blob: 283ac9d9f6dd0bb3c37e5c7c81f2c99db3ff5158 [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0-only
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18#include <linux/stddef.h>
19#include <linux/mm.h>
David Brazdil0f672f62019-12-10 10:32:29 +000020#include <linux/highmem.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000021#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
24#include <linux/jiffies.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000025#include <linux/memblock.h>
26#include <linux/compiler.h>
27#include <linux/kernel.h>
28#include <linux/kasan.h>
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
34#include <linux/ratelimit.h>
35#include <linux/oom.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
40#include <linux/memory_hotplug.h>
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
43#include <linux/vmstat.h>
44#include <linux/mempolicy.h>
45#include <linux/memremap.h>
46#include <linux/stop_machine.h>
David Brazdil0f672f62019-12-10 10:32:29 +000047#include <linux/random.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000048#include <linux/sort.h>
49#include <linux/pfn.h>
50#include <linux/backing-dev.h>
51#include <linux/fault-inject.h>
52#include <linux/page-isolation.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000053#include <linux/debugobjects.h>
54#include <linux/kmemleak.h>
55#include <linux/compaction.h>
56#include <trace/events/kmem.h>
57#include <trace/events/oom.h>
58#include <linux/prefetch.h>
59#include <linux/mm_inline.h>
60#include <linux/migrate.h>
61#include <linux/hugetlb.h>
62#include <linux/sched/rt.h>
63#include <linux/sched/mm.h>
64#include <linux/page_owner.h>
65#include <linux/kthread.h>
66#include <linux/memcontrol.h>
67#include <linux/ftrace.h>
68#include <linux/lockdep.h>
69#include <linux/nmi.h>
David Brazdil0f672f62019-12-10 10:32:29 +000070#include <linux/psi.h>
Olivier Deprez0e641232021-09-23 10:07:05 +020071#include <linux/khugepaged.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000072
73#include <asm/sections.h>
74#include <asm/tlbflush.h>
75#include <asm/div64.h>
76#include "internal.h"
David Brazdil0f672f62019-12-10 10:32:29 +000077#include "shuffle.h"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000078
79/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
80static DEFINE_MUTEX(pcp_batch_high_lock);
81#define MIN_PERCPU_PAGELIST_FRACTION (8)
82
83#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
84DEFINE_PER_CPU(int, numa_node);
85EXPORT_PER_CPU_SYMBOL(numa_node);
86#endif
87
88DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
89
90#ifdef CONFIG_HAVE_MEMORYLESS_NODES
91/*
92 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
93 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
94 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
95 * defined in <linux/topology.h>.
96 */
97DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
98EXPORT_PER_CPU_SYMBOL(_numa_mem_);
99int _node_numa_mem_[MAX_NUMNODES];
100#endif
101
102/* work_structs for global per-cpu drains */
David Brazdil0f672f62019-12-10 10:32:29 +0000103struct pcpu_drain {
104 struct zone *zone;
105 struct work_struct work;
106};
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000107DEFINE_MUTEX(pcpu_drain_mutex);
David Brazdil0f672f62019-12-10 10:32:29 +0000108DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000109
110#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
111volatile unsigned long latent_entropy __latent_entropy;
112EXPORT_SYMBOL(latent_entropy);
113#endif
114
115/*
116 * Array of node states.
117 */
118nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
119 [N_POSSIBLE] = NODE_MASK_ALL,
120 [N_ONLINE] = { { [0] = 1UL } },
121#ifndef CONFIG_NUMA
122 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
123#ifdef CONFIG_HIGHMEM
124 [N_HIGH_MEMORY] = { { [0] = 1UL } },
125#endif
126 [N_MEMORY] = { { [0] = 1UL } },
127 [N_CPU] = { { [0] = 1UL } },
128#endif /* NUMA */
129};
130EXPORT_SYMBOL(node_states);
131
David Brazdil0f672f62019-12-10 10:32:29 +0000132atomic_long_t _totalram_pages __read_mostly;
133EXPORT_SYMBOL(_totalram_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000134unsigned long totalreserve_pages __read_mostly;
135unsigned long totalcma_pages __read_mostly;
136
137int percpu_pagelist_fraction;
138gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
David Brazdil0f672f62019-12-10 10:32:29 +0000139#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
140DEFINE_STATIC_KEY_TRUE(init_on_alloc);
141#else
142DEFINE_STATIC_KEY_FALSE(init_on_alloc);
143#endif
144EXPORT_SYMBOL(init_on_alloc);
145
146#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
147DEFINE_STATIC_KEY_TRUE(init_on_free);
148#else
149DEFINE_STATIC_KEY_FALSE(init_on_free);
150#endif
151EXPORT_SYMBOL(init_on_free);
152
153static int __init early_init_on_alloc(char *buf)
154{
155 int ret;
156 bool bool_result;
157
158 if (!buf)
159 return -EINVAL;
160 ret = kstrtobool(buf, &bool_result);
161 if (bool_result && page_poisoning_enabled())
162 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
163 if (bool_result)
164 static_branch_enable(&init_on_alloc);
165 else
166 static_branch_disable(&init_on_alloc);
167 return ret;
168}
169early_param("init_on_alloc", early_init_on_alloc);
170
171static int __init early_init_on_free(char *buf)
172{
173 int ret;
174 bool bool_result;
175
176 if (!buf)
177 return -EINVAL;
178 ret = kstrtobool(buf, &bool_result);
179 if (bool_result && page_poisoning_enabled())
180 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
181 if (bool_result)
182 static_branch_enable(&init_on_free);
183 else
184 static_branch_disable(&init_on_free);
185 return ret;
186}
187early_param("init_on_free", early_init_on_free);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000188
189/*
190 * A cached value of the page's pageblock's migratetype, used when the page is
191 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
192 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
193 * Also the migratetype set in the page does not necessarily match the pcplist
194 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
195 * other index - this ensures that it will be put on the correct CMA freelist.
196 */
197static inline int get_pcppage_migratetype(struct page *page)
198{
199 return page->index;
200}
201
202static inline void set_pcppage_migratetype(struct page *page, int migratetype)
203{
204 page->index = migratetype;
205}
206
207#ifdef CONFIG_PM_SLEEP
208/*
209 * The following functions are used by the suspend/hibernate code to temporarily
210 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
211 * while devices are suspended. To avoid races with the suspend/hibernate code,
212 * they should always be called with system_transition_mutex held
213 * (gfp_allowed_mask also should only be modified with system_transition_mutex
214 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
215 * with that modification).
216 */
217
218static gfp_t saved_gfp_mask;
219
220void pm_restore_gfp_mask(void)
221{
222 WARN_ON(!mutex_is_locked(&system_transition_mutex));
223 if (saved_gfp_mask) {
224 gfp_allowed_mask = saved_gfp_mask;
225 saved_gfp_mask = 0;
226 }
227}
228
229void pm_restrict_gfp_mask(void)
230{
231 WARN_ON(!mutex_is_locked(&system_transition_mutex));
232 WARN_ON(saved_gfp_mask);
233 saved_gfp_mask = gfp_allowed_mask;
234 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
235}
236
237bool pm_suspended_storage(void)
238{
239 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
240 return false;
241 return true;
242}
243#endif /* CONFIG_PM_SLEEP */
244
245#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
246unsigned int pageblock_order __read_mostly;
247#endif
248
249static void __free_pages_ok(struct page *page, unsigned int order);
250
251/*
252 * results with 256, 32 in the lowmem_reserve sysctl:
253 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
254 * 1G machine -> (16M dma, 784M normal, 224M high)
255 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
256 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
257 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
258 *
259 * TBD: should special case ZONE_DMA32 machines here - in those we normally
260 * don't need any ZONE_NORMAL reservation
261 */
262int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
263#ifdef CONFIG_ZONE_DMA
264 [ZONE_DMA] = 256,
265#endif
266#ifdef CONFIG_ZONE_DMA32
267 [ZONE_DMA32] = 256,
268#endif
269 [ZONE_NORMAL] = 32,
270#ifdef CONFIG_HIGHMEM
271 [ZONE_HIGHMEM] = 0,
272#endif
273 [ZONE_MOVABLE] = 0,
274};
275
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000276static char * const zone_names[MAX_NR_ZONES] = {
277#ifdef CONFIG_ZONE_DMA
278 "DMA",
279#endif
280#ifdef CONFIG_ZONE_DMA32
281 "DMA32",
282#endif
283 "Normal",
284#ifdef CONFIG_HIGHMEM
285 "HighMem",
286#endif
287 "Movable",
288#ifdef CONFIG_ZONE_DEVICE
289 "Device",
290#endif
291};
292
David Brazdil0f672f62019-12-10 10:32:29 +0000293const char * const migratetype_names[MIGRATE_TYPES] = {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000294 "Unmovable",
295 "Movable",
296 "Reclaimable",
297 "HighAtomic",
298#ifdef CONFIG_CMA
299 "CMA",
300#endif
301#ifdef CONFIG_MEMORY_ISOLATION
302 "Isolate",
303#endif
304};
305
306compound_page_dtor * const compound_page_dtors[] = {
307 NULL,
308 free_compound_page,
309#ifdef CONFIG_HUGETLB_PAGE
310 free_huge_page,
311#endif
312#ifdef CONFIG_TRANSPARENT_HUGEPAGE
313 free_transhuge_page,
314#endif
315};
316
317int min_free_kbytes = 1024;
318int user_min_free_kbytes = -1;
David Brazdil0f672f62019-12-10 10:32:29 +0000319#ifdef CONFIG_DISCONTIGMEM
320/*
321 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
322 * are not on separate NUMA nodes. Functionally this works but with
323 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
324 * quite small. By default, do not boost watermarks on discontigmem as in
325 * many cases very high-order allocations like THP are likely to be
326 * unsupported and the premature reclaim offsets the advantage of long-term
327 * fragmentation avoidance.
328 */
329int watermark_boost_factor __read_mostly;
330#else
331int watermark_boost_factor __read_mostly = 15000;
332#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000333int watermark_scale_factor = 10;
334
David Brazdil0f672f62019-12-10 10:32:29 +0000335static unsigned long nr_kernel_pages __initdata;
336static unsigned long nr_all_pages __initdata;
337static unsigned long dma_reserve __initdata;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000338
339#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
David Brazdil0f672f62019-12-10 10:32:29 +0000340static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
341static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000342static unsigned long required_kernelcore __initdata;
343static unsigned long required_kernelcore_percent __initdata;
344static unsigned long required_movablecore __initdata;
345static unsigned long required_movablecore_percent __initdata;
David Brazdil0f672f62019-12-10 10:32:29 +0000346static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000347static bool mirrored_kernelcore __meminitdata;
348
349/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
350int movable_zone;
351EXPORT_SYMBOL(movable_zone);
352#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
353
354#if MAX_NUMNODES > 1
David Brazdil0f672f62019-12-10 10:32:29 +0000355unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
356unsigned int nr_online_nodes __read_mostly = 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000357EXPORT_SYMBOL(nr_node_ids);
358EXPORT_SYMBOL(nr_online_nodes);
359#endif
360
361int page_group_by_mobility_disabled __read_mostly;
362
363#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
David Brazdil0f672f62019-12-10 10:32:29 +0000364/*
365 * During boot we initialize deferred pages on-demand, as needed, but once
366 * page_alloc_init_late() has finished, the deferred pages are all initialized,
367 * and we can permanently disable that path.
368 */
369static DEFINE_STATIC_KEY_TRUE(deferred_pages);
370
371/*
372 * Calling kasan_free_pages() only after deferred memory initialization
373 * has completed. Poisoning pages during deferred memory init will greatly
374 * lengthen the process and cause problem in large memory systems as the
375 * deferred pages initialization is done with interrupt disabled.
376 *
377 * Assuming that there will be no reference to those newly initialized
378 * pages before they are ever allocated, this should have no effect on
379 * KASAN memory tracking as the poison will be properly inserted at page
380 * allocation time. The only corner case is when pages are allocated by
381 * on-demand allocation and then freed again before the deferred pages
382 * initialization is done, but this is not likely to happen.
383 */
384static inline void kasan_free_nondeferred_pages(struct page *page, int order)
385{
386 if (!static_branch_unlikely(&deferred_pages))
387 kasan_free_pages(page, order);
388}
389
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000390/* Returns true if the struct page for the pfn is uninitialised */
391static inline bool __meminit early_page_uninitialised(unsigned long pfn)
392{
393 int nid = early_pfn_to_nid(pfn);
394
395 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
396 return true;
397
398 return false;
399}
400
401/*
David Brazdil0f672f62019-12-10 10:32:29 +0000402 * Returns true when the remaining initialisation should be deferred until
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000403 * later in the boot cycle when it can be parallelised.
404 */
David Brazdil0f672f62019-12-10 10:32:29 +0000405static bool __meminit
406defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000407{
David Brazdil0f672f62019-12-10 10:32:29 +0000408 static unsigned long prev_end_pfn, nr_initialised;
409
410 /*
411 * prev_end_pfn static that contains the end of previous zone
412 * No need to protect because called very early in boot before smp_init.
413 */
414 if (prev_end_pfn != end_pfn) {
415 prev_end_pfn = end_pfn;
416 nr_initialised = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000417 }
418
David Brazdil0f672f62019-12-10 10:32:29 +0000419 /* Always populate low zones for address-constrained allocations */
420 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
421 return false;
422
423 /*
424 * We start only with one section of pages, more pages are added as
425 * needed until the rest of deferred pages are initialized.
426 */
427 nr_initialised++;
428 if ((nr_initialised > PAGES_PER_SECTION) &&
429 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
430 NODE_DATA(nid)->first_deferred_pfn = pfn;
431 return true;
432 }
433 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000434}
435#else
David Brazdil0f672f62019-12-10 10:32:29 +0000436#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
437
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000438static inline bool early_page_uninitialised(unsigned long pfn)
439{
440 return false;
441}
442
David Brazdil0f672f62019-12-10 10:32:29 +0000443static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000444{
David Brazdil0f672f62019-12-10 10:32:29 +0000445 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000446}
447#endif
448
449/* Return a pointer to the bitmap storing bits affecting a block of pages */
450static inline unsigned long *get_pageblock_bitmap(struct page *page,
451 unsigned long pfn)
452{
453#ifdef CONFIG_SPARSEMEM
David Brazdil0f672f62019-12-10 10:32:29 +0000454 return section_to_usemap(__pfn_to_section(pfn));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000455#else
456 return page_zone(page)->pageblock_flags;
457#endif /* CONFIG_SPARSEMEM */
458}
459
460static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
461{
462#ifdef CONFIG_SPARSEMEM
463 pfn &= (PAGES_PER_SECTION-1);
464 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
465#else
466 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
467 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
468#endif /* CONFIG_SPARSEMEM */
469}
470
471/**
472 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
473 * @page: The page within the block of interest
474 * @pfn: The target page frame number
475 * @end_bitidx: The last bit of interest to retrieve
476 * @mask: mask of bits that the caller is interested in
477 *
478 * Return: pageblock_bits flags
479 */
480static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
481 unsigned long pfn,
482 unsigned long end_bitidx,
483 unsigned long mask)
484{
485 unsigned long *bitmap;
486 unsigned long bitidx, word_bitidx;
487 unsigned long word;
488
489 bitmap = get_pageblock_bitmap(page, pfn);
490 bitidx = pfn_to_bitidx(page, pfn);
491 word_bitidx = bitidx / BITS_PER_LONG;
492 bitidx &= (BITS_PER_LONG-1);
493
494 word = bitmap[word_bitidx];
495 bitidx += end_bitidx;
496 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
497}
498
499unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
500 unsigned long end_bitidx,
501 unsigned long mask)
502{
503 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
504}
505
506static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
507{
508 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
509}
510
511/**
512 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
513 * @page: The page within the block of interest
514 * @flags: The flags to set
515 * @pfn: The target page frame number
516 * @end_bitidx: The last bit of interest
517 * @mask: mask of bits that the caller is interested in
518 */
519void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
520 unsigned long pfn,
521 unsigned long end_bitidx,
522 unsigned long mask)
523{
524 unsigned long *bitmap;
525 unsigned long bitidx, word_bitidx;
526 unsigned long old_word, word;
527
528 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
David Brazdil0f672f62019-12-10 10:32:29 +0000529 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000530
531 bitmap = get_pageblock_bitmap(page, pfn);
532 bitidx = pfn_to_bitidx(page, pfn);
533 word_bitidx = bitidx / BITS_PER_LONG;
534 bitidx &= (BITS_PER_LONG-1);
535
536 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
537
538 bitidx += end_bitidx;
539 mask <<= (BITS_PER_LONG - bitidx - 1);
540 flags <<= (BITS_PER_LONG - bitidx - 1);
541
542 word = READ_ONCE(bitmap[word_bitidx]);
543 for (;;) {
544 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
545 if (word == old_word)
546 break;
547 word = old_word;
548 }
549}
550
551void set_pageblock_migratetype(struct page *page, int migratetype)
552{
553 if (unlikely(page_group_by_mobility_disabled &&
554 migratetype < MIGRATE_PCPTYPES))
555 migratetype = MIGRATE_UNMOVABLE;
556
557 set_pageblock_flags_group(page, (unsigned long)migratetype,
558 PB_migrate, PB_migrate_end);
559}
560
561#ifdef CONFIG_DEBUG_VM
562static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
563{
564 int ret = 0;
565 unsigned seq;
566 unsigned long pfn = page_to_pfn(page);
567 unsigned long sp, start_pfn;
568
569 do {
570 seq = zone_span_seqbegin(zone);
571 start_pfn = zone->zone_start_pfn;
572 sp = zone->spanned_pages;
573 if (!zone_spans_pfn(zone, pfn))
574 ret = 1;
575 } while (zone_span_seqretry(zone, seq));
576
577 if (ret)
578 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
579 pfn, zone_to_nid(zone), zone->name,
580 start_pfn, start_pfn + sp);
581
582 return ret;
583}
584
585static int page_is_consistent(struct zone *zone, struct page *page)
586{
587 if (!pfn_valid_within(page_to_pfn(page)))
588 return 0;
589 if (zone != page_zone(page))
590 return 0;
591
592 return 1;
593}
594/*
595 * Temporary debugging check for pages not lying within a given zone.
596 */
597static int __maybe_unused bad_range(struct zone *zone, struct page *page)
598{
599 if (page_outside_zone_boundaries(zone, page))
600 return 1;
601 if (!page_is_consistent(zone, page))
602 return 1;
603
604 return 0;
605}
606#else
607static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
608{
609 return 0;
610}
611#endif
612
613static void bad_page(struct page *page, const char *reason,
614 unsigned long bad_flags)
615{
616 static unsigned long resume;
617 static unsigned long nr_shown;
618 static unsigned long nr_unshown;
619
620 /*
621 * Allow a burst of 60 reports, then keep quiet for that minute;
622 * or allow a steady drip of one report per second.
623 */
624 if (nr_shown == 60) {
625 if (time_before(jiffies, resume)) {
626 nr_unshown++;
627 goto out;
628 }
629 if (nr_unshown) {
630 pr_alert(
631 "BUG: Bad page state: %lu messages suppressed\n",
632 nr_unshown);
633 nr_unshown = 0;
634 }
635 nr_shown = 0;
636 }
637 if (nr_shown++ == 0)
638 resume = jiffies + 60 * HZ;
639
640 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
641 current->comm, page_to_pfn(page));
642 __dump_page(page, reason);
643 bad_flags &= page->flags;
644 if (bad_flags)
645 pr_alert("bad because of flags: %#lx(%pGp)\n",
646 bad_flags, &bad_flags);
647 dump_page_owner(page);
648
649 print_modules();
650 dump_stack();
651out:
652 /* Leave bad fields for debug, except PageBuddy could make trouble */
653 page_mapcount_reset(page); /* remove PageBuddy */
654 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
655}
656
657/*
658 * Higher-order pages are called "compound pages". They are structured thusly:
659 *
660 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
661 *
662 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
663 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
664 *
665 * The first tail page's ->compound_dtor holds the offset in array of compound
666 * page destructors. See compound_page_dtors.
667 *
668 * The first tail page's ->compound_order holds the order of allocation.
669 * This usage means that zero-order pages may not be compound.
670 */
671
672void free_compound_page(struct page *page)
673{
David Brazdil0f672f62019-12-10 10:32:29 +0000674 mem_cgroup_uncharge(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000675 __free_pages_ok(page, compound_order(page));
676}
677
678void prep_compound_page(struct page *page, unsigned int order)
679{
680 int i;
681 int nr_pages = 1 << order;
682
683 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
684 set_compound_order(page, order);
685 __SetPageHead(page);
686 for (i = 1; i < nr_pages; i++) {
687 struct page *p = page + i;
688 set_page_count(p, 0);
689 p->mapping = TAIL_MAPPING;
690 set_compound_head(p, page);
691 }
692 atomic_set(compound_mapcount_ptr(page), -1);
693}
694
695#ifdef CONFIG_DEBUG_PAGEALLOC
696unsigned int _debug_guardpage_minorder;
David Brazdil0f672f62019-12-10 10:32:29 +0000697
Olivier Deprez0e641232021-09-23 10:07:05 +0200698bool _debug_pagealloc_enabled_early __read_mostly
699 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
700EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
David Brazdil0f672f62019-12-10 10:32:29 +0000701DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000702EXPORT_SYMBOL(_debug_pagealloc_enabled);
David Brazdil0f672f62019-12-10 10:32:29 +0000703
704DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000705
706static int __init early_debug_pagealloc(char *buf)
707{
Olivier Deprez0e641232021-09-23 10:07:05 +0200708 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000709}
710early_param("debug_pagealloc", early_debug_pagealloc);
711
Olivier Deprez0e641232021-09-23 10:07:05 +0200712void init_debug_pagealloc(void)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000713{
714 if (!debug_pagealloc_enabled())
715 return;
716
Olivier Deprez0e641232021-09-23 10:07:05 +0200717 static_branch_enable(&_debug_pagealloc_enabled);
718
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000719 if (!debug_guardpage_minorder())
720 return;
721
David Brazdil0f672f62019-12-10 10:32:29 +0000722 static_branch_enable(&_debug_guardpage_enabled);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000723}
724
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000725static int __init debug_guardpage_minorder_setup(char *buf)
726{
727 unsigned long res;
728
729 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
730 pr_err("Bad debug_guardpage_minorder value\n");
731 return 0;
732 }
733 _debug_guardpage_minorder = res;
734 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
735 return 0;
736}
737early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
738
739static inline bool set_page_guard(struct zone *zone, struct page *page,
740 unsigned int order, int migratetype)
741{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000742 if (!debug_guardpage_enabled())
743 return false;
744
745 if (order >= debug_guardpage_minorder())
746 return false;
747
David Brazdil0f672f62019-12-10 10:32:29 +0000748 __SetPageGuard(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000749 INIT_LIST_HEAD(&page->lru);
750 set_page_private(page, order);
751 /* Guard pages are not available for any usage */
752 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
753
754 return true;
755}
756
757static inline void clear_page_guard(struct zone *zone, struct page *page,
758 unsigned int order, int migratetype)
759{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000760 if (!debug_guardpage_enabled())
761 return;
762
David Brazdil0f672f62019-12-10 10:32:29 +0000763 __ClearPageGuard(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000764
765 set_page_private(page, 0);
766 if (!is_migrate_isolate(migratetype))
767 __mod_zone_freepage_state(zone, (1 << order), migratetype);
768}
769#else
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000770static inline bool set_page_guard(struct zone *zone, struct page *page,
771 unsigned int order, int migratetype) { return false; }
772static inline void clear_page_guard(struct zone *zone, struct page *page,
773 unsigned int order, int migratetype) {}
774#endif
775
776static inline void set_page_order(struct page *page, unsigned int order)
777{
778 set_page_private(page, order);
779 __SetPageBuddy(page);
780}
781
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000782/*
783 * This function checks whether a page is free && is the buddy
784 * we can coalesce a page and its buddy if
785 * (a) the buddy is not in a hole (check before calling!) &&
786 * (b) the buddy is in the buddy system &&
787 * (c) a page and its buddy have the same order &&
788 * (d) a page and its buddy are in the same zone.
789 *
790 * For recording whether a page is in the buddy system, we set PageBuddy.
791 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
792 *
793 * For recording page's order, we use page_private(page).
794 */
795static inline int page_is_buddy(struct page *page, struct page *buddy,
796 unsigned int order)
797{
798 if (page_is_guard(buddy) && page_order(buddy) == order) {
799 if (page_zone_id(page) != page_zone_id(buddy))
800 return 0;
801
802 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
803
804 return 1;
805 }
806
807 if (PageBuddy(buddy) && page_order(buddy) == order) {
808 /*
809 * zone check is done late to avoid uselessly
810 * calculating zone/node ids for pages that could
811 * never merge.
812 */
813 if (page_zone_id(page) != page_zone_id(buddy))
814 return 0;
815
816 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
817
818 return 1;
819 }
820 return 0;
821}
822
David Brazdil0f672f62019-12-10 10:32:29 +0000823#ifdef CONFIG_COMPACTION
824static inline struct capture_control *task_capc(struct zone *zone)
825{
826 struct capture_control *capc = current->capture_control;
827
828 return capc &&
829 !(current->flags & PF_KTHREAD) &&
830 !capc->page &&
831 capc->cc->zone == zone &&
832 capc->cc->direct_compaction ? capc : NULL;
833}
834
835static inline bool
836compaction_capture(struct capture_control *capc, struct page *page,
837 int order, int migratetype)
838{
839 if (!capc || order != capc->cc->order)
840 return false;
841
842 /* Do not accidentally pollute CMA or isolated regions*/
843 if (is_migrate_cma(migratetype) ||
844 is_migrate_isolate(migratetype))
845 return false;
846
847 /*
848 * Do not let lower order allocations polluate a movable pageblock.
849 * This might let an unmovable request use a reclaimable pageblock
850 * and vice-versa but no more than normal fallback logic which can
851 * have trouble finding a high-order free page.
852 */
853 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
854 return false;
855
856 capc->page = page;
857 return true;
858}
859
860#else
861static inline struct capture_control *task_capc(struct zone *zone)
862{
863 return NULL;
864}
865
866static inline bool
867compaction_capture(struct capture_control *capc, struct page *page,
868 int order, int migratetype)
869{
870 return false;
871}
872#endif /* CONFIG_COMPACTION */
873
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000874/*
875 * Freeing function for a buddy system allocator.
876 *
877 * The concept of a buddy system is to maintain direct-mapped table
878 * (containing bit values) for memory blocks of various "orders".
879 * The bottom level table contains the map for the smallest allocatable
880 * units of memory (here, pages), and each level above it describes
881 * pairs of units from the levels below, hence, "buddies".
882 * At a high level, all that happens here is marking the table entry
883 * at the bottom level available, and propagating the changes upward
884 * as necessary, plus some accounting needed to play nicely with other
885 * parts of the VM system.
886 * At each level, we keep a list of pages, which are heads of continuous
887 * free pages of length of (1 << order) and marked with PageBuddy.
888 * Page's order is recorded in page_private(page) field.
889 * So when we are allocating or freeing one, we can derive the state of the
890 * other. That is, if we allocate a small block, and both were
891 * free, the remainder of the region must be split into blocks.
892 * If a block is freed, and its buddy is also free, then this
893 * triggers coalescing into a block of larger size.
894 *
895 * -- nyc
896 */
897
898static inline void __free_one_page(struct page *page,
899 unsigned long pfn,
900 struct zone *zone, unsigned int order,
901 int migratetype)
902{
903 unsigned long combined_pfn;
904 unsigned long uninitialized_var(buddy_pfn);
905 struct page *buddy;
906 unsigned int max_order;
David Brazdil0f672f62019-12-10 10:32:29 +0000907 struct capture_control *capc = task_capc(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000908
Olivier Deprez0e641232021-09-23 10:07:05 +0200909 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000910
911 VM_BUG_ON(!zone_is_initialized(zone));
912 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
913
914 VM_BUG_ON(migratetype == -1);
915 if (likely(!is_migrate_isolate(migratetype)))
916 __mod_zone_freepage_state(zone, 1 << order, migratetype);
917
918 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
919 VM_BUG_ON_PAGE(bad_range(zone, page), page);
920
921continue_merging:
Olivier Deprez0e641232021-09-23 10:07:05 +0200922 while (order < max_order) {
David Brazdil0f672f62019-12-10 10:32:29 +0000923 if (compaction_capture(capc, page, order, migratetype)) {
924 __mod_zone_freepage_state(zone, -(1 << order),
925 migratetype);
926 return;
927 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000928 buddy_pfn = __find_buddy_pfn(pfn, order);
929 buddy = page + (buddy_pfn - pfn);
930
931 if (!pfn_valid_within(buddy_pfn))
932 goto done_merging;
933 if (!page_is_buddy(page, buddy, order))
934 goto done_merging;
935 /*
936 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
937 * merge with it and move up one order.
938 */
David Brazdil0f672f62019-12-10 10:32:29 +0000939 if (page_is_guard(buddy))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000940 clear_page_guard(zone, buddy, order, migratetype);
David Brazdil0f672f62019-12-10 10:32:29 +0000941 else
942 del_page_from_free_area(buddy, &zone->free_area[order]);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000943 combined_pfn = buddy_pfn & pfn;
944 page = page + (combined_pfn - pfn);
945 pfn = combined_pfn;
946 order++;
947 }
Olivier Deprez0e641232021-09-23 10:07:05 +0200948 if (order < MAX_ORDER - 1) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000949 /* If we are here, it means order is >= pageblock_order.
950 * We want to prevent merge between freepages on isolate
951 * pageblock and normal pageblock. Without this, pageblock
952 * isolation could cause incorrect freepage or CMA accounting.
953 *
954 * We don't want to hit this code for the more frequent
955 * low-order merging.
956 */
957 if (unlikely(has_isolate_pageblock(zone))) {
958 int buddy_mt;
959
960 buddy_pfn = __find_buddy_pfn(pfn, order);
961 buddy = page + (buddy_pfn - pfn);
962 buddy_mt = get_pageblock_migratetype(buddy);
963
964 if (migratetype != buddy_mt
965 && (is_migrate_isolate(migratetype) ||
966 is_migrate_isolate(buddy_mt)))
967 goto done_merging;
968 }
Olivier Deprez0e641232021-09-23 10:07:05 +0200969 max_order = order + 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000970 goto continue_merging;
971 }
972
973done_merging:
974 set_page_order(page, order);
975
976 /*
977 * If this is not the largest possible page, check if the buddy
978 * of the next-highest order is free. If it is, it's possible
979 * that pages are being freed that will coalesce soon. In case,
980 * that is happening, add the free page to the tail of the list
981 * so it's less likely to be used soon and more likely to be merged
982 * as a higher order page
983 */
David Brazdil0f672f62019-12-10 10:32:29 +0000984 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
985 && !is_shuffle_order(order)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000986 struct page *higher_page, *higher_buddy;
987 combined_pfn = buddy_pfn & pfn;
988 higher_page = page + (combined_pfn - pfn);
989 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
990 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
991 if (pfn_valid_within(buddy_pfn) &&
992 page_is_buddy(higher_page, higher_buddy, order + 1)) {
David Brazdil0f672f62019-12-10 10:32:29 +0000993 add_to_free_area_tail(page, &zone->free_area[order],
994 migratetype);
995 return;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000996 }
997 }
998
David Brazdil0f672f62019-12-10 10:32:29 +0000999 if (is_shuffle_order(order))
1000 add_to_free_area_random(page, &zone->free_area[order],
1001 migratetype);
1002 else
1003 add_to_free_area(page, &zone->free_area[order], migratetype);
1004
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001005}
1006
1007/*
1008 * A bad page could be due to a number of fields. Instead of multiple branches,
1009 * try and check multiple fields with one check. The caller must do a detailed
1010 * check if necessary.
1011 */
1012static inline bool page_expected_state(struct page *page,
1013 unsigned long check_flags)
1014{
1015 if (unlikely(atomic_read(&page->_mapcount) != -1))
1016 return false;
1017
1018 if (unlikely((unsigned long)page->mapping |
1019 page_ref_count(page) |
1020#ifdef CONFIG_MEMCG
1021 (unsigned long)page->mem_cgroup |
1022#endif
1023 (page->flags & check_flags)))
1024 return false;
1025
1026 return true;
1027}
1028
1029static void free_pages_check_bad(struct page *page)
1030{
1031 const char *bad_reason;
1032 unsigned long bad_flags;
1033
1034 bad_reason = NULL;
1035 bad_flags = 0;
1036
1037 if (unlikely(atomic_read(&page->_mapcount) != -1))
1038 bad_reason = "nonzero mapcount";
1039 if (unlikely(page->mapping != NULL))
1040 bad_reason = "non-NULL mapping";
1041 if (unlikely(page_ref_count(page) != 0))
1042 bad_reason = "nonzero _refcount";
1043 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1044 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1045 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1046 }
1047#ifdef CONFIG_MEMCG
1048 if (unlikely(page->mem_cgroup))
1049 bad_reason = "page still charged to cgroup";
1050#endif
1051 bad_page(page, bad_reason, bad_flags);
1052}
1053
1054static inline int free_pages_check(struct page *page)
1055{
1056 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1057 return 0;
1058
1059 /* Something has gone sideways, find it */
1060 free_pages_check_bad(page);
1061 return 1;
1062}
1063
1064static int free_tail_pages_check(struct page *head_page, struct page *page)
1065{
1066 int ret = 1;
1067
1068 /*
1069 * We rely page->lru.next never has bit 0 set, unless the page
1070 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1071 */
1072 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1073
1074 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1075 ret = 0;
1076 goto out;
1077 }
1078 switch (page - head_page) {
1079 case 1:
1080 /* the first tail page: ->mapping may be compound_mapcount() */
1081 if (unlikely(compound_mapcount(page))) {
1082 bad_page(page, "nonzero compound_mapcount", 0);
1083 goto out;
1084 }
1085 break;
1086 case 2:
1087 /*
1088 * the second tail page: ->mapping is
1089 * deferred_list.next -- ignore value.
1090 */
1091 break;
1092 default:
1093 if (page->mapping != TAIL_MAPPING) {
1094 bad_page(page, "corrupted mapping in tail page", 0);
1095 goto out;
1096 }
1097 break;
1098 }
1099 if (unlikely(!PageTail(page))) {
1100 bad_page(page, "PageTail not set", 0);
1101 goto out;
1102 }
1103 if (unlikely(compound_head(page) != head_page)) {
1104 bad_page(page, "compound_head not consistent", 0);
1105 goto out;
1106 }
1107 ret = 0;
1108out:
1109 page->mapping = NULL;
1110 clear_compound_head(page);
1111 return ret;
1112}
1113
David Brazdil0f672f62019-12-10 10:32:29 +00001114static void kernel_init_free_pages(struct page *page, int numpages)
1115{
1116 int i;
1117
1118 for (i = 0; i < numpages; i++)
1119 clear_highpage(page + i);
1120}
1121
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001122static __always_inline bool free_pages_prepare(struct page *page,
1123 unsigned int order, bool check_free)
1124{
1125 int bad = 0;
1126
1127 VM_BUG_ON_PAGE(PageTail(page), page);
1128
1129 trace_mm_page_free(page, order);
1130
1131 /*
1132 * Check tail pages before head page information is cleared to
1133 * avoid checking PageCompound for order-0 pages.
1134 */
1135 if (unlikely(order)) {
1136 bool compound = PageCompound(page);
1137 int i;
1138
1139 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1140
1141 if (compound)
1142 ClearPageDoubleMap(page);
1143 for (i = 1; i < (1 << order); i++) {
1144 if (compound)
1145 bad += free_tail_pages_check(page, page + i);
1146 if (unlikely(free_pages_check(page + i))) {
1147 bad++;
1148 continue;
1149 }
1150 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1151 }
1152 }
1153 if (PageMappingFlags(page))
1154 page->mapping = NULL;
1155 if (memcg_kmem_enabled() && PageKmemcg(page))
David Brazdil0f672f62019-12-10 10:32:29 +00001156 __memcg_kmem_uncharge(page, order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001157 if (check_free)
1158 bad += free_pages_check(page);
1159 if (bad)
1160 return false;
1161
1162 page_cpupid_reset_last(page);
1163 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1164 reset_page_owner(page, order);
1165
1166 if (!PageHighMem(page)) {
1167 debug_check_no_locks_freed(page_address(page),
1168 PAGE_SIZE << order);
1169 debug_check_no_obj_freed(page_address(page),
1170 PAGE_SIZE << order);
1171 }
David Brazdil0f672f62019-12-10 10:32:29 +00001172 if (want_init_on_free())
1173 kernel_init_free_pages(page, 1 << order);
1174
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001175 kernel_poison_pages(page, 1 << order, 0);
David Brazdil0f672f62019-12-10 10:32:29 +00001176 /*
1177 * arch_free_page() can make the page's contents inaccessible. s390
1178 * does this. So nothing which can access the page's contents should
1179 * happen after this.
1180 */
1181 arch_free_page(page, order);
1182
Olivier Deprez0e641232021-09-23 10:07:05 +02001183 if (debug_pagealloc_enabled_static())
David Brazdil0f672f62019-12-10 10:32:29 +00001184 kernel_map_pages(page, 1 << order, 0);
1185
1186 kasan_free_nondeferred_pages(page, order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001187
1188 return true;
1189}
1190
1191#ifdef CONFIG_DEBUG_VM
David Brazdil0f672f62019-12-10 10:32:29 +00001192/*
1193 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1194 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1195 * moved from pcp lists to free lists.
1196 */
1197static bool free_pcp_prepare(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001198{
1199 return free_pages_prepare(page, 0, true);
1200}
1201
David Brazdil0f672f62019-12-10 10:32:29 +00001202static bool bulkfree_pcp_prepare(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001203{
Olivier Deprez0e641232021-09-23 10:07:05 +02001204 if (debug_pagealloc_enabled_static())
David Brazdil0f672f62019-12-10 10:32:29 +00001205 return free_pages_check(page);
1206 else
1207 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001208}
1209#else
David Brazdil0f672f62019-12-10 10:32:29 +00001210/*
1211 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1212 * moving from pcp lists to free list in order to reduce overhead. With
1213 * debug_pagealloc enabled, they are checked also immediately when being freed
1214 * to the pcp lists.
1215 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001216static bool free_pcp_prepare(struct page *page)
1217{
Olivier Deprez0e641232021-09-23 10:07:05 +02001218 if (debug_pagealloc_enabled_static())
David Brazdil0f672f62019-12-10 10:32:29 +00001219 return free_pages_prepare(page, 0, true);
1220 else
1221 return free_pages_prepare(page, 0, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001222}
1223
1224static bool bulkfree_pcp_prepare(struct page *page)
1225{
1226 return free_pages_check(page);
1227}
1228#endif /* CONFIG_DEBUG_VM */
1229
1230static inline void prefetch_buddy(struct page *page)
1231{
1232 unsigned long pfn = page_to_pfn(page);
1233 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1234 struct page *buddy = page + (buddy_pfn - pfn);
1235
1236 prefetch(buddy);
1237}
1238
1239/*
1240 * Frees a number of pages from the PCP lists
1241 * Assumes all pages on list are in same zone, and of same order.
1242 * count is the number of pages to free.
1243 *
1244 * If the zone was previously in an "all pages pinned" state then look to
1245 * see if this freeing clears that state.
1246 *
1247 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1248 * pinned" detection logic.
1249 */
1250static void free_pcppages_bulk(struct zone *zone, int count,
1251 struct per_cpu_pages *pcp)
1252{
1253 int migratetype = 0;
1254 int batch_free = 0;
1255 int prefetch_nr = 0;
1256 bool isolated_pageblocks;
1257 struct page *page, *tmp;
1258 LIST_HEAD(head);
1259
Olivier Deprez0e641232021-09-23 10:07:05 +02001260 /*
1261 * Ensure proper count is passed which otherwise would stuck in the
1262 * below while (list_empty(list)) loop.
1263 */
1264 count = min(pcp->count, count);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001265 while (count) {
1266 struct list_head *list;
1267
1268 /*
1269 * Remove pages from lists in a round-robin fashion. A
1270 * batch_free count is maintained that is incremented when an
1271 * empty list is encountered. This is so more pages are freed
1272 * off fuller lists instead of spinning excessively around empty
1273 * lists
1274 */
1275 do {
1276 batch_free++;
1277 if (++migratetype == MIGRATE_PCPTYPES)
1278 migratetype = 0;
1279 list = &pcp->lists[migratetype];
1280 } while (list_empty(list));
1281
1282 /* This is the only non-empty list. Free them all. */
1283 if (batch_free == MIGRATE_PCPTYPES)
1284 batch_free = count;
1285
1286 do {
1287 page = list_last_entry(list, struct page, lru);
1288 /* must delete to avoid corrupting pcp list */
1289 list_del(&page->lru);
1290 pcp->count--;
1291
1292 if (bulkfree_pcp_prepare(page))
1293 continue;
1294
1295 list_add_tail(&page->lru, &head);
1296
1297 /*
1298 * We are going to put the page back to the global
1299 * pool, prefetch its buddy to speed up later access
1300 * under zone->lock. It is believed the overhead of
1301 * an additional test and calculating buddy_pfn here
1302 * can be offset by reduced memory latency later. To
1303 * avoid excessive prefetching due to large count, only
1304 * prefetch buddy for the first pcp->batch nr of pages.
1305 */
1306 if (prefetch_nr++ < pcp->batch)
1307 prefetch_buddy(page);
1308 } while (--count && --batch_free && !list_empty(list));
1309 }
1310
1311 spin_lock(&zone->lock);
1312 isolated_pageblocks = has_isolate_pageblock(zone);
1313
1314 /*
1315 * Use safe version since after __free_one_page(),
1316 * page->lru.next will not point to original list.
1317 */
1318 list_for_each_entry_safe(page, tmp, &head, lru) {
1319 int mt = get_pcppage_migratetype(page);
1320 /* MIGRATE_ISOLATE page should not go to pcplists */
1321 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1322 /* Pageblock could have been isolated meanwhile */
1323 if (unlikely(isolated_pageblocks))
1324 mt = get_pageblock_migratetype(page);
1325
1326 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1327 trace_mm_page_pcpu_drain(page, 0, mt);
1328 }
1329 spin_unlock(&zone->lock);
1330}
1331
1332static void free_one_page(struct zone *zone,
1333 struct page *page, unsigned long pfn,
1334 unsigned int order,
1335 int migratetype)
1336{
1337 spin_lock(&zone->lock);
1338 if (unlikely(has_isolate_pageblock(zone) ||
1339 is_migrate_isolate(migratetype))) {
1340 migratetype = get_pfnblock_migratetype(page, pfn);
1341 }
1342 __free_one_page(page, pfn, zone, order, migratetype);
1343 spin_unlock(&zone->lock);
1344}
1345
1346static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1347 unsigned long zone, int nid)
1348{
1349 mm_zero_struct_page(page);
1350 set_page_links(page, zone, nid, pfn);
1351 init_page_count(page);
1352 page_mapcount_reset(page);
1353 page_cpupid_reset_last(page);
David Brazdil0f672f62019-12-10 10:32:29 +00001354 page_kasan_tag_reset(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001355
1356 INIT_LIST_HEAD(&page->lru);
1357#ifdef WANT_PAGE_VIRTUAL
1358 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1359 if (!is_highmem_idx(zone))
1360 set_page_address(page, __va(pfn << PAGE_SHIFT));
1361#endif
1362}
1363
1364#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1365static void __meminit init_reserved_page(unsigned long pfn)
1366{
1367 pg_data_t *pgdat;
1368 int nid, zid;
1369
1370 if (!early_page_uninitialised(pfn))
1371 return;
1372
1373 nid = early_pfn_to_nid(pfn);
1374 pgdat = NODE_DATA(nid);
1375
1376 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1377 struct zone *zone = &pgdat->node_zones[zid];
1378
1379 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1380 break;
1381 }
1382 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1383}
1384#else
1385static inline void init_reserved_page(unsigned long pfn)
1386{
1387}
1388#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1389
1390/*
1391 * Initialised pages do not have PageReserved set. This function is
1392 * called for each range allocated by the bootmem allocator and
1393 * marks the pages PageReserved. The remaining valid pages are later
1394 * sent to the buddy page allocator.
1395 */
1396void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1397{
1398 unsigned long start_pfn = PFN_DOWN(start);
1399 unsigned long end_pfn = PFN_UP(end);
1400
1401 for (; start_pfn < end_pfn; start_pfn++) {
1402 if (pfn_valid(start_pfn)) {
1403 struct page *page = pfn_to_page(start_pfn);
1404
1405 init_reserved_page(start_pfn);
1406
1407 /* Avoid false-positive PageTail() */
1408 INIT_LIST_HEAD(&page->lru);
1409
David Brazdil0f672f62019-12-10 10:32:29 +00001410 /*
1411 * no need for atomic set_bit because the struct
1412 * page is not visible yet so nobody should
1413 * access it yet.
1414 */
1415 __SetPageReserved(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001416 }
1417 }
1418}
1419
1420static void __free_pages_ok(struct page *page, unsigned int order)
1421{
1422 unsigned long flags;
1423 int migratetype;
1424 unsigned long pfn = page_to_pfn(page);
1425
1426 if (!free_pages_prepare(page, order, true))
1427 return;
1428
1429 migratetype = get_pfnblock_migratetype(page, pfn);
1430 local_irq_save(flags);
1431 __count_vm_events(PGFREE, 1 << order);
1432 free_one_page(page_zone(page), page, pfn, order, migratetype);
1433 local_irq_restore(flags);
1434}
1435
David Brazdil0f672f62019-12-10 10:32:29 +00001436void __free_pages_core(struct page *page, unsigned int order)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001437{
1438 unsigned int nr_pages = 1 << order;
1439 struct page *p = page;
1440 unsigned int loop;
1441
1442 prefetchw(p);
1443 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1444 prefetchw(p + 1);
1445 __ClearPageReserved(p);
1446 set_page_count(p, 0);
1447 }
1448 __ClearPageReserved(p);
1449 set_page_count(p, 0);
1450
David Brazdil0f672f62019-12-10 10:32:29 +00001451 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001452 set_page_refcounted(page);
1453 __free_pages(page, order);
1454}
1455
1456#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1457 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1458
1459static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1460
1461int __meminit early_pfn_to_nid(unsigned long pfn)
1462{
1463 static DEFINE_SPINLOCK(early_pfn_lock);
1464 int nid;
1465
1466 spin_lock(&early_pfn_lock);
1467 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1468 if (nid < 0)
1469 nid = first_online_node;
1470 spin_unlock(&early_pfn_lock);
1471
1472 return nid;
1473}
1474#endif
1475
1476#ifdef CONFIG_NODES_SPAN_OTHER_NODES
David Brazdil0f672f62019-12-10 10:32:29 +00001477/* Only safe to use early in boot when initialisation is single-threaded */
1478static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001479{
1480 int nid;
1481
David Brazdil0f672f62019-12-10 10:32:29 +00001482 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001483 if (nid >= 0 && nid != node)
1484 return false;
1485 return true;
1486}
1487
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001488#else
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001489static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1490{
1491 return true;
1492}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001493#endif
1494
1495
David Brazdil0f672f62019-12-10 10:32:29 +00001496void __init memblock_free_pages(struct page *page, unsigned long pfn,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001497 unsigned int order)
1498{
1499 if (early_page_uninitialised(pfn))
1500 return;
David Brazdil0f672f62019-12-10 10:32:29 +00001501 __free_pages_core(page, order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001502}
1503
1504/*
1505 * Check that the whole (or subset of) a pageblock given by the interval of
1506 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1507 * with the migration of free compaction scanner. The scanners then need to
1508 * use only pfn_valid_within() check for arches that allow holes within
1509 * pageblocks.
1510 *
1511 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1512 *
1513 * It's possible on some configurations to have a setup like node0 node1 node0
1514 * i.e. it's possible that all pages within a zones range of pages do not
1515 * belong to a single zone. We assume that a border between node0 and node1
1516 * can occur within a single pageblock, but not a node0 node1 node0
1517 * interleaving within a single pageblock. It is therefore sufficient to check
1518 * the first and last page of a pageblock and avoid checking each individual
1519 * page in a pageblock.
1520 */
1521struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1522 unsigned long end_pfn, struct zone *zone)
1523{
1524 struct page *start_page;
1525 struct page *end_page;
1526
1527 /* end_pfn is one past the range we are checking */
1528 end_pfn--;
1529
1530 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1531 return NULL;
1532
1533 start_page = pfn_to_online_page(start_pfn);
1534 if (!start_page)
1535 return NULL;
1536
1537 if (page_zone(start_page) != zone)
1538 return NULL;
1539
1540 end_page = pfn_to_page(end_pfn);
1541
1542 /* This gives a shorter code than deriving page_zone(end_page) */
1543 if (page_zone_id(start_page) != page_zone_id(end_page))
1544 return NULL;
1545
1546 return start_page;
1547}
1548
1549void set_zone_contiguous(struct zone *zone)
1550{
1551 unsigned long block_start_pfn = zone->zone_start_pfn;
1552 unsigned long block_end_pfn;
1553
1554 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1555 for (; block_start_pfn < zone_end_pfn(zone);
1556 block_start_pfn = block_end_pfn,
1557 block_end_pfn += pageblock_nr_pages) {
1558
1559 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1560
1561 if (!__pageblock_pfn_to_page(block_start_pfn,
1562 block_end_pfn, zone))
1563 return;
Olivier Deprez0e641232021-09-23 10:07:05 +02001564 cond_resched();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001565 }
1566
1567 /* We confirm that there is no hole */
1568 zone->contiguous = true;
1569}
1570
1571void clear_zone_contiguous(struct zone *zone)
1572{
1573 zone->contiguous = false;
1574}
1575
1576#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1577static void __init deferred_free_range(unsigned long pfn,
1578 unsigned long nr_pages)
1579{
1580 struct page *page;
1581 unsigned long i;
1582
1583 if (!nr_pages)
1584 return;
1585
1586 page = pfn_to_page(pfn);
1587
1588 /* Free a large naturally-aligned chunk if possible */
1589 if (nr_pages == pageblock_nr_pages &&
1590 (pfn & (pageblock_nr_pages - 1)) == 0) {
1591 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
David Brazdil0f672f62019-12-10 10:32:29 +00001592 __free_pages_core(page, pageblock_order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001593 return;
1594 }
1595
1596 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1597 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1598 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
David Brazdil0f672f62019-12-10 10:32:29 +00001599 __free_pages_core(page, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001600 }
1601}
1602
1603/* Completion tracking for deferred_init_memmap() threads */
1604static atomic_t pgdat_init_n_undone __initdata;
1605static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1606
1607static inline void __init pgdat_init_report_one_done(void)
1608{
1609 if (atomic_dec_and_test(&pgdat_init_n_undone))
1610 complete(&pgdat_init_all_done_comp);
1611}
1612
1613/*
1614 * Returns true if page needs to be initialized or freed to buddy allocator.
1615 *
1616 * First we check if pfn is valid on architectures where it is possible to have
1617 * holes within pageblock_nr_pages. On systems where it is not possible, this
1618 * function is optimized out.
1619 *
1620 * Then, we check if a current large page is valid by only checking the validity
1621 * of the head pfn.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001622 */
David Brazdil0f672f62019-12-10 10:32:29 +00001623static inline bool __init deferred_pfn_valid(unsigned long pfn)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001624{
1625 if (!pfn_valid_within(pfn))
1626 return false;
1627 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1628 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001629 return true;
1630}
1631
1632/*
1633 * Free pages to buddy allocator. Try to free aligned pages in
1634 * pageblock_nr_pages sizes.
1635 */
David Brazdil0f672f62019-12-10 10:32:29 +00001636static void __init deferred_free_pages(unsigned long pfn,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001637 unsigned long end_pfn)
1638{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001639 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1640 unsigned long nr_free = 0;
1641
1642 for (; pfn < end_pfn; pfn++) {
David Brazdil0f672f62019-12-10 10:32:29 +00001643 if (!deferred_pfn_valid(pfn)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001644 deferred_free_range(pfn - nr_free, nr_free);
1645 nr_free = 0;
1646 } else if (!(pfn & nr_pgmask)) {
1647 deferred_free_range(pfn - nr_free, nr_free);
1648 nr_free = 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001649 } else {
1650 nr_free++;
1651 }
1652 }
1653 /* Free the last block of pages to allocator */
1654 deferred_free_range(pfn - nr_free, nr_free);
1655}
1656
1657/*
1658 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1659 * by performing it only once every pageblock_nr_pages.
1660 * Return number of pages initialized.
1661 */
David Brazdil0f672f62019-12-10 10:32:29 +00001662static unsigned long __init deferred_init_pages(struct zone *zone,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001663 unsigned long pfn,
1664 unsigned long end_pfn)
1665{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001666 unsigned long nr_pgmask = pageblock_nr_pages - 1;
David Brazdil0f672f62019-12-10 10:32:29 +00001667 int nid = zone_to_nid(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001668 unsigned long nr_pages = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00001669 int zid = zone_idx(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001670 struct page *page = NULL;
1671
1672 for (; pfn < end_pfn; pfn++) {
David Brazdil0f672f62019-12-10 10:32:29 +00001673 if (!deferred_pfn_valid(pfn)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001674 page = NULL;
1675 continue;
1676 } else if (!page || !(pfn & nr_pgmask)) {
1677 page = pfn_to_page(pfn);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001678 } else {
1679 page++;
1680 }
1681 __init_single_page(page, pfn, zid, nid);
1682 nr_pages++;
1683 }
1684 return (nr_pages);
1685}
1686
David Brazdil0f672f62019-12-10 10:32:29 +00001687/*
1688 * This function is meant to pre-load the iterator for the zone init.
1689 * Specifically it walks through the ranges until we are caught up to the
1690 * first_init_pfn value and exits there. If we never encounter the value we
1691 * return false indicating there are no valid ranges left.
1692 */
1693static bool __init
1694deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1695 unsigned long *spfn, unsigned long *epfn,
1696 unsigned long first_init_pfn)
1697{
1698 u64 j;
1699
1700 /*
1701 * Start out by walking through the ranges in this zone that have
1702 * already been initialized. We don't need to do anything with them
1703 * so we just need to flush them out of the system.
1704 */
1705 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1706 if (*epfn <= first_init_pfn)
1707 continue;
1708 if (*spfn < first_init_pfn)
1709 *spfn = first_init_pfn;
1710 *i = j;
1711 return true;
1712 }
1713
1714 return false;
1715}
1716
1717/*
1718 * Initialize and free pages. We do it in two loops: first we initialize
1719 * struct page, then free to buddy allocator, because while we are
1720 * freeing pages we can access pages that are ahead (computing buddy
1721 * page in __free_one_page()).
1722 *
1723 * In order to try and keep some memory in the cache we have the loop
1724 * broken along max page order boundaries. This way we will not cause
1725 * any issues with the buddy page computation.
1726 */
1727static unsigned long __init
1728deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1729 unsigned long *end_pfn)
1730{
1731 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1732 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1733 unsigned long nr_pages = 0;
1734 u64 j = *i;
1735
1736 /* First we loop through and initialize the page values */
1737 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1738 unsigned long t;
1739
1740 if (mo_pfn <= *start_pfn)
1741 break;
1742
1743 t = min(mo_pfn, *end_pfn);
1744 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1745
1746 if (mo_pfn < *end_pfn) {
1747 *start_pfn = mo_pfn;
1748 break;
1749 }
1750 }
1751
1752 /* Reset values and now loop through freeing pages as needed */
1753 swap(j, *i);
1754
1755 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1756 unsigned long t;
1757
1758 if (mo_pfn <= spfn)
1759 break;
1760
1761 t = min(mo_pfn, epfn);
1762 deferred_free_pages(spfn, t);
1763
1764 if (mo_pfn <= epfn)
1765 break;
1766 }
1767
1768 return nr_pages;
1769}
1770
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001771/* Initialise remaining memory on a node */
1772static int __init deferred_init_memmap(void *data)
1773{
1774 pg_data_t *pgdat = data;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001775 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
David Brazdil0f672f62019-12-10 10:32:29 +00001776 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1777 unsigned long first_init_pfn, flags;
1778 unsigned long start = jiffies;
1779 struct zone *zone;
1780 int zid;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001781 u64 i;
1782
1783 /* Bind memory initialisation thread to a local node if possible */
1784 if (!cpumask_empty(cpumask))
1785 set_cpus_allowed_ptr(current, cpumask);
1786
1787 pgdat_resize_lock(pgdat, &flags);
1788 first_init_pfn = pgdat->first_deferred_pfn;
1789 if (first_init_pfn == ULONG_MAX) {
1790 pgdat_resize_unlock(pgdat, &flags);
1791 pgdat_init_report_one_done();
1792 return 0;
1793 }
1794
1795 /* Sanity check boundaries */
1796 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1797 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1798 pgdat->first_deferred_pfn = ULONG_MAX;
1799
Olivier Deprez0e641232021-09-23 10:07:05 +02001800 /*
1801 * Once we unlock here, the zone cannot be grown anymore, thus if an
1802 * interrupt thread must allocate this early in boot, zone must be
1803 * pre-grown prior to start of deferred page initialization.
1804 */
1805 pgdat_resize_unlock(pgdat, &flags);
1806
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001807 /* Only the highest zone is deferred so find it */
1808 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1809 zone = pgdat->node_zones + zid;
1810 if (first_init_pfn < zone_end_pfn(zone))
1811 break;
1812 }
David Brazdil0f672f62019-12-10 10:32:29 +00001813
1814 /* If the zone is empty somebody else may have cleared out the zone */
1815 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1816 first_init_pfn))
1817 goto zone_empty;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001818
1819 /*
David Brazdil0f672f62019-12-10 10:32:29 +00001820 * Initialize and free pages in MAX_ORDER sized increments so
1821 * that we can avoid introducing any issues with the buddy
1822 * allocator.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001823 */
Olivier Deprez0e641232021-09-23 10:07:05 +02001824 while (spfn < epfn) {
David Brazdil0f672f62019-12-10 10:32:29 +00001825 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
Olivier Deprez0e641232021-09-23 10:07:05 +02001826 cond_resched();
1827 }
David Brazdil0f672f62019-12-10 10:32:29 +00001828zone_empty:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001829 /* Sanity check that the next zone really is unpopulated */
1830 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1831
David Brazdil0f672f62019-12-10 10:32:29 +00001832 pr_info("node %d initialised, %lu pages in %ums\n",
1833 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001834
1835 pgdat_init_report_one_done();
1836 return 0;
1837}
1838
1839/*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001840 * If this zone has deferred pages, try to grow it by initializing enough
1841 * deferred pages to satisfy the allocation specified by order, rounded up to
1842 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1843 * of SECTION_SIZE bytes by initializing struct pages in increments of
1844 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1845 *
1846 * Return true when zone was grown, otherwise return false. We return true even
1847 * when we grow less than requested, to let the caller decide if there are
1848 * enough pages to satisfy the allocation.
1849 *
1850 * Note: We use noinline because this function is needed only during boot, and
1851 * it is called from a __ref function _deferred_grow_zone. This way we are
1852 * making sure that it is not inlined into permanent text section.
1853 */
1854static noinline bool __init
1855deferred_grow_zone(struct zone *zone, unsigned int order)
1856{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001857 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
David Brazdil0f672f62019-12-10 10:32:29 +00001858 pg_data_t *pgdat = zone->zone_pgdat;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001859 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
David Brazdil0f672f62019-12-10 10:32:29 +00001860 unsigned long spfn, epfn, flags;
1861 unsigned long nr_pages = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001862 u64 i;
1863
1864 /* Only the last zone may have deferred pages */
1865 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1866 return false;
1867
1868 pgdat_resize_lock(pgdat, &flags);
1869
1870 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001871 * If someone grew this zone while we were waiting for spinlock, return
1872 * true, as there might be enough pages already.
1873 */
1874 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1875 pgdat_resize_unlock(pgdat, &flags);
1876 return true;
1877 }
1878
David Brazdil0f672f62019-12-10 10:32:29 +00001879 /* If the zone is empty somebody else may have cleared out the zone */
1880 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1881 first_deferred_pfn)) {
1882 pgdat->first_deferred_pfn = ULONG_MAX;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001883 pgdat_resize_unlock(pgdat, &flags);
David Brazdil0f672f62019-12-10 10:32:29 +00001884 /* Retry only once. */
1885 return first_deferred_pfn != ULONG_MAX;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001886 }
1887
David Brazdil0f672f62019-12-10 10:32:29 +00001888 /*
1889 * Initialize and free pages in MAX_ORDER sized increments so
1890 * that we can avoid introducing any issues with the buddy
1891 * allocator.
1892 */
1893 while (spfn < epfn) {
1894 /* update our first deferred PFN for this section */
1895 first_deferred_pfn = spfn;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001896
David Brazdil0f672f62019-12-10 10:32:29 +00001897 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
Olivier Deprez0e641232021-09-23 10:07:05 +02001898 touch_nmi_watchdog();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001899
David Brazdil0f672f62019-12-10 10:32:29 +00001900 /* We should only stop along section boundaries */
1901 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1902 continue;
1903
1904 /* If our quota has been met we can stop here */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001905 if (nr_pages >= nr_pages_needed)
1906 break;
1907 }
1908
David Brazdil0f672f62019-12-10 10:32:29 +00001909 pgdat->first_deferred_pfn = spfn;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001910 pgdat_resize_unlock(pgdat, &flags);
1911
1912 return nr_pages > 0;
1913}
1914
1915/*
1916 * deferred_grow_zone() is __init, but it is called from
1917 * get_page_from_freelist() during early boot until deferred_pages permanently
1918 * disables this call. This is why we have refdata wrapper to avoid warning,
1919 * and to ensure that the function body gets unloaded.
1920 */
1921static bool __ref
1922_deferred_grow_zone(struct zone *zone, unsigned int order)
1923{
1924 return deferred_grow_zone(zone, order);
1925}
1926
1927#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1928
1929void __init page_alloc_init_late(void)
1930{
1931 struct zone *zone;
David Brazdil0f672f62019-12-10 10:32:29 +00001932 int nid;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001933
1934#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001935
1936 /* There will be num_node_state(N_MEMORY) threads */
1937 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1938 for_each_node_state(nid, N_MEMORY) {
1939 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1940 }
1941
1942 /* Block until all are initialised */
1943 wait_for_completion(&pgdat_init_all_done_comp);
1944
1945 /*
David Brazdil0f672f62019-12-10 10:32:29 +00001946 * The number of managed pages has changed due to the initialisation
1947 * so the pcpu batch and high limits needs to be updated or the limits
1948 * will be artificially small.
1949 */
1950 for_each_populated_zone(zone)
1951 zone_pcp_update(zone);
1952
1953 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001954 * We initialized the rest of the deferred pages. Permanently disable
1955 * on-demand struct page initialization.
1956 */
1957 static_branch_disable(&deferred_pages);
1958
1959 /* Reinit limits that are based on free pages after the kernel is up */
1960 files_maxfiles_init();
1961#endif
David Brazdil0f672f62019-12-10 10:32:29 +00001962
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001963 /* Discard memblock private memory */
1964 memblock_discard();
David Brazdil0f672f62019-12-10 10:32:29 +00001965
1966 for_each_node_state(nid, N_MEMORY)
1967 shuffle_free_memory(NODE_DATA(nid));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001968
1969 for_each_populated_zone(zone)
1970 set_zone_contiguous(zone);
1971}
1972
1973#ifdef CONFIG_CMA
1974/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1975void __init init_cma_reserved_pageblock(struct page *page)
1976{
1977 unsigned i = pageblock_nr_pages;
1978 struct page *p = page;
1979
1980 do {
1981 __ClearPageReserved(p);
1982 set_page_count(p, 0);
1983 } while (++p, --i);
1984
1985 set_pageblock_migratetype(page, MIGRATE_CMA);
1986
1987 if (pageblock_order >= MAX_ORDER) {
1988 i = pageblock_nr_pages;
1989 p = page;
1990 do {
1991 set_page_refcounted(p);
1992 __free_pages(p, MAX_ORDER - 1);
1993 p += MAX_ORDER_NR_PAGES;
1994 } while (i -= MAX_ORDER_NR_PAGES);
1995 } else {
1996 set_page_refcounted(page);
1997 __free_pages(page, pageblock_order);
1998 }
1999
2000 adjust_managed_page_count(page, pageblock_nr_pages);
2001}
2002#endif
2003
2004/*
2005 * The order of subdivision here is critical for the IO subsystem.
2006 * Please do not alter this order without good reasons and regression
2007 * testing. Specifically, as large blocks of memory are subdivided,
2008 * the order in which smaller blocks are delivered depends on the order
2009 * they're subdivided in this function. This is the primary factor
2010 * influencing the order in which pages are delivered to the IO
2011 * subsystem according to empirical testing, and this is also justified
2012 * by considering the behavior of a buddy system containing a single
2013 * large block of memory acted on by a series of small allocations.
2014 * This behavior is a critical factor in sglist merging's success.
2015 *
2016 * -- nyc
2017 */
2018static inline void expand(struct zone *zone, struct page *page,
2019 int low, int high, struct free_area *area,
2020 int migratetype)
2021{
2022 unsigned long size = 1 << high;
2023
2024 while (high > low) {
2025 area--;
2026 high--;
2027 size >>= 1;
2028 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2029
2030 /*
2031 * Mark as guard pages (or page), that will allow to
2032 * merge back to allocator when buddy will be freed.
2033 * Corresponding page table entries will not be touched,
2034 * pages will stay not present in virtual address space
2035 */
2036 if (set_page_guard(zone, &page[size], high, migratetype))
2037 continue;
2038
David Brazdil0f672f62019-12-10 10:32:29 +00002039 add_to_free_area(&page[size], area, migratetype);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002040 set_page_order(&page[size], high);
2041 }
2042}
2043
2044static void check_new_page_bad(struct page *page)
2045{
2046 const char *bad_reason = NULL;
2047 unsigned long bad_flags = 0;
2048
2049 if (unlikely(atomic_read(&page->_mapcount) != -1))
2050 bad_reason = "nonzero mapcount";
2051 if (unlikely(page->mapping != NULL))
2052 bad_reason = "non-NULL mapping";
2053 if (unlikely(page_ref_count(page) != 0))
David Brazdil0f672f62019-12-10 10:32:29 +00002054 bad_reason = "nonzero _refcount";
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002055 if (unlikely(page->flags & __PG_HWPOISON)) {
2056 bad_reason = "HWPoisoned (hardware-corrupted)";
2057 bad_flags = __PG_HWPOISON;
2058 /* Don't complain about hwpoisoned pages */
2059 page_mapcount_reset(page); /* remove PageBuddy */
2060 return;
2061 }
2062 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2063 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2064 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2065 }
2066#ifdef CONFIG_MEMCG
2067 if (unlikely(page->mem_cgroup))
2068 bad_reason = "page still charged to cgroup";
2069#endif
2070 bad_page(page, bad_reason, bad_flags);
2071}
2072
2073/*
2074 * This page is about to be returned from the page allocator
2075 */
2076static inline int check_new_page(struct page *page)
2077{
2078 if (likely(page_expected_state(page,
2079 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2080 return 0;
2081
2082 check_new_page_bad(page);
2083 return 1;
2084}
2085
2086static inline bool free_pages_prezeroed(void)
2087{
David Brazdil0f672f62019-12-10 10:32:29 +00002088 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2089 page_poisoning_enabled()) || want_init_on_free();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002090}
2091
2092#ifdef CONFIG_DEBUG_VM
David Brazdil0f672f62019-12-10 10:32:29 +00002093/*
2094 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2095 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2096 * also checked when pcp lists are refilled from the free lists.
2097 */
2098static inline bool check_pcp_refill(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002099{
Olivier Deprez0e641232021-09-23 10:07:05 +02002100 if (debug_pagealloc_enabled_static())
David Brazdil0f672f62019-12-10 10:32:29 +00002101 return check_new_page(page);
2102 else
2103 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002104}
2105
David Brazdil0f672f62019-12-10 10:32:29 +00002106static inline bool check_new_pcp(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002107{
2108 return check_new_page(page);
2109}
2110#else
David Brazdil0f672f62019-12-10 10:32:29 +00002111/*
2112 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2113 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2114 * enabled, they are also checked when being allocated from the pcp lists.
2115 */
2116static inline bool check_pcp_refill(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002117{
2118 return check_new_page(page);
2119}
David Brazdil0f672f62019-12-10 10:32:29 +00002120static inline bool check_new_pcp(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002121{
Olivier Deprez0e641232021-09-23 10:07:05 +02002122 if (debug_pagealloc_enabled_static())
David Brazdil0f672f62019-12-10 10:32:29 +00002123 return check_new_page(page);
2124 else
2125 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002126}
2127#endif /* CONFIG_DEBUG_VM */
2128
2129static bool check_new_pages(struct page *page, unsigned int order)
2130{
2131 int i;
2132 for (i = 0; i < (1 << order); i++) {
2133 struct page *p = page + i;
2134
2135 if (unlikely(check_new_page(p)))
2136 return true;
2137 }
2138
2139 return false;
2140}
2141
2142inline void post_alloc_hook(struct page *page, unsigned int order,
2143 gfp_t gfp_flags)
2144{
2145 set_page_private(page, 0);
2146 set_page_refcounted(page);
2147
2148 arch_alloc_page(page, order);
Olivier Deprez0e641232021-09-23 10:07:05 +02002149 if (debug_pagealloc_enabled_static())
David Brazdil0f672f62019-12-10 10:32:29 +00002150 kernel_map_pages(page, 1 << order, 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002151 kasan_alloc_pages(page, order);
David Brazdil0f672f62019-12-10 10:32:29 +00002152 kernel_poison_pages(page, 1 << order, 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002153 set_page_owner(page, order, gfp_flags);
2154}
2155
2156static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2157 unsigned int alloc_flags)
2158{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002159 post_alloc_hook(page, order, gfp_flags);
2160
David Brazdil0f672f62019-12-10 10:32:29 +00002161 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2162 kernel_init_free_pages(page, 1 << order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002163
2164 if (order && (gfp_flags & __GFP_COMP))
2165 prep_compound_page(page, order);
2166
2167 /*
2168 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2169 * allocate the page. The expectation is that the caller is taking
2170 * steps that will free more memory. The caller should avoid the page
2171 * being used for !PFMEMALLOC purposes.
2172 */
2173 if (alloc_flags & ALLOC_NO_WATERMARKS)
2174 set_page_pfmemalloc(page);
2175 else
2176 clear_page_pfmemalloc(page);
2177}
2178
2179/*
2180 * Go through the free lists for the given migratetype and remove
2181 * the smallest available page from the freelists
2182 */
2183static __always_inline
2184struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2185 int migratetype)
2186{
2187 unsigned int current_order;
2188 struct free_area *area;
2189 struct page *page;
2190
2191 /* Find a page of the appropriate size in the preferred list */
2192 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2193 area = &(zone->free_area[current_order]);
David Brazdil0f672f62019-12-10 10:32:29 +00002194 page = get_page_from_free_area(area, migratetype);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002195 if (!page)
2196 continue;
David Brazdil0f672f62019-12-10 10:32:29 +00002197 del_page_from_free_area(page, area);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002198 expand(zone, page, order, current_order, area, migratetype);
2199 set_pcppage_migratetype(page, migratetype);
2200 return page;
2201 }
2202
2203 return NULL;
2204}
2205
2206
2207/*
2208 * This array describes the order lists are fallen back to when
2209 * the free lists for the desirable migrate type are depleted
2210 */
2211static int fallbacks[MIGRATE_TYPES][4] = {
2212 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002213 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
David Brazdil0f672f62019-12-10 10:32:29 +00002214 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002215#ifdef CONFIG_CMA
2216 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2217#endif
2218#ifdef CONFIG_MEMORY_ISOLATION
2219 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2220#endif
2221};
2222
2223#ifdef CONFIG_CMA
2224static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2225 unsigned int order)
2226{
2227 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2228}
2229#else
2230static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2231 unsigned int order) { return NULL; }
2232#endif
2233
2234/*
2235 * Move the free pages in a range to the free lists of the requested type.
2236 * Note that start_page and end_pages are not aligned on a pageblock
2237 * boundary. If alignment is required, use move_freepages_block()
2238 */
2239static int move_freepages(struct zone *zone,
2240 struct page *start_page, struct page *end_page,
2241 int migratetype, int *num_movable)
2242{
2243 struct page *page;
2244 unsigned int order;
2245 int pages_moved = 0;
2246
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002247 for (page = start_page; page <= end_page;) {
2248 if (!pfn_valid_within(page_to_pfn(page))) {
2249 page++;
2250 continue;
2251 }
2252
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002253 if (!PageBuddy(page)) {
2254 /*
2255 * We assume that pages that could be isolated for
2256 * migration are movable. But we don't actually try
2257 * isolating, as that would be expensive.
2258 */
2259 if (num_movable &&
2260 (PageLRU(page) || __PageMovable(page)))
2261 (*num_movable)++;
2262
2263 page++;
2264 continue;
2265 }
2266
David Brazdil0f672f62019-12-10 10:32:29 +00002267 /* Make sure we are not inadvertently changing nodes */
2268 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2269 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2270
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002271 order = page_order(page);
David Brazdil0f672f62019-12-10 10:32:29 +00002272 move_to_free_area(page, &zone->free_area[order], migratetype);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002273 page += 1 << order;
2274 pages_moved += 1 << order;
2275 }
2276
2277 return pages_moved;
2278}
2279
2280int move_freepages_block(struct zone *zone, struct page *page,
2281 int migratetype, int *num_movable)
2282{
2283 unsigned long start_pfn, end_pfn;
2284 struct page *start_page, *end_page;
2285
David Brazdil0f672f62019-12-10 10:32:29 +00002286 if (num_movable)
2287 *num_movable = 0;
2288
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002289 start_pfn = page_to_pfn(page);
2290 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2291 start_page = pfn_to_page(start_pfn);
2292 end_page = start_page + pageblock_nr_pages - 1;
2293 end_pfn = start_pfn + pageblock_nr_pages - 1;
2294
2295 /* Do not cross zone boundaries */
2296 if (!zone_spans_pfn(zone, start_pfn))
2297 start_page = page;
2298 if (!zone_spans_pfn(zone, end_pfn))
2299 return 0;
2300
2301 return move_freepages(zone, start_page, end_page, migratetype,
2302 num_movable);
2303}
2304
2305static void change_pageblock_range(struct page *pageblock_page,
2306 int start_order, int migratetype)
2307{
2308 int nr_pageblocks = 1 << (start_order - pageblock_order);
2309
2310 while (nr_pageblocks--) {
2311 set_pageblock_migratetype(pageblock_page, migratetype);
2312 pageblock_page += pageblock_nr_pages;
2313 }
2314}
2315
2316/*
2317 * When we are falling back to another migratetype during allocation, try to
2318 * steal extra free pages from the same pageblocks to satisfy further
2319 * allocations, instead of polluting multiple pageblocks.
2320 *
2321 * If we are stealing a relatively large buddy page, it is likely there will
2322 * be more free pages in the pageblock, so try to steal them all. For
2323 * reclaimable and unmovable allocations, we steal regardless of page size,
2324 * as fragmentation caused by those allocations polluting movable pageblocks
2325 * is worse than movable allocations stealing from unmovable and reclaimable
2326 * pageblocks.
2327 */
2328static bool can_steal_fallback(unsigned int order, int start_mt)
2329{
2330 /*
2331 * Leaving this order check is intended, although there is
2332 * relaxed order check in next check. The reason is that
2333 * we can actually steal whole pageblock if this condition met,
2334 * but, below check doesn't guarantee it and that is just heuristic
2335 * so could be changed anytime.
2336 */
2337 if (order >= pageblock_order)
2338 return true;
2339
2340 if (order >= pageblock_order / 2 ||
2341 start_mt == MIGRATE_RECLAIMABLE ||
2342 start_mt == MIGRATE_UNMOVABLE ||
2343 page_group_by_mobility_disabled)
2344 return true;
2345
2346 return false;
2347}
2348
Olivier Deprez0e641232021-09-23 10:07:05 +02002349static inline bool boost_watermark(struct zone *zone)
David Brazdil0f672f62019-12-10 10:32:29 +00002350{
2351 unsigned long max_boost;
2352
2353 if (!watermark_boost_factor)
Olivier Deprez0e641232021-09-23 10:07:05 +02002354 return false;
2355 /*
2356 * Don't bother in zones that are unlikely to produce results.
2357 * On small machines, including kdump capture kernels running
2358 * in a small area, boosting the watermark can cause an out of
2359 * memory situation immediately.
2360 */
2361 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2362 return false;
David Brazdil0f672f62019-12-10 10:32:29 +00002363
2364 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2365 watermark_boost_factor, 10000);
2366
2367 /*
2368 * high watermark may be uninitialised if fragmentation occurs
2369 * very early in boot so do not boost. We do not fall
2370 * through and boost by pageblock_nr_pages as failing
2371 * allocations that early means that reclaim is not going
2372 * to help and it may even be impossible to reclaim the
2373 * boosted watermark resulting in a hang.
2374 */
2375 if (!max_boost)
Olivier Deprez0e641232021-09-23 10:07:05 +02002376 return false;
David Brazdil0f672f62019-12-10 10:32:29 +00002377
2378 max_boost = max(pageblock_nr_pages, max_boost);
2379
2380 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2381 max_boost);
Olivier Deprez0e641232021-09-23 10:07:05 +02002382
2383 return true;
David Brazdil0f672f62019-12-10 10:32:29 +00002384}
2385
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002386/*
2387 * This function implements actual steal behaviour. If order is large enough,
2388 * we can steal whole pageblock. If not, we first move freepages in this
2389 * pageblock to our migratetype and determine how many already-allocated pages
2390 * are there in the pageblock with a compatible migratetype. If at least half
2391 * of pages are free or compatible, we can change migratetype of the pageblock
2392 * itself, so pages freed in the future will be put on the correct free list.
2393 */
2394static void steal_suitable_fallback(struct zone *zone, struct page *page,
David Brazdil0f672f62019-12-10 10:32:29 +00002395 unsigned int alloc_flags, int start_type, bool whole_block)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002396{
2397 unsigned int current_order = page_order(page);
2398 struct free_area *area;
2399 int free_pages, movable_pages, alike_pages;
2400 int old_block_type;
2401
2402 old_block_type = get_pageblock_migratetype(page);
2403
2404 /*
2405 * This can happen due to races and we want to prevent broken
2406 * highatomic accounting.
2407 */
2408 if (is_migrate_highatomic(old_block_type))
2409 goto single_page;
2410
2411 /* Take ownership for orders >= pageblock_order */
2412 if (current_order >= pageblock_order) {
2413 change_pageblock_range(page, current_order, start_type);
2414 goto single_page;
2415 }
2416
David Brazdil0f672f62019-12-10 10:32:29 +00002417 /*
2418 * Boost watermarks to increase reclaim pressure to reduce the
2419 * likelihood of future fallbacks. Wake kswapd now as the node
2420 * may be balanced overall and kswapd will not wake naturally.
2421 */
Olivier Deprez0e641232021-09-23 10:07:05 +02002422 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
David Brazdil0f672f62019-12-10 10:32:29 +00002423 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2424
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002425 /* We are not allowed to try stealing from the whole block */
2426 if (!whole_block)
2427 goto single_page;
2428
2429 free_pages = move_freepages_block(zone, page, start_type,
2430 &movable_pages);
2431 /*
2432 * Determine how many pages are compatible with our allocation.
2433 * For movable allocation, it's the number of movable pages which
2434 * we just obtained. For other types it's a bit more tricky.
2435 */
2436 if (start_type == MIGRATE_MOVABLE) {
2437 alike_pages = movable_pages;
2438 } else {
2439 /*
2440 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2441 * to MOVABLE pageblock, consider all non-movable pages as
2442 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2443 * vice versa, be conservative since we can't distinguish the
2444 * exact migratetype of non-movable pages.
2445 */
2446 if (old_block_type == MIGRATE_MOVABLE)
2447 alike_pages = pageblock_nr_pages
2448 - (free_pages + movable_pages);
2449 else
2450 alike_pages = 0;
2451 }
2452
2453 /* moving whole block can fail due to zone boundary conditions */
2454 if (!free_pages)
2455 goto single_page;
2456
2457 /*
2458 * If a sufficient number of pages in the block are either free or of
2459 * comparable migratability as our allocation, claim the whole block.
2460 */
2461 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2462 page_group_by_mobility_disabled)
2463 set_pageblock_migratetype(page, start_type);
2464
2465 return;
2466
2467single_page:
2468 area = &zone->free_area[current_order];
David Brazdil0f672f62019-12-10 10:32:29 +00002469 move_to_free_area(page, area, start_type);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002470}
2471
2472/*
2473 * Check whether there is a suitable fallback freepage with requested order.
2474 * If only_stealable is true, this function returns fallback_mt only if
2475 * we can steal other freepages all together. This would help to reduce
2476 * fragmentation due to mixed migratetype pages in one pageblock.
2477 */
2478int find_suitable_fallback(struct free_area *area, unsigned int order,
2479 int migratetype, bool only_stealable, bool *can_steal)
2480{
2481 int i;
2482 int fallback_mt;
2483
2484 if (area->nr_free == 0)
2485 return -1;
2486
2487 *can_steal = false;
2488 for (i = 0;; i++) {
2489 fallback_mt = fallbacks[migratetype][i];
2490 if (fallback_mt == MIGRATE_TYPES)
2491 break;
2492
David Brazdil0f672f62019-12-10 10:32:29 +00002493 if (free_area_empty(area, fallback_mt))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002494 continue;
2495
2496 if (can_steal_fallback(order, migratetype))
2497 *can_steal = true;
2498
2499 if (!only_stealable)
2500 return fallback_mt;
2501
2502 if (*can_steal)
2503 return fallback_mt;
2504 }
2505
2506 return -1;
2507}
2508
2509/*
2510 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2511 * there are no empty page blocks that contain a page with a suitable order
2512 */
2513static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2514 unsigned int alloc_order)
2515{
2516 int mt;
2517 unsigned long max_managed, flags;
2518
2519 /*
2520 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2521 * Check is race-prone but harmless.
2522 */
David Brazdil0f672f62019-12-10 10:32:29 +00002523 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002524 if (zone->nr_reserved_highatomic >= max_managed)
2525 return;
2526
2527 spin_lock_irqsave(&zone->lock, flags);
2528
2529 /* Recheck the nr_reserved_highatomic limit under the lock */
2530 if (zone->nr_reserved_highatomic >= max_managed)
2531 goto out_unlock;
2532
2533 /* Yoink! */
2534 mt = get_pageblock_migratetype(page);
2535 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2536 && !is_migrate_cma(mt)) {
2537 zone->nr_reserved_highatomic += pageblock_nr_pages;
2538 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2539 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2540 }
2541
2542out_unlock:
2543 spin_unlock_irqrestore(&zone->lock, flags);
2544}
2545
2546/*
2547 * Used when an allocation is about to fail under memory pressure. This
2548 * potentially hurts the reliability of high-order allocations when under
2549 * intense memory pressure but failed atomic allocations should be easier
2550 * to recover from than an OOM.
2551 *
2552 * If @force is true, try to unreserve a pageblock even though highatomic
2553 * pageblock is exhausted.
2554 */
2555static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2556 bool force)
2557{
2558 struct zonelist *zonelist = ac->zonelist;
2559 unsigned long flags;
2560 struct zoneref *z;
2561 struct zone *zone;
2562 struct page *page;
2563 int order;
2564 bool ret;
2565
2566 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2567 ac->nodemask) {
2568 /*
2569 * Preserve at least one pageblock unless memory pressure
2570 * is really high.
2571 */
2572 if (!force && zone->nr_reserved_highatomic <=
2573 pageblock_nr_pages)
2574 continue;
2575
2576 spin_lock_irqsave(&zone->lock, flags);
2577 for (order = 0; order < MAX_ORDER; order++) {
2578 struct free_area *area = &(zone->free_area[order]);
2579
David Brazdil0f672f62019-12-10 10:32:29 +00002580 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002581 if (!page)
2582 continue;
2583
2584 /*
2585 * In page freeing path, migratetype change is racy so
2586 * we can counter several free pages in a pageblock
2587 * in this loop althoug we changed the pageblock type
2588 * from highatomic to ac->migratetype. So we should
2589 * adjust the count once.
2590 */
2591 if (is_migrate_highatomic_page(page)) {
2592 /*
2593 * It should never happen but changes to
2594 * locking could inadvertently allow a per-cpu
2595 * drain to add pages to MIGRATE_HIGHATOMIC
2596 * while unreserving so be safe and watch for
2597 * underflows.
2598 */
2599 zone->nr_reserved_highatomic -= min(
2600 pageblock_nr_pages,
2601 zone->nr_reserved_highatomic);
2602 }
2603
2604 /*
2605 * Convert to ac->migratetype and avoid the normal
2606 * pageblock stealing heuristics. Minimally, the caller
2607 * is doing the work and needs the pages. More
2608 * importantly, if the block was always converted to
2609 * MIGRATE_UNMOVABLE or another type then the number
2610 * of pageblocks that cannot be completely freed
2611 * may increase.
2612 */
2613 set_pageblock_migratetype(page, ac->migratetype);
2614 ret = move_freepages_block(zone, page, ac->migratetype,
2615 NULL);
2616 if (ret) {
2617 spin_unlock_irqrestore(&zone->lock, flags);
2618 return ret;
2619 }
2620 }
2621 spin_unlock_irqrestore(&zone->lock, flags);
2622 }
2623
2624 return false;
2625}
2626
2627/*
2628 * Try finding a free buddy page on the fallback list and put it on the free
2629 * list of requested migratetype, possibly along with other pages from the same
2630 * block, depending on fragmentation avoidance heuristics. Returns true if
2631 * fallback was found so that __rmqueue_smallest() can grab it.
2632 *
2633 * The use of signed ints for order and current_order is a deliberate
2634 * deviation from the rest of this file, to make the for loop
2635 * condition simpler.
2636 */
2637static __always_inline bool
David Brazdil0f672f62019-12-10 10:32:29 +00002638__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2639 unsigned int alloc_flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002640{
2641 struct free_area *area;
2642 int current_order;
David Brazdil0f672f62019-12-10 10:32:29 +00002643 int min_order = order;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002644 struct page *page;
2645 int fallback_mt;
2646 bool can_steal;
2647
2648 /*
David Brazdil0f672f62019-12-10 10:32:29 +00002649 * Do not steal pages from freelists belonging to other pageblocks
2650 * i.e. orders < pageblock_order. If there are no local zones free,
2651 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2652 */
2653 if (alloc_flags & ALLOC_NOFRAGMENT)
2654 min_order = pageblock_order;
2655
2656 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002657 * Find the largest available free page in the other list. This roughly
2658 * approximates finding the pageblock with the most free pages, which
2659 * would be too costly to do exactly.
2660 */
David Brazdil0f672f62019-12-10 10:32:29 +00002661 for (current_order = MAX_ORDER - 1; current_order >= min_order;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002662 --current_order) {
2663 area = &(zone->free_area[current_order]);
2664 fallback_mt = find_suitable_fallback(area, current_order,
2665 start_migratetype, false, &can_steal);
2666 if (fallback_mt == -1)
2667 continue;
2668
2669 /*
2670 * We cannot steal all free pages from the pageblock and the
2671 * requested migratetype is movable. In that case it's better to
2672 * steal and split the smallest available page instead of the
2673 * largest available page, because even if the next movable
2674 * allocation falls back into a different pageblock than this
2675 * one, it won't cause permanent fragmentation.
2676 */
2677 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2678 && current_order > order)
2679 goto find_smallest;
2680
2681 goto do_steal;
2682 }
2683
2684 return false;
2685
2686find_smallest:
2687 for (current_order = order; current_order < MAX_ORDER;
2688 current_order++) {
2689 area = &(zone->free_area[current_order]);
2690 fallback_mt = find_suitable_fallback(area, current_order,
2691 start_migratetype, false, &can_steal);
2692 if (fallback_mt != -1)
2693 break;
2694 }
2695
2696 /*
2697 * This should not happen - we already found a suitable fallback
2698 * when looking for the largest page.
2699 */
2700 VM_BUG_ON(current_order == MAX_ORDER);
2701
2702do_steal:
David Brazdil0f672f62019-12-10 10:32:29 +00002703 page = get_page_from_free_area(area, fallback_mt);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002704
David Brazdil0f672f62019-12-10 10:32:29 +00002705 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2706 can_steal);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002707
2708 trace_mm_page_alloc_extfrag(page, order, current_order,
2709 start_migratetype, fallback_mt);
2710
2711 return true;
2712
2713}
2714
2715/*
2716 * Do the hard work of removing an element from the buddy allocator.
2717 * Call me with the zone->lock already held.
2718 */
2719static __always_inline struct page *
David Brazdil0f672f62019-12-10 10:32:29 +00002720__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2721 unsigned int alloc_flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002722{
2723 struct page *page;
2724
2725retry:
2726 page = __rmqueue_smallest(zone, order, migratetype);
2727 if (unlikely(!page)) {
2728 if (migratetype == MIGRATE_MOVABLE)
2729 page = __rmqueue_cma_fallback(zone, order);
2730
David Brazdil0f672f62019-12-10 10:32:29 +00002731 if (!page && __rmqueue_fallback(zone, order, migratetype,
2732 alloc_flags))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002733 goto retry;
2734 }
2735
2736 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2737 return page;
2738}
2739
2740/*
2741 * Obtain a specified number of elements from the buddy allocator, all under
2742 * a single hold of the lock, for efficiency. Add them to the supplied list.
2743 * Returns the number of new pages which were placed at *list.
2744 */
2745static int rmqueue_bulk(struct zone *zone, unsigned int order,
2746 unsigned long count, struct list_head *list,
David Brazdil0f672f62019-12-10 10:32:29 +00002747 int migratetype, unsigned int alloc_flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002748{
2749 int i, alloced = 0;
2750
2751 spin_lock(&zone->lock);
2752 for (i = 0; i < count; ++i) {
David Brazdil0f672f62019-12-10 10:32:29 +00002753 struct page *page = __rmqueue(zone, order, migratetype,
2754 alloc_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002755 if (unlikely(page == NULL))
2756 break;
2757
2758 if (unlikely(check_pcp_refill(page)))
2759 continue;
2760
2761 /*
2762 * Split buddy pages returned by expand() are received here in
2763 * physical page order. The page is added to the tail of
2764 * caller's list. From the callers perspective, the linked list
2765 * is ordered by page number under some conditions. This is
2766 * useful for IO devices that can forward direction from the
2767 * head, thus also in the physical page order. This is useful
2768 * for IO devices that can merge IO requests if the physical
2769 * pages are ordered properly.
2770 */
2771 list_add_tail(&page->lru, list);
2772 alloced++;
2773 if (is_migrate_cma(get_pcppage_migratetype(page)))
2774 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2775 -(1 << order));
2776 }
2777
2778 /*
2779 * i pages were removed from the buddy list even if some leak due
2780 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2781 * on i. Do not confuse with 'alloced' which is the number of
2782 * pages added to the pcp list.
2783 */
2784 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2785 spin_unlock(&zone->lock);
2786 return alloced;
2787}
2788
2789#ifdef CONFIG_NUMA
2790/*
2791 * Called from the vmstat counter updater to drain pagesets of this
2792 * currently executing processor on remote nodes after they have
2793 * expired.
2794 *
2795 * Note that this function must be called with the thread pinned to
2796 * a single processor.
2797 */
2798void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2799{
2800 unsigned long flags;
2801 int to_drain, batch;
2802
2803 local_irq_save(flags);
2804 batch = READ_ONCE(pcp->batch);
2805 to_drain = min(pcp->count, batch);
2806 if (to_drain > 0)
2807 free_pcppages_bulk(zone, to_drain, pcp);
2808 local_irq_restore(flags);
2809}
2810#endif
2811
2812/*
2813 * Drain pcplists of the indicated processor and zone.
2814 *
2815 * The processor must either be the current processor and the
2816 * thread pinned to the current processor or a processor that
2817 * is not online.
2818 */
2819static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2820{
2821 unsigned long flags;
2822 struct per_cpu_pageset *pset;
2823 struct per_cpu_pages *pcp;
2824
2825 local_irq_save(flags);
2826 pset = per_cpu_ptr(zone->pageset, cpu);
2827
2828 pcp = &pset->pcp;
2829 if (pcp->count)
2830 free_pcppages_bulk(zone, pcp->count, pcp);
2831 local_irq_restore(flags);
2832}
2833
2834/*
2835 * Drain pcplists of all zones on the indicated processor.
2836 *
2837 * The processor must either be the current processor and the
2838 * thread pinned to the current processor or a processor that
2839 * is not online.
2840 */
2841static void drain_pages(unsigned int cpu)
2842{
2843 struct zone *zone;
2844
2845 for_each_populated_zone(zone) {
2846 drain_pages_zone(cpu, zone);
2847 }
2848}
2849
2850/*
2851 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2852 *
2853 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2854 * the single zone's pages.
2855 */
2856void drain_local_pages(struct zone *zone)
2857{
2858 int cpu = smp_processor_id();
2859
2860 if (zone)
2861 drain_pages_zone(cpu, zone);
2862 else
2863 drain_pages(cpu);
2864}
2865
2866static void drain_local_pages_wq(struct work_struct *work)
2867{
David Brazdil0f672f62019-12-10 10:32:29 +00002868 struct pcpu_drain *drain;
2869
2870 drain = container_of(work, struct pcpu_drain, work);
2871
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002872 /*
2873 * drain_all_pages doesn't use proper cpu hotplug protection so
2874 * we can race with cpu offline when the WQ can move this from
2875 * a cpu pinned worker to an unbound one. We can operate on a different
2876 * cpu which is allright but we also have to make sure to not move to
2877 * a different one.
2878 */
2879 preempt_disable();
David Brazdil0f672f62019-12-10 10:32:29 +00002880 drain_local_pages(drain->zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002881 preempt_enable();
2882}
2883
2884/*
2885 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2886 *
2887 * When zone parameter is non-NULL, spill just the single zone's pages.
2888 *
2889 * Note that this can be extremely slow as the draining happens in a workqueue.
2890 */
2891void drain_all_pages(struct zone *zone)
2892{
2893 int cpu;
2894
2895 /*
2896 * Allocate in the BSS so we wont require allocation in
2897 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2898 */
2899 static cpumask_t cpus_with_pcps;
2900
2901 /*
2902 * Make sure nobody triggers this path before mm_percpu_wq is fully
2903 * initialized.
2904 */
2905 if (WARN_ON_ONCE(!mm_percpu_wq))
2906 return;
2907
2908 /*
2909 * Do not drain if one is already in progress unless it's specific to
2910 * a zone. Such callers are primarily CMA and memory hotplug and need
2911 * the drain to be complete when the call returns.
2912 */
2913 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2914 if (!zone)
2915 return;
2916 mutex_lock(&pcpu_drain_mutex);
2917 }
2918
2919 /*
2920 * We don't care about racing with CPU hotplug event
2921 * as offline notification will cause the notified
2922 * cpu to drain that CPU pcps and on_each_cpu_mask
2923 * disables preemption as part of its processing
2924 */
2925 for_each_online_cpu(cpu) {
2926 struct per_cpu_pageset *pcp;
2927 struct zone *z;
2928 bool has_pcps = false;
2929
2930 if (zone) {
2931 pcp = per_cpu_ptr(zone->pageset, cpu);
2932 if (pcp->pcp.count)
2933 has_pcps = true;
2934 } else {
2935 for_each_populated_zone(z) {
2936 pcp = per_cpu_ptr(z->pageset, cpu);
2937 if (pcp->pcp.count) {
2938 has_pcps = true;
2939 break;
2940 }
2941 }
2942 }
2943
2944 if (has_pcps)
2945 cpumask_set_cpu(cpu, &cpus_with_pcps);
2946 else
2947 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2948 }
2949
2950 for_each_cpu(cpu, &cpus_with_pcps) {
David Brazdil0f672f62019-12-10 10:32:29 +00002951 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2952
2953 drain->zone = zone;
2954 INIT_WORK(&drain->work, drain_local_pages_wq);
2955 queue_work_on(cpu, mm_percpu_wq, &drain->work);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002956 }
2957 for_each_cpu(cpu, &cpus_with_pcps)
David Brazdil0f672f62019-12-10 10:32:29 +00002958 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002959
2960 mutex_unlock(&pcpu_drain_mutex);
2961}
2962
2963#ifdef CONFIG_HIBERNATION
2964
2965/*
2966 * Touch the watchdog for every WD_PAGE_COUNT pages.
2967 */
2968#define WD_PAGE_COUNT (128*1024)
2969
2970void mark_free_pages(struct zone *zone)
2971{
2972 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2973 unsigned long flags;
2974 unsigned int order, t;
2975 struct page *page;
2976
2977 if (zone_is_empty(zone))
2978 return;
2979
2980 spin_lock_irqsave(&zone->lock, flags);
2981
2982 max_zone_pfn = zone_end_pfn(zone);
2983 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2984 if (pfn_valid(pfn)) {
2985 page = pfn_to_page(pfn);
2986
2987 if (!--page_count) {
2988 touch_nmi_watchdog();
2989 page_count = WD_PAGE_COUNT;
2990 }
2991
2992 if (page_zone(page) != zone)
2993 continue;
2994
2995 if (!swsusp_page_is_forbidden(page))
2996 swsusp_unset_page_free(page);
2997 }
2998
2999 for_each_migratetype_order(order, t) {
3000 list_for_each_entry(page,
3001 &zone->free_area[order].free_list[t], lru) {
3002 unsigned long i;
3003
3004 pfn = page_to_pfn(page);
3005 for (i = 0; i < (1UL << order); i++) {
3006 if (!--page_count) {
3007 touch_nmi_watchdog();
3008 page_count = WD_PAGE_COUNT;
3009 }
3010 swsusp_set_page_free(pfn_to_page(pfn + i));
3011 }
3012 }
3013 }
3014 spin_unlock_irqrestore(&zone->lock, flags);
3015}
3016#endif /* CONFIG_PM */
3017
3018static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3019{
3020 int migratetype;
3021
3022 if (!free_pcp_prepare(page))
3023 return false;
3024
3025 migratetype = get_pfnblock_migratetype(page, pfn);
3026 set_pcppage_migratetype(page, migratetype);
3027 return true;
3028}
3029
3030static void free_unref_page_commit(struct page *page, unsigned long pfn)
3031{
3032 struct zone *zone = page_zone(page);
3033 struct per_cpu_pages *pcp;
3034 int migratetype;
3035
3036 migratetype = get_pcppage_migratetype(page);
3037 __count_vm_event(PGFREE);
3038
3039 /*
3040 * We only track unmovable, reclaimable and movable on pcp lists.
3041 * Free ISOLATE pages back to the allocator because they are being
3042 * offlined but treat HIGHATOMIC as movable pages so we can get those
3043 * areas back if necessary. Otherwise, we may have to free
3044 * excessively into the page allocator
3045 */
3046 if (migratetype >= MIGRATE_PCPTYPES) {
3047 if (unlikely(is_migrate_isolate(migratetype))) {
3048 free_one_page(zone, page, pfn, 0, migratetype);
3049 return;
3050 }
3051 migratetype = MIGRATE_MOVABLE;
3052 }
3053
3054 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3055 list_add(&page->lru, &pcp->lists[migratetype]);
3056 pcp->count++;
3057 if (pcp->count >= pcp->high) {
3058 unsigned long batch = READ_ONCE(pcp->batch);
3059 free_pcppages_bulk(zone, batch, pcp);
3060 }
3061}
3062
3063/*
3064 * Free a 0-order page
3065 */
3066void free_unref_page(struct page *page)
3067{
3068 unsigned long flags;
3069 unsigned long pfn = page_to_pfn(page);
3070
3071 if (!free_unref_page_prepare(page, pfn))
3072 return;
3073
3074 local_irq_save(flags);
3075 free_unref_page_commit(page, pfn);
3076 local_irq_restore(flags);
3077}
3078
3079/*
3080 * Free a list of 0-order pages
3081 */
3082void free_unref_page_list(struct list_head *list)
3083{
3084 struct page *page, *next;
3085 unsigned long flags, pfn;
3086 int batch_count = 0;
3087
3088 /* Prepare pages for freeing */
3089 list_for_each_entry_safe(page, next, list, lru) {
3090 pfn = page_to_pfn(page);
3091 if (!free_unref_page_prepare(page, pfn))
3092 list_del(&page->lru);
3093 set_page_private(page, pfn);
3094 }
3095
3096 local_irq_save(flags);
3097 list_for_each_entry_safe(page, next, list, lru) {
3098 unsigned long pfn = page_private(page);
3099
3100 set_page_private(page, 0);
3101 trace_mm_page_free_batched(page);
3102 free_unref_page_commit(page, pfn);
3103
3104 /*
3105 * Guard against excessive IRQ disabled times when we get
3106 * a large list of pages to free.
3107 */
3108 if (++batch_count == SWAP_CLUSTER_MAX) {
3109 local_irq_restore(flags);
3110 batch_count = 0;
3111 local_irq_save(flags);
3112 }
3113 }
3114 local_irq_restore(flags);
3115}
3116
3117/*
3118 * split_page takes a non-compound higher-order page, and splits it into
3119 * n (1<<order) sub-pages: page[0..n]
3120 * Each sub-page must be freed individually.
3121 *
3122 * Note: this is probably too low level an operation for use in drivers.
3123 * Please consult with lkml before using this in your driver.
3124 */
3125void split_page(struct page *page, unsigned int order)
3126{
3127 int i;
3128
3129 VM_BUG_ON_PAGE(PageCompound(page), page);
3130 VM_BUG_ON_PAGE(!page_count(page), page);
3131
3132 for (i = 1; i < (1 << order); i++)
3133 set_page_refcounted(page + i);
Olivier Deprez0e641232021-09-23 10:07:05 +02003134 split_page_owner(page, 1 << order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003135}
3136EXPORT_SYMBOL_GPL(split_page);
3137
3138int __isolate_free_page(struct page *page, unsigned int order)
3139{
David Brazdil0f672f62019-12-10 10:32:29 +00003140 struct free_area *area = &page_zone(page)->free_area[order];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003141 unsigned long watermark;
3142 struct zone *zone;
3143 int mt;
3144
3145 BUG_ON(!PageBuddy(page));
3146
3147 zone = page_zone(page);
3148 mt = get_pageblock_migratetype(page);
3149
3150 if (!is_migrate_isolate(mt)) {
3151 /*
3152 * Obey watermarks as if the page was being allocated. We can
3153 * emulate a high-order watermark check with a raised order-0
3154 * watermark, because we already know our high-order page
3155 * exists.
3156 */
David Brazdil0f672f62019-12-10 10:32:29 +00003157 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003158 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3159 return 0;
3160
3161 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3162 }
3163
3164 /* Remove page from free list */
David Brazdil0f672f62019-12-10 10:32:29 +00003165
3166 del_page_from_free_area(page, area);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003167
3168 /*
3169 * Set the pageblock if the isolated page is at least half of a
3170 * pageblock
3171 */
3172 if (order >= pageblock_order - 1) {
3173 struct page *endpage = page + (1 << order) - 1;
3174 for (; page < endpage; page += pageblock_nr_pages) {
3175 int mt = get_pageblock_migratetype(page);
3176 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3177 && !is_migrate_highatomic(mt))
3178 set_pageblock_migratetype(page,
3179 MIGRATE_MOVABLE);
3180 }
3181 }
3182
3183
3184 return 1UL << order;
3185}
3186
3187/*
3188 * Update NUMA hit/miss statistics
3189 *
3190 * Must be called with interrupts disabled.
3191 */
3192static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3193{
3194#ifdef CONFIG_NUMA
3195 enum numa_stat_item local_stat = NUMA_LOCAL;
3196
3197 /* skip numa counters update if numa stats is disabled */
3198 if (!static_branch_likely(&vm_numa_stat_key))
3199 return;
3200
3201 if (zone_to_nid(z) != numa_node_id())
3202 local_stat = NUMA_OTHER;
3203
3204 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3205 __inc_numa_state(z, NUMA_HIT);
3206 else {
3207 __inc_numa_state(z, NUMA_MISS);
3208 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3209 }
3210 __inc_numa_state(z, local_stat);
3211#endif
3212}
3213
3214/* Remove page from the per-cpu list, caller must protect the list */
3215static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
David Brazdil0f672f62019-12-10 10:32:29 +00003216 unsigned int alloc_flags,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003217 struct per_cpu_pages *pcp,
3218 struct list_head *list)
3219{
3220 struct page *page;
3221
3222 do {
3223 if (list_empty(list)) {
3224 pcp->count += rmqueue_bulk(zone, 0,
3225 pcp->batch, list,
David Brazdil0f672f62019-12-10 10:32:29 +00003226 migratetype, alloc_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003227 if (unlikely(list_empty(list)))
3228 return NULL;
3229 }
3230
3231 page = list_first_entry(list, struct page, lru);
3232 list_del(&page->lru);
3233 pcp->count--;
3234 } while (check_new_pcp(page));
3235
3236 return page;
3237}
3238
3239/* Lock and remove page from the per-cpu list */
3240static struct page *rmqueue_pcplist(struct zone *preferred_zone,
David Brazdil0f672f62019-12-10 10:32:29 +00003241 struct zone *zone, gfp_t gfp_flags,
3242 int migratetype, unsigned int alloc_flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003243{
3244 struct per_cpu_pages *pcp;
3245 struct list_head *list;
3246 struct page *page;
3247 unsigned long flags;
3248
3249 local_irq_save(flags);
3250 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3251 list = &pcp->lists[migratetype];
David Brazdil0f672f62019-12-10 10:32:29 +00003252 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003253 if (page) {
David Brazdil0f672f62019-12-10 10:32:29 +00003254 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003255 zone_statistics(preferred_zone, zone);
3256 }
3257 local_irq_restore(flags);
3258 return page;
3259}
3260
3261/*
3262 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3263 */
3264static inline
3265struct page *rmqueue(struct zone *preferred_zone,
3266 struct zone *zone, unsigned int order,
3267 gfp_t gfp_flags, unsigned int alloc_flags,
3268 int migratetype)
3269{
3270 unsigned long flags;
3271 struct page *page;
3272
3273 if (likely(order == 0)) {
David Brazdil0f672f62019-12-10 10:32:29 +00003274 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3275 migratetype, alloc_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003276 goto out;
3277 }
3278
3279 /*
3280 * We most definitely don't want callers attempting to
3281 * allocate greater than order-1 page units with __GFP_NOFAIL.
3282 */
3283 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3284 spin_lock_irqsave(&zone->lock, flags);
3285
3286 do {
3287 page = NULL;
3288 if (alloc_flags & ALLOC_HARDER) {
3289 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3290 if (page)
3291 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3292 }
3293 if (!page)
David Brazdil0f672f62019-12-10 10:32:29 +00003294 page = __rmqueue(zone, order, migratetype, alloc_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003295 } while (page && check_new_pages(page, order));
3296 spin_unlock(&zone->lock);
3297 if (!page)
3298 goto failed;
3299 __mod_zone_freepage_state(zone, -(1 << order),
3300 get_pcppage_migratetype(page));
3301
3302 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3303 zone_statistics(preferred_zone, zone);
3304 local_irq_restore(flags);
3305
3306out:
David Brazdil0f672f62019-12-10 10:32:29 +00003307 /* Separate test+clear to avoid unnecessary atomics */
3308 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3309 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3310 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3311 }
3312
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003313 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3314 return page;
3315
3316failed:
3317 local_irq_restore(flags);
3318 return NULL;
3319}
3320
3321#ifdef CONFIG_FAIL_PAGE_ALLOC
3322
3323static struct {
3324 struct fault_attr attr;
3325
3326 bool ignore_gfp_highmem;
3327 bool ignore_gfp_reclaim;
3328 u32 min_order;
3329} fail_page_alloc = {
3330 .attr = FAULT_ATTR_INITIALIZER,
3331 .ignore_gfp_reclaim = true,
3332 .ignore_gfp_highmem = true,
3333 .min_order = 1,
3334};
3335
3336static int __init setup_fail_page_alloc(char *str)
3337{
3338 return setup_fault_attr(&fail_page_alloc.attr, str);
3339}
3340__setup("fail_page_alloc=", setup_fail_page_alloc);
3341
David Brazdil0f672f62019-12-10 10:32:29 +00003342static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003343{
3344 if (order < fail_page_alloc.min_order)
3345 return false;
3346 if (gfp_mask & __GFP_NOFAIL)
3347 return false;
3348 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3349 return false;
3350 if (fail_page_alloc.ignore_gfp_reclaim &&
3351 (gfp_mask & __GFP_DIRECT_RECLAIM))
3352 return false;
3353
3354 return should_fail(&fail_page_alloc.attr, 1 << order);
3355}
3356
3357#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3358
3359static int __init fail_page_alloc_debugfs(void)
3360{
3361 umode_t mode = S_IFREG | 0600;
3362 struct dentry *dir;
3363
3364 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3365 &fail_page_alloc.attr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003366
David Brazdil0f672f62019-12-10 10:32:29 +00003367 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3368 &fail_page_alloc.ignore_gfp_reclaim);
3369 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3370 &fail_page_alloc.ignore_gfp_highmem);
3371 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003372
3373 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003374}
3375
3376late_initcall(fail_page_alloc_debugfs);
3377
3378#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3379
3380#else /* CONFIG_FAIL_PAGE_ALLOC */
3381
David Brazdil0f672f62019-12-10 10:32:29 +00003382static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003383{
3384 return false;
3385}
3386
3387#endif /* CONFIG_FAIL_PAGE_ALLOC */
3388
Olivier Deprez0e641232021-09-23 10:07:05 +02003389noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
David Brazdil0f672f62019-12-10 10:32:29 +00003390{
3391 return __should_fail_alloc_page(gfp_mask, order);
3392}
3393ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3394
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003395/*
3396 * Return true if free base pages are above 'mark'. For high-order checks it
3397 * will return true of the order-0 watermark is reached and there is at least
3398 * one free page of a suitable size. Checking now avoids taking the zone lock
3399 * to check in the allocation paths if no pages are free.
3400 */
3401bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3402 int classzone_idx, unsigned int alloc_flags,
3403 long free_pages)
3404{
3405 long min = mark;
3406 int o;
3407 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3408
3409 /* free_pages may go negative - that's OK */
3410 free_pages -= (1 << order) - 1;
3411
3412 if (alloc_flags & ALLOC_HIGH)
3413 min -= min / 2;
3414
3415 /*
3416 * If the caller does not have rights to ALLOC_HARDER then subtract
3417 * the high-atomic reserves. This will over-estimate the size of the
3418 * atomic reserve but it avoids a search.
3419 */
3420 if (likely(!alloc_harder)) {
3421 free_pages -= z->nr_reserved_highatomic;
3422 } else {
3423 /*
3424 * OOM victims can try even harder than normal ALLOC_HARDER
3425 * users on the grounds that it's definitely going to be in
3426 * the exit path shortly and free memory. Any allocation it
3427 * makes during the free path will be small and short-lived.
3428 */
3429 if (alloc_flags & ALLOC_OOM)
3430 min -= min / 2;
3431 else
3432 min -= min / 4;
3433 }
3434
3435
3436#ifdef CONFIG_CMA
3437 /* If allocation can't use CMA areas don't use free CMA pages */
3438 if (!(alloc_flags & ALLOC_CMA))
3439 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3440#endif
3441
3442 /*
3443 * Check watermarks for an order-0 allocation request. If these
3444 * are not met, then a high-order request also cannot go ahead
3445 * even if a suitable page happened to be free.
3446 */
3447 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3448 return false;
3449
3450 /* If this is an order-0 request then the watermark is fine */
3451 if (!order)
3452 return true;
3453
3454 /* For a high-order request, check at least one suitable page is free */
3455 for (o = order; o < MAX_ORDER; o++) {
3456 struct free_area *area = &z->free_area[o];
3457 int mt;
3458
3459 if (!area->nr_free)
3460 continue;
3461
3462 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
David Brazdil0f672f62019-12-10 10:32:29 +00003463 if (!free_area_empty(area, mt))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003464 return true;
3465 }
3466
3467#ifdef CONFIG_CMA
3468 if ((alloc_flags & ALLOC_CMA) &&
David Brazdil0f672f62019-12-10 10:32:29 +00003469 !free_area_empty(area, MIGRATE_CMA)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003470 return true;
3471 }
3472#endif
3473 if (alloc_harder &&
3474 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3475 return true;
3476 }
3477 return false;
3478}
3479
3480bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3481 int classzone_idx, unsigned int alloc_flags)
3482{
3483 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3484 zone_page_state(z, NR_FREE_PAGES));
3485}
3486
3487static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
Olivier Deprez0e641232021-09-23 10:07:05 +02003488 unsigned long mark, int classzone_idx,
3489 unsigned int alloc_flags, gfp_t gfp_mask)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003490{
3491 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3492 long cma_pages = 0;
3493
3494#ifdef CONFIG_CMA
3495 /* If allocation can't use CMA areas don't use free CMA pages */
3496 if (!(alloc_flags & ALLOC_CMA))
3497 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3498#endif
3499
3500 /*
3501 * Fast check for order-0 only. If this fails then the reserves
3502 * need to be calculated. There is a corner case where the check
3503 * passes but only the high-order atomic reserve are free. If
3504 * the caller is !atomic then it'll uselessly search the free
3505 * list. That corner case is then slower but it is harmless.
3506 */
3507 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3508 return true;
3509
Olivier Deprez0e641232021-09-23 10:07:05 +02003510 if (__zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3511 free_pages))
3512 return true;
3513 /*
3514 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3515 * when checking the min watermark. The min watermark is the
3516 * point where boosting is ignored so that kswapd is woken up
3517 * when below the low watermark.
3518 */
3519 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3520 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3521 mark = z->_watermark[WMARK_MIN];
3522 return __zone_watermark_ok(z, order, mark, classzone_idx,
3523 alloc_flags, free_pages);
3524 }
3525
3526 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003527}
3528
3529bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3530 unsigned long mark, int classzone_idx)
3531{
3532 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3533
3534 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3535 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3536
3537 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3538 free_pages);
3539}
3540
3541#ifdef CONFIG_NUMA
3542static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3543{
3544 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
David Brazdil0f672f62019-12-10 10:32:29 +00003545 node_reclaim_distance;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003546}
3547#else /* CONFIG_NUMA */
3548static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3549{
3550 return true;
3551}
3552#endif /* CONFIG_NUMA */
3553
3554/*
David Brazdil0f672f62019-12-10 10:32:29 +00003555 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3556 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3557 * premature use of a lower zone may cause lowmem pressure problems that
3558 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3559 * probably too small. It only makes sense to spread allocations to avoid
3560 * fragmentation between the Normal and DMA32 zones.
3561 */
3562static inline unsigned int
3563alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3564{
3565 unsigned int alloc_flags = 0;
3566
3567 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3568 alloc_flags |= ALLOC_KSWAPD;
3569
3570#ifdef CONFIG_ZONE_DMA32
3571 if (!zone)
3572 return alloc_flags;
3573
3574 if (zone_idx(zone) != ZONE_NORMAL)
3575 return alloc_flags;
3576
3577 /*
3578 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3579 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3580 * on UMA that if Normal is populated then so is DMA32.
3581 */
3582 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3583 if (nr_online_nodes > 1 && !populated_zone(--zone))
3584 return alloc_flags;
3585
3586 alloc_flags |= ALLOC_NOFRAGMENT;
3587#endif /* CONFIG_ZONE_DMA32 */
3588 return alloc_flags;
3589}
3590
3591/*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003592 * get_page_from_freelist goes through the zonelist trying to allocate
3593 * a page.
3594 */
3595static struct page *
3596get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3597 const struct alloc_context *ac)
3598{
David Brazdil0f672f62019-12-10 10:32:29 +00003599 struct zoneref *z;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003600 struct zone *zone;
3601 struct pglist_data *last_pgdat_dirty_limit = NULL;
David Brazdil0f672f62019-12-10 10:32:29 +00003602 bool no_fallback;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003603
David Brazdil0f672f62019-12-10 10:32:29 +00003604retry:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003605 /*
3606 * Scan zonelist, looking for a zone with enough free.
3607 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3608 */
David Brazdil0f672f62019-12-10 10:32:29 +00003609 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3610 z = ac->preferred_zoneref;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003611 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3612 ac->nodemask) {
3613 struct page *page;
3614 unsigned long mark;
3615
3616 if (cpusets_enabled() &&
3617 (alloc_flags & ALLOC_CPUSET) &&
3618 !__cpuset_zone_allowed(zone, gfp_mask))
3619 continue;
3620 /*
3621 * When allocating a page cache page for writing, we
3622 * want to get it from a node that is within its dirty
3623 * limit, such that no single node holds more than its
3624 * proportional share of globally allowed dirty pages.
3625 * The dirty limits take into account the node's
3626 * lowmem reserves and high watermark so that kswapd
3627 * should be able to balance it without having to
3628 * write pages from its LRU list.
3629 *
3630 * XXX: For now, allow allocations to potentially
3631 * exceed the per-node dirty limit in the slowpath
3632 * (spread_dirty_pages unset) before going into reclaim,
3633 * which is important when on a NUMA setup the allowed
3634 * nodes are together not big enough to reach the
3635 * global limit. The proper fix for these situations
3636 * will require awareness of nodes in the
3637 * dirty-throttling and the flusher threads.
3638 */
3639 if (ac->spread_dirty_pages) {
3640 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3641 continue;
3642
3643 if (!node_dirty_ok(zone->zone_pgdat)) {
3644 last_pgdat_dirty_limit = zone->zone_pgdat;
3645 continue;
3646 }
3647 }
3648
David Brazdil0f672f62019-12-10 10:32:29 +00003649 if (no_fallback && nr_online_nodes > 1 &&
3650 zone != ac->preferred_zoneref->zone) {
3651 int local_nid;
3652
3653 /*
3654 * If moving to a remote node, retry but allow
3655 * fragmenting fallbacks. Locality is more important
3656 * than fragmentation avoidance.
3657 */
3658 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3659 if (zone_to_nid(zone) != local_nid) {
3660 alloc_flags &= ~ALLOC_NOFRAGMENT;
3661 goto retry;
3662 }
3663 }
3664
3665 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003666 if (!zone_watermark_fast(zone, order, mark,
Olivier Deprez0e641232021-09-23 10:07:05 +02003667 ac_classzone_idx(ac), alloc_flags,
3668 gfp_mask)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003669 int ret;
3670
3671#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3672 /*
3673 * Watermark failed for this zone, but see if we can
3674 * grow this zone if it contains deferred pages.
3675 */
3676 if (static_branch_unlikely(&deferred_pages)) {
3677 if (_deferred_grow_zone(zone, order))
3678 goto try_this_zone;
3679 }
3680#endif
3681 /* Checked here to keep the fast path fast */
3682 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3683 if (alloc_flags & ALLOC_NO_WATERMARKS)
3684 goto try_this_zone;
3685
3686 if (node_reclaim_mode == 0 ||
3687 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3688 continue;
3689
3690 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3691 switch (ret) {
3692 case NODE_RECLAIM_NOSCAN:
3693 /* did not scan */
3694 continue;
3695 case NODE_RECLAIM_FULL:
3696 /* scanned but unreclaimable */
3697 continue;
3698 default:
3699 /* did we reclaim enough */
3700 if (zone_watermark_ok(zone, order, mark,
3701 ac_classzone_idx(ac), alloc_flags))
3702 goto try_this_zone;
3703
3704 continue;
3705 }
3706 }
3707
3708try_this_zone:
3709 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3710 gfp_mask, alloc_flags, ac->migratetype);
3711 if (page) {
3712 prep_new_page(page, order, gfp_mask, alloc_flags);
3713
3714 /*
3715 * If this is a high-order atomic allocation then check
3716 * if the pageblock should be reserved for the future
3717 */
3718 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3719 reserve_highatomic_pageblock(page, zone, order);
3720
3721 return page;
3722 } else {
3723#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3724 /* Try again if zone has deferred pages */
3725 if (static_branch_unlikely(&deferred_pages)) {
3726 if (_deferred_grow_zone(zone, order))
3727 goto try_this_zone;
3728 }
3729#endif
3730 }
3731 }
3732
David Brazdil0f672f62019-12-10 10:32:29 +00003733 /*
3734 * It's possible on a UMA machine to get through all zones that are
3735 * fragmented. If avoiding fragmentation, reset and try again.
3736 */
3737 if (no_fallback) {
3738 alloc_flags &= ~ALLOC_NOFRAGMENT;
3739 goto retry;
3740 }
3741
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003742 return NULL;
3743}
3744
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003745static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3746{
3747 unsigned int filter = SHOW_MEM_FILTER_NODES;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003748
3749 /*
3750 * This documents exceptions given to allocations in certain
3751 * contexts that are allowed to allocate outside current's set
3752 * of allowed nodes.
3753 */
3754 if (!(gfp_mask & __GFP_NOMEMALLOC))
3755 if (tsk_is_oom_victim(current) ||
3756 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3757 filter &= ~SHOW_MEM_FILTER_NODES;
3758 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3759 filter &= ~SHOW_MEM_FILTER_NODES;
3760
3761 show_mem(filter, nodemask);
3762}
3763
3764void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3765{
3766 struct va_format vaf;
3767 va_list args;
David Brazdil0f672f62019-12-10 10:32:29 +00003768 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003769
3770 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3771 return;
3772
3773 va_start(args, fmt);
3774 vaf.fmt = fmt;
3775 vaf.va = &args;
David Brazdil0f672f62019-12-10 10:32:29 +00003776 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003777 current->comm, &vaf, gfp_mask, &gfp_mask,
3778 nodemask_pr_args(nodemask));
3779 va_end(args);
3780
3781 cpuset_print_current_mems_allowed();
David Brazdil0f672f62019-12-10 10:32:29 +00003782 pr_cont("\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003783 dump_stack();
3784 warn_alloc_show_mem(gfp_mask, nodemask);
3785}
3786
3787static inline struct page *
3788__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3789 unsigned int alloc_flags,
3790 const struct alloc_context *ac)
3791{
3792 struct page *page;
3793
3794 page = get_page_from_freelist(gfp_mask, order,
3795 alloc_flags|ALLOC_CPUSET, ac);
3796 /*
3797 * fallback to ignore cpuset restriction if our nodes
3798 * are depleted
3799 */
3800 if (!page)
3801 page = get_page_from_freelist(gfp_mask, order,
3802 alloc_flags, ac);
3803
3804 return page;
3805}
3806
3807static inline struct page *
3808__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3809 const struct alloc_context *ac, unsigned long *did_some_progress)
3810{
3811 struct oom_control oc = {
3812 .zonelist = ac->zonelist,
3813 .nodemask = ac->nodemask,
3814 .memcg = NULL,
3815 .gfp_mask = gfp_mask,
3816 .order = order,
3817 };
3818 struct page *page;
3819
3820 *did_some_progress = 0;
3821
3822 /*
3823 * Acquire the oom lock. If that fails, somebody else is
3824 * making progress for us.
3825 */
3826 if (!mutex_trylock(&oom_lock)) {
3827 *did_some_progress = 1;
3828 schedule_timeout_uninterruptible(1);
3829 return NULL;
3830 }
3831
3832 /*
3833 * Go through the zonelist yet one more time, keep very high watermark
3834 * here, this is only to catch a parallel oom killing, we must fail if
3835 * we're still under heavy pressure. But make sure that this reclaim
3836 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3837 * allocation which will never fail due to oom_lock already held.
3838 */
3839 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3840 ~__GFP_DIRECT_RECLAIM, order,
3841 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3842 if (page)
3843 goto out;
3844
3845 /* Coredumps can quickly deplete all memory reserves */
3846 if (current->flags & PF_DUMPCORE)
3847 goto out;
3848 /* The OOM killer will not help higher order allocs */
3849 if (order > PAGE_ALLOC_COSTLY_ORDER)
3850 goto out;
3851 /*
3852 * We have already exhausted all our reclaim opportunities without any
3853 * success so it is time to admit defeat. We will skip the OOM killer
3854 * because it is very likely that the caller has a more reasonable
3855 * fallback than shooting a random task.
3856 */
3857 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3858 goto out;
3859 /* The OOM killer does not needlessly kill tasks for lowmem */
3860 if (ac->high_zoneidx < ZONE_NORMAL)
3861 goto out;
3862 if (pm_suspended_storage())
3863 goto out;
3864 /*
3865 * XXX: GFP_NOFS allocations should rather fail than rely on
3866 * other request to make a forward progress.
3867 * We are in an unfortunate situation where out_of_memory cannot
3868 * do much for this context but let's try it to at least get
3869 * access to memory reserved if the current task is killed (see
3870 * out_of_memory). Once filesystems are ready to handle allocation
3871 * failures more gracefully we should just bail out here.
3872 */
3873
3874 /* The OOM killer may not free memory on a specific node */
3875 if (gfp_mask & __GFP_THISNODE)
3876 goto out;
3877
3878 /* Exhausted what can be done so it's blame time */
3879 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3880 *did_some_progress = 1;
3881
3882 /*
3883 * Help non-failing allocations by giving them access to memory
3884 * reserves
3885 */
3886 if (gfp_mask & __GFP_NOFAIL)
3887 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3888 ALLOC_NO_WATERMARKS, ac);
3889 }
3890out:
3891 mutex_unlock(&oom_lock);
3892 return page;
3893}
3894
3895/*
3896 * Maximum number of compaction retries wit a progress before OOM
3897 * killer is consider as the only way to move forward.
3898 */
3899#define MAX_COMPACT_RETRIES 16
3900
3901#ifdef CONFIG_COMPACTION
3902/* Try memory compaction for high-order allocations before reclaim */
3903static struct page *
3904__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3905 unsigned int alloc_flags, const struct alloc_context *ac,
3906 enum compact_priority prio, enum compact_result *compact_result)
3907{
David Brazdil0f672f62019-12-10 10:32:29 +00003908 struct page *page = NULL;
3909 unsigned long pflags;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003910 unsigned int noreclaim_flag;
3911
3912 if (!order)
3913 return NULL;
3914
David Brazdil0f672f62019-12-10 10:32:29 +00003915 psi_memstall_enter(&pflags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003916 noreclaim_flag = memalloc_noreclaim_save();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003917
David Brazdil0f672f62019-12-10 10:32:29 +00003918 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3919 prio, &page);
3920
3921 memalloc_noreclaim_restore(noreclaim_flag);
3922 psi_memstall_leave(&pflags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003923
3924 /*
3925 * At least in one zone compaction wasn't deferred or skipped, so let's
3926 * count a compaction stall
3927 */
3928 count_vm_event(COMPACTSTALL);
3929
David Brazdil0f672f62019-12-10 10:32:29 +00003930 /* Prep a captured page if available */
3931 if (page)
3932 prep_new_page(page, order, gfp_mask, alloc_flags);
3933
3934 /* Try get a page from the freelist if available */
3935 if (!page)
3936 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003937
3938 if (page) {
3939 struct zone *zone = page_zone(page);
3940
3941 zone->compact_blockskip_flush = false;
3942 compaction_defer_reset(zone, order, true);
3943 count_vm_event(COMPACTSUCCESS);
3944 return page;
3945 }
3946
3947 /*
3948 * It's bad if compaction run occurs and fails. The most likely reason
3949 * is that pages exist, but not enough to satisfy watermarks.
3950 */
3951 count_vm_event(COMPACTFAIL);
3952
3953 cond_resched();
3954
3955 return NULL;
3956}
3957
3958static inline bool
3959should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3960 enum compact_result compact_result,
3961 enum compact_priority *compact_priority,
3962 int *compaction_retries)
3963{
3964 int max_retries = MAX_COMPACT_RETRIES;
3965 int min_priority;
3966 bool ret = false;
3967 int retries = *compaction_retries;
3968 enum compact_priority priority = *compact_priority;
3969
3970 if (!order)
3971 return false;
3972
3973 if (compaction_made_progress(compact_result))
3974 (*compaction_retries)++;
3975
3976 /*
3977 * compaction considers all the zone as desperately out of memory
3978 * so it doesn't really make much sense to retry except when the
3979 * failure could be caused by insufficient priority
3980 */
3981 if (compaction_failed(compact_result))
3982 goto check_priority;
3983
3984 /*
David Brazdil0f672f62019-12-10 10:32:29 +00003985 * compaction was skipped because there are not enough order-0 pages
3986 * to work with, so we retry only if it looks like reclaim can help.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003987 */
David Brazdil0f672f62019-12-10 10:32:29 +00003988 if (compaction_needs_reclaim(compact_result)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003989 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3990 goto out;
3991 }
3992
3993 /*
David Brazdil0f672f62019-12-10 10:32:29 +00003994 * make sure the compaction wasn't deferred or didn't bail out early
3995 * due to locks contention before we declare that we should give up.
3996 * But the next retry should use a higher priority if allowed, so
3997 * we don't just keep bailing out endlessly.
3998 */
3999 if (compaction_withdrawn(compact_result)) {
4000 goto check_priority;
4001 }
4002
4003 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004004 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4005 * costly ones because they are de facto nofail and invoke OOM
4006 * killer to move on while costly can fail and users are ready
4007 * to cope with that. 1/4 retries is rather arbitrary but we
4008 * would need much more detailed feedback from compaction to
4009 * make a better decision.
4010 */
4011 if (order > PAGE_ALLOC_COSTLY_ORDER)
4012 max_retries /= 4;
4013 if (*compaction_retries <= max_retries) {
4014 ret = true;
4015 goto out;
4016 }
4017
4018 /*
4019 * Make sure there are attempts at the highest priority if we exhausted
4020 * all retries or failed at the lower priorities.
4021 */
4022check_priority:
4023 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4024 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4025
4026 if (*compact_priority > min_priority) {
4027 (*compact_priority)--;
4028 *compaction_retries = 0;
4029 ret = true;
4030 }
4031out:
4032 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4033 return ret;
4034}
4035#else
4036static inline struct page *
4037__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4038 unsigned int alloc_flags, const struct alloc_context *ac,
4039 enum compact_priority prio, enum compact_result *compact_result)
4040{
4041 *compact_result = COMPACT_SKIPPED;
4042 return NULL;
4043}
4044
4045static inline bool
4046should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4047 enum compact_result compact_result,
4048 enum compact_priority *compact_priority,
4049 int *compaction_retries)
4050{
4051 struct zone *zone;
4052 struct zoneref *z;
4053
4054 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4055 return false;
4056
4057 /*
4058 * There are setups with compaction disabled which would prefer to loop
4059 * inside the allocator rather than hit the oom killer prematurely.
4060 * Let's give them a good hope and keep retrying while the order-0
4061 * watermarks are OK.
4062 */
4063 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4064 ac->nodemask) {
4065 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4066 ac_classzone_idx(ac), alloc_flags))
4067 return true;
4068 }
4069 return false;
4070}
4071#endif /* CONFIG_COMPACTION */
4072
4073#ifdef CONFIG_LOCKDEP
4074static struct lockdep_map __fs_reclaim_map =
4075 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4076
4077static bool __need_fs_reclaim(gfp_t gfp_mask)
4078{
4079 gfp_mask = current_gfp_context(gfp_mask);
4080
4081 /* no reclaim without waiting on it */
4082 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4083 return false;
4084
4085 /* this guy won't enter reclaim */
4086 if (current->flags & PF_MEMALLOC)
4087 return false;
4088
4089 /* We're only interested __GFP_FS allocations for now */
4090 if (!(gfp_mask & __GFP_FS))
4091 return false;
4092
4093 if (gfp_mask & __GFP_NOLOCKDEP)
4094 return false;
4095
4096 return true;
4097}
4098
4099void __fs_reclaim_acquire(void)
4100{
4101 lock_map_acquire(&__fs_reclaim_map);
4102}
4103
4104void __fs_reclaim_release(void)
4105{
4106 lock_map_release(&__fs_reclaim_map);
4107}
4108
4109void fs_reclaim_acquire(gfp_t gfp_mask)
4110{
4111 if (__need_fs_reclaim(gfp_mask))
4112 __fs_reclaim_acquire();
4113}
4114EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4115
4116void fs_reclaim_release(gfp_t gfp_mask)
4117{
4118 if (__need_fs_reclaim(gfp_mask))
4119 __fs_reclaim_release();
4120}
4121EXPORT_SYMBOL_GPL(fs_reclaim_release);
4122#endif
4123
4124/* Perform direct synchronous page reclaim */
4125static int
4126__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4127 const struct alloc_context *ac)
4128{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004129 int progress;
4130 unsigned int noreclaim_flag;
David Brazdil0f672f62019-12-10 10:32:29 +00004131 unsigned long pflags;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004132
4133 cond_resched();
4134
4135 /* We now go into synchronous reclaim */
4136 cpuset_memory_pressure_bump();
David Brazdil0f672f62019-12-10 10:32:29 +00004137 psi_memstall_enter(&pflags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004138 fs_reclaim_acquire(gfp_mask);
4139 noreclaim_flag = memalloc_noreclaim_save();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004140
4141 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4142 ac->nodemask);
4143
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004144 memalloc_noreclaim_restore(noreclaim_flag);
4145 fs_reclaim_release(gfp_mask);
David Brazdil0f672f62019-12-10 10:32:29 +00004146 psi_memstall_leave(&pflags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004147
4148 cond_resched();
4149
4150 return progress;
4151}
4152
4153/* The really slow allocator path where we enter direct reclaim */
4154static inline struct page *
4155__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4156 unsigned int alloc_flags, const struct alloc_context *ac,
4157 unsigned long *did_some_progress)
4158{
4159 struct page *page = NULL;
4160 bool drained = false;
4161
4162 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4163 if (unlikely(!(*did_some_progress)))
4164 return NULL;
4165
4166retry:
4167 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4168
4169 /*
4170 * If an allocation failed after direct reclaim, it could be because
4171 * pages are pinned on the per-cpu lists or in high alloc reserves.
4172 * Shrink them them and try again
4173 */
4174 if (!page && !drained) {
4175 unreserve_highatomic_pageblock(ac, false);
4176 drain_all_pages(NULL);
4177 drained = true;
4178 goto retry;
4179 }
4180
4181 return page;
4182}
4183
4184static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4185 const struct alloc_context *ac)
4186{
4187 struct zoneref *z;
4188 struct zone *zone;
4189 pg_data_t *last_pgdat = NULL;
4190 enum zone_type high_zoneidx = ac->high_zoneidx;
4191
4192 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4193 ac->nodemask) {
4194 if (last_pgdat != zone->zone_pgdat)
4195 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4196 last_pgdat = zone->zone_pgdat;
4197 }
4198}
4199
4200static inline unsigned int
4201gfp_to_alloc_flags(gfp_t gfp_mask)
4202{
4203 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4204
4205 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4206 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4207
4208 /*
4209 * The caller may dip into page reserves a bit more if the caller
4210 * cannot run direct reclaim, or if the caller has realtime scheduling
4211 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4212 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4213 */
4214 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
4215
4216 if (gfp_mask & __GFP_ATOMIC) {
4217 /*
4218 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4219 * if it can't schedule.
4220 */
4221 if (!(gfp_mask & __GFP_NOMEMALLOC))
4222 alloc_flags |= ALLOC_HARDER;
4223 /*
4224 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4225 * comment for __cpuset_node_allowed().
4226 */
4227 alloc_flags &= ~ALLOC_CPUSET;
4228 } else if (unlikely(rt_task(current)) && !in_interrupt())
4229 alloc_flags |= ALLOC_HARDER;
4230
David Brazdil0f672f62019-12-10 10:32:29 +00004231 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4232 alloc_flags |= ALLOC_KSWAPD;
4233
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004234#ifdef CONFIG_CMA
4235 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4236 alloc_flags |= ALLOC_CMA;
4237#endif
4238 return alloc_flags;
4239}
4240
4241static bool oom_reserves_allowed(struct task_struct *tsk)
4242{
4243 if (!tsk_is_oom_victim(tsk))
4244 return false;
4245
4246 /*
4247 * !MMU doesn't have oom reaper so give access to memory reserves
4248 * only to the thread with TIF_MEMDIE set
4249 */
4250 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4251 return false;
4252
4253 return true;
4254}
4255
4256/*
4257 * Distinguish requests which really need access to full memory
4258 * reserves from oom victims which can live with a portion of it
4259 */
4260static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4261{
4262 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4263 return 0;
4264 if (gfp_mask & __GFP_MEMALLOC)
4265 return ALLOC_NO_WATERMARKS;
4266 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4267 return ALLOC_NO_WATERMARKS;
4268 if (!in_interrupt()) {
4269 if (current->flags & PF_MEMALLOC)
4270 return ALLOC_NO_WATERMARKS;
4271 else if (oom_reserves_allowed(current))
4272 return ALLOC_OOM;
4273 }
4274
4275 return 0;
4276}
4277
4278bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4279{
4280 return !!__gfp_pfmemalloc_flags(gfp_mask);
4281}
4282
4283/*
4284 * Checks whether it makes sense to retry the reclaim to make a forward progress
4285 * for the given allocation request.
4286 *
4287 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4288 * without success, or when we couldn't even meet the watermark if we
4289 * reclaimed all remaining pages on the LRU lists.
4290 *
4291 * Returns true if a retry is viable or false to enter the oom path.
4292 */
4293static inline bool
4294should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4295 struct alloc_context *ac, int alloc_flags,
4296 bool did_some_progress, int *no_progress_loops)
4297{
4298 struct zone *zone;
4299 struct zoneref *z;
David Brazdil0f672f62019-12-10 10:32:29 +00004300 bool ret = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004301
4302 /*
4303 * Costly allocations might have made a progress but this doesn't mean
4304 * their order will become available due to high fragmentation so
4305 * always increment the no progress counter for them
4306 */
4307 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4308 *no_progress_loops = 0;
4309 else
4310 (*no_progress_loops)++;
4311
4312 /*
4313 * Make sure we converge to OOM if we cannot make any progress
4314 * several times in the row.
4315 */
4316 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4317 /* Before OOM, exhaust highatomic_reserve */
4318 return unreserve_highatomic_pageblock(ac, true);
4319 }
4320
4321 /*
4322 * Keep reclaiming pages while there is a chance this will lead
4323 * somewhere. If none of the target zones can satisfy our allocation
4324 * request even if all reclaimable pages are considered then we are
4325 * screwed and have to go OOM.
4326 */
4327 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4328 ac->nodemask) {
4329 unsigned long available;
4330 unsigned long reclaimable;
4331 unsigned long min_wmark = min_wmark_pages(zone);
4332 bool wmark;
4333
4334 available = reclaimable = zone_reclaimable_pages(zone);
4335 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4336
4337 /*
4338 * Would the allocation succeed if we reclaimed all
4339 * reclaimable pages?
4340 */
4341 wmark = __zone_watermark_ok(zone, order, min_wmark,
4342 ac_classzone_idx(ac), alloc_flags, available);
4343 trace_reclaim_retry_zone(z, order, reclaimable,
4344 available, min_wmark, *no_progress_loops, wmark);
4345 if (wmark) {
4346 /*
4347 * If we didn't make any progress and have a lot of
4348 * dirty + writeback pages then we should wait for
4349 * an IO to complete to slow down the reclaim and
4350 * prevent from pre mature OOM
4351 */
4352 if (!did_some_progress) {
4353 unsigned long write_pending;
4354
4355 write_pending = zone_page_state_snapshot(zone,
4356 NR_ZONE_WRITE_PENDING);
4357
4358 if (2 * write_pending > reclaimable) {
4359 congestion_wait(BLK_RW_ASYNC, HZ/10);
4360 return true;
4361 }
4362 }
4363
David Brazdil0f672f62019-12-10 10:32:29 +00004364 ret = true;
4365 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004366 }
4367 }
4368
David Brazdil0f672f62019-12-10 10:32:29 +00004369out:
4370 /*
4371 * Memory allocation/reclaim might be called from a WQ context and the
4372 * current implementation of the WQ concurrency control doesn't
4373 * recognize that a particular WQ is congested if the worker thread is
4374 * looping without ever sleeping. Therefore we have to do a short sleep
4375 * here rather than calling cond_resched().
4376 */
4377 if (current->flags & PF_WQ_WORKER)
4378 schedule_timeout_uninterruptible(1);
4379 else
4380 cond_resched();
4381 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004382}
4383
4384static inline bool
4385check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4386{
4387 /*
4388 * It's possible that cpuset's mems_allowed and the nodemask from
4389 * mempolicy don't intersect. This should be normally dealt with by
4390 * policy_nodemask(), but it's possible to race with cpuset update in
4391 * such a way the check therein was true, and then it became false
4392 * before we got our cpuset_mems_cookie here.
4393 * This assumes that for all allocations, ac->nodemask can come only
4394 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4395 * when it does not intersect with the cpuset restrictions) or the
4396 * caller can deal with a violated nodemask.
4397 */
4398 if (cpusets_enabled() && ac->nodemask &&
4399 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4400 ac->nodemask = NULL;
4401 return true;
4402 }
4403
4404 /*
4405 * When updating a task's mems_allowed or mempolicy nodemask, it is
4406 * possible to race with parallel threads in such a way that our
4407 * allocation can fail while the mask is being updated. If we are about
4408 * to fail, check if the cpuset changed during allocation and if so,
4409 * retry.
4410 */
4411 if (read_mems_allowed_retry(cpuset_mems_cookie))
4412 return true;
4413
4414 return false;
4415}
4416
4417static inline struct page *
4418__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4419 struct alloc_context *ac)
4420{
4421 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4422 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4423 struct page *page = NULL;
4424 unsigned int alloc_flags;
4425 unsigned long did_some_progress;
4426 enum compact_priority compact_priority;
4427 enum compact_result compact_result;
4428 int compaction_retries;
4429 int no_progress_loops;
4430 unsigned int cpuset_mems_cookie;
4431 int reserve_flags;
4432
4433 /*
4434 * We also sanity check to catch abuse of atomic reserves being used by
4435 * callers that are not in atomic context.
4436 */
4437 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4438 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4439 gfp_mask &= ~__GFP_ATOMIC;
4440
4441retry_cpuset:
4442 compaction_retries = 0;
4443 no_progress_loops = 0;
4444 compact_priority = DEF_COMPACT_PRIORITY;
4445 cpuset_mems_cookie = read_mems_allowed_begin();
4446
4447 /*
4448 * The fast path uses conservative alloc_flags to succeed only until
4449 * kswapd needs to be woken up, and to avoid the cost of setting up
4450 * alloc_flags precisely. So we do that now.
4451 */
4452 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4453
4454 /*
4455 * We need to recalculate the starting point for the zonelist iterator
4456 * because we might have used different nodemask in the fast path, or
4457 * there was a cpuset modification and we are retrying - otherwise we
4458 * could end up iterating over non-eligible zones endlessly.
4459 */
4460 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4461 ac->high_zoneidx, ac->nodemask);
4462 if (!ac->preferred_zoneref->zone)
4463 goto nopage;
4464
David Brazdil0f672f62019-12-10 10:32:29 +00004465 if (alloc_flags & ALLOC_KSWAPD)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004466 wake_all_kswapds(order, gfp_mask, ac);
4467
4468 /*
4469 * The adjusted alloc_flags might result in immediate success, so try
4470 * that first
4471 */
4472 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4473 if (page)
4474 goto got_pg;
4475
4476 /*
4477 * For costly allocations, try direct compaction first, as it's likely
4478 * that we have enough base pages and don't need to reclaim. For non-
4479 * movable high-order allocations, do that as well, as compaction will
4480 * try prevent permanent fragmentation by migrating from blocks of the
4481 * same migratetype.
4482 * Don't try this for allocations that are allowed to ignore
4483 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4484 */
4485 if (can_direct_reclaim &&
4486 (costly_order ||
4487 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4488 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4489 page = __alloc_pages_direct_compact(gfp_mask, order,
4490 alloc_flags, ac,
4491 INIT_COMPACT_PRIORITY,
4492 &compact_result);
4493 if (page)
4494 goto got_pg;
4495
David Brazdil0f672f62019-12-10 10:32:29 +00004496 if (order >= pageblock_order && (gfp_mask & __GFP_IO) &&
4497 !(gfp_mask & __GFP_RETRY_MAYFAIL)) {
4498 /*
4499 * If allocating entire pageblock(s) and compaction
4500 * failed because all zones are below low watermarks
4501 * or is prohibited because it recently failed at this
4502 * order, fail immediately unless the allocator has
4503 * requested compaction and reclaim retry.
4504 *
4505 * Reclaim is
4506 * - potentially very expensive because zones are far
4507 * below their low watermarks or this is part of very
4508 * bursty high order allocations,
4509 * - not guaranteed to help because isolate_freepages()
4510 * may not iterate over freed pages as part of its
4511 * linear scan, and
4512 * - unlikely to make entire pageblocks free on its
4513 * own.
4514 */
4515 if (compact_result == COMPACT_SKIPPED ||
4516 compact_result == COMPACT_DEFERRED)
4517 goto nopage;
4518 }
4519
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004520 /*
4521 * Checks for costly allocations with __GFP_NORETRY, which
4522 * includes THP page fault allocations
4523 */
4524 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4525 /*
4526 * If compaction is deferred for high-order allocations,
4527 * it is because sync compaction recently failed. If
4528 * this is the case and the caller requested a THP
4529 * allocation, we do not want to heavily disrupt the
4530 * system, so we fail the allocation instead of entering
4531 * direct reclaim.
4532 */
4533 if (compact_result == COMPACT_DEFERRED)
4534 goto nopage;
4535
4536 /*
4537 * Looks like reclaim/compaction is worth trying, but
4538 * sync compaction could be very expensive, so keep
4539 * using async compaction.
4540 */
4541 compact_priority = INIT_COMPACT_PRIORITY;
4542 }
4543 }
4544
4545retry:
4546 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
David Brazdil0f672f62019-12-10 10:32:29 +00004547 if (alloc_flags & ALLOC_KSWAPD)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004548 wake_all_kswapds(order, gfp_mask, ac);
4549
4550 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4551 if (reserve_flags)
4552 alloc_flags = reserve_flags;
4553
4554 /*
4555 * Reset the nodemask and zonelist iterators if memory policies can be
4556 * ignored. These allocations are high priority and system rather than
4557 * user oriented.
4558 */
4559 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4560 ac->nodemask = NULL;
4561 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4562 ac->high_zoneidx, ac->nodemask);
4563 }
4564
4565 /* Attempt with potentially adjusted zonelist and alloc_flags */
4566 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4567 if (page)
4568 goto got_pg;
4569
4570 /* Caller is not willing to reclaim, we can't balance anything */
4571 if (!can_direct_reclaim)
4572 goto nopage;
4573
4574 /* Avoid recursion of direct reclaim */
4575 if (current->flags & PF_MEMALLOC)
4576 goto nopage;
4577
4578 /* Try direct reclaim and then allocating */
4579 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4580 &did_some_progress);
4581 if (page)
4582 goto got_pg;
4583
4584 /* Try direct compaction and then allocating */
4585 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4586 compact_priority, &compact_result);
4587 if (page)
4588 goto got_pg;
4589
4590 /* Do not loop if specifically requested */
4591 if (gfp_mask & __GFP_NORETRY)
4592 goto nopage;
4593
4594 /*
4595 * Do not retry costly high order allocations unless they are
4596 * __GFP_RETRY_MAYFAIL
4597 */
4598 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4599 goto nopage;
4600
4601 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4602 did_some_progress > 0, &no_progress_loops))
4603 goto retry;
4604
4605 /*
4606 * It doesn't make any sense to retry for the compaction if the order-0
4607 * reclaim is not able to make any progress because the current
4608 * implementation of the compaction depends on the sufficient amount
4609 * of free memory (see __compaction_suitable)
4610 */
4611 if (did_some_progress > 0 &&
4612 should_compact_retry(ac, order, alloc_flags,
4613 compact_result, &compact_priority,
4614 &compaction_retries))
4615 goto retry;
4616
4617
4618 /* Deal with possible cpuset update races before we start OOM killing */
4619 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4620 goto retry_cpuset;
4621
4622 /* Reclaim has failed us, start killing things */
4623 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4624 if (page)
4625 goto got_pg;
4626
4627 /* Avoid allocations with no watermarks from looping endlessly */
4628 if (tsk_is_oom_victim(current) &&
4629 (alloc_flags == ALLOC_OOM ||
4630 (gfp_mask & __GFP_NOMEMALLOC)))
4631 goto nopage;
4632
4633 /* Retry as long as the OOM killer is making progress */
4634 if (did_some_progress) {
4635 no_progress_loops = 0;
4636 goto retry;
4637 }
4638
4639nopage:
4640 /* Deal with possible cpuset update races before we fail */
4641 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4642 goto retry_cpuset;
4643
4644 /*
4645 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4646 * we always retry
4647 */
4648 if (gfp_mask & __GFP_NOFAIL) {
4649 /*
4650 * All existing users of the __GFP_NOFAIL are blockable, so warn
4651 * of any new users that actually require GFP_NOWAIT
4652 */
4653 if (WARN_ON_ONCE(!can_direct_reclaim))
4654 goto fail;
4655
4656 /*
4657 * PF_MEMALLOC request from this context is rather bizarre
4658 * because we cannot reclaim anything and only can loop waiting
4659 * for somebody to do a work for us
4660 */
4661 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4662
4663 /*
4664 * non failing costly orders are a hard requirement which we
4665 * are not prepared for much so let's warn about these users
4666 * so that we can identify them and convert them to something
4667 * else.
4668 */
4669 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4670
4671 /*
4672 * Help non-failing allocations by giving them access to memory
4673 * reserves but do not use ALLOC_NO_WATERMARKS because this
4674 * could deplete whole memory reserves which would just make
4675 * the situation worse
4676 */
4677 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4678 if (page)
4679 goto got_pg;
4680
4681 cond_resched();
4682 goto retry;
4683 }
4684fail:
4685 warn_alloc(gfp_mask, ac->nodemask,
4686 "page allocation failure: order:%u", order);
4687got_pg:
4688 return page;
4689}
4690
4691static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4692 int preferred_nid, nodemask_t *nodemask,
4693 struct alloc_context *ac, gfp_t *alloc_mask,
4694 unsigned int *alloc_flags)
4695{
4696 ac->high_zoneidx = gfp_zone(gfp_mask);
4697 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4698 ac->nodemask = nodemask;
4699 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4700
4701 if (cpusets_enabled()) {
4702 *alloc_mask |= __GFP_HARDWALL;
4703 if (!ac->nodemask)
4704 ac->nodemask = &cpuset_current_mems_allowed;
4705 else
4706 *alloc_flags |= ALLOC_CPUSET;
4707 }
4708
4709 fs_reclaim_acquire(gfp_mask);
4710 fs_reclaim_release(gfp_mask);
4711
4712 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4713
4714 if (should_fail_alloc_page(gfp_mask, order))
4715 return false;
4716
4717 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4718 *alloc_flags |= ALLOC_CMA;
4719
4720 return true;
4721}
4722
4723/* Determine whether to spread dirty pages and what the first usable zone */
4724static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4725{
4726 /* Dirty zone balancing only done in the fast path */
4727 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4728
4729 /*
4730 * The preferred zone is used for statistics but crucially it is
4731 * also used as the starting point for the zonelist iterator. It
4732 * may get reset for allocations that ignore memory policies.
4733 */
4734 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4735 ac->high_zoneidx, ac->nodemask);
4736}
4737
4738/*
4739 * This is the 'heart' of the zoned buddy allocator.
4740 */
4741struct page *
4742__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4743 nodemask_t *nodemask)
4744{
4745 struct page *page;
4746 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4747 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4748 struct alloc_context ac = { };
4749
4750 /*
4751 * There are several places where we assume that the order value is sane
4752 * so bail out early if the request is out of bound.
4753 */
4754 if (unlikely(order >= MAX_ORDER)) {
4755 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4756 return NULL;
4757 }
4758
4759 gfp_mask &= gfp_allowed_mask;
4760 alloc_mask = gfp_mask;
4761 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4762 return NULL;
4763
4764 finalise_ac(gfp_mask, &ac);
4765
David Brazdil0f672f62019-12-10 10:32:29 +00004766 /*
4767 * Forbid the first pass from falling back to types that fragment
4768 * memory until all local zones are considered.
4769 */
4770 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4771
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004772 /* First allocation attempt */
4773 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4774 if (likely(page))
4775 goto out;
4776
4777 /*
4778 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4779 * resp. GFP_NOIO which has to be inherited for all allocation requests
4780 * from a particular context which has been marked by
4781 * memalloc_no{fs,io}_{save,restore}.
4782 */
4783 alloc_mask = current_gfp_context(gfp_mask);
4784 ac.spread_dirty_pages = false;
4785
4786 /*
4787 * Restore the original nodemask if it was potentially replaced with
4788 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4789 */
4790 if (unlikely(ac.nodemask != nodemask))
4791 ac.nodemask = nodemask;
4792
4793 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4794
4795out:
4796 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
David Brazdil0f672f62019-12-10 10:32:29 +00004797 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004798 __free_pages(page, order);
4799 page = NULL;
4800 }
4801
4802 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4803
4804 return page;
4805}
4806EXPORT_SYMBOL(__alloc_pages_nodemask);
4807
4808/*
4809 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4810 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4811 * you need to access high mem.
4812 */
4813unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4814{
4815 struct page *page;
4816
4817 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4818 if (!page)
4819 return 0;
4820 return (unsigned long) page_address(page);
4821}
4822EXPORT_SYMBOL(__get_free_pages);
4823
4824unsigned long get_zeroed_page(gfp_t gfp_mask)
4825{
4826 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4827}
4828EXPORT_SYMBOL(get_zeroed_page);
4829
David Brazdil0f672f62019-12-10 10:32:29 +00004830static inline void free_the_page(struct page *page, unsigned int order)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004831{
David Brazdil0f672f62019-12-10 10:32:29 +00004832 if (order == 0) /* Via pcp? */
4833 free_unref_page(page);
4834 else
4835 __free_pages_ok(page, order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004836}
4837
David Brazdil0f672f62019-12-10 10:32:29 +00004838void __free_pages(struct page *page, unsigned int order)
4839{
4840 if (put_page_testzero(page))
4841 free_the_page(page, order);
4842}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004843EXPORT_SYMBOL(__free_pages);
4844
4845void free_pages(unsigned long addr, unsigned int order)
4846{
4847 if (addr != 0) {
4848 VM_BUG_ON(!virt_addr_valid((void *)addr));
4849 __free_pages(virt_to_page((void *)addr), order);
4850 }
4851}
4852
4853EXPORT_SYMBOL(free_pages);
4854
4855/*
4856 * Page Fragment:
4857 * An arbitrary-length arbitrary-offset area of memory which resides
4858 * within a 0 or higher order page. Multiple fragments within that page
4859 * are individually refcounted, in the page's reference counter.
4860 *
4861 * The page_frag functions below provide a simple allocation framework for
4862 * page fragments. This is used by the network stack and network device
4863 * drivers to provide a backing region of memory for use as either an
4864 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4865 */
4866static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4867 gfp_t gfp_mask)
4868{
4869 struct page *page = NULL;
4870 gfp_t gfp = gfp_mask;
4871
4872#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4873 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4874 __GFP_NOMEMALLOC;
4875 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4876 PAGE_FRAG_CACHE_MAX_ORDER);
4877 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4878#endif
4879 if (unlikely(!page))
4880 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4881
4882 nc->va = page ? page_address(page) : NULL;
4883
4884 return page;
4885}
4886
4887void __page_frag_cache_drain(struct page *page, unsigned int count)
4888{
4889 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4890
David Brazdil0f672f62019-12-10 10:32:29 +00004891 if (page_ref_sub_and_test(page, count))
4892 free_the_page(page, compound_order(page));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004893}
4894EXPORT_SYMBOL(__page_frag_cache_drain);
4895
4896void *page_frag_alloc(struct page_frag_cache *nc,
4897 unsigned int fragsz, gfp_t gfp_mask)
4898{
4899 unsigned int size = PAGE_SIZE;
4900 struct page *page;
4901 int offset;
4902
4903 if (unlikely(!nc->va)) {
4904refill:
4905 page = __page_frag_cache_refill(nc, gfp_mask);
4906 if (!page)
4907 return NULL;
4908
4909#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4910 /* if size can vary use size else just use PAGE_SIZE */
4911 size = nc->size;
4912#endif
4913 /* Even if we own the page, we do not use atomic_set().
4914 * This would break get_page_unless_zero() users.
4915 */
David Brazdil0f672f62019-12-10 10:32:29 +00004916 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004917
4918 /* reset page count bias and offset to start of new frag */
4919 nc->pfmemalloc = page_is_pfmemalloc(page);
David Brazdil0f672f62019-12-10 10:32:29 +00004920 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004921 nc->offset = size;
4922 }
4923
4924 offset = nc->offset - fragsz;
4925 if (unlikely(offset < 0)) {
4926 page = virt_to_page(nc->va);
4927
4928 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4929 goto refill;
4930
Olivier Deprez0e641232021-09-23 10:07:05 +02004931 if (unlikely(nc->pfmemalloc)) {
4932 free_the_page(page, compound_order(page));
4933 goto refill;
4934 }
4935
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004936#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4937 /* if size can vary use size else just use PAGE_SIZE */
4938 size = nc->size;
4939#endif
4940 /* OK, page count is 0, we can safely set it */
David Brazdil0f672f62019-12-10 10:32:29 +00004941 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004942
4943 /* reset page count bias and offset to start of new frag */
David Brazdil0f672f62019-12-10 10:32:29 +00004944 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004945 offset = size - fragsz;
4946 }
4947
4948 nc->pagecnt_bias--;
4949 nc->offset = offset;
4950
4951 return nc->va + offset;
4952}
4953EXPORT_SYMBOL(page_frag_alloc);
4954
4955/*
4956 * Frees a page fragment allocated out of either a compound or order 0 page.
4957 */
4958void page_frag_free(void *addr)
4959{
4960 struct page *page = virt_to_head_page(addr);
4961
4962 if (unlikely(put_page_testzero(page)))
David Brazdil0f672f62019-12-10 10:32:29 +00004963 free_the_page(page, compound_order(page));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004964}
4965EXPORT_SYMBOL(page_frag_free);
4966
4967static void *make_alloc_exact(unsigned long addr, unsigned int order,
4968 size_t size)
4969{
4970 if (addr) {
4971 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4972 unsigned long used = addr + PAGE_ALIGN(size);
4973
4974 split_page(virt_to_page((void *)addr), order);
4975 while (used < alloc_end) {
4976 free_page(used);
4977 used += PAGE_SIZE;
4978 }
4979 }
4980 return (void *)addr;
4981}
4982
4983/**
4984 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4985 * @size: the number of bytes to allocate
David Brazdil0f672f62019-12-10 10:32:29 +00004986 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004987 *
4988 * This function is similar to alloc_pages(), except that it allocates the
4989 * minimum number of pages to satisfy the request. alloc_pages() can only
4990 * allocate memory in power-of-two pages.
4991 *
4992 * This function is also limited by MAX_ORDER.
4993 *
4994 * Memory allocated by this function must be released by free_pages_exact().
David Brazdil0f672f62019-12-10 10:32:29 +00004995 *
4996 * Return: pointer to the allocated area or %NULL in case of error.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004997 */
4998void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4999{
5000 unsigned int order = get_order(size);
5001 unsigned long addr;
5002
David Brazdil0f672f62019-12-10 10:32:29 +00005003 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5004 gfp_mask &= ~__GFP_COMP;
5005
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005006 addr = __get_free_pages(gfp_mask, order);
5007 return make_alloc_exact(addr, order, size);
5008}
5009EXPORT_SYMBOL(alloc_pages_exact);
5010
5011/**
5012 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5013 * pages on a node.
5014 * @nid: the preferred node ID where memory should be allocated
5015 * @size: the number of bytes to allocate
David Brazdil0f672f62019-12-10 10:32:29 +00005016 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005017 *
5018 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5019 * back.
David Brazdil0f672f62019-12-10 10:32:29 +00005020 *
5021 * Return: pointer to the allocated area or %NULL in case of error.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005022 */
5023void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5024{
5025 unsigned int order = get_order(size);
David Brazdil0f672f62019-12-10 10:32:29 +00005026 struct page *p;
5027
5028 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5029 gfp_mask &= ~__GFP_COMP;
5030
5031 p = alloc_pages_node(nid, gfp_mask, order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005032 if (!p)
5033 return NULL;
5034 return make_alloc_exact((unsigned long)page_address(p), order, size);
5035}
5036
5037/**
5038 * free_pages_exact - release memory allocated via alloc_pages_exact()
5039 * @virt: the value returned by alloc_pages_exact.
5040 * @size: size of allocation, same value as passed to alloc_pages_exact().
5041 *
5042 * Release the memory allocated by a previous call to alloc_pages_exact.
5043 */
5044void free_pages_exact(void *virt, size_t size)
5045{
5046 unsigned long addr = (unsigned long)virt;
5047 unsigned long end = addr + PAGE_ALIGN(size);
5048
5049 while (addr < end) {
5050 free_page(addr);
5051 addr += PAGE_SIZE;
5052 }
5053}
5054EXPORT_SYMBOL(free_pages_exact);
5055
5056/**
5057 * nr_free_zone_pages - count number of pages beyond high watermark
5058 * @offset: The zone index of the highest zone
5059 *
David Brazdil0f672f62019-12-10 10:32:29 +00005060 * nr_free_zone_pages() counts the number of pages which are beyond the
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005061 * high watermark within all zones at or below a given zone index. For each
5062 * zone, the number of pages is calculated as:
5063 *
5064 * nr_free_zone_pages = managed_pages - high_pages
David Brazdil0f672f62019-12-10 10:32:29 +00005065 *
5066 * Return: number of pages beyond high watermark.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005067 */
5068static unsigned long nr_free_zone_pages(int offset)
5069{
5070 struct zoneref *z;
5071 struct zone *zone;
5072
5073 /* Just pick one node, since fallback list is circular */
5074 unsigned long sum = 0;
5075
5076 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5077
5078 for_each_zone_zonelist(zone, z, zonelist, offset) {
David Brazdil0f672f62019-12-10 10:32:29 +00005079 unsigned long size = zone_managed_pages(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005080 unsigned long high = high_wmark_pages(zone);
5081 if (size > high)
5082 sum += size - high;
5083 }
5084
5085 return sum;
5086}
5087
5088/**
5089 * nr_free_buffer_pages - count number of pages beyond high watermark
5090 *
5091 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5092 * watermark within ZONE_DMA and ZONE_NORMAL.
David Brazdil0f672f62019-12-10 10:32:29 +00005093 *
5094 * Return: number of pages beyond high watermark within ZONE_DMA and
5095 * ZONE_NORMAL.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005096 */
5097unsigned long nr_free_buffer_pages(void)
5098{
5099 return nr_free_zone_pages(gfp_zone(GFP_USER));
5100}
5101EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5102
5103/**
5104 * nr_free_pagecache_pages - count number of pages beyond high watermark
5105 *
5106 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5107 * high watermark within all zones.
David Brazdil0f672f62019-12-10 10:32:29 +00005108 *
5109 * Return: number of pages beyond high watermark within all zones.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005110 */
5111unsigned long nr_free_pagecache_pages(void)
5112{
5113 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5114}
5115
5116static inline void show_node(struct zone *zone)
5117{
5118 if (IS_ENABLED(CONFIG_NUMA))
5119 printk("Node %d ", zone_to_nid(zone));
5120}
5121
5122long si_mem_available(void)
5123{
5124 long available;
5125 unsigned long pagecache;
5126 unsigned long wmark_low = 0;
5127 unsigned long pages[NR_LRU_LISTS];
David Brazdil0f672f62019-12-10 10:32:29 +00005128 unsigned long reclaimable;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005129 struct zone *zone;
5130 int lru;
5131
5132 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5133 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5134
5135 for_each_zone(zone)
David Brazdil0f672f62019-12-10 10:32:29 +00005136 wmark_low += low_wmark_pages(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005137
5138 /*
5139 * Estimate the amount of memory available for userspace allocations,
5140 * without causing swapping.
5141 */
5142 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5143
5144 /*
5145 * Not all the page cache can be freed, otherwise the system will
5146 * start swapping. Assume at least half of the page cache, or the
5147 * low watermark worth of cache, needs to stay.
5148 */
5149 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5150 pagecache -= min(pagecache / 2, wmark_low);
5151 available += pagecache;
5152
5153 /*
David Brazdil0f672f62019-12-10 10:32:29 +00005154 * Part of the reclaimable slab and other kernel memory consists of
5155 * items that are in use, and cannot be freed. Cap this estimate at the
5156 * low watermark.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005157 */
David Brazdil0f672f62019-12-10 10:32:29 +00005158 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5159 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5160 available += reclaimable - min(reclaimable / 2, wmark_low);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005161
5162 if (available < 0)
5163 available = 0;
5164 return available;
5165}
5166EXPORT_SYMBOL_GPL(si_mem_available);
5167
5168void si_meminfo(struct sysinfo *val)
5169{
David Brazdil0f672f62019-12-10 10:32:29 +00005170 val->totalram = totalram_pages();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005171 val->sharedram = global_node_page_state(NR_SHMEM);
5172 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5173 val->bufferram = nr_blockdev_pages();
David Brazdil0f672f62019-12-10 10:32:29 +00005174 val->totalhigh = totalhigh_pages();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005175 val->freehigh = nr_free_highpages();
5176 val->mem_unit = PAGE_SIZE;
5177}
5178
5179EXPORT_SYMBOL(si_meminfo);
5180
5181#ifdef CONFIG_NUMA
5182void si_meminfo_node(struct sysinfo *val, int nid)
5183{
5184 int zone_type; /* needs to be signed */
5185 unsigned long managed_pages = 0;
5186 unsigned long managed_highpages = 0;
5187 unsigned long free_highpages = 0;
5188 pg_data_t *pgdat = NODE_DATA(nid);
5189
5190 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
David Brazdil0f672f62019-12-10 10:32:29 +00005191 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005192 val->totalram = managed_pages;
5193 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5194 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5195#ifdef CONFIG_HIGHMEM
5196 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5197 struct zone *zone = &pgdat->node_zones[zone_type];
5198
5199 if (is_highmem(zone)) {
David Brazdil0f672f62019-12-10 10:32:29 +00005200 managed_highpages += zone_managed_pages(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005201 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5202 }
5203 }
5204 val->totalhigh = managed_highpages;
5205 val->freehigh = free_highpages;
5206#else
5207 val->totalhigh = managed_highpages;
5208 val->freehigh = free_highpages;
5209#endif
5210 val->mem_unit = PAGE_SIZE;
5211}
5212#endif
5213
5214/*
5215 * Determine whether the node should be displayed or not, depending on whether
5216 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5217 */
5218static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5219{
5220 if (!(flags & SHOW_MEM_FILTER_NODES))
5221 return false;
5222
5223 /*
5224 * no node mask - aka implicit memory numa policy. Do not bother with
5225 * the synchronization - read_mems_allowed_begin - because we do not
5226 * have to be precise here.
5227 */
5228 if (!nodemask)
5229 nodemask = &cpuset_current_mems_allowed;
5230
5231 return !node_isset(nid, *nodemask);
5232}
5233
5234#define K(x) ((x) << (PAGE_SHIFT-10))
5235
5236static void show_migration_types(unsigned char type)
5237{
5238 static const char types[MIGRATE_TYPES] = {
5239 [MIGRATE_UNMOVABLE] = 'U',
5240 [MIGRATE_MOVABLE] = 'M',
5241 [MIGRATE_RECLAIMABLE] = 'E',
5242 [MIGRATE_HIGHATOMIC] = 'H',
5243#ifdef CONFIG_CMA
5244 [MIGRATE_CMA] = 'C',
5245#endif
5246#ifdef CONFIG_MEMORY_ISOLATION
5247 [MIGRATE_ISOLATE] = 'I',
5248#endif
5249 };
5250 char tmp[MIGRATE_TYPES + 1];
5251 char *p = tmp;
5252 int i;
5253
5254 for (i = 0; i < MIGRATE_TYPES; i++) {
5255 if (type & (1 << i))
5256 *p++ = types[i];
5257 }
5258
5259 *p = '\0';
5260 printk(KERN_CONT "(%s) ", tmp);
5261}
5262
5263/*
5264 * Show free area list (used inside shift_scroll-lock stuff)
5265 * We also calculate the percentage fragmentation. We do this by counting the
5266 * memory on each free list with the exception of the first item on the list.
5267 *
5268 * Bits in @filter:
5269 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5270 * cpuset.
5271 */
5272void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5273{
5274 unsigned long free_pcp = 0;
5275 int cpu;
5276 struct zone *zone;
5277 pg_data_t *pgdat;
5278
5279 for_each_populated_zone(zone) {
5280 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5281 continue;
5282
5283 for_each_online_cpu(cpu)
5284 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5285 }
5286
5287 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5288 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5289 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5290 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5291 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5292 " free:%lu free_pcp:%lu free_cma:%lu\n",
5293 global_node_page_state(NR_ACTIVE_ANON),
5294 global_node_page_state(NR_INACTIVE_ANON),
5295 global_node_page_state(NR_ISOLATED_ANON),
5296 global_node_page_state(NR_ACTIVE_FILE),
5297 global_node_page_state(NR_INACTIVE_FILE),
5298 global_node_page_state(NR_ISOLATED_FILE),
5299 global_node_page_state(NR_UNEVICTABLE),
5300 global_node_page_state(NR_FILE_DIRTY),
5301 global_node_page_state(NR_WRITEBACK),
5302 global_node_page_state(NR_UNSTABLE_NFS),
5303 global_node_page_state(NR_SLAB_RECLAIMABLE),
5304 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5305 global_node_page_state(NR_FILE_MAPPED),
5306 global_node_page_state(NR_SHMEM),
5307 global_zone_page_state(NR_PAGETABLE),
5308 global_zone_page_state(NR_BOUNCE),
5309 global_zone_page_state(NR_FREE_PAGES),
5310 free_pcp,
5311 global_zone_page_state(NR_FREE_CMA_PAGES));
5312
5313 for_each_online_pgdat(pgdat) {
5314 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5315 continue;
5316
5317 printk("Node %d"
5318 " active_anon:%lukB"
5319 " inactive_anon:%lukB"
5320 " active_file:%lukB"
5321 " inactive_file:%lukB"
5322 " unevictable:%lukB"
5323 " isolated(anon):%lukB"
5324 " isolated(file):%lukB"
5325 " mapped:%lukB"
5326 " dirty:%lukB"
5327 " writeback:%lukB"
5328 " shmem:%lukB"
5329#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5330 " shmem_thp: %lukB"
5331 " shmem_pmdmapped: %lukB"
5332 " anon_thp: %lukB"
5333#endif
5334 " writeback_tmp:%lukB"
5335 " unstable:%lukB"
5336 " all_unreclaimable? %s"
5337 "\n",
5338 pgdat->node_id,
5339 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5340 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5341 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5342 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5343 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5344 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5345 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5346 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5347 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5348 K(node_page_state(pgdat, NR_WRITEBACK)),
5349 K(node_page_state(pgdat, NR_SHMEM)),
5350#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5351 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5352 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5353 * HPAGE_PMD_NR),
5354 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5355#endif
5356 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5357 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5358 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5359 "yes" : "no");
5360 }
5361
5362 for_each_populated_zone(zone) {
5363 int i;
5364
5365 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5366 continue;
5367
5368 free_pcp = 0;
5369 for_each_online_cpu(cpu)
5370 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5371
5372 show_node(zone);
5373 printk(KERN_CONT
5374 "%s"
5375 " free:%lukB"
5376 " min:%lukB"
5377 " low:%lukB"
5378 " high:%lukB"
5379 " active_anon:%lukB"
5380 " inactive_anon:%lukB"
5381 " active_file:%lukB"
5382 " inactive_file:%lukB"
5383 " unevictable:%lukB"
5384 " writepending:%lukB"
5385 " present:%lukB"
5386 " managed:%lukB"
5387 " mlocked:%lukB"
5388 " kernel_stack:%lukB"
5389 " pagetables:%lukB"
5390 " bounce:%lukB"
5391 " free_pcp:%lukB"
5392 " local_pcp:%ukB"
5393 " free_cma:%lukB"
5394 "\n",
5395 zone->name,
5396 K(zone_page_state(zone, NR_FREE_PAGES)),
5397 K(min_wmark_pages(zone)),
5398 K(low_wmark_pages(zone)),
5399 K(high_wmark_pages(zone)),
5400 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5401 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5402 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5403 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5404 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5405 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5406 K(zone->present_pages),
David Brazdil0f672f62019-12-10 10:32:29 +00005407 K(zone_managed_pages(zone)),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005408 K(zone_page_state(zone, NR_MLOCK)),
5409 zone_page_state(zone, NR_KERNEL_STACK_KB),
5410 K(zone_page_state(zone, NR_PAGETABLE)),
5411 K(zone_page_state(zone, NR_BOUNCE)),
5412 K(free_pcp),
5413 K(this_cpu_read(zone->pageset->pcp.count)),
5414 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5415 printk("lowmem_reserve[]:");
5416 for (i = 0; i < MAX_NR_ZONES; i++)
5417 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5418 printk(KERN_CONT "\n");
5419 }
5420
5421 for_each_populated_zone(zone) {
5422 unsigned int order;
5423 unsigned long nr[MAX_ORDER], flags, total = 0;
5424 unsigned char types[MAX_ORDER];
5425
5426 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5427 continue;
5428 show_node(zone);
5429 printk(KERN_CONT "%s: ", zone->name);
5430
5431 spin_lock_irqsave(&zone->lock, flags);
5432 for (order = 0; order < MAX_ORDER; order++) {
5433 struct free_area *area = &zone->free_area[order];
5434 int type;
5435
5436 nr[order] = area->nr_free;
5437 total += nr[order] << order;
5438
5439 types[order] = 0;
5440 for (type = 0; type < MIGRATE_TYPES; type++) {
David Brazdil0f672f62019-12-10 10:32:29 +00005441 if (!free_area_empty(area, type))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005442 types[order] |= 1 << type;
5443 }
5444 }
5445 spin_unlock_irqrestore(&zone->lock, flags);
5446 for (order = 0; order < MAX_ORDER; order++) {
5447 printk(KERN_CONT "%lu*%lukB ",
5448 nr[order], K(1UL) << order);
5449 if (nr[order])
5450 show_migration_types(types[order]);
5451 }
5452 printk(KERN_CONT "= %lukB\n", K(total));
5453 }
5454
5455 hugetlb_show_meminfo();
5456
5457 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5458
5459 show_swap_cache_info();
5460}
5461
5462static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5463{
5464 zoneref->zone = zone;
5465 zoneref->zone_idx = zone_idx(zone);
5466}
5467
5468/*
5469 * Builds allocation fallback zone lists.
5470 *
5471 * Add all populated zones of a node to the zonelist.
5472 */
5473static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5474{
5475 struct zone *zone;
5476 enum zone_type zone_type = MAX_NR_ZONES;
5477 int nr_zones = 0;
5478
5479 do {
5480 zone_type--;
5481 zone = pgdat->node_zones + zone_type;
5482 if (managed_zone(zone)) {
5483 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5484 check_highest_zone(zone_type);
5485 }
5486 } while (zone_type);
5487
5488 return nr_zones;
5489}
5490
5491#ifdef CONFIG_NUMA
5492
5493static int __parse_numa_zonelist_order(char *s)
5494{
5495 /*
5496 * We used to support different zonlists modes but they turned
5497 * out to be just not useful. Let's keep the warning in place
5498 * if somebody still use the cmd line parameter so that we do
5499 * not fail it silently
5500 */
5501 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5502 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5503 return -EINVAL;
5504 }
5505 return 0;
5506}
5507
5508static __init int setup_numa_zonelist_order(char *s)
5509{
5510 if (!s)
5511 return 0;
5512
5513 return __parse_numa_zonelist_order(s);
5514}
5515early_param("numa_zonelist_order", setup_numa_zonelist_order);
5516
5517char numa_zonelist_order[] = "Node";
5518
5519/*
5520 * sysctl handler for numa_zonelist_order
5521 */
5522int numa_zonelist_order_handler(struct ctl_table *table, int write,
5523 void __user *buffer, size_t *length,
5524 loff_t *ppos)
5525{
5526 char *str;
5527 int ret;
5528
5529 if (!write)
5530 return proc_dostring(table, write, buffer, length, ppos);
5531 str = memdup_user_nul(buffer, 16);
5532 if (IS_ERR(str))
5533 return PTR_ERR(str);
5534
5535 ret = __parse_numa_zonelist_order(str);
5536 kfree(str);
5537 return ret;
5538}
5539
5540
5541#define MAX_NODE_LOAD (nr_online_nodes)
5542static int node_load[MAX_NUMNODES];
5543
5544/**
5545 * find_next_best_node - find the next node that should appear in a given node's fallback list
5546 * @node: node whose fallback list we're appending
5547 * @used_node_mask: nodemask_t of already used nodes
5548 *
5549 * We use a number of factors to determine which is the next node that should
5550 * appear on a given node's fallback list. The node should not have appeared
5551 * already in @node's fallback list, and it should be the next closest node
5552 * according to the distance array (which contains arbitrary distance values
5553 * from each node to each node in the system), and should also prefer nodes
5554 * with no CPUs, since presumably they'll have very little allocation pressure
5555 * on them otherwise.
David Brazdil0f672f62019-12-10 10:32:29 +00005556 *
5557 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005558 */
5559static int find_next_best_node(int node, nodemask_t *used_node_mask)
5560{
5561 int n, val;
5562 int min_val = INT_MAX;
5563 int best_node = NUMA_NO_NODE;
5564 const struct cpumask *tmp = cpumask_of_node(0);
5565
5566 /* Use the local node if we haven't already */
5567 if (!node_isset(node, *used_node_mask)) {
5568 node_set(node, *used_node_mask);
5569 return node;
5570 }
5571
5572 for_each_node_state(n, N_MEMORY) {
5573
5574 /* Don't want a node to appear more than once */
5575 if (node_isset(n, *used_node_mask))
5576 continue;
5577
5578 /* Use the distance array to find the distance */
5579 val = node_distance(node, n);
5580
5581 /* Penalize nodes under us ("prefer the next node") */
5582 val += (n < node);
5583
5584 /* Give preference to headless and unused nodes */
5585 tmp = cpumask_of_node(n);
5586 if (!cpumask_empty(tmp))
5587 val += PENALTY_FOR_NODE_WITH_CPUS;
5588
5589 /* Slight preference for less loaded node */
5590 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5591 val += node_load[n];
5592
5593 if (val < min_val) {
5594 min_val = val;
5595 best_node = n;
5596 }
5597 }
5598
5599 if (best_node >= 0)
5600 node_set(best_node, *used_node_mask);
5601
5602 return best_node;
5603}
5604
5605
5606/*
5607 * Build zonelists ordered by node and zones within node.
5608 * This results in maximum locality--normal zone overflows into local
5609 * DMA zone, if any--but risks exhausting DMA zone.
5610 */
5611static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5612 unsigned nr_nodes)
5613{
5614 struct zoneref *zonerefs;
5615 int i;
5616
5617 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5618
5619 for (i = 0; i < nr_nodes; i++) {
5620 int nr_zones;
5621
5622 pg_data_t *node = NODE_DATA(node_order[i]);
5623
5624 nr_zones = build_zonerefs_node(node, zonerefs);
5625 zonerefs += nr_zones;
5626 }
5627 zonerefs->zone = NULL;
5628 zonerefs->zone_idx = 0;
5629}
5630
5631/*
5632 * Build gfp_thisnode zonelists
5633 */
5634static void build_thisnode_zonelists(pg_data_t *pgdat)
5635{
5636 struct zoneref *zonerefs;
5637 int nr_zones;
5638
5639 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5640 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5641 zonerefs += nr_zones;
5642 zonerefs->zone = NULL;
5643 zonerefs->zone_idx = 0;
5644}
5645
5646/*
5647 * Build zonelists ordered by zone and nodes within zones.
5648 * This results in conserving DMA zone[s] until all Normal memory is
5649 * exhausted, but results in overflowing to remote node while memory
5650 * may still exist in local DMA zone.
5651 */
5652
5653static void build_zonelists(pg_data_t *pgdat)
5654{
5655 static int node_order[MAX_NUMNODES];
5656 int node, load, nr_nodes = 0;
5657 nodemask_t used_mask;
5658 int local_node, prev_node;
5659
5660 /* NUMA-aware ordering of nodes */
5661 local_node = pgdat->node_id;
5662 load = nr_online_nodes;
5663 prev_node = local_node;
5664 nodes_clear(used_mask);
5665
5666 memset(node_order, 0, sizeof(node_order));
5667 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5668 /*
5669 * We don't want to pressure a particular node.
5670 * So adding penalty to the first node in same
5671 * distance group to make it round-robin.
5672 */
5673 if (node_distance(local_node, node) !=
5674 node_distance(local_node, prev_node))
5675 node_load[node] = load;
5676
5677 node_order[nr_nodes++] = node;
5678 prev_node = node;
5679 load--;
5680 }
5681
5682 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5683 build_thisnode_zonelists(pgdat);
5684}
5685
5686#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5687/*
5688 * Return node id of node used for "local" allocations.
5689 * I.e., first node id of first zone in arg node's generic zonelist.
5690 * Used for initializing percpu 'numa_mem', which is used primarily
5691 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5692 */
5693int local_memory_node(int node)
5694{
5695 struct zoneref *z;
5696
5697 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5698 gfp_zone(GFP_KERNEL),
5699 NULL);
5700 return zone_to_nid(z->zone);
5701}
5702#endif
5703
5704static void setup_min_unmapped_ratio(void);
5705static void setup_min_slab_ratio(void);
5706#else /* CONFIG_NUMA */
5707
5708static void build_zonelists(pg_data_t *pgdat)
5709{
5710 int node, local_node;
5711 struct zoneref *zonerefs;
5712 int nr_zones;
5713
5714 local_node = pgdat->node_id;
5715
5716 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5717 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5718 zonerefs += nr_zones;
5719
5720 /*
5721 * Now we build the zonelist so that it contains the zones
5722 * of all the other nodes.
5723 * We don't want to pressure a particular node, so when
5724 * building the zones for node N, we make sure that the
5725 * zones coming right after the local ones are those from
5726 * node N+1 (modulo N)
5727 */
5728 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5729 if (!node_online(node))
5730 continue;
5731 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5732 zonerefs += nr_zones;
5733 }
5734 for (node = 0; node < local_node; node++) {
5735 if (!node_online(node))
5736 continue;
5737 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5738 zonerefs += nr_zones;
5739 }
5740
5741 zonerefs->zone = NULL;
5742 zonerefs->zone_idx = 0;
5743}
5744
5745#endif /* CONFIG_NUMA */
5746
5747/*
5748 * Boot pageset table. One per cpu which is going to be used for all
5749 * zones and all nodes. The parameters will be set in such a way
5750 * that an item put on a list will immediately be handed over to
5751 * the buddy list. This is safe since pageset manipulation is done
5752 * with interrupts disabled.
5753 *
5754 * The boot_pagesets must be kept even after bootup is complete for
5755 * unused processors and/or zones. They do play a role for bootstrapping
5756 * hotplugged processors.
5757 *
5758 * zoneinfo_show() and maybe other functions do
5759 * not check if the processor is online before following the pageset pointer.
5760 * Other parts of the kernel may not check if the zone is available.
5761 */
5762static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5763static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5764static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5765
5766static void __build_all_zonelists(void *data)
5767{
5768 int nid;
5769 int __maybe_unused cpu;
5770 pg_data_t *self = data;
5771 static DEFINE_SPINLOCK(lock);
5772
5773 spin_lock(&lock);
5774
5775#ifdef CONFIG_NUMA
5776 memset(node_load, 0, sizeof(node_load));
5777#endif
5778
5779 /*
5780 * This node is hotadded and no memory is yet present. So just
5781 * building zonelists is fine - no need to touch other nodes.
5782 */
5783 if (self && !node_online(self->node_id)) {
5784 build_zonelists(self);
5785 } else {
5786 for_each_online_node(nid) {
5787 pg_data_t *pgdat = NODE_DATA(nid);
5788
5789 build_zonelists(pgdat);
5790 }
5791
5792#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5793 /*
5794 * We now know the "local memory node" for each node--
5795 * i.e., the node of the first zone in the generic zonelist.
5796 * Set up numa_mem percpu variable for on-line cpus. During
5797 * boot, only the boot cpu should be on-line; we'll init the
5798 * secondary cpus' numa_mem as they come on-line. During
5799 * node/memory hotplug, we'll fixup all on-line cpus.
5800 */
5801 for_each_online_cpu(cpu)
5802 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5803#endif
5804 }
5805
5806 spin_unlock(&lock);
5807}
5808
5809static noinline void __init
5810build_all_zonelists_init(void)
5811{
5812 int cpu;
5813
5814 __build_all_zonelists(NULL);
5815
5816 /*
5817 * Initialize the boot_pagesets that are going to be used
5818 * for bootstrapping processors. The real pagesets for
5819 * each zone will be allocated later when the per cpu
5820 * allocator is available.
5821 *
5822 * boot_pagesets are used also for bootstrapping offline
5823 * cpus if the system is already booted because the pagesets
5824 * are needed to initialize allocators on a specific cpu too.
5825 * F.e. the percpu allocator needs the page allocator which
5826 * needs the percpu allocator in order to allocate its pagesets
5827 * (a chicken-egg dilemma).
5828 */
5829 for_each_possible_cpu(cpu)
5830 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5831
5832 mminit_verify_zonelist();
5833 cpuset_init_current_mems_allowed();
5834}
5835
5836/*
5837 * unless system_state == SYSTEM_BOOTING.
5838 *
5839 * __ref due to call of __init annotated helper build_all_zonelists_init
5840 * [protected by SYSTEM_BOOTING].
5841 */
5842void __ref build_all_zonelists(pg_data_t *pgdat)
5843{
5844 if (system_state == SYSTEM_BOOTING) {
5845 build_all_zonelists_init();
5846 } else {
5847 __build_all_zonelists(pgdat);
5848 /* cpuset refresh routine should be here */
5849 }
5850 vm_total_pages = nr_free_pagecache_pages();
5851 /*
5852 * Disable grouping by mobility if the number of pages in the
5853 * system is too low to allow the mechanism to work. It would be
5854 * more accurate, but expensive to check per-zone. This check is
5855 * made on memory-hotadd so a system can start with mobility
5856 * disabled and enable it later
5857 */
5858 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5859 page_group_by_mobility_disabled = 1;
5860 else
5861 page_group_by_mobility_disabled = 0;
5862
David Brazdil0f672f62019-12-10 10:32:29 +00005863 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005864 nr_online_nodes,
5865 page_group_by_mobility_disabled ? "off" : "on",
5866 vm_total_pages);
5867#ifdef CONFIG_NUMA
5868 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5869#endif
5870}
5871
David Brazdil0f672f62019-12-10 10:32:29 +00005872/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5873static bool __meminit
5874overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5875{
5876#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5877 static struct memblock_region *r;
5878
5879 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5880 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5881 for_each_memblock(memory, r) {
5882 if (*pfn < memblock_region_memory_end_pfn(r))
5883 break;
5884 }
5885 }
5886 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5887 memblock_is_mirror(r)) {
5888 *pfn = memblock_region_memory_end_pfn(r);
5889 return true;
5890 }
5891 }
5892#endif
5893 return false;
5894}
5895
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005896/*
5897 * Initially all pages are reserved - free ones are freed
David Brazdil0f672f62019-12-10 10:32:29 +00005898 * up by memblock_free_all() once the early boot process is
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005899 * done. Non-atomic initialization, single-pass.
5900 */
5901void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
Olivier Deprez0e641232021-09-23 10:07:05 +02005902 unsigned long start_pfn, enum meminit_context context,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005903 struct vmem_altmap *altmap)
5904{
David Brazdil0f672f62019-12-10 10:32:29 +00005905 unsigned long pfn, end_pfn = start_pfn + size;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005906 struct page *page;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005907
5908 if (highest_memmap_pfn < end_pfn - 1)
5909 highest_memmap_pfn = end_pfn - 1;
5910
David Brazdil0f672f62019-12-10 10:32:29 +00005911#ifdef CONFIG_ZONE_DEVICE
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005912 /*
5913 * Honor reservation requested by the driver for this ZONE_DEVICE
David Brazdil0f672f62019-12-10 10:32:29 +00005914 * memory. We limit the total number of pages to initialize to just
5915 * those that might contain the memory mapping. We will defer the
5916 * ZONE_DEVICE page initialization until after we have released
5917 * the hotplug lock.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005918 */
David Brazdil0f672f62019-12-10 10:32:29 +00005919 if (zone == ZONE_DEVICE) {
5920 if (!altmap)
5921 return;
5922
5923 if (start_pfn == altmap->base_pfn)
5924 start_pfn += altmap->reserve;
5925 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5926 }
5927#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005928
5929 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5930 /*
5931 * There can be holes in boot-time mem_map[]s handed to this
5932 * function. They do not exist on hotplugged memory.
5933 */
Olivier Deprez0e641232021-09-23 10:07:05 +02005934 if (context == MEMINIT_EARLY) {
David Brazdil0f672f62019-12-10 10:32:29 +00005935 if (!early_pfn_valid(pfn))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005936 continue;
David Brazdil0f672f62019-12-10 10:32:29 +00005937 if (!early_pfn_in_nid(pfn, nid))
5938 continue;
5939 if (overlap_memmap_init(zone, &pfn))
5940 continue;
5941 if (defer_init(nid, pfn, end_pfn))
5942 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005943 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005944
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005945 page = pfn_to_page(pfn);
5946 __init_single_page(page, pfn, zone, nid);
Olivier Deprez0e641232021-09-23 10:07:05 +02005947 if (context == MEMINIT_HOTPLUG)
David Brazdil0f672f62019-12-10 10:32:29 +00005948 __SetPageReserved(page);
5949
5950 /*
5951 * Mark the block movable so that blocks are reserved for
5952 * movable at startup. This will force kernel allocations
5953 * to reserve their blocks rather than leaking throughout
5954 * the address space during boot when many long-lived
5955 * kernel allocations are made.
5956 *
5957 * bitmap is created for zone's valid pfn range. but memmap
5958 * can be created for invalid pages (for alignment)
5959 * check here not to call set_pageblock_migratetype() against
5960 * pfn out of zone.
5961 */
5962 if (!(pfn & (pageblock_nr_pages - 1))) {
5963 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5964 cond_resched();
5965 }
5966 }
5967}
5968
5969#ifdef CONFIG_ZONE_DEVICE
5970void __ref memmap_init_zone_device(struct zone *zone,
5971 unsigned long start_pfn,
5972 unsigned long size,
5973 struct dev_pagemap *pgmap)
5974{
5975 unsigned long pfn, end_pfn = start_pfn + size;
5976 struct pglist_data *pgdat = zone->zone_pgdat;
5977 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
5978 unsigned long zone_idx = zone_idx(zone);
5979 unsigned long start = jiffies;
5980 int nid = pgdat->node_id;
5981
5982 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
5983 return;
5984
5985 /*
5986 * The call to memmap_init_zone should have already taken care
5987 * of the pages reserved for the memmap, so we can just jump to
5988 * the end of that region and start processing the device pages.
5989 */
5990 if (altmap) {
5991 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5992 size = end_pfn - start_pfn;
5993 }
5994
5995 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5996 struct page *page = pfn_to_page(pfn);
5997
5998 __init_single_page(page, pfn, zone_idx, nid);
5999
6000 /*
6001 * Mark page reserved as it will need to wait for onlining
6002 * phase for it to be fully associated with a zone.
6003 *
6004 * We can use the non-atomic __set_bit operation for setting
6005 * the flag as we are still initializing the pages.
6006 */
6007 __SetPageReserved(page);
6008
6009 /*
6010 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6011 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6012 * ever freed or placed on a driver-private list.
6013 */
6014 page->pgmap = pgmap;
6015 page->zone_device_data = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006016
6017 /*
6018 * Mark the block movable so that blocks are reserved for
6019 * movable at startup. This will force kernel allocations
6020 * to reserve their blocks rather than leaking throughout
6021 * the address space during boot when many long-lived
6022 * kernel allocations are made.
6023 *
6024 * bitmap is created for zone's valid pfn range. but memmap
6025 * can be created for invalid pages (for alignment)
6026 * check here not to call set_pageblock_migratetype() against
6027 * pfn out of zone.
6028 *
Olivier Deprez0e641232021-09-23 10:07:05 +02006029 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
David Brazdil0f672f62019-12-10 10:32:29 +00006030 * because this is done early in section_activate()
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006031 */
6032 if (!(pfn & (pageblock_nr_pages - 1))) {
6033 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6034 cond_resched();
6035 }
6036 }
David Brazdil0f672f62019-12-10 10:32:29 +00006037
6038 pr_info("%s initialised %lu pages in %ums\n", __func__,
6039 size, jiffies_to_msecs(jiffies - start));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006040}
6041
David Brazdil0f672f62019-12-10 10:32:29 +00006042#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006043static void __meminit zone_init_free_lists(struct zone *zone)
6044{
6045 unsigned int order, t;
6046 for_each_migratetype_order(order, t) {
6047 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6048 zone->free_area[order].nr_free = 0;
6049 }
6050}
6051
David Brazdil0f672f62019-12-10 10:32:29 +00006052void __meminit __weak memmap_init(unsigned long size, int nid,
6053 unsigned long zone, unsigned long start_pfn)
6054{
Olivier Deprez0e641232021-09-23 10:07:05 +02006055 memmap_init_zone(size, nid, zone, start_pfn, MEMINIT_EARLY, NULL);
David Brazdil0f672f62019-12-10 10:32:29 +00006056}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006057
6058static int zone_batchsize(struct zone *zone)
6059{
6060#ifdef CONFIG_MMU
6061 int batch;
6062
6063 /*
6064 * The per-cpu-pages pools are set to around 1000th of the
6065 * size of the zone.
6066 */
David Brazdil0f672f62019-12-10 10:32:29 +00006067 batch = zone_managed_pages(zone) / 1024;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006068 /* But no more than a meg. */
6069 if (batch * PAGE_SIZE > 1024 * 1024)
6070 batch = (1024 * 1024) / PAGE_SIZE;
6071 batch /= 4; /* We effectively *= 4 below */
6072 if (batch < 1)
6073 batch = 1;
6074
6075 /*
6076 * Clamp the batch to a 2^n - 1 value. Having a power
6077 * of 2 value was found to be more likely to have
6078 * suboptimal cache aliasing properties in some cases.
6079 *
6080 * For example if 2 tasks are alternately allocating
6081 * batches of pages, one task can end up with a lot
6082 * of pages of one half of the possible page colors
6083 * and the other with pages of the other colors.
6084 */
6085 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6086
6087 return batch;
6088
6089#else
6090 /* The deferral and batching of frees should be suppressed under NOMMU
6091 * conditions.
6092 *
6093 * The problem is that NOMMU needs to be able to allocate large chunks
6094 * of contiguous memory as there's no hardware page translation to
6095 * assemble apparent contiguous memory from discontiguous pages.
6096 *
6097 * Queueing large contiguous runs of pages for batching, however,
6098 * causes the pages to actually be freed in smaller chunks. As there
6099 * can be a significant delay between the individual batches being
6100 * recycled, this leads to the once large chunks of space being
6101 * fragmented and becoming unavailable for high-order allocations.
6102 */
6103 return 0;
6104#endif
6105}
6106
6107/*
6108 * pcp->high and pcp->batch values are related and dependent on one another:
6109 * ->batch must never be higher then ->high.
6110 * The following function updates them in a safe manner without read side
6111 * locking.
6112 *
6113 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6114 * those fields changing asynchronously (acording the the above rule).
6115 *
6116 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6117 * outside of boot time (or some other assurance that no concurrent updaters
6118 * exist).
6119 */
6120static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6121 unsigned long batch)
6122{
6123 /* start with a fail safe value for batch */
6124 pcp->batch = 1;
6125 smp_wmb();
6126
6127 /* Update high, then batch, in order */
6128 pcp->high = high;
6129 smp_wmb();
6130
6131 pcp->batch = batch;
6132}
6133
6134/* a companion to pageset_set_high() */
6135static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6136{
6137 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6138}
6139
6140static void pageset_init(struct per_cpu_pageset *p)
6141{
6142 struct per_cpu_pages *pcp;
6143 int migratetype;
6144
6145 memset(p, 0, sizeof(*p));
6146
6147 pcp = &p->pcp;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006148 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6149 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6150}
6151
6152static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6153{
6154 pageset_init(p);
6155 pageset_set_batch(p, batch);
6156}
6157
6158/*
6159 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6160 * to the value high for the pageset p.
6161 */
6162static void pageset_set_high(struct per_cpu_pageset *p,
6163 unsigned long high)
6164{
6165 unsigned long batch = max(1UL, high / 4);
6166 if ((high / 4) > (PAGE_SHIFT * 8))
6167 batch = PAGE_SHIFT * 8;
6168
6169 pageset_update(&p->pcp, high, batch);
6170}
6171
6172static void pageset_set_high_and_batch(struct zone *zone,
6173 struct per_cpu_pageset *pcp)
6174{
6175 if (percpu_pagelist_fraction)
6176 pageset_set_high(pcp,
David Brazdil0f672f62019-12-10 10:32:29 +00006177 (zone_managed_pages(zone) /
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006178 percpu_pagelist_fraction));
6179 else
6180 pageset_set_batch(pcp, zone_batchsize(zone));
6181}
6182
6183static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6184{
6185 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6186
6187 pageset_init(pcp);
6188 pageset_set_high_and_batch(zone, pcp);
6189}
6190
6191void __meminit setup_zone_pageset(struct zone *zone)
6192{
6193 int cpu;
6194 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6195 for_each_possible_cpu(cpu)
6196 zone_pageset_init(zone, cpu);
6197}
6198
6199/*
6200 * Allocate per cpu pagesets and initialize them.
6201 * Before this call only boot pagesets were available.
6202 */
6203void __init setup_per_cpu_pageset(void)
6204{
6205 struct pglist_data *pgdat;
6206 struct zone *zone;
6207
6208 for_each_populated_zone(zone)
6209 setup_zone_pageset(zone);
6210
6211 for_each_online_pgdat(pgdat)
6212 pgdat->per_cpu_nodestats =
6213 alloc_percpu(struct per_cpu_nodestat);
6214}
6215
6216static __meminit void zone_pcp_init(struct zone *zone)
6217{
6218 /*
6219 * per cpu subsystem is not up at this point. The following code
6220 * relies on the ability of the linker to provide the
6221 * offset of a (static) per cpu variable into the per cpu area.
6222 */
6223 zone->pageset = &boot_pageset;
6224
6225 if (populated_zone(zone))
6226 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6227 zone->name, zone->present_pages,
6228 zone_batchsize(zone));
6229}
6230
6231void __meminit init_currently_empty_zone(struct zone *zone,
6232 unsigned long zone_start_pfn,
6233 unsigned long size)
6234{
6235 struct pglist_data *pgdat = zone->zone_pgdat;
6236 int zone_idx = zone_idx(zone) + 1;
6237
6238 if (zone_idx > pgdat->nr_zones)
6239 pgdat->nr_zones = zone_idx;
6240
6241 zone->zone_start_pfn = zone_start_pfn;
6242
6243 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6244 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6245 pgdat->node_id,
6246 (unsigned long)zone_idx(zone),
6247 zone_start_pfn, (zone_start_pfn + size));
6248
6249 zone_init_free_lists(zone);
6250 zone->initialized = 1;
6251}
6252
6253#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6254#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6255
6256/*
6257 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6258 */
6259int __meminit __early_pfn_to_nid(unsigned long pfn,
6260 struct mminit_pfnnid_cache *state)
6261{
6262 unsigned long start_pfn, end_pfn;
6263 int nid;
6264
6265 if (state->last_start <= pfn && pfn < state->last_end)
6266 return state->last_nid;
6267
6268 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
David Brazdil0f672f62019-12-10 10:32:29 +00006269 if (nid != NUMA_NO_NODE) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006270 state->last_start = start_pfn;
6271 state->last_end = end_pfn;
6272 state->last_nid = nid;
6273 }
6274
6275 return nid;
6276}
6277#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6278
6279/**
6280 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6281 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6282 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6283 *
6284 * If an architecture guarantees that all ranges registered contain no holes
6285 * and may be freed, this this function may be used instead of calling
6286 * memblock_free_early_nid() manually.
6287 */
6288void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6289{
6290 unsigned long start_pfn, end_pfn;
6291 int i, this_nid;
6292
6293 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6294 start_pfn = min(start_pfn, max_low_pfn);
6295 end_pfn = min(end_pfn, max_low_pfn);
6296
6297 if (start_pfn < end_pfn)
6298 memblock_free_early_nid(PFN_PHYS(start_pfn),
6299 (end_pfn - start_pfn) << PAGE_SHIFT,
6300 this_nid);
6301 }
6302}
6303
6304/**
6305 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6306 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6307 *
6308 * If an architecture guarantees that all ranges registered contain no holes and may
6309 * be freed, this function may be used instead of calling memory_present() manually.
6310 */
6311void __init sparse_memory_present_with_active_regions(int nid)
6312{
6313 unsigned long start_pfn, end_pfn;
6314 int i, this_nid;
6315
6316 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6317 memory_present(this_nid, start_pfn, end_pfn);
6318}
6319
6320/**
6321 * get_pfn_range_for_nid - Return the start and end page frames for a node
6322 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6323 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6324 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6325 *
6326 * It returns the start and end page frame of a node based on information
6327 * provided by memblock_set_node(). If called for a node
6328 * with no available memory, a warning is printed and the start and end
6329 * PFNs will be 0.
6330 */
David Brazdil0f672f62019-12-10 10:32:29 +00006331void __init get_pfn_range_for_nid(unsigned int nid,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006332 unsigned long *start_pfn, unsigned long *end_pfn)
6333{
6334 unsigned long this_start_pfn, this_end_pfn;
6335 int i;
6336
6337 *start_pfn = -1UL;
6338 *end_pfn = 0;
6339
6340 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6341 *start_pfn = min(*start_pfn, this_start_pfn);
6342 *end_pfn = max(*end_pfn, this_end_pfn);
6343 }
6344
6345 if (*start_pfn == -1UL)
6346 *start_pfn = 0;
6347}
6348
6349/*
6350 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6351 * assumption is made that zones within a node are ordered in monotonic
6352 * increasing memory addresses so that the "highest" populated zone is used
6353 */
6354static void __init find_usable_zone_for_movable(void)
6355{
6356 int zone_index;
6357 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6358 if (zone_index == ZONE_MOVABLE)
6359 continue;
6360
6361 if (arch_zone_highest_possible_pfn[zone_index] >
6362 arch_zone_lowest_possible_pfn[zone_index])
6363 break;
6364 }
6365
6366 VM_BUG_ON(zone_index == -1);
6367 movable_zone = zone_index;
6368}
6369
6370/*
6371 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6372 * because it is sized independent of architecture. Unlike the other zones,
6373 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6374 * in each node depending on the size of each node and how evenly kernelcore
6375 * is distributed. This helper function adjusts the zone ranges
6376 * provided by the architecture for a given node by using the end of the
6377 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6378 * zones within a node are in order of monotonic increases memory addresses
6379 */
David Brazdil0f672f62019-12-10 10:32:29 +00006380static void __init adjust_zone_range_for_zone_movable(int nid,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006381 unsigned long zone_type,
6382 unsigned long node_start_pfn,
6383 unsigned long node_end_pfn,
6384 unsigned long *zone_start_pfn,
6385 unsigned long *zone_end_pfn)
6386{
6387 /* Only adjust if ZONE_MOVABLE is on this node */
6388 if (zone_movable_pfn[nid]) {
6389 /* Size ZONE_MOVABLE */
6390 if (zone_type == ZONE_MOVABLE) {
6391 *zone_start_pfn = zone_movable_pfn[nid];
6392 *zone_end_pfn = min(node_end_pfn,
6393 arch_zone_highest_possible_pfn[movable_zone]);
6394
6395 /* Adjust for ZONE_MOVABLE starting within this range */
6396 } else if (!mirrored_kernelcore &&
6397 *zone_start_pfn < zone_movable_pfn[nid] &&
6398 *zone_end_pfn > zone_movable_pfn[nid]) {
6399 *zone_end_pfn = zone_movable_pfn[nid];
6400
6401 /* Check if this whole range is within ZONE_MOVABLE */
6402 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6403 *zone_start_pfn = *zone_end_pfn;
6404 }
6405}
6406
6407/*
6408 * Return the number of pages a zone spans in a node, including holes
6409 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6410 */
David Brazdil0f672f62019-12-10 10:32:29 +00006411static unsigned long __init zone_spanned_pages_in_node(int nid,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006412 unsigned long zone_type,
6413 unsigned long node_start_pfn,
6414 unsigned long node_end_pfn,
6415 unsigned long *zone_start_pfn,
6416 unsigned long *zone_end_pfn,
6417 unsigned long *ignored)
6418{
David Brazdil0f672f62019-12-10 10:32:29 +00006419 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6420 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006421 /* When hotadd a new node from cpu_up(), the node should be empty */
6422 if (!node_start_pfn && !node_end_pfn)
6423 return 0;
6424
6425 /* Get the start and end of the zone */
David Brazdil0f672f62019-12-10 10:32:29 +00006426 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6427 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006428 adjust_zone_range_for_zone_movable(nid, zone_type,
6429 node_start_pfn, node_end_pfn,
6430 zone_start_pfn, zone_end_pfn);
6431
6432 /* Check that this node has pages within the zone's required range */
6433 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6434 return 0;
6435
6436 /* Move the zone boundaries inside the node if necessary */
6437 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6438 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6439
6440 /* Return the spanned pages */
6441 return *zone_end_pfn - *zone_start_pfn;
6442}
6443
6444/*
6445 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6446 * then all holes in the requested range will be accounted for.
6447 */
David Brazdil0f672f62019-12-10 10:32:29 +00006448unsigned long __init __absent_pages_in_range(int nid,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006449 unsigned long range_start_pfn,
6450 unsigned long range_end_pfn)
6451{
6452 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6453 unsigned long start_pfn, end_pfn;
6454 int i;
6455
6456 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6457 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6458 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6459 nr_absent -= end_pfn - start_pfn;
6460 }
6461 return nr_absent;
6462}
6463
6464/**
6465 * absent_pages_in_range - Return number of page frames in holes within a range
6466 * @start_pfn: The start PFN to start searching for holes
6467 * @end_pfn: The end PFN to stop searching for holes
6468 *
David Brazdil0f672f62019-12-10 10:32:29 +00006469 * Return: the number of pages frames in memory holes within a range.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006470 */
6471unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6472 unsigned long end_pfn)
6473{
6474 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6475}
6476
6477/* Return the number of page frames in holes in a zone on a node */
David Brazdil0f672f62019-12-10 10:32:29 +00006478static unsigned long __init zone_absent_pages_in_node(int nid,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006479 unsigned long zone_type,
6480 unsigned long node_start_pfn,
6481 unsigned long node_end_pfn,
6482 unsigned long *ignored)
6483{
6484 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6485 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6486 unsigned long zone_start_pfn, zone_end_pfn;
6487 unsigned long nr_absent;
6488
6489 /* When hotadd a new node from cpu_up(), the node should be empty */
6490 if (!node_start_pfn && !node_end_pfn)
6491 return 0;
6492
6493 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6494 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6495
6496 adjust_zone_range_for_zone_movable(nid, zone_type,
6497 node_start_pfn, node_end_pfn,
6498 &zone_start_pfn, &zone_end_pfn);
6499 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6500
6501 /*
6502 * ZONE_MOVABLE handling.
6503 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6504 * and vice versa.
6505 */
6506 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6507 unsigned long start_pfn, end_pfn;
6508 struct memblock_region *r;
6509
6510 for_each_memblock(memory, r) {
6511 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6512 zone_start_pfn, zone_end_pfn);
6513 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6514 zone_start_pfn, zone_end_pfn);
6515
6516 if (zone_type == ZONE_MOVABLE &&
6517 memblock_is_mirror(r))
6518 nr_absent += end_pfn - start_pfn;
6519
6520 if (zone_type == ZONE_NORMAL &&
6521 !memblock_is_mirror(r))
6522 nr_absent += end_pfn - start_pfn;
6523 }
6524 }
6525
6526 return nr_absent;
6527}
6528
6529#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
David Brazdil0f672f62019-12-10 10:32:29 +00006530static inline unsigned long __init zone_spanned_pages_in_node(int nid,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006531 unsigned long zone_type,
6532 unsigned long node_start_pfn,
6533 unsigned long node_end_pfn,
6534 unsigned long *zone_start_pfn,
6535 unsigned long *zone_end_pfn,
6536 unsigned long *zones_size)
6537{
6538 unsigned int zone;
6539
6540 *zone_start_pfn = node_start_pfn;
6541 for (zone = 0; zone < zone_type; zone++)
6542 *zone_start_pfn += zones_size[zone];
6543
6544 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6545
6546 return zones_size[zone_type];
6547}
6548
David Brazdil0f672f62019-12-10 10:32:29 +00006549static inline unsigned long __init zone_absent_pages_in_node(int nid,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006550 unsigned long zone_type,
6551 unsigned long node_start_pfn,
6552 unsigned long node_end_pfn,
6553 unsigned long *zholes_size)
6554{
6555 if (!zholes_size)
6556 return 0;
6557
6558 return zholes_size[zone_type];
6559}
6560
6561#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6562
David Brazdil0f672f62019-12-10 10:32:29 +00006563static void __init calculate_node_totalpages(struct pglist_data *pgdat,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006564 unsigned long node_start_pfn,
6565 unsigned long node_end_pfn,
6566 unsigned long *zones_size,
6567 unsigned long *zholes_size)
6568{
6569 unsigned long realtotalpages = 0, totalpages = 0;
6570 enum zone_type i;
6571
6572 for (i = 0; i < MAX_NR_ZONES; i++) {
6573 struct zone *zone = pgdat->node_zones + i;
6574 unsigned long zone_start_pfn, zone_end_pfn;
6575 unsigned long size, real_size;
6576
6577 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6578 node_start_pfn,
6579 node_end_pfn,
6580 &zone_start_pfn,
6581 &zone_end_pfn,
6582 zones_size);
6583 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6584 node_start_pfn, node_end_pfn,
6585 zholes_size);
6586 if (size)
6587 zone->zone_start_pfn = zone_start_pfn;
6588 else
6589 zone->zone_start_pfn = 0;
6590 zone->spanned_pages = size;
6591 zone->present_pages = real_size;
6592
6593 totalpages += size;
6594 realtotalpages += real_size;
6595 }
6596
6597 pgdat->node_spanned_pages = totalpages;
6598 pgdat->node_present_pages = realtotalpages;
6599 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6600 realtotalpages);
6601}
6602
6603#ifndef CONFIG_SPARSEMEM
6604/*
6605 * Calculate the size of the zone->blockflags rounded to an unsigned long
6606 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6607 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6608 * round what is now in bits to nearest long in bits, then return it in
6609 * bytes.
6610 */
6611static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6612{
6613 unsigned long usemapsize;
6614
6615 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6616 usemapsize = roundup(zonesize, pageblock_nr_pages);
6617 usemapsize = usemapsize >> pageblock_order;
6618 usemapsize *= NR_PAGEBLOCK_BITS;
6619 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6620
6621 return usemapsize / 8;
6622}
6623
6624static void __ref setup_usemap(struct pglist_data *pgdat,
6625 struct zone *zone,
6626 unsigned long zone_start_pfn,
6627 unsigned long zonesize)
6628{
6629 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6630 zone->pageblock_flags = NULL;
David Brazdil0f672f62019-12-10 10:32:29 +00006631 if (usemapsize) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006632 zone->pageblock_flags =
David Brazdil0f672f62019-12-10 10:32:29 +00006633 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6634 pgdat->node_id);
6635 if (!zone->pageblock_flags)
6636 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6637 usemapsize, zone->name, pgdat->node_id);
6638 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006639}
6640#else
6641static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6642 unsigned long zone_start_pfn, unsigned long zonesize) {}
6643#endif /* CONFIG_SPARSEMEM */
6644
6645#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6646
6647/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6648void __init set_pageblock_order(void)
6649{
6650 unsigned int order;
6651
6652 /* Check that pageblock_nr_pages has not already been setup */
6653 if (pageblock_order)
6654 return;
6655
6656 if (HPAGE_SHIFT > PAGE_SHIFT)
6657 order = HUGETLB_PAGE_ORDER;
6658 else
6659 order = MAX_ORDER - 1;
6660
6661 /*
6662 * Assume the largest contiguous order of interest is a huge page.
6663 * This value may be variable depending on boot parameters on IA64 and
6664 * powerpc.
6665 */
6666 pageblock_order = order;
6667}
6668#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6669
6670/*
6671 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6672 * is unused as pageblock_order is set at compile-time. See
6673 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6674 * the kernel config
6675 */
6676void __init set_pageblock_order(void)
6677{
6678}
6679
6680#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6681
6682static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6683 unsigned long present_pages)
6684{
6685 unsigned long pages = spanned_pages;
6686
6687 /*
6688 * Provide a more accurate estimation if there are holes within
6689 * the zone and SPARSEMEM is in use. If there are holes within the
6690 * zone, each populated memory region may cost us one or two extra
6691 * memmap pages due to alignment because memmap pages for each
6692 * populated regions may not be naturally aligned on page boundary.
6693 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6694 */
6695 if (spanned_pages > present_pages + (present_pages >> 4) &&
6696 IS_ENABLED(CONFIG_SPARSEMEM))
6697 pages = present_pages;
6698
6699 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6700}
6701
6702#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6703static void pgdat_init_split_queue(struct pglist_data *pgdat)
6704{
David Brazdil0f672f62019-12-10 10:32:29 +00006705 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6706
6707 spin_lock_init(&ds_queue->split_queue_lock);
6708 INIT_LIST_HEAD(&ds_queue->split_queue);
6709 ds_queue->split_queue_len = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006710}
6711#else
6712static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6713#endif
6714
6715#ifdef CONFIG_COMPACTION
6716static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6717{
6718 init_waitqueue_head(&pgdat->kcompactd_wait);
6719}
6720#else
6721static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6722#endif
6723
6724static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6725{
6726 pgdat_resize_init(pgdat);
6727
6728 pgdat_init_split_queue(pgdat);
6729 pgdat_init_kcompactd(pgdat);
6730
6731 init_waitqueue_head(&pgdat->kswapd_wait);
6732 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6733
6734 pgdat_page_ext_init(pgdat);
6735 spin_lock_init(&pgdat->lru_lock);
6736 lruvec_init(node_lruvec(pgdat));
6737}
6738
6739static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6740 unsigned long remaining_pages)
6741{
David Brazdil0f672f62019-12-10 10:32:29 +00006742 atomic_long_set(&zone->managed_pages, remaining_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006743 zone_set_nid(zone, nid);
6744 zone->name = zone_names[idx];
6745 zone->zone_pgdat = NODE_DATA(nid);
6746 spin_lock_init(&zone->lock);
6747 zone_seqlock_init(zone);
6748 zone_pcp_init(zone);
6749}
6750
6751/*
6752 * Set up the zone data structures
6753 * - init pgdat internals
6754 * - init all zones belonging to this node
6755 *
6756 * NOTE: this function is only called during memory hotplug
6757 */
6758#ifdef CONFIG_MEMORY_HOTPLUG
6759void __ref free_area_init_core_hotplug(int nid)
6760{
6761 enum zone_type z;
6762 pg_data_t *pgdat = NODE_DATA(nid);
6763
6764 pgdat_init_internals(pgdat);
6765 for (z = 0; z < MAX_NR_ZONES; z++)
6766 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6767}
6768#endif
6769
6770/*
6771 * Set up the zone data structures:
6772 * - mark all pages reserved
6773 * - mark all memory queues empty
6774 * - clear the memory bitmaps
6775 *
6776 * NOTE: pgdat should get zeroed by caller.
6777 * NOTE: this function is only called during early init.
6778 */
6779static void __init free_area_init_core(struct pglist_data *pgdat)
6780{
6781 enum zone_type j;
6782 int nid = pgdat->node_id;
6783
6784 pgdat_init_internals(pgdat);
6785 pgdat->per_cpu_nodestats = &boot_nodestats;
6786
6787 for (j = 0; j < MAX_NR_ZONES; j++) {
6788 struct zone *zone = pgdat->node_zones + j;
6789 unsigned long size, freesize, memmap_pages;
6790 unsigned long zone_start_pfn = zone->zone_start_pfn;
6791
6792 size = zone->spanned_pages;
6793 freesize = zone->present_pages;
6794
6795 /*
6796 * Adjust freesize so that it accounts for how much memory
6797 * is used by this zone for memmap. This affects the watermark
6798 * and per-cpu initialisations
6799 */
6800 memmap_pages = calc_memmap_size(size, freesize);
6801 if (!is_highmem_idx(j)) {
6802 if (freesize >= memmap_pages) {
6803 freesize -= memmap_pages;
6804 if (memmap_pages)
6805 printk(KERN_DEBUG
6806 " %s zone: %lu pages used for memmap\n",
6807 zone_names[j], memmap_pages);
6808 } else
6809 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6810 zone_names[j], memmap_pages, freesize);
6811 }
6812
6813 /* Account for reserved pages */
6814 if (j == 0 && freesize > dma_reserve) {
6815 freesize -= dma_reserve;
6816 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6817 zone_names[0], dma_reserve);
6818 }
6819
6820 if (!is_highmem_idx(j))
6821 nr_kernel_pages += freesize;
6822 /* Charge for highmem memmap if there are enough kernel pages */
6823 else if (nr_kernel_pages > memmap_pages * 2)
6824 nr_kernel_pages -= memmap_pages;
6825 nr_all_pages += freesize;
6826
6827 /*
6828 * Set an approximate value for lowmem here, it will be adjusted
6829 * when the bootmem allocator frees pages into the buddy system.
6830 * And all highmem pages will be managed by the buddy system.
6831 */
6832 zone_init_internals(zone, j, nid, freesize);
6833
6834 if (!size)
6835 continue;
6836
6837 set_pageblock_order();
6838 setup_usemap(pgdat, zone, zone_start_pfn, size);
6839 init_currently_empty_zone(zone, zone_start_pfn, size);
6840 memmap_init(size, nid, j, zone_start_pfn);
6841 }
6842}
6843
6844#ifdef CONFIG_FLAT_NODE_MEM_MAP
6845static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6846{
6847 unsigned long __maybe_unused start = 0;
6848 unsigned long __maybe_unused offset = 0;
6849
6850 /* Skip empty nodes */
6851 if (!pgdat->node_spanned_pages)
6852 return;
6853
6854 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6855 offset = pgdat->node_start_pfn - start;
6856 /* ia64 gets its own node_mem_map, before this, without bootmem */
6857 if (!pgdat->node_mem_map) {
6858 unsigned long size, end;
6859 struct page *map;
6860
6861 /*
6862 * The zone's endpoints aren't required to be MAX_ORDER
6863 * aligned but the node_mem_map endpoints must be in order
6864 * for the buddy allocator to function correctly.
6865 */
6866 end = pgdat_end_pfn(pgdat);
6867 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6868 size = (end - start) * sizeof(struct page);
David Brazdil0f672f62019-12-10 10:32:29 +00006869 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6870 pgdat->node_id);
6871 if (!map)
6872 panic("Failed to allocate %ld bytes for node %d memory map\n",
6873 size, pgdat->node_id);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006874 pgdat->node_mem_map = map + offset;
6875 }
6876 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6877 __func__, pgdat->node_id, (unsigned long)pgdat,
6878 (unsigned long)pgdat->node_mem_map);
6879#ifndef CONFIG_NEED_MULTIPLE_NODES
6880 /*
6881 * With no DISCONTIG, the global mem_map is just set as node 0's
6882 */
6883 if (pgdat == NODE_DATA(0)) {
6884 mem_map = NODE_DATA(0)->node_mem_map;
6885#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6886 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6887 mem_map -= offset;
6888#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6889 }
6890#endif
6891}
6892#else
6893static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6894#endif /* CONFIG_FLAT_NODE_MEM_MAP */
6895
6896#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6897static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6898{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006899 pgdat->first_deferred_pfn = ULONG_MAX;
6900}
6901#else
6902static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6903#endif
6904
6905void __init free_area_init_node(int nid, unsigned long *zones_size,
6906 unsigned long node_start_pfn,
6907 unsigned long *zholes_size)
6908{
6909 pg_data_t *pgdat = NODE_DATA(nid);
6910 unsigned long start_pfn = 0;
6911 unsigned long end_pfn = 0;
6912
6913 /* pg_data_t should be reset to zero when it's allocated */
6914 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6915
6916 pgdat->node_id = nid;
6917 pgdat->node_start_pfn = node_start_pfn;
6918 pgdat->per_cpu_nodestats = NULL;
6919#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6920 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6921 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6922 (u64)start_pfn << PAGE_SHIFT,
6923 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6924#else
6925 start_pfn = node_start_pfn;
6926#endif
6927 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6928 zones_size, zholes_size);
6929
6930 alloc_node_mem_map(pgdat);
6931 pgdat_set_deferred_range(pgdat);
6932
6933 free_area_init_core(pgdat);
6934}
6935
David Brazdil0f672f62019-12-10 10:32:29 +00006936#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6937/*
6938 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6939 * pages zeroed
6940 */
6941static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6942{
6943 unsigned long pfn;
6944 u64 pgcnt = 0;
6945
6946 for (pfn = spfn; pfn < epfn; pfn++) {
6947 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6948 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6949 + pageblock_nr_pages - 1;
6950 continue;
6951 }
6952 mm_zero_struct_page(pfn_to_page(pfn));
6953 pgcnt++;
6954 }
6955
6956 return pgcnt;
6957}
6958
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006959/*
6960 * Only struct pages that are backed by physical memory are zeroed and
6961 * initialized by going through __init_single_page(). But, there are some
6962 * struct pages which are reserved in memblock allocator and their fields
6963 * may be accessed (for example page_to_pfn() on some configuration accesses
6964 * flags). We must explicitly zero those struct pages.
David Brazdil0f672f62019-12-10 10:32:29 +00006965 *
6966 * This function also addresses a similar issue where struct pages are left
6967 * uninitialized because the physical address range is not covered by
6968 * memblock.memory or memblock.reserved. That could happen when memblock
Olivier Deprez0e641232021-09-23 10:07:05 +02006969 * layout is manually configured via memmap=, or when the highest physical
6970 * address (max_pfn) does not end on a section boundary.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006971 */
6972void __init zero_resv_unavail(void)
6973{
6974 phys_addr_t start, end;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006975 u64 i, pgcnt;
David Brazdil0f672f62019-12-10 10:32:29 +00006976 phys_addr_t next = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006977
6978 /*
David Brazdil0f672f62019-12-10 10:32:29 +00006979 * Loop through unavailable ranges not covered by memblock.memory.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006980 */
6981 pgcnt = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00006982 for_each_mem_range(i, &memblock.memory, NULL,
6983 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6984 if (next < start)
6985 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6986 next = end;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006987 }
Olivier Deprez0e641232021-09-23 10:07:05 +02006988
6989 /*
6990 * Early sections always have a fully populated memmap for the whole
6991 * section - see pfn_valid(). If the last section has holes at the
6992 * end and that section is marked "online", the memmap will be
6993 * considered initialized. Make sure that memmap has a well defined
6994 * state.
6995 */
6996 pgcnt += zero_pfn_range(PFN_DOWN(next),
6997 round_up(max_pfn, PAGES_PER_SECTION));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006998
6999 /*
7000 * Struct pages that do not have backing memory. This could be because
7001 * firmware is using some of this memory, or for some other reasons.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007002 */
7003 if (pgcnt)
David Brazdil0f672f62019-12-10 10:32:29 +00007004 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007005}
David Brazdil0f672f62019-12-10 10:32:29 +00007006#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007007
7008#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
7009
7010#if MAX_NUMNODES > 1
7011/*
7012 * Figure out the number of possible node ids.
7013 */
7014void __init setup_nr_node_ids(void)
7015{
7016 unsigned int highest;
7017
7018 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7019 nr_node_ids = highest + 1;
7020}
7021#endif
7022
7023/**
7024 * node_map_pfn_alignment - determine the maximum internode alignment
7025 *
7026 * This function should be called after node map is populated and sorted.
7027 * It calculates the maximum power of two alignment which can distinguish
7028 * all the nodes.
7029 *
7030 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7031 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7032 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7033 * shifted, 1GiB is enough and this function will indicate so.
7034 *
7035 * This is used to test whether pfn -> nid mapping of the chosen memory
7036 * model has fine enough granularity to avoid incorrect mapping for the
7037 * populated node map.
7038 *
David Brazdil0f672f62019-12-10 10:32:29 +00007039 * Return: the determined alignment in pfn's. 0 if there is no alignment
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007040 * requirement (single node).
7041 */
7042unsigned long __init node_map_pfn_alignment(void)
7043{
7044 unsigned long accl_mask = 0, last_end = 0;
7045 unsigned long start, end, mask;
David Brazdil0f672f62019-12-10 10:32:29 +00007046 int last_nid = NUMA_NO_NODE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007047 int i, nid;
7048
7049 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7050 if (!start || last_nid < 0 || last_nid == nid) {
7051 last_nid = nid;
7052 last_end = end;
7053 continue;
7054 }
7055
7056 /*
7057 * Start with a mask granular enough to pin-point to the
7058 * start pfn and tick off bits one-by-one until it becomes
7059 * too coarse to separate the current node from the last.
7060 */
7061 mask = ~((1 << __ffs(start)) - 1);
7062 while (mask && last_end <= (start & (mask << 1)))
7063 mask <<= 1;
7064
7065 /* accumulate all internode masks */
7066 accl_mask |= mask;
7067 }
7068
7069 /* convert mask to number of pages */
7070 return ~accl_mask + 1;
7071}
7072
7073/* Find the lowest pfn for a node */
7074static unsigned long __init find_min_pfn_for_node(int nid)
7075{
7076 unsigned long min_pfn = ULONG_MAX;
7077 unsigned long start_pfn;
7078 int i;
7079
7080 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7081 min_pfn = min(min_pfn, start_pfn);
7082
7083 if (min_pfn == ULONG_MAX) {
7084 pr_warn("Could not find start_pfn for node %d\n", nid);
7085 return 0;
7086 }
7087
7088 return min_pfn;
7089}
7090
7091/**
7092 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7093 *
David Brazdil0f672f62019-12-10 10:32:29 +00007094 * Return: the minimum PFN based on information provided via
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007095 * memblock_set_node().
7096 */
7097unsigned long __init find_min_pfn_with_active_regions(void)
7098{
7099 return find_min_pfn_for_node(MAX_NUMNODES);
7100}
7101
7102/*
7103 * early_calculate_totalpages()
7104 * Sum pages in active regions for movable zone.
7105 * Populate N_MEMORY for calculating usable_nodes.
7106 */
7107static unsigned long __init early_calculate_totalpages(void)
7108{
7109 unsigned long totalpages = 0;
7110 unsigned long start_pfn, end_pfn;
7111 int i, nid;
7112
7113 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7114 unsigned long pages = end_pfn - start_pfn;
7115
7116 totalpages += pages;
7117 if (pages)
7118 node_set_state(nid, N_MEMORY);
7119 }
7120 return totalpages;
7121}
7122
7123/*
7124 * Find the PFN the Movable zone begins in each node. Kernel memory
7125 * is spread evenly between nodes as long as the nodes have enough
7126 * memory. When they don't, some nodes will have more kernelcore than
7127 * others
7128 */
7129static void __init find_zone_movable_pfns_for_nodes(void)
7130{
7131 int i, nid;
7132 unsigned long usable_startpfn;
7133 unsigned long kernelcore_node, kernelcore_remaining;
7134 /* save the state before borrow the nodemask */
7135 nodemask_t saved_node_state = node_states[N_MEMORY];
7136 unsigned long totalpages = early_calculate_totalpages();
7137 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7138 struct memblock_region *r;
7139
7140 /* Need to find movable_zone earlier when movable_node is specified. */
7141 find_usable_zone_for_movable();
7142
7143 /*
7144 * If movable_node is specified, ignore kernelcore and movablecore
7145 * options.
7146 */
7147 if (movable_node_is_enabled()) {
7148 for_each_memblock(memory, r) {
7149 if (!memblock_is_hotpluggable(r))
7150 continue;
7151
7152 nid = r->nid;
7153
7154 usable_startpfn = PFN_DOWN(r->base);
7155 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7156 min(usable_startpfn, zone_movable_pfn[nid]) :
7157 usable_startpfn;
7158 }
7159
7160 goto out2;
7161 }
7162
7163 /*
7164 * If kernelcore=mirror is specified, ignore movablecore option
7165 */
7166 if (mirrored_kernelcore) {
7167 bool mem_below_4gb_not_mirrored = false;
7168
7169 for_each_memblock(memory, r) {
7170 if (memblock_is_mirror(r))
7171 continue;
7172
7173 nid = r->nid;
7174
7175 usable_startpfn = memblock_region_memory_base_pfn(r);
7176
7177 if (usable_startpfn < 0x100000) {
7178 mem_below_4gb_not_mirrored = true;
7179 continue;
7180 }
7181
7182 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7183 min(usable_startpfn, zone_movable_pfn[nid]) :
7184 usable_startpfn;
7185 }
7186
7187 if (mem_below_4gb_not_mirrored)
7188 pr_warn("This configuration results in unmirrored kernel memory.");
7189
7190 goto out2;
7191 }
7192
7193 /*
7194 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7195 * amount of necessary memory.
7196 */
7197 if (required_kernelcore_percent)
7198 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7199 10000UL;
7200 if (required_movablecore_percent)
7201 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7202 10000UL;
7203
7204 /*
7205 * If movablecore= was specified, calculate what size of
7206 * kernelcore that corresponds so that memory usable for
7207 * any allocation type is evenly spread. If both kernelcore
7208 * and movablecore are specified, then the value of kernelcore
7209 * will be used for required_kernelcore if it's greater than
7210 * what movablecore would have allowed.
7211 */
7212 if (required_movablecore) {
7213 unsigned long corepages;
7214
7215 /*
7216 * Round-up so that ZONE_MOVABLE is at least as large as what
7217 * was requested by the user
7218 */
7219 required_movablecore =
7220 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7221 required_movablecore = min(totalpages, required_movablecore);
7222 corepages = totalpages - required_movablecore;
7223
7224 required_kernelcore = max(required_kernelcore, corepages);
7225 }
7226
7227 /*
7228 * If kernelcore was not specified or kernelcore size is larger
7229 * than totalpages, there is no ZONE_MOVABLE.
7230 */
7231 if (!required_kernelcore || required_kernelcore >= totalpages)
7232 goto out;
7233
7234 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7235 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7236
7237restart:
7238 /* Spread kernelcore memory as evenly as possible throughout nodes */
7239 kernelcore_node = required_kernelcore / usable_nodes;
7240 for_each_node_state(nid, N_MEMORY) {
7241 unsigned long start_pfn, end_pfn;
7242
7243 /*
7244 * Recalculate kernelcore_node if the division per node
7245 * now exceeds what is necessary to satisfy the requested
7246 * amount of memory for the kernel
7247 */
7248 if (required_kernelcore < kernelcore_node)
7249 kernelcore_node = required_kernelcore / usable_nodes;
7250
7251 /*
7252 * As the map is walked, we track how much memory is usable
7253 * by the kernel using kernelcore_remaining. When it is
7254 * 0, the rest of the node is usable by ZONE_MOVABLE
7255 */
7256 kernelcore_remaining = kernelcore_node;
7257
7258 /* Go through each range of PFNs within this node */
7259 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7260 unsigned long size_pages;
7261
7262 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7263 if (start_pfn >= end_pfn)
7264 continue;
7265
7266 /* Account for what is only usable for kernelcore */
7267 if (start_pfn < usable_startpfn) {
7268 unsigned long kernel_pages;
7269 kernel_pages = min(end_pfn, usable_startpfn)
7270 - start_pfn;
7271
7272 kernelcore_remaining -= min(kernel_pages,
7273 kernelcore_remaining);
7274 required_kernelcore -= min(kernel_pages,
7275 required_kernelcore);
7276
7277 /* Continue if range is now fully accounted */
7278 if (end_pfn <= usable_startpfn) {
7279
7280 /*
7281 * Push zone_movable_pfn to the end so
7282 * that if we have to rebalance
7283 * kernelcore across nodes, we will
7284 * not double account here
7285 */
7286 zone_movable_pfn[nid] = end_pfn;
7287 continue;
7288 }
7289 start_pfn = usable_startpfn;
7290 }
7291
7292 /*
7293 * The usable PFN range for ZONE_MOVABLE is from
7294 * start_pfn->end_pfn. Calculate size_pages as the
7295 * number of pages used as kernelcore
7296 */
7297 size_pages = end_pfn - start_pfn;
7298 if (size_pages > kernelcore_remaining)
7299 size_pages = kernelcore_remaining;
7300 zone_movable_pfn[nid] = start_pfn + size_pages;
7301
7302 /*
7303 * Some kernelcore has been met, update counts and
7304 * break if the kernelcore for this node has been
7305 * satisfied
7306 */
7307 required_kernelcore -= min(required_kernelcore,
7308 size_pages);
7309 kernelcore_remaining -= size_pages;
7310 if (!kernelcore_remaining)
7311 break;
7312 }
7313 }
7314
7315 /*
7316 * If there is still required_kernelcore, we do another pass with one
7317 * less node in the count. This will push zone_movable_pfn[nid] further
7318 * along on the nodes that still have memory until kernelcore is
7319 * satisfied
7320 */
7321 usable_nodes--;
7322 if (usable_nodes && required_kernelcore > usable_nodes)
7323 goto restart;
7324
7325out2:
7326 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7327 for (nid = 0; nid < MAX_NUMNODES; nid++)
7328 zone_movable_pfn[nid] =
7329 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7330
7331out:
7332 /* restore the node_state */
7333 node_states[N_MEMORY] = saved_node_state;
7334}
7335
7336/* Any regular or high memory on that node ? */
7337static void check_for_memory(pg_data_t *pgdat, int nid)
7338{
7339 enum zone_type zone_type;
7340
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007341 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7342 struct zone *zone = &pgdat->node_zones[zone_type];
7343 if (populated_zone(zone)) {
David Brazdil0f672f62019-12-10 10:32:29 +00007344 if (IS_ENABLED(CONFIG_HIGHMEM))
7345 node_set_state(nid, N_HIGH_MEMORY);
7346 if (zone_type <= ZONE_NORMAL)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007347 node_set_state(nid, N_NORMAL_MEMORY);
7348 break;
7349 }
7350 }
7351}
7352
7353/**
7354 * free_area_init_nodes - Initialise all pg_data_t and zone data
7355 * @max_zone_pfn: an array of max PFNs for each zone
7356 *
7357 * This will call free_area_init_node() for each active node in the system.
7358 * Using the page ranges provided by memblock_set_node(), the size of each
7359 * zone in each node and their holes is calculated. If the maximum PFN
7360 * between two adjacent zones match, it is assumed that the zone is empty.
7361 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7362 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7363 * starts where the previous one ended. For example, ZONE_DMA32 starts
7364 * at arch_max_dma_pfn.
7365 */
7366void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7367{
7368 unsigned long start_pfn, end_pfn;
7369 int i, nid;
7370
7371 /* Record where the zone boundaries are */
7372 memset(arch_zone_lowest_possible_pfn, 0,
7373 sizeof(arch_zone_lowest_possible_pfn));
7374 memset(arch_zone_highest_possible_pfn, 0,
7375 sizeof(arch_zone_highest_possible_pfn));
7376
7377 start_pfn = find_min_pfn_with_active_regions();
7378
7379 for (i = 0; i < MAX_NR_ZONES; i++) {
7380 if (i == ZONE_MOVABLE)
7381 continue;
7382
7383 end_pfn = max(max_zone_pfn[i], start_pfn);
7384 arch_zone_lowest_possible_pfn[i] = start_pfn;
7385 arch_zone_highest_possible_pfn[i] = end_pfn;
7386
7387 start_pfn = end_pfn;
7388 }
7389
7390 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7391 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7392 find_zone_movable_pfns_for_nodes();
7393
7394 /* Print out the zone ranges */
7395 pr_info("Zone ranges:\n");
7396 for (i = 0; i < MAX_NR_ZONES; i++) {
7397 if (i == ZONE_MOVABLE)
7398 continue;
7399 pr_info(" %-8s ", zone_names[i]);
7400 if (arch_zone_lowest_possible_pfn[i] ==
7401 arch_zone_highest_possible_pfn[i])
7402 pr_cont("empty\n");
7403 else
7404 pr_cont("[mem %#018Lx-%#018Lx]\n",
7405 (u64)arch_zone_lowest_possible_pfn[i]
7406 << PAGE_SHIFT,
7407 ((u64)arch_zone_highest_possible_pfn[i]
7408 << PAGE_SHIFT) - 1);
7409 }
7410
7411 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7412 pr_info("Movable zone start for each node\n");
7413 for (i = 0; i < MAX_NUMNODES; i++) {
7414 if (zone_movable_pfn[i])
7415 pr_info(" Node %d: %#018Lx\n", i,
7416 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7417 }
7418
David Brazdil0f672f62019-12-10 10:32:29 +00007419 /*
7420 * Print out the early node map, and initialize the
7421 * subsection-map relative to active online memory ranges to
7422 * enable future "sub-section" extensions of the memory map.
7423 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007424 pr_info("Early memory node ranges\n");
David Brazdil0f672f62019-12-10 10:32:29 +00007425 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007426 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7427 (u64)start_pfn << PAGE_SHIFT,
7428 ((u64)end_pfn << PAGE_SHIFT) - 1);
David Brazdil0f672f62019-12-10 10:32:29 +00007429 subsection_map_init(start_pfn, end_pfn - start_pfn);
7430 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007431
7432 /* Initialise every node */
7433 mminit_verify_pageflags_layout();
7434 setup_nr_node_ids();
7435 zero_resv_unavail();
7436 for_each_online_node(nid) {
7437 pg_data_t *pgdat = NODE_DATA(nid);
7438 free_area_init_node(nid, NULL,
7439 find_min_pfn_for_node(nid), NULL);
7440
7441 /* Any memory on that node */
7442 if (pgdat->node_present_pages)
7443 node_set_state(nid, N_MEMORY);
7444 check_for_memory(pgdat, nid);
7445 }
7446}
7447
7448static int __init cmdline_parse_core(char *p, unsigned long *core,
7449 unsigned long *percent)
7450{
7451 unsigned long long coremem;
7452 char *endptr;
7453
7454 if (!p)
7455 return -EINVAL;
7456
7457 /* Value may be a percentage of total memory, otherwise bytes */
7458 coremem = simple_strtoull(p, &endptr, 0);
7459 if (*endptr == '%') {
7460 /* Paranoid check for percent values greater than 100 */
7461 WARN_ON(coremem > 100);
7462
7463 *percent = coremem;
7464 } else {
7465 coremem = memparse(p, &p);
7466 /* Paranoid check that UL is enough for the coremem value */
7467 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7468
7469 *core = coremem >> PAGE_SHIFT;
7470 *percent = 0UL;
7471 }
7472 return 0;
7473}
7474
7475/*
7476 * kernelcore=size sets the amount of memory for use for allocations that
7477 * cannot be reclaimed or migrated.
7478 */
7479static int __init cmdline_parse_kernelcore(char *p)
7480{
7481 /* parse kernelcore=mirror */
7482 if (parse_option_str(p, "mirror")) {
7483 mirrored_kernelcore = true;
7484 return 0;
7485 }
7486
7487 return cmdline_parse_core(p, &required_kernelcore,
7488 &required_kernelcore_percent);
7489}
7490
7491/*
7492 * movablecore=size sets the amount of memory for use for allocations that
7493 * can be reclaimed or migrated.
7494 */
7495static int __init cmdline_parse_movablecore(char *p)
7496{
7497 return cmdline_parse_core(p, &required_movablecore,
7498 &required_movablecore_percent);
7499}
7500
7501early_param("kernelcore", cmdline_parse_kernelcore);
7502early_param("movablecore", cmdline_parse_movablecore);
7503
7504#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7505
7506void adjust_managed_page_count(struct page *page, long count)
7507{
David Brazdil0f672f62019-12-10 10:32:29 +00007508 atomic_long_add(count, &page_zone(page)->managed_pages);
7509 totalram_pages_add(count);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007510#ifdef CONFIG_HIGHMEM
7511 if (PageHighMem(page))
David Brazdil0f672f62019-12-10 10:32:29 +00007512 totalhigh_pages_add(count);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007513#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007514}
7515EXPORT_SYMBOL(adjust_managed_page_count);
7516
David Brazdil0f672f62019-12-10 10:32:29 +00007517unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007518{
7519 void *pos;
7520 unsigned long pages = 0;
7521
7522 start = (void *)PAGE_ALIGN((unsigned long)start);
7523 end = (void *)((unsigned long)end & PAGE_MASK);
7524 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7525 struct page *page = virt_to_page(pos);
7526 void *direct_map_addr;
7527
7528 /*
7529 * 'direct_map_addr' might be different from 'pos'
7530 * because some architectures' virt_to_page()
7531 * work with aliases. Getting the direct map
7532 * address ensures that we get a _writeable_
7533 * alias for the memset().
7534 */
7535 direct_map_addr = page_address(page);
7536 if ((unsigned int)poison <= 0xFF)
7537 memset(direct_map_addr, poison, PAGE_SIZE);
7538
7539 free_reserved_page(page);
7540 }
7541
7542 if (pages && s)
7543 pr_info("Freeing %s memory: %ldK\n",
7544 s, pages << (PAGE_SHIFT - 10));
7545
7546 return pages;
7547}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007548
7549#ifdef CONFIG_HIGHMEM
7550void free_highmem_page(struct page *page)
7551{
7552 __free_reserved_page(page);
David Brazdil0f672f62019-12-10 10:32:29 +00007553 totalram_pages_inc();
7554 atomic_long_inc(&page_zone(page)->managed_pages);
7555 totalhigh_pages_inc();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007556}
7557#endif
7558
7559
7560void __init mem_init_print_info(const char *str)
7561{
7562 unsigned long physpages, codesize, datasize, rosize, bss_size;
7563 unsigned long init_code_size, init_data_size;
7564
7565 physpages = get_num_physpages();
7566 codesize = _etext - _stext;
7567 datasize = _edata - _sdata;
7568 rosize = __end_rodata - __start_rodata;
7569 bss_size = __bss_stop - __bss_start;
7570 init_data_size = __init_end - __init_begin;
7571 init_code_size = _einittext - _sinittext;
7572
7573 /*
7574 * Detect special cases and adjust section sizes accordingly:
7575 * 1) .init.* may be embedded into .data sections
7576 * 2) .init.text.* may be out of [__init_begin, __init_end],
7577 * please refer to arch/tile/kernel/vmlinux.lds.S.
7578 * 3) .rodata.* may be embedded into .text or .data sections.
7579 */
7580#define adj_init_size(start, end, size, pos, adj) \
7581 do { \
7582 if (start <= pos && pos < end && size > adj) \
7583 size -= adj; \
7584 } while (0)
7585
7586 adj_init_size(__init_begin, __init_end, init_data_size,
7587 _sinittext, init_code_size);
7588 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7589 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7590 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7591 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7592
7593#undef adj_init_size
7594
7595 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7596#ifdef CONFIG_HIGHMEM
7597 ", %luK highmem"
7598#endif
7599 "%s%s)\n",
7600 nr_free_pages() << (PAGE_SHIFT - 10),
7601 physpages << (PAGE_SHIFT - 10),
7602 codesize >> 10, datasize >> 10, rosize >> 10,
7603 (init_data_size + init_code_size) >> 10, bss_size >> 10,
David Brazdil0f672f62019-12-10 10:32:29 +00007604 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007605 totalcma_pages << (PAGE_SHIFT - 10),
7606#ifdef CONFIG_HIGHMEM
David Brazdil0f672f62019-12-10 10:32:29 +00007607 totalhigh_pages() << (PAGE_SHIFT - 10),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007608#endif
7609 str ? ", " : "", str ? str : "");
7610}
7611
7612/**
7613 * set_dma_reserve - set the specified number of pages reserved in the first zone
7614 * @new_dma_reserve: The number of pages to mark reserved
7615 *
7616 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7617 * In the DMA zone, a significant percentage may be consumed by kernel image
7618 * and other unfreeable allocations which can skew the watermarks badly. This
7619 * function may optionally be used to account for unfreeable pages in the
7620 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7621 * smaller per-cpu batchsize.
7622 */
7623void __init set_dma_reserve(unsigned long new_dma_reserve)
7624{
7625 dma_reserve = new_dma_reserve;
7626}
7627
7628void __init free_area_init(unsigned long *zones_size)
7629{
7630 zero_resv_unavail();
7631 free_area_init_node(0, zones_size,
7632 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7633}
7634
7635static int page_alloc_cpu_dead(unsigned int cpu)
7636{
7637
7638 lru_add_drain_cpu(cpu);
7639 drain_pages(cpu);
7640
7641 /*
7642 * Spill the event counters of the dead processor
7643 * into the current processors event counters.
7644 * This artificially elevates the count of the current
7645 * processor.
7646 */
7647 vm_events_fold_cpu(cpu);
7648
7649 /*
7650 * Zero the differential counters of the dead processor
7651 * so that the vm statistics are consistent.
7652 *
7653 * This is only okay since the processor is dead and cannot
7654 * race with what we are doing.
7655 */
7656 cpu_vm_stats_fold(cpu);
7657 return 0;
7658}
7659
David Brazdil0f672f62019-12-10 10:32:29 +00007660#ifdef CONFIG_NUMA
7661int hashdist = HASHDIST_DEFAULT;
7662
7663static int __init set_hashdist(char *str)
7664{
7665 if (!str)
7666 return 0;
7667 hashdist = simple_strtoul(str, &str, 0);
7668 return 1;
7669}
7670__setup("hashdist=", set_hashdist);
7671#endif
7672
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007673void __init page_alloc_init(void)
7674{
7675 int ret;
7676
David Brazdil0f672f62019-12-10 10:32:29 +00007677#ifdef CONFIG_NUMA
7678 if (num_node_state(N_MEMORY) == 1)
7679 hashdist = 0;
7680#endif
7681
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007682 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7683 "mm/page_alloc:dead", NULL,
7684 page_alloc_cpu_dead);
7685 WARN_ON(ret < 0);
7686}
7687
7688/*
7689 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7690 * or min_free_kbytes changes.
7691 */
7692static void calculate_totalreserve_pages(void)
7693{
7694 struct pglist_data *pgdat;
7695 unsigned long reserve_pages = 0;
7696 enum zone_type i, j;
7697
7698 for_each_online_pgdat(pgdat) {
7699
7700 pgdat->totalreserve_pages = 0;
7701
7702 for (i = 0; i < MAX_NR_ZONES; i++) {
7703 struct zone *zone = pgdat->node_zones + i;
7704 long max = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00007705 unsigned long managed_pages = zone_managed_pages(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007706
7707 /* Find valid and maximum lowmem_reserve in the zone */
7708 for (j = i; j < MAX_NR_ZONES; j++) {
7709 if (zone->lowmem_reserve[j] > max)
7710 max = zone->lowmem_reserve[j];
7711 }
7712
7713 /* we treat the high watermark as reserved pages. */
7714 max += high_wmark_pages(zone);
7715
David Brazdil0f672f62019-12-10 10:32:29 +00007716 if (max > managed_pages)
7717 max = managed_pages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007718
7719 pgdat->totalreserve_pages += max;
7720
7721 reserve_pages += max;
7722 }
7723 }
7724 totalreserve_pages = reserve_pages;
7725}
7726
7727/*
7728 * setup_per_zone_lowmem_reserve - called whenever
7729 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7730 * has a correct pages reserved value, so an adequate number of
7731 * pages are left in the zone after a successful __alloc_pages().
7732 */
7733static void setup_per_zone_lowmem_reserve(void)
7734{
7735 struct pglist_data *pgdat;
7736 enum zone_type j, idx;
7737
7738 for_each_online_pgdat(pgdat) {
7739 for (j = 0; j < MAX_NR_ZONES; j++) {
7740 struct zone *zone = pgdat->node_zones + j;
David Brazdil0f672f62019-12-10 10:32:29 +00007741 unsigned long managed_pages = zone_managed_pages(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007742
7743 zone->lowmem_reserve[j] = 0;
7744
7745 idx = j;
7746 while (idx) {
7747 struct zone *lower_zone;
7748
7749 idx--;
7750 lower_zone = pgdat->node_zones + idx;
7751
7752 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7753 sysctl_lowmem_reserve_ratio[idx] = 0;
7754 lower_zone->lowmem_reserve[j] = 0;
7755 } else {
7756 lower_zone->lowmem_reserve[j] =
7757 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7758 }
David Brazdil0f672f62019-12-10 10:32:29 +00007759 managed_pages += zone_managed_pages(lower_zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007760 }
7761 }
7762 }
7763
7764 /* update totalreserve_pages */
7765 calculate_totalreserve_pages();
7766}
7767
7768static void __setup_per_zone_wmarks(void)
7769{
7770 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7771 unsigned long lowmem_pages = 0;
7772 struct zone *zone;
7773 unsigned long flags;
7774
7775 /* Calculate total number of !ZONE_HIGHMEM pages */
7776 for_each_zone(zone) {
7777 if (!is_highmem(zone))
David Brazdil0f672f62019-12-10 10:32:29 +00007778 lowmem_pages += zone_managed_pages(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007779 }
7780
7781 for_each_zone(zone) {
7782 u64 tmp;
7783
7784 spin_lock_irqsave(&zone->lock, flags);
David Brazdil0f672f62019-12-10 10:32:29 +00007785 tmp = (u64)pages_min * zone_managed_pages(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007786 do_div(tmp, lowmem_pages);
7787 if (is_highmem(zone)) {
7788 /*
7789 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7790 * need highmem pages, so cap pages_min to a small
7791 * value here.
7792 *
7793 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
David Brazdil0f672f62019-12-10 10:32:29 +00007794 * deltas control async page reclaim, and so should
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007795 * not be capped for highmem.
7796 */
7797 unsigned long min_pages;
7798
David Brazdil0f672f62019-12-10 10:32:29 +00007799 min_pages = zone_managed_pages(zone) / 1024;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007800 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
David Brazdil0f672f62019-12-10 10:32:29 +00007801 zone->_watermark[WMARK_MIN] = min_pages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007802 } else {
7803 /*
7804 * If it's a lowmem zone, reserve a number of pages
7805 * proportionate to the zone's size.
7806 */
David Brazdil0f672f62019-12-10 10:32:29 +00007807 zone->_watermark[WMARK_MIN] = tmp;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007808 }
7809
7810 /*
7811 * Set the kswapd watermarks distance according to the
7812 * scale factor in proportion to available memory, but
7813 * ensure a minimum size on small systems.
7814 */
7815 tmp = max_t(u64, tmp >> 2,
David Brazdil0f672f62019-12-10 10:32:29 +00007816 mult_frac(zone_managed_pages(zone),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007817 watermark_scale_factor, 10000));
7818
David Brazdil0f672f62019-12-10 10:32:29 +00007819 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7820 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7821 zone->watermark_boost = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007822
7823 spin_unlock_irqrestore(&zone->lock, flags);
7824 }
7825
7826 /* update totalreserve_pages */
7827 calculate_totalreserve_pages();
7828}
7829
7830/**
7831 * setup_per_zone_wmarks - called when min_free_kbytes changes
7832 * or when memory is hot-{added|removed}
7833 *
7834 * Ensures that the watermark[min,low,high] values for each zone are set
7835 * correctly with respect to min_free_kbytes.
7836 */
7837void setup_per_zone_wmarks(void)
7838{
7839 static DEFINE_SPINLOCK(lock);
7840
7841 spin_lock(&lock);
7842 __setup_per_zone_wmarks();
7843 spin_unlock(&lock);
7844}
7845
7846/*
7847 * Initialise min_free_kbytes.
7848 *
7849 * For small machines we want it small (128k min). For large machines
7850 * we want it large (64MB max). But it is not linear, because network
7851 * bandwidth does not increase linearly with machine size. We use
7852 *
7853 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7854 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7855 *
7856 * which yields
7857 *
7858 * 16MB: 512k
7859 * 32MB: 724k
7860 * 64MB: 1024k
7861 * 128MB: 1448k
7862 * 256MB: 2048k
7863 * 512MB: 2896k
7864 * 1024MB: 4096k
7865 * 2048MB: 5792k
7866 * 4096MB: 8192k
7867 * 8192MB: 11584k
7868 * 16384MB: 16384k
7869 */
7870int __meminit init_per_zone_wmark_min(void)
7871{
7872 unsigned long lowmem_kbytes;
7873 int new_min_free_kbytes;
7874
7875 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7876 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7877
7878 if (new_min_free_kbytes > user_min_free_kbytes) {
7879 min_free_kbytes = new_min_free_kbytes;
7880 if (min_free_kbytes < 128)
7881 min_free_kbytes = 128;
7882 if (min_free_kbytes > 65536)
7883 min_free_kbytes = 65536;
7884 } else {
7885 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7886 new_min_free_kbytes, user_min_free_kbytes);
7887 }
7888 setup_per_zone_wmarks();
7889 refresh_zone_stat_thresholds();
7890 setup_per_zone_lowmem_reserve();
7891
7892#ifdef CONFIG_NUMA
7893 setup_min_unmapped_ratio();
7894 setup_min_slab_ratio();
7895#endif
7896
Olivier Deprez0e641232021-09-23 10:07:05 +02007897 khugepaged_min_free_kbytes_update();
7898
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007899 return 0;
7900}
Olivier Deprez0e641232021-09-23 10:07:05 +02007901postcore_initcall(init_per_zone_wmark_min)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007902
7903/*
7904 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7905 * that we can call two helper functions whenever min_free_kbytes
7906 * changes.
7907 */
7908int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7909 void __user *buffer, size_t *length, loff_t *ppos)
7910{
7911 int rc;
7912
7913 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7914 if (rc)
7915 return rc;
7916
7917 if (write) {
7918 user_min_free_kbytes = min_free_kbytes;
7919 setup_per_zone_wmarks();
7920 }
7921 return 0;
7922}
7923
David Brazdil0f672f62019-12-10 10:32:29 +00007924int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7925 void __user *buffer, size_t *length, loff_t *ppos)
7926{
7927 int rc;
7928
7929 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7930 if (rc)
7931 return rc;
7932
7933 return 0;
7934}
7935
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007936int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7937 void __user *buffer, size_t *length, loff_t *ppos)
7938{
7939 int rc;
7940
7941 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7942 if (rc)
7943 return rc;
7944
7945 if (write)
7946 setup_per_zone_wmarks();
7947
7948 return 0;
7949}
7950
7951#ifdef CONFIG_NUMA
7952static void setup_min_unmapped_ratio(void)
7953{
7954 pg_data_t *pgdat;
7955 struct zone *zone;
7956
7957 for_each_online_pgdat(pgdat)
7958 pgdat->min_unmapped_pages = 0;
7959
7960 for_each_zone(zone)
David Brazdil0f672f62019-12-10 10:32:29 +00007961 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7962 sysctl_min_unmapped_ratio) / 100;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007963}
7964
7965
7966int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7967 void __user *buffer, size_t *length, loff_t *ppos)
7968{
7969 int rc;
7970
7971 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7972 if (rc)
7973 return rc;
7974
7975 setup_min_unmapped_ratio();
7976
7977 return 0;
7978}
7979
7980static void setup_min_slab_ratio(void)
7981{
7982 pg_data_t *pgdat;
7983 struct zone *zone;
7984
7985 for_each_online_pgdat(pgdat)
7986 pgdat->min_slab_pages = 0;
7987
7988 for_each_zone(zone)
David Brazdil0f672f62019-12-10 10:32:29 +00007989 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7990 sysctl_min_slab_ratio) / 100;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007991}
7992
7993int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7994 void __user *buffer, size_t *length, loff_t *ppos)
7995{
7996 int rc;
7997
7998 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7999 if (rc)
8000 return rc;
8001
8002 setup_min_slab_ratio();
8003
8004 return 0;
8005}
8006#endif
8007
8008/*
8009 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8010 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8011 * whenever sysctl_lowmem_reserve_ratio changes.
8012 *
8013 * The reserve ratio obviously has absolutely no relation with the
8014 * minimum watermarks. The lowmem reserve ratio can only make sense
8015 * if in function of the boot time zone sizes.
8016 */
8017int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8018 void __user *buffer, size_t *length, loff_t *ppos)
8019{
8020 proc_dointvec_minmax(table, write, buffer, length, ppos);
8021 setup_per_zone_lowmem_reserve();
8022 return 0;
8023}
8024
8025/*
8026 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8027 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8028 * pagelist can have before it gets flushed back to buddy allocator.
8029 */
8030int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8031 void __user *buffer, size_t *length, loff_t *ppos)
8032{
8033 struct zone *zone;
8034 int old_percpu_pagelist_fraction;
8035 int ret;
8036
8037 mutex_lock(&pcp_batch_high_lock);
8038 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8039
8040 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8041 if (!write || ret < 0)
8042 goto out;
8043
8044 /* Sanity checking to avoid pcp imbalance */
8045 if (percpu_pagelist_fraction &&
8046 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8047 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8048 ret = -EINVAL;
8049 goto out;
8050 }
8051
8052 /* No change? */
8053 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8054 goto out;
8055
8056 for_each_populated_zone(zone) {
8057 unsigned int cpu;
8058
8059 for_each_possible_cpu(cpu)
8060 pageset_set_high_and_batch(zone,
8061 per_cpu_ptr(zone->pageset, cpu));
8062 }
8063out:
8064 mutex_unlock(&pcp_batch_high_lock);
8065 return ret;
8066}
8067
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008068#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8069/*
8070 * Returns the number of pages that arch has reserved but
8071 * is not known to alloc_large_system_hash().
8072 */
8073static unsigned long __init arch_reserved_kernel_pages(void)
8074{
8075 return 0;
8076}
8077#endif
8078
8079/*
8080 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8081 * machines. As memory size is increased the scale is also increased but at
8082 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8083 * quadruples the scale is increased by one, which means the size of hash table
8084 * only doubles, instead of quadrupling as well.
8085 * Because 32-bit systems cannot have large physical memory, where this scaling
8086 * makes sense, it is disabled on such platforms.
8087 */
8088#if __BITS_PER_LONG > 32
8089#define ADAPT_SCALE_BASE (64ul << 30)
8090#define ADAPT_SCALE_SHIFT 2
8091#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8092#endif
8093
8094/*
8095 * allocate a large system hash table from bootmem
8096 * - it is assumed that the hash table must contain an exact power-of-2
8097 * quantity of entries
8098 * - limit is the number of hash buckets, not the total allocation size
8099 */
8100void *__init alloc_large_system_hash(const char *tablename,
8101 unsigned long bucketsize,
8102 unsigned long numentries,
8103 int scale,
8104 int flags,
8105 unsigned int *_hash_shift,
8106 unsigned int *_hash_mask,
8107 unsigned long low_limit,
8108 unsigned long high_limit)
8109{
8110 unsigned long long max = high_limit;
8111 unsigned long log2qty, size;
8112 void *table = NULL;
8113 gfp_t gfp_flags;
David Brazdil0f672f62019-12-10 10:32:29 +00008114 bool virt;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008115
8116 /* allow the kernel cmdline to have a say */
8117 if (!numentries) {
8118 /* round applicable memory size up to nearest megabyte */
8119 numentries = nr_kernel_pages;
8120 numentries -= arch_reserved_kernel_pages();
8121
8122 /* It isn't necessary when PAGE_SIZE >= 1MB */
8123 if (PAGE_SHIFT < 20)
8124 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8125
8126#if __BITS_PER_LONG > 32
8127 if (!high_limit) {
8128 unsigned long adapt;
8129
8130 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8131 adapt <<= ADAPT_SCALE_SHIFT)
8132 scale++;
8133 }
8134#endif
8135
8136 /* limit to 1 bucket per 2^scale bytes of low memory */
8137 if (scale > PAGE_SHIFT)
8138 numentries >>= (scale - PAGE_SHIFT);
8139 else
8140 numentries <<= (PAGE_SHIFT - scale);
8141
8142 /* Make sure we've got at least a 0-order allocation.. */
8143 if (unlikely(flags & HASH_SMALL)) {
8144 /* Makes no sense without HASH_EARLY */
8145 WARN_ON(!(flags & HASH_EARLY));
8146 if (!(numentries >> *_hash_shift)) {
8147 numentries = 1UL << *_hash_shift;
8148 BUG_ON(!numentries);
8149 }
8150 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8151 numentries = PAGE_SIZE / bucketsize;
8152 }
8153 numentries = roundup_pow_of_two(numentries);
8154
8155 /* limit allocation size to 1/16 total memory by default */
8156 if (max == 0) {
8157 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8158 do_div(max, bucketsize);
8159 }
8160 max = min(max, 0x80000000ULL);
8161
8162 if (numentries < low_limit)
8163 numentries = low_limit;
8164 if (numentries > max)
8165 numentries = max;
8166
8167 log2qty = ilog2(numentries);
8168
8169 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8170 do {
David Brazdil0f672f62019-12-10 10:32:29 +00008171 virt = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008172 size = bucketsize << log2qty;
8173 if (flags & HASH_EARLY) {
8174 if (flags & HASH_ZERO)
David Brazdil0f672f62019-12-10 10:32:29 +00008175 table = memblock_alloc(size, SMP_CACHE_BYTES);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008176 else
David Brazdil0f672f62019-12-10 10:32:29 +00008177 table = memblock_alloc_raw(size,
8178 SMP_CACHE_BYTES);
8179 } else if (get_order(size) >= MAX_ORDER || hashdist) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008180 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
David Brazdil0f672f62019-12-10 10:32:29 +00008181 virt = true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008182 } else {
8183 /*
8184 * If bucketsize is not a power-of-two, we may free
8185 * some pages at the end of hash table which
8186 * alloc_pages_exact() automatically does
8187 */
David Brazdil0f672f62019-12-10 10:32:29 +00008188 table = alloc_pages_exact(size, gfp_flags);
8189 kmemleak_alloc(table, size, 1, gfp_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008190 }
8191 } while (!table && size > PAGE_SIZE && --log2qty);
8192
8193 if (!table)
8194 panic("Failed to allocate %s hash table\n", tablename);
8195
David Brazdil0f672f62019-12-10 10:32:29 +00008196 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8197 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8198 virt ? "vmalloc" : "linear");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008199
8200 if (_hash_shift)
8201 *_hash_shift = log2qty;
8202 if (_hash_mask)
8203 *_hash_mask = (1 << log2qty) - 1;
8204
8205 return table;
8206}
8207
8208/*
8209 * This function checks whether pageblock includes unmovable pages or not.
8210 * If @count is not zero, it is okay to include less @count unmovable pages
8211 *
8212 * PageLRU check without isolation or lru_lock could race so that
8213 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8214 * check without lock_page also may miss some movable non-lru pages at
8215 * race condition. So you can't expect this function should be exact.
8216 */
8217bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
David Brazdil0f672f62019-12-10 10:32:29 +00008218 int migratetype, int flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008219{
David Brazdil0f672f62019-12-10 10:32:29 +00008220 unsigned long found;
8221 unsigned long iter = 0;
8222 unsigned long pfn = page_to_pfn(page);
8223 const char *reason = "unmovable page";
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008224
8225 /*
8226 * TODO we could make this much more efficient by not checking every
8227 * page in the range if we know all of them are in MOVABLE_ZONE and
8228 * that the movable zone guarantees that pages are migratable but
8229 * the later is not the case right now unfortunatelly. E.g. movablecore
8230 * can still lead to having bootmem allocations in zone_movable.
8231 */
8232
David Brazdil0f672f62019-12-10 10:32:29 +00008233 if (is_migrate_cma_page(page)) {
8234 /*
8235 * CMA allocations (alloc_contig_range) really need to mark
8236 * isolate CMA pageblocks even when they are not movable in fact
8237 * so consider them movable here.
8238 */
8239 if (is_migrate_cma(migratetype))
8240 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008241
David Brazdil0f672f62019-12-10 10:32:29 +00008242 reason = "CMA page";
8243 goto unmovable;
8244 }
8245
8246 for (found = 0; iter < pageblock_nr_pages; iter++) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008247 unsigned long check = pfn + iter;
8248
8249 if (!pfn_valid_within(check))
8250 continue;
8251
8252 page = pfn_to_page(check);
8253
8254 if (PageReserved(page))
8255 goto unmovable;
8256
8257 /*
8258 * If the zone is movable and we have ruled out all reserved
8259 * pages then it should be reasonably safe to assume the rest
8260 * is movable.
8261 */
8262 if (zone_idx(zone) == ZONE_MOVABLE)
8263 continue;
8264
8265 /*
8266 * Hugepages are not in LRU lists, but they're movable.
David Brazdil0f672f62019-12-10 10:32:29 +00008267 * We need not scan over tail pages because we don't
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008268 * handle each tail page individually in migration.
8269 */
8270 if (PageHuge(page)) {
8271 struct page *head = compound_head(page);
8272 unsigned int skip_pages;
8273
8274 if (!hugepage_migration_supported(page_hstate(head)))
8275 goto unmovable;
8276
David Brazdil0f672f62019-12-10 10:32:29 +00008277 skip_pages = compound_nr(head) - (page - head);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008278 iter += skip_pages - 1;
8279 continue;
8280 }
8281
8282 /*
8283 * We can't use page_count without pin a page
8284 * because another CPU can free compound page.
8285 * This check already skips compound tails of THP
8286 * because their page->_refcount is zero at all time.
8287 */
8288 if (!page_ref_count(page)) {
8289 if (PageBuddy(page))
8290 iter += (1 << page_order(page)) - 1;
8291 continue;
8292 }
8293
8294 /*
8295 * The HWPoisoned page may be not in buddy system, and
8296 * page_count() is not 0.
8297 */
David Brazdil0f672f62019-12-10 10:32:29 +00008298 if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008299 continue;
8300
8301 if (__PageMovable(page))
8302 continue;
8303
8304 if (!PageLRU(page))
8305 found++;
8306 /*
8307 * If there are RECLAIMABLE pages, we need to check
8308 * it. But now, memory offline itself doesn't call
8309 * shrink_node_slabs() and it still to be fixed.
8310 */
8311 /*
8312 * If the page is not RAM, page_count()should be 0.
8313 * we don't need more check. This is an _used_ not-movable page.
8314 *
8315 * The problematic thing here is PG_reserved pages. PG_reserved
8316 * is set to both of a memory hole page and a _used_ kernel
8317 * page at boot.
8318 */
8319 if (found > count)
8320 goto unmovable;
8321 }
8322 return false;
8323unmovable:
8324 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
David Brazdil0f672f62019-12-10 10:32:29 +00008325 if (flags & REPORT_FAILURE)
8326 dump_page(pfn_to_page(pfn + iter), reason);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008327 return true;
8328}
8329
David Brazdil0f672f62019-12-10 10:32:29 +00008330#ifdef CONFIG_CONTIG_ALLOC
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008331static unsigned long pfn_max_align_down(unsigned long pfn)
8332{
8333 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8334 pageblock_nr_pages) - 1);
8335}
8336
8337static unsigned long pfn_max_align_up(unsigned long pfn)
8338{
8339 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8340 pageblock_nr_pages));
8341}
8342
8343/* [start, end) must belong to a single zone. */
8344static int __alloc_contig_migrate_range(struct compact_control *cc,
8345 unsigned long start, unsigned long end)
8346{
8347 /* This function is based on compact_zone() from compaction.c. */
8348 unsigned long nr_reclaimed;
8349 unsigned long pfn = start;
8350 unsigned int tries = 0;
8351 int ret = 0;
8352
8353 migrate_prep();
8354
8355 while (pfn < end || !list_empty(&cc->migratepages)) {
8356 if (fatal_signal_pending(current)) {
8357 ret = -EINTR;
8358 break;
8359 }
8360
8361 if (list_empty(&cc->migratepages)) {
8362 cc->nr_migratepages = 0;
8363 pfn = isolate_migratepages_range(cc, pfn, end);
8364 if (!pfn) {
8365 ret = -EINTR;
8366 break;
8367 }
8368 tries = 0;
8369 } else if (++tries == 5) {
8370 ret = ret < 0 ? ret : -EBUSY;
8371 break;
8372 }
8373
8374 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8375 &cc->migratepages);
8376 cc->nr_migratepages -= nr_reclaimed;
8377
8378 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8379 NULL, 0, cc->mode, MR_CONTIG_RANGE);
8380 }
8381 if (ret < 0) {
8382 putback_movable_pages(&cc->migratepages);
8383 return ret;
8384 }
8385 return 0;
8386}
8387
8388/**
8389 * alloc_contig_range() -- tries to allocate given range of pages
8390 * @start: start PFN to allocate
8391 * @end: one-past-the-last PFN to allocate
8392 * @migratetype: migratetype of the underlaying pageblocks (either
8393 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8394 * in range must have the same migratetype and it must
8395 * be either of the two.
8396 * @gfp_mask: GFP mask to use during compaction
8397 *
8398 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8399 * aligned. The PFN range must belong to a single zone.
8400 *
8401 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8402 * pageblocks in the range. Once isolated, the pageblocks should not
8403 * be modified by others.
8404 *
David Brazdil0f672f62019-12-10 10:32:29 +00008405 * Return: zero on success or negative error code. On success all
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008406 * pages which PFN is in [start, end) are allocated for the caller and
8407 * need to be freed with free_contig_range().
8408 */
8409int alloc_contig_range(unsigned long start, unsigned long end,
8410 unsigned migratetype, gfp_t gfp_mask)
8411{
8412 unsigned long outer_start, outer_end;
8413 unsigned int order;
8414 int ret = 0;
8415
8416 struct compact_control cc = {
8417 .nr_migratepages = 0,
8418 .order = -1,
8419 .zone = page_zone(pfn_to_page(start)),
8420 .mode = MIGRATE_SYNC,
8421 .ignore_skip_hint = true,
8422 .no_set_skip_hint = true,
8423 .gfp_mask = current_gfp_context(gfp_mask),
8424 };
8425 INIT_LIST_HEAD(&cc.migratepages);
8426
8427 /*
8428 * What we do here is we mark all pageblocks in range as
8429 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8430 * have different sizes, and due to the way page allocator
8431 * work, we align the range to biggest of the two pages so
8432 * that page allocator won't try to merge buddies from
8433 * different pageblocks and change MIGRATE_ISOLATE to some
8434 * other migration type.
8435 *
8436 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8437 * migrate the pages from an unaligned range (ie. pages that
8438 * we are interested in). This will put all the pages in
8439 * range back to page allocator as MIGRATE_ISOLATE.
8440 *
8441 * When this is done, we take the pages in range from page
8442 * allocator removing them from the buddy system. This way
8443 * page allocator will never consider using them.
8444 *
8445 * This lets us mark the pageblocks back as
8446 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8447 * aligned range but not in the unaligned, original range are
8448 * put back to page allocator so that buddy can use them.
8449 */
8450
8451 ret = start_isolate_page_range(pfn_max_align_down(start),
David Brazdil0f672f62019-12-10 10:32:29 +00008452 pfn_max_align_up(end), migratetype, 0);
8453 if (ret < 0)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008454 return ret;
8455
8456 /*
8457 * In case of -EBUSY, we'd like to know which page causes problem.
8458 * So, just fall through. test_pages_isolated() has a tracepoint
8459 * which will report the busy page.
8460 *
8461 * It is possible that busy pages could become available before
8462 * the call to test_pages_isolated, and the range will actually be
8463 * allocated. So, if we fall through be sure to clear ret so that
8464 * -EBUSY is not accidentally used or returned to caller.
8465 */
8466 ret = __alloc_contig_migrate_range(&cc, start, end);
8467 if (ret && ret != -EBUSY)
8468 goto done;
8469 ret =0;
8470
8471 /*
8472 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8473 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8474 * more, all pages in [start, end) are free in page allocator.
8475 * What we are going to do is to allocate all pages from
8476 * [start, end) (that is remove them from page allocator).
8477 *
8478 * The only problem is that pages at the beginning and at the
8479 * end of interesting range may be not aligned with pages that
8480 * page allocator holds, ie. they can be part of higher order
8481 * pages. Because of this, we reserve the bigger range and
8482 * once this is done free the pages we are not interested in.
8483 *
8484 * We don't have to hold zone->lock here because the pages are
8485 * isolated thus they won't get removed from buddy.
8486 */
8487
8488 lru_add_drain_all();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008489
8490 order = 0;
8491 outer_start = start;
8492 while (!PageBuddy(pfn_to_page(outer_start))) {
8493 if (++order >= MAX_ORDER) {
8494 outer_start = start;
8495 break;
8496 }
8497 outer_start &= ~0UL << order;
8498 }
8499
8500 if (outer_start != start) {
8501 order = page_order(pfn_to_page(outer_start));
8502
8503 /*
8504 * outer_start page could be small order buddy page and
8505 * it doesn't include start page. Adjust outer_start
8506 * in this case to report failed page properly
8507 * on tracepoint in test_pages_isolated()
8508 */
8509 if (outer_start + (1UL << order) <= start)
8510 outer_start = start;
8511 }
8512
8513 /* Make sure the range is really isolated. */
8514 if (test_pages_isolated(outer_start, end, false)) {
8515 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8516 __func__, outer_start, end);
8517 ret = -EBUSY;
8518 goto done;
8519 }
8520
8521 /* Grab isolated pages from freelists. */
8522 outer_end = isolate_freepages_range(&cc, outer_start, end);
8523 if (!outer_end) {
8524 ret = -EBUSY;
8525 goto done;
8526 }
8527
8528 /* Free head and tail (if any) */
8529 if (start != outer_start)
8530 free_contig_range(outer_start, start - outer_start);
8531 if (end != outer_end)
8532 free_contig_range(end, outer_end - end);
8533
8534done:
8535 undo_isolate_page_range(pfn_max_align_down(start),
8536 pfn_max_align_up(end), migratetype);
8537 return ret;
8538}
David Brazdil0f672f62019-12-10 10:32:29 +00008539#endif /* CONFIG_CONTIG_ALLOC */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008540
David Brazdil0f672f62019-12-10 10:32:29 +00008541void free_contig_range(unsigned long pfn, unsigned int nr_pages)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008542{
8543 unsigned int count = 0;
8544
8545 for (; nr_pages--; pfn++) {
8546 struct page *page = pfn_to_page(pfn);
8547
8548 count += page_count(page) != 1;
8549 __free_page(page);
8550 }
8551 WARN(count != 0, "%d pages are still in use!\n", count);
8552}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008553
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008554/*
8555 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8556 * page high values need to be recalulated.
8557 */
8558void __meminit zone_pcp_update(struct zone *zone)
8559{
8560 unsigned cpu;
8561 mutex_lock(&pcp_batch_high_lock);
8562 for_each_possible_cpu(cpu)
8563 pageset_set_high_and_batch(zone,
8564 per_cpu_ptr(zone->pageset, cpu));
8565 mutex_unlock(&pcp_batch_high_lock);
8566}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008567
8568void zone_pcp_reset(struct zone *zone)
8569{
8570 unsigned long flags;
8571 int cpu;
8572 struct per_cpu_pageset *pset;
8573
8574 /* avoid races with drain_pages() */
8575 local_irq_save(flags);
8576 if (zone->pageset != &boot_pageset) {
8577 for_each_online_cpu(cpu) {
8578 pset = per_cpu_ptr(zone->pageset, cpu);
8579 drain_zonestat(zone, pset);
8580 }
8581 free_percpu(zone->pageset);
8582 zone->pageset = &boot_pageset;
8583 }
8584 local_irq_restore(flags);
8585}
8586
8587#ifdef CONFIG_MEMORY_HOTREMOVE
8588/*
8589 * All pages in the range must be in a single zone and isolated
8590 * before calling this.
8591 */
David Brazdil0f672f62019-12-10 10:32:29 +00008592unsigned long
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008593__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8594{
8595 struct page *page;
8596 struct zone *zone;
8597 unsigned int order, i;
8598 unsigned long pfn;
8599 unsigned long flags;
David Brazdil0f672f62019-12-10 10:32:29 +00008600 unsigned long offlined_pages = 0;
8601
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008602 /* find the first valid pfn */
8603 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8604 if (pfn_valid(pfn))
8605 break;
8606 if (pfn == end_pfn)
David Brazdil0f672f62019-12-10 10:32:29 +00008607 return offlined_pages;
8608
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008609 offline_mem_sections(pfn, end_pfn);
8610 zone = page_zone(pfn_to_page(pfn));
8611 spin_lock_irqsave(&zone->lock, flags);
8612 pfn = start_pfn;
8613 while (pfn < end_pfn) {
8614 if (!pfn_valid(pfn)) {
8615 pfn++;
8616 continue;
8617 }
8618 page = pfn_to_page(pfn);
8619 /*
8620 * The HWPoisoned page may be not in buddy system, and
8621 * page_count() is not 0.
8622 */
8623 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8624 pfn++;
8625 SetPageReserved(page);
David Brazdil0f672f62019-12-10 10:32:29 +00008626 offlined_pages++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008627 continue;
8628 }
8629
8630 BUG_ON(page_count(page));
8631 BUG_ON(!PageBuddy(page));
8632 order = page_order(page);
David Brazdil0f672f62019-12-10 10:32:29 +00008633 offlined_pages += 1 << order;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008634#ifdef CONFIG_DEBUG_VM
8635 pr_info("remove from free list %lx %d %lx\n",
8636 pfn, 1 << order, end_pfn);
8637#endif
David Brazdil0f672f62019-12-10 10:32:29 +00008638 del_page_from_free_area(page, &zone->free_area[order]);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008639 for (i = 0; i < (1 << order); i++)
8640 SetPageReserved((page+i));
8641 pfn += (1 << order);
8642 }
8643 spin_unlock_irqrestore(&zone->lock, flags);
David Brazdil0f672f62019-12-10 10:32:29 +00008644
8645 return offlined_pages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008646}
8647#endif
8648
8649bool is_free_buddy_page(struct page *page)
8650{
8651 struct zone *zone = page_zone(page);
8652 unsigned long pfn = page_to_pfn(page);
8653 unsigned long flags;
8654 unsigned int order;
8655
8656 spin_lock_irqsave(&zone->lock, flags);
8657 for (order = 0; order < MAX_ORDER; order++) {
8658 struct page *page_head = page - (pfn & ((1 << order) - 1));
8659
8660 if (PageBuddy(page_head) && page_order(page_head) >= order)
8661 break;
8662 }
8663 spin_unlock_irqrestore(&zone->lock, flags);
8664
8665 return order < MAX_ORDER;
8666}
8667
8668#ifdef CONFIG_MEMORY_FAILURE
8669/*
8670 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8671 * test is performed under the zone lock to prevent a race against page
8672 * allocation.
8673 */
8674bool set_hwpoison_free_buddy_page(struct page *page)
8675{
8676 struct zone *zone = page_zone(page);
8677 unsigned long pfn = page_to_pfn(page);
8678 unsigned long flags;
8679 unsigned int order;
8680 bool hwpoisoned = false;
8681
8682 spin_lock_irqsave(&zone->lock, flags);
8683 for (order = 0; order < MAX_ORDER; order++) {
8684 struct page *page_head = page - (pfn & ((1 << order) - 1));
8685
8686 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8687 if (!TestSetPageHWPoison(page))
8688 hwpoisoned = true;
8689 break;
8690 }
8691 }
8692 spin_unlock_irqrestore(&zone->lock, flags);
8693
8694 return hwpoisoned;
8695}
8696#endif