blob: c63656c42e288a8ec7362d1578806b5d6504ea0a [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0-only
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18#include <linux/stddef.h>
19#include <linux/mm.h>
David Brazdil0f672f62019-12-10 10:32:29 +000020#include <linux/highmem.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000021#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
24#include <linux/jiffies.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000025#include <linux/memblock.h>
26#include <linux/compiler.h>
27#include <linux/kernel.h>
28#include <linux/kasan.h>
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
34#include <linux/ratelimit.h>
35#include <linux/oom.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
40#include <linux/memory_hotplug.h>
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
43#include <linux/vmstat.h>
44#include <linux/mempolicy.h>
45#include <linux/memremap.h>
46#include <linux/stop_machine.h>
David Brazdil0f672f62019-12-10 10:32:29 +000047#include <linux/random.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000048#include <linux/sort.h>
49#include <linux/pfn.h>
50#include <linux/backing-dev.h>
51#include <linux/fault-inject.h>
52#include <linux/page-isolation.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000053#include <linux/debugobjects.h>
54#include <linux/kmemleak.h>
55#include <linux/compaction.h>
56#include <trace/events/kmem.h>
57#include <trace/events/oom.h>
58#include <linux/prefetch.h>
59#include <linux/mm_inline.h>
60#include <linux/migrate.h>
61#include <linux/hugetlb.h>
62#include <linux/sched/rt.h>
63#include <linux/sched/mm.h>
64#include <linux/page_owner.h>
65#include <linux/kthread.h>
66#include <linux/memcontrol.h>
67#include <linux/ftrace.h>
68#include <linux/lockdep.h>
69#include <linux/nmi.h>
David Brazdil0f672f62019-12-10 10:32:29 +000070#include <linux/psi.h>
Olivier Deprez157378f2022-04-04 15:47:50 +020071#include <linux/padata.h>
Olivier Deprez0e641232021-09-23 10:07:05 +020072#include <linux/khugepaged.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000073
74#include <asm/sections.h>
75#include <asm/tlbflush.h>
76#include <asm/div64.h>
77#include "internal.h"
David Brazdil0f672f62019-12-10 10:32:29 +000078#include "shuffle.h"
Olivier Deprez157378f2022-04-04 15:47:50 +020079#include "page_reporting.h"
80
81/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
82typedef int __bitwise fpi_t;
83
84/* No special request */
85#define FPI_NONE ((__force fpi_t)0)
86
87/*
88 * Skip free page reporting notification for the (possibly merged) page.
89 * This does not hinder free page reporting from grabbing the page,
90 * reporting it and marking it "reported" - it only skips notifying
91 * the free page reporting infrastructure about a newly freed page. For
92 * example, used when temporarily pulling a page from a freelist and
93 * putting it back unmodified.
94 */
95#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
96
97/*
98 * Place the (possibly merged) page to the tail of the freelist. Will ignore
99 * page shuffling (relevant code - e.g., memory onlining - is expected to
100 * shuffle the whole zone).
101 *
102 * Note: No code should rely on this flag for correctness - it's purely
103 * to allow for optimizations when handing back either fresh pages
104 * (memory onlining) or untouched pages (page isolation, free page
105 * reporting).
106 */
107#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000108
109/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
110static DEFINE_MUTEX(pcp_batch_high_lock);
111#define MIN_PERCPU_PAGELIST_FRACTION (8)
112
113#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
114DEFINE_PER_CPU(int, numa_node);
115EXPORT_PER_CPU_SYMBOL(numa_node);
116#endif
117
118DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
119
120#ifdef CONFIG_HAVE_MEMORYLESS_NODES
121/*
122 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
123 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
124 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
125 * defined in <linux/topology.h>.
126 */
127DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
128EXPORT_PER_CPU_SYMBOL(_numa_mem_);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000129#endif
130
131/* work_structs for global per-cpu drains */
David Brazdil0f672f62019-12-10 10:32:29 +0000132struct pcpu_drain {
133 struct zone *zone;
134 struct work_struct work;
135};
Olivier Deprez157378f2022-04-04 15:47:50 +0200136static DEFINE_MUTEX(pcpu_drain_mutex);
137static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000138
139#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
140volatile unsigned long latent_entropy __latent_entropy;
141EXPORT_SYMBOL(latent_entropy);
142#endif
143
144/*
145 * Array of node states.
146 */
147nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
148 [N_POSSIBLE] = NODE_MASK_ALL,
149 [N_ONLINE] = { { [0] = 1UL } },
150#ifndef CONFIG_NUMA
151 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
152#ifdef CONFIG_HIGHMEM
153 [N_HIGH_MEMORY] = { { [0] = 1UL } },
154#endif
155 [N_MEMORY] = { { [0] = 1UL } },
156 [N_CPU] = { { [0] = 1UL } },
157#endif /* NUMA */
158};
159EXPORT_SYMBOL(node_states);
160
David Brazdil0f672f62019-12-10 10:32:29 +0000161atomic_long_t _totalram_pages __read_mostly;
162EXPORT_SYMBOL(_totalram_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000163unsigned long totalreserve_pages __read_mostly;
164unsigned long totalcma_pages __read_mostly;
165
166int percpu_pagelist_fraction;
167gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
David Brazdil0f672f62019-12-10 10:32:29 +0000168#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
169DEFINE_STATIC_KEY_TRUE(init_on_alloc);
170#else
171DEFINE_STATIC_KEY_FALSE(init_on_alloc);
172#endif
173EXPORT_SYMBOL(init_on_alloc);
174
175#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
176DEFINE_STATIC_KEY_TRUE(init_on_free);
177#else
178DEFINE_STATIC_KEY_FALSE(init_on_free);
179#endif
180EXPORT_SYMBOL(init_on_free);
181
182static int __init early_init_on_alloc(char *buf)
183{
184 int ret;
185 bool bool_result;
186
David Brazdil0f672f62019-12-10 10:32:29 +0000187 ret = kstrtobool(buf, &bool_result);
Olivier Deprez157378f2022-04-04 15:47:50 +0200188 if (ret)
189 return ret;
David Brazdil0f672f62019-12-10 10:32:29 +0000190 if (bool_result && page_poisoning_enabled())
191 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
192 if (bool_result)
193 static_branch_enable(&init_on_alloc);
194 else
195 static_branch_disable(&init_on_alloc);
Olivier Deprez157378f2022-04-04 15:47:50 +0200196 return 0;
David Brazdil0f672f62019-12-10 10:32:29 +0000197}
198early_param("init_on_alloc", early_init_on_alloc);
199
200static int __init early_init_on_free(char *buf)
201{
202 int ret;
203 bool bool_result;
204
David Brazdil0f672f62019-12-10 10:32:29 +0000205 ret = kstrtobool(buf, &bool_result);
Olivier Deprez157378f2022-04-04 15:47:50 +0200206 if (ret)
207 return ret;
David Brazdil0f672f62019-12-10 10:32:29 +0000208 if (bool_result && page_poisoning_enabled())
209 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
210 if (bool_result)
211 static_branch_enable(&init_on_free);
212 else
213 static_branch_disable(&init_on_free);
Olivier Deprez157378f2022-04-04 15:47:50 +0200214 return 0;
David Brazdil0f672f62019-12-10 10:32:29 +0000215}
216early_param("init_on_free", early_init_on_free);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000217
218/*
219 * A cached value of the page's pageblock's migratetype, used when the page is
220 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
221 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
222 * Also the migratetype set in the page does not necessarily match the pcplist
223 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
224 * other index - this ensures that it will be put on the correct CMA freelist.
225 */
226static inline int get_pcppage_migratetype(struct page *page)
227{
228 return page->index;
229}
230
231static inline void set_pcppage_migratetype(struct page *page, int migratetype)
232{
233 page->index = migratetype;
234}
235
236#ifdef CONFIG_PM_SLEEP
237/*
238 * The following functions are used by the suspend/hibernate code to temporarily
239 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
240 * while devices are suspended. To avoid races with the suspend/hibernate code,
241 * they should always be called with system_transition_mutex held
242 * (gfp_allowed_mask also should only be modified with system_transition_mutex
243 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
244 * with that modification).
245 */
246
247static gfp_t saved_gfp_mask;
248
249void pm_restore_gfp_mask(void)
250{
251 WARN_ON(!mutex_is_locked(&system_transition_mutex));
252 if (saved_gfp_mask) {
253 gfp_allowed_mask = saved_gfp_mask;
254 saved_gfp_mask = 0;
255 }
256}
257
258void pm_restrict_gfp_mask(void)
259{
260 WARN_ON(!mutex_is_locked(&system_transition_mutex));
261 WARN_ON(saved_gfp_mask);
262 saved_gfp_mask = gfp_allowed_mask;
263 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
264}
265
266bool pm_suspended_storage(void)
267{
268 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
269 return false;
270 return true;
271}
272#endif /* CONFIG_PM_SLEEP */
273
274#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
275unsigned int pageblock_order __read_mostly;
276#endif
277
Olivier Deprez157378f2022-04-04 15:47:50 +0200278static void __free_pages_ok(struct page *page, unsigned int order,
279 fpi_t fpi_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000280
281/*
282 * results with 256, 32 in the lowmem_reserve sysctl:
283 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
284 * 1G machine -> (16M dma, 784M normal, 224M high)
285 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
286 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
287 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
288 *
289 * TBD: should special case ZONE_DMA32 machines here - in those we normally
290 * don't need any ZONE_NORMAL reservation
291 */
292int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
293#ifdef CONFIG_ZONE_DMA
294 [ZONE_DMA] = 256,
295#endif
296#ifdef CONFIG_ZONE_DMA32
297 [ZONE_DMA32] = 256,
298#endif
299 [ZONE_NORMAL] = 32,
300#ifdef CONFIG_HIGHMEM
301 [ZONE_HIGHMEM] = 0,
302#endif
303 [ZONE_MOVABLE] = 0,
304};
305
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000306static char * const zone_names[MAX_NR_ZONES] = {
307#ifdef CONFIG_ZONE_DMA
308 "DMA",
309#endif
310#ifdef CONFIG_ZONE_DMA32
311 "DMA32",
312#endif
313 "Normal",
314#ifdef CONFIG_HIGHMEM
315 "HighMem",
316#endif
317 "Movable",
318#ifdef CONFIG_ZONE_DEVICE
319 "Device",
320#endif
321};
322
David Brazdil0f672f62019-12-10 10:32:29 +0000323const char * const migratetype_names[MIGRATE_TYPES] = {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000324 "Unmovable",
325 "Movable",
326 "Reclaimable",
327 "HighAtomic",
328#ifdef CONFIG_CMA
329 "CMA",
330#endif
331#ifdef CONFIG_MEMORY_ISOLATION
332 "Isolate",
333#endif
334};
335
Olivier Deprez157378f2022-04-04 15:47:50 +0200336compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
337 [NULL_COMPOUND_DTOR] = NULL,
338 [COMPOUND_PAGE_DTOR] = free_compound_page,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000339#ifdef CONFIG_HUGETLB_PAGE
Olivier Deprez157378f2022-04-04 15:47:50 +0200340 [HUGETLB_PAGE_DTOR] = free_huge_page,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000341#endif
342#ifdef CONFIG_TRANSPARENT_HUGEPAGE
Olivier Deprez157378f2022-04-04 15:47:50 +0200343 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000344#endif
345};
346
347int min_free_kbytes = 1024;
348int user_min_free_kbytes = -1;
David Brazdil0f672f62019-12-10 10:32:29 +0000349#ifdef CONFIG_DISCONTIGMEM
350/*
351 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
352 * are not on separate NUMA nodes. Functionally this works but with
353 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
354 * quite small. By default, do not boost watermarks on discontigmem as in
355 * many cases very high-order allocations like THP are likely to be
356 * unsupported and the premature reclaim offsets the advantage of long-term
357 * fragmentation avoidance.
358 */
359int watermark_boost_factor __read_mostly;
360#else
361int watermark_boost_factor __read_mostly = 15000;
362#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000363int watermark_scale_factor = 10;
364
David Brazdil0f672f62019-12-10 10:32:29 +0000365static unsigned long nr_kernel_pages __initdata;
366static unsigned long nr_all_pages __initdata;
367static unsigned long dma_reserve __initdata;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000368
David Brazdil0f672f62019-12-10 10:32:29 +0000369static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
370static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000371static unsigned long required_kernelcore __initdata;
372static unsigned long required_kernelcore_percent __initdata;
373static unsigned long required_movablecore __initdata;
374static unsigned long required_movablecore_percent __initdata;
David Brazdil0f672f62019-12-10 10:32:29 +0000375static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000376static bool mirrored_kernelcore __meminitdata;
377
378/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
379int movable_zone;
380EXPORT_SYMBOL(movable_zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000381
382#if MAX_NUMNODES > 1
David Brazdil0f672f62019-12-10 10:32:29 +0000383unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
384unsigned int nr_online_nodes __read_mostly = 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000385EXPORT_SYMBOL(nr_node_ids);
386EXPORT_SYMBOL(nr_online_nodes);
387#endif
388
389int page_group_by_mobility_disabled __read_mostly;
390
391#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
David Brazdil0f672f62019-12-10 10:32:29 +0000392/*
393 * During boot we initialize deferred pages on-demand, as needed, but once
394 * page_alloc_init_late() has finished, the deferred pages are all initialized,
395 * and we can permanently disable that path.
396 */
397static DEFINE_STATIC_KEY_TRUE(deferred_pages);
398
399/*
400 * Calling kasan_free_pages() only after deferred memory initialization
401 * has completed. Poisoning pages during deferred memory init will greatly
402 * lengthen the process and cause problem in large memory systems as the
403 * deferred pages initialization is done with interrupt disabled.
404 *
405 * Assuming that there will be no reference to those newly initialized
406 * pages before they are ever allocated, this should have no effect on
407 * KASAN memory tracking as the poison will be properly inserted at page
408 * allocation time. The only corner case is when pages are allocated by
409 * on-demand allocation and then freed again before the deferred pages
410 * initialization is done, but this is not likely to happen.
411 */
412static inline void kasan_free_nondeferred_pages(struct page *page, int order)
413{
414 if (!static_branch_unlikely(&deferred_pages))
415 kasan_free_pages(page, order);
416}
417
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000418/* Returns true if the struct page for the pfn is uninitialised */
419static inline bool __meminit early_page_uninitialised(unsigned long pfn)
420{
421 int nid = early_pfn_to_nid(pfn);
422
423 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
424 return true;
425
426 return false;
427}
428
429/*
David Brazdil0f672f62019-12-10 10:32:29 +0000430 * Returns true when the remaining initialisation should be deferred until
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000431 * later in the boot cycle when it can be parallelised.
432 */
David Brazdil0f672f62019-12-10 10:32:29 +0000433static bool __meminit
434defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000435{
David Brazdil0f672f62019-12-10 10:32:29 +0000436 static unsigned long prev_end_pfn, nr_initialised;
437
438 /*
439 * prev_end_pfn static that contains the end of previous zone
440 * No need to protect because called very early in boot before smp_init.
441 */
442 if (prev_end_pfn != end_pfn) {
443 prev_end_pfn = end_pfn;
444 nr_initialised = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000445 }
446
David Brazdil0f672f62019-12-10 10:32:29 +0000447 /* Always populate low zones for address-constrained allocations */
448 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
449 return false;
450
Olivier Deprez157378f2022-04-04 15:47:50 +0200451 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
452 return true;
David Brazdil0f672f62019-12-10 10:32:29 +0000453 /*
454 * We start only with one section of pages, more pages are added as
455 * needed until the rest of deferred pages are initialized.
456 */
457 nr_initialised++;
458 if ((nr_initialised > PAGES_PER_SECTION) &&
459 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
460 NODE_DATA(nid)->first_deferred_pfn = pfn;
461 return true;
462 }
463 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000464}
465#else
David Brazdil0f672f62019-12-10 10:32:29 +0000466#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
467
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000468static inline bool early_page_uninitialised(unsigned long pfn)
469{
470 return false;
471}
472
David Brazdil0f672f62019-12-10 10:32:29 +0000473static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000474{
David Brazdil0f672f62019-12-10 10:32:29 +0000475 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000476}
477#endif
478
479/* Return a pointer to the bitmap storing bits affecting a block of pages */
480static inline unsigned long *get_pageblock_bitmap(struct page *page,
481 unsigned long pfn)
482{
483#ifdef CONFIG_SPARSEMEM
David Brazdil0f672f62019-12-10 10:32:29 +0000484 return section_to_usemap(__pfn_to_section(pfn));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000485#else
486 return page_zone(page)->pageblock_flags;
487#endif /* CONFIG_SPARSEMEM */
488}
489
490static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
491{
492#ifdef CONFIG_SPARSEMEM
493 pfn &= (PAGES_PER_SECTION-1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000494#else
495 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000496#endif /* CONFIG_SPARSEMEM */
Olivier Deprez157378f2022-04-04 15:47:50 +0200497 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000498}
499
500/**
501 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
502 * @page: The page within the block of interest
503 * @pfn: The target page frame number
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000504 * @mask: mask of bits that the caller is interested in
505 *
506 * Return: pageblock_bits flags
507 */
Olivier Deprez157378f2022-04-04 15:47:50 +0200508static __always_inline
509unsigned long __get_pfnblock_flags_mask(struct page *page,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000510 unsigned long pfn,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000511 unsigned long mask)
512{
513 unsigned long *bitmap;
514 unsigned long bitidx, word_bitidx;
515 unsigned long word;
516
517 bitmap = get_pageblock_bitmap(page, pfn);
518 bitidx = pfn_to_bitidx(page, pfn);
519 word_bitidx = bitidx / BITS_PER_LONG;
520 bitidx &= (BITS_PER_LONG-1);
521
522 word = bitmap[word_bitidx];
Olivier Deprez157378f2022-04-04 15:47:50 +0200523 return (word >> bitidx) & mask;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000524}
525
526unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000527 unsigned long mask)
528{
Olivier Deprez157378f2022-04-04 15:47:50 +0200529 return __get_pfnblock_flags_mask(page, pfn, mask);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000530}
531
532static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
533{
Olivier Deprez157378f2022-04-04 15:47:50 +0200534 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000535}
536
537/**
538 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
539 * @page: The page within the block of interest
540 * @flags: The flags to set
541 * @pfn: The target page frame number
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000542 * @mask: mask of bits that the caller is interested in
543 */
544void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
545 unsigned long pfn,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000546 unsigned long mask)
547{
548 unsigned long *bitmap;
549 unsigned long bitidx, word_bitidx;
550 unsigned long old_word, word;
551
552 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
David Brazdil0f672f62019-12-10 10:32:29 +0000553 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000554
555 bitmap = get_pageblock_bitmap(page, pfn);
556 bitidx = pfn_to_bitidx(page, pfn);
557 word_bitidx = bitidx / BITS_PER_LONG;
558 bitidx &= (BITS_PER_LONG-1);
559
560 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
561
Olivier Deprez157378f2022-04-04 15:47:50 +0200562 mask <<= bitidx;
563 flags <<= bitidx;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000564
565 word = READ_ONCE(bitmap[word_bitidx]);
566 for (;;) {
567 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
568 if (word == old_word)
569 break;
570 word = old_word;
571 }
572}
573
574void set_pageblock_migratetype(struct page *page, int migratetype)
575{
576 if (unlikely(page_group_by_mobility_disabled &&
577 migratetype < MIGRATE_PCPTYPES))
578 migratetype = MIGRATE_UNMOVABLE;
579
Olivier Deprez157378f2022-04-04 15:47:50 +0200580 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
581 page_to_pfn(page), MIGRATETYPE_MASK);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000582}
583
584#ifdef CONFIG_DEBUG_VM
585static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
586{
587 int ret = 0;
588 unsigned seq;
589 unsigned long pfn = page_to_pfn(page);
590 unsigned long sp, start_pfn;
591
592 do {
593 seq = zone_span_seqbegin(zone);
594 start_pfn = zone->zone_start_pfn;
595 sp = zone->spanned_pages;
596 if (!zone_spans_pfn(zone, pfn))
597 ret = 1;
598 } while (zone_span_seqretry(zone, seq));
599
600 if (ret)
601 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
602 pfn, zone_to_nid(zone), zone->name,
603 start_pfn, start_pfn + sp);
604
605 return ret;
606}
607
608static int page_is_consistent(struct zone *zone, struct page *page)
609{
610 if (!pfn_valid_within(page_to_pfn(page)))
611 return 0;
612 if (zone != page_zone(page))
613 return 0;
614
615 return 1;
616}
617/*
618 * Temporary debugging check for pages not lying within a given zone.
619 */
620static int __maybe_unused bad_range(struct zone *zone, struct page *page)
621{
622 if (page_outside_zone_boundaries(zone, page))
623 return 1;
624 if (!page_is_consistent(zone, page))
625 return 1;
626
627 return 0;
628}
629#else
630static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
631{
632 return 0;
633}
634#endif
635
Olivier Deprez157378f2022-04-04 15:47:50 +0200636static void bad_page(struct page *page, const char *reason)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000637{
638 static unsigned long resume;
639 static unsigned long nr_shown;
640 static unsigned long nr_unshown;
641
642 /*
643 * Allow a burst of 60 reports, then keep quiet for that minute;
644 * or allow a steady drip of one report per second.
645 */
646 if (nr_shown == 60) {
647 if (time_before(jiffies, resume)) {
648 nr_unshown++;
649 goto out;
650 }
651 if (nr_unshown) {
652 pr_alert(
653 "BUG: Bad page state: %lu messages suppressed\n",
654 nr_unshown);
655 nr_unshown = 0;
656 }
657 nr_shown = 0;
658 }
659 if (nr_shown++ == 0)
660 resume = jiffies + 60 * HZ;
661
662 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
663 current->comm, page_to_pfn(page));
664 __dump_page(page, reason);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000665 dump_page_owner(page);
666
667 print_modules();
668 dump_stack();
669out:
670 /* Leave bad fields for debug, except PageBuddy could make trouble */
671 page_mapcount_reset(page); /* remove PageBuddy */
672 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
673}
674
675/*
676 * Higher-order pages are called "compound pages". They are structured thusly:
677 *
678 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
679 *
680 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
681 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
682 *
683 * The first tail page's ->compound_dtor holds the offset in array of compound
684 * page destructors. See compound_page_dtors.
685 *
686 * The first tail page's ->compound_order holds the order of allocation.
687 * This usage means that zero-order pages may not be compound.
688 */
689
690void free_compound_page(struct page *page)
691{
David Brazdil0f672f62019-12-10 10:32:29 +0000692 mem_cgroup_uncharge(page);
Olivier Deprez157378f2022-04-04 15:47:50 +0200693 __free_pages_ok(page, compound_order(page), FPI_NONE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000694}
695
696void prep_compound_page(struct page *page, unsigned int order)
697{
698 int i;
699 int nr_pages = 1 << order;
700
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000701 __SetPageHead(page);
702 for (i = 1; i < nr_pages; i++) {
703 struct page *p = page + i;
704 set_page_count(p, 0);
705 p->mapping = TAIL_MAPPING;
706 set_compound_head(p, page);
707 }
Olivier Deprez157378f2022-04-04 15:47:50 +0200708
709 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
710 set_compound_order(page, order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000711 atomic_set(compound_mapcount_ptr(page), -1);
Olivier Deprez157378f2022-04-04 15:47:50 +0200712 if (hpage_pincount_available(page))
713 atomic_set(compound_pincount_ptr(page), 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000714}
715
716#ifdef CONFIG_DEBUG_PAGEALLOC
717unsigned int _debug_guardpage_minorder;
David Brazdil0f672f62019-12-10 10:32:29 +0000718
Olivier Deprez0e641232021-09-23 10:07:05 +0200719bool _debug_pagealloc_enabled_early __read_mostly
720 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
721EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
David Brazdil0f672f62019-12-10 10:32:29 +0000722DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000723EXPORT_SYMBOL(_debug_pagealloc_enabled);
David Brazdil0f672f62019-12-10 10:32:29 +0000724
725DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000726
727static int __init early_debug_pagealloc(char *buf)
728{
Olivier Deprez0e641232021-09-23 10:07:05 +0200729 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000730}
731early_param("debug_pagealloc", early_debug_pagealloc);
732
Olivier Deprez0e641232021-09-23 10:07:05 +0200733void init_debug_pagealloc(void)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000734{
735 if (!debug_pagealloc_enabled())
736 return;
737
Olivier Deprez0e641232021-09-23 10:07:05 +0200738 static_branch_enable(&_debug_pagealloc_enabled);
739
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000740 if (!debug_guardpage_minorder())
741 return;
742
David Brazdil0f672f62019-12-10 10:32:29 +0000743 static_branch_enable(&_debug_guardpage_enabled);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000744}
745
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000746static int __init debug_guardpage_minorder_setup(char *buf)
747{
748 unsigned long res;
749
750 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
751 pr_err("Bad debug_guardpage_minorder value\n");
752 return 0;
753 }
754 _debug_guardpage_minorder = res;
755 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
756 return 0;
757}
758early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
759
760static inline bool set_page_guard(struct zone *zone, struct page *page,
761 unsigned int order, int migratetype)
762{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000763 if (!debug_guardpage_enabled())
764 return false;
765
766 if (order >= debug_guardpage_minorder())
767 return false;
768
David Brazdil0f672f62019-12-10 10:32:29 +0000769 __SetPageGuard(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000770 INIT_LIST_HEAD(&page->lru);
771 set_page_private(page, order);
772 /* Guard pages are not available for any usage */
773 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
774
775 return true;
776}
777
778static inline void clear_page_guard(struct zone *zone, struct page *page,
779 unsigned int order, int migratetype)
780{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000781 if (!debug_guardpage_enabled())
782 return;
783
David Brazdil0f672f62019-12-10 10:32:29 +0000784 __ClearPageGuard(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000785
786 set_page_private(page, 0);
787 if (!is_migrate_isolate(migratetype))
788 __mod_zone_freepage_state(zone, (1 << order), migratetype);
789}
790#else
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000791static inline bool set_page_guard(struct zone *zone, struct page *page,
792 unsigned int order, int migratetype) { return false; }
793static inline void clear_page_guard(struct zone *zone, struct page *page,
794 unsigned int order, int migratetype) {}
795#endif
796
Olivier Deprez157378f2022-04-04 15:47:50 +0200797static inline void set_buddy_order(struct page *page, unsigned int order)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000798{
799 set_page_private(page, order);
800 __SetPageBuddy(page);
801}
802
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000803/*
804 * This function checks whether a page is free && is the buddy
805 * we can coalesce a page and its buddy if
806 * (a) the buddy is not in a hole (check before calling!) &&
807 * (b) the buddy is in the buddy system &&
808 * (c) a page and its buddy have the same order &&
809 * (d) a page and its buddy are in the same zone.
810 *
811 * For recording whether a page is in the buddy system, we set PageBuddy.
812 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
813 *
814 * For recording page's order, we use page_private(page).
815 */
Olivier Deprez157378f2022-04-04 15:47:50 +0200816static inline bool page_is_buddy(struct page *page, struct page *buddy,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000817 unsigned int order)
818{
Olivier Deprez157378f2022-04-04 15:47:50 +0200819 if (!page_is_guard(buddy) && !PageBuddy(buddy))
820 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000821
Olivier Deprez157378f2022-04-04 15:47:50 +0200822 if (buddy_order(buddy) != order)
823 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000824
Olivier Deprez157378f2022-04-04 15:47:50 +0200825 /*
826 * zone check is done late to avoid uselessly calculating
827 * zone/node ids for pages that could never merge.
828 */
829 if (page_zone_id(page) != page_zone_id(buddy))
830 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000831
Olivier Deprez157378f2022-04-04 15:47:50 +0200832 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000833
Olivier Deprez157378f2022-04-04 15:47:50 +0200834 return true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000835}
836
David Brazdil0f672f62019-12-10 10:32:29 +0000837#ifdef CONFIG_COMPACTION
838static inline struct capture_control *task_capc(struct zone *zone)
839{
840 struct capture_control *capc = current->capture_control;
841
Olivier Deprez157378f2022-04-04 15:47:50 +0200842 return unlikely(capc) &&
David Brazdil0f672f62019-12-10 10:32:29 +0000843 !(current->flags & PF_KTHREAD) &&
844 !capc->page &&
Olivier Deprez157378f2022-04-04 15:47:50 +0200845 capc->cc->zone == zone ? capc : NULL;
David Brazdil0f672f62019-12-10 10:32:29 +0000846}
847
848static inline bool
849compaction_capture(struct capture_control *capc, struct page *page,
850 int order, int migratetype)
851{
852 if (!capc || order != capc->cc->order)
853 return false;
854
855 /* Do not accidentally pollute CMA or isolated regions*/
856 if (is_migrate_cma(migratetype) ||
857 is_migrate_isolate(migratetype))
858 return false;
859
860 /*
861 * Do not let lower order allocations polluate a movable pageblock.
862 * This might let an unmovable request use a reclaimable pageblock
863 * and vice-versa but no more than normal fallback logic which can
864 * have trouble finding a high-order free page.
865 */
866 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
867 return false;
868
869 capc->page = page;
870 return true;
871}
872
873#else
874static inline struct capture_control *task_capc(struct zone *zone)
875{
876 return NULL;
877}
878
879static inline bool
880compaction_capture(struct capture_control *capc, struct page *page,
881 int order, int migratetype)
882{
883 return false;
884}
885#endif /* CONFIG_COMPACTION */
886
Olivier Deprez157378f2022-04-04 15:47:50 +0200887/* Used for pages not on another list */
888static inline void add_to_free_list(struct page *page, struct zone *zone,
889 unsigned int order, int migratetype)
890{
891 struct free_area *area = &zone->free_area[order];
892
893 list_add(&page->lru, &area->free_list[migratetype]);
894 area->nr_free++;
895}
896
897/* Used for pages not on another list */
898static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
899 unsigned int order, int migratetype)
900{
901 struct free_area *area = &zone->free_area[order];
902
903 list_add_tail(&page->lru, &area->free_list[migratetype]);
904 area->nr_free++;
905}
906
907/*
908 * Used for pages which are on another list. Move the pages to the tail
909 * of the list - so the moved pages won't immediately be considered for
910 * allocation again (e.g., optimization for memory onlining).
911 */
912static inline void move_to_free_list(struct page *page, struct zone *zone,
913 unsigned int order, int migratetype)
914{
915 struct free_area *area = &zone->free_area[order];
916
917 list_move_tail(&page->lru, &area->free_list[migratetype]);
918}
919
920static inline void del_page_from_free_list(struct page *page, struct zone *zone,
921 unsigned int order)
922{
923 /* clear reported state and update reported page count */
924 if (page_reported(page))
925 __ClearPageReported(page);
926
927 list_del(&page->lru);
928 __ClearPageBuddy(page);
929 set_page_private(page, 0);
930 zone->free_area[order].nr_free--;
931}
932
933/*
934 * If this is not the largest possible page, check if the buddy
935 * of the next-highest order is free. If it is, it's possible
936 * that pages are being freed that will coalesce soon. In case,
937 * that is happening, add the free page to the tail of the list
938 * so it's less likely to be used soon and more likely to be merged
939 * as a higher order page
940 */
941static inline bool
942buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
943 struct page *page, unsigned int order)
944{
945 struct page *higher_page, *higher_buddy;
946 unsigned long combined_pfn;
947
948 if (order >= MAX_ORDER - 2)
949 return false;
950
951 if (!pfn_valid_within(buddy_pfn))
952 return false;
953
954 combined_pfn = buddy_pfn & pfn;
955 higher_page = page + (combined_pfn - pfn);
956 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
957 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
958
959 return pfn_valid_within(buddy_pfn) &&
960 page_is_buddy(higher_page, higher_buddy, order + 1);
961}
962
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000963/*
964 * Freeing function for a buddy system allocator.
965 *
966 * The concept of a buddy system is to maintain direct-mapped table
967 * (containing bit values) for memory blocks of various "orders".
968 * The bottom level table contains the map for the smallest allocatable
969 * units of memory (here, pages), and each level above it describes
970 * pairs of units from the levels below, hence, "buddies".
971 * At a high level, all that happens here is marking the table entry
972 * at the bottom level available, and propagating the changes upward
973 * as necessary, plus some accounting needed to play nicely with other
974 * parts of the VM system.
975 * At each level, we keep a list of pages, which are heads of continuous
976 * free pages of length of (1 << order) and marked with PageBuddy.
977 * Page's order is recorded in page_private(page) field.
978 * So when we are allocating or freeing one, we can derive the state of the
979 * other. That is, if we allocate a small block, and both were
980 * free, the remainder of the region must be split into blocks.
981 * If a block is freed, and its buddy is also free, then this
982 * triggers coalescing into a block of larger size.
983 *
984 * -- nyc
985 */
986
987static inline void __free_one_page(struct page *page,
988 unsigned long pfn,
989 struct zone *zone, unsigned int order,
Olivier Deprez157378f2022-04-04 15:47:50 +0200990 int migratetype, fpi_t fpi_flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000991{
David Brazdil0f672f62019-12-10 10:32:29 +0000992 struct capture_control *capc = task_capc(zone);
Olivier Deprez157378f2022-04-04 15:47:50 +0200993 unsigned long buddy_pfn;
994 unsigned long combined_pfn;
995 unsigned int max_order;
996 struct page *buddy;
997 bool to_tail;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000998
Olivier Deprez0e641232021-09-23 10:07:05 +0200999 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001000
1001 VM_BUG_ON(!zone_is_initialized(zone));
1002 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1003
1004 VM_BUG_ON(migratetype == -1);
1005 if (likely(!is_migrate_isolate(migratetype)))
1006 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1007
1008 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1009 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1010
1011continue_merging:
Olivier Deprez0e641232021-09-23 10:07:05 +02001012 while (order < max_order) {
David Brazdil0f672f62019-12-10 10:32:29 +00001013 if (compaction_capture(capc, page, order, migratetype)) {
1014 __mod_zone_freepage_state(zone, -(1 << order),
1015 migratetype);
1016 return;
1017 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001018 buddy_pfn = __find_buddy_pfn(pfn, order);
1019 buddy = page + (buddy_pfn - pfn);
1020
1021 if (!pfn_valid_within(buddy_pfn))
1022 goto done_merging;
1023 if (!page_is_buddy(page, buddy, order))
1024 goto done_merging;
1025 /*
1026 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1027 * merge with it and move up one order.
1028 */
David Brazdil0f672f62019-12-10 10:32:29 +00001029 if (page_is_guard(buddy))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001030 clear_page_guard(zone, buddy, order, migratetype);
David Brazdil0f672f62019-12-10 10:32:29 +00001031 else
Olivier Deprez157378f2022-04-04 15:47:50 +02001032 del_page_from_free_list(buddy, zone, order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001033 combined_pfn = buddy_pfn & pfn;
1034 page = page + (combined_pfn - pfn);
1035 pfn = combined_pfn;
1036 order++;
1037 }
Olivier Deprez0e641232021-09-23 10:07:05 +02001038 if (order < MAX_ORDER - 1) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001039 /* If we are here, it means order is >= pageblock_order.
1040 * We want to prevent merge between freepages on isolate
1041 * pageblock and normal pageblock. Without this, pageblock
1042 * isolation could cause incorrect freepage or CMA accounting.
1043 *
1044 * We don't want to hit this code for the more frequent
1045 * low-order merging.
1046 */
1047 if (unlikely(has_isolate_pageblock(zone))) {
1048 int buddy_mt;
1049
1050 buddy_pfn = __find_buddy_pfn(pfn, order);
1051 buddy = page + (buddy_pfn - pfn);
1052 buddy_mt = get_pageblock_migratetype(buddy);
1053
1054 if (migratetype != buddy_mt
1055 && (is_migrate_isolate(migratetype) ||
1056 is_migrate_isolate(buddy_mt)))
1057 goto done_merging;
1058 }
Olivier Deprez0e641232021-09-23 10:07:05 +02001059 max_order = order + 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001060 goto continue_merging;
1061 }
1062
1063done_merging:
Olivier Deprez157378f2022-04-04 15:47:50 +02001064 set_buddy_order(page, order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001065
Olivier Deprez157378f2022-04-04 15:47:50 +02001066 if (fpi_flags & FPI_TO_TAIL)
1067 to_tail = true;
1068 else if (is_shuffle_order(order))
1069 to_tail = shuffle_pick_tail();
David Brazdil0f672f62019-12-10 10:32:29 +00001070 else
Olivier Deprez157378f2022-04-04 15:47:50 +02001071 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
David Brazdil0f672f62019-12-10 10:32:29 +00001072
Olivier Deprez157378f2022-04-04 15:47:50 +02001073 if (to_tail)
1074 add_to_free_list_tail(page, zone, order, migratetype);
1075 else
1076 add_to_free_list(page, zone, order, migratetype);
1077
1078 /* Notify page reporting subsystem of freed page */
1079 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1080 page_reporting_notify_free(order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001081}
1082
1083/*
1084 * A bad page could be due to a number of fields. Instead of multiple branches,
1085 * try and check multiple fields with one check. The caller must do a detailed
1086 * check if necessary.
1087 */
1088static inline bool page_expected_state(struct page *page,
1089 unsigned long check_flags)
1090{
1091 if (unlikely(atomic_read(&page->_mapcount) != -1))
1092 return false;
1093
1094 if (unlikely((unsigned long)page->mapping |
1095 page_ref_count(page) |
1096#ifdef CONFIG_MEMCG
1097 (unsigned long)page->mem_cgroup |
1098#endif
1099 (page->flags & check_flags)))
1100 return false;
1101
1102 return true;
1103}
1104
Olivier Deprez157378f2022-04-04 15:47:50 +02001105static const char *page_bad_reason(struct page *page, unsigned long flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001106{
Olivier Deprez157378f2022-04-04 15:47:50 +02001107 const char *bad_reason = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001108
1109 if (unlikely(atomic_read(&page->_mapcount) != -1))
1110 bad_reason = "nonzero mapcount";
1111 if (unlikely(page->mapping != NULL))
1112 bad_reason = "non-NULL mapping";
1113 if (unlikely(page_ref_count(page) != 0))
1114 bad_reason = "nonzero _refcount";
Olivier Deprez157378f2022-04-04 15:47:50 +02001115 if (unlikely(page->flags & flags)) {
1116 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1117 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1118 else
1119 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001120 }
1121#ifdef CONFIG_MEMCG
1122 if (unlikely(page->mem_cgroup))
1123 bad_reason = "page still charged to cgroup";
1124#endif
Olivier Deprez157378f2022-04-04 15:47:50 +02001125 return bad_reason;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001126}
1127
Olivier Deprez157378f2022-04-04 15:47:50 +02001128static void check_free_page_bad(struct page *page)
1129{
1130 bad_page(page,
1131 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1132}
1133
1134static inline int check_free_page(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001135{
1136 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1137 return 0;
1138
1139 /* Something has gone sideways, find it */
Olivier Deprez157378f2022-04-04 15:47:50 +02001140 check_free_page_bad(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001141 return 1;
1142}
1143
1144static int free_tail_pages_check(struct page *head_page, struct page *page)
1145{
1146 int ret = 1;
1147
1148 /*
1149 * We rely page->lru.next never has bit 0 set, unless the page
1150 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1151 */
1152 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1153
1154 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1155 ret = 0;
1156 goto out;
1157 }
1158 switch (page - head_page) {
1159 case 1:
1160 /* the first tail page: ->mapping may be compound_mapcount() */
1161 if (unlikely(compound_mapcount(page))) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001162 bad_page(page, "nonzero compound_mapcount");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001163 goto out;
1164 }
1165 break;
1166 case 2:
1167 /*
1168 * the second tail page: ->mapping is
1169 * deferred_list.next -- ignore value.
1170 */
1171 break;
1172 default:
1173 if (page->mapping != TAIL_MAPPING) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001174 bad_page(page, "corrupted mapping in tail page");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001175 goto out;
1176 }
1177 break;
1178 }
1179 if (unlikely(!PageTail(page))) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001180 bad_page(page, "PageTail not set");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001181 goto out;
1182 }
1183 if (unlikely(compound_head(page) != head_page)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001184 bad_page(page, "compound_head not consistent");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001185 goto out;
1186 }
1187 ret = 0;
1188out:
1189 page->mapping = NULL;
1190 clear_compound_head(page);
1191 return ret;
1192}
1193
David Brazdil0f672f62019-12-10 10:32:29 +00001194static void kernel_init_free_pages(struct page *page, int numpages)
1195{
1196 int i;
1197
Olivier Deprez157378f2022-04-04 15:47:50 +02001198 /* s390's use of memset() could override KASAN redzones. */
1199 kasan_disable_current();
David Brazdil0f672f62019-12-10 10:32:29 +00001200 for (i = 0; i < numpages; i++)
1201 clear_highpage(page + i);
Olivier Deprez157378f2022-04-04 15:47:50 +02001202 kasan_enable_current();
David Brazdil0f672f62019-12-10 10:32:29 +00001203}
1204
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001205static __always_inline bool free_pages_prepare(struct page *page,
1206 unsigned int order, bool check_free)
1207{
1208 int bad = 0;
1209
1210 VM_BUG_ON_PAGE(PageTail(page), page);
1211
1212 trace_mm_page_free(page, order);
1213
Olivier Deprez157378f2022-04-04 15:47:50 +02001214 if (unlikely(PageHWPoison(page)) && !order) {
1215 /*
1216 * Do not let hwpoison pages hit pcplists/buddy
1217 * Untie memcg state and reset page's owner
1218 */
1219 if (memcg_kmem_enabled() && PageKmemcg(page))
1220 __memcg_kmem_uncharge_page(page, order);
1221 reset_page_owner(page, order);
1222 return false;
1223 }
1224
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001225 /*
1226 * Check tail pages before head page information is cleared to
1227 * avoid checking PageCompound for order-0 pages.
1228 */
1229 if (unlikely(order)) {
1230 bool compound = PageCompound(page);
1231 int i;
1232
1233 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1234
1235 if (compound)
1236 ClearPageDoubleMap(page);
1237 for (i = 1; i < (1 << order); i++) {
1238 if (compound)
1239 bad += free_tail_pages_check(page, page + i);
Olivier Deprez157378f2022-04-04 15:47:50 +02001240 if (unlikely(check_free_page(page + i))) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001241 bad++;
1242 continue;
1243 }
1244 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1245 }
1246 }
1247 if (PageMappingFlags(page))
1248 page->mapping = NULL;
1249 if (memcg_kmem_enabled() && PageKmemcg(page))
Olivier Deprez157378f2022-04-04 15:47:50 +02001250 __memcg_kmem_uncharge_page(page, order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001251 if (check_free)
Olivier Deprez157378f2022-04-04 15:47:50 +02001252 bad += check_free_page(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001253 if (bad)
1254 return false;
1255
1256 page_cpupid_reset_last(page);
1257 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1258 reset_page_owner(page, order);
1259
1260 if (!PageHighMem(page)) {
1261 debug_check_no_locks_freed(page_address(page),
1262 PAGE_SIZE << order);
1263 debug_check_no_obj_freed(page_address(page),
1264 PAGE_SIZE << order);
1265 }
David Brazdil0f672f62019-12-10 10:32:29 +00001266 if (want_init_on_free())
1267 kernel_init_free_pages(page, 1 << order);
1268
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001269 kernel_poison_pages(page, 1 << order, 0);
David Brazdil0f672f62019-12-10 10:32:29 +00001270 /*
1271 * arch_free_page() can make the page's contents inaccessible. s390
1272 * does this. So nothing which can access the page's contents should
1273 * happen after this.
1274 */
1275 arch_free_page(page, order);
1276
Olivier Deprez0e641232021-09-23 10:07:05 +02001277 if (debug_pagealloc_enabled_static())
David Brazdil0f672f62019-12-10 10:32:29 +00001278 kernel_map_pages(page, 1 << order, 0);
1279
1280 kasan_free_nondeferred_pages(page, order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001281
1282 return true;
1283}
1284
1285#ifdef CONFIG_DEBUG_VM
David Brazdil0f672f62019-12-10 10:32:29 +00001286/*
1287 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1288 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1289 * moved from pcp lists to free lists.
1290 */
1291static bool free_pcp_prepare(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001292{
1293 return free_pages_prepare(page, 0, true);
1294}
1295
David Brazdil0f672f62019-12-10 10:32:29 +00001296static bool bulkfree_pcp_prepare(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001297{
Olivier Deprez0e641232021-09-23 10:07:05 +02001298 if (debug_pagealloc_enabled_static())
Olivier Deprez157378f2022-04-04 15:47:50 +02001299 return check_free_page(page);
David Brazdil0f672f62019-12-10 10:32:29 +00001300 else
1301 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001302}
1303#else
David Brazdil0f672f62019-12-10 10:32:29 +00001304/*
1305 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1306 * moving from pcp lists to free list in order to reduce overhead. With
1307 * debug_pagealloc enabled, they are checked also immediately when being freed
1308 * to the pcp lists.
1309 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001310static bool free_pcp_prepare(struct page *page)
1311{
Olivier Deprez0e641232021-09-23 10:07:05 +02001312 if (debug_pagealloc_enabled_static())
David Brazdil0f672f62019-12-10 10:32:29 +00001313 return free_pages_prepare(page, 0, true);
1314 else
1315 return free_pages_prepare(page, 0, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001316}
1317
1318static bool bulkfree_pcp_prepare(struct page *page)
1319{
Olivier Deprez157378f2022-04-04 15:47:50 +02001320 return check_free_page(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001321}
1322#endif /* CONFIG_DEBUG_VM */
1323
1324static inline void prefetch_buddy(struct page *page)
1325{
1326 unsigned long pfn = page_to_pfn(page);
1327 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1328 struct page *buddy = page + (buddy_pfn - pfn);
1329
1330 prefetch(buddy);
1331}
1332
1333/*
1334 * Frees a number of pages from the PCP lists
1335 * Assumes all pages on list are in same zone, and of same order.
1336 * count is the number of pages to free.
1337 *
1338 * If the zone was previously in an "all pages pinned" state then look to
1339 * see if this freeing clears that state.
1340 *
1341 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1342 * pinned" detection logic.
1343 */
1344static void free_pcppages_bulk(struct zone *zone, int count,
1345 struct per_cpu_pages *pcp)
1346{
1347 int migratetype = 0;
1348 int batch_free = 0;
1349 int prefetch_nr = 0;
1350 bool isolated_pageblocks;
1351 struct page *page, *tmp;
1352 LIST_HEAD(head);
1353
Olivier Deprez0e641232021-09-23 10:07:05 +02001354 /*
1355 * Ensure proper count is passed which otherwise would stuck in the
1356 * below while (list_empty(list)) loop.
1357 */
1358 count = min(pcp->count, count);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001359 while (count) {
1360 struct list_head *list;
1361
1362 /*
1363 * Remove pages from lists in a round-robin fashion. A
1364 * batch_free count is maintained that is incremented when an
1365 * empty list is encountered. This is so more pages are freed
1366 * off fuller lists instead of spinning excessively around empty
1367 * lists
1368 */
1369 do {
1370 batch_free++;
1371 if (++migratetype == MIGRATE_PCPTYPES)
1372 migratetype = 0;
1373 list = &pcp->lists[migratetype];
1374 } while (list_empty(list));
1375
1376 /* This is the only non-empty list. Free them all. */
1377 if (batch_free == MIGRATE_PCPTYPES)
1378 batch_free = count;
1379
1380 do {
1381 page = list_last_entry(list, struct page, lru);
1382 /* must delete to avoid corrupting pcp list */
1383 list_del(&page->lru);
1384 pcp->count--;
1385
1386 if (bulkfree_pcp_prepare(page))
1387 continue;
1388
1389 list_add_tail(&page->lru, &head);
1390
1391 /*
1392 * We are going to put the page back to the global
1393 * pool, prefetch its buddy to speed up later access
1394 * under zone->lock. It is believed the overhead of
1395 * an additional test and calculating buddy_pfn here
1396 * can be offset by reduced memory latency later. To
1397 * avoid excessive prefetching due to large count, only
1398 * prefetch buddy for the first pcp->batch nr of pages.
1399 */
1400 if (prefetch_nr++ < pcp->batch)
1401 prefetch_buddy(page);
1402 } while (--count && --batch_free && !list_empty(list));
1403 }
1404
1405 spin_lock(&zone->lock);
1406 isolated_pageblocks = has_isolate_pageblock(zone);
1407
1408 /*
1409 * Use safe version since after __free_one_page(),
1410 * page->lru.next will not point to original list.
1411 */
1412 list_for_each_entry_safe(page, tmp, &head, lru) {
1413 int mt = get_pcppage_migratetype(page);
1414 /* MIGRATE_ISOLATE page should not go to pcplists */
1415 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1416 /* Pageblock could have been isolated meanwhile */
1417 if (unlikely(isolated_pageblocks))
1418 mt = get_pageblock_migratetype(page);
1419
Olivier Deprez157378f2022-04-04 15:47:50 +02001420 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001421 trace_mm_page_pcpu_drain(page, 0, mt);
1422 }
1423 spin_unlock(&zone->lock);
1424}
1425
1426static void free_one_page(struct zone *zone,
1427 struct page *page, unsigned long pfn,
1428 unsigned int order,
Olivier Deprez157378f2022-04-04 15:47:50 +02001429 int migratetype, fpi_t fpi_flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001430{
1431 spin_lock(&zone->lock);
1432 if (unlikely(has_isolate_pageblock(zone) ||
1433 is_migrate_isolate(migratetype))) {
1434 migratetype = get_pfnblock_migratetype(page, pfn);
1435 }
Olivier Deprez157378f2022-04-04 15:47:50 +02001436 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001437 spin_unlock(&zone->lock);
1438}
1439
1440static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1441 unsigned long zone, int nid)
1442{
1443 mm_zero_struct_page(page);
1444 set_page_links(page, zone, nid, pfn);
1445 init_page_count(page);
1446 page_mapcount_reset(page);
1447 page_cpupid_reset_last(page);
David Brazdil0f672f62019-12-10 10:32:29 +00001448 page_kasan_tag_reset(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001449
1450 INIT_LIST_HEAD(&page->lru);
1451#ifdef WANT_PAGE_VIRTUAL
1452 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1453 if (!is_highmem_idx(zone))
1454 set_page_address(page, __va(pfn << PAGE_SHIFT));
1455#endif
1456}
1457
1458#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1459static void __meminit init_reserved_page(unsigned long pfn)
1460{
1461 pg_data_t *pgdat;
1462 int nid, zid;
1463
1464 if (!early_page_uninitialised(pfn))
1465 return;
1466
1467 nid = early_pfn_to_nid(pfn);
1468 pgdat = NODE_DATA(nid);
1469
1470 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1471 struct zone *zone = &pgdat->node_zones[zid];
1472
1473 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1474 break;
1475 }
1476 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1477}
1478#else
1479static inline void init_reserved_page(unsigned long pfn)
1480{
1481}
1482#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1483
1484/*
1485 * Initialised pages do not have PageReserved set. This function is
1486 * called for each range allocated by the bootmem allocator and
1487 * marks the pages PageReserved. The remaining valid pages are later
1488 * sent to the buddy page allocator.
1489 */
1490void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1491{
1492 unsigned long start_pfn = PFN_DOWN(start);
1493 unsigned long end_pfn = PFN_UP(end);
1494
1495 for (; start_pfn < end_pfn; start_pfn++) {
1496 if (pfn_valid(start_pfn)) {
1497 struct page *page = pfn_to_page(start_pfn);
1498
1499 init_reserved_page(start_pfn);
1500
1501 /* Avoid false-positive PageTail() */
1502 INIT_LIST_HEAD(&page->lru);
1503
David Brazdil0f672f62019-12-10 10:32:29 +00001504 /*
1505 * no need for atomic set_bit because the struct
1506 * page is not visible yet so nobody should
1507 * access it yet.
1508 */
1509 __SetPageReserved(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001510 }
1511 }
1512}
1513
Olivier Deprez157378f2022-04-04 15:47:50 +02001514static void __free_pages_ok(struct page *page, unsigned int order,
1515 fpi_t fpi_flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001516{
1517 unsigned long flags;
1518 int migratetype;
1519 unsigned long pfn = page_to_pfn(page);
1520
1521 if (!free_pages_prepare(page, order, true))
1522 return;
1523
1524 migratetype = get_pfnblock_migratetype(page, pfn);
1525 local_irq_save(flags);
1526 __count_vm_events(PGFREE, 1 << order);
Olivier Deprez157378f2022-04-04 15:47:50 +02001527 free_one_page(page_zone(page), page, pfn, order, migratetype,
1528 fpi_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001529 local_irq_restore(flags);
1530}
1531
David Brazdil0f672f62019-12-10 10:32:29 +00001532void __free_pages_core(struct page *page, unsigned int order)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001533{
1534 unsigned int nr_pages = 1 << order;
1535 struct page *p = page;
1536 unsigned int loop;
1537
Olivier Deprez157378f2022-04-04 15:47:50 +02001538 /*
1539 * When initializing the memmap, __init_single_page() sets the refcount
1540 * of all pages to 1 ("allocated"/"not free"). We have to set the
1541 * refcount of all involved pages to 0.
1542 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001543 prefetchw(p);
1544 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1545 prefetchw(p + 1);
1546 __ClearPageReserved(p);
1547 set_page_count(p, 0);
1548 }
1549 __ClearPageReserved(p);
1550 set_page_count(p, 0);
1551
David Brazdil0f672f62019-12-10 10:32:29 +00001552 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
Olivier Deprez157378f2022-04-04 15:47:50 +02001553
1554 /*
1555 * Bypass PCP and place fresh pages right to the tail, primarily
1556 * relevant for memory onlining.
1557 */
1558 __free_pages_ok(page, order, FPI_TO_TAIL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001559}
1560
Olivier Deprez157378f2022-04-04 15:47:50 +02001561#ifdef CONFIG_NEED_MULTIPLE_NODES
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001562
1563static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1564
Olivier Deprez157378f2022-04-04 15:47:50 +02001565#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1566
1567/*
1568 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1569 */
1570int __meminit __early_pfn_to_nid(unsigned long pfn,
1571 struct mminit_pfnnid_cache *state)
1572{
1573 unsigned long start_pfn, end_pfn;
1574 int nid;
1575
1576 if (state->last_start <= pfn && pfn < state->last_end)
1577 return state->last_nid;
1578
1579 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1580 if (nid != NUMA_NO_NODE) {
1581 state->last_start = start_pfn;
1582 state->last_end = end_pfn;
1583 state->last_nid = nid;
1584 }
1585
1586 return nid;
1587}
1588#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1589
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001590int __meminit early_pfn_to_nid(unsigned long pfn)
1591{
1592 static DEFINE_SPINLOCK(early_pfn_lock);
1593 int nid;
1594
1595 spin_lock(&early_pfn_lock);
1596 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1597 if (nid < 0)
1598 nid = first_online_node;
1599 spin_unlock(&early_pfn_lock);
1600
1601 return nid;
1602}
Olivier Deprez157378f2022-04-04 15:47:50 +02001603#endif /* CONFIG_NEED_MULTIPLE_NODES */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001604
David Brazdil0f672f62019-12-10 10:32:29 +00001605void __init memblock_free_pages(struct page *page, unsigned long pfn,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001606 unsigned int order)
1607{
1608 if (early_page_uninitialised(pfn))
1609 return;
David Brazdil0f672f62019-12-10 10:32:29 +00001610 __free_pages_core(page, order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001611}
1612
1613/*
1614 * Check that the whole (or subset of) a pageblock given by the interval of
1615 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1616 * with the migration of free compaction scanner. The scanners then need to
1617 * use only pfn_valid_within() check for arches that allow holes within
1618 * pageblocks.
1619 *
1620 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1621 *
1622 * It's possible on some configurations to have a setup like node0 node1 node0
1623 * i.e. it's possible that all pages within a zones range of pages do not
1624 * belong to a single zone. We assume that a border between node0 and node1
1625 * can occur within a single pageblock, but not a node0 node1 node0
1626 * interleaving within a single pageblock. It is therefore sufficient to check
1627 * the first and last page of a pageblock and avoid checking each individual
1628 * page in a pageblock.
1629 */
1630struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1631 unsigned long end_pfn, struct zone *zone)
1632{
1633 struct page *start_page;
1634 struct page *end_page;
1635
1636 /* end_pfn is one past the range we are checking */
1637 end_pfn--;
1638
1639 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1640 return NULL;
1641
1642 start_page = pfn_to_online_page(start_pfn);
1643 if (!start_page)
1644 return NULL;
1645
1646 if (page_zone(start_page) != zone)
1647 return NULL;
1648
1649 end_page = pfn_to_page(end_pfn);
1650
1651 /* This gives a shorter code than deriving page_zone(end_page) */
1652 if (page_zone_id(start_page) != page_zone_id(end_page))
1653 return NULL;
1654
1655 return start_page;
1656}
1657
1658void set_zone_contiguous(struct zone *zone)
1659{
1660 unsigned long block_start_pfn = zone->zone_start_pfn;
1661 unsigned long block_end_pfn;
1662
1663 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1664 for (; block_start_pfn < zone_end_pfn(zone);
1665 block_start_pfn = block_end_pfn,
1666 block_end_pfn += pageblock_nr_pages) {
1667
1668 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1669
1670 if (!__pageblock_pfn_to_page(block_start_pfn,
1671 block_end_pfn, zone))
1672 return;
Olivier Deprez0e641232021-09-23 10:07:05 +02001673 cond_resched();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001674 }
1675
1676 /* We confirm that there is no hole */
1677 zone->contiguous = true;
1678}
1679
1680void clear_zone_contiguous(struct zone *zone)
1681{
1682 zone->contiguous = false;
1683}
1684
1685#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1686static void __init deferred_free_range(unsigned long pfn,
1687 unsigned long nr_pages)
1688{
1689 struct page *page;
1690 unsigned long i;
1691
1692 if (!nr_pages)
1693 return;
1694
1695 page = pfn_to_page(pfn);
1696
1697 /* Free a large naturally-aligned chunk if possible */
1698 if (nr_pages == pageblock_nr_pages &&
1699 (pfn & (pageblock_nr_pages - 1)) == 0) {
1700 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
David Brazdil0f672f62019-12-10 10:32:29 +00001701 __free_pages_core(page, pageblock_order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001702 return;
1703 }
1704
1705 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1706 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1707 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
David Brazdil0f672f62019-12-10 10:32:29 +00001708 __free_pages_core(page, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001709 }
1710}
1711
1712/* Completion tracking for deferred_init_memmap() threads */
1713static atomic_t pgdat_init_n_undone __initdata;
1714static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1715
1716static inline void __init pgdat_init_report_one_done(void)
1717{
1718 if (atomic_dec_and_test(&pgdat_init_n_undone))
1719 complete(&pgdat_init_all_done_comp);
1720}
1721
1722/*
1723 * Returns true if page needs to be initialized or freed to buddy allocator.
1724 *
1725 * First we check if pfn is valid on architectures where it is possible to have
1726 * holes within pageblock_nr_pages. On systems where it is not possible, this
1727 * function is optimized out.
1728 *
1729 * Then, we check if a current large page is valid by only checking the validity
1730 * of the head pfn.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001731 */
David Brazdil0f672f62019-12-10 10:32:29 +00001732static inline bool __init deferred_pfn_valid(unsigned long pfn)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001733{
1734 if (!pfn_valid_within(pfn))
1735 return false;
1736 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1737 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001738 return true;
1739}
1740
1741/*
1742 * Free pages to buddy allocator. Try to free aligned pages in
1743 * pageblock_nr_pages sizes.
1744 */
David Brazdil0f672f62019-12-10 10:32:29 +00001745static void __init deferred_free_pages(unsigned long pfn,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001746 unsigned long end_pfn)
1747{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001748 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1749 unsigned long nr_free = 0;
1750
1751 for (; pfn < end_pfn; pfn++) {
David Brazdil0f672f62019-12-10 10:32:29 +00001752 if (!deferred_pfn_valid(pfn)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001753 deferred_free_range(pfn - nr_free, nr_free);
1754 nr_free = 0;
1755 } else if (!(pfn & nr_pgmask)) {
1756 deferred_free_range(pfn - nr_free, nr_free);
1757 nr_free = 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001758 } else {
1759 nr_free++;
1760 }
1761 }
1762 /* Free the last block of pages to allocator */
1763 deferred_free_range(pfn - nr_free, nr_free);
1764}
1765
1766/*
1767 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1768 * by performing it only once every pageblock_nr_pages.
1769 * Return number of pages initialized.
1770 */
David Brazdil0f672f62019-12-10 10:32:29 +00001771static unsigned long __init deferred_init_pages(struct zone *zone,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001772 unsigned long pfn,
1773 unsigned long end_pfn)
1774{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001775 unsigned long nr_pgmask = pageblock_nr_pages - 1;
David Brazdil0f672f62019-12-10 10:32:29 +00001776 int nid = zone_to_nid(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001777 unsigned long nr_pages = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00001778 int zid = zone_idx(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001779 struct page *page = NULL;
1780
1781 for (; pfn < end_pfn; pfn++) {
David Brazdil0f672f62019-12-10 10:32:29 +00001782 if (!deferred_pfn_valid(pfn)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001783 page = NULL;
1784 continue;
1785 } else if (!page || !(pfn & nr_pgmask)) {
1786 page = pfn_to_page(pfn);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001787 } else {
1788 page++;
1789 }
1790 __init_single_page(page, pfn, zid, nid);
1791 nr_pages++;
1792 }
1793 return (nr_pages);
1794}
1795
David Brazdil0f672f62019-12-10 10:32:29 +00001796/*
1797 * This function is meant to pre-load the iterator for the zone init.
1798 * Specifically it walks through the ranges until we are caught up to the
1799 * first_init_pfn value and exits there. If we never encounter the value we
1800 * return false indicating there are no valid ranges left.
1801 */
1802static bool __init
1803deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1804 unsigned long *spfn, unsigned long *epfn,
1805 unsigned long first_init_pfn)
1806{
1807 u64 j;
1808
1809 /*
1810 * Start out by walking through the ranges in this zone that have
1811 * already been initialized. We don't need to do anything with them
1812 * so we just need to flush them out of the system.
1813 */
1814 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1815 if (*epfn <= first_init_pfn)
1816 continue;
1817 if (*spfn < first_init_pfn)
1818 *spfn = first_init_pfn;
1819 *i = j;
1820 return true;
1821 }
1822
1823 return false;
1824}
1825
1826/*
1827 * Initialize and free pages. We do it in two loops: first we initialize
1828 * struct page, then free to buddy allocator, because while we are
1829 * freeing pages we can access pages that are ahead (computing buddy
1830 * page in __free_one_page()).
1831 *
1832 * In order to try and keep some memory in the cache we have the loop
1833 * broken along max page order boundaries. This way we will not cause
1834 * any issues with the buddy page computation.
1835 */
1836static unsigned long __init
1837deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1838 unsigned long *end_pfn)
1839{
1840 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1841 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1842 unsigned long nr_pages = 0;
1843 u64 j = *i;
1844
1845 /* First we loop through and initialize the page values */
1846 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1847 unsigned long t;
1848
1849 if (mo_pfn <= *start_pfn)
1850 break;
1851
1852 t = min(mo_pfn, *end_pfn);
1853 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1854
1855 if (mo_pfn < *end_pfn) {
1856 *start_pfn = mo_pfn;
1857 break;
1858 }
1859 }
1860
1861 /* Reset values and now loop through freeing pages as needed */
1862 swap(j, *i);
1863
1864 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1865 unsigned long t;
1866
1867 if (mo_pfn <= spfn)
1868 break;
1869
1870 t = min(mo_pfn, epfn);
1871 deferred_free_pages(spfn, t);
1872
1873 if (mo_pfn <= epfn)
1874 break;
1875 }
1876
1877 return nr_pages;
1878}
1879
Olivier Deprez157378f2022-04-04 15:47:50 +02001880static void __init
1881deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1882 void *arg)
1883{
1884 unsigned long spfn, epfn;
1885 struct zone *zone = arg;
1886 u64 i;
1887
1888 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1889
1890 /*
1891 * Initialize and free pages in MAX_ORDER sized increments so that we
1892 * can avoid introducing any issues with the buddy allocator.
1893 */
1894 while (spfn < end_pfn) {
1895 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1896 cond_resched();
1897 }
1898}
1899
1900/* An arch may override for more concurrency. */
1901__weak int __init
1902deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1903{
1904 return 1;
1905}
1906
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001907/* Initialise remaining memory on a node */
1908static int __init deferred_init_memmap(void *data)
1909{
1910 pg_data_t *pgdat = data;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001911 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
Olivier Deprez157378f2022-04-04 15:47:50 +02001912 unsigned long spfn = 0, epfn = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00001913 unsigned long first_init_pfn, flags;
1914 unsigned long start = jiffies;
1915 struct zone *zone;
Olivier Deprez157378f2022-04-04 15:47:50 +02001916 int zid, max_threads;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001917 u64 i;
1918
1919 /* Bind memory initialisation thread to a local node if possible */
1920 if (!cpumask_empty(cpumask))
1921 set_cpus_allowed_ptr(current, cpumask);
1922
1923 pgdat_resize_lock(pgdat, &flags);
1924 first_init_pfn = pgdat->first_deferred_pfn;
1925 if (first_init_pfn == ULONG_MAX) {
1926 pgdat_resize_unlock(pgdat, &flags);
1927 pgdat_init_report_one_done();
1928 return 0;
1929 }
1930
1931 /* Sanity check boundaries */
1932 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1933 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1934 pgdat->first_deferred_pfn = ULONG_MAX;
1935
Olivier Deprez0e641232021-09-23 10:07:05 +02001936 /*
1937 * Once we unlock here, the zone cannot be grown anymore, thus if an
1938 * interrupt thread must allocate this early in boot, zone must be
1939 * pre-grown prior to start of deferred page initialization.
1940 */
1941 pgdat_resize_unlock(pgdat, &flags);
1942
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001943 /* Only the highest zone is deferred so find it */
1944 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1945 zone = pgdat->node_zones + zid;
1946 if (first_init_pfn < zone_end_pfn(zone))
1947 break;
1948 }
David Brazdil0f672f62019-12-10 10:32:29 +00001949
1950 /* If the zone is empty somebody else may have cleared out the zone */
1951 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1952 first_init_pfn))
1953 goto zone_empty;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001954
Olivier Deprez157378f2022-04-04 15:47:50 +02001955 max_threads = deferred_page_init_max_threads(cpumask);
1956
Olivier Deprez0e641232021-09-23 10:07:05 +02001957 while (spfn < epfn) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001958 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1959 struct padata_mt_job job = {
1960 .thread_fn = deferred_init_memmap_chunk,
1961 .fn_arg = zone,
1962 .start = spfn,
1963 .size = epfn_align - spfn,
1964 .align = PAGES_PER_SECTION,
1965 .min_chunk = PAGES_PER_SECTION,
1966 .max_threads = max_threads,
1967 };
1968
1969 padata_do_multithreaded(&job);
1970 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1971 epfn_align);
Olivier Deprez0e641232021-09-23 10:07:05 +02001972 }
David Brazdil0f672f62019-12-10 10:32:29 +00001973zone_empty:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001974 /* Sanity check that the next zone really is unpopulated */
1975 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1976
Olivier Deprez157378f2022-04-04 15:47:50 +02001977 pr_info("node %d deferred pages initialised in %ums\n",
1978 pgdat->node_id, jiffies_to_msecs(jiffies - start));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001979
1980 pgdat_init_report_one_done();
1981 return 0;
1982}
1983
1984/*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001985 * If this zone has deferred pages, try to grow it by initializing enough
1986 * deferred pages to satisfy the allocation specified by order, rounded up to
1987 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1988 * of SECTION_SIZE bytes by initializing struct pages in increments of
1989 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1990 *
1991 * Return true when zone was grown, otherwise return false. We return true even
1992 * when we grow less than requested, to let the caller decide if there are
1993 * enough pages to satisfy the allocation.
1994 *
1995 * Note: We use noinline because this function is needed only during boot, and
1996 * it is called from a __ref function _deferred_grow_zone. This way we are
1997 * making sure that it is not inlined into permanent text section.
1998 */
1999static noinline bool __init
2000deferred_grow_zone(struct zone *zone, unsigned int order)
2001{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002002 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
David Brazdil0f672f62019-12-10 10:32:29 +00002003 pg_data_t *pgdat = zone->zone_pgdat;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002004 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
David Brazdil0f672f62019-12-10 10:32:29 +00002005 unsigned long spfn, epfn, flags;
2006 unsigned long nr_pages = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002007 u64 i;
2008
2009 /* Only the last zone may have deferred pages */
2010 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2011 return false;
2012
2013 pgdat_resize_lock(pgdat, &flags);
2014
2015 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002016 * If someone grew this zone while we were waiting for spinlock, return
2017 * true, as there might be enough pages already.
2018 */
2019 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2020 pgdat_resize_unlock(pgdat, &flags);
2021 return true;
2022 }
2023
David Brazdil0f672f62019-12-10 10:32:29 +00002024 /* If the zone is empty somebody else may have cleared out the zone */
2025 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2026 first_deferred_pfn)) {
2027 pgdat->first_deferred_pfn = ULONG_MAX;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002028 pgdat_resize_unlock(pgdat, &flags);
David Brazdil0f672f62019-12-10 10:32:29 +00002029 /* Retry only once. */
2030 return first_deferred_pfn != ULONG_MAX;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002031 }
2032
David Brazdil0f672f62019-12-10 10:32:29 +00002033 /*
2034 * Initialize and free pages in MAX_ORDER sized increments so
2035 * that we can avoid introducing any issues with the buddy
2036 * allocator.
2037 */
2038 while (spfn < epfn) {
2039 /* update our first deferred PFN for this section */
2040 first_deferred_pfn = spfn;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002041
David Brazdil0f672f62019-12-10 10:32:29 +00002042 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
Olivier Deprez0e641232021-09-23 10:07:05 +02002043 touch_nmi_watchdog();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002044
David Brazdil0f672f62019-12-10 10:32:29 +00002045 /* We should only stop along section boundaries */
2046 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2047 continue;
2048
2049 /* If our quota has been met we can stop here */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002050 if (nr_pages >= nr_pages_needed)
2051 break;
2052 }
2053
David Brazdil0f672f62019-12-10 10:32:29 +00002054 pgdat->first_deferred_pfn = spfn;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002055 pgdat_resize_unlock(pgdat, &flags);
2056
2057 return nr_pages > 0;
2058}
2059
2060/*
2061 * deferred_grow_zone() is __init, but it is called from
2062 * get_page_from_freelist() during early boot until deferred_pages permanently
2063 * disables this call. This is why we have refdata wrapper to avoid warning,
2064 * and to ensure that the function body gets unloaded.
2065 */
2066static bool __ref
2067_deferred_grow_zone(struct zone *zone, unsigned int order)
2068{
2069 return deferred_grow_zone(zone, order);
2070}
2071
2072#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2073
2074void __init page_alloc_init_late(void)
2075{
2076 struct zone *zone;
David Brazdil0f672f62019-12-10 10:32:29 +00002077 int nid;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002078
2079#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002080
2081 /* There will be num_node_state(N_MEMORY) threads */
2082 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2083 for_each_node_state(nid, N_MEMORY) {
2084 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2085 }
2086
2087 /* Block until all are initialised */
2088 wait_for_completion(&pgdat_init_all_done_comp);
2089
2090 /*
David Brazdil0f672f62019-12-10 10:32:29 +00002091 * The number of managed pages has changed due to the initialisation
2092 * so the pcpu batch and high limits needs to be updated or the limits
2093 * will be artificially small.
2094 */
2095 for_each_populated_zone(zone)
2096 zone_pcp_update(zone);
2097
2098 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002099 * We initialized the rest of the deferred pages. Permanently disable
2100 * on-demand struct page initialization.
2101 */
2102 static_branch_disable(&deferred_pages);
2103
2104 /* Reinit limits that are based on free pages after the kernel is up */
2105 files_maxfiles_init();
2106#endif
David Brazdil0f672f62019-12-10 10:32:29 +00002107
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002108 /* Discard memblock private memory */
2109 memblock_discard();
David Brazdil0f672f62019-12-10 10:32:29 +00002110
2111 for_each_node_state(nid, N_MEMORY)
2112 shuffle_free_memory(NODE_DATA(nid));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002113
2114 for_each_populated_zone(zone)
2115 set_zone_contiguous(zone);
2116}
2117
2118#ifdef CONFIG_CMA
2119/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2120void __init init_cma_reserved_pageblock(struct page *page)
2121{
2122 unsigned i = pageblock_nr_pages;
2123 struct page *p = page;
2124
2125 do {
2126 __ClearPageReserved(p);
2127 set_page_count(p, 0);
2128 } while (++p, --i);
2129
2130 set_pageblock_migratetype(page, MIGRATE_CMA);
2131
2132 if (pageblock_order >= MAX_ORDER) {
2133 i = pageblock_nr_pages;
2134 p = page;
2135 do {
2136 set_page_refcounted(p);
2137 __free_pages(p, MAX_ORDER - 1);
2138 p += MAX_ORDER_NR_PAGES;
2139 } while (i -= MAX_ORDER_NR_PAGES);
2140 } else {
2141 set_page_refcounted(page);
2142 __free_pages(page, pageblock_order);
2143 }
2144
2145 adjust_managed_page_count(page, pageblock_nr_pages);
2146}
2147#endif
2148
2149/*
2150 * The order of subdivision here is critical for the IO subsystem.
2151 * Please do not alter this order without good reasons and regression
2152 * testing. Specifically, as large blocks of memory are subdivided,
2153 * the order in which smaller blocks are delivered depends on the order
2154 * they're subdivided in this function. This is the primary factor
2155 * influencing the order in which pages are delivered to the IO
2156 * subsystem according to empirical testing, and this is also justified
2157 * by considering the behavior of a buddy system containing a single
2158 * large block of memory acted on by a series of small allocations.
2159 * This behavior is a critical factor in sglist merging's success.
2160 *
2161 * -- nyc
2162 */
2163static inline void expand(struct zone *zone, struct page *page,
Olivier Deprez157378f2022-04-04 15:47:50 +02002164 int low, int high, int migratetype)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002165{
2166 unsigned long size = 1 << high;
2167
2168 while (high > low) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002169 high--;
2170 size >>= 1;
2171 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2172
2173 /*
2174 * Mark as guard pages (or page), that will allow to
2175 * merge back to allocator when buddy will be freed.
2176 * Corresponding page table entries will not be touched,
2177 * pages will stay not present in virtual address space
2178 */
2179 if (set_page_guard(zone, &page[size], high, migratetype))
2180 continue;
2181
Olivier Deprez157378f2022-04-04 15:47:50 +02002182 add_to_free_list(&page[size], zone, high, migratetype);
2183 set_buddy_order(&page[size], high);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002184 }
2185}
2186
2187static void check_new_page_bad(struct page *page)
2188{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002189 if (unlikely(page->flags & __PG_HWPOISON)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002190 /* Don't complain about hwpoisoned pages */
2191 page_mapcount_reset(page); /* remove PageBuddy */
2192 return;
2193 }
Olivier Deprez157378f2022-04-04 15:47:50 +02002194
2195 bad_page(page,
2196 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002197}
2198
2199/*
2200 * This page is about to be returned from the page allocator
2201 */
2202static inline int check_new_page(struct page *page)
2203{
2204 if (likely(page_expected_state(page,
2205 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2206 return 0;
2207
2208 check_new_page_bad(page);
2209 return 1;
2210}
2211
2212static inline bool free_pages_prezeroed(void)
2213{
David Brazdil0f672f62019-12-10 10:32:29 +00002214 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2215 page_poisoning_enabled()) || want_init_on_free();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002216}
2217
2218#ifdef CONFIG_DEBUG_VM
David Brazdil0f672f62019-12-10 10:32:29 +00002219/*
2220 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2221 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2222 * also checked when pcp lists are refilled from the free lists.
2223 */
2224static inline bool check_pcp_refill(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002225{
Olivier Deprez0e641232021-09-23 10:07:05 +02002226 if (debug_pagealloc_enabled_static())
David Brazdil0f672f62019-12-10 10:32:29 +00002227 return check_new_page(page);
2228 else
2229 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002230}
2231
David Brazdil0f672f62019-12-10 10:32:29 +00002232static inline bool check_new_pcp(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002233{
2234 return check_new_page(page);
2235}
2236#else
David Brazdil0f672f62019-12-10 10:32:29 +00002237/*
2238 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2239 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2240 * enabled, they are also checked when being allocated from the pcp lists.
2241 */
2242static inline bool check_pcp_refill(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002243{
2244 return check_new_page(page);
2245}
David Brazdil0f672f62019-12-10 10:32:29 +00002246static inline bool check_new_pcp(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002247{
Olivier Deprez0e641232021-09-23 10:07:05 +02002248 if (debug_pagealloc_enabled_static())
David Brazdil0f672f62019-12-10 10:32:29 +00002249 return check_new_page(page);
2250 else
2251 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002252}
2253#endif /* CONFIG_DEBUG_VM */
2254
2255static bool check_new_pages(struct page *page, unsigned int order)
2256{
2257 int i;
2258 for (i = 0; i < (1 << order); i++) {
2259 struct page *p = page + i;
2260
2261 if (unlikely(check_new_page(p)))
2262 return true;
2263 }
2264
2265 return false;
2266}
2267
2268inline void post_alloc_hook(struct page *page, unsigned int order,
2269 gfp_t gfp_flags)
2270{
2271 set_page_private(page, 0);
2272 set_page_refcounted(page);
2273
2274 arch_alloc_page(page, order);
Olivier Deprez0e641232021-09-23 10:07:05 +02002275 if (debug_pagealloc_enabled_static())
David Brazdil0f672f62019-12-10 10:32:29 +00002276 kernel_map_pages(page, 1 << order, 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002277 kasan_alloc_pages(page, order);
David Brazdil0f672f62019-12-10 10:32:29 +00002278 kernel_poison_pages(page, 1 << order, 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002279 set_page_owner(page, order, gfp_flags);
2280}
2281
2282static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2283 unsigned int alloc_flags)
2284{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002285 post_alloc_hook(page, order, gfp_flags);
2286
David Brazdil0f672f62019-12-10 10:32:29 +00002287 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2288 kernel_init_free_pages(page, 1 << order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002289
2290 if (order && (gfp_flags & __GFP_COMP))
2291 prep_compound_page(page, order);
2292
2293 /*
2294 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2295 * allocate the page. The expectation is that the caller is taking
2296 * steps that will free more memory. The caller should avoid the page
2297 * being used for !PFMEMALLOC purposes.
2298 */
2299 if (alloc_flags & ALLOC_NO_WATERMARKS)
2300 set_page_pfmemalloc(page);
2301 else
2302 clear_page_pfmemalloc(page);
2303}
2304
2305/*
2306 * Go through the free lists for the given migratetype and remove
2307 * the smallest available page from the freelists
2308 */
2309static __always_inline
2310struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2311 int migratetype)
2312{
2313 unsigned int current_order;
2314 struct free_area *area;
2315 struct page *page;
2316
2317 /* Find a page of the appropriate size in the preferred list */
2318 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2319 area = &(zone->free_area[current_order]);
David Brazdil0f672f62019-12-10 10:32:29 +00002320 page = get_page_from_free_area(area, migratetype);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002321 if (!page)
2322 continue;
Olivier Deprez157378f2022-04-04 15:47:50 +02002323 del_page_from_free_list(page, zone, current_order);
2324 expand(zone, page, order, current_order, migratetype);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002325 set_pcppage_migratetype(page, migratetype);
2326 return page;
2327 }
2328
2329 return NULL;
2330}
2331
2332
2333/*
2334 * This array describes the order lists are fallen back to when
2335 * the free lists for the desirable migrate type are depleted
2336 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002337static int fallbacks[MIGRATE_TYPES][3] = {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002338 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002339 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
David Brazdil0f672f62019-12-10 10:32:29 +00002340 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002341#ifdef CONFIG_CMA
2342 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2343#endif
2344#ifdef CONFIG_MEMORY_ISOLATION
2345 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2346#endif
2347};
2348
2349#ifdef CONFIG_CMA
2350static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2351 unsigned int order)
2352{
2353 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2354}
2355#else
2356static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2357 unsigned int order) { return NULL; }
2358#endif
2359
2360/*
Olivier Deprez157378f2022-04-04 15:47:50 +02002361 * Move the free pages in a range to the freelist tail of the requested type.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002362 * Note that start_page and end_pages are not aligned on a pageblock
2363 * boundary. If alignment is required, use move_freepages_block()
2364 */
2365static int move_freepages(struct zone *zone,
2366 struct page *start_page, struct page *end_page,
2367 int migratetype, int *num_movable)
2368{
2369 struct page *page;
2370 unsigned int order;
2371 int pages_moved = 0;
2372
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002373 for (page = start_page; page <= end_page;) {
2374 if (!pfn_valid_within(page_to_pfn(page))) {
2375 page++;
2376 continue;
2377 }
2378
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002379 if (!PageBuddy(page)) {
2380 /*
2381 * We assume that pages that could be isolated for
2382 * migration are movable. But we don't actually try
2383 * isolating, as that would be expensive.
2384 */
2385 if (num_movable &&
2386 (PageLRU(page) || __PageMovable(page)))
2387 (*num_movable)++;
2388
2389 page++;
2390 continue;
2391 }
2392
David Brazdil0f672f62019-12-10 10:32:29 +00002393 /* Make sure we are not inadvertently changing nodes */
2394 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2395 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2396
Olivier Deprez157378f2022-04-04 15:47:50 +02002397 order = buddy_order(page);
2398 move_to_free_list(page, zone, order, migratetype);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002399 page += 1 << order;
2400 pages_moved += 1 << order;
2401 }
2402
2403 return pages_moved;
2404}
2405
2406int move_freepages_block(struct zone *zone, struct page *page,
2407 int migratetype, int *num_movable)
2408{
2409 unsigned long start_pfn, end_pfn;
2410 struct page *start_page, *end_page;
2411
David Brazdil0f672f62019-12-10 10:32:29 +00002412 if (num_movable)
2413 *num_movable = 0;
2414
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002415 start_pfn = page_to_pfn(page);
2416 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2417 start_page = pfn_to_page(start_pfn);
2418 end_page = start_page + pageblock_nr_pages - 1;
2419 end_pfn = start_pfn + pageblock_nr_pages - 1;
2420
2421 /* Do not cross zone boundaries */
2422 if (!zone_spans_pfn(zone, start_pfn))
2423 start_page = page;
2424 if (!zone_spans_pfn(zone, end_pfn))
2425 return 0;
2426
2427 return move_freepages(zone, start_page, end_page, migratetype,
2428 num_movable);
2429}
2430
2431static void change_pageblock_range(struct page *pageblock_page,
2432 int start_order, int migratetype)
2433{
2434 int nr_pageblocks = 1 << (start_order - pageblock_order);
2435
2436 while (nr_pageblocks--) {
2437 set_pageblock_migratetype(pageblock_page, migratetype);
2438 pageblock_page += pageblock_nr_pages;
2439 }
2440}
2441
2442/*
2443 * When we are falling back to another migratetype during allocation, try to
2444 * steal extra free pages from the same pageblocks to satisfy further
2445 * allocations, instead of polluting multiple pageblocks.
2446 *
2447 * If we are stealing a relatively large buddy page, it is likely there will
2448 * be more free pages in the pageblock, so try to steal them all. For
2449 * reclaimable and unmovable allocations, we steal regardless of page size,
2450 * as fragmentation caused by those allocations polluting movable pageblocks
2451 * is worse than movable allocations stealing from unmovable and reclaimable
2452 * pageblocks.
2453 */
2454static bool can_steal_fallback(unsigned int order, int start_mt)
2455{
2456 /*
2457 * Leaving this order check is intended, although there is
2458 * relaxed order check in next check. The reason is that
2459 * we can actually steal whole pageblock if this condition met,
2460 * but, below check doesn't guarantee it and that is just heuristic
2461 * so could be changed anytime.
2462 */
2463 if (order >= pageblock_order)
2464 return true;
2465
2466 if (order >= pageblock_order / 2 ||
2467 start_mt == MIGRATE_RECLAIMABLE ||
2468 start_mt == MIGRATE_UNMOVABLE ||
2469 page_group_by_mobility_disabled)
2470 return true;
2471
2472 return false;
2473}
2474
Olivier Deprez0e641232021-09-23 10:07:05 +02002475static inline bool boost_watermark(struct zone *zone)
David Brazdil0f672f62019-12-10 10:32:29 +00002476{
2477 unsigned long max_boost;
2478
2479 if (!watermark_boost_factor)
Olivier Deprez0e641232021-09-23 10:07:05 +02002480 return false;
2481 /*
2482 * Don't bother in zones that are unlikely to produce results.
2483 * On small machines, including kdump capture kernels running
2484 * in a small area, boosting the watermark can cause an out of
2485 * memory situation immediately.
2486 */
2487 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2488 return false;
David Brazdil0f672f62019-12-10 10:32:29 +00002489
2490 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2491 watermark_boost_factor, 10000);
2492
2493 /*
2494 * high watermark may be uninitialised if fragmentation occurs
2495 * very early in boot so do not boost. We do not fall
2496 * through and boost by pageblock_nr_pages as failing
2497 * allocations that early means that reclaim is not going
2498 * to help and it may even be impossible to reclaim the
2499 * boosted watermark resulting in a hang.
2500 */
2501 if (!max_boost)
Olivier Deprez0e641232021-09-23 10:07:05 +02002502 return false;
David Brazdil0f672f62019-12-10 10:32:29 +00002503
2504 max_boost = max(pageblock_nr_pages, max_boost);
2505
2506 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2507 max_boost);
Olivier Deprez0e641232021-09-23 10:07:05 +02002508
2509 return true;
David Brazdil0f672f62019-12-10 10:32:29 +00002510}
2511
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002512/*
2513 * This function implements actual steal behaviour. If order is large enough,
2514 * we can steal whole pageblock. If not, we first move freepages in this
2515 * pageblock to our migratetype and determine how many already-allocated pages
2516 * are there in the pageblock with a compatible migratetype. If at least half
2517 * of pages are free or compatible, we can change migratetype of the pageblock
2518 * itself, so pages freed in the future will be put on the correct free list.
2519 */
2520static void steal_suitable_fallback(struct zone *zone, struct page *page,
David Brazdil0f672f62019-12-10 10:32:29 +00002521 unsigned int alloc_flags, int start_type, bool whole_block)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002522{
Olivier Deprez157378f2022-04-04 15:47:50 +02002523 unsigned int current_order = buddy_order(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002524 int free_pages, movable_pages, alike_pages;
2525 int old_block_type;
2526
2527 old_block_type = get_pageblock_migratetype(page);
2528
2529 /*
2530 * This can happen due to races and we want to prevent broken
2531 * highatomic accounting.
2532 */
2533 if (is_migrate_highatomic(old_block_type))
2534 goto single_page;
2535
2536 /* Take ownership for orders >= pageblock_order */
2537 if (current_order >= pageblock_order) {
2538 change_pageblock_range(page, current_order, start_type);
2539 goto single_page;
2540 }
2541
David Brazdil0f672f62019-12-10 10:32:29 +00002542 /*
2543 * Boost watermarks to increase reclaim pressure to reduce the
2544 * likelihood of future fallbacks. Wake kswapd now as the node
2545 * may be balanced overall and kswapd will not wake naturally.
2546 */
Olivier Deprez0e641232021-09-23 10:07:05 +02002547 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
David Brazdil0f672f62019-12-10 10:32:29 +00002548 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2549
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002550 /* We are not allowed to try stealing from the whole block */
2551 if (!whole_block)
2552 goto single_page;
2553
2554 free_pages = move_freepages_block(zone, page, start_type,
2555 &movable_pages);
2556 /*
2557 * Determine how many pages are compatible with our allocation.
2558 * For movable allocation, it's the number of movable pages which
2559 * we just obtained. For other types it's a bit more tricky.
2560 */
2561 if (start_type == MIGRATE_MOVABLE) {
2562 alike_pages = movable_pages;
2563 } else {
2564 /*
2565 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2566 * to MOVABLE pageblock, consider all non-movable pages as
2567 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2568 * vice versa, be conservative since we can't distinguish the
2569 * exact migratetype of non-movable pages.
2570 */
2571 if (old_block_type == MIGRATE_MOVABLE)
2572 alike_pages = pageblock_nr_pages
2573 - (free_pages + movable_pages);
2574 else
2575 alike_pages = 0;
2576 }
2577
2578 /* moving whole block can fail due to zone boundary conditions */
2579 if (!free_pages)
2580 goto single_page;
2581
2582 /*
2583 * If a sufficient number of pages in the block are either free or of
2584 * comparable migratability as our allocation, claim the whole block.
2585 */
2586 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2587 page_group_by_mobility_disabled)
2588 set_pageblock_migratetype(page, start_type);
2589
2590 return;
2591
2592single_page:
Olivier Deprez157378f2022-04-04 15:47:50 +02002593 move_to_free_list(page, zone, current_order, start_type);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002594}
2595
2596/*
2597 * Check whether there is a suitable fallback freepage with requested order.
2598 * If only_stealable is true, this function returns fallback_mt only if
2599 * we can steal other freepages all together. This would help to reduce
2600 * fragmentation due to mixed migratetype pages in one pageblock.
2601 */
2602int find_suitable_fallback(struct free_area *area, unsigned int order,
2603 int migratetype, bool only_stealable, bool *can_steal)
2604{
2605 int i;
2606 int fallback_mt;
2607
2608 if (area->nr_free == 0)
2609 return -1;
2610
2611 *can_steal = false;
2612 for (i = 0;; i++) {
2613 fallback_mt = fallbacks[migratetype][i];
2614 if (fallback_mt == MIGRATE_TYPES)
2615 break;
2616
David Brazdil0f672f62019-12-10 10:32:29 +00002617 if (free_area_empty(area, fallback_mt))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002618 continue;
2619
2620 if (can_steal_fallback(order, migratetype))
2621 *can_steal = true;
2622
2623 if (!only_stealable)
2624 return fallback_mt;
2625
2626 if (*can_steal)
2627 return fallback_mt;
2628 }
2629
2630 return -1;
2631}
2632
2633/*
2634 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2635 * there are no empty page blocks that contain a page with a suitable order
2636 */
2637static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2638 unsigned int alloc_order)
2639{
2640 int mt;
2641 unsigned long max_managed, flags;
2642
2643 /*
2644 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2645 * Check is race-prone but harmless.
2646 */
David Brazdil0f672f62019-12-10 10:32:29 +00002647 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002648 if (zone->nr_reserved_highatomic >= max_managed)
2649 return;
2650
2651 spin_lock_irqsave(&zone->lock, flags);
2652
2653 /* Recheck the nr_reserved_highatomic limit under the lock */
2654 if (zone->nr_reserved_highatomic >= max_managed)
2655 goto out_unlock;
2656
2657 /* Yoink! */
2658 mt = get_pageblock_migratetype(page);
2659 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2660 && !is_migrate_cma(mt)) {
2661 zone->nr_reserved_highatomic += pageblock_nr_pages;
2662 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2663 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2664 }
2665
2666out_unlock:
2667 spin_unlock_irqrestore(&zone->lock, flags);
2668}
2669
2670/*
2671 * Used when an allocation is about to fail under memory pressure. This
2672 * potentially hurts the reliability of high-order allocations when under
2673 * intense memory pressure but failed atomic allocations should be easier
2674 * to recover from than an OOM.
2675 *
2676 * If @force is true, try to unreserve a pageblock even though highatomic
2677 * pageblock is exhausted.
2678 */
2679static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2680 bool force)
2681{
2682 struct zonelist *zonelist = ac->zonelist;
2683 unsigned long flags;
2684 struct zoneref *z;
2685 struct zone *zone;
2686 struct page *page;
2687 int order;
2688 bool ret;
2689
Olivier Deprez157378f2022-04-04 15:47:50 +02002690 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002691 ac->nodemask) {
2692 /*
2693 * Preserve at least one pageblock unless memory pressure
2694 * is really high.
2695 */
2696 if (!force && zone->nr_reserved_highatomic <=
2697 pageblock_nr_pages)
2698 continue;
2699
2700 spin_lock_irqsave(&zone->lock, flags);
2701 for (order = 0; order < MAX_ORDER; order++) {
2702 struct free_area *area = &(zone->free_area[order]);
2703
David Brazdil0f672f62019-12-10 10:32:29 +00002704 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002705 if (!page)
2706 continue;
2707
2708 /*
2709 * In page freeing path, migratetype change is racy so
2710 * we can counter several free pages in a pageblock
2711 * in this loop althoug we changed the pageblock type
2712 * from highatomic to ac->migratetype. So we should
2713 * adjust the count once.
2714 */
2715 if (is_migrate_highatomic_page(page)) {
2716 /*
2717 * It should never happen but changes to
2718 * locking could inadvertently allow a per-cpu
2719 * drain to add pages to MIGRATE_HIGHATOMIC
2720 * while unreserving so be safe and watch for
2721 * underflows.
2722 */
2723 zone->nr_reserved_highatomic -= min(
2724 pageblock_nr_pages,
2725 zone->nr_reserved_highatomic);
2726 }
2727
2728 /*
2729 * Convert to ac->migratetype and avoid the normal
2730 * pageblock stealing heuristics. Minimally, the caller
2731 * is doing the work and needs the pages. More
2732 * importantly, if the block was always converted to
2733 * MIGRATE_UNMOVABLE or another type then the number
2734 * of pageblocks that cannot be completely freed
2735 * may increase.
2736 */
2737 set_pageblock_migratetype(page, ac->migratetype);
2738 ret = move_freepages_block(zone, page, ac->migratetype,
2739 NULL);
2740 if (ret) {
2741 spin_unlock_irqrestore(&zone->lock, flags);
2742 return ret;
2743 }
2744 }
2745 spin_unlock_irqrestore(&zone->lock, flags);
2746 }
2747
2748 return false;
2749}
2750
2751/*
2752 * Try finding a free buddy page on the fallback list and put it on the free
2753 * list of requested migratetype, possibly along with other pages from the same
2754 * block, depending on fragmentation avoidance heuristics. Returns true if
2755 * fallback was found so that __rmqueue_smallest() can grab it.
2756 *
2757 * The use of signed ints for order and current_order is a deliberate
2758 * deviation from the rest of this file, to make the for loop
2759 * condition simpler.
2760 */
2761static __always_inline bool
David Brazdil0f672f62019-12-10 10:32:29 +00002762__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2763 unsigned int alloc_flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002764{
2765 struct free_area *area;
2766 int current_order;
David Brazdil0f672f62019-12-10 10:32:29 +00002767 int min_order = order;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002768 struct page *page;
2769 int fallback_mt;
2770 bool can_steal;
2771
2772 /*
David Brazdil0f672f62019-12-10 10:32:29 +00002773 * Do not steal pages from freelists belonging to other pageblocks
2774 * i.e. orders < pageblock_order. If there are no local zones free,
2775 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2776 */
2777 if (alloc_flags & ALLOC_NOFRAGMENT)
2778 min_order = pageblock_order;
2779
2780 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002781 * Find the largest available free page in the other list. This roughly
2782 * approximates finding the pageblock with the most free pages, which
2783 * would be too costly to do exactly.
2784 */
David Brazdil0f672f62019-12-10 10:32:29 +00002785 for (current_order = MAX_ORDER - 1; current_order >= min_order;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002786 --current_order) {
2787 area = &(zone->free_area[current_order]);
2788 fallback_mt = find_suitable_fallback(area, current_order,
2789 start_migratetype, false, &can_steal);
2790 if (fallback_mt == -1)
2791 continue;
2792
2793 /*
2794 * We cannot steal all free pages from the pageblock and the
2795 * requested migratetype is movable. In that case it's better to
2796 * steal and split the smallest available page instead of the
2797 * largest available page, because even if the next movable
2798 * allocation falls back into a different pageblock than this
2799 * one, it won't cause permanent fragmentation.
2800 */
2801 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2802 && current_order > order)
2803 goto find_smallest;
2804
2805 goto do_steal;
2806 }
2807
2808 return false;
2809
2810find_smallest:
2811 for (current_order = order; current_order < MAX_ORDER;
2812 current_order++) {
2813 area = &(zone->free_area[current_order]);
2814 fallback_mt = find_suitable_fallback(area, current_order,
2815 start_migratetype, false, &can_steal);
2816 if (fallback_mt != -1)
2817 break;
2818 }
2819
2820 /*
2821 * This should not happen - we already found a suitable fallback
2822 * when looking for the largest page.
2823 */
2824 VM_BUG_ON(current_order == MAX_ORDER);
2825
2826do_steal:
David Brazdil0f672f62019-12-10 10:32:29 +00002827 page = get_page_from_free_area(area, fallback_mt);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002828
David Brazdil0f672f62019-12-10 10:32:29 +00002829 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2830 can_steal);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002831
2832 trace_mm_page_alloc_extfrag(page, order, current_order,
2833 start_migratetype, fallback_mt);
2834
2835 return true;
2836
2837}
2838
2839/*
2840 * Do the hard work of removing an element from the buddy allocator.
2841 * Call me with the zone->lock already held.
2842 */
2843static __always_inline struct page *
David Brazdil0f672f62019-12-10 10:32:29 +00002844__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2845 unsigned int alloc_flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002846{
2847 struct page *page;
2848
Olivier Deprez157378f2022-04-04 15:47:50 +02002849 if (IS_ENABLED(CONFIG_CMA)) {
2850 /*
2851 * Balance movable allocations between regular and CMA areas by
2852 * allocating from CMA when over half of the zone's free memory
2853 * is in the CMA area.
2854 */
2855 if (alloc_flags & ALLOC_CMA &&
2856 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2857 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2858 page = __rmqueue_cma_fallback(zone, order);
2859 if (page)
2860 goto out;
2861 }
2862 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002863retry:
2864 page = __rmqueue_smallest(zone, order, migratetype);
2865 if (unlikely(!page)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02002866 if (alloc_flags & ALLOC_CMA)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002867 page = __rmqueue_cma_fallback(zone, order);
2868
David Brazdil0f672f62019-12-10 10:32:29 +00002869 if (!page && __rmqueue_fallback(zone, order, migratetype,
2870 alloc_flags))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002871 goto retry;
2872 }
Olivier Deprez157378f2022-04-04 15:47:50 +02002873out:
2874 if (page)
2875 trace_mm_page_alloc_zone_locked(page, order, migratetype);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002876 return page;
2877}
2878
2879/*
2880 * Obtain a specified number of elements from the buddy allocator, all under
2881 * a single hold of the lock, for efficiency. Add them to the supplied list.
2882 * Returns the number of new pages which were placed at *list.
2883 */
2884static int rmqueue_bulk(struct zone *zone, unsigned int order,
2885 unsigned long count, struct list_head *list,
David Brazdil0f672f62019-12-10 10:32:29 +00002886 int migratetype, unsigned int alloc_flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002887{
2888 int i, alloced = 0;
2889
2890 spin_lock(&zone->lock);
2891 for (i = 0; i < count; ++i) {
David Brazdil0f672f62019-12-10 10:32:29 +00002892 struct page *page = __rmqueue(zone, order, migratetype,
2893 alloc_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002894 if (unlikely(page == NULL))
2895 break;
2896
2897 if (unlikely(check_pcp_refill(page)))
2898 continue;
2899
2900 /*
2901 * Split buddy pages returned by expand() are received here in
2902 * physical page order. The page is added to the tail of
2903 * caller's list. From the callers perspective, the linked list
2904 * is ordered by page number under some conditions. This is
2905 * useful for IO devices that can forward direction from the
2906 * head, thus also in the physical page order. This is useful
2907 * for IO devices that can merge IO requests if the physical
2908 * pages are ordered properly.
2909 */
2910 list_add_tail(&page->lru, list);
2911 alloced++;
2912 if (is_migrate_cma(get_pcppage_migratetype(page)))
2913 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2914 -(1 << order));
2915 }
2916
2917 /*
2918 * i pages were removed from the buddy list even if some leak due
2919 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2920 * on i. Do not confuse with 'alloced' which is the number of
2921 * pages added to the pcp list.
2922 */
2923 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2924 spin_unlock(&zone->lock);
2925 return alloced;
2926}
2927
2928#ifdef CONFIG_NUMA
2929/*
2930 * Called from the vmstat counter updater to drain pagesets of this
2931 * currently executing processor on remote nodes after they have
2932 * expired.
2933 *
2934 * Note that this function must be called with the thread pinned to
2935 * a single processor.
2936 */
2937void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2938{
2939 unsigned long flags;
2940 int to_drain, batch;
2941
2942 local_irq_save(flags);
2943 batch = READ_ONCE(pcp->batch);
2944 to_drain = min(pcp->count, batch);
2945 if (to_drain > 0)
2946 free_pcppages_bulk(zone, to_drain, pcp);
2947 local_irq_restore(flags);
2948}
2949#endif
2950
2951/*
2952 * Drain pcplists of the indicated processor and zone.
2953 *
2954 * The processor must either be the current processor and the
2955 * thread pinned to the current processor or a processor that
2956 * is not online.
2957 */
2958static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2959{
2960 unsigned long flags;
2961 struct per_cpu_pageset *pset;
2962 struct per_cpu_pages *pcp;
2963
2964 local_irq_save(flags);
2965 pset = per_cpu_ptr(zone->pageset, cpu);
2966
2967 pcp = &pset->pcp;
2968 if (pcp->count)
2969 free_pcppages_bulk(zone, pcp->count, pcp);
2970 local_irq_restore(flags);
2971}
2972
2973/*
2974 * Drain pcplists of all zones on the indicated processor.
2975 *
2976 * The processor must either be the current processor and the
2977 * thread pinned to the current processor or a processor that
2978 * is not online.
2979 */
2980static void drain_pages(unsigned int cpu)
2981{
2982 struct zone *zone;
2983
2984 for_each_populated_zone(zone) {
2985 drain_pages_zone(cpu, zone);
2986 }
2987}
2988
2989/*
2990 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2991 *
2992 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2993 * the single zone's pages.
2994 */
2995void drain_local_pages(struct zone *zone)
2996{
2997 int cpu = smp_processor_id();
2998
2999 if (zone)
3000 drain_pages_zone(cpu, zone);
3001 else
3002 drain_pages(cpu);
3003}
3004
3005static void drain_local_pages_wq(struct work_struct *work)
3006{
David Brazdil0f672f62019-12-10 10:32:29 +00003007 struct pcpu_drain *drain;
3008
3009 drain = container_of(work, struct pcpu_drain, work);
3010
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003011 /*
3012 * drain_all_pages doesn't use proper cpu hotplug protection so
3013 * we can race with cpu offline when the WQ can move this from
3014 * a cpu pinned worker to an unbound one. We can operate on a different
3015 * cpu which is allright but we also have to make sure to not move to
3016 * a different one.
3017 */
3018 preempt_disable();
David Brazdil0f672f62019-12-10 10:32:29 +00003019 drain_local_pages(drain->zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003020 preempt_enable();
3021}
3022
3023/*
3024 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3025 *
3026 * When zone parameter is non-NULL, spill just the single zone's pages.
3027 *
3028 * Note that this can be extremely slow as the draining happens in a workqueue.
3029 */
3030void drain_all_pages(struct zone *zone)
3031{
3032 int cpu;
3033
3034 /*
3035 * Allocate in the BSS so we wont require allocation in
3036 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3037 */
3038 static cpumask_t cpus_with_pcps;
3039
3040 /*
3041 * Make sure nobody triggers this path before mm_percpu_wq is fully
3042 * initialized.
3043 */
3044 if (WARN_ON_ONCE(!mm_percpu_wq))
3045 return;
3046
3047 /*
3048 * Do not drain if one is already in progress unless it's specific to
3049 * a zone. Such callers are primarily CMA and memory hotplug and need
3050 * the drain to be complete when the call returns.
3051 */
3052 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3053 if (!zone)
3054 return;
3055 mutex_lock(&pcpu_drain_mutex);
3056 }
3057
3058 /*
3059 * We don't care about racing with CPU hotplug event
3060 * as offline notification will cause the notified
3061 * cpu to drain that CPU pcps and on_each_cpu_mask
3062 * disables preemption as part of its processing
3063 */
3064 for_each_online_cpu(cpu) {
3065 struct per_cpu_pageset *pcp;
3066 struct zone *z;
3067 bool has_pcps = false;
3068
3069 if (zone) {
3070 pcp = per_cpu_ptr(zone->pageset, cpu);
3071 if (pcp->pcp.count)
3072 has_pcps = true;
3073 } else {
3074 for_each_populated_zone(z) {
3075 pcp = per_cpu_ptr(z->pageset, cpu);
3076 if (pcp->pcp.count) {
3077 has_pcps = true;
3078 break;
3079 }
3080 }
3081 }
3082
3083 if (has_pcps)
3084 cpumask_set_cpu(cpu, &cpus_with_pcps);
3085 else
3086 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3087 }
3088
3089 for_each_cpu(cpu, &cpus_with_pcps) {
David Brazdil0f672f62019-12-10 10:32:29 +00003090 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3091
3092 drain->zone = zone;
3093 INIT_WORK(&drain->work, drain_local_pages_wq);
3094 queue_work_on(cpu, mm_percpu_wq, &drain->work);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003095 }
3096 for_each_cpu(cpu, &cpus_with_pcps)
David Brazdil0f672f62019-12-10 10:32:29 +00003097 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003098
3099 mutex_unlock(&pcpu_drain_mutex);
3100}
3101
3102#ifdef CONFIG_HIBERNATION
3103
3104/*
3105 * Touch the watchdog for every WD_PAGE_COUNT pages.
3106 */
3107#define WD_PAGE_COUNT (128*1024)
3108
3109void mark_free_pages(struct zone *zone)
3110{
3111 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3112 unsigned long flags;
3113 unsigned int order, t;
3114 struct page *page;
3115
3116 if (zone_is_empty(zone))
3117 return;
3118
3119 spin_lock_irqsave(&zone->lock, flags);
3120
3121 max_zone_pfn = zone_end_pfn(zone);
3122 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3123 if (pfn_valid(pfn)) {
3124 page = pfn_to_page(pfn);
3125
3126 if (!--page_count) {
3127 touch_nmi_watchdog();
3128 page_count = WD_PAGE_COUNT;
3129 }
3130
3131 if (page_zone(page) != zone)
3132 continue;
3133
3134 if (!swsusp_page_is_forbidden(page))
3135 swsusp_unset_page_free(page);
3136 }
3137
3138 for_each_migratetype_order(order, t) {
3139 list_for_each_entry(page,
3140 &zone->free_area[order].free_list[t], lru) {
3141 unsigned long i;
3142
3143 pfn = page_to_pfn(page);
3144 for (i = 0; i < (1UL << order); i++) {
3145 if (!--page_count) {
3146 touch_nmi_watchdog();
3147 page_count = WD_PAGE_COUNT;
3148 }
3149 swsusp_set_page_free(pfn_to_page(pfn + i));
3150 }
3151 }
3152 }
3153 spin_unlock_irqrestore(&zone->lock, flags);
3154}
3155#endif /* CONFIG_PM */
3156
3157static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3158{
3159 int migratetype;
3160
3161 if (!free_pcp_prepare(page))
3162 return false;
3163
3164 migratetype = get_pfnblock_migratetype(page, pfn);
3165 set_pcppage_migratetype(page, migratetype);
3166 return true;
3167}
3168
3169static void free_unref_page_commit(struct page *page, unsigned long pfn)
3170{
3171 struct zone *zone = page_zone(page);
3172 struct per_cpu_pages *pcp;
3173 int migratetype;
3174
3175 migratetype = get_pcppage_migratetype(page);
3176 __count_vm_event(PGFREE);
3177
3178 /*
3179 * We only track unmovable, reclaimable and movable on pcp lists.
3180 * Free ISOLATE pages back to the allocator because they are being
3181 * offlined but treat HIGHATOMIC as movable pages so we can get those
3182 * areas back if necessary. Otherwise, we may have to free
3183 * excessively into the page allocator
3184 */
3185 if (migratetype >= MIGRATE_PCPTYPES) {
3186 if (unlikely(is_migrate_isolate(migratetype))) {
Olivier Deprez157378f2022-04-04 15:47:50 +02003187 free_one_page(zone, page, pfn, 0, migratetype,
3188 FPI_NONE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003189 return;
3190 }
3191 migratetype = MIGRATE_MOVABLE;
3192 }
3193
3194 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3195 list_add(&page->lru, &pcp->lists[migratetype]);
3196 pcp->count++;
3197 if (pcp->count >= pcp->high) {
3198 unsigned long batch = READ_ONCE(pcp->batch);
3199 free_pcppages_bulk(zone, batch, pcp);
3200 }
3201}
3202
3203/*
3204 * Free a 0-order page
3205 */
3206void free_unref_page(struct page *page)
3207{
3208 unsigned long flags;
3209 unsigned long pfn = page_to_pfn(page);
3210
3211 if (!free_unref_page_prepare(page, pfn))
3212 return;
3213
3214 local_irq_save(flags);
3215 free_unref_page_commit(page, pfn);
3216 local_irq_restore(flags);
3217}
3218
3219/*
3220 * Free a list of 0-order pages
3221 */
3222void free_unref_page_list(struct list_head *list)
3223{
3224 struct page *page, *next;
3225 unsigned long flags, pfn;
3226 int batch_count = 0;
3227
3228 /* Prepare pages for freeing */
3229 list_for_each_entry_safe(page, next, list, lru) {
3230 pfn = page_to_pfn(page);
3231 if (!free_unref_page_prepare(page, pfn))
3232 list_del(&page->lru);
3233 set_page_private(page, pfn);
3234 }
3235
3236 local_irq_save(flags);
3237 list_for_each_entry_safe(page, next, list, lru) {
3238 unsigned long pfn = page_private(page);
3239
3240 set_page_private(page, 0);
3241 trace_mm_page_free_batched(page);
3242 free_unref_page_commit(page, pfn);
3243
3244 /*
3245 * Guard against excessive IRQ disabled times when we get
3246 * a large list of pages to free.
3247 */
3248 if (++batch_count == SWAP_CLUSTER_MAX) {
3249 local_irq_restore(flags);
3250 batch_count = 0;
3251 local_irq_save(flags);
3252 }
3253 }
3254 local_irq_restore(flags);
3255}
3256
3257/*
3258 * split_page takes a non-compound higher-order page, and splits it into
3259 * n (1<<order) sub-pages: page[0..n]
3260 * Each sub-page must be freed individually.
3261 *
3262 * Note: this is probably too low level an operation for use in drivers.
3263 * Please consult with lkml before using this in your driver.
3264 */
3265void split_page(struct page *page, unsigned int order)
3266{
3267 int i;
3268
3269 VM_BUG_ON_PAGE(PageCompound(page), page);
3270 VM_BUG_ON_PAGE(!page_count(page), page);
3271
3272 for (i = 1; i < (1 << order); i++)
3273 set_page_refcounted(page + i);
Olivier Deprez0e641232021-09-23 10:07:05 +02003274 split_page_owner(page, 1 << order);
Olivier Deprez157378f2022-04-04 15:47:50 +02003275 split_page_memcg(page, 1 << order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003276}
3277EXPORT_SYMBOL_GPL(split_page);
3278
3279int __isolate_free_page(struct page *page, unsigned int order)
3280{
3281 unsigned long watermark;
3282 struct zone *zone;
3283 int mt;
3284
3285 BUG_ON(!PageBuddy(page));
3286
3287 zone = page_zone(page);
3288 mt = get_pageblock_migratetype(page);
3289
3290 if (!is_migrate_isolate(mt)) {
3291 /*
3292 * Obey watermarks as if the page was being allocated. We can
3293 * emulate a high-order watermark check with a raised order-0
3294 * watermark, because we already know our high-order page
3295 * exists.
3296 */
David Brazdil0f672f62019-12-10 10:32:29 +00003297 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003298 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3299 return 0;
3300
3301 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3302 }
3303
3304 /* Remove page from free list */
David Brazdil0f672f62019-12-10 10:32:29 +00003305
Olivier Deprez157378f2022-04-04 15:47:50 +02003306 del_page_from_free_list(page, zone, order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003307
3308 /*
3309 * Set the pageblock if the isolated page is at least half of a
3310 * pageblock
3311 */
3312 if (order >= pageblock_order - 1) {
3313 struct page *endpage = page + (1 << order) - 1;
3314 for (; page < endpage; page += pageblock_nr_pages) {
3315 int mt = get_pageblock_migratetype(page);
3316 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3317 && !is_migrate_highatomic(mt))
3318 set_pageblock_migratetype(page,
3319 MIGRATE_MOVABLE);
3320 }
3321 }
3322
3323
3324 return 1UL << order;
3325}
3326
Olivier Deprez157378f2022-04-04 15:47:50 +02003327/**
3328 * __putback_isolated_page - Return a now-isolated page back where we got it
3329 * @page: Page that was isolated
3330 * @order: Order of the isolated page
3331 * @mt: The page's pageblock's migratetype
3332 *
3333 * This function is meant to return a page pulled from the free lists via
3334 * __isolate_free_page back to the free lists they were pulled from.
3335 */
3336void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3337{
3338 struct zone *zone = page_zone(page);
3339
3340 /* zone lock should be held when this function is called */
3341 lockdep_assert_held(&zone->lock);
3342
3343 /* Return isolated page to tail of freelist. */
3344 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3345 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3346}
3347
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003348/*
3349 * Update NUMA hit/miss statistics
3350 *
3351 * Must be called with interrupts disabled.
3352 */
3353static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3354{
3355#ifdef CONFIG_NUMA
3356 enum numa_stat_item local_stat = NUMA_LOCAL;
3357
3358 /* skip numa counters update if numa stats is disabled */
3359 if (!static_branch_likely(&vm_numa_stat_key))
3360 return;
3361
3362 if (zone_to_nid(z) != numa_node_id())
3363 local_stat = NUMA_OTHER;
3364
3365 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3366 __inc_numa_state(z, NUMA_HIT);
3367 else {
3368 __inc_numa_state(z, NUMA_MISS);
3369 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3370 }
3371 __inc_numa_state(z, local_stat);
3372#endif
3373}
3374
3375/* Remove page from the per-cpu list, caller must protect the list */
3376static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
David Brazdil0f672f62019-12-10 10:32:29 +00003377 unsigned int alloc_flags,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003378 struct per_cpu_pages *pcp,
3379 struct list_head *list)
3380{
3381 struct page *page;
3382
3383 do {
3384 if (list_empty(list)) {
3385 pcp->count += rmqueue_bulk(zone, 0,
3386 pcp->batch, list,
David Brazdil0f672f62019-12-10 10:32:29 +00003387 migratetype, alloc_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003388 if (unlikely(list_empty(list)))
3389 return NULL;
3390 }
3391
3392 page = list_first_entry(list, struct page, lru);
3393 list_del(&page->lru);
3394 pcp->count--;
3395 } while (check_new_pcp(page));
3396
3397 return page;
3398}
3399
3400/* Lock and remove page from the per-cpu list */
3401static struct page *rmqueue_pcplist(struct zone *preferred_zone,
David Brazdil0f672f62019-12-10 10:32:29 +00003402 struct zone *zone, gfp_t gfp_flags,
3403 int migratetype, unsigned int alloc_flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003404{
3405 struct per_cpu_pages *pcp;
3406 struct list_head *list;
3407 struct page *page;
3408 unsigned long flags;
3409
3410 local_irq_save(flags);
3411 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3412 list = &pcp->lists[migratetype];
David Brazdil0f672f62019-12-10 10:32:29 +00003413 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003414 if (page) {
David Brazdil0f672f62019-12-10 10:32:29 +00003415 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003416 zone_statistics(preferred_zone, zone);
3417 }
3418 local_irq_restore(flags);
3419 return page;
3420}
3421
3422/*
3423 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3424 */
3425static inline
3426struct page *rmqueue(struct zone *preferred_zone,
3427 struct zone *zone, unsigned int order,
3428 gfp_t gfp_flags, unsigned int alloc_flags,
3429 int migratetype)
3430{
3431 unsigned long flags;
3432 struct page *page;
3433
3434 if (likely(order == 0)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02003435 /*
3436 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3437 * we need to skip it when CMA area isn't allowed.
3438 */
3439 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3440 migratetype != MIGRATE_MOVABLE) {
3441 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
David Brazdil0f672f62019-12-10 10:32:29 +00003442 migratetype, alloc_flags);
Olivier Deprez157378f2022-04-04 15:47:50 +02003443 goto out;
3444 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003445 }
3446
3447 /*
3448 * We most definitely don't want callers attempting to
3449 * allocate greater than order-1 page units with __GFP_NOFAIL.
3450 */
3451 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3452 spin_lock_irqsave(&zone->lock, flags);
3453
3454 do {
3455 page = NULL;
Olivier Deprez157378f2022-04-04 15:47:50 +02003456 /*
3457 * order-0 request can reach here when the pcplist is skipped
3458 * due to non-CMA allocation context. HIGHATOMIC area is
3459 * reserved for high-order atomic allocation, so order-0
3460 * request should skip it.
3461 */
3462 if (order > 0 && alloc_flags & ALLOC_HARDER) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003463 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3464 if (page)
3465 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3466 }
3467 if (!page)
David Brazdil0f672f62019-12-10 10:32:29 +00003468 page = __rmqueue(zone, order, migratetype, alloc_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003469 } while (page && check_new_pages(page, order));
3470 spin_unlock(&zone->lock);
3471 if (!page)
3472 goto failed;
3473 __mod_zone_freepage_state(zone, -(1 << order),
3474 get_pcppage_migratetype(page));
3475
3476 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3477 zone_statistics(preferred_zone, zone);
3478 local_irq_restore(flags);
3479
3480out:
David Brazdil0f672f62019-12-10 10:32:29 +00003481 /* Separate test+clear to avoid unnecessary atomics */
3482 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3483 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3484 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3485 }
3486
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003487 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3488 return page;
3489
3490failed:
3491 local_irq_restore(flags);
3492 return NULL;
3493}
3494
3495#ifdef CONFIG_FAIL_PAGE_ALLOC
3496
3497static struct {
3498 struct fault_attr attr;
3499
3500 bool ignore_gfp_highmem;
3501 bool ignore_gfp_reclaim;
3502 u32 min_order;
3503} fail_page_alloc = {
3504 .attr = FAULT_ATTR_INITIALIZER,
3505 .ignore_gfp_reclaim = true,
3506 .ignore_gfp_highmem = true,
3507 .min_order = 1,
3508};
3509
3510static int __init setup_fail_page_alloc(char *str)
3511{
3512 return setup_fault_attr(&fail_page_alloc.attr, str);
3513}
3514__setup("fail_page_alloc=", setup_fail_page_alloc);
3515
David Brazdil0f672f62019-12-10 10:32:29 +00003516static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003517{
3518 if (order < fail_page_alloc.min_order)
3519 return false;
3520 if (gfp_mask & __GFP_NOFAIL)
3521 return false;
3522 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3523 return false;
3524 if (fail_page_alloc.ignore_gfp_reclaim &&
3525 (gfp_mask & __GFP_DIRECT_RECLAIM))
3526 return false;
3527
3528 return should_fail(&fail_page_alloc.attr, 1 << order);
3529}
3530
3531#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3532
3533static int __init fail_page_alloc_debugfs(void)
3534{
3535 umode_t mode = S_IFREG | 0600;
3536 struct dentry *dir;
3537
3538 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3539 &fail_page_alloc.attr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003540
David Brazdil0f672f62019-12-10 10:32:29 +00003541 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3542 &fail_page_alloc.ignore_gfp_reclaim);
3543 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3544 &fail_page_alloc.ignore_gfp_highmem);
3545 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003546
3547 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003548}
3549
3550late_initcall(fail_page_alloc_debugfs);
3551
3552#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3553
3554#else /* CONFIG_FAIL_PAGE_ALLOC */
3555
David Brazdil0f672f62019-12-10 10:32:29 +00003556static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003557{
3558 return false;
3559}
3560
3561#endif /* CONFIG_FAIL_PAGE_ALLOC */
3562
Olivier Deprez0e641232021-09-23 10:07:05 +02003563noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
David Brazdil0f672f62019-12-10 10:32:29 +00003564{
3565 return __should_fail_alloc_page(gfp_mask, order);
3566}
3567ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3568
Olivier Deprez157378f2022-04-04 15:47:50 +02003569static inline long __zone_watermark_unusable_free(struct zone *z,
3570 unsigned int order, unsigned int alloc_flags)
3571{
3572 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3573 long unusable_free = (1 << order) - 1;
3574
3575 /*
3576 * If the caller does not have rights to ALLOC_HARDER then subtract
3577 * the high-atomic reserves. This will over-estimate the size of the
3578 * atomic reserve but it avoids a search.
3579 */
3580 if (likely(!alloc_harder))
3581 unusable_free += z->nr_reserved_highatomic;
3582
3583#ifdef CONFIG_CMA
3584 /* If allocation can't use CMA areas don't use free CMA pages */
3585 if (!(alloc_flags & ALLOC_CMA))
3586 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3587#endif
3588
3589 return unusable_free;
3590}
3591
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003592/*
3593 * Return true if free base pages are above 'mark'. For high-order checks it
3594 * will return true of the order-0 watermark is reached and there is at least
3595 * one free page of a suitable size. Checking now avoids taking the zone lock
3596 * to check in the allocation paths if no pages are free.
3597 */
3598bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
Olivier Deprez157378f2022-04-04 15:47:50 +02003599 int highest_zoneidx, unsigned int alloc_flags,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003600 long free_pages)
3601{
3602 long min = mark;
3603 int o;
3604 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3605
3606 /* free_pages may go negative - that's OK */
Olivier Deprez157378f2022-04-04 15:47:50 +02003607 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003608
3609 if (alloc_flags & ALLOC_HIGH)
3610 min -= min / 2;
3611
Olivier Deprez157378f2022-04-04 15:47:50 +02003612 if (unlikely(alloc_harder)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003613 /*
3614 * OOM victims can try even harder than normal ALLOC_HARDER
3615 * users on the grounds that it's definitely going to be in
3616 * the exit path shortly and free memory. Any allocation it
3617 * makes during the free path will be small and short-lived.
3618 */
3619 if (alloc_flags & ALLOC_OOM)
3620 min -= min / 2;
3621 else
3622 min -= min / 4;
3623 }
3624
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003625 /*
3626 * Check watermarks for an order-0 allocation request. If these
3627 * are not met, then a high-order request also cannot go ahead
3628 * even if a suitable page happened to be free.
3629 */
Olivier Deprez157378f2022-04-04 15:47:50 +02003630 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003631 return false;
3632
3633 /* If this is an order-0 request then the watermark is fine */
3634 if (!order)
3635 return true;
3636
3637 /* For a high-order request, check at least one suitable page is free */
3638 for (o = order; o < MAX_ORDER; o++) {
3639 struct free_area *area = &z->free_area[o];
3640 int mt;
3641
3642 if (!area->nr_free)
3643 continue;
3644
3645 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
David Brazdil0f672f62019-12-10 10:32:29 +00003646 if (!free_area_empty(area, mt))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003647 return true;
3648 }
3649
3650#ifdef CONFIG_CMA
3651 if ((alloc_flags & ALLOC_CMA) &&
David Brazdil0f672f62019-12-10 10:32:29 +00003652 !free_area_empty(area, MIGRATE_CMA)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003653 return true;
3654 }
3655#endif
Olivier Deprez157378f2022-04-04 15:47:50 +02003656 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003657 return true;
3658 }
3659 return false;
3660}
3661
3662bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
Olivier Deprez157378f2022-04-04 15:47:50 +02003663 int highest_zoneidx, unsigned int alloc_flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003664{
Olivier Deprez157378f2022-04-04 15:47:50 +02003665 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003666 zone_page_state(z, NR_FREE_PAGES));
3667}
3668
3669static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
Olivier Deprez157378f2022-04-04 15:47:50 +02003670 unsigned long mark, int highest_zoneidx,
Olivier Deprez0e641232021-09-23 10:07:05 +02003671 unsigned int alloc_flags, gfp_t gfp_mask)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003672{
Olivier Deprez157378f2022-04-04 15:47:50 +02003673 long free_pages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003674
Olivier Deprez157378f2022-04-04 15:47:50 +02003675 free_pages = zone_page_state(z, NR_FREE_PAGES);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003676
3677 /*
3678 * Fast check for order-0 only. If this fails then the reserves
Olivier Deprez157378f2022-04-04 15:47:50 +02003679 * need to be calculated.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003680 */
Olivier Deprez157378f2022-04-04 15:47:50 +02003681 if (!order) {
3682 long fast_free;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003683
Olivier Deprez157378f2022-04-04 15:47:50 +02003684 fast_free = free_pages;
3685 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3686 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3687 return true;
3688 }
3689
3690 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
Olivier Deprez0e641232021-09-23 10:07:05 +02003691 free_pages))
3692 return true;
3693 /*
3694 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3695 * when checking the min watermark. The min watermark is the
3696 * point where boosting is ignored so that kswapd is woken up
3697 * when below the low watermark.
3698 */
3699 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3700 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3701 mark = z->_watermark[WMARK_MIN];
Olivier Deprez157378f2022-04-04 15:47:50 +02003702 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
Olivier Deprez0e641232021-09-23 10:07:05 +02003703 alloc_flags, free_pages);
3704 }
3705
3706 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003707}
3708
3709bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
Olivier Deprez157378f2022-04-04 15:47:50 +02003710 unsigned long mark, int highest_zoneidx)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003711{
3712 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3713
3714 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3715 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3716
Olivier Deprez157378f2022-04-04 15:47:50 +02003717 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003718 free_pages);
3719}
3720
3721#ifdef CONFIG_NUMA
3722static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3723{
3724 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
David Brazdil0f672f62019-12-10 10:32:29 +00003725 node_reclaim_distance;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003726}
3727#else /* CONFIG_NUMA */
3728static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3729{
3730 return true;
3731}
3732#endif /* CONFIG_NUMA */
3733
3734/*
David Brazdil0f672f62019-12-10 10:32:29 +00003735 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3736 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3737 * premature use of a lower zone may cause lowmem pressure problems that
3738 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3739 * probably too small. It only makes sense to spread allocations to avoid
3740 * fragmentation between the Normal and DMA32 zones.
3741 */
3742static inline unsigned int
3743alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3744{
Olivier Deprez157378f2022-04-04 15:47:50 +02003745 unsigned int alloc_flags;
David Brazdil0f672f62019-12-10 10:32:29 +00003746
Olivier Deprez157378f2022-04-04 15:47:50 +02003747 /*
3748 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3749 * to save a branch.
3750 */
3751 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
David Brazdil0f672f62019-12-10 10:32:29 +00003752
3753#ifdef CONFIG_ZONE_DMA32
3754 if (!zone)
3755 return alloc_flags;
3756
3757 if (zone_idx(zone) != ZONE_NORMAL)
3758 return alloc_flags;
3759
3760 /*
3761 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3762 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3763 * on UMA that if Normal is populated then so is DMA32.
3764 */
3765 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3766 if (nr_online_nodes > 1 && !populated_zone(--zone))
3767 return alloc_flags;
3768
3769 alloc_flags |= ALLOC_NOFRAGMENT;
3770#endif /* CONFIG_ZONE_DMA32 */
3771 return alloc_flags;
3772}
3773
Olivier Deprez157378f2022-04-04 15:47:50 +02003774static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3775 unsigned int alloc_flags)
3776{
3777#ifdef CONFIG_CMA
3778 unsigned int pflags = current->flags;
3779
3780 if (!(pflags & PF_MEMALLOC_NOCMA) &&
3781 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3782 alloc_flags |= ALLOC_CMA;
3783
3784#endif
3785 return alloc_flags;
3786}
3787
David Brazdil0f672f62019-12-10 10:32:29 +00003788/*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003789 * get_page_from_freelist goes through the zonelist trying to allocate
3790 * a page.
3791 */
3792static struct page *
3793get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3794 const struct alloc_context *ac)
3795{
David Brazdil0f672f62019-12-10 10:32:29 +00003796 struct zoneref *z;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003797 struct zone *zone;
3798 struct pglist_data *last_pgdat_dirty_limit = NULL;
David Brazdil0f672f62019-12-10 10:32:29 +00003799 bool no_fallback;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003800
David Brazdil0f672f62019-12-10 10:32:29 +00003801retry:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003802 /*
3803 * Scan zonelist, looking for a zone with enough free.
3804 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3805 */
David Brazdil0f672f62019-12-10 10:32:29 +00003806 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3807 z = ac->preferred_zoneref;
Olivier Deprez157378f2022-04-04 15:47:50 +02003808 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3809 ac->nodemask) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003810 struct page *page;
3811 unsigned long mark;
3812
3813 if (cpusets_enabled() &&
3814 (alloc_flags & ALLOC_CPUSET) &&
3815 !__cpuset_zone_allowed(zone, gfp_mask))
3816 continue;
3817 /*
3818 * When allocating a page cache page for writing, we
3819 * want to get it from a node that is within its dirty
3820 * limit, such that no single node holds more than its
3821 * proportional share of globally allowed dirty pages.
3822 * The dirty limits take into account the node's
3823 * lowmem reserves and high watermark so that kswapd
3824 * should be able to balance it without having to
3825 * write pages from its LRU list.
3826 *
3827 * XXX: For now, allow allocations to potentially
3828 * exceed the per-node dirty limit in the slowpath
3829 * (spread_dirty_pages unset) before going into reclaim,
3830 * which is important when on a NUMA setup the allowed
3831 * nodes are together not big enough to reach the
3832 * global limit. The proper fix for these situations
3833 * will require awareness of nodes in the
3834 * dirty-throttling and the flusher threads.
3835 */
3836 if (ac->spread_dirty_pages) {
3837 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3838 continue;
3839
3840 if (!node_dirty_ok(zone->zone_pgdat)) {
3841 last_pgdat_dirty_limit = zone->zone_pgdat;
3842 continue;
3843 }
3844 }
3845
David Brazdil0f672f62019-12-10 10:32:29 +00003846 if (no_fallback && nr_online_nodes > 1 &&
3847 zone != ac->preferred_zoneref->zone) {
3848 int local_nid;
3849
3850 /*
3851 * If moving to a remote node, retry but allow
3852 * fragmenting fallbacks. Locality is more important
3853 * than fragmentation avoidance.
3854 */
3855 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3856 if (zone_to_nid(zone) != local_nid) {
3857 alloc_flags &= ~ALLOC_NOFRAGMENT;
3858 goto retry;
3859 }
3860 }
3861
3862 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003863 if (!zone_watermark_fast(zone, order, mark,
Olivier Deprez157378f2022-04-04 15:47:50 +02003864 ac->highest_zoneidx, alloc_flags,
Olivier Deprez0e641232021-09-23 10:07:05 +02003865 gfp_mask)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003866 int ret;
3867
3868#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3869 /*
3870 * Watermark failed for this zone, but see if we can
3871 * grow this zone if it contains deferred pages.
3872 */
3873 if (static_branch_unlikely(&deferred_pages)) {
3874 if (_deferred_grow_zone(zone, order))
3875 goto try_this_zone;
3876 }
3877#endif
3878 /* Checked here to keep the fast path fast */
3879 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3880 if (alloc_flags & ALLOC_NO_WATERMARKS)
3881 goto try_this_zone;
3882
3883 if (node_reclaim_mode == 0 ||
3884 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3885 continue;
3886
3887 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3888 switch (ret) {
3889 case NODE_RECLAIM_NOSCAN:
3890 /* did not scan */
3891 continue;
3892 case NODE_RECLAIM_FULL:
3893 /* scanned but unreclaimable */
3894 continue;
3895 default:
3896 /* did we reclaim enough */
3897 if (zone_watermark_ok(zone, order, mark,
Olivier Deprez157378f2022-04-04 15:47:50 +02003898 ac->highest_zoneidx, alloc_flags))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003899 goto try_this_zone;
3900
3901 continue;
3902 }
3903 }
3904
3905try_this_zone:
3906 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3907 gfp_mask, alloc_flags, ac->migratetype);
3908 if (page) {
3909 prep_new_page(page, order, gfp_mask, alloc_flags);
3910
3911 /*
3912 * If this is a high-order atomic allocation then check
3913 * if the pageblock should be reserved for the future
3914 */
3915 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3916 reserve_highatomic_pageblock(page, zone, order);
3917
3918 return page;
3919 } else {
3920#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3921 /* Try again if zone has deferred pages */
3922 if (static_branch_unlikely(&deferred_pages)) {
3923 if (_deferred_grow_zone(zone, order))
3924 goto try_this_zone;
3925 }
3926#endif
3927 }
3928 }
3929
David Brazdil0f672f62019-12-10 10:32:29 +00003930 /*
3931 * It's possible on a UMA machine to get through all zones that are
3932 * fragmented. If avoiding fragmentation, reset and try again.
3933 */
3934 if (no_fallback) {
3935 alloc_flags &= ~ALLOC_NOFRAGMENT;
3936 goto retry;
3937 }
3938
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003939 return NULL;
3940}
3941
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003942static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3943{
3944 unsigned int filter = SHOW_MEM_FILTER_NODES;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003945
3946 /*
3947 * This documents exceptions given to allocations in certain
3948 * contexts that are allowed to allocate outside current's set
3949 * of allowed nodes.
3950 */
3951 if (!(gfp_mask & __GFP_NOMEMALLOC))
3952 if (tsk_is_oom_victim(current) ||
3953 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3954 filter &= ~SHOW_MEM_FILTER_NODES;
3955 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3956 filter &= ~SHOW_MEM_FILTER_NODES;
3957
3958 show_mem(filter, nodemask);
3959}
3960
3961void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3962{
3963 struct va_format vaf;
3964 va_list args;
David Brazdil0f672f62019-12-10 10:32:29 +00003965 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003966
Olivier Deprez157378f2022-04-04 15:47:50 +02003967 if ((gfp_mask & __GFP_NOWARN) ||
3968 !__ratelimit(&nopage_rs) ||
3969 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003970 return;
3971
3972 va_start(args, fmt);
3973 vaf.fmt = fmt;
3974 vaf.va = &args;
David Brazdil0f672f62019-12-10 10:32:29 +00003975 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003976 current->comm, &vaf, gfp_mask, &gfp_mask,
3977 nodemask_pr_args(nodemask));
3978 va_end(args);
3979
3980 cpuset_print_current_mems_allowed();
David Brazdil0f672f62019-12-10 10:32:29 +00003981 pr_cont("\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003982 dump_stack();
3983 warn_alloc_show_mem(gfp_mask, nodemask);
3984}
3985
3986static inline struct page *
3987__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3988 unsigned int alloc_flags,
3989 const struct alloc_context *ac)
3990{
3991 struct page *page;
3992
3993 page = get_page_from_freelist(gfp_mask, order,
3994 alloc_flags|ALLOC_CPUSET, ac);
3995 /*
3996 * fallback to ignore cpuset restriction if our nodes
3997 * are depleted
3998 */
3999 if (!page)
4000 page = get_page_from_freelist(gfp_mask, order,
4001 alloc_flags, ac);
4002
4003 return page;
4004}
4005
4006static inline struct page *
4007__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4008 const struct alloc_context *ac, unsigned long *did_some_progress)
4009{
4010 struct oom_control oc = {
4011 .zonelist = ac->zonelist,
4012 .nodemask = ac->nodemask,
4013 .memcg = NULL,
4014 .gfp_mask = gfp_mask,
4015 .order = order,
4016 };
4017 struct page *page;
4018
4019 *did_some_progress = 0;
4020
4021 /*
4022 * Acquire the oom lock. If that fails, somebody else is
4023 * making progress for us.
4024 */
4025 if (!mutex_trylock(&oom_lock)) {
4026 *did_some_progress = 1;
4027 schedule_timeout_uninterruptible(1);
4028 return NULL;
4029 }
4030
4031 /*
4032 * Go through the zonelist yet one more time, keep very high watermark
4033 * here, this is only to catch a parallel oom killing, we must fail if
4034 * we're still under heavy pressure. But make sure that this reclaim
4035 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4036 * allocation which will never fail due to oom_lock already held.
4037 */
4038 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4039 ~__GFP_DIRECT_RECLAIM, order,
4040 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4041 if (page)
4042 goto out;
4043
4044 /* Coredumps can quickly deplete all memory reserves */
4045 if (current->flags & PF_DUMPCORE)
4046 goto out;
4047 /* The OOM killer will not help higher order allocs */
4048 if (order > PAGE_ALLOC_COSTLY_ORDER)
4049 goto out;
4050 /*
4051 * We have already exhausted all our reclaim opportunities without any
4052 * success so it is time to admit defeat. We will skip the OOM killer
4053 * because it is very likely that the caller has a more reasonable
4054 * fallback than shooting a random task.
Olivier Deprez157378f2022-04-04 15:47:50 +02004055 *
4056 * The OOM killer may not free memory on a specific node.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004057 */
Olivier Deprez157378f2022-04-04 15:47:50 +02004058 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004059 goto out;
4060 /* The OOM killer does not needlessly kill tasks for lowmem */
Olivier Deprez157378f2022-04-04 15:47:50 +02004061 if (ac->highest_zoneidx < ZONE_NORMAL)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004062 goto out;
4063 if (pm_suspended_storage())
4064 goto out;
4065 /*
4066 * XXX: GFP_NOFS allocations should rather fail than rely on
4067 * other request to make a forward progress.
4068 * We are in an unfortunate situation where out_of_memory cannot
4069 * do much for this context but let's try it to at least get
4070 * access to memory reserved if the current task is killed (see
4071 * out_of_memory). Once filesystems are ready to handle allocation
4072 * failures more gracefully we should just bail out here.
4073 */
4074
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004075 /* Exhausted what can be done so it's blame time */
4076 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4077 *did_some_progress = 1;
4078
4079 /*
4080 * Help non-failing allocations by giving them access to memory
4081 * reserves
4082 */
4083 if (gfp_mask & __GFP_NOFAIL)
4084 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4085 ALLOC_NO_WATERMARKS, ac);
4086 }
4087out:
4088 mutex_unlock(&oom_lock);
4089 return page;
4090}
4091
4092/*
4093 * Maximum number of compaction retries wit a progress before OOM
4094 * killer is consider as the only way to move forward.
4095 */
4096#define MAX_COMPACT_RETRIES 16
4097
4098#ifdef CONFIG_COMPACTION
4099/* Try memory compaction for high-order allocations before reclaim */
4100static struct page *
4101__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4102 unsigned int alloc_flags, const struct alloc_context *ac,
4103 enum compact_priority prio, enum compact_result *compact_result)
4104{
David Brazdil0f672f62019-12-10 10:32:29 +00004105 struct page *page = NULL;
4106 unsigned long pflags;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004107 unsigned int noreclaim_flag;
4108
4109 if (!order)
4110 return NULL;
4111
David Brazdil0f672f62019-12-10 10:32:29 +00004112 psi_memstall_enter(&pflags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004113 noreclaim_flag = memalloc_noreclaim_save();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004114
David Brazdil0f672f62019-12-10 10:32:29 +00004115 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4116 prio, &page);
4117
4118 memalloc_noreclaim_restore(noreclaim_flag);
4119 psi_memstall_leave(&pflags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004120
4121 /*
4122 * At least in one zone compaction wasn't deferred or skipped, so let's
4123 * count a compaction stall
4124 */
4125 count_vm_event(COMPACTSTALL);
4126
David Brazdil0f672f62019-12-10 10:32:29 +00004127 /* Prep a captured page if available */
4128 if (page)
4129 prep_new_page(page, order, gfp_mask, alloc_flags);
4130
4131 /* Try get a page from the freelist if available */
4132 if (!page)
4133 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004134
4135 if (page) {
4136 struct zone *zone = page_zone(page);
4137
4138 zone->compact_blockskip_flush = false;
4139 compaction_defer_reset(zone, order, true);
4140 count_vm_event(COMPACTSUCCESS);
4141 return page;
4142 }
4143
4144 /*
4145 * It's bad if compaction run occurs and fails. The most likely reason
4146 * is that pages exist, but not enough to satisfy watermarks.
4147 */
4148 count_vm_event(COMPACTFAIL);
4149
4150 cond_resched();
4151
4152 return NULL;
4153}
4154
4155static inline bool
4156should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4157 enum compact_result compact_result,
4158 enum compact_priority *compact_priority,
4159 int *compaction_retries)
4160{
4161 int max_retries = MAX_COMPACT_RETRIES;
4162 int min_priority;
4163 bool ret = false;
4164 int retries = *compaction_retries;
4165 enum compact_priority priority = *compact_priority;
4166
4167 if (!order)
4168 return false;
4169
4170 if (compaction_made_progress(compact_result))
4171 (*compaction_retries)++;
4172
4173 /*
4174 * compaction considers all the zone as desperately out of memory
4175 * so it doesn't really make much sense to retry except when the
4176 * failure could be caused by insufficient priority
4177 */
4178 if (compaction_failed(compact_result))
4179 goto check_priority;
4180
4181 /*
David Brazdil0f672f62019-12-10 10:32:29 +00004182 * compaction was skipped because there are not enough order-0 pages
4183 * to work with, so we retry only if it looks like reclaim can help.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004184 */
David Brazdil0f672f62019-12-10 10:32:29 +00004185 if (compaction_needs_reclaim(compact_result)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004186 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4187 goto out;
4188 }
4189
4190 /*
David Brazdil0f672f62019-12-10 10:32:29 +00004191 * make sure the compaction wasn't deferred or didn't bail out early
4192 * due to locks contention before we declare that we should give up.
4193 * But the next retry should use a higher priority if allowed, so
4194 * we don't just keep bailing out endlessly.
4195 */
4196 if (compaction_withdrawn(compact_result)) {
4197 goto check_priority;
4198 }
4199
4200 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004201 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4202 * costly ones because they are de facto nofail and invoke OOM
4203 * killer to move on while costly can fail and users are ready
4204 * to cope with that. 1/4 retries is rather arbitrary but we
4205 * would need much more detailed feedback from compaction to
4206 * make a better decision.
4207 */
4208 if (order > PAGE_ALLOC_COSTLY_ORDER)
4209 max_retries /= 4;
4210 if (*compaction_retries <= max_retries) {
4211 ret = true;
4212 goto out;
4213 }
4214
4215 /*
4216 * Make sure there are attempts at the highest priority if we exhausted
4217 * all retries or failed at the lower priorities.
4218 */
4219check_priority:
4220 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4221 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4222
4223 if (*compact_priority > min_priority) {
4224 (*compact_priority)--;
4225 *compaction_retries = 0;
4226 ret = true;
4227 }
4228out:
4229 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4230 return ret;
4231}
4232#else
4233static inline struct page *
4234__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4235 unsigned int alloc_flags, const struct alloc_context *ac,
4236 enum compact_priority prio, enum compact_result *compact_result)
4237{
4238 *compact_result = COMPACT_SKIPPED;
4239 return NULL;
4240}
4241
4242static inline bool
4243should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4244 enum compact_result compact_result,
4245 enum compact_priority *compact_priority,
4246 int *compaction_retries)
4247{
4248 struct zone *zone;
4249 struct zoneref *z;
4250
4251 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4252 return false;
4253
4254 /*
4255 * There are setups with compaction disabled which would prefer to loop
4256 * inside the allocator rather than hit the oom killer prematurely.
4257 * Let's give them a good hope and keep retrying while the order-0
4258 * watermarks are OK.
4259 */
Olivier Deprez157378f2022-04-04 15:47:50 +02004260 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4261 ac->highest_zoneidx, ac->nodemask) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004262 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
Olivier Deprez157378f2022-04-04 15:47:50 +02004263 ac->highest_zoneidx, alloc_flags))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004264 return true;
4265 }
4266 return false;
4267}
4268#endif /* CONFIG_COMPACTION */
4269
4270#ifdef CONFIG_LOCKDEP
4271static struct lockdep_map __fs_reclaim_map =
4272 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4273
4274static bool __need_fs_reclaim(gfp_t gfp_mask)
4275{
4276 gfp_mask = current_gfp_context(gfp_mask);
4277
4278 /* no reclaim without waiting on it */
4279 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4280 return false;
4281
4282 /* this guy won't enter reclaim */
4283 if (current->flags & PF_MEMALLOC)
4284 return false;
4285
4286 /* We're only interested __GFP_FS allocations for now */
4287 if (!(gfp_mask & __GFP_FS))
4288 return false;
4289
4290 if (gfp_mask & __GFP_NOLOCKDEP)
4291 return false;
4292
4293 return true;
4294}
4295
4296void __fs_reclaim_acquire(void)
4297{
4298 lock_map_acquire(&__fs_reclaim_map);
4299}
4300
4301void __fs_reclaim_release(void)
4302{
4303 lock_map_release(&__fs_reclaim_map);
4304}
4305
4306void fs_reclaim_acquire(gfp_t gfp_mask)
4307{
4308 if (__need_fs_reclaim(gfp_mask))
4309 __fs_reclaim_acquire();
4310}
4311EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4312
4313void fs_reclaim_release(gfp_t gfp_mask)
4314{
4315 if (__need_fs_reclaim(gfp_mask))
4316 __fs_reclaim_release();
4317}
4318EXPORT_SYMBOL_GPL(fs_reclaim_release);
4319#endif
4320
4321/* Perform direct synchronous page reclaim */
Olivier Deprez157378f2022-04-04 15:47:50 +02004322static unsigned long
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004323__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4324 const struct alloc_context *ac)
4325{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004326 unsigned int noreclaim_flag;
Olivier Deprez157378f2022-04-04 15:47:50 +02004327 unsigned long pflags, progress;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004328
4329 cond_resched();
4330
4331 /* We now go into synchronous reclaim */
4332 cpuset_memory_pressure_bump();
David Brazdil0f672f62019-12-10 10:32:29 +00004333 psi_memstall_enter(&pflags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004334 fs_reclaim_acquire(gfp_mask);
4335 noreclaim_flag = memalloc_noreclaim_save();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004336
4337 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4338 ac->nodemask);
4339
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004340 memalloc_noreclaim_restore(noreclaim_flag);
4341 fs_reclaim_release(gfp_mask);
David Brazdil0f672f62019-12-10 10:32:29 +00004342 psi_memstall_leave(&pflags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004343
4344 cond_resched();
4345
4346 return progress;
4347}
4348
4349/* The really slow allocator path where we enter direct reclaim */
4350static inline struct page *
4351__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4352 unsigned int alloc_flags, const struct alloc_context *ac,
4353 unsigned long *did_some_progress)
4354{
4355 struct page *page = NULL;
4356 bool drained = false;
4357
4358 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4359 if (unlikely(!(*did_some_progress)))
4360 return NULL;
4361
4362retry:
4363 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4364
4365 /*
4366 * If an allocation failed after direct reclaim, it could be because
4367 * pages are pinned on the per-cpu lists or in high alloc reserves.
Olivier Deprez157378f2022-04-04 15:47:50 +02004368 * Shrink them and try again
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004369 */
4370 if (!page && !drained) {
4371 unreserve_highatomic_pageblock(ac, false);
4372 drain_all_pages(NULL);
4373 drained = true;
4374 goto retry;
4375 }
4376
4377 return page;
4378}
4379
4380static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4381 const struct alloc_context *ac)
4382{
4383 struct zoneref *z;
4384 struct zone *zone;
4385 pg_data_t *last_pgdat = NULL;
Olivier Deprez157378f2022-04-04 15:47:50 +02004386 enum zone_type highest_zoneidx = ac->highest_zoneidx;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004387
Olivier Deprez157378f2022-04-04 15:47:50 +02004388 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004389 ac->nodemask) {
4390 if (last_pgdat != zone->zone_pgdat)
Olivier Deprez157378f2022-04-04 15:47:50 +02004391 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004392 last_pgdat = zone->zone_pgdat;
4393 }
4394}
4395
4396static inline unsigned int
4397gfp_to_alloc_flags(gfp_t gfp_mask)
4398{
4399 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4400
Olivier Deprez157378f2022-04-04 15:47:50 +02004401 /*
4402 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4403 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4404 * to save two branches.
4405 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004406 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
Olivier Deprez157378f2022-04-04 15:47:50 +02004407 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004408
4409 /*
4410 * The caller may dip into page reserves a bit more if the caller
4411 * cannot run direct reclaim, or if the caller has realtime scheduling
4412 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4413 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4414 */
Olivier Deprez157378f2022-04-04 15:47:50 +02004415 alloc_flags |= (__force int)
4416 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004417
4418 if (gfp_mask & __GFP_ATOMIC) {
4419 /*
4420 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4421 * if it can't schedule.
4422 */
4423 if (!(gfp_mask & __GFP_NOMEMALLOC))
4424 alloc_flags |= ALLOC_HARDER;
4425 /*
4426 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4427 * comment for __cpuset_node_allowed().
4428 */
4429 alloc_flags &= ~ALLOC_CPUSET;
4430 } else if (unlikely(rt_task(current)) && !in_interrupt())
4431 alloc_flags |= ALLOC_HARDER;
4432
Olivier Deprez157378f2022-04-04 15:47:50 +02004433 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
David Brazdil0f672f62019-12-10 10:32:29 +00004434
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004435 return alloc_flags;
4436}
4437
4438static bool oom_reserves_allowed(struct task_struct *tsk)
4439{
4440 if (!tsk_is_oom_victim(tsk))
4441 return false;
4442
4443 /*
4444 * !MMU doesn't have oom reaper so give access to memory reserves
4445 * only to the thread with TIF_MEMDIE set
4446 */
4447 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4448 return false;
4449
4450 return true;
4451}
4452
4453/*
4454 * Distinguish requests which really need access to full memory
4455 * reserves from oom victims which can live with a portion of it
4456 */
4457static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4458{
4459 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4460 return 0;
4461 if (gfp_mask & __GFP_MEMALLOC)
4462 return ALLOC_NO_WATERMARKS;
4463 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4464 return ALLOC_NO_WATERMARKS;
4465 if (!in_interrupt()) {
4466 if (current->flags & PF_MEMALLOC)
4467 return ALLOC_NO_WATERMARKS;
4468 else if (oom_reserves_allowed(current))
4469 return ALLOC_OOM;
4470 }
4471
4472 return 0;
4473}
4474
4475bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4476{
4477 return !!__gfp_pfmemalloc_flags(gfp_mask);
4478}
4479
4480/*
4481 * Checks whether it makes sense to retry the reclaim to make a forward progress
4482 * for the given allocation request.
4483 *
4484 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4485 * without success, or when we couldn't even meet the watermark if we
4486 * reclaimed all remaining pages on the LRU lists.
4487 *
4488 * Returns true if a retry is viable or false to enter the oom path.
4489 */
4490static inline bool
4491should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4492 struct alloc_context *ac, int alloc_flags,
4493 bool did_some_progress, int *no_progress_loops)
4494{
4495 struct zone *zone;
4496 struct zoneref *z;
David Brazdil0f672f62019-12-10 10:32:29 +00004497 bool ret = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004498
4499 /*
4500 * Costly allocations might have made a progress but this doesn't mean
4501 * their order will become available due to high fragmentation so
4502 * always increment the no progress counter for them
4503 */
4504 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4505 *no_progress_loops = 0;
4506 else
4507 (*no_progress_loops)++;
4508
4509 /*
4510 * Make sure we converge to OOM if we cannot make any progress
4511 * several times in the row.
4512 */
4513 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4514 /* Before OOM, exhaust highatomic_reserve */
4515 return unreserve_highatomic_pageblock(ac, true);
4516 }
4517
4518 /*
4519 * Keep reclaiming pages while there is a chance this will lead
4520 * somewhere. If none of the target zones can satisfy our allocation
4521 * request even if all reclaimable pages are considered then we are
4522 * screwed and have to go OOM.
4523 */
Olivier Deprez157378f2022-04-04 15:47:50 +02004524 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4525 ac->highest_zoneidx, ac->nodemask) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004526 unsigned long available;
4527 unsigned long reclaimable;
4528 unsigned long min_wmark = min_wmark_pages(zone);
4529 bool wmark;
4530
4531 available = reclaimable = zone_reclaimable_pages(zone);
4532 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4533
4534 /*
4535 * Would the allocation succeed if we reclaimed all
4536 * reclaimable pages?
4537 */
4538 wmark = __zone_watermark_ok(zone, order, min_wmark,
Olivier Deprez157378f2022-04-04 15:47:50 +02004539 ac->highest_zoneidx, alloc_flags, available);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004540 trace_reclaim_retry_zone(z, order, reclaimable,
4541 available, min_wmark, *no_progress_loops, wmark);
4542 if (wmark) {
4543 /*
4544 * If we didn't make any progress and have a lot of
4545 * dirty + writeback pages then we should wait for
4546 * an IO to complete to slow down the reclaim and
4547 * prevent from pre mature OOM
4548 */
4549 if (!did_some_progress) {
4550 unsigned long write_pending;
4551
4552 write_pending = zone_page_state_snapshot(zone,
4553 NR_ZONE_WRITE_PENDING);
4554
4555 if (2 * write_pending > reclaimable) {
4556 congestion_wait(BLK_RW_ASYNC, HZ/10);
4557 return true;
4558 }
4559 }
4560
David Brazdil0f672f62019-12-10 10:32:29 +00004561 ret = true;
4562 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004563 }
4564 }
4565
David Brazdil0f672f62019-12-10 10:32:29 +00004566out:
4567 /*
4568 * Memory allocation/reclaim might be called from a WQ context and the
4569 * current implementation of the WQ concurrency control doesn't
4570 * recognize that a particular WQ is congested if the worker thread is
4571 * looping without ever sleeping. Therefore we have to do a short sleep
4572 * here rather than calling cond_resched().
4573 */
4574 if (current->flags & PF_WQ_WORKER)
4575 schedule_timeout_uninterruptible(1);
4576 else
4577 cond_resched();
4578 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004579}
4580
4581static inline bool
4582check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4583{
4584 /*
4585 * It's possible that cpuset's mems_allowed and the nodemask from
4586 * mempolicy don't intersect. This should be normally dealt with by
4587 * policy_nodemask(), but it's possible to race with cpuset update in
4588 * such a way the check therein was true, and then it became false
4589 * before we got our cpuset_mems_cookie here.
4590 * This assumes that for all allocations, ac->nodemask can come only
4591 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4592 * when it does not intersect with the cpuset restrictions) or the
4593 * caller can deal with a violated nodemask.
4594 */
4595 if (cpusets_enabled() && ac->nodemask &&
4596 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4597 ac->nodemask = NULL;
4598 return true;
4599 }
4600
4601 /*
4602 * When updating a task's mems_allowed or mempolicy nodemask, it is
4603 * possible to race with parallel threads in such a way that our
4604 * allocation can fail while the mask is being updated. If we are about
4605 * to fail, check if the cpuset changed during allocation and if so,
4606 * retry.
4607 */
4608 if (read_mems_allowed_retry(cpuset_mems_cookie))
4609 return true;
4610
4611 return false;
4612}
4613
4614static inline struct page *
4615__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4616 struct alloc_context *ac)
4617{
4618 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4619 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4620 struct page *page = NULL;
4621 unsigned int alloc_flags;
4622 unsigned long did_some_progress;
4623 enum compact_priority compact_priority;
4624 enum compact_result compact_result;
4625 int compaction_retries;
4626 int no_progress_loops;
4627 unsigned int cpuset_mems_cookie;
4628 int reserve_flags;
4629
4630 /*
4631 * We also sanity check to catch abuse of atomic reserves being used by
4632 * callers that are not in atomic context.
4633 */
4634 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4635 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4636 gfp_mask &= ~__GFP_ATOMIC;
4637
4638retry_cpuset:
4639 compaction_retries = 0;
4640 no_progress_loops = 0;
4641 compact_priority = DEF_COMPACT_PRIORITY;
4642 cpuset_mems_cookie = read_mems_allowed_begin();
4643
4644 /*
4645 * The fast path uses conservative alloc_flags to succeed only until
4646 * kswapd needs to be woken up, and to avoid the cost of setting up
4647 * alloc_flags precisely. So we do that now.
4648 */
4649 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4650
4651 /*
4652 * We need to recalculate the starting point for the zonelist iterator
4653 * because we might have used different nodemask in the fast path, or
4654 * there was a cpuset modification and we are retrying - otherwise we
4655 * could end up iterating over non-eligible zones endlessly.
4656 */
4657 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
Olivier Deprez157378f2022-04-04 15:47:50 +02004658 ac->highest_zoneidx, ac->nodemask);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004659 if (!ac->preferred_zoneref->zone)
4660 goto nopage;
4661
David Brazdil0f672f62019-12-10 10:32:29 +00004662 if (alloc_flags & ALLOC_KSWAPD)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004663 wake_all_kswapds(order, gfp_mask, ac);
4664
4665 /*
4666 * The adjusted alloc_flags might result in immediate success, so try
4667 * that first
4668 */
4669 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4670 if (page)
4671 goto got_pg;
4672
4673 /*
4674 * For costly allocations, try direct compaction first, as it's likely
4675 * that we have enough base pages and don't need to reclaim. For non-
4676 * movable high-order allocations, do that as well, as compaction will
4677 * try prevent permanent fragmentation by migrating from blocks of the
4678 * same migratetype.
4679 * Don't try this for allocations that are allowed to ignore
4680 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4681 */
4682 if (can_direct_reclaim &&
4683 (costly_order ||
4684 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4685 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4686 page = __alloc_pages_direct_compact(gfp_mask, order,
4687 alloc_flags, ac,
4688 INIT_COMPACT_PRIORITY,
4689 &compact_result);
4690 if (page)
4691 goto got_pg;
4692
Olivier Deprez157378f2022-04-04 15:47:50 +02004693 /*
4694 * Checks for costly allocations with __GFP_NORETRY, which
4695 * includes some THP page fault allocations
4696 */
4697 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
David Brazdil0f672f62019-12-10 10:32:29 +00004698 /*
4699 * If allocating entire pageblock(s) and compaction
4700 * failed because all zones are below low watermarks
4701 * or is prohibited because it recently failed at this
4702 * order, fail immediately unless the allocator has
4703 * requested compaction and reclaim retry.
4704 *
4705 * Reclaim is
4706 * - potentially very expensive because zones are far
4707 * below their low watermarks or this is part of very
4708 * bursty high order allocations,
4709 * - not guaranteed to help because isolate_freepages()
4710 * may not iterate over freed pages as part of its
4711 * linear scan, and
4712 * - unlikely to make entire pageblocks free on its
4713 * own.
4714 */
4715 if (compact_result == COMPACT_SKIPPED ||
4716 compact_result == COMPACT_DEFERRED)
4717 goto nopage;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004718
4719 /*
4720 * Looks like reclaim/compaction is worth trying, but
4721 * sync compaction could be very expensive, so keep
4722 * using async compaction.
4723 */
4724 compact_priority = INIT_COMPACT_PRIORITY;
4725 }
4726 }
4727
4728retry:
4729 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
David Brazdil0f672f62019-12-10 10:32:29 +00004730 if (alloc_flags & ALLOC_KSWAPD)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004731 wake_all_kswapds(order, gfp_mask, ac);
4732
4733 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4734 if (reserve_flags)
Olivier Deprez157378f2022-04-04 15:47:50 +02004735 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004736
4737 /*
4738 * Reset the nodemask and zonelist iterators if memory policies can be
4739 * ignored. These allocations are high priority and system rather than
4740 * user oriented.
4741 */
4742 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4743 ac->nodemask = NULL;
4744 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
Olivier Deprez157378f2022-04-04 15:47:50 +02004745 ac->highest_zoneidx, ac->nodemask);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004746 }
4747
4748 /* Attempt with potentially adjusted zonelist and alloc_flags */
4749 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4750 if (page)
4751 goto got_pg;
4752
4753 /* Caller is not willing to reclaim, we can't balance anything */
4754 if (!can_direct_reclaim)
4755 goto nopage;
4756
4757 /* Avoid recursion of direct reclaim */
4758 if (current->flags & PF_MEMALLOC)
4759 goto nopage;
4760
4761 /* Try direct reclaim and then allocating */
4762 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4763 &did_some_progress);
4764 if (page)
4765 goto got_pg;
4766
4767 /* Try direct compaction and then allocating */
4768 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4769 compact_priority, &compact_result);
4770 if (page)
4771 goto got_pg;
4772
4773 /* Do not loop if specifically requested */
4774 if (gfp_mask & __GFP_NORETRY)
4775 goto nopage;
4776
4777 /*
4778 * Do not retry costly high order allocations unless they are
4779 * __GFP_RETRY_MAYFAIL
4780 */
4781 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4782 goto nopage;
4783
4784 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4785 did_some_progress > 0, &no_progress_loops))
4786 goto retry;
4787
4788 /*
4789 * It doesn't make any sense to retry for the compaction if the order-0
4790 * reclaim is not able to make any progress because the current
4791 * implementation of the compaction depends on the sufficient amount
4792 * of free memory (see __compaction_suitable)
4793 */
4794 if (did_some_progress > 0 &&
4795 should_compact_retry(ac, order, alloc_flags,
4796 compact_result, &compact_priority,
4797 &compaction_retries))
4798 goto retry;
4799
4800
4801 /* Deal with possible cpuset update races before we start OOM killing */
4802 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4803 goto retry_cpuset;
4804
4805 /* Reclaim has failed us, start killing things */
4806 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4807 if (page)
4808 goto got_pg;
4809
4810 /* Avoid allocations with no watermarks from looping endlessly */
4811 if (tsk_is_oom_victim(current) &&
Olivier Deprez157378f2022-04-04 15:47:50 +02004812 (alloc_flags & ALLOC_OOM ||
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004813 (gfp_mask & __GFP_NOMEMALLOC)))
4814 goto nopage;
4815
4816 /* Retry as long as the OOM killer is making progress */
4817 if (did_some_progress) {
4818 no_progress_loops = 0;
4819 goto retry;
4820 }
4821
4822nopage:
4823 /* Deal with possible cpuset update races before we fail */
4824 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4825 goto retry_cpuset;
4826
4827 /*
4828 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4829 * we always retry
4830 */
4831 if (gfp_mask & __GFP_NOFAIL) {
4832 /*
4833 * All existing users of the __GFP_NOFAIL are blockable, so warn
4834 * of any new users that actually require GFP_NOWAIT
4835 */
4836 if (WARN_ON_ONCE(!can_direct_reclaim))
4837 goto fail;
4838
4839 /*
4840 * PF_MEMALLOC request from this context is rather bizarre
4841 * because we cannot reclaim anything and only can loop waiting
4842 * for somebody to do a work for us
4843 */
4844 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4845
4846 /*
4847 * non failing costly orders are a hard requirement which we
4848 * are not prepared for much so let's warn about these users
4849 * so that we can identify them and convert them to something
4850 * else.
4851 */
4852 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4853
4854 /*
4855 * Help non-failing allocations by giving them access to memory
4856 * reserves but do not use ALLOC_NO_WATERMARKS because this
4857 * could deplete whole memory reserves which would just make
4858 * the situation worse
4859 */
4860 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4861 if (page)
4862 goto got_pg;
4863
4864 cond_resched();
4865 goto retry;
4866 }
4867fail:
4868 warn_alloc(gfp_mask, ac->nodemask,
4869 "page allocation failure: order:%u", order);
4870got_pg:
4871 return page;
4872}
4873
4874static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4875 int preferred_nid, nodemask_t *nodemask,
4876 struct alloc_context *ac, gfp_t *alloc_mask,
4877 unsigned int *alloc_flags)
4878{
Olivier Deprez157378f2022-04-04 15:47:50 +02004879 ac->highest_zoneidx = gfp_zone(gfp_mask);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004880 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4881 ac->nodemask = nodemask;
Olivier Deprez157378f2022-04-04 15:47:50 +02004882 ac->migratetype = gfp_migratetype(gfp_mask);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004883
4884 if (cpusets_enabled()) {
4885 *alloc_mask |= __GFP_HARDWALL;
Olivier Deprez157378f2022-04-04 15:47:50 +02004886 /*
4887 * When we are in the interrupt context, it is irrelevant
4888 * to the current task context. It means that any node ok.
4889 */
4890 if (!in_interrupt() && !ac->nodemask)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004891 ac->nodemask = &cpuset_current_mems_allowed;
4892 else
4893 *alloc_flags |= ALLOC_CPUSET;
4894 }
4895
4896 fs_reclaim_acquire(gfp_mask);
4897 fs_reclaim_release(gfp_mask);
4898
4899 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4900
4901 if (should_fail_alloc_page(gfp_mask, order))
4902 return false;
4903
Olivier Deprez157378f2022-04-04 15:47:50 +02004904 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004905
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004906 /* Dirty zone balancing only done in the fast path */
4907 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4908
4909 /*
4910 * The preferred zone is used for statistics but crucially it is
4911 * also used as the starting point for the zonelist iterator. It
4912 * may get reset for allocations that ignore memory policies.
4913 */
4914 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
Olivier Deprez157378f2022-04-04 15:47:50 +02004915 ac->highest_zoneidx, ac->nodemask);
4916
4917 return true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004918}
4919
4920/*
4921 * This is the 'heart' of the zoned buddy allocator.
4922 */
4923struct page *
4924__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4925 nodemask_t *nodemask)
4926{
4927 struct page *page;
4928 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4929 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4930 struct alloc_context ac = { };
4931
4932 /*
4933 * There are several places where we assume that the order value is sane
4934 * so bail out early if the request is out of bound.
4935 */
4936 if (unlikely(order >= MAX_ORDER)) {
4937 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4938 return NULL;
4939 }
4940
4941 gfp_mask &= gfp_allowed_mask;
4942 alloc_mask = gfp_mask;
4943 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4944 return NULL;
4945
David Brazdil0f672f62019-12-10 10:32:29 +00004946 /*
4947 * Forbid the first pass from falling back to types that fragment
4948 * memory until all local zones are considered.
4949 */
4950 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4951
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004952 /* First allocation attempt */
4953 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4954 if (likely(page))
4955 goto out;
4956
4957 /*
4958 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4959 * resp. GFP_NOIO which has to be inherited for all allocation requests
4960 * from a particular context which has been marked by
4961 * memalloc_no{fs,io}_{save,restore}.
4962 */
4963 alloc_mask = current_gfp_context(gfp_mask);
4964 ac.spread_dirty_pages = false;
4965
4966 /*
4967 * Restore the original nodemask if it was potentially replaced with
4968 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4969 */
Olivier Deprez157378f2022-04-04 15:47:50 +02004970 ac.nodemask = nodemask;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004971
4972 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4973
4974out:
4975 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
Olivier Deprez157378f2022-04-04 15:47:50 +02004976 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004977 __free_pages(page, order);
4978 page = NULL;
4979 }
4980
4981 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4982
4983 return page;
4984}
4985EXPORT_SYMBOL(__alloc_pages_nodemask);
4986
4987/*
4988 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4989 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4990 * you need to access high mem.
4991 */
4992unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4993{
4994 struct page *page;
4995
4996 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4997 if (!page)
4998 return 0;
4999 return (unsigned long) page_address(page);
5000}
5001EXPORT_SYMBOL(__get_free_pages);
5002
5003unsigned long get_zeroed_page(gfp_t gfp_mask)
5004{
5005 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5006}
5007EXPORT_SYMBOL(get_zeroed_page);
5008
David Brazdil0f672f62019-12-10 10:32:29 +00005009static inline void free_the_page(struct page *page, unsigned int order)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005010{
David Brazdil0f672f62019-12-10 10:32:29 +00005011 if (order == 0) /* Via pcp? */
5012 free_unref_page(page);
5013 else
Olivier Deprez157378f2022-04-04 15:47:50 +02005014 __free_pages_ok(page, order, FPI_NONE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005015}
5016
David Brazdil0f672f62019-12-10 10:32:29 +00005017void __free_pages(struct page *page, unsigned int order)
5018{
5019 if (put_page_testzero(page))
5020 free_the_page(page, order);
Olivier Deprez157378f2022-04-04 15:47:50 +02005021 else if (!PageHead(page))
5022 while (order-- > 0)
5023 free_the_page(page + (1 << order), order);
David Brazdil0f672f62019-12-10 10:32:29 +00005024}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005025EXPORT_SYMBOL(__free_pages);
5026
5027void free_pages(unsigned long addr, unsigned int order)
5028{
5029 if (addr != 0) {
5030 VM_BUG_ON(!virt_addr_valid((void *)addr));
5031 __free_pages(virt_to_page((void *)addr), order);
5032 }
5033}
5034
5035EXPORT_SYMBOL(free_pages);
5036
5037/*
5038 * Page Fragment:
5039 * An arbitrary-length arbitrary-offset area of memory which resides
5040 * within a 0 or higher order page. Multiple fragments within that page
5041 * are individually refcounted, in the page's reference counter.
5042 *
5043 * The page_frag functions below provide a simple allocation framework for
5044 * page fragments. This is used by the network stack and network device
5045 * drivers to provide a backing region of memory for use as either an
5046 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5047 */
5048static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5049 gfp_t gfp_mask)
5050{
5051 struct page *page = NULL;
5052 gfp_t gfp = gfp_mask;
5053
5054#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5055 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5056 __GFP_NOMEMALLOC;
5057 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5058 PAGE_FRAG_CACHE_MAX_ORDER);
5059 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5060#endif
5061 if (unlikely(!page))
5062 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5063
5064 nc->va = page ? page_address(page) : NULL;
5065
5066 return page;
5067}
5068
5069void __page_frag_cache_drain(struct page *page, unsigned int count)
5070{
5071 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5072
David Brazdil0f672f62019-12-10 10:32:29 +00005073 if (page_ref_sub_and_test(page, count))
5074 free_the_page(page, compound_order(page));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005075}
5076EXPORT_SYMBOL(__page_frag_cache_drain);
5077
5078void *page_frag_alloc(struct page_frag_cache *nc,
5079 unsigned int fragsz, gfp_t gfp_mask)
5080{
5081 unsigned int size = PAGE_SIZE;
5082 struct page *page;
5083 int offset;
5084
5085 if (unlikely(!nc->va)) {
5086refill:
5087 page = __page_frag_cache_refill(nc, gfp_mask);
5088 if (!page)
5089 return NULL;
5090
5091#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5092 /* if size can vary use size else just use PAGE_SIZE */
5093 size = nc->size;
5094#endif
5095 /* Even if we own the page, we do not use atomic_set().
5096 * This would break get_page_unless_zero() users.
5097 */
David Brazdil0f672f62019-12-10 10:32:29 +00005098 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005099
5100 /* reset page count bias and offset to start of new frag */
5101 nc->pfmemalloc = page_is_pfmemalloc(page);
David Brazdil0f672f62019-12-10 10:32:29 +00005102 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005103 nc->offset = size;
5104 }
5105
5106 offset = nc->offset - fragsz;
5107 if (unlikely(offset < 0)) {
5108 page = virt_to_page(nc->va);
5109
5110 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5111 goto refill;
5112
Olivier Deprez0e641232021-09-23 10:07:05 +02005113 if (unlikely(nc->pfmemalloc)) {
5114 free_the_page(page, compound_order(page));
5115 goto refill;
5116 }
5117
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005118#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5119 /* if size can vary use size else just use PAGE_SIZE */
5120 size = nc->size;
5121#endif
5122 /* OK, page count is 0, we can safely set it */
David Brazdil0f672f62019-12-10 10:32:29 +00005123 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005124
5125 /* reset page count bias and offset to start of new frag */
David Brazdil0f672f62019-12-10 10:32:29 +00005126 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005127 offset = size - fragsz;
5128 }
5129
5130 nc->pagecnt_bias--;
5131 nc->offset = offset;
5132
5133 return nc->va + offset;
5134}
5135EXPORT_SYMBOL(page_frag_alloc);
5136
5137/*
5138 * Frees a page fragment allocated out of either a compound or order 0 page.
5139 */
5140void page_frag_free(void *addr)
5141{
5142 struct page *page = virt_to_head_page(addr);
5143
5144 if (unlikely(put_page_testzero(page)))
David Brazdil0f672f62019-12-10 10:32:29 +00005145 free_the_page(page, compound_order(page));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005146}
5147EXPORT_SYMBOL(page_frag_free);
5148
5149static void *make_alloc_exact(unsigned long addr, unsigned int order,
5150 size_t size)
5151{
5152 if (addr) {
5153 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5154 unsigned long used = addr + PAGE_ALIGN(size);
5155
5156 split_page(virt_to_page((void *)addr), order);
5157 while (used < alloc_end) {
5158 free_page(used);
5159 used += PAGE_SIZE;
5160 }
5161 }
5162 return (void *)addr;
5163}
5164
5165/**
5166 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5167 * @size: the number of bytes to allocate
David Brazdil0f672f62019-12-10 10:32:29 +00005168 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005169 *
5170 * This function is similar to alloc_pages(), except that it allocates the
5171 * minimum number of pages to satisfy the request. alloc_pages() can only
5172 * allocate memory in power-of-two pages.
5173 *
5174 * This function is also limited by MAX_ORDER.
5175 *
5176 * Memory allocated by this function must be released by free_pages_exact().
David Brazdil0f672f62019-12-10 10:32:29 +00005177 *
5178 * Return: pointer to the allocated area or %NULL in case of error.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005179 */
5180void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5181{
5182 unsigned int order = get_order(size);
5183 unsigned long addr;
5184
David Brazdil0f672f62019-12-10 10:32:29 +00005185 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5186 gfp_mask &= ~__GFP_COMP;
5187
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005188 addr = __get_free_pages(gfp_mask, order);
5189 return make_alloc_exact(addr, order, size);
5190}
5191EXPORT_SYMBOL(alloc_pages_exact);
5192
5193/**
5194 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5195 * pages on a node.
5196 * @nid: the preferred node ID where memory should be allocated
5197 * @size: the number of bytes to allocate
David Brazdil0f672f62019-12-10 10:32:29 +00005198 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005199 *
5200 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5201 * back.
David Brazdil0f672f62019-12-10 10:32:29 +00005202 *
5203 * Return: pointer to the allocated area or %NULL in case of error.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005204 */
5205void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5206{
5207 unsigned int order = get_order(size);
David Brazdil0f672f62019-12-10 10:32:29 +00005208 struct page *p;
5209
5210 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5211 gfp_mask &= ~__GFP_COMP;
5212
5213 p = alloc_pages_node(nid, gfp_mask, order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005214 if (!p)
5215 return NULL;
5216 return make_alloc_exact((unsigned long)page_address(p), order, size);
5217}
5218
5219/**
5220 * free_pages_exact - release memory allocated via alloc_pages_exact()
5221 * @virt: the value returned by alloc_pages_exact.
5222 * @size: size of allocation, same value as passed to alloc_pages_exact().
5223 *
5224 * Release the memory allocated by a previous call to alloc_pages_exact.
5225 */
5226void free_pages_exact(void *virt, size_t size)
5227{
5228 unsigned long addr = (unsigned long)virt;
5229 unsigned long end = addr + PAGE_ALIGN(size);
5230
5231 while (addr < end) {
5232 free_page(addr);
5233 addr += PAGE_SIZE;
5234 }
5235}
5236EXPORT_SYMBOL(free_pages_exact);
5237
5238/**
5239 * nr_free_zone_pages - count number of pages beyond high watermark
5240 * @offset: The zone index of the highest zone
5241 *
David Brazdil0f672f62019-12-10 10:32:29 +00005242 * nr_free_zone_pages() counts the number of pages which are beyond the
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005243 * high watermark within all zones at or below a given zone index. For each
5244 * zone, the number of pages is calculated as:
5245 *
5246 * nr_free_zone_pages = managed_pages - high_pages
David Brazdil0f672f62019-12-10 10:32:29 +00005247 *
5248 * Return: number of pages beyond high watermark.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005249 */
5250static unsigned long nr_free_zone_pages(int offset)
5251{
5252 struct zoneref *z;
5253 struct zone *zone;
5254
5255 /* Just pick one node, since fallback list is circular */
5256 unsigned long sum = 0;
5257
5258 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5259
5260 for_each_zone_zonelist(zone, z, zonelist, offset) {
David Brazdil0f672f62019-12-10 10:32:29 +00005261 unsigned long size = zone_managed_pages(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005262 unsigned long high = high_wmark_pages(zone);
5263 if (size > high)
5264 sum += size - high;
5265 }
5266
5267 return sum;
5268}
5269
5270/**
5271 * nr_free_buffer_pages - count number of pages beyond high watermark
5272 *
5273 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5274 * watermark within ZONE_DMA and ZONE_NORMAL.
David Brazdil0f672f62019-12-10 10:32:29 +00005275 *
5276 * Return: number of pages beyond high watermark within ZONE_DMA and
5277 * ZONE_NORMAL.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005278 */
5279unsigned long nr_free_buffer_pages(void)
5280{
5281 return nr_free_zone_pages(gfp_zone(GFP_USER));
5282}
5283EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5284
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005285static inline void show_node(struct zone *zone)
5286{
5287 if (IS_ENABLED(CONFIG_NUMA))
5288 printk("Node %d ", zone_to_nid(zone));
5289}
5290
5291long si_mem_available(void)
5292{
5293 long available;
5294 unsigned long pagecache;
5295 unsigned long wmark_low = 0;
5296 unsigned long pages[NR_LRU_LISTS];
David Brazdil0f672f62019-12-10 10:32:29 +00005297 unsigned long reclaimable;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005298 struct zone *zone;
5299 int lru;
5300
5301 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5302 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5303
5304 for_each_zone(zone)
David Brazdil0f672f62019-12-10 10:32:29 +00005305 wmark_low += low_wmark_pages(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005306
5307 /*
5308 * Estimate the amount of memory available for userspace allocations,
5309 * without causing swapping.
5310 */
5311 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5312
5313 /*
5314 * Not all the page cache can be freed, otherwise the system will
5315 * start swapping. Assume at least half of the page cache, or the
5316 * low watermark worth of cache, needs to stay.
5317 */
5318 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5319 pagecache -= min(pagecache / 2, wmark_low);
5320 available += pagecache;
5321
5322 /*
David Brazdil0f672f62019-12-10 10:32:29 +00005323 * Part of the reclaimable slab and other kernel memory consists of
5324 * items that are in use, and cannot be freed. Cap this estimate at the
5325 * low watermark.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005326 */
Olivier Deprez157378f2022-04-04 15:47:50 +02005327 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5328 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
David Brazdil0f672f62019-12-10 10:32:29 +00005329 available += reclaimable - min(reclaimable / 2, wmark_low);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005330
5331 if (available < 0)
5332 available = 0;
5333 return available;
5334}
5335EXPORT_SYMBOL_GPL(si_mem_available);
5336
5337void si_meminfo(struct sysinfo *val)
5338{
David Brazdil0f672f62019-12-10 10:32:29 +00005339 val->totalram = totalram_pages();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005340 val->sharedram = global_node_page_state(NR_SHMEM);
5341 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5342 val->bufferram = nr_blockdev_pages();
David Brazdil0f672f62019-12-10 10:32:29 +00005343 val->totalhigh = totalhigh_pages();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005344 val->freehigh = nr_free_highpages();
5345 val->mem_unit = PAGE_SIZE;
5346}
5347
5348EXPORT_SYMBOL(si_meminfo);
5349
5350#ifdef CONFIG_NUMA
5351void si_meminfo_node(struct sysinfo *val, int nid)
5352{
5353 int zone_type; /* needs to be signed */
5354 unsigned long managed_pages = 0;
5355 unsigned long managed_highpages = 0;
5356 unsigned long free_highpages = 0;
5357 pg_data_t *pgdat = NODE_DATA(nid);
5358
5359 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
David Brazdil0f672f62019-12-10 10:32:29 +00005360 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005361 val->totalram = managed_pages;
5362 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5363 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5364#ifdef CONFIG_HIGHMEM
5365 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5366 struct zone *zone = &pgdat->node_zones[zone_type];
5367
5368 if (is_highmem(zone)) {
David Brazdil0f672f62019-12-10 10:32:29 +00005369 managed_highpages += zone_managed_pages(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005370 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5371 }
5372 }
5373 val->totalhigh = managed_highpages;
5374 val->freehigh = free_highpages;
5375#else
5376 val->totalhigh = managed_highpages;
5377 val->freehigh = free_highpages;
5378#endif
5379 val->mem_unit = PAGE_SIZE;
5380}
5381#endif
5382
5383/*
5384 * Determine whether the node should be displayed or not, depending on whether
5385 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5386 */
5387static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5388{
5389 if (!(flags & SHOW_MEM_FILTER_NODES))
5390 return false;
5391
5392 /*
5393 * no node mask - aka implicit memory numa policy. Do not bother with
5394 * the synchronization - read_mems_allowed_begin - because we do not
5395 * have to be precise here.
5396 */
5397 if (!nodemask)
5398 nodemask = &cpuset_current_mems_allowed;
5399
5400 return !node_isset(nid, *nodemask);
5401}
5402
5403#define K(x) ((x) << (PAGE_SHIFT-10))
5404
5405static void show_migration_types(unsigned char type)
5406{
5407 static const char types[MIGRATE_TYPES] = {
5408 [MIGRATE_UNMOVABLE] = 'U',
5409 [MIGRATE_MOVABLE] = 'M',
5410 [MIGRATE_RECLAIMABLE] = 'E',
5411 [MIGRATE_HIGHATOMIC] = 'H',
5412#ifdef CONFIG_CMA
5413 [MIGRATE_CMA] = 'C',
5414#endif
5415#ifdef CONFIG_MEMORY_ISOLATION
5416 [MIGRATE_ISOLATE] = 'I',
5417#endif
5418 };
5419 char tmp[MIGRATE_TYPES + 1];
5420 char *p = tmp;
5421 int i;
5422
5423 for (i = 0; i < MIGRATE_TYPES; i++) {
5424 if (type & (1 << i))
5425 *p++ = types[i];
5426 }
5427
5428 *p = '\0';
5429 printk(KERN_CONT "(%s) ", tmp);
5430}
5431
5432/*
5433 * Show free area list (used inside shift_scroll-lock stuff)
5434 * We also calculate the percentage fragmentation. We do this by counting the
5435 * memory on each free list with the exception of the first item on the list.
5436 *
5437 * Bits in @filter:
5438 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5439 * cpuset.
5440 */
5441void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5442{
5443 unsigned long free_pcp = 0;
5444 int cpu;
5445 struct zone *zone;
5446 pg_data_t *pgdat;
5447
5448 for_each_populated_zone(zone) {
5449 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5450 continue;
5451
5452 for_each_online_cpu(cpu)
5453 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5454 }
5455
5456 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5457 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
Olivier Deprez157378f2022-04-04 15:47:50 +02005458 " unevictable:%lu dirty:%lu writeback:%lu\n"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005459 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5460 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5461 " free:%lu free_pcp:%lu free_cma:%lu\n",
5462 global_node_page_state(NR_ACTIVE_ANON),
5463 global_node_page_state(NR_INACTIVE_ANON),
5464 global_node_page_state(NR_ISOLATED_ANON),
5465 global_node_page_state(NR_ACTIVE_FILE),
5466 global_node_page_state(NR_INACTIVE_FILE),
5467 global_node_page_state(NR_ISOLATED_FILE),
5468 global_node_page_state(NR_UNEVICTABLE),
5469 global_node_page_state(NR_FILE_DIRTY),
5470 global_node_page_state(NR_WRITEBACK),
Olivier Deprez157378f2022-04-04 15:47:50 +02005471 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5472 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005473 global_node_page_state(NR_FILE_MAPPED),
5474 global_node_page_state(NR_SHMEM),
5475 global_zone_page_state(NR_PAGETABLE),
5476 global_zone_page_state(NR_BOUNCE),
5477 global_zone_page_state(NR_FREE_PAGES),
5478 free_pcp,
5479 global_zone_page_state(NR_FREE_CMA_PAGES));
5480
5481 for_each_online_pgdat(pgdat) {
5482 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5483 continue;
5484
5485 printk("Node %d"
5486 " active_anon:%lukB"
5487 " inactive_anon:%lukB"
5488 " active_file:%lukB"
5489 " inactive_file:%lukB"
5490 " unevictable:%lukB"
5491 " isolated(anon):%lukB"
5492 " isolated(file):%lukB"
5493 " mapped:%lukB"
5494 " dirty:%lukB"
5495 " writeback:%lukB"
5496 " shmem:%lukB"
5497#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5498 " shmem_thp: %lukB"
5499 " shmem_pmdmapped: %lukB"
5500 " anon_thp: %lukB"
5501#endif
5502 " writeback_tmp:%lukB"
Olivier Deprez157378f2022-04-04 15:47:50 +02005503 " kernel_stack:%lukB"
5504#ifdef CONFIG_SHADOW_CALL_STACK
5505 " shadow_call_stack:%lukB"
5506#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005507 " all_unreclaimable? %s"
5508 "\n",
5509 pgdat->node_id,
5510 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5511 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5512 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5513 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5514 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5515 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5516 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5517 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5518 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5519 K(node_page_state(pgdat, NR_WRITEBACK)),
5520 K(node_page_state(pgdat, NR_SHMEM)),
5521#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5522 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5523 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5524 * HPAGE_PMD_NR),
5525 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5526#endif
5527 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
Olivier Deprez157378f2022-04-04 15:47:50 +02005528 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5529#ifdef CONFIG_SHADOW_CALL_STACK
5530 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5531#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005532 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5533 "yes" : "no");
5534 }
5535
5536 for_each_populated_zone(zone) {
5537 int i;
5538
5539 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5540 continue;
5541
5542 free_pcp = 0;
5543 for_each_online_cpu(cpu)
5544 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5545
5546 show_node(zone);
5547 printk(KERN_CONT
5548 "%s"
5549 " free:%lukB"
5550 " min:%lukB"
5551 " low:%lukB"
5552 " high:%lukB"
Olivier Deprez157378f2022-04-04 15:47:50 +02005553 " reserved_highatomic:%luKB"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005554 " active_anon:%lukB"
5555 " inactive_anon:%lukB"
5556 " active_file:%lukB"
5557 " inactive_file:%lukB"
5558 " unevictable:%lukB"
5559 " writepending:%lukB"
5560 " present:%lukB"
5561 " managed:%lukB"
5562 " mlocked:%lukB"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005563 " pagetables:%lukB"
5564 " bounce:%lukB"
5565 " free_pcp:%lukB"
5566 " local_pcp:%ukB"
5567 " free_cma:%lukB"
5568 "\n",
5569 zone->name,
5570 K(zone_page_state(zone, NR_FREE_PAGES)),
5571 K(min_wmark_pages(zone)),
5572 K(low_wmark_pages(zone)),
5573 K(high_wmark_pages(zone)),
Olivier Deprez157378f2022-04-04 15:47:50 +02005574 K(zone->nr_reserved_highatomic),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005575 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5576 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5577 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5578 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5579 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5580 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5581 K(zone->present_pages),
David Brazdil0f672f62019-12-10 10:32:29 +00005582 K(zone_managed_pages(zone)),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005583 K(zone_page_state(zone, NR_MLOCK)),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005584 K(zone_page_state(zone, NR_PAGETABLE)),
5585 K(zone_page_state(zone, NR_BOUNCE)),
5586 K(free_pcp),
5587 K(this_cpu_read(zone->pageset->pcp.count)),
5588 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5589 printk("lowmem_reserve[]:");
5590 for (i = 0; i < MAX_NR_ZONES; i++)
5591 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5592 printk(KERN_CONT "\n");
5593 }
5594
5595 for_each_populated_zone(zone) {
5596 unsigned int order;
5597 unsigned long nr[MAX_ORDER], flags, total = 0;
5598 unsigned char types[MAX_ORDER];
5599
5600 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5601 continue;
5602 show_node(zone);
5603 printk(KERN_CONT "%s: ", zone->name);
5604
5605 spin_lock_irqsave(&zone->lock, flags);
5606 for (order = 0; order < MAX_ORDER; order++) {
5607 struct free_area *area = &zone->free_area[order];
5608 int type;
5609
5610 nr[order] = area->nr_free;
5611 total += nr[order] << order;
5612
5613 types[order] = 0;
5614 for (type = 0; type < MIGRATE_TYPES; type++) {
David Brazdil0f672f62019-12-10 10:32:29 +00005615 if (!free_area_empty(area, type))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005616 types[order] |= 1 << type;
5617 }
5618 }
5619 spin_unlock_irqrestore(&zone->lock, flags);
5620 for (order = 0; order < MAX_ORDER; order++) {
5621 printk(KERN_CONT "%lu*%lukB ",
5622 nr[order], K(1UL) << order);
5623 if (nr[order])
5624 show_migration_types(types[order]);
5625 }
5626 printk(KERN_CONT "= %lukB\n", K(total));
5627 }
5628
5629 hugetlb_show_meminfo();
5630
5631 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5632
5633 show_swap_cache_info();
5634}
5635
5636static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5637{
5638 zoneref->zone = zone;
5639 zoneref->zone_idx = zone_idx(zone);
5640}
5641
5642/*
5643 * Builds allocation fallback zone lists.
5644 *
5645 * Add all populated zones of a node to the zonelist.
5646 */
5647static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5648{
5649 struct zone *zone;
5650 enum zone_type zone_type = MAX_NR_ZONES;
5651 int nr_zones = 0;
5652
5653 do {
5654 zone_type--;
5655 zone = pgdat->node_zones + zone_type;
5656 if (managed_zone(zone)) {
5657 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5658 check_highest_zone(zone_type);
5659 }
5660 } while (zone_type);
5661
5662 return nr_zones;
5663}
5664
5665#ifdef CONFIG_NUMA
5666
5667static int __parse_numa_zonelist_order(char *s)
5668{
5669 /*
5670 * We used to support different zonlists modes but they turned
5671 * out to be just not useful. Let's keep the warning in place
5672 * if somebody still use the cmd line parameter so that we do
5673 * not fail it silently
5674 */
5675 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5676 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5677 return -EINVAL;
5678 }
5679 return 0;
5680}
5681
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005682char numa_zonelist_order[] = "Node";
5683
5684/*
5685 * sysctl handler for numa_zonelist_order
5686 */
5687int numa_zonelist_order_handler(struct ctl_table *table, int write,
Olivier Deprez157378f2022-04-04 15:47:50 +02005688 void *buffer, size_t *length, loff_t *ppos)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005689{
Olivier Deprez157378f2022-04-04 15:47:50 +02005690 if (write)
5691 return __parse_numa_zonelist_order(buffer);
5692 return proc_dostring(table, write, buffer, length, ppos);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005693}
5694
5695
5696#define MAX_NODE_LOAD (nr_online_nodes)
5697static int node_load[MAX_NUMNODES];
5698
5699/**
5700 * find_next_best_node - find the next node that should appear in a given node's fallback list
5701 * @node: node whose fallback list we're appending
5702 * @used_node_mask: nodemask_t of already used nodes
5703 *
5704 * We use a number of factors to determine which is the next node that should
5705 * appear on a given node's fallback list. The node should not have appeared
5706 * already in @node's fallback list, and it should be the next closest node
5707 * according to the distance array (which contains arbitrary distance values
5708 * from each node to each node in the system), and should also prefer nodes
5709 * with no CPUs, since presumably they'll have very little allocation pressure
5710 * on them otherwise.
David Brazdil0f672f62019-12-10 10:32:29 +00005711 *
5712 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005713 */
5714static int find_next_best_node(int node, nodemask_t *used_node_mask)
5715{
5716 int n, val;
5717 int min_val = INT_MAX;
5718 int best_node = NUMA_NO_NODE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005719
5720 /* Use the local node if we haven't already */
5721 if (!node_isset(node, *used_node_mask)) {
5722 node_set(node, *used_node_mask);
5723 return node;
5724 }
5725
5726 for_each_node_state(n, N_MEMORY) {
5727
5728 /* Don't want a node to appear more than once */
5729 if (node_isset(n, *used_node_mask))
5730 continue;
5731
5732 /* Use the distance array to find the distance */
5733 val = node_distance(node, n);
5734
5735 /* Penalize nodes under us ("prefer the next node") */
5736 val += (n < node);
5737
5738 /* Give preference to headless and unused nodes */
Olivier Deprez157378f2022-04-04 15:47:50 +02005739 if (!cpumask_empty(cpumask_of_node(n)))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005740 val += PENALTY_FOR_NODE_WITH_CPUS;
5741
5742 /* Slight preference for less loaded node */
5743 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5744 val += node_load[n];
5745
5746 if (val < min_val) {
5747 min_val = val;
5748 best_node = n;
5749 }
5750 }
5751
5752 if (best_node >= 0)
5753 node_set(best_node, *used_node_mask);
5754
5755 return best_node;
5756}
5757
5758
5759/*
5760 * Build zonelists ordered by node and zones within node.
5761 * This results in maximum locality--normal zone overflows into local
5762 * DMA zone, if any--but risks exhausting DMA zone.
5763 */
5764static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5765 unsigned nr_nodes)
5766{
5767 struct zoneref *zonerefs;
5768 int i;
5769
5770 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5771
5772 for (i = 0; i < nr_nodes; i++) {
5773 int nr_zones;
5774
5775 pg_data_t *node = NODE_DATA(node_order[i]);
5776
5777 nr_zones = build_zonerefs_node(node, zonerefs);
5778 zonerefs += nr_zones;
5779 }
5780 zonerefs->zone = NULL;
5781 zonerefs->zone_idx = 0;
5782}
5783
5784/*
5785 * Build gfp_thisnode zonelists
5786 */
5787static void build_thisnode_zonelists(pg_data_t *pgdat)
5788{
5789 struct zoneref *zonerefs;
5790 int nr_zones;
5791
5792 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5793 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5794 zonerefs += nr_zones;
5795 zonerefs->zone = NULL;
5796 zonerefs->zone_idx = 0;
5797}
5798
5799/*
5800 * Build zonelists ordered by zone and nodes within zones.
5801 * This results in conserving DMA zone[s] until all Normal memory is
5802 * exhausted, but results in overflowing to remote node while memory
5803 * may still exist in local DMA zone.
5804 */
5805
5806static void build_zonelists(pg_data_t *pgdat)
5807{
5808 static int node_order[MAX_NUMNODES];
5809 int node, load, nr_nodes = 0;
Olivier Deprez157378f2022-04-04 15:47:50 +02005810 nodemask_t used_mask = NODE_MASK_NONE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005811 int local_node, prev_node;
5812
5813 /* NUMA-aware ordering of nodes */
5814 local_node = pgdat->node_id;
5815 load = nr_online_nodes;
5816 prev_node = local_node;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005817
5818 memset(node_order, 0, sizeof(node_order));
5819 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5820 /*
5821 * We don't want to pressure a particular node.
5822 * So adding penalty to the first node in same
5823 * distance group to make it round-robin.
5824 */
5825 if (node_distance(local_node, node) !=
5826 node_distance(local_node, prev_node))
5827 node_load[node] = load;
5828
5829 node_order[nr_nodes++] = node;
5830 prev_node = node;
5831 load--;
5832 }
5833
5834 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5835 build_thisnode_zonelists(pgdat);
5836}
5837
5838#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5839/*
5840 * Return node id of node used for "local" allocations.
5841 * I.e., first node id of first zone in arg node's generic zonelist.
5842 * Used for initializing percpu 'numa_mem', which is used primarily
5843 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5844 */
5845int local_memory_node(int node)
5846{
5847 struct zoneref *z;
5848
5849 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5850 gfp_zone(GFP_KERNEL),
5851 NULL);
5852 return zone_to_nid(z->zone);
5853}
5854#endif
5855
5856static void setup_min_unmapped_ratio(void);
5857static void setup_min_slab_ratio(void);
5858#else /* CONFIG_NUMA */
5859
5860static void build_zonelists(pg_data_t *pgdat)
5861{
5862 int node, local_node;
5863 struct zoneref *zonerefs;
5864 int nr_zones;
5865
5866 local_node = pgdat->node_id;
5867
5868 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5869 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5870 zonerefs += nr_zones;
5871
5872 /*
5873 * Now we build the zonelist so that it contains the zones
5874 * of all the other nodes.
5875 * We don't want to pressure a particular node, so when
5876 * building the zones for node N, we make sure that the
5877 * zones coming right after the local ones are those from
5878 * node N+1 (modulo N)
5879 */
5880 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5881 if (!node_online(node))
5882 continue;
5883 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5884 zonerefs += nr_zones;
5885 }
5886 for (node = 0; node < local_node; node++) {
5887 if (!node_online(node))
5888 continue;
5889 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5890 zonerefs += nr_zones;
5891 }
5892
5893 zonerefs->zone = NULL;
5894 zonerefs->zone_idx = 0;
5895}
5896
5897#endif /* CONFIG_NUMA */
5898
5899/*
5900 * Boot pageset table. One per cpu which is going to be used for all
5901 * zones and all nodes. The parameters will be set in such a way
5902 * that an item put on a list will immediately be handed over to
5903 * the buddy list. This is safe since pageset manipulation is done
5904 * with interrupts disabled.
5905 *
5906 * The boot_pagesets must be kept even after bootup is complete for
5907 * unused processors and/or zones. They do play a role for bootstrapping
5908 * hotplugged processors.
5909 *
5910 * zoneinfo_show() and maybe other functions do
5911 * not check if the processor is online before following the pageset pointer.
5912 * Other parts of the kernel may not check if the zone is available.
5913 */
5914static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5915static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5916static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5917
5918static void __build_all_zonelists(void *data)
5919{
5920 int nid;
5921 int __maybe_unused cpu;
5922 pg_data_t *self = data;
5923 static DEFINE_SPINLOCK(lock);
5924
5925 spin_lock(&lock);
5926
5927#ifdef CONFIG_NUMA
5928 memset(node_load, 0, sizeof(node_load));
5929#endif
5930
5931 /*
5932 * This node is hotadded and no memory is yet present. So just
5933 * building zonelists is fine - no need to touch other nodes.
5934 */
5935 if (self && !node_online(self->node_id)) {
5936 build_zonelists(self);
5937 } else {
5938 for_each_online_node(nid) {
5939 pg_data_t *pgdat = NODE_DATA(nid);
5940
5941 build_zonelists(pgdat);
5942 }
5943
5944#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5945 /*
5946 * We now know the "local memory node" for each node--
5947 * i.e., the node of the first zone in the generic zonelist.
5948 * Set up numa_mem percpu variable for on-line cpus. During
5949 * boot, only the boot cpu should be on-line; we'll init the
5950 * secondary cpus' numa_mem as they come on-line. During
5951 * node/memory hotplug, we'll fixup all on-line cpus.
5952 */
5953 for_each_online_cpu(cpu)
5954 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5955#endif
5956 }
5957
5958 spin_unlock(&lock);
5959}
5960
5961static noinline void __init
5962build_all_zonelists_init(void)
5963{
5964 int cpu;
5965
5966 __build_all_zonelists(NULL);
5967
5968 /*
5969 * Initialize the boot_pagesets that are going to be used
5970 * for bootstrapping processors. The real pagesets for
5971 * each zone will be allocated later when the per cpu
5972 * allocator is available.
5973 *
5974 * boot_pagesets are used also for bootstrapping offline
5975 * cpus if the system is already booted because the pagesets
5976 * are needed to initialize allocators on a specific cpu too.
5977 * F.e. the percpu allocator needs the page allocator which
5978 * needs the percpu allocator in order to allocate its pagesets
5979 * (a chicken-egg dilemma).
5980 */
5981 for_each_possible_cpu(cpu)
5982 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5983
5984 mminit_verify_zonelist();
5985 cpuset_init_current_mems_allowed();
5986}
5987
5988/*
5989 * unless system_state == SYSTEM_BOOTING.
5990 *
5991 * __ref due to call of __init annotated helper build_all_zonelists_init
5992 * [protected by SYSTEM_BOOTING].
5993 */
5994void __ref build_all_zonelists(pg_data_t *pgdat)
5995{
Olivier Deprez157378f2022-04-04 15:47:50 +02005996 unsigned long vm_total_pages;
5997
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005998 if (system_state == SYSTEM_BOOTING) {
5999 build_all_zonelists_init();
6000 } else {
6001 __build_all_zonelists(pgdat);
6002 /* cpuset refresh routine should be here */
6003 }
Olivier Deprez157378f2022-04-04 15:47:50 +02006004 /* Get the number of free pages beyond high watermark in all zones. */
6005 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006006 /*
6007 * Disable grouping by mobility if the number of pages in the
6008 * system is too low to allow the mechanism to work. It would be
6009 * more accurate, but expensive to check per-zone. This check is
6010 * made on memory-hotadd so a system can start with mobility
6011 * disabled and enable it later
6012 */
6013 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6014 page_group_by_mobility_disabled = 1;
6015 else
6016 page_group_by_mobility_disabled = 0;
6017
David Brazdil0f672f62019-12-10 10:32:29 +00006018 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006019 nr_online_nodes,
6020 page_group_by_mobility_disabled ? "off" : "on",
6021 vm_total_pages);
6022#ifdef CONFIG_NUMA
6023 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6024#endif
6025}
6026
David Brazdil0f672f62019-12-10 10:32:29 +00006027/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6028static bool __meminit
6029overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6030{
David Brazdil0f672f62019-12-10 10:32:29 +00006031 static struct memblock_region *r;
6032
6033 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6034 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02006035 for_each_mem_region(r) {
David Brazdil0f672f62019-12-10 10:32:29 +00006036 if (*pfn < memblock_region_memory_end_pfn(r))
6037 break;
6038 }
6039 }
6040 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6041 memblock_is_mirror(r)) {
6042 *pfn = memblock_region_memory_end_pfn(r);
6043 return true;
6044 }
6045 }
David Brazdil0f672f62019-12-10 10:32:29 +00006046 return false;
6047}
6048
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006049/*
6050 * Initially all pages are reserved - free ones are freed
David Brazdil0f672f62019-12-10 10:32:29 +00006051 * up by memblock_free_all() once the early boot process is
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006052 * done. Non-atomic initialization, single-pass.
Olivier Deprez157378f2022-04-04 15:47:50 +02006053 *
6054 * All aligned pageblocks are initialized to the specified migratetype
6055 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6056 * zone stats (e.g., nr_isolate_pageblock) are touched.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006057 */
6058void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
Olivier Deprez157378f2022-04-04 15:47:50 +02006059 unsigned long start_pfn, unsigned long zone_end_pfn,
6060 enum meminit_context context,
6061 struct vmem_altmap *altmap, int migratetype)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006062{
David Brazdil0f672f62019-12-10 10:32:29 +00006063 unsigned long pfn, end_pfn = start_pfn + size;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006064 struct page *page;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006065
6066 if (highest_memmap_pfn < end_pfn - 1)
6067 highest_memmap_pfn = end_pfn - 1;
6068
David Brazdil0f672f62019-12-10 10:32:29 +00006069#ifdef CONFIG_ZONE_DEVICE
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006070 /*
6071 * Honor reservation requested by the driver for this ZONE_DEVICE
David Brazdil0f672f62019-12-10 10:32:29 +00006072 * memory. We limit the total number of pages to initialize to just
6073 * those that might contain the memory mapping. We will defer the
6074 * ZONE_DEVICE page initialization until after we have released
6075 * the hotplug lock.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006076 */
David Brazdil0f672f62019-12-10 10:32:29 +00006077 if (zone == ZONE_DEVICE) {
6078 if (!altmap)
6079 return;
6080
6081 if (start_pfn == altmap->base_pfn)
6082 start_pfn += altmap->reserve;
6083 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6084 }
6085#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006086
Olivier Deprez157378f2022-04-04 15:47:50 +02006087 for (pfn = start_pfn; pfn < end_pfn; ) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006088 /*
6089 * There can be holes in boot-time mem_map[]s handed to this
6090 * function. They do not exist on hotplugged memory.
6091 */
Olivier Deprez0e641232021-09-23 10:07:05 +02006092 if (context == MEMINIT_EARLY) {
David Brazdil0f672f62019-12-10 10:32:29 +00006093 if (overlap_memmap_init(zone, &pfn))
6094 continue;
Olivier Deprez157378f2022-04-04 15:47:50 +02006095 if (defer_init(nid, pfn, zone_end_pfn))
David Brazdil0f672f62019-12-10 10:32:29 +00006096 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006097 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006098
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006099 page = pfn_to_page(pfn);
6100 __init_single_page(page, pfn, zone, nid);
Olivier Deprez0e641232021-09-23 10:07:05 +02006101 if (context == MEMINIT_HOTPLUG)
David Brazdil0f672f62019-12-10 10:32:29 +00006102 __SetPageReserved(page);
6103
6104 /*
Olivier Deprez157378f2022-04-04 15:47:50 +02006105 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6106 * such that unmovable allocations won't be scattered all
6107 * over the place during system boot.
David Brazdil0f672f62019-12-10 10:32:29 +00006108 */
Olivier Deprez157378f2022-04-04 15:47:50 +02006109 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6110 set_pageblock_migratetype(page, migratetype);
David Brazdil0f672f62019-12-10 10:32:29 +00006111 cond_resched();
6112 }
Olivier Deprez157378f2022-04-04 15:47:50 +02006113 pfn++;
David Brazdil0f672f62019-12-10 10:32:29 +00006114 }
6115}
6116
6117#ifdef CONFIG_ZONE_DEVICE
6118void __ref memmap_init_zone_device(struct zone *zone,
6119 unsigned long start_pfn,
Olivier Deprez157378f2022-04-04 15:47:50 +02006120 unsigned long nr_pages,
David Brazdil0f672f62019-12-10 10:32:29 +00006121 struct dev_pagemap *pgmap)
6122{
Olivier Deprez157378f2022-04-04 15:47:50 +02006123 unsigned long pfn, end_pfn = start_pfn + nr_pages;
David Brazdil0f672f62019-12-10 10:32:29 +00006124 struct pglist_data *pgdat = zone->zone_pgdat;
6125 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6126 unsigned long zone_idx = zone_idx(zone);
6127 unsigned long start = jiffies;
6128 int nid = pgdat->node_id;
6129
6130 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6131 return;
6132
6133 /*
Olivier Deprez157378f2022-04-04 15:47:50 +02006134 * The call to memmap_init should have already taken care
David Brazdil0f672f62019-12-10 10:32:29 +00006135 * of the pages reserved for the memmap, so we can just jump to
6136 * the end of that region and start processing the device pages.
6137 */
6138 if (altmap) {
6139 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
Olivier Deprez157378f2022-04-04 15:47:50 +02006140 nr_pages = end_pfn - start_pfn;
David Brazdil0f672f62019-12-10 10:32:29 +00006141 }
6142
6143 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6144 struct page *page = pfn_to_page(pfn);
6145
6146 __init_single_page(page, pfn, zone_idx, nid);
6147
6148 /*
6149 * Mark page reserved as it will need to wait for onlining
6150 * phase for it to be fully associated with a zone.
6151 *
6152 * We can use the non-atomic __set_bit operation for setting
6153 * the flag as we are still initializing the pages.
6154 */
6155 __SetPageReserved(page);
6156
6157 /*
6158 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6159 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6160 * ever freed or placed on a driver-private list.
6161 */
6162 page->pgmap = pgmap;
6163 page->zone_device_data = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006164
6165 /*
6166 * Mark the block movable so that blocks are reserved for
6167 * movable at startup. This will force kernel allocations
6168 * to reserve their blocks rather than leaking throughout
6169 * the address space during boot when many long-lived
6170 * kernel allocations are made.
6171 *
Olivier Deprez0e641232021-09-23 10:07:05 +02006172 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
David Brazdil0f672f62019-12-10 10:32:29 +00006173 * because this is done early in section_activate()
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006174 */
Olivier Deprez157378f2022-04-04 15:47:50 +02006175 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006176 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6177 cond_resched();
6178 }
6179 }
David Brazdil0f672f62019-12-10 10:32:29 +00006180
6181 pr_info("%s initialised %lu pages in %ums\n", __func__,
Olivier Deprez157378f2022-04-04 15:47:50 +02006182 nr_pages, jiffies_to_msecs(jiffies - start));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006183}
6184
David Brazdil0f672f62019-12-10 10:32:29 +00006185#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006186static void __meminit zone_init_free_lists(struct zone *zone)
6187{
6188 unsigned int order, t;
6189 for_each_migratetype_order(order, t) {
6190 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6191 zone->free_area[order].nr_free = 0;
6192 }
6193}
6194
Olivier Deprez157378f2022-04-04 15:47:50 +02006195#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6196/*
6197 * Only struct pages that correspond to ranges defined by memblock.memory
6198 * are zeroed and initialized by going through __init_single_page() during
6199 * memmap_init_zone_range().
6200 *
6201 * But, there could be struct pages that correspond to holes in
6202 * memblock.memory. This can happen because of the following reasons:
6203 * - physical memory bank size is not necessarily the exact multiple of the
6204 * arbitrary section size
6205 * - early reserved memory may not be listed in memblock.memory
6206 * - memory layouts defined with memmap= kernel parameter may not align
6207 * nicely with memmap sections
6208 *
6209 * Explicitly initialize those struct pages so that:
6210 * - PG_Reserved is set
6211 * - zone and node links point to zone and node that span the page if the
6212 * hole is in the middle of a zone
6213 * - zone and node links point to adjacent zone/node if the hole falls on
6214 * the zone boundary; the pages in such holes will be prepended to the
6215 * zone/node above the hole except for the trailing pages in the last
6216 * section that will be appended to the zone/node below.
6217 */
6218static void __init init_unavailable_range(unsigned long spfn,
6219 unsigned long epfn,
6220 int zone, int node)
David Brazdil0f672f62019-12-10 10:32:29 +00006221{
Olivier Deprez157378f2022-04-04 15:47:50 +02006222 unsigned long pfn;
6223 u64 pgcnt = 0;
6224
6225 for (pfn = spfn; pfn < epfn; pfn++) {
6226 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6227 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6228 + pageblock_nr_pages - 1;
6229 continue;
6230 }
6231 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6232 __SetPageReserved(pfn_to_page(pfn));
6233 pgcnt++;
6234 }
6235
6236 if (pgcnt)
6237 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6238 node, zone_names[zone], pgcnt);
6239}
6240#else
6241static inline void init_unavailable_range(unsigned long spfn,
6242 unsigned long epfn,
6243 int zone, int node)
6244{
6245}
6246#endif
6247
6248static void __init memmap_init_zone_range(struct zone *zone,
6249 unsigned long start_pfn,
6250 unsigned long end_pfn,
6251 unsigned long *hole_pfn)
6252{
6253 unsigned long zone_start_pfn = zone->zone_start_pfn;
6254 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6255 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6256
6257 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6258 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6259
6260 if (start_pfn >= end_pfn)
6261 return;
6262
6263 memmap_init_zone(end_pfn - start_pfn, nid, zone_id, start_pfn,
6264 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6265
6266 if (*hole_pfn < start_pfn)
6267 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6268
6269 *hole_pfn = end_pfn;
6270}
6271
6272void __init __weak memmap_init(void)
6273{
6274 unsigned long start_pfn, end_pfn;
6275 unsigned long hole_pfn = 0;
6276 int i, j, zone_id, nid;
6277
6278 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6279 struct pglist_data *node = NODE_DATA(nid);
6280
6281 for (j = 0; j < MAX_NR_ZONES; j++) {
6282 struct zone *zone = node->node_zones + j;
6283
6284 if (!populated_zone(zone))
6285 continue;
6286
6287 memmap_init_zone_range(zone, start_pfn, end_pfn,
6288 &hole_pfn);
6289 zone_id = j;
6290 }
6291 }
6292
6293#ifdef CONFIG_SPARSEMEM
6294 /*
6295 * Initialize the memory map for hole in the range [memory_end,
6296 * section_end].
6297 * Append the pages in this hole to the highest zone in the last
6298 * node.
6299 * The call to init_unavailable_range() is outside the ifdef to
6300 * silence the compiler warining about zone_id set but not used;
6301 * for FLATMEM it is a nop anyway
6302 */
6303 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6304 if (hole_pfn < end_pfn)
6305#endif
6306 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6307}
6308
6309/* A stub for backwards compatibility with custom implementatin on IA-64 */
6310void __meminit __weak arch_memmap_init(unsigned long size, int nid,
6311 unsigned long zone,
6312 unsigned long range_start_pfn)
6313{
David Brazdil0f672f62019-12-10 10:32:29 +00006314}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006315
6316static int zone_batchsize(struct zone *zone)
6317{
6318#ifdef CONFIG_MMU
6319 int batch;
6320
6321 /*
6322 * The per-cpu-pages pools are set to around 1000th of the
6323 * size of the zone.
6324 */
David Brazdil0f672f62019-12-10 10:32:29 +00006325 batch = zone_managed_pages(zone) / 1024;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006326 /* But no more than a meg. */
6327 if (batch * PAGE_SIZE > 1024 * 1024)
6328 batch = (1024 * 1024) / PAGE_SIZE;
6329 batch /= 4; /* We effectively *= 4 below */
6330 if (batch < 1)
6331 batch = 1;
6332
6333 /*
6334 * Clamp the batch to a 2^n - 1 value. Having a power
6335 * of 2 value was found to be more likely to have
6336 * suboptimal cache aliasing properties in some cases.
6337 *
6338 * For example if 2 tasks are alternately allocating
6339 * batches of pages, one task can end up with a lot
6340 * of pages of one half of the possible page colors
6341 * and the other with pages of the other colors.
6342 */
6343 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6344
6345 return batch;
6346
6347#else
6348 /* The deferral and batching of frees should be suppressed under NOMMU
6349 * conditions.
6350 *
6351 * The problem is that NOMMU needs to be able to allocate large chunks
6352 * of contiguous memory as there's no hardware page translation to
6353 * assemble apparent contiguous memory from discontiguous pages.
6354 *
6355 * Queueing large contiguous runs of pages for batching, however,
6356 * causes the pages to actually be freed in smaller chunks. As there
6357 * can be a significant delay between the individual batches being
6358 * recycled, this leads to the once large chunks of space being
6359 * fragmented and becoming unavailable for high-order allocations.
6360 */
6361 return 0;
6362#endif
6363}
6364
6365/*
6366 * pcp->high and pcp->batch values are related and dependent on one another:
6367 * ->batch must never be higher then ->high.
6368 * The following function updates them in a safe manner without read side
6369 * locking.
6370 *
6371 * Any new users of pcp->batch and pcp->high should ensure they can cope with
Olivier Deprez157378f2022-04-04 15:47:50 +02006372 * those fields changing asynchronously (acording to the above rule).
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006373 *
6374 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6375 * outside of boot time (or some other assurance that no concurrent updaters
6376 * exist).
6377 */
6378static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6379 unsigned long batch)
6380{
6381 /* start with a fail safe value for batch */
6382 pcp->batch = 1;
6383 smp_wmb();
6384
6385 /* Update high, then batch, in order */
6386 pcp->high = high;
6387 smp_wmb();
6388
6389 pcp->batch = batch;
6390}
6391
6392/* a companion to pageset_set_high() */
6393static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6394{
6395 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6396}
6397
6398static void pageset_init(struct per_cpu_pageset *p)
6399{
6400 struct per_cpu_pages *pcp;
6401 int migratetype;
6402
6403 memset(p, 0, sizeof(*p));
6404
6405 pcp = &p->pcp;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006406 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6407 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6408}
6409
6410static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6411{
6412 pageset_init(p);
6413 pageset_set_batch(p, batch);
6414}
6415
6416/*
6417 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6418 * to the value high for the pageset p.
6419 */
6420static void pageset_set_high(struct per_cpu_pageset *p,
6421 unsigned long high)
6422{
6423 unsigned long batch = max(1UL, high / 4);
6424 if ((high / 4) > (PAGE_SHIFT * 8))
6425 batch = PAGE_SHIFT * 8;
6426
6427 pageset_update(&p->pcp, high, batch);
6428}
6429
6430static void pageset_set_high_and_batch(struct zone *zone,
6431 struct per_cpu_pageset *pcp)
6432{
6433 if (percpu_pagelist_fraction)
6434 pageset_set_high(pcp,
David Brazdil0f672f62019-12-10 10:32:29 +00006435 (zone_managed_pages(zone) /
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006436 percpu_pagelist_fraction));
6437 else
6438 pageset_set_batch(pcp, zone_batchsize(zone));
6439}
6440
6441static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6442{
6443 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6444
6445 pageset_init(pcp);
6446 pageset_set_high_and_batch(zone, pcp);
6447}
6448
6449void __meminit setup_zone_pageset(struct zone *zone)
6450{
6451 int cpu;
6452 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6453 for_each_possible_cpu(cpu)
6454 zone_pageset_init(zone, cpu);
6455}
6456
6457/*
6458 * Allocate per cpu pagesets and initialize them.
6459 * Before this call only boot pagesets were available.
6460 */
6461void __init setup_per_cpu_pageset(void)
6462{
6463 struct pglist_data *pgdat;
6464 struct zone *zone;
Olivier Deprez157378f2022-04-04 15:47:50 +02006465 int __maybe_unused cpu;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006466
6467 for_each_populated_zone(zone)
6468 setup_zone_pageset(zone);
6469
Olivier Deprez157378f2022-04-04 15:47:50 +02006470#ifdef CONFIG_NUMA
6471 /*
6472 * Unpopulated zones continue using the boot pagesets.
6473 * The numa stats for these pagesets need to be reset.
6474 * Otherwise, they will end up skewing the stats of
6475 * the nodes these zones are associated with.
6476 */
6477 for_each_possible_cpu(cpu) {
6478 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6479 memset(pcp->vm_numa_stat_diff, 0,
6480 sizeof(pcp->vm_numa_stat_diff));
6481 }
6482#endif
6483
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006484 for_each_online_pgdat(pgdat)
6485 pgdat->per_cpu_nodestats =
6486 alloc_percpu(struct per_cpu_nodestat);
6487}
6488
6489static __meminit void zone_pcp_init(struct zone *zone)
6490{
6491 /*
6492 * per cpu subsystem is not up at this point. The following code
6493 * relies on the ability of the linker to provide the
6494 * offset of a (static) per cpu variable into the per cpu area.
6495 */
6496 zone->pageset = &boot_pageset;
6497
6498 if (populated_zone(zone))
6499 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6500 zone->name, zone->present_pages,
6501 zone_batchsize(zone));
6502}
6503
6504void __meminit init_currently_empty_zone(struct zone *zone,
6505 unsigned long zone_start_pfn,
6506 unsigned long size)
6507{
6508 struct pglist_data *pgdat = zone->zone_pgdat;
6509 int zone_idx = zone_idx(zone) + 1;
6510
6511 if (zone_idx > pgdat->nr_zones)
6512 pgdat->nr_zones = zone_idx;
6513
6514 zone->zone_start_pfn = zone_start_pfn;
6515
6516 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6517 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6518 pgdat->node_id,
6519 (unsigned long)zone_idx(zone),
6520 zone_start_pfn, (zone_start_pfn + size));
6521
6522 zone_init_free_lists(zone);
6523 zone->initialized = 1;
6524}
6525
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006526/**
6527 * get_pfn_range_for_nid - Return the start and end page frames for a node
6528 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6529 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6530 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6531 *
6532 * It returns the start and end page frame of a node based on information
6533 * provided by memblock_set_node(). If called for a node
6534 * with no available memory, a warning is printed and the start and end
6535 * PFNs will be 0.
6536 */
David Brazdil0f672f62019-12-10 10:32:29 +00006537void __init get_pfn_range_for_nid(unsigned int nid,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006538 unsigned long *start_pfn, unsigned long *end_pfn)
6539{
6540 unsigned long this_start_pfn, this_end_pfn;
6541 int i;
6542
6543 *start_pfn = -1UL;
6544 *end_pfn = 0;
6545
6546 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6547 *start_pfn = min(*start_pfn, this_start_pfn);
6548 *end_pfn = max(*end_pfn, this_end_pfn);
6549 }
6550
6551 if (*start_pfn == -1UL)
6552 *start_pfn = 0;
6553}
6554
6555/*
6556 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6557 * assumption is made that zones within a node are ordered in monotonic
6558 * increasing memory addresses so that the "highest" populated zone is used
6559 */
6560static void __init find_usable_zone_for_movable(void)
6561{
6562 int zone_index;
6563 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6564 if (zone_index == ZONE_MOVABLE)
6565 continue;
6566
6567 if (arch_zone_highest_possible_pfn[zone_index] >
6568 arch_zone_lowest_possible_pfn[zone_index])
6569 break;
6570 }
6571
6572 VM_BUG_ON(zone_index == -1);
6573 movable_zone = zone_index;
6574}
6575
6576/*
6577 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6578 * because it is sized independent of architecture. Unlike the other zones,
6579 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6580 * in each node depending on the size of each node and how evenly kernelcore
6581 * is distributed. This helper function adjusts the zone ranges
6582 * provided by the architecture for a given node by using the end of the
6583 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6584 * zones within a node are in order of monotonic increases memory addresses
6585 */
David Brazdil0f672f62019-12-10 10:32:29 +00006586static void __init adjust_zone_range_for_zone_movable(int nid,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006587 unsigned long zone_type,
6588 unsigned long node_start_pfn,
6589 unsigned long node_end_pfn,
6590 unsigned long *zone_start_pfn,
6591 unsigned long *zone_end_pfn)
6592{
6593 /* Only adjust if ZONE_MOVABLE is on this node */
6594 if (zone_movable_pfn[nid]) {
6595 /* Size ZONE_MOVABLE */
6596 if (zone_type == ZONE_MOVABLE) {
6597 *zone_start_pfn = zone_movable_pfn[nid];
6598 *zone_end_pfn = min(node_end_pfn,
6599 arch_zone_highest_possible_pfn[movable_zone]);
6600
6601 /* Adjust for ZONE_MOVABLE starting within this range */
6602 } else if (!mirrored_kernelcore &&
6603 *zone_start_pfn < zone_movable_pfn[nid] &&
6604 *zone_end_pfn > zone_movable_pfn[nid]) {
6605 *zone_end_pfn = zone_movable_pfn[nid];
6606
6607 /* Check if this whole range is within ZONE_MOVABLE */
6608 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6609 *zone_start_pfn = *zone_end_pfn;
6610 }
6611}
6612
6613/*
6614 * Return the number of pages a zone spans in a node, including holes
6615 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6616 */
David Brazdil0f672f62019-12-10 10:32:29 +00006617static unsigned long __init zone_spanned_pages_in_node(int nid,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006618 unsigned long zone_type,
6619 unsigned long node_start_pfn,
6620 unsigned long node_end_pfn,
6621 unsigned long *zone_start_pfn,
Olivier Deprez157378f2022-04-04 15:47:50 +02006622 unsigned long *zone_end_pfn)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006623{
David Brazdil0f672f62019-12-10 10:32:29 +00006624 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6625 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006626 /* When hotadd a new node from cpu_up(), the node should be empty */
6627 if (!node_start_pfn && !node_end_pfn)
6628 return 0;
6629
6630 /* Get the start and end of the zone */
David Brazdil0f672f62019-12-10 10:32:29 +00006631 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6632 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006633 adjust_zone_range_for_zone_movable(nid, zone_type,
6634 node_start_pfn, node_end_pfn,
6635 zone_start_pfn, zone_end_pfn);
6636
6637 /* Check that this node has pages within the zone's required range */
6638 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6639 return 0;
6640
6641 /* Move the zone boundaries inside the node if necessary */
6642 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6643 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6644
6645 /* Return the spanned pages */
6646 return *zone_end_pfn - *zone_start_pfn;
6647}
6648
6649/*
6650 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6651 * then all holes in the requested range will be accounted for.
6652 */
David Brazdil0f672f62019-12-10 10:32:29 +00006653unsigned long __init __absent_pages_in_range(int nid,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006654 unsigned long range_start_pfn,
6655 unsigned long range_end_pfn)
6656{
6657 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6658 unsigned long start_pfn, end_pfn;
6659 int i;
6660
6661 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6662 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6663 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6664 nr_absent -= end_pfn - start_pfn;
6665 }
6666 return nr_absent;
6667}
6668
6669/**
6670 * absent_pages_in_range - Return number of page frames in holes within a range
6671 * @start_pfn: The start PFN to start searching for holes
6672 * @end_pfn: The end PFN to stop searching for holes
6673 *
David Brazdil0f672f62019-12-10 10:32:29 +00006674 * Return: the number of pages frames in memory holes within a range.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006675 */
6676unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6677 unsigned long end_pfn)
6678{
6679 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6680}
6681
6682/* Return the number of page frames in holes in a zone on a node */
David Brazdil0f672f62019-12-10 10:32:29 +00006683static unsigned long __init zone_absent_pages_in_node(int nid,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006684 unsigned long zone_type,
6685 unsigned long node_start_pfn,
Olivier Deprez157378f2022-04-04 15:47:50 +02006686 unsigned long node_end_pfn)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006687{
6688 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6689 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6690 unsigned long zone_start_pfn, zone_end_pfn;
6691 unsigned long nr_absent;
6692
6693 /* When hotadd a new node from cpu_up(), the node should be empty */
6694 if (!node_start_pfn && !node_end_pfn)
6695 return 0;
6696
6697 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6698 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6699
6700 adjust_zone_range_for_zone_movable(nid, zone_type,
6701 node_start_pfn, node_end_pfn,
6702 &zone_start_pfn, &zone_end_pfn);
6703 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6704
6705 /*
6706 * ZONE_MOVABLE handling.
6707 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6708 * and vice versa.
6709 */
6710 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6711 unsigned long start_pfn, end_pfn;
6712 struct memblock_region *r;
6713
Olivier Deprez157378f2022-04-04 15:47:50 +02006714 for_each_mem_region(r) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006715 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6716 zone_start_pfn, zone_end_pfn);
6717 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6718 zone_start_pfn, zone_end_pfn);
6719
6720 if (zone_type == ZONE_MOVABLE &&
6721 memblock_is_mirror(r))
6722 nr_absent += end_pfn - start_pfn;
6723
6724 if (zone_type == ZONE_NORMAL &&
6725 !memblock_is_mirror(r))
6726 nr_absent += end_pfn - start_pfn;
6727 }
6728 }
6729
6730 return nr_absent;
6731}
6732
David Brazdil0f672f62019-12-10 10:32:29 +00006733static void __init calculate_node_totalpages(struct pglist_data *pgdat,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006734 unsigned long node_start_pfn,
Olivier Deprez157378f2022-04-04 15:47:50 +02006735 unsigned long node_end_pfn)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006736{
6737 unsigned long realtotalpages = 0, totalpages = 0;
6738 enum zone_type i;
6739
6740 for (i = 0; i < MAX_NR_ZONES; i++) {
6741 struct zone *zone = pgdat->node_zones + i;
6742 unsigned long zone_start_pfn, zone_end_pfn;
Olivier Deprez157378f2022-04-04 15:47:50 +02006743 unsigned long spanned, absent;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006744 unsigned long size, real_size;
6745
Olivier Deprez157378f2022-04-04 15:47:50 +02006746 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6747 node_start_pfn,
6748 node_end_pfn,
6749 &zone_start_pfn,
6750 &zone_end_pfn);
6751 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6752 node_start_pfn,
6753 node_end_pfn);
6754
6755 size = spanned;
6756 real_size = size - absent;
6757
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006758 if (size)
6759 zone->zone_start_pfn = zone_start_pfn;
6760 else
6761 zone->zone_start_pfn = 0;
6762 zone->spanned_pages = size;
6763 zone->present_pages = real_size;
6764
6765 totalpages += size;
6766 realtotalpages += real_size;
6767 }
6768
6769 pgdat->node_spanned_pages = totalpages;
6770 pgdat->node_present_pages = realtotalpages;
6771 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6772 realtotalpages);
6773}
6774
6775#ifndef CONFIG_SPARSEMEM
6776/*
6777 * Calculate the size of the zone->blockflags rounded to an unsigned long
6778 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6779 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6780 * round what is now in bits to nearest long in bits, then return it in
6781 * bytes.
6782 */
6783static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6784{
6785 unsigned long usemapsize;
6786
6787 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6788 usemapsize = roundup(zonesize, pageblock_nr_pages);
6789 usemapsize = usemapsize >> pageblock_order;
6790 usemapsize *= NR_PAGEBLOCK_BITS;
6791 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6792
6793 return usemapsize / 8;
6794}
6795
6796static void __ref setup_usemap(struct pglist_data *pgdat,
6797 struct zone *zone,
6798 unsigned long zone_start_pfn,
6799 unsigned long zonesize)
6800{
6801 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6802 zone->pageblock_flags = NULL;
David Brazdil0f672f62019-12-10 10:32:29 +00006803 if (usemapsize) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006804 zone->pageblock_flags =
David Brazdil0f672f62019-12-10 10:32:29 +00006805 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6806 pgdat->node_id);
6807 if (!zone->pageblock_flags)
6808 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6809 usemapsize, zone->name, pgdat->node_id);
6810 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006811}
6812#else
6813static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6814 unsigned long zone_start_pfn, unsigned long zonesize) {}
6815#endif /* CONFIG_SPARSEMEM */
6816
6817#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6818
6819/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6820void __init set_pageblock_order(void)
6821{
6822 unsigned int order;
6823
6824 /* Check that pageblock_nr_pages has not already been setup */
6825 if (pageblock_order)
6826 return;
6827
6828 if (HPAGE_SHIFT > PAGE_SHIFT)
6829 order = HUGETLB_PAGE_ORDER;
6830 else
6831 order = MAX_ORDER - 1;
6832
6833 /*
6834 * Assume the largest contiguous order of interest is a huge page.
6835 * This value may be variable depending on boot parameters on IA64 and
6836 * powerpc.
6837 */
6838 pageblock_order = order;
6839}
6840#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6841
6842/*
6843 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6844 * is unused as pageblock_order is set at compile-time. See
6845 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6846 * the kernel config
6847 */
6848void __init set_pageblock_order(void)
6849{
6850}
6851
6852#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6853
6854static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6855 unsigned long present_pages)
6856{
6857 unsigned long pages = spanned_pages;
6858
6859 /*
6860 * Provide a more accurate estimation if there are holes within
6861 * the zone and SPARSEMEM is in use. If there are holes within the
6862 * zone, each populated memory region may cost us one or two extra
6863 * memmap pages due to alignment because memmap pages for each
6864 * populated regions may not be naturally aligned on page boundary.
6865 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6866 */
6867 if (spanned_pages > present_pages + (present_pages >> 4) &&
6868 IS_ENABLED(CONFIG_SPARSEMEM))
6869 pages = present_pages;
6870
6871 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6872}
6873
6874#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6875static void pgdat_init_split_queue(struct pglist_data *pgdat)
6876{
David Brazdil0f672f62019-12-10 10:32:29 +00006877 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6878
6879 spin_lock_init(&ds_queue->split_queue_lock);
6880 INIT_LIST_HEAD(&ds_queue->split_queue);
6881 ds_queue->split_queue_len = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006882}
6883#else
6884static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6885#endif
6886
6887#ifdef CONFIG_COMPACTION
6888static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6889{
6890 init_waitqueue_head(&pgdat->kcompactd_wait);
6891}
6892#else
6893static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6894#endif
6895
6896static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6897{
6898 pgdat_resize_init(pgdat);
6899
6900 pgdat_init_split_queue(pgdat);
6901 pgdat_init_kcompactd(pgdat);
6902
6903 init_waitqueue_head(&pgdat->kswapd_wait);
6904 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6905
6906 pgdat_page_ext_init(pgdat);
6907 spin_lock_init(&pgdat->lru_lock);
Olivier Deprez157378f2022-04-04 15:47:50 +02006908 lruvec_init(&pgdat->__lruvec);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006909}
6910
6911static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6912 unsigned long remaining_pages)
6913{
David Brazdil0f672f62019-12-10 10:32:29 +00006914 atomic_long_set(&zone->managed_pages, remaining_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006915 zone_set_nid(zone, nid);
6916 zone->name = zone_names[idx];
6917 zone->zone_pgdat = NODE_DATA(nid);
6918 spin_lock_init(&zone->lock);
6919 zone_seqlock_init(zone);
6920 zone_pcp_init(zone);
6921}
6922
6923/*
6924 * Set up the zone data structures
6925 * - init pgdat internals
6926 * - init all zones belonging to this node
6927 *
6928 * NOTE: this function is only called during memory hotplug
6929 */
6930#ifdef CONFIG_MEMORY_HOTPLUG
6931void __ref free_area_init_core_hotplug(int nid)
6932{
6933 enum zone_type z;
6934 pg_data_t *pgdat = NODE_DATA(nid);
6935
6936 pgdat_init_internals(pgdat);
6937 for (z = 0; z < MAX_NR_ZONES; z++)
6938 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6939}
6940#endif
6941
6942/*
6943 * Set up the zone data structures:
6944 * - mark all pages reserved
6945 * - mark all memory queues empty
6946 * - clear the memory bitmaps
6947 *
6948 * NOTE: pgdat should get zeroed by caller.
6949 * NOTE: this function is only called during early init.
6950 */
6951static void __init free_area_init_core(struct pglist_data *pgdat)
6952{
6953 enum zone_type j;
6954 int nid = pgdat->node_id;
6955
6956 pgdat_init_internals(pgdat);
6957 pgdat->per_cpu_nodestats = &boot_nodestats;
6958
6959 for (j = 0; j < MAX_NR_ZONES; j++) {
6960 struct zone *zone = pgdat->node_zones + j;
6961 unsigned long size, freesize, memmap_pages;
6962 unsigned long zone_start_pfn = zone->zone_start_pfn;
6963
6964 size = zone->spanned_pages;
6965 freesize = zone->present_pages;
6966
6967 /*
6968 * Adjust freesize so that it accounts for how much memory
6969 * is used by this zone for memmap. This affects the watermark
6970 * and per-cpu initialisations
6971 */
6972 memmap_pages = calc_memmap_size(size, freesize);
6973 if (!is_highmem_idx(j)) {
6974 if (freesize >= memmap_pages) {
6975 freesize -= memmap_pages;
6976 if (memmap_pages)
6977 printk(KERN_DEBUG
6978 " %s zone: %lu pages used for memmap\n",
6979 zone_names[j], memmap_pages);
6980 } else
6981 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6982 zone_names[j], memmap_pages, freesize);
6983 }
6984
6985 /* Account for reserved pages */
6986 if (j == 0 && freesize > dma_reserve) {
6987 freesize -= dma_reserve;
6988 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6989 zone_names[0], dma_reserve);
6990 }
6991
6992 if (!is_highmem_idx(j))
6993 nr_kernel_pages += freesize;
6994 /* Charge for highmem memmap if there are enough kernel pages */
6995 else if (nr_kernel_pages > memmap_pages * 2)
6996 nr_kernel_pages -= memmap_pages;
6997 nr_all_pages += freesize;
6998
6999 /*
7000 * Set an approximate value for lowmem here, it will be adjusted
7001 * when the bootmem allocator frees pages into the buddy system.
7002 * And all highmem pages will be managed by the buddy system.
7003 */
7004 zone_init_internals(zone, j, nid, freesize);
7005
7006 if (!size)
7007 continue;
7008
7009 set_pageblock_order();
7010 setup_usemap(pgdat, zone, zone_start_pfn, size);
7011 init_currently_empty_zone(zone, zone_start_pfn, size);
Olivier Deprez157378f2022-04-04 15:47:50 +02007012 arch_memmap_init(size, nid, j, zone_start_pfn);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007013 }
7014}
7015
7016#ifdef CONFIG_FLAT_NODE_MEM_MAP
7017static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
7018{
7019 unsigned long __maybe_unused start = 0;
7020 unsigned long __maybe_unused offset = 0;
7021
7022 /* Skip empty nodes */
7023 if (!pgdat->node_spanned_pages)
7024 return;
7025
7026 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7027 offset = pgdat->node_start_pfn - start;
7028 /* ia64 gets its own node_mem_map, before this, without bootmem */
7029 if (!pgdat->node_mem_map) {
7030 unsigned long size, end;
7031 struct page *map;
7032
7033 /*
7034 * The zone's endpoints aren't required to be MAX_ORDER
7035 * aligned but the node_mem_map endpoints must be in order
7036 * for the buddy allocator to function correctly.
7037 */
7038 end = pgdat_end_pfn(pgdat);
7039 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7040 size = (end - start) * sizeof(struct page);
David Brazdil0f672f62019-12-10 10:32:29 +00007041 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7042 pgdat->node_id);
7043 if (!map)
7044 panic("Failed to allocate %ld bytes for node %d memory map\n",
7045 size, pgdat->node_id);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007046 pgdat->node_mem_map = map + offset;
7047 }
7048 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7049 __func__, pgdat->node_id, (unsigned long)pgdat,
7050 (unsigned long)pgdat->node_mem_map);
7051#ifndef CONFIG_NEED_MULTIPLE_NODES
7052 /*
7053 * With no DISCONTIG, the global mem_map is just set as node 0's
7054 */
7055 if (pgdat == NODE_DATA(0)) {
7056 mem_map = NODE_DATA(0)->node_mem_map;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007057 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7058 mem_map -= offset;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007059 }
7060#endif
7061}
7062#else
7063static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7064#endif /* CONFIG_FLAT_NODE_MEM_MAP */
7065
7066#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7067static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7068{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007069 pgdat->first_deferred_pfn = ULONG_MAX;
7070}
7071#else
7072static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7073#endif
7074
Olivier Deprez157378f2022-04-04 15:47:50 +02007075static void __init free_area_init_node(int nid)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007076{
7077 pg_data_t *pgdat = NODE_DATA(nid);
7078 unsigned long start_pfn = 0;
7079 unsigned long end_pfn = 0;
7080
7081 /* pg_data_t should be reset to zero when it's allocated */
Olivier Deprez157378f2022-04-04 15:47:50 +02007082 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7083
7084 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007085
7086 pgdat->node_id = nid;
Olivier Deprez157378f2022-04-04 15:47:50 +02007087 pgdat->node_start_pfn = start_pfn;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007088 pgdat->per_cpu_nodestats = NULL;
Olivier Deprez157378f2022-04-04 15:47:50 +02007089
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007090 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7091 (u64)start_pfn << PAGE_SHIFT,
7092 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
Olivier Deprez157378f2022-04-04 15:47:50 +02007093 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007094
7095 alloc_node_mem_map(pgdat);
7096 pgdat_set_deferred_range(pgdat);
7097
7098 free_area_init_core(pgdat);
7099}
7100
Olivier Deprez157378f2022-04-04 15:47:50 +02007101void __init free_area_init_memoryless_node(int nid)
David Brazdil0f672f62019-12-10 10:32:29 +00007102{
Olivier Deprez157378f2022-04-04 15:47:50 +02007103 free_area_init_node(nid);
David Brazdil0f672f62019-12-10 10:32:29 +00007104}
7105
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007106#if MAX_NUMNODES > 1
7107/*
7108 * Figure out the number of possible node ids.
7109 */
7110void __init setup_nr_node_ids(void)
7111{
7112 unsigned int highest;
7113
7114 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7115 nr_node_ids = highest + 1;
7116}
7117#endif
7118
7119/**
7120 * node_map_pfn_alignment - determine the maximum internode alignment
7121 *
7122 * This function should be called after node map is populated and sorted.
7123 * It calculates the maximum power of two alignment which can distinguish
7124 * all the nodes.
7125 *
7126 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7127 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7128 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7129 * shifted, 1GiB is enough and this function will indicate so.
7130 *
7131 * This is used to test whether pfn -> nid mapping of the chosen memory
7132 * model has fine enough granularity to avoid incorrect mapping for the
7133 * populated node map.
7134 *
David Brazdil0f672f62019-12-10 10:32:29 +00007135 * Return: the determined alignment in pfn's. 0 if there is no alignment
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007136 * requirement (single node).
7137 */
7138unsigned long __init node_map_pfn_alignment(void)
7139{
7140 unsigned long accl_mask = 0, last_end = 0;
7141 unsigned long start, end, mask;
David Brazdil0f672f62019-12-10 10:32:29 +00007142 int last_nid = NUMA_NO_NODE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007143 int i, nid;
7144
7145 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7146 if (!start || last_nid < 0 || last_nid == nid) {
7147 last_nid = nid;
7148 last_end = end;
7149 continue;
7150 }
7151
7152 /*
7153 * Start with a mask granular enough to pin-point to the
7154 * start pfn and tick off bits one-by-one until it becomes
7155 * too coarse to separate the current node from the last.
7156 */
7157 mask = ~((1 << __ffs(start)) - 1);
7158 while (mask && last_end <= (start & (mask << 1)))
7159 mask <<= 1;
7160
7161 /* accumulate all internode masks */
7162 accl_mask |= mask;
7163 }
7164
7165 /* convert mask to number of pages */
7166 return ~accl_mask + 1;
7167}
7168
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007169/**
7170 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7171 *
David Brazdil0f672f62019-12-10 10:32:29 +00007172 * Return: the minimum PFN based on information provided via
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007173 * memblock_set_node().
7174 */
7175unsigned long __init find_min_pfn_with_active_regions(void)
7176{
Olivier Deprez157378f2022-04-04 15:47:50 +02007177 return PHYS_PFN(memblock_start_of_DRAM());
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007178}
7179
7180/*
7181 * early_calculate_totalpages()
7182 * Sum pages in active regions for movable zone.
7183 * Populate N_MEMORY for calculating usable_nodes.
7184 */
7185static unsigned long __init early_calculate_totalpages(void)
7186{
7187 unsigned long totalpages = 0;
7188 unsigned long start_pfn, end_pfn;
7189 int i, nid;
7190
7191 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7192 unsigned long pages = end_pfn - start_pfn;
7193
7194 totalpages += pages;
7195 if (pages)
7196 node_set_state(nid, N_MEMORY);
7197 }
7198 return totalpages;
7199}
7200
7201/*
7202 * Find the PFN the Movable zone begins in each node. Kernel memory
7203 * is spread evenly between nodes as long as the nodes have enough
7204 * memory. When they don't, some nodes will have more kernelcore than
7205 * others
7206 */
7207static void __init find_zone_movable_pfns_for_nodes(void)
7208{
7209 int i, nid;
7210 unsigned long usable_startpfn;
7211 unsigned long kernelcore_node, kernelcore_remaining;
7212 /* save the state before borrow the nodemask */
7213 nodemask_t saved_node_state = node_states[N_MEMORY];
7214 unsigned long totalpages = early_calculate_totalpages();
7215 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7216 struct memblock_region *r;
7217
7218 /* Need to find movable_zone earlier when movable_node is specified. */
7219 find_usable_zone_for_movable();
7220
7221 /*
7222 * If movable_node is specified, ignore kernelcore and movablecore
7223 * options.
7224 */
7225 if (movable_node_is_enabled()) {
Olivier Deprez157378f2022-04-04 15:47:50 +02007226 for_each_mem_region(r) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007227 if (!memblock_is_hotpluggable(r))
7228 continue;
7229
Olivier Deprez157378f2022-04-04 15:47:50 +02007230 nid = memblock_get_region_node(r);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007231
7232 usable_startpfn = PFN_DOWN(r->base);
7233 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7234 min(usable_startpfn, zone_movable_pfn[nid]) :
7235 usable_startpfn;
7236 }
7237
7238 goto out2;
7239 }
7240
7241 /*
7242 * If kernelcore=mirror is specified, ignore movablecore option
7243 */
7244 if (mirrored_kernelcore) {
7245 bool mem_below_4gb_not_mirrored = false;
7246
Olivier Deprez157378f2022-04-04 15:47:50 +02007247 for_each_mem_region(r) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007248 if (memblock_is_mirror(r))
7249 continue;
7250
Olivier Deprez157378f2022-04-04 15:47:50 +02007251 nid = memblock_get_region_node(r);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007252
7253 usable_startpfn = memblock_region_memory_base_pfn(r);
7254
7255 if (usable_startpfn < 0x100000) {
7256 mem_below_4gb_not_mirrored = true;
7257 continue;
7258 }
7259
7260 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7261 min(usable_startpfn, zone_movable_pfn[nid]) :
7262 usable_startpfn;
7263 }
7264
7265 if (mem_below_4gb_not_mirrored)
Olivier Deprez157378f2022-04-04 15:47:50 +02007266 pr_warn("This configuration results in unmirrored kernel memory.\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007267
7268 goto out2;
7269 }
7270
7271 /*
7272 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7273 * amount of necessary memory.
7274 */
7275 if (required_kernelcore_percent)
7276 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7277 10000UL;
7278 if (required_movablecore_percent)
7279 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7280 10000UL;
7281
7282 /*
7283 * If movablecore= was specified, calculate what size of
7284 * kernelcore that corresponds so that memory usable for
7285 * any allocation type is evenly spread. If both kernelcore
7286 * and movablecore are specified, then the value of kernelcore
7287 * will be used for required_kernelcore if it's greater than
7288 * what movablecore would have allowed.
7289 */
7290 if (required_movablecore) {
7291 unsigned long corepages;
7292
7293 /*
7294 * Round-up so that ZONE_MOVABLE is at least as large as what
7295 * was requested by the user
7296 */
7297 required_movablecore =
7298 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7299 required_movablecore = min(totalpages, required_movablecore);
7300 corepages = totalpages - required_movablecore;
7301
7302 required_kernelcore = max(required_kernelcore, corepages);
7303 }
7304
7305 /*
7306 * If kernelcore was not specified or kernelcore size is larger
7307 * than totalpages, there is no ZONE_MOVABLE.
7308 */
7309 if (!required_kernelcore || required_kernelcore >= totalpages)
7310 goto out;
7311
7312 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7313 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7314
7315restart:
7316 /* Spread kernelcore memory as evenly as possible throughout nodes */
7317 kernelcore_node = required_kernelcore / usable_nodes;
7318 for_each_node_state(nid, N_MEMORY) {
7319 unsigned long start_pfn, end_pfn;
7320
7321 /*
7322 * Recalculate kernelcore_node if the division per node
7323 * now exceeds what is necessary to satisfy the requested
7324 * amount of memory for the kernel
7325 */
7326 if (required_kernelcore < kernelcore_node)
7327 kernelcore_node = required_kernelcore / usable_nodes;
7328
7329 /*
7330 * As the map is walked, we track how much memory is usable
7331 * by the kernel using kernelcore_remaining. When it is
7332 * 0, the rest of the node is usable by ZONE_MOVABLE
7333 */
7334 kernelcore_remaining = kernelcore_node;
7335
7336 /* Go through each range of PFNs within this node */
7337 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7338 unsigned long size_pages;
7339
7340 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7341 if (start_pfn >= end_pfn)
7342 continue;
7343
7344 /* Account for what is only usable for kernelcore */
7345 if (start_pfn < usable_startpfn) {
7346 unsigned long kernel_pages;
7347 kernel_pages = min(end_pfn, usable_startpfn)
7348 - start_pfn;
7349
7350 kernelcore_remaining -= min(kernel_pages,
7351 kernelcore_remaining);
7352 required_kernelcore -= min(kernel_pages,
7353 required_kernelcore);
7354
7355 /* Continue if range is now fully accounted */
7356 if (end_pfn <= usable_startpfn) {
7357
7358 /*
7359 * Push zone_movable_pfn to the end so
7360 * that if we have to rebalance
7361 * kernelcore across nodes, we will
7362 * not double account here
7363 */
7364 zone_movable_pfn[nid] = end_pfn;
7365 continue;
7366 }
7367 start_pfn = usable_startpfn;
7368 }
7369
7370 /*
7371 * The usable PFN range for ZONE_MOVABLE is from
7372 * start_pfn->end_pfn. Calculate size_pages as the
7373 * number of pages used as kernelcore
7374 */
7375 size_pages = end_pfn - start_pfn;
7376 if (size_pages > kernelcore_remaining)
7377 size_pages = kernelcore_remaining;
7378 zone_movable_pfn[nid] = start_pfn + size_pages;
7379
7380 /*
7381 * Some kernelcore has been met, update counts and
7382 * break if the kernelcore for this node has been
7383 * satisfied
7384 */
7385 required_kernelcore -= min(required_kernelcore,
7386 size_pages);
7387 kernelcore_remaining -= size_pages;
7388 if (!kernelcore_remaining)
7389 break;
7390 }
7391 }
7392
7393 /*
7394 * If there is still required_kernelcore, we do another pass with one
7395 * less node in the count. This will push zone_movable_pfn[nid] further
7396 * along on the nodes that still have memory until kernelcore is
7397 * satisfied
7398 */
7399 usable_nodes--;
7400 if (usable_nodes && required_kernelcore > usable_nodes)
7401 goto restart;
7402
7403out2:
7404 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7405 for (nid = 0; nid < MAX_NUMNODES; nid++)
7406 zone_movable_pfn[nid] =
7407 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7408
7409out:
7410 /* restore the node_state */
7411 node_states[N_MEMORY] = saved_node_state;
7412}
7413
7414/* Any regular or high memory on that node ? */
7415static void check_for_memory(pg_data_t *pgdat, int nid)
7416{
7417 enum zone_type zone_type;
7418
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007419 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7420 struct zone *zone = &pgdat->node_zones[zone_type];
7421 if (populated_zone(zone)) {
David Brazdil0f672f62019-12-10 10:32:29 +00007422 if (IS_ENABLED(CONFIG_HIGHMEM))
7423 node_set_state(nid, N_HIGH_MEMORY);
7424 if (zone_type <= ZONE_NORMAL)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007425 node_set_state(nid, N_NORMAL_MEMORY);
7426 break;
7427 }
7428 }
7429}
7430
Olivier Deprez157378f2022-04-04 15:47:50 +02007431/*
7432 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7433 * such cases we allow max_zone_pfn sorted in the descending order
7434 */
7435bool __weak arch_has_descending_max_zone_pfns(void)
7436{
7437 return false;
7438}
7439
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007440/**
Olivier Deprez157378f2022-04-04 15:47:50 +02007441 * free_area_init - Initialise all pg_data_t and zone data
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007442 * @max_zone_pfn: an array of max PFNs for each zone
7443 *
7444 * This will call free_area_init_node() for each active node in the system.
7445 * Using the page ranges provided by memblock_set_node(), the size of each
7446 * zone in each node and their holes is calculated. If the maximum PFN
7447 * between two adjacent zones match, it is assumed that the zone is empty.
7448 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7449 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7450 * starts where the previous one ended. For example, ZONE_DMA32 starts
7451 * at arch_max_dma_pfn.
7452 */
Olivier Deprez157378f2022-04-04 15:47:50 +02007453void __init free_area_init(unsigned long *max_zone_pfn)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007454{
7455 unsigned long start_pfn, end_pfn;
Olivier Deprez157378f2022-04-04 15:47:50 +02007456 int i, nid, zone;
7457 bool descending;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007458
7459 /* Record where the zone boundaries are */
7460 memset(arch_zone_lowest_possible_pfn, 0,
7461 sizeof(arch_zone_lowest_possible_pfn));
7462 memset(arch_zone_highest_possible_pfn, 0,
7463 sizeof(arch_zone_highest_possible_pfn));
7464
7465 start_pfn = find_min_pfn_with_active_regions();
Olivier Deprez157378f2022-04-04 15:47:50 +02007466 descending = arch_has_descending_max_zone_pfns();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007467
7468 for (i = 0; i < MAX_NR_ZONES; i++) {
Olivier Deprez157378f2022-04-04 15:47:50 +02007469 if (descending)
7470 zone = MAX_NR_ZONES - i - 1;
7471 else
7472 zone = i;
7473
7474 if (zone == ZONE_MOVABLE)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007475 continue;
7476
Olivier Deprez157378f2022-04-04 15:47:50 +02007477 end_pfn = max(max_zone_pfn[zone], start_pfn);
7478 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7479 arch_zone_highest_possible_pfn[zone] = end_pfn;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007480
7481 start_pfn = end_pfn;
7482 }
7483
7484 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7485 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7486 find_zone_movable_pfns_for_nodes();
7487
7488 /* Print out the zone ranges */
7489 pr_info("Zone ranges:\n");
7490 for (i = 0; i < MAX_NR_ZONES; i++) {
7491 if (i == ZONE_MOVABLE)
7492 continue;
7493 pr_info(" %-8s ", zone_names[i]);
7494 if (arch_zone_lowest_possible_pfn[i] ==
7495 arch_zone_highest_possible_pfn[i])
7496 pr_cont("empty\n");
7497 else
7498 pr_cont("[mem %#018Lx-%#018Lx]\n",
7499 (u64)arch_zone_lowest_possible_pfn[i]
7500 << PAGE_SHIFT,
7501 ((u64)arch_zone_highest_possible_pfn[i]
7502 << PAGE_SHIFT) - 1);
7503 }
7504
7505 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7506 pr_info("Movable zone start for each node\n");
7507 for (i = 0; i < MAX_NUMNODES; i++) {
7508 if (zone_movable_pfn[i])
7509 pr_info(" Node %d: %#018Lx\n", i,
7510 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7511 }
7512
David Brazdil0f672f62019-12-10 10:32:29 +00007513 /*
7514 * Print out the early node map, and initialize the
7515 * subsection-map relative to active online memory ranges to
7516 * enable future "sub-section" extensions of the memory map.
7517 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007518 pr_info("Early memory node ranges\n");
David Brazdil0f672f62019-12-10 10:32:29 +00007519 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007520 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7521 (u64)start_pfn << PAGE_SHIFT,
7522 ((u64)end_pfn << PAGE_SHIFT) - 1);
David Brazdil0f672f62019-12-10 10:32:29 +00007523 subsection_map_init(start_pfn, end_pfn - start_pfn);
7524 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007525
7526 /* Initialise every node */
7527 mminit_verify_pageflags_layout();
7528 setup_nr_node_ids();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007529 for_each_online_node(nid) {
7530 pg_data_t *pgdat = NODE_DATA(nid);
Olivier Deprez157378f2022-04-04 15:47:50 +02007531 free_area_init_node(nid);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007532
7533 /* Any memory on that node */
7534 if (pgdat->node_present_pages)
7535 node_set_state(nid, N_MEMORY);
7536 check_for_memory(pgdat, nid);
7537 }
Olivier Deprez157378f2022-04-04 15:47:50 +02007538
7539 memmap_init();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007540}
7541
7542static int __init cmdline_parse_core(char *p, unsigned long *core,
7543 unsigned long *percent)
7544{
7545 unsigned long long coremem;
7546 char *endptr;
7547
7548 if (!p)
7549 return -EINVAL;
7550
7551 /* Value may be a percentage of total memory, otherwise bytes */
7552 coremem = simple_strtoull(p, &endptr, 0);
7553 if (*endptr == '%') {
7554 /* Paranoid check for percent values greater than 100 */
7555 WARN_ON(coremem > 100);
7556
7557 *percent = coremem;
7558 } else {
7559 coremem = memparse(p, &p);
7560 /* Paranoid check that UL is enough for the coremem value */
7561 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7562
7563 *core = coremem >> PAGE_SHIFT;
7564 *percent = 0UL;
7565 }
7566 return 0;
7567}
7568
7569/*
7570 * kernelcore=size sets the amount of memory for use for allocations that
7571 * cannot be reclaimed or migrated.
7572 */
7573static int __init cmdline_parse_kernelcore(char *p)
7574{
7575 /* parse kernelcore=mirror */
7576 if (parse_option_str(p, "mirror")) {
7577 mirrored_kernelcore = true;
7578 return 0;
7579 }
7580
7581 return cmdline_parse_core(p, &required_kernelcore,
7582 &required_kernelcore_percent);
7583}
7584
7585/*
7586 * movablecore=size sets the amount of memory for use for allocations that
7587 * can be reclaimed or migrated.
7588 */
7589static int __init cmdline_parse_movablecore(char *p)
7590{
7591 return cmdline_parse_core(p, &required_movablecore,
7592 &required_movablecore_percent);
7593}
7594
7595early_param("kernelcore", cmdline_parse_kernelcore);
7596early_param("movablecore", cmdline_parse_movablecore);
7597
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007598void adjust_managed_page_count(struct page *page, long count)
7599{
David Brazdil0f672f62019-12-10 10:32:29 +00007600 atomic_long_add(count, &page_zone(page)->managed_pages);
7601 totalram_pages_add(count);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007602#ifdef CONFIG_HIGHMEM
7603 if (PageHighMem(page))
David Brazdil0f672f62019-12-10 10:32:29 +00007604 totalhigh_pages_add(count);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007605#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007606}
7607EXPORT_SYMBOL(adjust_managed_page_count);
7608
David Brazdil0f672f62019-12-10 10:32:29 +00007609unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007610{
7611 void *pos;
7612 unsigned long pages = 0;
7613
7614 start = (void *)PAGE_ALIGN((unsigned long)start);
7615 end = (void *)((unsigned long)end & PAGE_MASK);
7616 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7617 struct page *page = virt_to_page(pos);
7618 void *direct_map_addr;
7619
7620 /*
7621 * 'direct_map_addr' might be different from 'pos'
7622 * because some architectures' virt_to_page()
7623 * work with aliases. Getting the direct map
7624 * address ensures that we get a _writeable_
7625 * alias for the memset().
7626 */
7627 direct_map_addr = page_address(page);
7628 if ((unsigned int)poison <= 0xFF)
7629 memset(direct_map_addr, poison, PAGE_SIZE);
7630
7631 free_reserved_page(page);
7632 }
7633
7634 if (pages && s)
7635 pr_info("Freeing %s memory: %ldK\n",
7636 s, pages << (PAGE_SHIFT - 10));
7637
7638 return pages;
7639}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007640
7641#ifdef CONFIG_HIGHMEM
7642void free_highmem_page(struct page *page)
7643{
7644 __free_reserved_page(page);
David Brazdil0f672f62019-12-10 10:32:29 +00007645 totalram_pages_inc();
7646 atomic_long_inc(&page_zone(page)->managed_pages);
7647 totalhigh_pages_inc();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007648}
7649#endif
7650
7651
7652void __init mem_init_print_info(const char *str)
7653{
7654 unsigned long physpages, codesize, datasize, rosize, bss_size;
7655 unsigned long init_code_size, init_data_size;
7656
7657 physpages = get_num_physpages();
7658 codesize = _etext - _stext;
7659 datasize = _edata - _sdata;
7660 rosize = __end_rodata - __start_rodata;
7661 bss_size = __bss_stop - __bss_start;
7662 init_data_size = __init_end - __init_begin;
7663 init_code_size = _einittext - _sinittext;
7664
7665 /*
7666 * Detect special cases and adjust section sizes accordingly:
7667 * 1) .init.* may be embedded into .data sections
7668 * 2) .init.text.* may be out of [__init_begin, __init_end],
7669 * please refer to arch/tile/kernel/vmlinux.lds.S.
7670 * 3) .rodata.* may be embedded into .text or .data sections.
7671 */
7672#define adj_init_size(start, end, size, pos, adj) \
7673 do { \
7674 if (start <= pos && pos < end && size > adj) \
7675 size -= adj; \
7676 } while (0)
7677
7678 adj_init_size(__init_begin, __init_end, init_data_size,
7679 _sinittext, init_code_size);
7680 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7681 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7682 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7683 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7684
7685#undef adj_init_size
7686
7687 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7688#ifdef CONFIG_HIGHMEM
7689 ", %luK highmem"
7690#endif
7691 "%s%s)\n",
7692 nr_free_pages() << (PAGE_SHIFT - 10),
7693 physpages << (PAGE_SHIFT - 10),
7694 codesize >> 10, datasize >> 10, rosize >> 10,
7695 (init_data_size + init_code_size) >> 10, bss_size >> 10,
David Brazdil0f672f62019-12-10 10:32:29 +00007696 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007697 totalcma_pages << (PAGE_SHIFT - 10),
7698#ifdef CONFIG_HIGHMEM
David Brazdil0f672f62019-12-10 10:32:29 +00007699 totalhigh_pages() << (PAGE_SHIFT - 10),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007700#endif
7701 str ? ", " : "", str ? str : "");
7702}
7703
7704/**
7705 * set_dma_reserve - set the specified number of pages reserved in the first zone
7706 * @new_dma_reserve: The number of pages to mark reserved
7707 *
7708 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7709 * In the DMA zone, a significant percentage may be consumed by kernel image
7710 * and other unfreeable allocations which can skew the watermarks badly. This
7711 * function may optionally be used to account for unfreeable pages in the
7712 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7713 * smaller per-cpu batchsize.
7714 */
7715void __init set_dma_reserve(unsigned long new_dma_reserve)
7716{
7717 dma_reserve = new_dma_reserve;
7718}
7719
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007720static int page_alloc_cpu_dead(unsigned int cpu)
7721{
7722
7723 lru_add_drain_cpu(cpu);
7724 drain_pages(cpu);
7725
7726 /*
7727 * Spill the event counters of the dead processor
7728 * into the current processors event counters.
7729 * This artificially elevates the count of the current
7730 * processor.
7731 */
7732 vm_events_fold_cpu(cpu);
7733
7734 /*
7735 * Zero the differential counters of the dead processor
7736 * so that the vm statistics are consistent.
7737 *
7738 * This is only okay since the processor is dead and cannot
7739 * race with what we are doing.
7740 */
7741 cpu_vm_stats_fold(cpu);
7742 return 0;
7743}
7744
David Brazdil0f672f62019-12-10 10:32:29 +00007745#ifdef CONFIG_NUMA
7746int hashdist = HASHDIST_DEFAULT;
7747
7748static int __init set_hashdist(char *str)
7749{
7750 if (!str)
7751 return 0;
7752 hashdist = simple_strtoul(str, &str, 0);
7753 return 1;
7754}
7755__setup("hashdist=", set_hashdist);
7756#endif
7757
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007758void __init page_alloc_init(void)
7759{
7760 int ret;
7761
David Brazdil0f672f62019-12-10 10:32:29 +00007762#ifdef CONFIG_NUMA
7763 if (num_node_state(N_MEMORY) == 1)
7764 hashdist = 0;
7765#endif
7766
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007767 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7768 "mm/page_alloc:dead", NULL,
7769 page_alloc_cpu_dead);
7770 WARN_ON(ret < 0);
7771}
7772
7773/*
7774 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7775 * or min_free_kbytes changes.
7776 */
7777static void calculate_totalreserve_pages(void)
7778{
7779 struct pglist_data *pgdat;
7780 unsigned long reserve_pages = 0;
7781 enum zone_type i, j;
7782
7783 for_each_online_pgdat(pgdat) {
7784
7785 pgdat->totalreserve_pages = 0;
7786
7787 for (i = 0; i < MAX_NR_ZONES; i++) {
7788 struct zone *zone = pgdat->node_zones + i;
7789 long max = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00007790 unsigned long managed_pages = zone_managed_pages(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007791
7792 /* Find valid and maximum lowmem_reserve in the zone */
7793 for (j = i; j < MAX_NR_ZONES; j++) {
7794 if (zone->lowmem_reserve[j] > max)
7795 max = zone->lowmem_reserve[j];
7796 }
7797
7798 /* we treat the high watermark as reserved pages. */
7799 max += high_wmark_pages(zone);
7800
David Brazdil0f672f62019-12-10 10:32:29 +00007801 if (max > managed_pages)
7802 max = managed_pages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007803
7804 pgdat->totalreserve_pages += max;
7805
7806 reserve_pages += max;
7807 }
7808 }
7809 totalreserve_pages = reserve_pages;
7810}
7811
7812/*
7813 * setup_per_zone_lowmem_reserve - called whenever
7814 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7815 * has a correct pages reserved value, so an adequate number of
7816 * pages are left in the zone after a successful __alloc_pages().
7817 */
7818static void setup_per_zone_lowmem_reserve(void)
7819{
7820 struct pglist_data *pgdat;
Olivier Deprez157378f2022-04-04 15:47:50 +02007821 enum zone_type i, j;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007822
7823 for_each_online_pgdat(pgdat) {
Olivier Deprez157378f2022-04-04 15:47:50 +02007824 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
7825 struct zone *zone = &pgdat->node_zones[i];
7826 int ratio = sysctl_lowmem_reserve_ratio[i];
7827 bool clear = !ratio || !zone_managed_pages(zone);
7828 unsigned long managed_pages = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007829
Olivier Deprez157378f2022-04-04 15:47:50 +02007830 for (j = i + 1; j < MAX_NR_ZONES; j++) {
7831 struct zone *upper_zone = &pgdat->node_zones[j];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007832
Olivier Deprez157378f2022-04-04 15:47:50 +02007833 managed_pages += zone_managed_pages(upper_zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007834
Olivier Deprez157378f2022-04-04 15:47:50 +02007835 if (clear)
7836 zone->lowmem_reserve[j] = 0;
7837 else
7838 zone->lowmem_reserve[j] = managed_pages / ratio;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007839 }
7840 }
7841 }
7842
7843 /* update totalreserve_pages */
7844 calculate_totalreserve_pages();
7845}
7846
7847static void __setup_per_zone_wmarks(void)
7848{
7849 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7850 unsigned long lowmem_pages = 0;
7851 struct zone *zone;
7852 unsigned long flags;
7853
7854 /* Calculate total number of !ZONE_HIGHMEM pages */
7855 for_each_zone(zone) {
7856 if (!is_highmem(zone))
David Brazdil0f672f62019-12-10 10:32:29 +00007857 lowmem_pages += zone_managed_pages(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007858 }
7859
7860 for_each_zone(zone) {
7861 u64 tmp;
7862
7863 spin_lock_irqsave(&zone->lock, flags);
David Brazdil0f672f62019-12-10 10:32:29 +00007864 tmp = (u64)pages_min * zone_managed_pages(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007865 do_div(tmp, lowmem_pages);
7866 if (is_highmem(zone)) {
7867 /*
7868 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7869 * need highmem pages, so cap pages_min to a small
7870 * value here.
7871 *
7872 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
David Brazdil0f672f62019-12-10 10:32:29 +00007873 * deltas control async page reclaim, and so should
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007874 * not be capped for highmem.
7875 */
7876 unsigned long min_pages;
7877
David Brazdil0f672f62019-12-10 10:32:29 +00007878 min_pages = zone_managed_pages(zone) / 1024;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007879 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
David Brazdil0f672f62019-12-10 10:32:29 +00007880 zone->_watermark[WMARK_MIN] = min_pages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007881 } else {
7882 /*
7883 * If it's a lowmem zone, reserve a number of pages
7884 * proportionate to the zone's size.
7885 */
David Brazdil0f672f62019-12-10 10:32:29 +00007886 zone->_watermark[WMARK_MIN] = tmp;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007887 }
7888
7889 /*
7890 * Set the kswapd watermarks distance according to the
7891 * scale factor in proportion to available memory, but
7892 * ensure a minimum size on small systems.
7893 */
7894 tmp = max_t(u64, tmp >> 2,
David Brazdil0f672f62019-12-10 10:32:29 +00007895 mult_frac(zone_managed_pages(zone),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007896 watermark_scale_factor, 10000));
7897
Olivier Deprez157378f2022-04-04 15:47:50 +02007898 zone->watermark_boost = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00007899 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7900 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007901
7902 spin_unlock_irqrestore(&zone->lock, flags);
7903 }
7904
7905 /* update totalreserve_pages */
7906 calculate_totalreserve_pages();
7907}
7908
7909/**
7910 * setup_per_zone_wmarks - called when min_free_kbytes changes
7911 * or when memory is hot-{added|removed}
7912 *
7913 * Ensures that the watermark[min,low,high] values for each zone are set
7914 * correctly with respect to min_free_kbytes.
7915 */
7916void setup_per_zone_wmarks(void)
7917{
7918 static DEFINE_SPINLOCK(lock);
7919
7920 spin_lock(&lock);
7921 __setup_per_zone_wmarks();
7922 spin_unlock(&lock);
7923}
7924
7925/*
7926 * Initialise min_free_kbytes.
7927 *
7928 * For small machines we want it small (128k min). For large machines
Olivier Deprez157378f2022-04-04 15:47:50 +02007929 * we want it large (256MB max). But it is not linear, because network
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007930 * bandwidth does not increase linearly with machine size. We use
7931 *
7932 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7933 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7934 *
7935 * which yields
7936 *
7937 * 16MB: 512k
7938 * 32MB: 724k
7939 * 64MB: 1024k
7940 * 128MB: 1448k
7941 * 256MB: 2048k
7942 * 512MB: 2896k
7943 * 1024MB: 4096k
7944 * 2048MB: 5792k
7945 * 4096MB: 8192k
7946 * 8192MB: 11584k
7947 * 16384MB: 16384k
7948 */
7949int __meminit init_per_zone_wmark_min(void)
7950{
7951 unsigned long lowmem_kbytes;
7952 int new_min_free_kbytes;
7953
7954 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7955 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7956
7957 if (new_min_free_kbytes > user_min_free_kbytes) {
7958 min_free_kbytes = new_min_free_kbytes;
7959 if (min_free_kbytes < 128)
7960 min_free_kbytes = 128;
Olivier Deprez157378f2022-04-04 15:47:50 +02007961 if (min_free_kbytes > 262144)
7962 min_free_kbytes = 262144;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007963 } else {
7964 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7965 new_min_free_kbytes, user_min_free_kbytes);
7966 }
7967 setup_per_zone_wmarks();
7968 refresh_zone_stat_thresholds();
7969 setup_per_zone_lowmem_reserve();
7970
7971#ifdef CONFIG_NUMA
7972 setup_min_unmapped_ratio();
7973 setup_min_slab_ratio();
7974#endif
7975
Olivier Deprez0e641232021-09-23 10:07:05 +02007976 khugepaged_min_free_kbytes_update();
7977
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007978 return 0;
7979}
Olivier Deprez0e641232021-09-23 10:07:05 +02007980postcore_initcall(init_per_zone_wmark_min)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007981
7982/*
7983 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7984 * that we can call two helper functions whenever min_free_kbytes
7985 * changes.
7986 */
7987int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
Olivier Deprez157378f2022-04-04 15:47:50 +02007988 void *buffer, size_t *length, loff_t *ppos)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007989{
7990 int rc;
7991
7992 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7993 if (rc)
7994 return rc;
7995
7996 if (write) {
7997 user_min_free_kbytes = min_free_kbytes;
7998 setup_per_zone_wmarks();
7999 }
8000 return 0;
8001}
8002
8003int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
Olivier Deprez157378f2022-04-04 15:47:50 +02008004 void *buffer, size_t *length, loff_t *ppos)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008005{
8006 int rc;
8007
8008 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8009 if (rc)
8010 return rc;
8011
8012 if (write)
8013 setup_per_zone_wmarks();
8014
8015 return 0;
8016}
8017
8018#ifdef CONFIG_NUMA
8019static void setup_min_unmapped_ratio(void)
8020{
8021 pg_data_t *pgdat;
8022 struct zone *zone;
8023
8024 for_each_online_pgdat(pgdat)
8025 pgdat->min_unmapped_pages = 0;
8026
8027 for_each_zone(zone)
David Brazdil0f672f62019-12-10 10:32:29 +00008028 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8029 sysctl_min_unmapped_ratio) / 100;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008030}
8031
8032
8033int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
Olivier Deprez157378f2022-04-04 15:47:50 +02008034 void *buffer, size_t *length, loff_t *ppos)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008035{
8036 int rc;
8037
8038 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8039 if (rc)
8040 return rc;
8041
8042 setup_min_unmapped_ratio();
8043
8044 return 0;
8045}
8046
8047static void setup_min_slab_ratio(void)
8048{
8049 pg_data_t *pgdat;
8050 struct zone *zone;
8051
8052 for_each_online_pgdat(pgdat)
8053 pgdat->min_slab_pages = 0;
8054
8055 for_each_zone(zone)
David Brazdil0f672f62019-12-10 10:32:29 +00008056 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8057 sysctl_min_slab_ratio) / 100;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008058}
8059
8060int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
Olivier Deprez157378f2022-04-04 15:47:50 +02008061 void *buffer, size_t *length, loff_t *ppos)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008062{
8063 int rc;
8064
8065 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8066 if (rc)
8067 return rc;
8068
8069 setup_min_slab_ratio();
8070
8071 return 0;
8072}
8073#endif
8074
8075/*
8076 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8077 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8078 * whenever sysctl_lowmem_reserve_ratio changes.
8079 *
8080 * The reserve ratio obviously has absolutely no relation with the
8081 * minimum watermarks. The lowmem reserve ratio can only make sense
8082 * if in function of the boot time zone sizes.
8083 */
8084int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
Olivier Deprez157378f2022-04-04 15:47:50 +02008085 void *buffer, size_t *length, loff_t *ppos)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008086{
Olivier Deprez157378f2022-04-04 15:47:50 +02008087 int i;
8088
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008089 proc_dointvec_minmax(table, write, buffer, length, ppos);
Olivier Deprez157378f2022-04-04 15:47:50 +02008090
8091 for (i = 0; i < MAX_NR_ZONES; i++) {
8092 if (sysctl_lowmem_reserve_ratio[i] < 1)
8093 sysctl_lowmem_reserve_ratio[i] = 0;
8094 }
8095
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008096 setup_per_zone_lowmem_reserve();
8097 return 0;
8098}
8099
Olivier Deprez157378f2022-04-04 15:47:50 +02008100static void __zone_pcp_update(struct zone *zone)
8101{
8102 unsigned int cpu;
8103
8104 for_each_possible_cpu(cpu)
8105 pageset_set_high_and_batch(zone,
8106 per_cpu_ptr(zone->pageset, cpu));
8107}
8108
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008109/*
8110 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8111 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8112 * pagelist can have before it gets flushed back to buddy allocator.
8113 */
8114int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
Olivier Deprez157378f2022-04-04 15:47:50 +02008115 void *buffer, size_t *length, loff_t *ppos)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008116{
8117 struct zone *zone;
8118 int old_percpu_pagelist_fraction;
8119 int ret;
8120
8121 mutex_lock(&pcp_batch_high_lock);
8122 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8123
8124 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8125 if (!write || ret < 0)
8126 goto out;
8127
8128 /* Sanity checking to avoid pcp imbalance */
8129 if (percpu_pagelist_fraction &&
8130 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8131 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8132 ret = -EINVAL;
8133 goto out;
8134 }
8135
8136 /* No change? */
8137 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8138 goto out;
8139
Olivier Deprez157378f2022-04-04 15:47:50 +02008140 for_each_populated_zone(zone)
8141 __zone_pcp_update(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008142out:
8143 mutex_unlock(&pcp_batch_high_lock);
8144 return ret;
8145}
8146
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008147#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8148/*
8149 * Returns the number of pages that arch has reserved but
8150 * is not known to alloc_large_system_hash().
8151 */
8152static unsigned long __init arch_reserved_kernel_pages(void)
8153{
8154 return 0;
8155}
8156#endif
8157
8158/*
8159 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8160 * machines. As memory size is increased the scale is also increased but at
8161 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8162 * quadruples the scale is increased by one, which means the size of hash table
8163 * only doubles, instead of quadrupling as well.
8164 * Because 32-bit systems cannot have large physical memory, where this scaling
8165 * makes sense, it is disabled on such platforms.
8166 */
8167#if __BITS_PER_LONG > 32
8168#define ADAPT_SCALE_BASE (64ul << 30)
8169#define ADAPT_SCALE_SHIFT 2
8170#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8171#endif
8172
8173/*
8174 * allocate a large system hash table from bootmem
8175 * - it is assumed that the hash table must contain an exact power-of-2
8176 * quantity of entries
8177 * - limit is the number of hash buckets, not the total allocation size
8178 */
8179void *__init alloc_large_system_hash(const char *tablename,
8180 unsigned long bucketsize,
8181 unsigned long numentries,
8182 int scale,
8183 int flags,
8184 unsigned int *_hash_shift,
8185 unsigned int *_hash_mask,
8186 unsigned long low_limit,
8187 unsigned long high_limit)
8188{
8189 unsigned long long max = high_limit;
8190 unsigned long log2qty, size;
8191 void *table = NULL;
8192 gfp_t gfp_flags;
David Brazdil0f672f62019-12-10 10:32:29 +00008193 bool virt;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008194
8195 /* allow the kernel cmdline to have a say */
8196 if (!numentries) {
8197 /* round applicable memory size up to nearest megabyte */
8198 numentries = nr_kernel_pages;
8199 numentries -= arch_reserved_kernel_pages();
8200
8201 /* It isn't necessary when PAGE_SIZE >= 1MB */
8202 if (PAGE_SHIFT < 20)
8203 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8204
8205#if __BITS_PER_LONG > 32
8206 if (!high_limit) {
8207 unsigned long adapt;
8208
8209 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8210 adapt <<= ADAPT_SCALE_SHIFT)
8211 scale++;
8212 }
8213#endif
8214
8215 /* limit to 1 bucket per 2^scale bytes of low memory */
8216 if (scale > PAGE_SHIFT)
8217 numentries >>= (scale - PAGE_SHIFT);
8218 else
8219 numentries <<= (PAGE_SHIFT - scale);
8220
8221 /* Make sure we've got at least a 0-order allocation.. */
8222 if (unlikely(flags & HASH_SMALL)) {
8223 /* Makes no sense without HASH_EARLY */
8224 WARN_ON(!(flags & HASH_EARLY));
8225 if (!(numentries >> *_hash_shift)) {
8226 numentries = 1UL << *_hash_shift;
8227 BUG_ON(!numentries);
8228 }
8229 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8230 numentries = PAGE_SIZE / bucketsize;
8231 }
8232 numentries = roundup_pow_of_two(numentries);
8233
8234 /* limit allocation size to 1/16 total memory by default */
8235 if (max == 0) {
8236 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8237 do_div(max, bucketsize);
8238 }
8239 max = min(max, 0x80000000ULL);
8240
8241 if (numentries < low_limit)
8242 numentries = low_limit;
8243 if (numentries > max)
8244 numentries = max;
8245
8246 log2qty = ilog2(numentries);
8247
8248 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8249 do {
David Brazdil0f672f62019-12-10 10:32:29 +00008250 virt = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008251 size = bucketsize << log2qty;
8252 if (flags & HASH_EARLY) {
8253 if (flags & HASH_ZERO)
David Brazdil0f672f62019-12-10 10:32:29 +00008254 table = memblock_alloc(size, SMP_CACHE_BYTES);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008255 else
David Brazdil0f672f62019-12-10 10:32:29 +00008256 table = memblock_alloc_raw(size,
8257 SMP_CACHE_BYTES);
8258 } else if (get_order(size) >= MAX_ORDER || hashdist) {
Olivier Deprez157378f2022-04-04 15:47:50 +02008259 table = __vmalloc(size, gfp_flags);
David Brazdil0f672f62019-12-10 10:32:29 +00008260 virt = true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008261 } else {
8262 /*
8263 * If bucketsize is not a power-of-two, we may free
8264 * some pages at the end of hash table which
8265 * alloc_pages_exact() automatically does
8266 */
David Brazdil0f672f62019-12-10 10:32:29 +00008267 table = alloc_pages_exact(size, gfp_flags);
8268 kmemleak_alloc(table, size, 1, gfp_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008269 }
8270 } while (!table && size > PAGE_SIZE && --log2qty);
8271
8272 if (!table)
8273 panic("Failed to allocate %s hash table\n", tablename);
8274
David Brazdil0f672f62019-12-10 10:32:29 +00008275 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8276 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8277 virt ? "vmalloc" : "linear");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008278
8279 if (_hash_shift)
8280 *_hash_shift = log2qty;
8281 if (_hash_mask)
8282 *_hash_mask = (1 << log2qty) - 1;
8283
8284 return table;
8285}
8286
8287/*
8288 * This function checks whether pageblock includes unmovable pages or not.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008289 *
8290 * PageLRU check without isolation or lru_lock could race so that
8291 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8292 * check without lock_page also may miss some movable non-lru pages at
8293 * race condition. So you can't expect this function should be exact.
Olivier Deprez157378f2022-04-04 15:47:50 +02008294 *
8295 * Returns a page without holding a reference. If the caller wants to
8296 * dereference that page (e.g., dumping), it has to make sure that it
8297 * cannot get removed (e.g., via memory unplug) concurrently.
8298 *
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008299 */
Olivier Deprez157378f2022-04-04 15:47:50 +02008300struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8301 int migratetype, int flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008302{
David Brazdil0f672f62019-12-10 10:32:29 +00008303 unsigned long iter = 0;
8304 unsigned long pfn = page_to_pfn(page);
Olivier Deprez157378f2022-04-04 15:47:50 +02008305 unsigned long offset = pfn % pageblock_nr_pages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008306
David Brazdil0f672f62019-12-10 10:32:29 +00008307 if (is_migrate_cma_page(page)) {
8308 /*
8309 * CMA allocations (alloc_contig_range) really need to mark
8310 * isolate CMA pageblocks even when they are not movable in fact
8311 * so consider them movable here.
8312 */
8313 if (is_migrate_cma(migratetype))
Olivier Deprez157378f2022-04-04 15:47:50 +02008314 return NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008315
Olivier Deprez157378f2022-04-04 15:47:50 +02008316 return page;
David Brazdil0f672f62019-12-10 10:32:29 +00008317 }
8318
Olivier Deprez157378f2022-04-04 15:47:50 +02008319 for (; iter < pageblock_nr_pages - offset; iter++) {
8320 if (!pfn_valid_within(pfn + iter))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008321 continue;
8322
Olivier Deprez157378f2022-04-04 15:47:50 +02008323 page = pfn_to_page(pfn + iter);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008324
Olivier Deprez157378f2022-04-04 15:47:50 +02008325 /*
8326 * Both, bootmem allocations and memory holes are marked
8327 * PG_reserved and are unmovable. We can even have unmovable
8328 * allocations inside ZONE_MOVABLE, for example when
8329 * specifying "movablecore".
8330 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008331 if (PageReserved(page))
Olivier Deprez157378f2022-04-04 15:47:50 +02008332 return page;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008333
8334 /*
8335 * If the zone is movable and we have ruled out all reserved
8336 * pages then it should be reasonably safe to assume the rest
8337 * is movable.
8338 */
8339 if (zone_idx(zone) == ZONE_MOVABLE)
8340 continue;
8341
8342 /*
8343 * Hugepages are not in LRU lists, but they're movable.
Olivier Deprez157378f2022-04-04 15:47:50 +02008344 * THPs are on the LRU, but need to be counted as #small pages.
David Brazdil0f672f62019-12-10 10:32:29 +00008345 * We need not scan over tail pages because we don't
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008346 * handle each tail page individually in migration.
8347 */
Olivier Deprez157378f2022-04-04 15:47:50 +02008348 if (PageHuge(page) || PageTransCompound(page)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008349 struct page *head = compound_head(page);
8350 unsigned int skip_pages;
8351
Olivier Deprez157378f2022-04-04 15:47:50 +02008352 if (PageHuge(page)) {
8353 if (!hugepage_migration_supported(page_hstate(head)))
8354 return page;
8355 } else if (!PageLRU(head) && !__PageMovable(head)) {
8356 return page;
8357 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008358
David Brazdil0f672f62019-12-10 10:32:29 +00008359 skip_pages = compound_nr(head) - (page - head);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008360 iter += skip_pages - 1;
8361 continue;
8362 }
8363
8364 /*
8365 * We can't use page_count without pin a page
8366 * because another CPU can free compound page.
8367 * This check already skips compound tails of THP
8368 * because their page->_refcount is zero at all time.
8369 */
8370 if (!page_ref_count(page)) {
8371 if (PageBuddy(page))
Olivier Deprez157378f2022-04-04 15:47:50 +02008372 iter += (1 << buddy_order(page)) - 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008373 continue;
8374 }
8375
8376 /*
8377 * The HWPoisoned page may be not in buddy system, and
8378 * page_count() is not 0.
8379 */
Olivier Deprez157378f2022-04-04 15:47:50 +02008380 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008381 continue;
8382
Olivier Deprez157378f2022-04-04 15:47:50 +02008383 /*
8384 * We treat all PageOffline() pages as movable when offlining
8385 * to give drivers a chance to decrement their reference count
8386 * in MEM_GOING_OFFLINE in order to indicate that these pages
8387 * can be offlined as there are no direct references anymore.
8388 * For actually unmovable PageOffline() where the driver does
8389 * not support this, we will fail later when trying to actually
8390 * move these pages that still have a reference count > 0.
8391 * (false negatives in this function only)
8392 */
8393 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008394 continue;
8395
Olivier Deprez157378f2022-04-04 15:47:50 +02008396 if (__PageMovable(page) || PageLRU(page))
8397 continue;
8398
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008399 /*
8400 * If there are RECLAIMABLE pages, we need to check
8401 * it. But now, memory offline itself doesn't call
8402 * shrink_node_slabs() and it still to be fixed.
8403 */
Olivier Deprez157378f2022-04-04 15:47:50 +02008404 return page;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008405 }
Olivier Deprez157378f2022-04-04 15:47:50 +02008406 return NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008407}
8408
David Brazdil0f672f62019-12-10 10:32:29 +00008409#ifdef CONFIG_CONTIG_ALLOC
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008410static unsigned long pfn_max_align_down(unsigned long pfn)
8411{
8412 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8413 pageblock_nr_pages) - 1);
8414}
8415
8416static unsigned long pfn_max_align_up(unsigned long pfn)
8417{
8418 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8419 pageblock_nr_pages));
8420}
8421
8422/* [start, end) must belong to a single zone. */
8423static int __alloc_contig_migrate_range(struct compact_control *cc,
8424 unsigned long start, unsigned long end)
8425{
8426 /* This function is based on compact_zone() from compaction.c. */
Olivier Deprez157378f2022-04-04 15:47:50 +02008427 unsigned int nr_reclaimed;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008428 unsigned long pfn = start;
8429 unsigned int tries = 0;
8430 int ret = 0;
Olivier Deprez157378f2022-04-04 15:47:50 +02008431 struct migration_target_control mtc = {
8432 .nid = zone_to_nid(cc->zone),
8433 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8434 };
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008435
8436 migrate_prep();
8437
8438 while (pfn < end || !list_empty(&cc->migratepages)) {
8439 if (fatal_signal_pending(current)) {
8440 ret = -EINTR;
8441 break;
8442 }
8443
8444 if (list_empty(&cc->migratepages)) {
8445 cc->nr_migratepages = 0;
8446 pfn = isolate_migratepages_range(cc, pfn, end);
8447 if (!pfn) {
8448 ret = -EINTR;
8449 break;
8450 }
8451 tries = 0;
8452 } else if (++tries == 5) {
8453 ret = ret < 0 ? ret : -EBUSY;
8454 break;
8455 }
8456
8457 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8458 &cc->migratepages);
8459 cc->nr_migratepages -= nr_reclaimed;
8460
Olivier Deprez157378f2022-04-04 15:47:50 +02008461 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8462 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008463 }
8464 if (ret < 0) {
8465 putback_movable_pages(&cc->migratepages);
8466 return ret;
8467 }
8468 return 0;
8469}
8470
8471/**
8472 * alloc_contig_range() -- tries to allocate given range of pages
8473 * @start: start PFN to allocate
8474 * @end: one-past-the-last PFN to allocate
8475 * @migratetype: migratetype of the underlaying pageblocks (either
8476 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8477 * in range must have the same migratetype and it must
8478 * be either of the two.
8479 * @gfp_mask: GFP mask to use during compaction
8480 *
8481 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8482 * aligned. The PFN range must belong to a single zone.
8483 *
8484 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8485 * pageblocks in the range. Once isolated, the pageblocks should not
8486 * be modified by others.
8487 *
David Brazdil0f672f62019-12-10 10:32:29 +00008488 * Return: zero on success or negative error code. On success all
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008489 * pages which PFN is in [start, end) are allocated for the caller and
8490 * need to be freed with free_contig_range().
8491 */
8492int alloc_contig_range(unsigned long start, unsigned long end,
8493 unsigned migratetype, gfp_t gfp_mask)
8494{
8495 unsigned long outer_start, outer_end;
8496 unsigned int order;
8497 int ret = 0;
8498
8499 struct compact_control cc = {
8500 .nr_migratepages = 0,
8501 .order = -1,
8502 .zone = page_zone(pfn_to_page(start)),
8503 .mode = MIGRATE_SYNC,
8504 .ignore_skip_hint = true,
8505 .no_set_skip_hint = true,
8506 .gfp_mask = current_gfp_context(gfp_mask),
Olivier Deprez157378f2022-04-04 15:47:50 +02008507 .alloc_contig = true,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008508 };
8509 INIT_LIST_HEAD(&cc.migratepages);
8510
8511 /*
8512 * What we do here is we mark all pageblocks in range as
8513 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8514 * have different sizes, and due to the way page allocator
8515 * work, we align the range to biggest of the two pages so
8516 * that page allocator won't try to merge buddies from
8517 * different pageblocks and change MIGRATE_ISOLATE to some
8518 * other migration type.
8519 *
8520 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8521 * migrate the pages from an unaligned range (ie. pages that
8522 * we are interested in). This will put all the pages in
8523 * range back to page allocator as MIGRATE_ISOLATE.
8524 *
8525 * When this is done, we take the pages in range from page
8526 * allocator removing them from the buddy system. This way
8527 * page allocator will never consider using them.
8528 *
8529 * This lets us mark the pageblocks back as
8530 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8531 * aligned range but not in the unaligned, original range are
8532 * put back to page allocator so that buddy can use them.
8533 */
8534
8535 ret = start_isolate_page_range(pfn_max_align_down(start),
David Brazdil0f672f62019-12-10 10:32:29 +00008536 pfn_max_align_up(end), migratetype, 0);
Olivier Deprez157378f2022-04-04 15:47:50 +02008537 if (ret)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008538 return ret;
8539
8540 /*
8541 * In case of -EBUSY, we'd like to know which page causes problem.
8542 * So, just fall through. test_pages_isolated() has a tracepoint
8543 * which will report the busy page.
8544 *
8545 * It is possible that busy pages could become available before
8546 * the call to test_pages_isolated, and the range will actually be
8547 * allocated. So, if we fall through be sure to clear ret so that
8548 * -EBUSY is not accidentally used or returned to caller.
8549 */
8550 ret = __alloc_contig_migrate_range(&cc, start, end);
8551 if (ret && ret != -EBUSY)
8552 goto done;
8553 ret =0;
8554
8555 /*
8556 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8557 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8558 * more, all pages in [start, end) are free in page allocator.
8559 * What we are going to do is to allocate all pages from
8560 * [start, end) (that is remove them from page allocator).
8561 *
8562 * The only problem is that pages at the beginning and at the
8563 * end of interesting range may be not aligned with pages that
8564 * page allocator holds, ie. they can be part of higher order
8565 * pages. Because of this, we reserve the bigger range and
8566 * once this is done free the pages we are not interested in.
8567 *
8568 * We don't have to hold zone->lock here because the pages are
8569 * isolated thus they won't get removed from buddy.
8570 */
8571
8572 lru_add_drain_all();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008573
8574 order = 0;
8575 outer_start = start;
8576 while (!PageBuddy(pfn_to_page(outer_start))) {
8577 if (++order >= MAX_ORDER) {
8578 outer_start = start;
8579 break;
8580 }
8581 outer_start &= ~0UL << order;
8582 }
8583
8584 if (outer_start != start) {
Olivier Deprez157378f2022-04-04 15:47:50 +02008585 order = buddy_order(pfn_to_page(outer_start));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008586
8587 /*
8588 * outer_start page could be small order buddy page and
8589 * it doesn't include start page. Adjust outer_start
8590 * in this case to report failed page properly
8591 * on tracepoint in test_pages_isolated()
8592 */
8593 if (outer_start + (1UL << order) <= start)
8594 outer_start = start;
8595 }
8596
8597 /* Make sure the range is really isolated. */
Olivier Deprez157378f2022-04-04 15:47:50 +02008598 if (test_pages_isolated(outer_start, end, 0)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008599 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8600 __func__, outer_start, end);
8601 ret = -EBUSY;
8602 goto done;
8603 }
8604
8605 /* Grab isolated pages from freelists. */
8606 outer_end = isolate_freepages_range(&cc, outer_start, end);
8607 if (!outer_end) {
8608 ret = -EBUSY;
8609 goto done;
8610 }
8611
8612 /* Free head and tail (if any) */
8613 if (start != outer_start)
8614 free_contig_range(outer_start, start - outer_start);
8615 if (end != outer_end)
8616 free_contig_range(end, outer_end - end);
8617
8618done:
8619 undo_isolate_page_range(pfn_max_align_down(start),
8620 pfn_max_align_up(end), migratetype);
8621 return ret;
8622}
Olivier Deprez157378f2022-04-04 15:47:50 +02008623EXPORT_SYMBOL(alloc_contig_range);
8624
8625static int __alloc_contig_pages(unsigned long start_pfn,
8626 unsigned long nr_pages, gfp_t gfp_mask)
8627{
8628 unsigned long end_pfn = start_pfn + nr_pages;
8629
8630 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8631 gfp_mask);
8632}
8633
8634static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8635 unsigned long nr_pages)
8636{
8637 unsigned long i, end_pfn = start_pfn + nr_pages;
8638 struct page *page;
8639
8640 for (i = start_pfn; i < end_pfn; i++) {
8641 page = pfn_to_online_page(i);
8642 if (!page)
8643 return false;
8644
8645 if (page_zone(page) != z)
8646 return false;
8647
8648 if (PageReserved(page))
8649 return false;
8650
8651 if (page_count(page) > 0)
8652 return false;
8653
8654 if (PageHuge(page))
8655 return false;
8656 }
8657 return true;
8658}
8659
8660static bool zone_spans_last_pfn(const struct zone *zone,
8661 unsigned long start_pfn, unsigned long nr_pages)
8662{
8663 unsigned long last_pfn = start_pfn + nr_pages - 1;
8664
8665 return zone_spans_pfn(zone, last_pfn);
8666}
8667
8668/**
8669 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8670 * @nr_pages: Number of contiguous pages to allocate
8671 * @gfp_mask: GFP mask to limit search and used during compaction
8672 * @nid: Target node
8673 * @nodemask: Mask for other possible nodes
8674 *
8675 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8676 * on an applicable zonelist to find a contiguous pfn range which can then be
8677 * tried for allocation with alloc_contig_range(). This routine is intended
8678 * for allocation requests which can not be fulfilled with the buddy allocator.
8679 *
8680 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8681 * power of two then the alignment is guaranteed to be to the given nr_pages
8682 * (e.g. 1GB request would be aligned to 1GB).
8683 *
8684 * Allocated pages can be freed with free_contig_range() or by manually calling
8685 * __free_page() on each allocated page.
8686 *
8687 * Return: pointer to contiguous pages on success, or NULL if not successful.
8688 */
8689struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8690 int nid, nodemask_t *nodemask)
8691{
8692 unsigned long ret, pfn, flags;
8693 struct zonelist *zonelist;
8694 struct zone *zone;
8695 struct zoneref *z;
8696
8697 zonelist = node_zonelist(nid, gfp_mask);
8698 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8699 gfp_zone(gfp_mask), nodemask) {
8700 spin_lock_irqsave(&zone->lock, flags);
8701
8702 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8703 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8704 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8705 /*
8706 * We release the zone lock here because
8707 * alloc_contig_range() will also lock the zone
8708 * at some point. If there's an allocation
8709 * spinning on this lock, it may win the race
8710 * and cause alloc_contig_range() to fail...
8711 */
8712 spin_unlock_irqrestore(&zone->lock, flags);
8713 ret = __alloc_contig_pages(pfn, nr_pages,
8714 gfp_mask);
8715 if (!ret)
8716 return pfn_to_page(pfn);
8717 spin_lock_irqsave(&zone->lock, flags);
8718 }
8719 pfn += nr_pages;
8720 }
8721 spin_unlock_irqrestore(&zone->lock, flags);
8722 }
8723 return NULL;
8724}
David Brazdil0f672f62019-12-10 10:32:29 +00008725#endif /* CONFIG_CONTIG_ALLOC */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008726
David Brazdil0f672f62019-12-10 10:32:29 +00008727void free_contig_range(unsigned long pfn, unsigned int nr_pages)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008728{
8729 unsigned int count = 0;
8730
8731 for (; nr_pages--; pfn++) {
8732 struct page *page = pfn_to_page(pfn);
8733
8734 count += page_count(page) != 1;
8735 __free_page(page);
8736 }
8737 WARN(count != 0, "%d pages are still in use!\n", count);
8738}
Olivier Deprez157378f2022-04-04 15:47:50 +02008739EXPORT_SYMBOL(free_contig_range);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008740
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008741/*
8742 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8743 * page high values need to be recalulated.
8744 */
8745void __meminit zone_pcp_update(struct zone *zone)
8746{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008747 mutex_lock(&pcp_batch_high_lock);
Olivier Deprez157378f2022-04-04 15:47:50 +02008748 __zone_pcp_update(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008749 mutex_unlock(&pcp_batch_high_lock);
8750}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008751
8752void zone_pcp_reset(struct zone *zone)
8753{
8754 unsigned long flags;
8755 int cpu;
8756 struct per_cpu_pageset *pset;
8757
8758 /* avoid races with drain_pages() */
8759 local_irq_save(flags);
8760 if (zone->pageset != &boot_pageset) {
8761 for_each_online_cpu(cpu) {
8762 pset = per_cpu_ptr(zone->pageset, cpu);
8763 drain_zonestat(zone, pset);
8764 }
8765 free_percpu(zone->pageset);
8766 zone->pageset = &boot_pageset;
8767 }
8768 local_irq_restore(flags);
8769}
8770
8771#ifdef CONFIG_MEMORY_HOTREMOVE
8772/*
Olivier Deprez157378f2022-04-04 15:47:50 +02008773 * All pages in the range must be in a single zone, must not contain holes,
8774 * must span full sections, and must be isolated before calling this function.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008775 */
Olivier Deprez157378f2022-04-04 15:47:50 +02008776void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008777{
Olivier Deprez157378f2022-04-04 15:47:50 +02008778 unsigned long pfn = start_pfn;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008779 struct page *page;
8780 struct zone *zone;
Olivier Deprez157378f2022-04-04 15:47:50 +02008781 unsigned int order;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008782 unsigned long flags;
David Brazdil0f672f62019-12-10 10:32:29 +00008783
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008784 offline_mem_sections(pfn, end_pfn);
8785 zone = page_zone(pfn_to_page(pfn));
8786 spin_lock_irqsave(&zone->lock, flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008787 while (pfn < end_pfn) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008788 page = pfn_to_page(pfn);
8789 /*
8790 * The HWPoisoned page may be not in buddy system, and
8791 * page_count() is not 0.
8792 */
8793 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8794 pfn++;
Olivier Deprez157378f2022-04-04 15:47:50 +02008795 continue;
8796 }
8797 /*
8798 * At this point all remaining PageOffline() pages have a
8799 * reference count of 0 and can simply be skipped.
8800 */
8801 if (PageOffline(page)) {
8802 BUG_ON(page_count(page));
8803 BUG_ON(PageBuddy(page));
8804 pfn++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008805 continue;
8806 }
8807
8808 BUG_ON(page_count(page));
8809 BUG_ON(!PageBuddy(page));
Olivier Deprez157378f2022-04-04 15:47:50 +02008810 order = buddy_order(page);
8811 del_page_from_free_list(page, zone, order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008812 pfn += (1 << order);
8813 }
8814 spin_unlock_irqrestore(&zone->lock, flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008815}
8816#endif
8817
8818bool is_free_buddy_page(struct page *page)
8819{
8820 struct zone *zone = page_zone(page);
8821 unsigned long pfn = page_to_pfn(page);
8822 unsigned long flags;
8823 unsigned int order;
8824
8825 spin_lock_irqsave(&zone->lock, flags);
8826 for (order = 0; order < MAX_ORDER; order++) {
8827 struct page *page_head = page - (pfn & ((1 << order) - 1));
8828
Olivier Deprez157378f2022-04-04 15:47:50 +02008829 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008830 break;
8831 }
8832 spin_unlock_irqrestore(&zone->lock, flags);
8833
8834 return order < MAX_ORDER;
8835}
8836
8837#ifdef CONFIG_MEMORY_FAILURE
8838/*
Olivier Deprez157378f2022-04-04 15:47:50 +02008839 * Break down a higher-order page in sub-pages, and keep our target out of
8840 * buddy allocator.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008841 */
Olivier Deprez157378f2022-04-04 15:47:50 +02008842static void break_down_buddy_pages(struct zone *zone, struct page *page,
8843 struct page *target, int low, int high,
8844 int migratetype)
8845{
8846 unsigned long size = 1 << high;
8847 struct page *current_buddy, *next_page;
8848
8849 while (high > low) {
8850 high--;
8851 size >>= 1;
8852
8853 if (target >= &page[size]) {
8854 next_page = page + size;
8855 current_buddy = page;
8856 } else {
8857 next_page = page;
8858 current_buddy = page + size;
8859 }
8860
8861 if (set_page_guard(zone, current_buddy, high, migratetype))
8862 continue;
8863
8864 if (current_buddy != target) {
8865 add_to_free_list(current_buddy, zone, high, migratetype);
8866 set_buddy_order(current_buddy, high);
8867 page = next_page;
8868 }
8869 }
8870}
8871
8872/*
8873 * Take a page that will be marked as poisoned off the buddy allocator.
8874 */
8875bool take_page_off_buddy(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008876{
8877 struct zone *zone = page_zone(page);
8878 unsigned long pfn = page_to_pfn(page);
8879 unsigned long flags;
8880 unsigned int order;
Olivier Deprez157378f2022-04-04 15:47:50 +02008881 bool ret = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008882
8883 spin_lock_irqsave(&zone->lock, flags);
8884 for (order = 0; order < MAX_ORDER; order++) {
8885 struct page *page_head = page - (pfn & ((1 << order) - 1));
Olivier Deprez157378f2022-04-04 15:47:50 +02008886 int page_order = buddy_order(page_head);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008887
Olivier Deprez157378f2022-04-04 15:47:50 +02008888 if (PageBuddy(page_head) && page_order >= order) {
8889 unsigned long pfn_head = page_to_pfn(page_head);
8890 int migratetype = get_pfnblock_migratetype(page_head,
8891 pfn_head);
8892
8893 del_page_from_free_list(page_head, zone, page_order);
8894 break_down_buddy_pages(zone, page_head, page, 0,
8895 page_order, migratetype);
8896 if (!is_migrate_isolate(migratetype))
8897 __mod_zone_freepage_state(zone, -1, migratetype);
8898 ret = true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008899 break;
8900 }
Olivier Deprez157378f2022-04-04 15:47:50 +02008901 if (page_count(page_head) > 0)
8902 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008903 }
8904 spin_unlock_irqrestore(&zone->lock, flags);
Olivier Deprez157378f2022-04-04 15:47:50 +02008905 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008906}
8907#endif
Olivier Deprez157378f2022-04-04 15:47:50 +02008908
8909#ifdef CONFIG_ZONE_DMA
8910bool has_managed_dma(void)
8911{
8912 struct pglist_data *pgdat;
8913
8914 for_each_online_pgdat(pgdat) {
8915 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
8916
8917 if (managed_zone(zone))
8918 return true;
8919 }
8920 return false;
8921}
8922#endif /* CONFIG_ZONE_DMA */