zone->zone_start_pfn;
6303 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6304 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6305
6306 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6307 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6308
6309 if (start_pfn >= end_pfn)
6310 return;
6311
6312 memmap_init_zone(end_pfn - start_pfn, nid, zone_id, start_pfn,
6313 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6314
6315 if (*hole_pfn < start_pfn)
6316 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6317
6318 *hole_pfn = end_pfn;
6319}
6320
6321void __init __weak memmap_init(void)
6322{
6323 unsigned long start_pfn, end_pfn;
6324 unsigned long hole_pfn = 0;
6325 int i, j, zone_id, nid;
6326
6327 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6328 struct pglist_data *node = NODE_DATA(nid);
6329
6330 for (j = 0; j < MAX_NR_ZONES; j++) {
6331 struct zone *zone = node->node_zones + j;
6332
6333 if (!populated_zone(zone))
6334 continue;
6335
6336 memmap_init_zone_range(zone, start_pfn, end_pfn,
6337 &hole_pfn);
6338 zone_id = j;
6339 }
6340 }
6341
6342#ifdef CONFIG_SPARSEMEM
6343 /*
6344 * Initialize the memory map for hole in the range [memory_end,
6345 * section_end].
6346 * Append the pages in this hole to the highest zone in the last
6347 * node.
6348 * The call to init_unavailable_range() is outside the ifdef to
6349 * silence the compiler warining about zone_id set but not used;
6350 * for FLATMEM it is a nop anyway
6351 */
6352 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6353 if (hole_pfn < end_pfn)
6354#endif
6355 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6356}
6357
6358/* A stub for backwards compatibility with custom implementatin on IA-64 */
6359void __meminit __weak arch_memmap_init(unsigned long size, int nid,
6360 unsigned long zone,
6361 unsigned long range_start_pfn)
6362{
David Brazdil0f672f62019-12-10 10:32:29 +00006363}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006364
6365static int zone_batchsize(struct zone *zone)
6366{
6367#ifdef CONFIG_MMU
6368 int batch;
6369
6370 /*
6371 * The per-cpu-pages pools are set to around 1000th of the
6372 * size of the zone.
6373 */
David Brazdil0f672f62019-12-10 10:32:29 +00006374 batch = zone_managed_pages(zone) / 1024;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006375 /* But no more than a meg. */
6376 if (batch * PAGE_SIZE > 1024 * 1024)
6377 batch = (1024 * 1024) / PAGE_SIZE;
6378 batch /= 4; /* We effectively *= 4 below */
6379 if (batch < 1)
6380 batch = 1;
6381
6382 /*
6383 * Clamp the batch to a 2^n - 1 value. Having a power
6384 * of 2 value was found to be more likely to have
6385 * suboptimal cache aliasing properties in some cases.
6386 *
6387 * For example if 2 tasks are alternately allocating
6388 * batches of pages, one task can end up with a lot
6389 * of pages of one half of the possible page colors
6390 * and the other with pages of the other colors.
6391 */
6392 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6393
6394 return batch;
6395
6396#else
6397 /* The deferral and batching of frees should be suppressed under NOMMU
6398 * conditions.
6399 *
6400 * The problem is that NOMMU needs to be able to allocate large chunks
6401 * of contiguous memory as there's no hardware page translation to
6402 * assemble apparent contiguous memory from discontiguous pages.
6403 *
6404 * Queueing large contiguous runs of pages for batching, however,
6405 * causes the pages to actually be freed in smaller chunks. As there
6406 * can be a significant delay between the individual batches being
6407 * recycled, this leads to the once large chunks of space being
6408 * fragmented and becoming unavailable for high-order allocations.
6409 */
6410 return 0;
6411#endif
6412}
6413
6414/*
6415 * pcp->high and pcp->batch values are related and dependent on one another:
6416 * ->batch must never be higher then ->high.
6417 * The following function updates them in a safe manner without read side
6418 * locking.
6419 *
6420 * Any new users of pcp->batch and pcp->high should ensure they can cope with
Olivier Deprez157378f2022-04-04 15:47:50 +02006421 * those fields changing asynchronously (acording to the above rule).
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006422 *
6423 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6424 * outside of boot time (or some other assurance that no concurrent updaters
6425 * exist).
6426 */
6427static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6428 unsigned long batch)
6429{
6430 /* start with a fail safe value for batch */
6431 pcp->batch = 1;
6432 smp_wmb();
6433
6434 /* Update high, then batch, in order */
6435 pcp->high = high;
6436 smp_wmb();
6437
6438 pcp->batch = batch;
6439}
6440
6441/* a companion to pageset_set_high() */
6442static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6443{
6444 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6445}
6446
6447static void pageset_init(struct per_cpu_pageset *p)
6448{
6449 struct per_cpu_pages *pcp;
6450 int migratetype;
6451
6452 memset(p, 0, sizeof(*p));
6453
6454 pcp = &p->pcp;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006455 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6456 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6457}
6458
6459static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6460{
6461 pageset_init(p);
6462 pageset_set_batch(p, batch);
6463}
6464
6465/*
6466 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6467 * to the value high for the pageset p.
6468 */
6469static void pageset_set_high(struct per_cpu_pageset *p,
6470 unsigned long high)
6471{
6472 unsigned long batch = max(1UL, high / 4);
6473 if ((high / 4) > (PAGE_SHIFT * 8))
6474 batch = PAGE_SHIFT * 8;
6475
6476 pageset_update(&p->pcp, high, batch);
6477}
6478
6479static void pageset_set_high_and_batch(struct zone *zone,
6480 struct per_cpu_pageset *pcp)
6481{
6482 if (percpu_pagelist_fraction)
6483 pageset_set_high(pcp,
David Brazdil0f672f62019-12-10 10:32:29 +00006484 (zone_managed_pages(zone) /
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006485 percpu_pagelist_fraction));
6486 else
6487 pageset_set_batch(pcp, zone_batchsize(zone));
6488}
6489
6490static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6491{
6492 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6493
6494 pageset_init(pcp);
6495 pageset_set_high_and_batch(zone, pcp);
6496}
6497
6498void __meminit setup_zone_pageset(struct zone *zone)
6499{
6500 int cpu;
6501 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6502 for_each_possible_cpu(cpu)
6503 zone_pageset_init(zone, cpu);
6504}
6505
6506/*
6507 * Allocate per cpu pagesets and initialize them.
6508 * Before this call only boot pagesets were available.
6509 */
6510void __init setup_per_cpu_pageset(void)
6511{
6512 struct pglist_data *pgdat;
6513 struct zone *zone;
Olivier Deprez157378f2022-04-04 15:47:50 +02006514 int __maybe_unused cpu;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006515
6516 for_each_populated_zone(zone)
6517 setup_zone_pageset(zone);
6518
Olivier Deprez157378f2022-04-04 15:47:50 +02006519#ifdef CONFIG_NUMA
6520 /*
6521 * Unpopulated zones continue using the boot pagesets.
6522 * The numa stats for these pagesets need to be reset.
6523 * Otherwise, they will end up skewing the stats of
6524 * the nodes these zones are associated with.
6525 */
6526 for_each_possible_cpu(cpu) {
6527 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6528 memset(pcp->vm_numa_stat_diff, 0,
6529 sizeof(pcp->vm_numa_stat_diff));
6530 }
6531#endif
6532
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006533 for_each_online_pgdat(pgdat)
6534 pgdat->per_cpu_nodestats =
6535 alloc_percpu(struct per_cpu_nodestat);
6536}
6537
6538static __meminit void zone_pcp_init(struct zone *zone)
6539{
6540 /*
6541 * per cpu subsystem is not up at this point. The following code
6542 * relies on the ability of the linker to provide the
6543 * offset of a (static) per cpu variable into the per cpu area.
6544 */
6545 zone->pageset = &boot_pageset;
6546
6547 if (populated_zone(zone))
6548 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6549 zone->name, zone->present_pages,
6550 zone_batchsize(zone));
6551}
6552
6553void __meminit init_currently_empty_zone(struct zone *zone,
6554 unsigned long zone_start_pfn,
6555 unsigned long size)
6556{
6557 struct pglist_data *pgdat = zone->zone_pgdat;
6558 int zone_idx = zone_idx(zone) + 1;
6559
6560 if (zone_idx > pgdat->nr_zones)
6561 pgdat->nr_zones = zone_idx;
6562
6563 zone->zone_start_pfn = zone_start_pfn;
6564
6565 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6566 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6567 pgdat->node_id,
6568 (unsigned long)zone_idx(zone),
6569 zone_start_pfn, (zone_start_pfn + size));
6570
6571 zone_init_free_lists(zone);
6572 zone->initialized = 1;
6573}
6574
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006575/**
6576 * get_pfn_range_for_nid - Return the start and end page frames for a node
6577 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6578 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6579 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6580 *
6581 * It returns the start and end page frame of a node based on information
6582 * provided by memblock_set_node(). If called for a node
6583 * with no available memory, a warning is printed and the start and end
6584 * PFNs will be 0.
6585 */
David Brazdil0f672f62019-12-10 10:32:29 +00006586void __init get_pfn_range_for_nid(unsigned int nid,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006587 unsigned long *start_pfn, unsigned long *end_pfn)
6588{
6589 unsigned long this_start_pfn, this_end_pfn;
6590 int i;
6591
6592 *start_pfn = -1UL;
6593 *end_pfn = 0;
6594
6595 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6596 *start_pfn = min(*start_pfn, this_start_pfn);
6597 *end_pfn = max(*end_pfn, this_end_pfn);
6598 }
6599
6600 if (*start_pfn == -1UL)
6601 *start_pfn = 0;
6602}
6603
6604/*
6605 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6606 * assumption is made that zones within a node are ordered in monotonic
6607 * increasing memory addresses so that the "highest" populated zone is used
6608 */
6609static void __init find_usable_zone_for_movable(void)
6610{
6611 int zone_index;
6612 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6613 if (zone_index == ZONE_MOVABLE)
6614 continue;
6615
6616 if (arch_zone_highest_possible_pfn[zone_index] >
6617 arch_zone_lowest_possible_pfn[zone_index])
6618 break;
6619 }
6620
6621 VM_BUG_ON(zone_index == -1);
6622 movable_zone = zone_index;
6623}
6624
6625/*
6626 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6627 * because it is sized independent of architecture. Unlike the other zones,
6628 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6629 * in each node depending on the size of each node and how evenly kernelcore
6630 * is distributed. This helper function adjusts the zone ranges
6631 * provided by the architecture for a given node by using the end of the
6632 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6633 * zones within a node are in order of monotonic increases memory addresses
6634 */
David Brazdil0f672f62019-12-10 10:32:29 +00006635static void __init adjust_zone_range_for_zone_movable(int nid,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006636 unsigned long zone_type,
6637 unsigned long node_start_pfn,
6638 unsigned long node_end_pfn,
6639 unsigned long *zone_start_pfn,
6640 unsigned long *zone_end_pfn)
6641{
6642 /* Only adjust if ZONE_MOVABLE is on this node */
6643 if (zone_movable_pfn[nid]) {
6644 /* Size ZONE_MOVABLE */
6645 if (zone_type == ZONE_MOVABLE) {
6646 *zone_start_pfn = zone_movable_pfn[nid];
6647 *zone_end_pfn = min(node_end_pfn,
6648 arch_zone_highest_possible_pfn[movable_zone]);
6649
6650 /* Adjust for ZONE_MOVABLE starting within this range */
6651 } else if (!mirrored_kernelcore &&
6652 *zone_start_pfn < zone_movable_pfn[nid] &&
6653 *zone_end_pfn > zone_movable_pfn[nid]) {
6654 *zone_end_pfn = zone_movable_pfn[nid];
6655
6656 /* Check if this whole range is within ZONE_MOVABLE */
6657 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6658 *zone_start_pfn = *zone_end_pfn;
6659 }
6660}
6661
6662/*
6663 * Return the number of pages a zone spans in a node, including holes
6664 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6665 */
David Brazdil0f672f62019-12-10 10:32:29 +00006666static unsigned long __init zone_spanned_pages_in_node(int nid,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006667 unsigned long zone_type,
6668 unsigned long node_start_pfn,
6669 unsigned long node_end_pfn,
6670 unsigned long *zone_start_pfn,
Olivier Deprez157378f2022-04-04 15:47:50 +02006671 unsigned long *zone_end_pfn)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006672{
David Brazdil0f672f62019-12-10 10:32:29 +00006673 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6674 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006675 /* When hotadd a new node from cpu_up(), the node should be empty */
6676 if (!node_start_pfn && !node_end_pfn)
6677 return 0;
6678
6679 /* Get the start and end of the zone */
David Brazdil0f672f62019-12-10 10:32:29 +00006680 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6681 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006682 adjust_zone_range_for_zone_movable(nid, zone_type,
6683 node_start_pfn, node_end_pfn,
6684 zone_start_pfn, zone_end_pfn);
6685
6686 /* Check that this node has pages within the zone's required range */
6687 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6688 return 0;
6689
6690 /* Move the zone boundaries inside the node if necessary */
6691 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6692 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6693
6694 /* Return the spanned pages */
6695 return *zone_end_pfn - *zone_start_pfn;
6696}
6697
6698/*
6699 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6700 * then all holes in the requested range will be accounted for.
6701 */
David Brazdil0f672f62019-12-10 10:32:29 +00006702unsigned long __init __absent_pages_in_range(int nid,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006703 unsigned long range_start_pfn,
6704 unsigned long range_end_pfn)
6705{
6706 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6707 unsigned long start_pfn, end_pfn;
6708 int i;
6709
6710 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6711 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6712 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6713 nr_absent -= end_pfn - start_pfn;
6714 }
6715 return nr_absent;
6716}
6717
6718/**
6719 * absent_pages_in_range - Return number of page frames in holes within a range
6720 * @start_pfn: The start PFN to start searching for holes
6721 * @end_pfn: The end PFN to stop searching for holes
6722 *
David Brazdil0f672f62019-12-10 10:32:29 +00006723 * Return: the number of pages frames in memory holes within a range.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006724 */
6725unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6726 unsigned long end_pfn)
6727{
6728 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6729}
6730
6731/* Return the number of page frames in holes in a zone on a node */
David Brazdil0f672f62019-12-10 10:32:29 +00006732static unsigned long __init zone_absent_pages_in_node(int nid,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006733 unsigned long zone_type,
6734 unsigned long node_start_pfn,
Olivier Deprez157378f2022-04-04 15:47:50 +02006735 unsigned long node_end_pfn)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006736{
6737 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6738 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6739 unsigned long zone_start_pfn, zone_end_pfn;
6740 unsigned long nr_absent;
6741
6742 /* When hotadd a new node from cpu_up(), the node should be empty */
6743 if (!node_start_pfn && !node_end_pfn)
6744 return 0;
6745
6746 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6747 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6748
6749 adjust_zone_range_for_zone_movable(nid, zone_type,
6750 node_start_pfn, node_end_pfn,
6751 &zone_start_pfn, &zone_end_pfn);
6752 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6753
6754 /*
6755 * ZONE_MOVABLE handling.
6756 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6757 * and vice versa.
6758 */
6759 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6760 unsigned long start_pfn, end_pfn;
6761 struct memblock_region *r;
6762
Olivier Deprez157378f2022-04-04 15:47:50 +02006763 for_each_mem_region(r) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006764 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6765 zone_start_pfn, zone_end_pfn);
6766 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6767 zone_start_pfn, zone_end_pfn);
6768
6769 if (zone_type == ZONE_MOVABLE &&
6770 memblock_is_mirror(r))
6771 nr_absent += end_pfn - start_pfn;
6772
6773 if (zone_type == ZONE_NORMAL &&
6774 !memblock_is_mirror(r))
6775 nr_absent += end_pfn - start_pfn;
6776 }
6777 }
6778
6779 return nr_absent;
6780}
6781
David Brazdil0f672f62019-12-10 10:32:29 +00006782static void __init calculate_node_totalpages(struct pglist_data *pgdat,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006783 unsigned long node_start_pfn,
Olivier Deprez157378f2022-04-04 15:47:50 +02006784 unsigned long node_end_pfn)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006785{
6786 unsigned long realtotalpages = 0, totalpages = 0;
6787 enum zone_type i;
6788
6789 for (i = 0; i < MAX_NR_ZONES; i++) {
6790 struct zone *zone = pgdat->node_zones + i;
6791 unsigned long zone_start_pfn, zone_end_pfn;
Olivier Deprez157378f2022-04-04 15:47:50 +02006792 unsigned long spanned, absent;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006793 unsigned long size, real_size;
6794
Olivier Deprez157378f2022-04-04 15:47:50 +02006795 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6796 node_start_pfn,
6797 node_end_pfn,
6798 &zone_start_pfn,
6799 &zone_end_pfn);
6800 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6801 node_start_pfn,
6802 node_end_pfn);
6803
6804 size = spanned;
6805 real_size = size - absent;
6806
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006807 if (size)
6808 zone->zone_start_pfn = zone_start_pfn;
6809 else
6810 zone->zone_start_pfn = 0;
6811 zone->spanned_pages = size;
6812 zone->present_pages = real_size;
6813
6814 totalpages += size;
6815 realtotalpages += real_size;
6816 }
6817
6818 pgdat->node_spanned_pages = totalpages;
6819 pgdat->node_present_pages = realtotalpages;
6820 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6821 realtotalpages);
6822}
6823
6824#ifndef CONFIG_SPARSEMEM
6825/*
6826 * Calculate the size of the zone->blockflags rounded to an unsigned long
6827 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6828 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6829 * round what is now in bits to nearest long in bits, then return it in
6830 * bytes.
6831 */
6832static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6833{
6834 unsigned long usemapsize;
6835
6836 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6837 usemapsize = roundup(zonesize, pageblock_nr_pages);
6838 usemapsize = usemapsize >> pageblock_order;
6839 usemapsize *= NR_PAGEBLOCK_BITS;
6840 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6841
6842 return usemapsize / 8;
6843}
6844
6845static void __ref setup_usemap(struct pglist_data *pgdat,
6846 struct zone *zone,
6847 unsigned long zone_start_pfn,
6848 unsigned long zonesize)
6849{
6850 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6851 zone->pageblock_flags = NULL;
David Brazdil0f672f62019-12-10 10:32:29 +00006852 if (usemapsize) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006853 zone->pageblock_flags =
David Brazdil0f672f62019-12-10 10:32:29 +00006854 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6855 pgdat->node_id);
6856 if (!zone->pageblock_flags)
6857 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6858 usemapsize, zone->name, pgdat->node_id);
6859 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006860}
6861#else
6862static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6863 unsigned long zone_start_pfn, unsigned long zonesize) {}
6864#endif /* CONFIG_SPARSEMEM */
6865
6866#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6867
6868/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6869void __init set_pageblock_order(void)
6870{
6871 unsigned int order;
6872
6873 /* Check that pageblock_nr_pages has not already been setup */
6874 if (pageblock_order)
6875 return;
6876
6877 if (HPAGE_SHIFT > PAGE_SHIFT)
6878 order = HUGETLB_PAGE_ORDER;
6879 else
6880 order = MAX_ORDER - 1;
6881
6882 /*
6883 * Assume the largest contiguous order of interest is a huge page.
6884 * This value may be variable depending on boot parameters on IA64 and
6885 * powerpc.
6886 */
6887 pageblock_order = order;
6888}
6889#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6890
6891/*
6892 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6893 * is unused as pageblock_order is set at compile-time. See
6894 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6895 * the kernel config
6896 */
6897void __init set_pageblock_order(void)
6898{
6899}
6900
6901#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6902
6903static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6904 unsigned long present_pages)
6905{
6906 unsigned long pages = spanned_pages;
6907
6908 /*
6909 * Provide a more accurate estimation if there are holes within
6910 * the zone and SPARSEMEM is in use. If there are holes within the
6911 * zone, each populated memory region may cost us one or two extra
6912 * memmap pages due to alignment because memmap pages for each
6913 * populated regions may not be naturally aligned on page boundary.
6914 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6915 */
6916 if (spanned_pages > present_pages + (present_pages >> 4) &&
6917 IS_ENABLED(CONFIG_SPARSEMEM))
6918 pages = present_pages;
6919
6920 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6921}
6922
6923#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6924static void pgdat_init_split_queue(struct pglist_data *pgdat)
6925{
David Brazdil0f672f62019-12-10 10:32:29 +00006926 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6927
6928 spin_lock_init(&ds_queue->split_queue_lock);
6929 INIT_LIST_HEAD(&ds_queue->split_queue);
6930 ds_queue->split_queue_len = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006931}
6932#else
6933static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6934#endif
6935
6936#ifdef CONFIG_COMPACTION
6937static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6938{
6939 init_waitqueue_head(&pgdat->kcompactd_wait);
6940}
6941#else
6942static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6943#endif
6944
6945static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6946{
6947 pgdat_resize_init(pgdat);
6948
6949 pgdat_init_split_queue(pgdat);
6950 pgdat_init_kcompactd(pgdat);
6951
6952 init_waitqueue_head(&pgdat->kswapd_wait);
6953 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6954
6955 pgdat_page_ext_init(pgdat);
6956 spin_lock_init(&pgdat->lru_lock);
Olivier Deprez157378f2022-04-04 15:47:50 +02006957 lruvec_init(&pgdat->__lruvec);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006958}
6959
6960static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6961 unsigned long remaining_pages)
6962{
David Brazdil0f672f62019-12-10 10:32:29 +00006963 atomic_long_set(&zone->managed_pages, remaining_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006964 zone_set_nid(zone, nid);
6965 zone->name = zone_names[idx];
6966 zone->zone_pgdat = NODE_DATA(nid);
6967 spin_lock_init(&zone->lock);
6968 zone_seqlock_init(zone);
6969 zone_pcp_init(zone);
6970}
6971
6972/*
6973 * Set up the zone data structures
6974 * - init pgdat internals
6975 * - init all zones belonging to this node
6976 *
6977 * NOTE: this function is only called during memory hotplug
6978 */
6979#ifdef CONFIG_MEMORY_HOTPLUG
6980void __ref free_area_init_core_hotplug(int nid)
6981{
6982 enum zone_type z;
6983 pg_data_t *pgdat = NODE_DATA(nid);
6984
6985 pgdat_init_internals(pgdat);
6986 for (z = 0; z < MAX_NR_ZONES; z++)
6987 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6988}
6989#endif
6990
6991/*
6992 * Set up the zone data structures:
6993 * - mark all pages reserved
6994 * - mark all memory queues empty
6995 * - clear the memory bitmaps
6996 *
6997 * NOTE: pgdat should get zeroed by caller.
6998 * NOTE: this function is only called during early init.
6999 */
7000static void __init free_area_init_core(struct pglist_data *pgdat)
7001{
7002 enum zone_type j;
7003 int nid = pgdat->node_id;
7004
7005 pgdat_init_internals(pgdat);
7006 pgdat->per_cpu_nodestats = &boot_nodestats;
7007
7008 for (j = 0; j < MAX_NR_ZONES; j++) {
7009 struct zone *zone = pgdat->node_zones + j;
7010 unsigned long size, freesize, memmap_pages;
7011 unsigned long zone_start_pfn = zone->zone_start_pfn;
7012
7013 size = zone->spanned_pages;
7014 freesize = zone->present_pages;
7015
7016 /*
7017 * Adjust freesize so that it accounts for how much memory
7018 * is used by this zone for memmap. This affects the watermark
7019 * and per-cpu initialisations
7020 */
7021 memmap_pages = calc_memmap_size(size, freesize);
7022 if (!is_highmem_idx(j)) {
7023 if (freesize >= memmap_pages) {
7024 freesize -= memmap_pages;
7025 if (memmap_pages)
7026 printk(KERN_DEBUG
7027 " %s zone: %lu pages used for memmap\n",
7028 zone_names[j], memmap_pages);
7029 } else
7030 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
7031 zone_names[j], memmap_pages, freesize);
7032 }
7033
7034 /* Account for reserved pages */
7035 if (j == 0 && freesize > dma_reserve) {
7036 freesize -= dma_reserve;
7037 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
7038 zone_names[0], dma_reserve);
7039 }
7040
7041 if (!is_highmem_idx(j))
7042 nr_kernel_pages += freesize;
7043 /* Charge for highmem memmap if there are enough kernel pages */
7044 else if (nr_kernel_pages > memmap_pages * 2)
7045 nr_kernel_pages -= memmap_pages;
7046 nr_all_pages += freesize;
7047
7048 /*
7049 * Set an approximate value for lowmem here, it will be adjusted
7050 * when the bootmem allocator frees pages into the buddy system.
7051 * And all highmem pages will be managed by the buddy system.
7052 */
7053 zone_init_internals(zone, j, nid, freesize);
7054
7055 if (!size)
7056 continue;
7057
7058 set_pageblock_order();
7059 setup_usemap(pgdat, zone, zone_start_pfn, size);
7060 init_currently_empty_zone(zone, zone_start_pfn, size);
Olivier Deprez157378f2022-04-04 15:47:50 +02007061 arch_memmap_init(size, nid, j, zone_start_pfn);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007062 }
7063}
7064
7065#ifdef CONFIG_FLAT_NODE_MEM_MAP
7066static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
7067{
7068 unsigned long __maybe_unused start = 0;
7069 unsigned long __maybe_unused offset = 0;
7070
7071 /* Skip empty nodes */
7072 if (!pgdat->node_spanned_pages)
7073 return;
7074
7075 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7076 offset = pgdat->node_start_pfn - start;
7077 /* ia64 gets its own node_mem_map, before this, without bootmem */
7078 if (!pgdat->node_mem_map) {
7079 unsigned long size, end;
7080 struct page *map;
7081
7082 /*
7083 * The zone's endpoints aren't required to be MAX_ORDER
7084 * aligned but the node_mem_map endpoints must be in order
7085 * for the buddy allocator to function correctly.
7086 */
7087 end = pgdat_end_pfn(pgdat);
7088 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7089 size = (end - start) * sizeof(struct page);
David Brazdil0f672f62019-12-10 10:32:29 +00007090 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7091 pgdat->node_id);
7092 if (!map)
7093 panic("Failed to allocate %ld bytes for node %d memory map\n",
7094 size, pgdat->node_id);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007095 pgdat->node_mem_map = map + offset;
7096 }
7097 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7098 __func__, pgdat->node_id, (unsigned long)pgdat,
7099 (unsigned long)pgdat->node_mem_map);
7100#ifndef CONFIG_NEED_MULTIPLE_NODES
7101 /*
7102 * With no DISCONTIG, the global mem_map is just set as node 0's
7103 */
7104 if (pgdat == NODE_DATA(0)) {
7105 mem_map = NODE_DATA(0)->node_mem_map;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007106 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7107 mem_map -= offset;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007108 }
7109#endif
7110}
7111#else
7112static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7113#endif /* CONFIG_FLAT_NODE_MEM_MAP */
7114
7115#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7116static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7117{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007118 pgdat->first_deferred_pfn = ULONG_MAX;
7119}
7120#else
7121static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7122#endif
7123
Olivier Deprez157378f2022-04-04 15:47:50 +02007124static void __init free_area_init_node(int nid)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007125{
7126 pg_data_t *pgdat = NODE_DATA(nid);
7127 unsigned long start_pfn = 0;
7128 unsigned long end_pfn = 0;
7129
7130 /* pg_data_t should be reset to zero when it's allocated */
Olivier Deprez157378f2022-04-04 15:47:50 +02007131 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7132
7133 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007134
7135 pgdat->node_id = nid;
Olivier Deprez157378f2022-04-04 15:47:50 +02007136 pgdat->node_start_pfn = start_pfn;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007137 pgdat->per_cpu_nodestats = NULL;
Olivier Deprez157378f2022-04-04 15:47:50 +02007138
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007139 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7140 (u64)start_pfn << PAGE_SHIFT,
7141 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
Olivier Deprez157378f2022-04-04 15:47:50 +02007142 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007143
7144 alloc_node_mem_map(pgdat);
7145 pgdat_set_deferred_range(pgdat);
7146
7147 free_area_init_core(pgdat);
7148}
7149
Olivier Deprez157378f2022-04-04 15:47:50 +02007150void __init free_area_init_memoryless_node(int nid)
David Brazdil0f672f62019-12-10 10:32:29 +00007151{
Olivier Deprez157378f2022-04-04 15:47:50 +02007152 free_area_init_node(nid);
David Brazdil0f672f62019-12-10 10:32:29 +00007153}
7154
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007155#if MAX_NUMNODES > 1
7156/*
7157 * Figure out the number of possible node ids.
7158 */
7159void __init setup_nr_node_ids(void)
7160{
7161 unsigned int highest;
7162
7163 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7164 nr_node_ids = highest + 1;
7165}
7166#endif
7167
7168/**
7169 * node_map_pfn_alignment - determine the maximum internode alignment
7170 *
7171 * This function should be called after node map is populated and sorted.
7172 * It calculates the maximum power of two alignment which can distinguish
7173 * all the nodes.
7174 *
7175 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7176 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7177 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7178 * shifted, 1GiB is enough and this function will indicate so.
7179 *
7180 * This is used to test whether pfn -> nid mapping of the chosen memory
7181 * model has fine enough granularity to avoid incorrect mapping for the
7182 * populated node map.
7183 *
David Brazdil0f672f62019-12-10 10:32:29 +00007184 * Return: the determined alignment in pfn's. 0 if there is no alignment
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007185 * requirement (single node).
7186 */
7187unsigned long __init node_map_pfn_alignment(void)
7188{
7189 unsigned long accl_mask = 0, last_end = 0;
7190 unsigned long start, end, mask;
David Brazdil0f672f62019-12-10 10:32:29 +00007191 int last_nid = NUMA_NO_NODE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007192 int i, nid;
7193
7194 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7195 if (!start || last_nid < 0 || last_nid == nid) {
7196 last_nid = nid;
7197 last_end = end;
7198 continue;
7199 }
7200
7201 /*
7202 * Start with a mask granular enough to pin-point to the
7203 * start pfn and tick off bits one-by-one until it becomes
7204 * too coarse to separate the current node from the last.
7205 */
7206 mask = ~((1 << __ffs(start)) - 1);
7207 while (mask && last_end <= (start & (mask << 1)))
7208 mask <<= 1;
7209
7210 /* accumulate all internode masks */
7211 accl_mask |= mask;
7212 }
7213
7214 /* convert mask to number of pages */
7215 return ~accl_mask + 1;
7216}
7217
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007218/**
7219 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7220 *
David Brazdil0f672f62019-12-10 10:32:29 +00007221 * Return: the minimum PFN based on information provided via
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007222 * memblock_set_node().
7223 */
7224unsigned long __init find_min_pfn_with_active_regions(void)
7225{
Olivier Deprez157378f2022-04-04 15:47:50 +02007226 return PHYS_PFN(memblock_start_of_DRAM());
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007227}
7228
7229/*
7230 * early_calculate_totalpages()
7231 * Sum pages in active regions for movable zone.
7232 * Populate N_MEMORY for calculating usable_nodes.
7233 */
7234static unsigned long __init early_calculate_totalpages(void)
7235{
7236 unsigned long totalpages = 0;
7237 unsigned long start_pfn, end_pfn;
7238 int i, nid;
7239
7240 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7241 unsigned long pages = end_pfn - start_pfn;
7242
7243 totalpages += pages;
7244 if (pages)
7245 node_set_state(nid, N_MEMORY);
7246 }
7247 return totalpages;
7248}
7249
7250/*
7251 * Find the PFN the Movable zone begins in each node. Kernel memory
7252 * is spread evenly between nodes as long as the nodes have enough
7253 * memory. When they don't, some nodes will have more kernelcore than
7254 * others
7255 */
7256static void __init find_zone_movable_pfns_for_nodes(void)
7257{
7258 int i, nid;
7259 unsigned long usable_startpfn;
7260 unsigned long kernelcore_node, kernelcore_remaining;
7261 /* save the state before borrow the nodemask */
7262 nodemask_t saved_node_state = node_states[N_MEMORY];
7263 unsigned long totalpages = early_calculate_totalpages();
7264 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7265 struct memblock_region *r;
7266
7267 /* Need to find movable_zone earlier when movable_node is specified. */
7268 find_usable_zone_for_movable();
7269
7270 /*
7271 * If movable_node is specified, ignore kernelcore and movablecore
7272 * options.
7273 */
7274 if (movable_node_is_enabled()) {
Olivier Deprez157378f2022-04-04 15:47:50 +02007275 for_each_mem_region(r) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007276 if (!memblock_is_hotpluggable(r))
7277 continue;
7278
Olivier Deprez157378f2022-04-04 15:47:50 +02007279 nid = memblock_get_region_node(r);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007280
7281 usable_startpfn = PFN_DOWN(r->base);
7282 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7283 min(usable_startpfn, zone_movable_pfn[nid]) :
7284 usable_startpfn;
7285 }
7286
7287 goto out2;
7288 }
7289
7290 /*
7291 * If kernelcore=mirror is specified, ignore movablecore option
7292 */
7293 if (mirrored_kernelcore) {
7294 bool mem_below_4gb_not_mirrored = false;
7295
Olivier Deprez157378f2022-04-04 15:47:50 +02007296 for_each_mem_region(r) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007297 if (memblock_is_mirror(r))
7298 continue;
7299
Olivier Deprez157378f2022-04-04 15:47:50 +02007300 nid = memblock_get_region_node(r);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007301
7302 usable_startpfn = memblock_region_memory_base_pfn(r);
7303
7304 if (usable_startpfn < 0x100000) {
7305 mem_below_4gb_not_mirrored = true;
7306 continue;
7307 }
7308
7309 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7310 min(usable_startpfn, zone_movable_pfn[nid]) :
7311 usable_startpfn;
7312 }
7313
7314 if (mem_below_4gb_not_mirrored)
Olivier Deprez157378f2022-04-04 15:47:50 +02007315 pr_warn("This configuration results in unmirrored kernel memory.\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007316
7317 goto out2;
7318 }
7319
7320 /*
7321 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7322 * amount of necessary memory.
7323 */
7324 if (required_kernelcore_percent)
7325 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7326 10000UL;
7327 if (required_movablecore_percent)
7328 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7329 10000UL;
7330
7331 /*
7332 * If movablecore= was specified, calculate what size of
7333 * kernelcore that corresponds so that memory usable for
7334 * any allocation type is evenly spread. If both kernelcore
7335 * and movablecore are specified, then the value of kernelcore
7336 * will be used for required_kernelcore if it's greater than
7337 * what movablecore would have allowed.
7338 */
7339 if (required_movablecore) {
7340 unsigned long corepages;
7341
7342 /*
7343 * Round-up so that ZONE_MOVABLE is at least as large as what
7344 * was requested by the user
7345 */
7346 required_movablecore =
7347 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7348 required_movablecore = min(totalpages, required_movablecore);
7349 corepages = totalpages - required_movablecore;
7350
7351 required_kernelcore = max(required_kernelcore, corepages);
7352 }
7353
7354 /*
7355 * If kernelcore was not specified or kernelcore size is larger
7356 * than totalpages, there is no ZONE_MOVABLE.
7357 */
7358 if (!required_kernelcore || required_kernelcore >= totalpages)
7359 goto out;
7360
7361 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7362 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7363
7364restart:
7365 /* Spread kernelcore memory as evenly as possible throughout nodes */
7366 kernelcore_node = required_kernelcore / usable_nodes;
7367 for_each_node_state(nid, N_MEMORY) {
7368 unsigned long start_pfn, end_pfn;
7369
7370 /*
7371 * Recalculate kernelcore_node if the division per node
7372 * now exceeds what is necessary to satisfy the requested
7373 * amount of memory for the kernel
7374 */
7375 if (required_kernelcore < kernelcore_node)
7376 kernelcore_node = required_kernelcore / usable_nodes;
7377
7378 /*
7379 * As the map is walked, we track how much memory is usable
7380 * by the kernel using kernelcore_remaining. When it is
7381 * 0, the rest of the node is usable by ZONE_MOVABLE
7382 */
7383 kernelcore_remaining = kernelcore_node;
7384
7385 /* Go through each range of PFNs within this node */
7386 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7387 unsigned long size_pages;
7388
7389 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7390 if (start_pfn >= end_pfn)
7391 continue;
7392
7393 /* Account for what is only usable for kernelcore */
7394 if (start_pfn < usable_startpfn) {
7395 unsigned long kernel_pages;
7396 kernel_pages = min(end_pfn, usable_startpfn)
7397 - start_pfn;
7398
7399 kernelcore_remaining -= min(kernel_pages,
7400 kernelcore_remaining);
7401 required_kernelcore -= min(kernel_pages,
7402 required_kernelcore);
7403
7404 /* Continue if range is now fully accounted */
7405 if (end_pfn <= usable_startpfn) {
7406
7407 /*
7408 * Push zone_movable_pfn to the end so
7409 * that if we have to rebalance
7410 * kernelcore across nodes, we will
7411 * not double account here
7412 */
7413 zone_movable_pfn[nid] = end_pfn;
7414 continue;
7415 }
7416 start_pfn = usable_startpfn;
7417 }
7418
7419 /*
7420 * The usable PFN range for ZONE_MOVABLE is from
7421 * start_pfn->end_pfn. Calculate size_pages as the
7422 * number of pages used as kernelcore
7423 */
7424 size_pages = end_pfn - start_pfn;
7425 if (size_pages > kernelcore_remaining)
7426 size_pages = kernelcore_remaining;
7427 zone_movable_pfn[nid] = start_pfn + size_pages;
7428
7429 /*
7430 * Some kernelcore has been met, update counts and
7431 * break if the kernelcore for this node has been
7432 * satisfied
7433 */
7434 required_kernelcore -= min(required_kernelcore,
7435 size_pages);
7436 kernelcore_remaining -= size_pages;
7437 if (!kernelcore_remaining)
7438 break;
7439 }
7440 }
7441
7442 /*
7443 * If there is still required_kernelcore, we do another pass with one
7444 * less node in the count. This will push zone_movable_pfn[nid] further
7445 * along on the nodes that still have memory until kernelcore is
7446 * satisfied
7447 */
7448 usable_nodes--;
7449 if (usable_nodes && required_kernelcore > usable_nodes)
7450 goto restart;
7451
7452out2:
7453 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
Olivier Deprez92d4c212022-12-06 15:05:30 +01007454 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7455 unsigned long start_pfn, end_pfn;
7456
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007457 zone_movable_pfn[nid] =
7458 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7459
Olivier Deprez92d4c212022-12-06 15:05:30 +01007460 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7461 if (zone_movable_pfn[nid] >= end_pfn)
7462 zone_movable_pfn[nid] = 0;
7463 }
7464
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007465out:
7466 /* restore the node_state */
7467 node_states[N_MEMORY] = saved_node_state;
7468}
7469
7470/* Any regular or high memory on that node ? */
7471static void check_for_memory(pg_data_t *pgdat, int nid)
7472{
7473 enum zone_type zone_type;
7474
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007475 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7476 struct zone *zone = &pgdat->node_zones[zone_type];
7477 if (populated_zone(zone)) {
David Brazdil0f672f62019-12-10 10:32:29 +00007478 if (IS_ENABLED(CONFIG_HIGHMEM))
7479 node_set_state(nid, N_HIGH_MEMORY);
7480 if (zone_type <= ZONE_NORMAL)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007481 node_set_state(nid, N_NORMAL_MEMORY);
7482 break;
7483 }
7484 }
7485}
7486
Olivier Deprez157378f2022-04-04 15:47:50 +02007487/*
7488 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7489 * such cases we allow max_zone_pfn sorted in the descending order
7490 */
7491bool __weak arch_has_descending_max_zone_pfns(void)
7492{
7493 return false;
7494}
7495
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007496/**
Olivier Deprez157378f2022-04-04 15:47:50 +02007497 * free_area_init - Initialise all pg_data_t and zone data
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007498 * @max_zone_pfn: an array of max PFNs for each zone
7499 *
7500 * This will call free_area_init_node() for each active node in the system.
7501 * Using the page ranges provided by memblock_set_node(), the size of each
7502 * zone in each node and their holes is calculated. If the maximum PFN
7503 * between two adjacent zones match, it is assumed that the zone is empty.
7504 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7505 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7506 * starts where the previous one ended. For example, ZONE_DMA32 starts
7507 * at arch_max_dma_pfn.
7508 */
Olivier Deprez157378f2022-04-04 15:47:50 +02007509void __init free_area_init(unsigned long *max_zone_pfn)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007510{
7511 unsigned long start_pfn, end_pfn;
Olivier Deprez157378f2022-04-04 15:47:50 +02007512 int i, nid, zone;
7513 bool descending;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007514
7515 /* Record where the zone boundaries are */
7516 memset(arch_zone_lowest_possible_pfn, 0,
7517 sizeof(arch_zone_lowest_possible_pfn));
7518 memset(arch_zone_highest_possible_pfn, 0,
7519 sizeof(arch_zone_highest_possible_pfn));
7520
7521 start_pfn = find_min_pfn_with_active_regions();
Olivier Deprez157378f2022-04-04 15:47:50 +02007522 descending = arch_has_descending_max_zone_pfns();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007523
7524 for (i = 0; i < MAX_NR_ZONES; i++) {
Olivier Deprez157378f2022-04-04 15:47:50 +02007525 if (descending)
7526 zone = MAX_NR_ZONES - i - 1;
7527 else
7528 zone = i;
7529
7530 if (zone == ZONE_MOVABLE)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007531 continue;
7532
Olivier Deprez157378f2022-04-04 15:47:50 +02007533 end_pfn = max(max_zone_pfn[zone], start_pfn);
7534 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7535 arch_zone_highest_possible_pfn[zone] = end_pfn;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007536
7537 start_pfn = end_pfn;
7538 }
7539
7540 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7541 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7542 find_zone_movable_pfns_for_nodes();
7543
7544 /* Print out the zone ranges */
7545 pr_info("Zone ranges:\n");
7546 for (i = 0; i < MAX_NR_ZONES; i++) {
7547 if (i == ZONE_MOVABLE)
7548 continue;
7549 pr_info(" %-8s ", zone_names[i]);
7550 if (arch_zone_lowest_possible_pfn[i] ==
7551 arch_zone_highest_possible_pfn[i])
7552 pr_cont("empty\n");
7553 else
7554 pr_cont("[mem %#018Lx-%#018Lx]\n",
7555 (u64)arch_zone_lowest_possible_pfn[i]
7556 << PAGE_SHIFT,
7557 ((u64)arch_zone_highest_possible_pfn[i]
7558 << PAGE_SHIFT) - 1);
7559 }
7560
7561 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7562 pr_info("Movable zone start for each node\n");
7563 for (i = 0; i < MAX_NUMNODES; i++) {
7564 if (zone_movable_pfn[i])
7565 pr_info(" Node %d: %#018Lx\n", i,
7566 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7567 }
7568
David Brazdil0f672f62019-12-10 10:32:29 +00007569 /*
7570 * Print out the early node map, and initialize the
7571 * subsection-map relative to active online memory ranges to
7572 * enable future "sub-section" extensions of the memory map.
7573 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007574 pr_info("Early memory node ranges\n");
David Brazdil0f672f62019-12-10 10:32:29 +00007575 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007576 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7577 (u64)start_pfn << PAGE_SHIFT,
7578 ((u64)end_pfn << PAGE_SHIFT) - 1);
David Brazdil0f672f62019-12-10 10:32:29 +00007579 subsection_map_init(start_pfn, end_pfn - start_pfn);
7580 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007581
7582 /* Initialise every node */
7583 mminit_verify_pageflags_layout();
7584 setup_nr_node_ids();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007585 for_each_online_node(nid) {
7586 pg_data_t *pgdat = NODE_DATA(nid);
Olivier Deprez157378f2022-04-04 15:47:50 +02007587 free_area_init_node(nid);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007588
7589 /* Any memory on that node */
7590 if (pgdat->node_present_pages)
7591 node_set_state(nid, N_MEMORY);
7592 check_for_memory(pgdat, nid);
7593 }
Olivier Deprez157378f2022-04-04 15:47:50 +02007594
7595 memmap_init();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007596}
7597
7598static int __init cmdline_parse_core(char *p, unsigned long *core,
7599 unsigned long *percent)
7600{
7601 unsigned long long coremem;
7602 char *endptr;
7603
7604 if (!p)
7605 return -EINVAL;
7606
7607 /* Value may be a percentage of total memory, otherwise bytes */
7608 coremem = simple_strtoull(p, &endptr, 0);
7609 if (*endptr == '%') {
7610 /* Paranoid check for percent values greater than 100 */
7611 WARN_ON(coremem > 100);
7612
7613 *percent = coremem;
7614 } else {
7615 coremem = memparse(p, &p);
7616 /* Paranoid check that UL is enough for the coremem value */
7617 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7618
7619 *core = coremem >> PAGE_SHIFT;
7620 *percent = 0UL;
7621 }
7622 return 0;
7623}
7624
7625/*
7626 * kernelcore=size sets the amount of memory for use for allocations that
7627 * cannot be reclaimed or migrated.
7628 */
7629static int __init cmdline_parse_kernelcore(char *p)
7630{
7631 /* parse kernelcore=mirror */
7632 if (parse_option_str(p, "mirror")) {
7633 mirrored_kernelcore = true;
7634 return 0;
7635 }
7636
7637 return cmdline_parse_core(p, &required_kernelcore,
7638 &required_kernelcore_percent);
7639}
7640
7641/*
7642 * movablecore=size sets the amount of memory for use for allocations that
7643 * can be reclaimed or migrated.
7644 */
7645static int __init cmdline_parse_movablecore(char *p)
7646{
7647 return cmdline_parse_core(p, &required_movablecore,
7648 &required_movablecore_percent);
7649}
7650
7651early_param("kernelcore", cmdline_parse_kernelcore);
7652early_param("movablecore", cmdline_parse_movablecore);
7653
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007654void adjust_managed_page_count(struct page *page, long count)
7655{
David Brazdil0f672f62019-12-10 10:32:29 +00007656 atomic_long_add(count, &page_zone(page)->managed_pages);
7657 totalram_pages_add(count);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007658#ifdef CONFIG_HIGHMEM
7659 if (PageHighMem(page))
David Brazdil0f672f62019-12-10 10:32:29 +00007660 totalhigh_pages_add(count);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007661#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007662}
7663EXPORT_SYMBOL(adjust_managed_page_count);
7664
David Brazdil0f672f62019-12-10 10:32:29 +00007665unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007666{
7667 void *pos;
7668 unsigned long pages = 0;
7669
7670 start = (void *)PAGE_ALIGN((unsigned long)start);
7671 end = (void *)((unsigned long)end & PAGE_MASK);
7672 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7673 struct page *page = virt_to_page(pos);
7674 void *direct_map_addr;
7675
7676 /*
7677 * 'direct_map_addr' might be different from 'pos'
7678 * because some architectures' virt_to_page()
7679 * work with aliases. Getting the direct map
7680 * address ensures that we get a _writeable_
7681 * alias for the memset().
7682 */
7683 direct_map_addr = page_address(page);
7684 if ((unsigned int)poison <= 0xFF)
7685 memset(direct_map_addr, poison, PAGE_SIZE);
7686
7687 free_reserved_page(page);
7688 }
7689
7690 if (pages && s)
7691 pr_info("Freeing %s memory: %ldK\n",
7692 s, pages << (PAGE_SHIFT - 10));
7693
7694 return pages;
7695}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007696
7697#ifdef CONFIG_HIGHMEM
7698void free_highmem_page(struct page *page)
7699{
7700 __free_reserved_page(page);
David Brazdil0f672f62019-12-10 10:32:29 +00007701 totalram_pages_inc();
7702 atomic_long_inc(&page_zone(page)->managed_pages);
7703 totalhigh_pages_inc();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007704}
7705#endif
7706
7707
7708void __init mem_init_print_info(const char *str)
7709{
7710 unsigned long physpages, codesize, datasize, rosize, bss_size;
7711 unsigned long init_code_size, init_data_size;
7712
7713 physpages = get_num_physpages();
7714 codesize = _etext - _stext;
7715 datasize = _edata - _sdata;
7716 rosize = __end_rodata - __start_rodata;
7717 bss_size = __bss_stop - __bss_start;
7718 init_data_size = __init_end - __init_begin;
7719 init_code_size = _einittext - _sinittext;
7720
7721 /*
7722 * Detect special cases and adjust section sizes accordingly:
7723 * 1) .init.* may be embedded into .data sections
7724 * 2) .init.text.* may be out of [__init_begin, __init_end],
7725 * please refer to arch/tile/kernel/vmlinux.lds.S.
7726 * 3) .rodata.* may be embedded into .text or .data sections.
7727 */
7728#define adj_init_size(start, end, size, pos, adj) \
7729 do { \
Olivier Deprez92d4c212022-12-06 15:05:30 +01007730 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007731 size -= adj; \
7732 } while (0)
7733
7734 adj_init_size(__init_begin, __init_end, init_data_size,
7735 _sinittext, init_code_size);
7736 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7737 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7738 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7739 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7740
7741#undef adj_init_size
7742
7743 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7744#ifdef CONFIG_HIGHMEM
7745 ", %luK highmem"
7746#endif
7747 "%s%s)\n",
7748 nr_free_pages() << (PAGE_SHIFT - 10),
7749 physpages << (PAGE_SHIFT - 10),
7750 codesize >> 10, datasize >> 10, rosize >> 10,
7751 (init_data_size + init_code_size) >> 10, bss_size >> 10,
David Brazdil0f672f62019-12-10 10:32:29 +00007752 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007753 totalcma_pages << (PAGE_SHIFT - 10),
7754#ifdef CONFIG_HIGHMEM
David Brazdil0f672f62019-12-10 10:32:29 +00007755 totalhigh_pages() << (PAGE_SHIFT - 10),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007756#endif
7757 str ? ", " : "", str ? str : "");
7758}
7759
7760/**
7761 * set_dma_reserve - set the specified number of pages reserved in the first zone
7762 * @new_dma_reserve: The number of pages to mark reserved
7763 *
7764 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7765 * In the DMA zone, a significant percentage may be consumed by kernel image
7766 * and other unfreeable allocations which can skew the watermarks badly. This
7767 * function may optionally be used to account for unfreeable pages in the
7768 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7769 * smaller per-cpu batchsize.
7770 */
7771void __init set_dma_reserve(unsigned long new_dma_reserve)
7772{
7773 dma_reserve = new_dma_reserve;
7774}
7775
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007776static int page_alloc_cpu_dead(unsigned int cpu)
7777{
7778
7779 lru_add_drain_cpu(cpu);
7780 drain_pages(cpu);
7781
7782 /*
7783 * Spill the event counters of the dead processor
7784 * into the current processors event counters.
7785 * This artificially elevates the count of the current
7786 * processor.
7787 */
7788 vm_events_fold_cpu(cpu);
7789
7790 /*
7791 * Zero the differential counters of the dead processor
7792 * so that the vm statistics are consistent.
7793 *
7794 * This is only okay since the processor is dead and cannot
7795 * race with what we are doing.
7796 */
7797 cpu_vm_stats_fold(cpu);
7798 return 0;
7799}
7800
David Brazdil0f672f62019-12-10 10:32:29 +00007801#ifdef CONFIG_NUMA
7802int hashdist = HASHDIST_DEFAULT;
7803
7804static int __init set_hashdist(char *str)
7805{
7806 if (!str)
7807 return 0;
7808 hashdist = simple_strtoul(str, &str, 0);
7809 return 1;
7810}
7811__setup("hashdist=", set_hashdist);
7812#endif
7813
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007814void __init page_alloc_init(void)
7815{
7816 int ret;
7817
David Brazdil0f672f62019-12-10 10:32:29 +00007818#ifdef CONFIG_NUMA
7819 if (num_node_state(N_MEMORY) == 1)
7820 hashdist = 0;
7821#endif
7822
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007823 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7824 "mm/page_alloc:dead", NULL,
7825 page_alloc_cpu_dead);
7826 WARN_ON(ret < 0);
7827}
7828
7829/*
7830 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7831 * or min_free_kbytes changes.
7832 */
7833static void calculate_totalreserve_pages(void)
7834{
7835 struct pglist_data *pgdat;
7836 unsigned long reserve_pages = 0;
7837 enum zone_type i, j;
7838
7839 for_each_online_pgdat(pgdat) {
7840
7841 pgdat->totalreserve_pages = 0;
7842
7843 for (i = 0; i < MAX_NR_ZONES; i++) {
7844 struct zone *zone = pgdat->node_zones + i;
7845 long max = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00007846 unsigned long managed_pages = zone_managed_pages(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007847
7848 /* Find valid and maximum lowmem_reserve in the zone */
7849 for (j = i; j < MAX_NR_ZONES; j++) {
7850 if (zone->lowmem_reserve[j] > max)
7851 max = zone->lowmem_reserve[j];
7852 }
7853
7854 /* we treat the high watermark as reserved pages. */
7855 max += high_wmark_pages(zone);
7856
David Brazdil0f672f62019-12-10 10:32:29 +00007857 if (max > managed_pages)
7858 max = managed_pages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007859
7860 pgdat->totalreserve_pages += max;
7861
7862 reserve_pages += max;
7863 }
7864 }
7865 totalreserve_pages = reserve_pages;
7866}
7867
7868/*
7869 * setup_per_zone_lowmem_reserve - called whenever
7870 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7871 * has a correct pages reserved value, so an adequate number of
7872 * pages are left in the zone after a successful __alloc_pages().
7873 */
7874static void setup_per_zone_lowmem_reserve(void)
7875{
7876 struct pglist_data *pgdat;
Olivier Deprez157378f2022-04-04 15:47:50 +02007877 enum zone_type i, j;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007878
7879 for_each_online_pgdat(pgdat) {
Olivier Deprez157378f2022-04-04 15:47:50 +02007880 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
7881 struct zone *zone = &pgdat->node_zones[i];
7882 int ratio = sysctl_lowmem_reserve_ratio[i];
7883 bool clear = !ratio || !zone_managed_pages(zone);
7884 unsigned long managed_pages = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007885
Olivier Deprez157378f2022-04-04 15:47:50 +02007886 for (j = i + 1; j < MAX_NR_ZONES; j++) {
7887 struct zone *upper_zone = &pgdat->node_zones[j];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007888
Olivier Deprez157378f2022-04-04 15:47:50 +02007889 managed_pages += zone_managed_pages(upper_zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007890
Olivier Deprez157378f2022-04-04 15:47:50 +02007891 if (clear)
7892 zone->lowmem_reserve[j] = 0;
7893 else
7894 zone->lowmem_reserve[j] = managed_pages / ratio;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007895 }
7896 }
7897 }
7898
7899 /* update totalreserve_pages */
7900 calculate_totalreserve_pages();
7901}
7902
7903static void __setup_per_zone_wmarks(void)
7904{
7905 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7906 unsigned long lowmem_pages = 0;
7907 struct zone *zone;
7908 unsigned long flags;
7909
7910 /* Calculate total number of !ZONE_HIGHMEM pages */
7911 for_each_zone(zone) {
7912 if (!is_highmem(zone))
David Brazdil0f672f62019-12-10 10:32:29 +00007913 lowmem_pages += zone_managed_pages(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007914 }
7915
7916 for_each_zone(zone) {
7917 u64 tmp;
7918
7919 spin_lock_irqsave(&zone->lock, flags);
David Brazdil0f672f62019-12-10 10:32:29 +00007920 tmp = (u64)pages_min * zone_managed_pages(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007921 do_div(tmp, lowmem_pages);
7922 if (is_highmem(zone)) {
7923 /*
7924 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7925 * need highmem pages, so cap pages_min to a small
7926 * value here.
7927 *
7928 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
David Brazdil0f672f62019-12-10 10:32:29 +00007929 * deltas control async page reclaim, and so should
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007930 * not be capped for highmem.
7931 */
7932 unsigned long min_pages;
7933
David Brazdil0f672f62019-12-10 10:32:29 +00007934 min_pages = zone_managed_pages(zone) / 1024;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007935 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
David Brazdil0f672f62019-12-10 10:32:29 +00007936 zone->_watermark[WMARK_MIN] = min_pages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007937 } else {
7938 /*
7939 * If it's a lowmem zone, reserve a number of pages
7940 * proportionate to the zone's size.
7941 */
David Brazdil0f672f62019-12-10 10:32:29 +00007942 zone->_watermark[WMARK_MIN] = tmp;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007943 }
7944
7945 /*
7946 * Set the kswapd watermarks distance according to the
7947 * scale factor in proportion to available memory, but
7948 * ensure a minimum size on small systems.
7949 */
7950 tmp = max_t(u64, tmp >> 2,
David Brazdil0f672f62019-12-10 10:32:29 +00007951 mult_frac(zone_managed_pages(zone),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007952 watermark_scale_factor, 10000));
7953
Olivier Deprez157378f2022-04-04 15:47:50 +02007954 zone->watermark_boost = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00007955 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7956 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007957
7958 spin_unlock_irqrestore(&zone->lock, flags);
7959 }
7960
7961 /* update totalreserve_pages */
7962 calculate_totalreserve_pages();
7963}
7964
7965/**
7966 * setup_per_zone_wmarks - called when min_free_kbytes changes
7967 * or when memory is hot-{added|removed}
7968 *
7969 * Ensures that the watermark[min,low,high] values for each zone are set
7970 * correctly with respect to min_free_kbytes.
7971 */
7972void setup_per_zone_wmarks(void)
7973{
7974 static DEFINE_SPINLOCK(lock);
7975
7976 spin_lock(&lock);
7977 __setup_per_zone_wmarks();
7978 spin_unlock(&lock);
7979}
7980
7981/*
7982 * Initialise min_free_kbytes.
7983 *
7984 * For small machines we want it small (128k min). For large machines
Olivier Deprez157378f2022-04-04 15:47:50 +02007985 * we want it large (256MB max). But it is not linear, because network
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007986 * bandwidth does not increase linearly with machine size. We use
7987 *
7988 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7989 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7990 *
7991 * which yields
7992 *
7993 * 16MB: 512k
7994 * 32MB: 724k
7995 * 64MB: 1024k
7996 * 128MB: 1448k
7997 * 256MB: 2048k
7998 * 512MB: 2896k
7999 * 1024MB: 4096k
8000 * 2048MB: 5792k
8001 * 4096MB: 8192k
8002 * 8192MB: 11584k
8003 * 16384MB: 16384k
8004 */
8005int __meminit init_per_zone_wmark_min(void)
8006{
8007 unsigned long lowmem_kbytes;
8008 int new_min_free_kbytes;
8009
8010 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8011 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8012
8013 if (new_min_free_kbytes > user_min_free_kbytes) {
8014 min_free_kbytes = new_min_free_kbytes;
8015 if (min_free_kbytes < 128)
8016 min_free_kbytes = 128;
Olivier Deprez157378f2022-04-04 15:47:50 +02008017 if (min_free_kbytes > 262144)
8018 min_free_kbytes = 262144;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008019 } else {
8020 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8021 new_min_free_kbytes, user_min_free_kbytes);
8022 }
8023 setup_per_zone_wmarks();
8024 refresh_zone_stat_thresholds();
8025 setup_per_zone_lowmem_reserve();
8026
8027#ifdef CONFIG_NUMA
8028 setup_min_unmapped_ratio();
8029 setup_min_slab_ratio();
8030#endif
8031
Olivier Deprez0e641232021-09-23 10:07:05 +02008032 khugepaged_min_free_kbytes_update();
8033
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008034 return 0;
8035}
Olivier Deprez0e641232021-09-23 10:07:05 +02008036postcore_initcall(init_per_zone_wmark_min)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008037
8038/*
8039 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8040 * that we can call two helper functions whenever min_free_kbytes
8041 * changes.
8042 */
8043int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
Olivier Deprez157378f2022-04-04 15:47:50 +02008044 void *buffer, size_t *length, loff_t *ppos)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008045{
8046 int rc;
8047
8048 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8049 if (rc)
8050 return rc;
8051
8052 if (write) {
8053 user_min_free_kbytes = min_free_kbytes;
8054 setup_per_zone_wmarks();
8055 }
8056 return 0;
8057}
8058
8059int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
Olivier Deprez157378f2022-04-04 15:47:50 +02008060 void *buffer, size_t *length, loff_t *ppos)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008061{
8062 int rc;
8063
8064 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8065 if (rc)
8066 return rc;
8067
8068 if (write)
8069 setup_per_zone_wmarks();
8070
8071 return 0;
8072}
8073
8074#ifdef CONFIG_NUMA
8075static void setup_min_unmapped_ratio(void)
8076{
8077 pg_data_t *pgdat;
8078 struct zone *zone;
8079
8080 for_each_online_pgdat(pgdat)
8081 pgdat->min_unmapped_pages = 0;
8082
8083 for_each_zone(zone)
David Brazdil0f672f62019-12-10 10:32:29 +00008084 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8085 sysctl_min_unmapped_ratio) / 100;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008086}
8087
8088
8089int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
Olivier Deprez157378f2022-04-04 15:47:50 +02008090 void *buffer, size_t *length, loff_t *ppos)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008091{
8092 int rc;
8093
8094 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8095 if (rc)
8096 return rc;
8097
8098 setup_min_unmapped_ratio();
8099
8100 return 0;
8101}
8102
8103static void setup_min_slab_ratio(void)
8104{
8105 pg_data_t *pgdat;
8106 struct zone *zone;
8107
8108 for_each_online_pgdat(pgdat)
8109 pgdat->min_slab_pages = 0;
8110
8111 for_each_zone(zone)
David Brazdil0f672f62019-12-10 10:32:29 +00008112 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8113 sysctl_min_slab_ratio) / 100;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008114}
8115
8116int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
Olivier Deprez157378f2022-04-04 15:47:50 +02008117 void *buffer, size_t *length, loff_t *ppos)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008118{
8119 int rc;
8120
8121 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8122 if (rc)
8123 return rc;
8124
8125 setup_min_slab_ratio();
8126
8127 return 0;
8128}
8129#endif
8130
8131/*
8132 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8133 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8134 * whenever sysctl_lowmem_reserve_ratio changes.
8135 *
8136 * The reserve ratio obviously has absolutely no relation with the
8137 * minimum watermarks. The lowmem reserve ratio can only make sense
8138 * if in function of the boot time zone sizes.
8139 */
8140int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
Olivier Deprez157378f2022-04-04 15:47:50 +02008141 void *buffer, size_t *length, loff_t *ppos)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008142{
Olivier Deprez157378f2022-04-04 15:47:50 +02008143 int i;
8144
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008145 proc_dointvec_minmax(table, write, buffer, length, ppos);
Olivier Deprez157378f2022-04-04 15:47:50 +02008146
8147 for (i = 0; i < MAX_NR_ZONES; i++) {
8148 if (sysctl_lowmem_reserve_ratio[i] < 1)
8149 sysctl_lowmem_reserve_ratio[i] = 0;
8150 }
8151
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008152 setup_per_zone_lowmem_reserve();
8153 return 0;
8154}
8155
Olivier Deprez157378f2022-04-04 15:47:50 +02008156static void __zone_pcp_update(struct zone *zone)
8157{
8158 unsigned int cpu;
8159
8160 for_each_possible_cpu(cpu)
8161 pageset_set_high_and_batch(zone,
8162 per_cpu_ptr(zone->pageset, cpu));
8163}
8164
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008165/*
8166 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8167 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8168 * pagelist can have before it gets flushed back to buddy allocator.
8169 */
8170int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
Olivier Deprez157378f2022-04-04 15:47:50 +02008171 void *buffer, size_t *length, loff_t *ppos)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008172{
8173 struct zone *zone;
8174 int old_percpu_pagelist_fraction;
8175 int ret;
8176
8177 mutex_lock(&pcp_batch_high_lock);
8178 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8179
8180 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8181 if (!write || ret < 0)
8182 goto out;
8183
8184 /* Sanity checking to avoid pcp imbalance */
8185 if (percpu_pagelist_fraction &&
8186 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8187 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8188 ret = -EINVAL;
8189 goto out;
8190 }
8191
8192 /* No change? */
8193 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8194 goto out;
8195
Olivier Deprez157378f2022-04-04 15:47:50 +02008196 for_each_populated_zone(zone)
8197 __zone_pcp_update(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008198out:
8199 mutex_unlock(&pcp_batch_high_lock);
8200 return ret;
8201}
8202
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008203#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8204/*
8205 * Returns the number of pages that arch has reserved but
8206 * is not known to alloc_large_system_hash().
8207 */
8208static unsigned long __init arch_reserved_kernel_pages(void)
8209{
8210 return 0;
8211}
8212#endif
8213
8214/*
8215 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8216 * machines. As memory size is increased the scale is also increased but at
8217 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8218 * quadruples the scale is increased by one, which means the size of hash table
8219 * only doubles, instead of quadrupling as well.
8220 * Because 32-bit systems cannot have large physical memory, where this scaling
8221 * makes sense, it is disabled on such platforms.
8222 */
8223#if __BITS_PER_LONG > 32
8224#define ADAPT_SCALE_BASE (64ul << 30)
8225#define ADAPT_SCALE_SHIFT 2
8226#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8227#endif
8228
8229/*
8230 * allocate a large system hash table from bootmem
8231 * - it is assumed that the hash table must contain an exact power-of-2
8232 * quantity of entries
8233 * - limit is the number of hash buckets, not the total allocation size
8234 */
8235void *__init alloc_large_system_hash(const char *tablename,
8236 unsigned long bucketsize,
8237 unsigned long numentries,
8238 int scale,
8239 int flags,
8240 unsigned int *_hash_shift,
8241 unsigned int *_hash_mask,
8242 unsigned long low_limit,
8243 unsigned long high_limit)
8244{
8245 unsigned long long max = high_limit;
8246 unsigned long log2qty, size;
8247 void *table = NULL;
8248 gfp_t gfp_flags;
David Brazdil0f672f62019-12-10 10:32:29 +00008249 bool virt;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008250
8251 /* allow the kernel cmdline to have a say */
8252 if (!numentries) {
8253 /* round applicable memory size up to nearest megabyte */
8254 numentries = nr_kernel_pages;
8255 numentries -= arch_reserved_kernel_pages();
8256
8257 /* It isn't necessary when PAGE_SIZE >= 1MB */
8258 if (PAGE_SHIFT < 20)
8259 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8260
8261#if __BITS_PER_LONG > 32
8262 if (!high_limit) {
8263 unsigned long adapt;
8264
8265 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8266 adapt <<= ADAPT_SCALE_SHIFT)
8267 scale++;
8268 }
8269#endif
8270
8271 /* limit to 1 bucket per 2^scale bytes of low memory */
8272 if (scale > PAGE_SHIFT)
8273 numentries >>= (scale - PAGE_SHIFT);
8274 else
8275 numentries <<= (PAGE_SHIFT - scale);
8276
8277 /* Make sure we've got at least a 0-order allocation.. */
8278 if (unlikely(flags & HASH_SMALL)) {
8279 /* Makes no sense without HASH_EARLY */
8280 WARN_ON(!(flags & HASH_EARLY));
8281 if (!(numentries >> *_hash_shift)) {
8282 numentries = 1UL << *_hash_shift;
8283 BUG_ON(!numentries);
8284 }
8285 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8286 numentries = PAGE_SIZE / bucketsize;
8287 }
8288 numentries = roundup_pow_of_two(numentries);
8289
8290 /* limit allocation size to 1/16 total memory by default */
8291 if (max == 0) {
8292 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8293 do_div(max, bucketsize);
8294 }
8295 max = min(max, 0x80000000ULL);
8296
8297 if (numentries < low_limit)
8298 numentries = low_limit;
8299 if (numentries > max)
8300 numentries = max;
8301
8302 log2qty = ilog2(numentries);
8303
8304 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8305 do {
David Brazdil0f672f62019-12-10 10:32:29 +00008306 virt = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008307 size = bucketsize << log2qty;
8308 if (flags & HASH_EARLY) {
8309 if (flags & HASH_ZERO)
David Brazdil0f672f62019-12-10 10:32:29 +00008310 table = memblock_alloc(size, SMP_CACHE_BYTES);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008311 else
David Brazdil0f672f62019-12-10 10:32:29 +00008312 table = memblock_alloc_raw(size,
8313 SMP_CACHE_BYTES);
8314 } else if (get_order(size) >= MAX_ORDER || hashdist) {
Olivier Deprez157378f2022-04-04 15:47:50 +02008315 table = __vmalloc(size, gfp_flags);
David Brazdil0f672f62019-12-10 10:32:29 +00008316 virt = true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008317 } else {
8318 /*
8319 * If bucketsize is not a power-of-two, we may free
8320 * some pages at the end of hash table which
8321 * alloc_pages_exact() automatically does
8322 */
David Brazdil0f672f62019-12-10 10:32:29 +00008323 table = alloc_pages_exact(size, gfp_flags);
8324 kmemleak_alloc(table, size, 1, gfp_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008325 }
8326 } while (!table && size > PAGE_SIZE && --log2qty);
8327
8328 if (!table)
8329 panic("Failed to allocate %s hash table\n", tablename);
8330
David Brazdil0f672f62019-12-10 10:32:29 +00008331 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8332 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8333 virt ? "vmalloc" : "linear");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008334
8335 if (_hash_shift)
8336 *_hash_shift = log2qty;
8337 if (_hash_mask)
8338 *_hash_mask = (1 << log2qty) - 1;
8339
8340 return table;
8341}
8342
8343/*
8344 * This function checks whether pageblock includes unmovable pages or not.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008345 *
8346 * PageLRU check without isolation or lru_lock could race so that
8347 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8348 * check without lock_page also may miss some movable non-lru pages at
8349 * race condition. So you can't expect this function should be exact.
Olivier Deprez157378f2022-04-04 15:47:50 +02008350 *
8351 * Returns a page without holding a reference. If the caller wants to
8352 * dereference that page (e.g., dumping), it has to make sure that it
8353 * cannot get removed (e.g., via memory unplug) concurrently.
8354 *
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008355 */
Olivier Deprez157378f2022-04-04 15:47:50 +02008356struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8357 int migratetype, int flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008358{
David Brazdil0f672f62019-12-10 10:32:29 +00008359 unsigned long iter = 0;
8360 unsigned long pfn = page_to_pfn(page);
Olivier Deprez157378f2022-04-04 15:47:50 +02008361 unsigned long offset = pfn % pageblock_nr_pages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008362
David Brazdil0f672f62019-12-10 10:32:29 +00008363 if (is_migrate_cma_page(page)) {
8364 /*
8365 * CMA allocations (alloc_contig_range) really need to mark
8366 * isolate CMA pageblocks even when they are not movable in fact
8367 * so consider them movable here.
8368 */
8369 if (is_migrate_cma(migratetype))
Olivier Deprez157378f2022-04-04 15:47:50 +02008370 return NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008371
Olivier Deprez157378f2022-04-04 15:47:50 +02008372 return page;
David Brazdil0f672f62019-12-10 10:32:29 +00008373 }
8374
Olivier Deprez157378f2022-04-04 15:47:50 +02008375 for (; iter < pageblock_nr_pages - offset; iter++) {
8376 if (!pfn_valid_within(pfn + iter))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008377 continue;
8378
Olivier Deprez157378f2022-04-04 15:47:50 +02008379 page = pfn_to_page(pfn + iter);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008380
Olivier Deprez157378f2022-04-04 15:47:50 +02008381 /*
8382 * Both, bootmem allocations and memory holes are marked
8383 * PG_reserved and are unmovable. We can even have unmovable
8384 * allocations inside ZONE_MOVABLE, for example when
8385 * specifying "movablecore".
8386 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008387 if (PageReserved(page))
Olivier Deprez157378f2022-04-04 15:47:50 +02008388 return page;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008389
8390 /*
8391 * If the zone is movable and we have ruled out all reserved
8392 * pages then it should be reasonably safe to assume the rest
8393 * is movable.
8394 */
8395 if (zone_idx(zone) == ZONE_MOVABLE)
8396 continue;
8397
8398 /*
8399 * Hugepages are not in LRU lists, but they're movable.
Olivier Deprez157378f2022-04-04 15:47:50 +02008400 * THPs are on the LRU, but need to be counted as #small pages.
David Brazdil0f672f62019-12-10 10:32:29 +00008401 * We need not scan over tail pages because we don't
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008402 * handle each tail page individually in migration.
8403 */
Olivier Deprez157378f2022-04-04 15:47:50 +02008404 if (PageHuge(page) || PageTransCompound(page)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008405 struct page *head = compound_head(page);
8406 unsigned int skip_pages;
8407
Olivier Deprez157378f2022-04-04 15:47:50 +02008408 if (PageHuge(page)) {
8409 if (!hugepage_migration_supported(page_hstate(head)))
8410 return page;
8411 } else if (!PageLRU(head) && !__PageMovable(head)) {
8412 return page;
8413 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008414
David Brazdil0f672f62019-12-10 10:32:29 +00008415 skip_pages = compound_nr(head) - (page - head);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008416 iter += skip_pages - 1;
8417 continue;
8418 }
8419
8420 /*
8421 * We can't use page_count without pin a page
8422 * because another CPU can free compound page.
8423 * This check already skips compound tails of THP
8424 * because their page->_refcount is zero at all time.
8425 */
8426 if (!page_ref_count(page)) {
8427 if (PageBuddy(page))
Olivier Deprez157378f2022-04-04 15:47:50 +02008428 iter += (1 << buddy_order(page)) - 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008429 continue;
8430 }
8431
8432 /*
8433 * The HWPoisoned page may be not in buddy system, and
8434 * page_count() is not 0.
8435 */
Olivier Deprez157378f2022-04-04 15:47:50 +02008436 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008437 continue;
8438
Olivier Deprez157378f2022-04-04 15:47:50 +02008439 /*
8440 * We treat all PageOffline() pages as movable when offlining
8441 * to give drivers a chance to decrement their reference count
8442 * in MEM_GOING_OFFLINE in order to indicate that these pages
8443 * can be offlined as there are no direct references anymore.
8444 * For actually unmovable PageOffline() where the driver does
8445 * not support this, we will fail later when trying to actually
8446 * move these pages that still have a reference count > 0.
8447 * (false negatives in this function only)
8448 */
8449 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008450 continue;
8451
Olivier Deprez157378f2022-04-04 15:47:50 +02008452 if (__PageMovable(page) || PageLRU(page))
8453 continue;
8454
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008455 /*
8456 * If there are RECLAIMABLE pages, we need to check
8457 * it. But now, memory offline itself doesn't call
8458 * shrink_node_slabs() and it still to be fixed.
8459 */
Olivier Deprez157378f2022-04-04 15:47:50 +02008460 return page;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008461 }
Olivier Deprez157378f2022-04-04 15:47:50 +02008462 return NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008463}
8464
David Brazdil0f672f62019-12-10 10:32:29 +00008465#ifdef CONFIG_CONTIG_ALLOC
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008466static unsigned long pfn_max_align_down(unsigned long pfn)
8467{
8468 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8469 pageblock_nr_pages) - 1);
8470}
8471
8472static unsigned long pfn_max_align_up(unsigned long pfn)
8473{
8474 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8475 pageblock_nr_pages));
8476}
8477
8478/* [start, end) must belong to a single zone. */
8479static int __alloc_contig_migrate_range(struct compact_control *cc,
8480 unsigned long start, unsigned long end)
8481{
8482 /* This function is based on compact_zone() from compaction.c. */
Olivier Deprez157378f2022-04-04 15:47:50 +02008483 unsigned int nr_reclaimed;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008484 unsigned long pfn = start;
8485 unsigned int tries = 0;
8486 int ret = 0;
Olivier Deprez157378f2022-04-04 15:47:50 +02008487 struct migration_target_control mtc = {
8488 .nid = zone_to_nid(cc->zone),
8489 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8490 };
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008491
8492 migrate_prep();
8493
8494 while (pfn < end || !list_empty(&cc->migratepages)) {
8495 if (fatal_signal_pending(current)) {
8496 ret = -EINTR;
8497 break;
8498 }
8499
8500 if (list_empty(&cc->migratepages)) {
8501 cc->nr_migratepages = 0;
8502 pfn = isolate_migratepages_range(cc, pfn, end);
8503 if (!pfn) {
8504 ret = -EINTR;
8505 break;
8506 }
8507 tries = 0;
8508 } else if (++tries == 5) {
8509 ret = ret < 0 ? ret : -EBUSY;
8510 break;
8511 }
8512
8513 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8514 &cc->migratepages);
8515 cc->nr_migratepages -= nr_reclaimed;
8516
Olivier Deprez157378f2022-04-04 15:47:50 +02008517 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8518 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008519 }
8520 if (ret < 0) {
8521 putback_movable_pages(&cc->migratepages);
8522 return ret;
8523 }
8524 return 0;
8525}
8526
8527/**
8528 * alloc_contig_range() -- tries to allocate given range of pages
8529 * @start: start PFN to allocate
8530 * @end: one-past-the-last PFN to allocate
8531 * @migratetype: migratetype of the underlaying pageblocks (either
8532 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8533 * in range must have the same migratetype and it must
8534 * be either of the two.
8535 * @gfp_mask: GFP mask to use during compaction
8536 *
8537 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8538 * aligned. The PFN range must belong to a single zone.
8539 *
8540 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8541 * pageblocks in the range. Once isolated, the pageblocks should not
8542 * be modified by others.
8543 *
David Brazdil0f672f62019-12-10 10:32:29 +00008544 * Return: zero on success or negative error code. On success all
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008545 * pages which PFN is in [start, end) are allocated for the caller and
8546 * need to be freed with free_contig_range().
8547 */
8548int alloc_contig_range(unsigned long start, unsigned long end,
8549 unsigned migratetype, gfp_t gfp_mask)
8550{
8551 unsigned long outer_start, outer_end;
8552 unsigned int order;
8553 int ret = 0;
8554
8555 struct compact_control cc = {
8556 .nr_migratepages = 0,
8557 .order = -1,
8558 .zone = page_zone(pfn_to_page(start)),
8559 .mode = MIGRATE_SYNC,
8560 .ignore_skip_hint = true,
8561 .no_set_skip_hint = true,
8562 .gfp_mask = current_gfp_context(gfp_mask),
Olivier Deprez157378f2022-04-04 15:47:50 +02008563 .alloc_contig = true,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008564 };
8565 INIT_LIST_HEAD(&cc.migratepages);
8566
8567 /*
8568 * What we do here is we mark all pageblocks in range as
8569 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8570 * have different sizes, and due to the way page allocator
8571 * work, we align the range to biggest of the two pages so
8572 * that page allocator won't try to merge buddies from
8573 * different pageblocks and change MIGRATE_ISOLATE to some
8574 * other migration type.
8575 *
8576 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8577 * migrate the pages from an unaligned range (ie. pages that
8578 * we are interested in). This will put all the pages in
8579 * range back to page allocator as MIGRATE_ISOLATE.
8580 *
8581 * When this is done, we take the pages in range from page
8582 * allocator removing them from the buddy system. This way
8583 * page allocator will never consider using them.
8584 *
8585 * This lets us mark the pageblocks back as
8586 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8587 * aligned range but not in the unaligned, original range are
8588 * put back to page allocator so that buddy can use them.
8589 */
8590
8591 ret = start_isolate_page_range(pfn_max_align_down(start),
David Brazdil0f672f62019-12-10 10:32:29 +00008592 pfn_max_align_up(end), migratetype, 0);
Olivier Deprez157378f2022-04-04 15:47:50 +02008593 if (ret)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008594 return ret;
8595
8596 /*
8597 * In case of -EBUSY, we'd like to know which page causes problem.
8598 * So, just fall through. test_pages_isolated() has a tracepoint
8599 * which will report the busy page.
8600 *
8601 * It is possible that busy pages could become available before
8602 * the call to test_pages_isolated, and the range will actually be
8603 * allocated. So, if we fall through be sure to clear ret so that
8604 * -EBUSY is not accidentally used or returned to caller.
8605 */
8606 ret = __alloc_contig_migrate_range(&cc, start, end);
8607 if (ret && ret != -EBUSY)
8608 goto done;
8609 ret =0;
8610
8611 /*
8612 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8613 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8614 * more, all pages in [start, end) are free in page allocator.
8615 * What we are going to do is to allocate all pages from
8616 * [start, end) (that is remove them from page allocator).
8617 *
8618 * The only problem is that pages at the beginning and at the
8619 * end of interesting range may be not aligned with pages that
8620 * page allocator holds, ie. they can be part of higher order
8621 * pages. Because of this, we reserve the bigger range and
8622 * once this is done free the pages we are not interested in.
8623 *
8624 * We don't have to hold zone->lock here because the pages are
8625 * isolated thus they won't get removed from buddy.
8626 */
8627
8628 lru_add_drain_all();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008629
8630 order = 0;
8631 outer_start = start;
8632 while (!PageBuddy(pfn_to_page(outer_start))) {
8633 if (++order >= MAX_ORDER) {
8634 outer_start = start;
8635 break;
8636 }
8637 outer_start &= ~0UL << order;
8638 }
8639
8640 if (outer_start != start) {
Olivier Deprez157378f2022-04-04 15:47:50 +02008641 order = buddy_order(pfn_to_page(outer_start));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008642
8643 /*
8644 * outer_start page could be small order buddy page and
8645 * it doesn't include start page. Adjust outer_start
8646 * in this case to report failed page properly
8647 * on tracepoint in test_pages_isolated()
8648 */
8649 if (outer_start + (1UL << order) <= start)
8650 outer_start = start;
8651 }
8652
8653 /* Make sure the range is really isolated. */
Olivier Deprez157378f2022-04-04 15:47:50 +02008654 if (test_pages_isolated(outer_start, end, 0)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008655 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8656 __func__, outer_start, end);
8657 ret = -EBUSY;
8658 goto done;
8659 }
8660
8661 /* Grab isolated pages from freelists. */
8662 outer_end = isolate_freepages_range(&cc, outer_start, end);
8663 if (!outer_end) {
8664 ret = -EBUSY;
8665 goto done;
8666 }
8667
8668 /* Free head and tail (if any) */
8669 if (start != outer_start)
8670 free_contig_range(outer_start, start - outer_start);
8671 if (end != outer_end)
8672 free_contig_range(end, outer_end - end);
8673
8674done:
8675 undo_isolate_page_range(pfn_max_align_down(start),
8676 pfn_max_align_up(end), migratetype);
8677 return ret;
8678}
Olivier Deprez157378f2022-04-04 15:47:50 +02008679EXPORT_SYMBOL(alloc_contig_range);
8680
8681static int __alloc_contig_pages(unsigned long start_pfn,
8682 unsigned long nr_pages, gfp_t gfp_mask)
8683{
8684 unsigned long end_pfn = start_pfn + nr_pages;
8685
8686 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8687 gfp_mask);
8688}
8689
8690static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8691 unsigned long nr_pages)
8692{
8693 unsigned long i, end_pfn = start_pfn + nr_pages;
8694 struct page *page;
8695
8696 for (i = start_pfn; i < end_pfn; i++) {
8697 page = pfn_to_online_page(i);
8698 if (!page)
8699 return false;
8700
8701 if (page_zone(page) != z)
8702 return false;
8703
8704 if (PageReserved(page))
8705 return false;
8706
8707 if (page_count(page) > 0)
8708 return false;
8709
8710 if (PageHuge(page))
8711 return false;
8712 }
8713 return true;
8714}
8715
8716static bool zone_spans_last_pfn(const struct zone *zone,
8717 unsigned long start_pfn, unsigned long nr_pages)
8718{
8719 unsigned long last_pfn = start_pfn + nr_pages - 1;
8720
8721 return zone_spans_pfn(zone, last_pfn);
8722}
8723
8724/**
8725 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8726 * @nr_pages: Number of contiguous pages to allocate
8727 * @gfp_mask: GFP mask to limit search and used during compaction
8728 * @nid: Target node
8729 * @nodemask: Mask for other possible nodes
8730 *
8731 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8732 * on an applicable zonelist to find a contiguous pfn range which can then be
8733 * tried for allocation with alloc_contig_range(). This routine is intended
8734 * for allocation requests which can not be fulfilled with the buddy allocator.
8735 *
8736 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8737 * power of two then the alignment is guaranteed to be to the given nr_pages
8738 * (e.g. 1GB request would be aligned to 1GB).
8739 *
8740 * Allocated pages can be freed with free_contig_range() or by manually calling
8741 * __free_page() on each allocated page.
8742 *
8743 * Return: pointer to contiguous pages on success, or NULL if not successful.
8744 */
8745struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8746 int nid, nodemask_t *nodemask)
8747{
8748 unsigned long ret, pfn, flags;
8749 struct zonelist *zonelist;
8750 struct zone *zone;
8751 struct zoneref *z;
8752
8753 zonelist = node_zonelist(nid, gfp_mask);
8754 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8755 gfp_zone(gfp_mask), nodemask) {
8756 spin_lock_irqsave(&zone->lock, flags);
8757
8758 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8759 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8760 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8761 /*
8762 * We release the zone lock here because
8763 * alloc_contig_range() will also lock the zone
8764 * at some point. If there's an allocation
8765 * spinning on this lock, it may win the race
8766 * and cause alloc_contig_range() to fail...
8767 */
8768 spin_unlock_irqrestore(&zone->lock, flags);
8769 ret = __alloc_contig_pages(pfn, nr_pages,
8770 gfp_mask);
8771 if (!ret)
8772 return pfn_to_page(pfn);
8773 spin_lock_irqsave(&zone->lock, flags);
8774 }
8775 pfn += nr_pages;
8776 }
8777 spin_unlock_irqrestore(&zone->lock, flags);
8778 }
8779 return NULL;
8780}
David Brazdil0f672f62019-12-10 10:32:29 +00008781#endif /* CONFIG_CONTIG_ALLOC */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008782
David Brazdil0f672f62019-12-10 10:32:29 +00008783void free_contig_range(unsigned long pfn, unsigned int nr_pages)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008784{
8785 unsigned int count = 0;
8786
8787 for (; nr_pages--; pfn++) {
8788 struct page *page = pfn_to_page(pfn);
8789
8790 count += page_count(page) != 1;
8791 __free_page(page);
8792 }
8793 WARN(count != 0, "%d pages are still in use!\n", count);
8794}
Olivier Deprez157378f2022-04-04 15:47:50 +02008795EXPORT_SYMBOL(free_contig_range);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008796
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008797/*
8798 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8799 * page high values need to be recalulated.
8800 */
8801void __meminit zone_pcp_update(struct zone *zone)
8802{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008803 mutex_lock(&pcp_batch_high_lock);
Olivier Deprez157378f2022-04-04 15:47:50 +02008804 __zone_pcp_update(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008805 mutex_unlock(&pcp_batch_high_lock);
8806}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008807
8808void zone_pcp_reset(struct zone *zone)
8809{
8810 unsigned long flags;
8811 int cpu;
8812 struct per_cpu_pageset *pset;
8813
8814 /* avoid races with drain_pages() */
8815 local_irq_save(flags);
8816 if (zone->pageset != &boot_pageset) {
8817 for_each_online_cpu(cpu) {
8818 pset = per_cpu_ptr(zone->pageset, cpu);
8819 drain_zonestat(zone, pset);
8820 }
8821 free_percpu(zone->pageset);
8822 zone->pageset = &boot_pageset;
8823 }
8824 local_irq_restore(flags);
8825}
8826
8827#ifdef CONFIG_MEMORY_HOTREMOVE
8828/*
Olivier Deprez157378f2022-04-04 15:47:50 +02008829 * All pages in the range must be in a single zone, must not contain holes,
8830 * must span full sections, and must be isolated before calling this function.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008831 */
Olivier Deprez157378f2022-04-04 15:47:50 +02008832void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008833{
Olivier Deprez157378f2022-04-04 15:47:50 +02008834 unsigned long pfn = start_pfn;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008835 struct page *page;
8836 struct zone *zone;
Olivier Deprez157378f2022-04-04 15:47:50 +02008837 unsigned int order;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008838 unsigned long flags;
David Brazdil0f672f62019-12-10 10:32:29 +00008839
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008840 offline_mem_sections(pfn, end_pfn);
8841 zone = page_zone(pfn_to_page(pfn));
8842 spin_lock_irqsave(&zone->lock, flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008843 while (pfn < end_pfn) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008844 page = pfn_to_page(pfn);
8845 /*
8846 * The HWPoisoned page may be not in buddy system, and
8847 * page_count() is not 0.
8848 */
8849 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8850 pfn++;
Olivier Deprez157378f2022-04-04 15:47:50 +02008851 continue;
8852 }
8853 /*
8854 * At this point all remaining PageOffline() pages have a
8855 * reference count of 0 and can simply be skipped.
8856 */
8857 if (PageOffline(page)) {
8858 BUG_ON(page_count(page));
8859 BUG_ON(PageBuddy(page));
8860 pfn++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008861 continue;
8862 }
8863
8864 BUG_ON(page_count(page));
8865 BUG_ON(!PageBuddy(page));
Olivier Deprez157378f2022-04-04 15:47:50 +02008866 order = buddy_order(page);
8867 del_page_from_free_list(page, zone, order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008868 pfn += (1 << order);
8869 }
8870 spin_unlock_irqrestore(&zone->lock, flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008871}
8872#endif
8873
8874bool is_free_buddy_page(struct page *page)
8875{
8876 struct zone *zone = page_zone(page);
8877 unsigned long pfn = page_to_pfn(page);
8878 unsigned long flags;
8879 unsigned int order;
8880
8881 spin_lock_irqsave(&zone->lock, flags);
8882 for (order = 0; order < MAX_ORDER; order++) {
8883 struct page *page_head = page - (pfn & ((1 << order) - 1));
8884
Olivier Deprez157378f2022-04-04 15:47:50 +02008885 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008886 break;
8887 }
8888 spin_unlock_irqrestore(&zone->lock, flags);
8889
8890 return order < MAX_ORDER;
8891}
8892
8893#ifdef CONFIG_MEMORY_FAILURE
8894/*
Olivier Deprez157378f2022-04-04 15:47:50 +02008895 * Break down a higher-order page in sub-pages, and keep our target out of
8896 * buddy allocator.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008897 */
Olivier Deprez157378f2022-04-04 15:47:50 +02008898static void break_down_buddy_pages(struct zone *zone, struct page *page,
8899 struct page *target, int low, int high,
8900 int migratetype)
8901{
8902 unsigned long size = 1 << high;
8903 struct page *current_buddy, *next_page;
8904
8905 while (high > low) {
8906 high--;
8907 size >>= 1;
8908
8909 if (target >= &page[size]) {
8910 next_page = page + size;
8911 current_buddy = page;
8912 } else {
8913 next_page = page;
8914 current_buddy = page + size;
8915 }
8916
8917 if (set_page_guard(zone, current_buddy, high, migratetype))
8918 continue;
8919
8920 if (current_buddy != target) {
8921 add_to_free_list(current_buddy, zone, high, migratetype);
8922 set_buddy_order(current_buddy, high);
8923 page = next_page;
8924 }
8925 }
8926}
8927
8928/*
8929 * Take a page that will be marked as poisoned off the buddy allocator.
8930 */
8931bool take_page_off_buddy(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008932{
8933 struct zone *zone = page_zone(page);
8934 unsigned long pfn = page_to_pfn(page);
8935 unsigned long flags;
8936 unsigned int order;
Olivier Deprez157378f2022-04-04 15:47:50 +02008937 bool ret = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008938
8939 spin_lock_irqsave(&zone->lock, flags);
8940 for (order = 0; order < MAX_ORDER; order++) {
8941 struct page *page_head = page - (pfn & ((1 << order) - 1));
Olivier Deprez157378f2022-04-04 15:47:50 +02008942 int page_order = buddy_order(page_head);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008943
Olivier Deprez157378f2022-04-04 15:47:50 +02008944 if (PageBuddy(page_head) && page_order >= order) {
8945 unsigned long pfn_head = page_to_pfn(page_head);
8946 int migratetype = get_pfnblock_migratetype(page_head,
8947 pfn_head);
8948
8949 del_page_from_free_list(page_head, zone, page_order);
8950 break_down_buddy_pages(zone, page_head, page, 0,
8951 page_order, migratetype);
8952 if (!is_migrate_isolate(migratetype))
8953 __mod_zone_freepage_state(zone, -1, migratetype);
8954 ret = true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008955 break;
8956 }
Olivier Deprez157378f2022-04-04 15:47:50 +02008957 if (page_count(page_head) > 0)
8958 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008959 }
8960 spin_unlock_irqrestore(&zone->lock, flags);
Olivier Deprez157378f2022-04-04 15:47:50 +02008961 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008962}
8963#endif
Olivier Deprez157378f2022-04-04 15:47:50 +02008964
8965#ifdef CONFIG_ZONE_DMA
8966bool has_managed_dma(void)
8967{
8968 struct pglist_data *pgdat;
8969
8970 for_each_online_pgdat(pgdat) {
8971 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
8972
8973 if (managed_zone(zone))
8974 return true;
8975 }
8976 return false;
8977}
8978#endif /* CONFIG_ZONE_DMA */