blob: b716b8fa2c3ff715d5db7816f95ba8f2335ebae2 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Memory Migration functionality - linux/mm/migrate.c
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
14 */
15
16#include <linux/migrate.h>
17#include <linux/export.h>
18#include <linux/swap.h>
19#include <linux/swapops.h>
20#include <linux/pagemap.h>
21#include <linux/buffer_head.h>
22#include <linux/mm_inline.h>
23#include <linux/nsproxy.h>
24#include <linux/pagevec.h>
25#include <linux/ksm.h>
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
30#include <linux/writeback.h>
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
33#include <linux/security.h>
34#include <linux/backing-dev.h>
35#include <linux/compaction.h>
36#include <linux/syscalls.h>
37#include <linux/compat.h>
38#include <linux/hugetlb.h>
39#include <linux/hugetlb_cgroup.h>
40#include <linux/gfp.h>
David Brazdil0f672f62019-12-10 10:32:29 +000041#include <linux/pagewalk.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000042#include <linux/pfn_t.h>
43#include <linux/memremap.h>
44#include <linux/userfaultfd_k.h>
45#include <linux/balloon_compaction.h>
46#include <linux/mmu_notifier.h>
47#include <linux/page_idle.h>
48#include <linux/page_owner.h>
49#include <linux/sched/mm.h>
50#include <linux/ptrace.h>
Olivier Deprez157378f2022-04-04 15:47:50 +020051#include <linux/oom.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000052
53#include <asm/tlbflush.h>
54
55#define CREATE_TRACE_POINTS
56#include <trace/events/migrate.h>
57
58#include "internal.h"
59
60/*
61 * migrate_prep() needs to be called before we start compiling a list of pages
62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63 * undesirable, use migrate_prep_local()
64 */
65int migrate_prep(void)
66{
67 /*
68 * Clear the LRU lists so pages can be isolated.
69 * Note that pages may be moved off the LRU after we have
70 * drained them. Those pages will fail to migrate like other
71 * pages that may be busy.
72 */
73 lru_add_drain_all();
74
75 return 0;
76}
77
78/* Do the necessary work of migrate_prep but not if it involves other CPUs */
79int migrate_prep_local(void)
80{
81 lru_add_drain();
82
83 return 0;
84}
85
86int isolate_movable_page(struct page *page, isolate_mode_t mode)
87{
88 struct address_space *mapping;
89
90 /*
91 * Avoid burning cycles with pages that are yet under __free_pages(),
92 * or just got freed under us.
93 *
94 * In case we 'win' a race for a movable page being freed under us and
95 * raise its refcount preventing __free_pages() from doing its job
96 * the put_page() at the end of this block will take care of
97 * release this page, thus avoiding a nasty leakage.
98 */
99 if (unlikely(!get_page_unless_zero(page)))
100 goto out;
101
102 /*
103 * Check PageMovable before holding a PG_lock because page's owner
104 * assumes anybody doesn't touch PG_lock of newly allocated page
David Brazdil0f672f62019-12-10 10:32:29 +0000105 * so unconditionally grabbing the lock ruins page's owner side.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000106 */
107 if (unlikely(!__PageMovable(page)))
108 goto out_putpage;
109 /*
110 * As movable pages are not isolated from LRU lists, concurrent
111 * compaction threads can race against page migration functions
112 * as well as race against the releasing a page.
113 *
114 * In order to avoid having an already isolated movable page
115 * being (wrongly) re-isolated while it is under migration,
116 * or to avoid attempting to isolate pages being released,
117 * lets be sure we have the page lock
118 * before proceeding with the movable page isolation steps.
119 */
120 if (unlikely(!trylock_page(page)))
121 goto out_putpage;
122
123 if (!PageMovable(page) || PageIsolated(page))
124 goto out_no_isolated;
125
126 mapping = page_mapping(page);
127 VM_BUG_ON_PAGE(!mapping, page);
128
129 if (!mapping->a_ops->isolate_page(page, mode))
130 goto out_no_isolated;
131
132 /* Driver shouldn't use PG_isolated bit of page->flags */
133 WARN_ON_ONCE(PageIsolated(page));
134 __SetPageIsolated(page);
135 unlock_page(page);
136
137 return 0;
138
139out_no_isolated:
140 unlock_page(page);
141out_putpage:
142 put_page(page);
143out:
144 return -EBUSY;
145}
146
147/* It should be called on page which is PG_movable */
148void putback_movable_page(struct page *page)
149{
150 struct address_space *mapping;
151
152 VM_BUG_ON_PAGE(!PageLocked(page), page);
153 VM_BUG_ON_PAGE(!PageMovable(page), page);
154 VM_BUG_ON_PAGE(!PageIsolated(page), page);
155
156 mapping = page_mapping(page);
157 mapping->a_ops->putback_page(page);
158 __ClearPageIsolated(page);
159}
160
161/*
162 * Put previously isolated pages back onto the appropriate lists
163 * from where they were once taken off for compaction/migration.
164 *
165 * This function shall be used whenever the isolated pageset has been
166 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167 * and isolate_huge_page().
168 */
169void putback_movable_pages(struct list_head *l)
170{
171 struct page *page;
172 struct page *page2;
173
174 list_for_each_entry_safe(page, page2, l, lru) {
175 if (unlikely(PageHuge(page))) {
176 putback_active_hugepage(page);
177 continue;
178 }
179 list_del(&page->lru);
180 /*
181 * We isolated non-lru movable page so here we can use
182 * __PageMovable because LRU page's mapping cannot have
183 * PAGE_MAPPING_MOVABLE.
184 */
185 if (unlikely(__PageMovable(page))) {
186 VM_BUG_ON_PAGE(!PageIsolated(page), page);
187 lock_page(page);
188 if (PageMovable(page))
189 putback_movable_page(page);
190 else
191 __ClearPageIsolated(page);
192 unlock_page(page);
193 put_page(page);
194 } else {
195 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
Olivier Deprez157378f2022-04-04 15:47:50 +0200196 page_is_file_lru(page), -thp_nr_pages(page));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000197 putback_lru_page(page);
198 }
199 }
200}
201
202/*
203 * Restore a potential migration pte to a working pte entry
204 */
205static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206 unsigned long addr, void *old)
207{
208 struct page_vma_mapped_walk pvmw = {
209 .page = old,
210 .vma = vma,
211 .address = addr,
212 .flags = PVMW_SYNC | PVMW_MIGRATION,
213 };
214 struct page *new;
215 pte_t pte;
216 swp_entry_t entry;
217
218 VM_BUG_ON_PAGE(PageTail(page), page);
219 while (page_vma_mapped_walk(&pvmw)) {
220 if (PageKsm(page))
221 new = page;
222 else
223 new = page - pvmw.page->index +
224 linear_page_index(vma, pvmw.address);
225
226#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227 /* PMD-mapped THP migration entry */
228 if (!pvmw.pte) {
229 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230 remove_migration_pmd(&pvmw, new);
231 continue;
232 }
233#endif
234
235 get_page(new);
236 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237 if (pte_swp_soft_dirty(*pvmw.pte))
238 pte = pte_mksoft_dirty(pte);
239
240 /*
241 * Recheck VMA as permissions can change since migration started
242 */
243 entry = pte_to_swp_entry(*pvmw.pte);
244 if (is_write_migration_entry(entry))
245 pte = maybe_mkwrite(pte, vma);
Olivier Deprez157378f2022-04-04 15:47:50 +0200246 else if (pte_swp_uffd_wp(*pvmw.pte))
247 pte = pte_mkuffd_wp(pte);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000248
Olivier Deprez157378f2022-04-04 15:47:50 +0200249 if (unlikely(is_device_private_page(new))) {
250 entry = make_device_private_entry(new, pte_write(pte));
251 pte = swp_entry_to_pte(entry);
252 if (pte_swp_soft_dirty(*pvmw.pte))
253 pte = pte_swp_mksoft_dirty(pte);
254 if (pte_swp_uffd_wp(*pvmw.pte))
255 pte = pte_swp_mkuffd_wp(pte);
David Brazdil0f672f62019-12-10 10:32:29 +0000256 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000257
258#ifdef CONFIG_HUGETLB_PAGE
259 if (PageHuge(new)) {
260 pte = pte_mkhuge(pte);
261 pte = arch_make_huge_pte(pte, vma, new, 0);
262 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
263 if (PageAnon(new))
264 hugepage_add_anon_rmap(new, vma, pvmw.address);
265 else
266 page_dup_rmap(new, true);
267 } else
268#endif
269 {
270 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
271
272 if (PageAnon(new))
273 page_add_anon_rmap(new, vma, pvmw.address, false);
274 else
275 page_add_file_rmap(new, false);
276 }
277 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278 mlock_vma_page(new);
279
280 if (PageTransHuge(page) && PageMlocked(page))
281 clear_page_mlock(page);
282
283 /* No need to invalidate - it was non-present before */
284 update_mmu_cache(vma, pvmw.address, pvmw.pte);
285 }
286
287 return true;
288}
289
290/*
291 * Get rid of all migration entries and replace them by
292 * references to the indicated page.
293 */
294void remove_migration_ptes(struct page *old, struct page *new, bool locked)
295{
296 struct rmap_walk_control rwc = {
297 .rmap_one = remove_migration_pte,
298 .arg = old,
299 };
300
301 if (locked)
302 rmap_walk_locked(new, &rwc);
303 else
304 rmap_walk(new, &rwc);
305}
306
307/*
308 * Something used the pte of a page under migration. We need to
309 * get to the page and wait until migration is finished.
310 * When we return from this function the fault will be retried.
311 */
312void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
313 spinlock_t *ptl)
314{
315 pte_t pte;
316 swp_entry_t entry;
317 struct page *page;
318
319 spin_lock(ptl);
320 pte = *ptep;
321 if (!is_swap_pte(pte))
322 goto out;
323
324 entry = pte_to_swp_entry(pte);
325 if (!is_migration_entry(entry))
326 goto out;
327
328 page = migration_entry_to_page(entry);
Olivier Deprez0e641232021-09-23 10:07:05 +0200329 page = compound_head(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000330
331 /*
David Brazdil0f672f62019-12-10 10:32:29 +0000332 * Once page cache replacement of page migration started, page_count
333 * is zero; but we must not call put_and_wait_on_page_locked() without
334 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000335 */
336 if (!get_page_unless_zero(page))
337 goto out;
338 pte_unmap_unlock(ptep, ptl);
David Brazdil0f672f62019-12-10 10:32:29 +0000339 put_and_wait_on_page_locked(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000340 return;
341out:
342 pte_unmap_unlock(ptep, ptl);
343}
344
345void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
346 unsigned long address)
347{
348 spinlock_t *ptl = pte_lockptr(mm, pmd);
349 pte_t *ptep = pte_offset_map(pmd, address);
350 __migration_entry_wait(mm, ptep, ptl);
351}
352
353void migration_entry_wait_huge(struct vm_area_struct *vma,
354 struct mm_struct *mm, pte_t *pte)
355{
356 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
357 __migration_entry_wait(mm, pte, ptl);
358}
359
360#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
361void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
362{
363 spinlock_t *ptl;
364 struct page *page;
365
366 ptl = pmd_lock(mm, pmd);
367 if (!is_pmd_migration_entry(*pmd))
368 goto unlock;
369 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
370 if (!get_page_unless_zero(page))
371 goto unlock;
372 spin_unlock(ptl);
David Brazdil0f672f62019-12-10 10:32:29 +0000373 put_and_wait_on_page_locked(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000374 return;
375unlock:
376 spin_unlock(ptl);
377}
378#endif
379
David Brazdil0f672f62019-12-10 10:32:29 +0000380static int expected_page_refs(struct address_space *mapping, struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000381{
David Brazdil0f672f62019-12-10 10:32:29 +0000382 int expected_count = 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000383
David Brazdil0f672f62019-12-10 10:32:29 +0000384 /*
Olivier Deprez157378f2022-04-04 15:47:50 +0200385 * Device private pages have an extra refcount as they are
David Brazdil0f672f62019-12-10 10:32:29 +0000386 * ZONE_DEVICE pages.
387 */
388 expected_count += is_device_private_page(page);
389 if (mapping)
Olivier Deprez157378f2022-04-04 15:47:50 +0200390 expected_count += thp_nr_pages(page) + page_has_private(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000391
David Brazdil0f672f62019-12-10 10:32:29 +0000392 return expected_count;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000393}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000394
395/*
396 * Replace the page in the mapping.
397 *
398 * The number of remaining references must be:
399 * 1 for anonymous pages without a mapping
400 * 2 for pages with a mapping
401 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
402 */
403int migrate_page_move_mapping(struct address_space *mapping,
David Brazdil0f672f62019-12-10 10:32:29 +0000404 struct page *newpage, struct page *page, int extra_count)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000405{
David Brazdil0f672f62019-12-10 10:32:29 +0000406 XA_STATE(xas, &mapping->i_pages, page_index(page));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000407 struct zone *oldzone, *newzone;
408 int dirty;
David Brazdil0f672f62019-12-10 10:32:29 +0000409 int expected_count = expected_page_refs(mapping, page) + extra_count;
Olivier Deprez157378f2022-04-04 15:47:50 +0200410 int nr = thp_nr_pages(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000411
412 if (!mapping) {
413 /* Anonymous page without mapping */
414 if (page_count(page) != expected_count)
415 return -EAGAIN;
416
417 /* No turning back from here */
418 newpage->index = page->index;
419 newpage->mapping = page->mapping;
420 if (PageSwapBacked(page))
421 __SetPageSwapBacked(newpage);
422
423 return MIGRATEPAGE_SUCCESS;
424 }
425
426 oldzone = page_zone(page);
427 newzone = page_zone(newpage);
428
David Brazdil0f672f62019-12-10 10:32:29 +0000429 xas_lock_irq(&xas);
430 if (page_count(page) != expected_count || xas_load(&xas) != page) {
431 xas_unlock_irq(&xas);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000432 return -EAGAIN;
433 }
434
435 if (!page_ref_freeze(page, expected_count)) {
David Brazdil0f672f62019-12-10 10:32:29 +0000436 xas_unlock_irq(&xas);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000437 return -EAGAIN;
438 }
439
440 /*
441 * Now we know that no one else is looking at the page:
442 * no turning back from here.
443 */
444 newpage->index = page->index;
445 newpage->mapping = page->mapping;
Olivier Deprez157378f2022-04-04 15:47:50 +0200446 page_ref_add(newpage, nr); /* add cache reference */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000447 if (PageSwapBacked(page)) {
448 __SetPageSwapBacked(newpage);
449 if (PageSwapCache(page)) {
450 SetPageSwapCache(newpage);
451 set_page_private(newpage, page_private(page));
452 }
453 } else {
454 VM_BUG_ON_PAGE(PageSwapCache(page), page);
455 }
456
457 /* Move dirty while page refs frozen and newpage not yet exposed */
458 dirty = PageDirty(page);
459 if (dirty) {
460 ClearPageDirty(page);
461 SetPageDirty(newpage);
462 }
463
David Brazdil0f672f62019-12-10 10:32:29 +0000464 xas_store(&xas, newpage);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000465 if (PageTransHuge(page)) {
466 int i;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000467
Olivier Deprez157378f2022-04-04 15:47:50 +0200468 for (i = 1; i < nr; i++) {
David Brazdil0f672f62019-12-10 10:32:29 +0000469 xas_next(&xas);
470 xas_store(&xas, newpage);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000471 }
472 }
473
474 /*
475 * Drop cache reference from old page by unfreezing
476 * to one less reference.
477 * We know this isn't the last reference.
478 */
Olivier Deprez157378f2022-04-04 15:47:50 +0200479 page_ref_unfreeze(page, expected_count - nr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000480
David Brazdil0f672f62019-12-10 10:32:29 +0000481 xas_unlock(&xas);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000482 /* Leave irq disabled to prevent preemption while updating stats */
483
484 /*
485 * If moved to a different zone then also account
486 * the page for that zone. Other VM counters will be
487 * taken care of when we establish references to the
488 * new page and drop references to the old page.
489 *
490 * Note that anonymous pages are accounted for
491 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
492 * are mapped to swap space.
493 */
494 if (newzone != oldzone) {
Olivier Deprez157378f2022-04-04 15:47:50 +0200495 struct lruvec *old_lruvec, *new_lruvec;
496 struct mem_cgroup *memcg;
497
498 memcg = page_memcg(page);
499 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
500 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
501
502 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
503 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000504 if (PageSwapBacked(page) && !PageSwapCache(page)) {
Olivier Deprez157378f2022-04-04 15:47:50 +0200505 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
506 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000507 }
Olivier Deprez157378f2022-04-04 15:47:50 +0200508 if (dirty && mapping_can_writeback(mapping)) {
509 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
510 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
511 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
512 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000513 }
514 }
515 local_irq_enable();
516
517 return MIGRATEPAGE_SUCCESS;
518}
519EXPORT_SYMBOL(migrate_page_move_mapping);
520
521/*
522 * The expected number of remaining references is the same as that
523 * of migrate_page_move_mapping().
524 */
525int migrate_huge_page_move_mapping(struct address_space *mapping,
526 struct page *newpage, struct page *page)
527{
David Brazdil0f672f62019-12-10 10:32:29 +0000528 XA_STATE(xas, &mapping->i_pages, page_index(page));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000529 int expected_count;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000530
David Brazdil0f672f62019-12-10 10:32:29 +0000531 xas_lock_irq(&xas);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000532 expected_count = 2 + page_has_private(page);
David Brazdil0f672f62019-12-10 10:32:29 +0000533 if (page_count(page) != expected_count || xas_load(&xas) != page) {
534 xas_unlock_irq(&xas);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000535 return -EAGAIN;
536 }
537
538 if (!page_ref_freeze(page, expected_count)) {
David Brazdil0f672f62019-12-10 10:32:29 +0000539 xas_unlock_irq(&xas);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000540 return -EAGAIN;
541 }
542
543 newpage->index = page->index;
544 newpage->mapping = page->mapping;
545
546 get_page(newpage);
547
David Brazdil0f672f62019-12-10 10:32:29 +0000548 xas_store(&xas, newpage);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000549
550 page_ref_unfreeze(page, expected_count - 1);
551
David Brazdil0f672f62019-12-10 10:32:29 +0000552 xas_unlock_irq(&xas);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000553
554 return MIGRATEPAGE_SUCCESS;
555}
556
557/*
558 * Gigantic pages are so large that we do not guarantee that page++ pointer
559 * arithmetic will work across the entire page. We need something more
560 * specialized.
561 */
562static void __copy_gigantic_page(struct page *dst, struct page *src,
563 int nr_pages)
564{
565 int i;
566 struct page *dst_base = dst;
567 struct page *src_base = src;
568
569 for (i = 0; i < nr_pages; ) {
570 cond_resched();
571 copy_highpage(dst, src);
572
573 i++;
574 dst = mem_map_next(dst, dst_base, i);
575 src = mem_map_next(src, src_base, i);
576 }
577}
578
579static void copy_huge_page(struct page *dst, struct page *src)
580{
581 int i;
582 int nr_pages;
583
584 if (PageHuge(src)) {
585 /* hugetlbfs page */
586 struct hstate *h = page_hstate(src);
587 nr_pages = pages_per_huge_page(h);
588
589 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
590 __copy_gigantic_page(dst, src, nr_pages);
591 return;
592 }
593 } else {
594 /* thp page */
595 BUG_ON(!PageTransHuge(src));
Olivier Deprez157378f2022-04-04 15:47:50 +0200596 nr_pages = thp_nr_pages(src);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000597 }
598
599 for (i = 0; i < nr_pages; i++) {
600 cond_resched();
601 copy_highpage(dst + i, src + i);
602 }
603}
604
605/*
606 * Copy the page to its new location
607 */
608void migrate_page_states(struct page *newpage, struct page *page)
609{
610 int cpupid;
611
612 if (PageError(page))
613 SetPageError(newpage);
614 if (PageReferenced(page))
615 SetPageReferenced(newpage);
616 if (PageUptodate(page))
617 SetPageUptodate(newpage);
618 if (TestClearPageActive(page)) {
619 VM_BUG_ON_PAGE(PageUnevictable(page), page);
620 SetPageActive(newpage);
621 } else if (TestClearPageUnevictable(page))
622 SetPageUnevictable(newpage);
David Brazdil0f672f62019-12-10 10:32:29 +0000623 if (PageWorkingset(page))
624 SetPageWorkingset(newpage);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000625 if (PageChecked(page))
626 SetPageChecked(newpage);
627 if (PageMappedToDisk(page))
628 SetPageMappedToDisk(newpage);
629
630 /* Move dirty on pages not done by migrate_page_move_mapping() */
631 if (PageDirty(page))
632 SetPageDirty(newpage);
633
634 if (page_is_young(page))
635 set_page_young(newpage);
636 if (page_is_idle(page))
637 set_page_idle(newpage);
638
639 /*
640 * Copy NUMA information to the new page, to prevent over-eager
641 * future migrations of this same page.
642 */
643 cpupid = page_cpupid_xchg_last(page, -1);
644 page_cpupid_xchg_last(newpage, cpupid);
645
646 ksm_migrate_page(newpage, page);
647 /*
648 * Please do not reorder this without considering how mm/ksm.c's
649 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
650 */
651 if (PageSwapCache(page))
652 ClearPageSwapCache(page);
653 ClearPagePrivate(page);
654 set_page_private(page, 0);
655
656 /*
657 * If any waiters have accumulated on the new page then
658 * wake them up.
659 */
660 if (PageWriteback(newpage))
661 end_page_writeback(newpage);
662
Olivier Deprez157378f2022-04-04 15:47:50 +0200663 /*
664 * PG_readahead shares the same bit with PG_reclaim. The above
665 * end_page_writeback() may clear PG_readahead mistakenly, so set the
666 * bit after that.
667 */
668 if (PageReadahead(page))
669 SetPageReadahead(newpage);
670
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000671 copy_page_owner(page, newpage);
672
Olivier Deprez157378f2022-04-04 15:47:50 +0200673 if (!PageHuge(page))
674 mem_cgroup_migrate(page, newpage);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000675}
676EXPORT_SYMBOL(migrate_page_states);
677
678void migrate_page_copy(struct page *newpage, struct page *page)
679{
680 if (PageHuge(page) || PageTransHuge(page))
681 copy_huge_page(newpage, page);
682 else
683 copy_highpage(newpage, page);
684
685 migrate_page_states(newpage, page);
686}
687EXPORT_SYMBOL(migrate_page_copy);
688
689/************************************************************
690 * Migration functions
691 ***********************************************************/
692
693/*
694 * Common logic to directly migrate a single LRU page suitable for
695 * pages that do not use PagePrivate/PagePrivate2.
696 *
697 * Pages are locked upon entry and exit.
698 */
699int migrate_page(struct address_space *mapping,
700 struct page *newpage, struct page *page,
701 enum migrate_mode mode)
702{
703 int rc;
704
705 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
706
David Brazdil0f672f62019-12-10 10:32:29 +0000707 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000708
709 if (rc != MIGRATEPAGE_SUCCESS)
710 return rc;
711
712 if (mode != MIGRATE_SYNC_NO_COPY)
713 migrate_page_copy(newpage, page);
714 else
715 migrate_page_states(newpage, page);
716 return MIGRATEPAGE_SUCCESS;
717}
718EXPORT_SYMBOL(migrate_page);
719
720#ifdef CONFIG_BLOCK
David Brazdil0f672f62019-12-10 10:32:29 +0000721/* Returns true if all buffers are successfully locked */
722static bool buffer_migrate_lock_buffers(struct buffer_head *head,
723 enum migrate_mode mode)
724{
725 struct buffer_head *bh = head;
726
727 /* Simple case, sync compaction */
728 if (mode != MIGRATE_ASYNC) {
729 do {
730 lock_buffer(bh);
731 bh = bh->b_this_page;
732
733 } while (bh != head);
734
735 return true;
736 }
737
738 /* async case, we cannot block on lock_buffer so use trylock_buffer */
739 do {
740 if (!trylock_buffer(bh)) {
741 /*
742 * We failed to lock the buffer and cannot stall in
743 * async migration. Release the taken locks
744 */
745 struct buffer_head *failed_bh = bh;
746 bh = head;
747 while (bh != failed_bh) {
748 unlock_buffer(bh);
749 bh = bh->b_this_page;
750 }
751 return false;
752 }
753
754 bh = bh->b_this_page;
755 } while (bh != head);
756 return true;
757}
758
759static int __buffer_migrate_page(struct address_space *mapping,
760 struct page *newpage, struct page *page, enum migrate_mode mode,
761 bool check_refs)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000762{
763 struct buffer_head *bh, *head;
764 int rc;
David Brazdil0f672f62019-12-10 10:32:29 +0000765 int expected_count;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000766
767 if (!page_has_buffers(page))
768 return migrate_page(mapping, newpage, page, mode);
769
David Brazdil0f672f62019-12-10 10:32:29 +0000770 /* Check whether page does not have extra refs before we do more work */
771 expected_count = expected_page_refs(mapping, page);
772 if (page_count(page) != expected_count)
773 return -EAGAIN;
774
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000775 head = page_buffers(page);
David Brazdil0f672f62019-12-10 10:32:29 +0000776 if (!buffer_migrate_lock_buffers(head, mode))
777 return -EAGAIN;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000778
David Brazdil0f672f62019-12-10 10:32:29 +0000779 if (check_refs) {
780 bool busy;
781 bool invalidated = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000782
David Brazdil0f672f62019-12-10 10:32:29 +0000783recheck_buffers:
784 busy = false;
785 spin_lock(&mapping->private_lock);
786 bh = head;
787 do {
788 if (atomic_read(&bh->b_count)) {
789 busy = true;
790 break;
791 }
792 bh = bh->b_this_page;
793 } while (bh != head);
794 if (busy) {
795 if (invalidated) {
796 rc = -EAGAIN;
797 goto unlock_buffers;
798 }
799 spin_unlock(&mapping->private_lock);
800 invalidate_bh_lrus();
801 invalidated = true;
802 goto recheck_buffers;
803 }
804 }
805
806 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000807 if (rc != MIGRATEPAGE_SUCCESS)
David Brazdil0f672f62019-12-10 10:32:29 +0000808 goto unlock_buffers;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000809
Olivier Deprez157378f2022-04-04 15:47:50 +0200810 attach_page_private(newpage, detach_page_private(page));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000811
812 bh = head;
813 do {
814 set_bh_page(bh, newpage, bh_offset(bh));
815 bh = bh->b_this_page;
816
817 } while (bh != head);
818
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000819 if (mode != MIGRATE_SYNC_NO_COPY)
820 migrate_page_copy(newpage, page);
821 else
822 migrate_page_states(newpage, page);
823
David Brazdil0f672f62019-12-10 10:32:29 +0000824 rc = MIGRATEPAGE_SUCCESS;
825unlock_buffers:
826 if (check_refs)
827 spin_unlock(&mapping->private_lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000828 bh = head;
829 do {
830 unlock_buffer(bh);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000831 bh = bh->b_this_page;
832
833 } while (bh != head);
834
David Brazdil0f672f62019-12-10 10:32:29 +0000835 return rc;
836}
837
838/*
839 * Migration function for pages with buffers. This function can only be used
840 * if the underlying filesystem guarantees that no other references to "page"
841 * exist. For example attached buffer heads are accessed only under page lock.
842 */
843int buffer_migrate_page(struct address_space *mapping,
844 struct page *newpage, struct page *page, enum migrate_mode mode)
845{
846 return __buffer_migrate_page(mapping, newpage, page, mode, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000847}
848EXPORT_SYMBOL(buffer_migrate_page);
David Brazdil0f672f62019-12-10 10:32:29 +0000849
850/*
851 * Same as above except that this variant is more careful and checks that there
852 * are also no buffer head references. This function is the right one for
853 * mappings where buffer heads are directly looked up and referenced (such as
854 * block device mappings).
855 */
856int buffer_migrate_page_norefs(struct address_space *mapping,
857 struct page *newpage, struct page *page, enum migrate_mode mode)
858{
859 return __buffer_migrate_page(mapping, newpage, page, mode, true);
860}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000861#endif
862
863/*
864 * Writeback a page to clean the dirty state
865 */
866static int writeout(struct address_space *mapping, struct page *page)
867{
868 struct writeback_control wbc = {
869 .sync_mode = WB_SYNC_NONE,
870 .nr_to_write = 1,
871 .range_start = 0,
872 .range_end = LLONG_MAX,
873 .for_reclaim = 1
874 };
875 int rc;
876
877 if (!mapping->a_ops->writepage)
878 /* No write method for the address space */
879 return -EINVAL;
880
881 if (!clear_page_dirty_for_io(page))
882 /* Someone else already triggered a write */
883 return -EAGAIN;
884
885 /*
886 * A dirty page may imply that the underlying filesystem has
887 * the page on some queue. So the page must be clean for
888 * migration. Writeout may mean we loose the lock and the
889 * page state is no longer what we checked for earlier.
890 * At this point we know that the migration attempt cannot
891 * be successful.
892 */
893 remove_migration_ptes(page, page, false);
894
895 rc = mapping->a_ops->writepage(page, &wbc);
896
897 if (rc != AOP_WRITEPAGE_ACTIVATE)
898 /* unlocked. Relock */
899 lock_page(page);
900
901 return (rc < 0) ? -EIO : -EAGAIN;
902}
903
904/*
905 * Default handling if a filesystem does not provide a migration function.
906 */
907static int fallback_migrate_page(struct address_space *mapping,
908 struct page *newpage, struct page *page, enum migrate_mode mode)
909{
910 if (PageDirty(page)) {
911 /* Only writeback pages in full synchronous migration */
912 switch (mode) {
913 case MIGRATE_SYNC:
914 case MIGRATE_SYNC_NO_COPY:
915 break;
916 default:
917 return -EBUSY;
918 }
919 return writeout(mapping, page);
920 }
921
922 /*
923 * Buffers may be managed in a filesystem specific way.
924 * We must have no buffers or drop them.
925 */
926 if (page_has_private(page) &&
927 !try_to_release_page(page, GFP_KERNEL))
David Brazdil0f672f62019-12-10 10:32:29 +0000928 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000929
930 return migrate_page(mapping, newpage, page, mode);
931}
932
933/*
934 * Move a page to a newly allocated page
935 * The page is locked and all ptes have been successfully removed.
936 *
937 * The new page will have replaced the old page if this function
938 * is successful.
939 *
940 * Return value:
941 * < 0 - error code
942 * MIGRATEPAGE_SUCCESS - success
943 */
944static int move_to_new_page(struct page *newpage, struct page *page,
945 enum migrate_mode mode)
946{
947 struct address_space *mapping;
948 int rc = -EAGAIN;
949 bool is_lru = !__PageMovable(page);
950
951 VM_BUG_ON_PAGE(!PageLocked(page), page);
952 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
953
954 mapping = page_mapping(page);
955
956 if (likely(is_lru)) {
957 if (!mapping)
958 rc = migrate_page(mapping, newpage, page, mode);
959 else if (mapping->a_ops->migratepage)
960 /*
961 * Most pages have a mapping and most filesystems
962 * provide a migratepage callback. Anonymous pages
963 * are part of swap space which also has its own
964 * migratepage callback. This is the most common path
965 * for page migration.
966 */
967 rc = mapping->a_ops->migratepage(mapping, newpage,
968 page, mode);
969 else
970 rc = fallback_migrate_page(mapping, newpage,
971 page, mode);
972 } else {
973 /*
974 * In case of non-lru page, it could be released after
975 * isolation step. In that case, we shouldn't try migration.
976 */
977 VM_BUG_ON_PAGE(!PageIsolated(page), page);
978 if (!PageMovable(page)) {
979 rc = MIGRATEPAGE_SUCCESS;
980 __ClearPageIsolated(page);
981 goto out;
982 }
983
984 rc = mapping->a_ops->migratepage(mapping, newpage,
985 page, mode);
986 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
987 !PageIsolated(page));
988 }
989
990 /*
991 * When successful, old pagecache page->mapping must be cleared before
992 * page is freed; but stats require that PageAnon be left as PageAnon.
993 */
994 if (rc == MIGRATEPAGE_SUCCESS) {
995 if (__PageMovable(page)) {
996 VM_BUG_ON_PAGE(!PageIsolated(page), page);
997
998 /*
999 * We clear PG_movable under page_lock so any compactor
1000 * cannot try to migrate this page.
1001 */
1002 __ClearPageIsolated(page);
1003 }
1004
1005 /*
Olivier Deprez157378f2022-04-04 15:47:50 +02001006 * Anonymous and movable page->mapping will be cleared by
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001007 * free_pages_prepare so don't reset it here for keeping
1008 * the type to work PageAnon, for example.
1009 */
1010 if (!PageMappingFlags(page))
1011 page->mapping = NULL;
David Brazdil0f672f62019-12-10 10:32:29 +00001012
Olivier Deprez92d4c212022-12-06 15:05:30 +01001013 if (likely(!is_zone_device_page(newpage))) {
1014 int i, nr = compound_nr(newpage);
David Brazdil0f672f62019-12-10 10:32:29 +00001015
Olivier Deprez92d4c212022-12-06 15:05:30 +01001016 for (i = 0; i < nr; i++)
1017 flush_dcache_page(newpage + i);
1018 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001019 }
1020out:
1021 return rc;
1022}
1023
1024static int __unmap_and_move(struct page *page, struct page *newpage,
1025 int force, enum migrate_mode mode)
1026{
1027 int rc = -EAGAIN;
1028 int page_was_mapped = 0;
1029 struct anon_vma *anon_vma = NULL;
1030 bool is_lru = !__PageMovable(page);
1031
1032 if (!trylock_page(page)) {
1033 if (!force || mode == MIGRATE_ASYNC)
1034 goto out;
1035
1036 /*
1037 * It's not safe for direct compaction to call lock_page.
1038 * For example, during page readahead pages are added locked
1039 * to the LRU. Later, when the IO completes the pages are
1040 * marked uptodate and unlocked. However, the queueing
1041 * could be merging multiple pages for one bio (e.g.
Olivier Deprez157378f2022-04-04 15:47:50 +02001042 * mpage_readahead). If an allocation happens for the
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001043 * second or third page, the process can end up locking
1044 * the same page twice and deadlocking. Rather than
1045 * trying to be clever about what pages can be locked,
1046 * avoid the use of lock_page for direct compaction
1047 * altogether.
1048 */
1049 if (current->flags & PF_MEMALLOC)
1050 goto out;
1051
1052 lock_page(page);
1053 }
1054
1055 if (PageWriteback(page)) {
1056 /*
1057 * Only in the case of a full synchronous migration is it
1058 * necessary to wait for PageWriteback. In the async case,
1059 * the retry loop is too short and in the sync-light case,
1060 * the overhead of stalling is too much
1061 */
1062 switch (mode) {
1063 case MIGRATE_SYNC:
1064 case MIGRATE_SYNC_NO_COPY:
1065 break;
1066 default:
1067 rc = -EBUSY;
1068 goto out_unlock;
1069 }
1070 if (!force)
1071 goto out_unlock;
1072 wait_on_page_writeback(page);
1073 }
1074
1075 /*
1076 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1077 * we cannot notice that anon_vma is freed while we migrates a page.
1078 * This get_anon_vma() delays freeing anon_vma pointer until the end
1079 * of migration. File cache pages are no problem because of page_lock()
1080 * File Caches may use write_page() or lock_page() in migration, then,
1081 * just care Anon page here.
1082 *
1083 * Only page_get_anon_vma() understands the subtleties of
1084 * getting a hold on an anon_vma from outside one of its mms.
1085 * But if we cannot get anon_vma, then we won't need it anyway,
1086 * because that implies that the anon page is no longer mapped
1087 * (and cannot be remapped so long as we hold the page lock).
1088 */
1089 if (PageAnon(page) && !PageKsm(page))
1090 anon_vma = page_get_anon_vma(page);
1091
1092 /*
1093 * Block others from accessing the new page when we get around to
1094 * establishing additional references. We are usually the only one
1095 * holding a reference to newpage at this point. We used to have a BUG
1096 * here if trylock_page(newpage) fails, but would like to allow for
1097 * cases where there might be a race with the previous use of newpage.
1098 * This is much like races on refcount of oldpage: just don't BUG().
1099 */
1100 if (unlikely(!trylock_page(newpage)))
1101 goto out_unlock;
1102
1103 if (unlikely(!is_lru)) {
1104 rc = move_to_new_page(newpage, page, mode);
1105 goto out_unlock_both;
1106 }
1107
1108 /*
1109 * Corner case handling:
1110 * 1. When a new swap-cache page is read into, it is added to the LRU
1111 * and treated as swapcache but it has no rmap yet.
1112 * Calling try_to_unmap() against a page->mapping==NULL page will
1113 * trigger a BUG. So handle it here.
1114 * 2. An orphaned page (see truncate_complete_page) might have
1115 * fs-private metadata. The page can be picked up due to memory
1116 * offlining. Everywhere else except page reclaim, the page is
1117 * invisible to the vm, so the page can not be migrated. So try to
1118 * free the metadata, so the page can be freed.
1119 */
1120 if (!page->mapping) {
1121 VM_BUG_ON_PAGE(PageAnon(page), page);
1122 if (page_has_private(page)) {
1123 try_to_free_buffers(page);
1124 goto out_unlock_both;
1125 }
1126 } else if (page_mapped(page)) {
1127 /* Establish migration ptes */
1128 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1129 page);
Olivier Deprez157378f2022-04-04 15:47:50 +02001130 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001131 page_was_mapped = 1;
1132 }
1133
1134 if (!page_mapped(page))
1135 rc = move_to_new_page(newpage, page, mode);
1136
1137 if (page_was_mapped)
1138 remove_migration_ptes(page,
1139 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1140
1141out_unlock_both:
1142 unlock_page(newpage);
1143out_unlock:
1144 /* Drop an anon_vma reference if we took one */
1145 if (anon_vma)
1146 put_anon_vma(anon_vma);
1147 unlock_page(page);
1148out:
1149 /*
1150 * If migration is successful, decrease refcount of the newpage
1151 * which will not free the page because new page owner increased
1152 * refcounter. As well, if it is LRU page, add the page to LRU
David Brazdil0f672f62019-12-10 10:32:29 +00001153 * list in here. Use the old state of the isolated source page to
1154 * determine if we migrated a LRU page. newpage was already unlocked
1155 * and possibly modified by its owner - don't rely on the page
1156 * state.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001157 */
1158 if (rc == MIGRATEPAGE_SUCCESS) {
David Brazdil0f672f62019-12-10 10:32:29 +00001159 if (unlikely(!is_lru))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001160 put_page(newpage);
1161 else
1162 putback_lru_page(newpage);
1163 }
1164
1165 return rc;
1166}
1167
1168/*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001169 * Obtain the lock on page, remove all ptes and migrate the page
1170 * to the newly allocated page in newpage.
1171 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001172static int unmap_and_move(new_page_t get_new_page,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001173 free_page_t put_new_page,
1174 unsigned long private, struct page *page,
1175 int force, enum migrate_mode mode,
1176 enum migrate_reason reason)
1177{
1178 int rc = MIGRATEPAGE_SUCCESS;
Olivier Deprez157378f2022-04-04 15:47:50 +02001179 struct page *newpage = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001180
1181 if (!thp_migration_supported() && PageTransHuge(page))
1182 return -ENOMEM;
1183
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001184 if (page_count(page) == 1) {
1185 /* page was freed from under us. So we are done. */
1186 ClearPageActive(page);
1187 ClearPageUnevictable(page);
1188 if (unlikely(__PageMovable(page))) {
1189 lock_page(page);
1190 if (!PageMovable(page))
1191 __ClearPageIsolated(page);
1192 unlock_page(page);
1193 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001194 goto out;
1195 }
1196
Olivier Deprez157378f2022-04-04 15:47:50 +02001197 newpage = get_new_page(page, private);
1198 if (!newpage)
1199 return -ENOMEM;
1200
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001201 rc = __unmap_and_move(page, newpage, force, mode);
1202 if (rc == MIGRATEPAGE_SUCCESS)
1203 set_page_owner_migrate_reason(newpage, reason);
1204
1205out:
1206 if (rc != -EAGAIN) {
1207 /*
1208 * A page that has been migrated has all references
1209 * removed and will be freed. A page that has not been
Olivier Deprez157378f2022-04-04 15:47:50 +02001210 * migrated will have kept its references and be restored.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001211 */
1212 list_del(&page->lru);
1213
1214 /*
1215 * Compaction can migrate also non-LRU pages which are
1216 * not accounted to NR_ISOLATED_*. They can be recognized
1217 * as __PageMovable
1218 */
1219 if (likely(!__PageMovable(page)))
1220 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
Olivier Deprez157378f2022-04-04 15:47:50 +02001221 page_is_file_lru(page), -thp_nr_pages(page));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001222 }
1223
1224 /*
1225 * If migration is successful, releases reference grabbed during
1226 * isolation. Otherwise, restore the page to right list unless
1227 * we want to retry.
1228 */
1229 if (rc == MIGRATEPAGE_SUCCESS) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001230 if (reason != MR_MEMORY_FAILURE)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001231 /*
Olivier Deprez157378f2022-04-04 15:47:50 +02001232 * We release the page in page_handle_poison.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001233 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001234 put_page(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001235 } else {
1236 if (rc != -EAGAIN) {
1237 if (likely(!__PageMovable(page))) {
1238 putback_lru_page(page);
1239 goto put_new;
1240 }
1241
1242 lock_page(page);
1243 if (PageMovable(page))
1244 putback_movable_page(page);
1245 else
1246 __ClearPageIsolated(page);
1247 unlock_page(page);
1248 put_page(page);
1249 }
1250put_new:
1251 if (put_new_page)
1252 put_new_page(newpage, private);
1253 else
1254 put_page(newpage);
1255 }
1256
1257 return rc;
1258}
1259
1260/*
1261 * Counterpart of unmap_and_move_page() for hugepage migration.
1262 *
1263 * This function doesn't wait the completion of hugepage I/O
1264 * because there is no race between I/O and migration for hugepage.
1265 * Note that currently hugepage I/O occurs only in direct I/O
1266 * where no lock is held and PG_writeback is irrelevant,
1267 * and writeback status of all subpages are counted in the reference
1268 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1269 * under direct I/O, the reference of the head page is 512 and a bit more.)
1270 * This means that when we try to migrate hugepage whose subpages are
1271 * doing direct I/O, some references remain after try_to_unmap() and
1272 * hugepage migration fails without data corruption.
1273 *
1274 * There is also no race when direct I/O is issued on the page under migration,
1275 * because then pte is replaced with migration swap entry and direct I/O code
1276 * will wait in the page fault for migration to complete.
1277 */
1278static int unmap_and_move_huge_page(new_page_t get_new_page,
1279 free_page_t put_new_page, unsigned long private,
1280 struct page *hpage, int force,
1281 enum migrate_mode mode, int reason)
1282{
1283 int rc = -EAGAIN;
1284 int page_was_mapped = 0;
1285 struct page *new_hpage;
1286 struct anon_vma *anon_vma = NULL;
Olivier Deprez157378f2022-04-04 15:47:50 +02001287 struct address_space *mapping = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001288
1289 /*
David Brazdil0f672f62019-12-10 10:32:29 +00001290 * Migratability of hugepages depends on architectures and their size.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001291 * This check is necessary because some callers of hugepage migration
1292 * like soft offline and memory hotremove don't walk through page
1293 * tables or check whether the hugepage is pmd-based or not before
1294 * kicking migration.
1295 */
1296 if (!hugepage_migration_supported(page_hstate(hpage))) {
1297 putback_active_hugepage(hpage);
1298 return -ENOSYS;
1299 }
1300
1301 new_hpage = get_new_page(hpage, private);
1302 if (!new_hpage)
1303 return -ENOMEM;
1304
1305 if (!trylock_page(hpage)) {
1306 if (!force)
1307 goto out;
1308 switch (mode) {
1309 case MIGRATE_SYNC:
1310 case MIGRATE_SYNC_NO_COPY:
1311 break;
1312 default:
1313 goto out;
1314 }
1315 lock_page(hpage);
1316 }
1317
David Brazdil0f672f62019-12-10 10:32:29 +00001318 /*
1319 * Check for pages which are in the process of being freed. Without
1320 * page_mapping() set, hugetlbfs specific move page routine will not
1321 * be called and we could leak usage counts for subpools.
1322 */
1323 if (page_private(hpage) && !page_mapping(hpage)) {
1324 rc = -EBUSY;
1325 goto out_unlock;
1326 }
1327
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001328 if (PageAnon(hpage))
1329 anon_vma = page_get_anon_vma(hpage);
1330
1331 if (unlikely(!trylock_page(new_hpage)))
1332 goto put_anon;
1333
1334 if (page_mapped(hpage)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001335 bool mapping_locked = false;
1336 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1337
1338 if (!PageAnon(hpage)) {
1339 /*
1340 * In shared mappings, try_to_unmap could potentially
1341 * call huge_pmd_unshare. Because of this, take
1342 * semaphore in write mode here and set TTU_RMAP_LOCKED
1343 * to let lower levels know we have taken the lock.
1344 */
1345 mapping = hugetlb_page_mapping_lock_write(hpage);
1346 if (unlikely(!mapping))
1347 goto unlock_put_anon;
1348
1349 mapping_locked = true;
1350 ttu |= TTU_RMAP_LOCKED;
1351 }
1352
1353 try_to_unmap(hpage, ttu);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001354 page_was_mapped = 1;
Olivier Deprez157378f2022-04-04 15:47:50 +02001355
1356 if (mapping_locked)
1357 i_mmap_unlock_write(mapping);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001358 }
1359
1360 if (!page_mapped(hpage))
1361 rc = move_to_new_page(new_hpage, hpage, mode);
1362
1363 if (page_was_mapped)
1364 remove_migration_ptes(hpage,
1365 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1366
Olivier Deprez157378f2022-04-04 15:47:50 +02001367unlock_put_anon:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001368 unlock_page(new_hpage);
1369
1370put_anon:
1371 if (anon_vma)
1372 put_anon_vma(anon_vma);
1373
1374 if (rc == MIGRATEPAGE_SUCCESS) {
1375 move_hugetlb_state(hpage, new_hpage, reason);
1376 put_new_page = NULL;
1377 }
1378
David Brazdil0f672f62019-12-10 10:32:29 +00001379out_unlock:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001380 unlock_page(hpage);
1381out:
1382 if (rc != -EAGAIN)
1383 putback_active_hugepage(hpage);
1384
1385 /*
1386 * If migration was not successful and there's a freeing callback, use
1387 * it. Otherwise, put_page() will drop the reference grabbed during
1388 * isolation.
1389 */
1390 if (put_new_page)
1391 put_new_page(new_hpage, private);
1392 else
1393 putback_active_hugepage(new_hpage);
1394
1395 return rc;
1396}
1397
1398/*
1399 * migrate_pages - migrate the pages specified in a list, to the free pages
1400 * supplied as the target for the page migration
1401 *
1402 * @from: The list of pages to be migrated.
1403 * @get_new_page: The function used to allocate free pages to be used
1404 * as the target of the page migration.
1405 * @put_new_page: The function used to free target pages if migration
1406 * fails, or NULL if no special handling is necessary.
1407 * @private: Private data to be passed on to get_new_page()
1408 * @mode: The migration mode that specifies the constraints for
1409 * page migration, if any.
1410 * @reason: The reason for page migration.
1411 *
1412 * The function returns after 10 attempts or if no pages are movable any more
1413 * because the list has become empty or no retryable pages exist any more.
1414 * The caller should call putback_movable_pages() to return pages to the LRU
1415 * or free list only if ret != 0.
1416 *
1417 * Returns the number of pages that were not migrated, or an error code.
1418 */
1419int migrate_pages(struct list_head *from, new_page_t get_new_page,
1420 free_page_t put_new_page, unsigned long private,
1421 enum migrate_mode mode, int reason)
1422{
1423 int retry = 1;
Olivier Deprez157378f2022-04-04 15:47:50 +02001424 int thp_retry = 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001425 int nr_failed = 0;
1426 int nr_succeeded = 0;
Olivier Deprez157378f2022-04-04 15:47:50 +02001427 int nr_thp_succeeded = 0;
1428 int nr_thp_failed = 0;
1429 int nr_thp_split = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001430 int pass = 0;
Olivier Deprez157378f2022-04-04 15:47:50 +02001431 bool is_thp = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001432 struct page *page;
1433 struct page *page2;
1434 int swapwrite = current->flags & PF_SWAPWRITE;
Olivier Deprez157378f2022-04-04 15:47:50 +02001435 int rc, nr_subpages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001436
1437 if (!swapwrite)
1438 current->flags |= PF_SWAPWRITE;
1439
Olivier Deprez157378f2022-04-04 15:47:50 +02001440 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001441 retry = 0;
Olivier Deprez157378f2022-04-04 15:47:50 +02001442 thp_retry = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001443
1444 list_for_each_entry_safe(page, page2, from, lru) {
1445retry:
Olivier Deprez157378f2022-04-04 15:47:50 +02001446 /*
1447 * THP statistics is based on the source huge page.
1448 * Capture required information that might get lost
1449 * during migration.
1450 */
1451 is_thp = PageTransHuge(page) && !PageHuge(page);
1452 nr_subpages = thp_nr_pages(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001453 cond_resched();
1454
1455 if (PageHuge(page))
1456 rc = unmap_and_move_huge_page(get_new_page,
1457 put_new_page, private, page,
1458 pass > 2, mode, reason);
1459 else
1460 rc = unmap_and_move(get_new_page, put_new_page,
1461 private, page, pass > 2, mode,
1462 reason);
1463
1464 switch(rc) {
1465 case -ENOMEM:
1466 /*
1467 * THP migration might be unsupported or the
1468 * allocation could've failed so we should
1469 * retry on the same page with the THP split
1470 * to base pages.
1471 *
1472 * Head page is retried immediately and tail
1473 * pages are added to the tail of the list so
1474 * we encounter them after the rest of the list
1475 * is processed.
1476 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001477 if (is_thp) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001478 lock_page(page);
1479 rc = split_huge_page_to_list(page, from);
1480 unlock_page(page);
1481 if (!rc) {
1482 list_safe_reset_next(page, page2, lru);
Olivier Deprez157378f2022-04-04 15:47:50 +02001483 nr_thp_split++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001484 goto retry;
1485 }
Olivier Deprez157378f2022-04-04 15:47:50 +02001486
1487 nr_thp_failed++;
1488 nr_failed += nr_subpages;
1489 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001490 }
1491 nr_failed++;
1492 goto out;
1493 case -EAGAIN:
Olivier Deprez157378f2022-04-04 15:47:50 +02001494 if (is_thp) {
1495 thp_retry++;
1496 break;
1497 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001498 retry++;
1499 break;
1500 case MIGRATEPAGE_SUCCESS:
Olivier Deprez157378f2022-04-04 15:47:50 +02001501 if (is_thp) {
1502 nr_thp_succeeded++;
1503 nr_succeeded += nr_subpages;
1504 break;
1505 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001506 nr_succeeded++;
1507 break;
1508 default:
1509 /*
1510 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1511 * unlike -EAGAIN case, the failed page is
1512 * removed from migration page list and not
1513 * retried in the next outer loop.
1514 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001515 if (is_thp) {
1516 nr_thp_failed++;
1517 nr_failed += nr_subpages;
1518 break;
1519 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001520 nr_failed++;
1521 break;
1522 }
1523 }
1524 }
Olivier Deprez157378f2022-04-04 15:47:50 +02001525 nr_failed += retry + thp_retry;
1526 nr_thp_failed += thp_retry;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001527 rc = nr_failed;
1528out:
Olivier Deprez157378f2022-04-04 15:47:50 +02001529 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1530 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1531 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1532 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1533 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1534 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1535 nr_thp_failed, nr_thp_split, mode, reason);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001536
1537 if (!swapwrite)
1538 current->flags &= ~PF_SWAPWRITE;
1539
1540 return rc;
1541}
1542
Olivier Deprez157378f2022-04-04 15:47:50 +02001543struct page *alloc_migration_target(struct page *page, unsigned long private)
1544{
1545 struct migration_target_control *mtc;
1546 gfp_t gfp_mask;
1547 unsigned int order = 0;
1548 struct page *new_page = NULL;
1549 int nid;
1550 int zidx;
1551
1552 mtc = (struct migration_target_control *)private;
1553 gfp_mask = mtc->gfp_mask;
1554 nid = mtc->nid;
1555 if (nid == NUMA_NO_NODE)
1556 nid = page_to_nid(page);
1557
1558 if (PageHuge(page)) {
1559 struct hstate *h = page_hstate(compound_head(page));
1560
1561 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1562 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1563 }
1564
1565 if (PageTransHuge(page)) {
1566 /*
1567 * clear __GFP_RECLAIM to make the migration callback
1568 * consistent with regular THP allocations.
1569 */
1570 gfp_mask &= ~__GFP_RECLAIM;
1571 gfp_mask |= GFP_TRANSHUGE;
1572 order = HPAGE_PMD_ORDER;
1573 }
1574 zidx = zone_idx(page_zone(page));
1575 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1576 gfp_mask |= __GFP_HIGHMEM;
1577
1578 new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1579
1580 if (new_page && PageTransHuge(new_page))
1581 prep_transhuge_page(new_page);
1582
1583 return new_page;
1584}
1585
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001586#ifdef CONFIG_NUMA
1587
1588static int store_status(int __user *status, int start, int value, int nr)
1589{
1590 while (nr-- > 0) {
1591 if (put_user(value, status + start))
1592 return -EFAULT;
1593 start++;
1594 }
1595
1596 return 0;
1597}
1598
1599static int do_move_pages_to_node(struct mm_struct *mm,
1600 struct list_head *pagelist, int node)
1601{
1602 int err;
Olivier Deprez157378f2022-04-04 15:47:50 +02001603 struct migration_target_control mtc = {
1604 .nid = node,
1605 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1606 };
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001607
Olivier Deprez157378f2022-04-04 15:47:50 +02001608 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1609 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001610 if (err)
1611 putback_movable_pages(pagelist);
1612 return err;
1613}
1614
1615/*
1616 * Resolves the given address to a struct page, isolates it from the LRU and
1617 * puts it to the given pagelist.
Olivier Deprez0e641232021-09-23 10:07:05 +02001618 * Returns:
1619 * errno - if the page cannot be found/isolated
1620 * 0 - when it doesn't have to be migrated because it is already on the
1621 * target node
1622 * 1 - when it has been queued
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001623 */
1624static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1625 int node, struct list_head *pagelist, bool migrate_all)
1626{
1627 struct vm_area_struct *vma;
1628 struct page *page;
1629 unsigned int follflags;
1630 int err;
1631
Olivier Deprez157378f2022-04-04 15:47:50 +02001632 mmap_read_lock(mm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001633 err = -EFAULT;
1634 vma = find_vma(mm, addr);
1635 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1636 goto out;
1637
1638 /* FOLL_DUMP to ignore special (like zero) pages */
1639 follflags = FOLL_GET | FOLL_DUMP;
1640 page = follow_page(vma, addr, follflags);
1641
1642 err = PTR_ERR(page);
1643 if (IS_ERR(page))
1644 goto out;
1645
1646 err = -ENOENT;
1647 if (!page)
1648 goto out;
1649
1650 err = 0;
1651 if (page_to_nid(page) == node)
1652 goto out_putpage;
1653
1654 err = -EACCES;
1655 if (page_mapcount(page) > 1 && !migrate_all)
1656 goto out_putpage;
1657
1658 if (PageHuge(page)) {
1659 if (PageHead(page)) {
1660 isolate_huge_page(page, pagelist);
Olivier Deprez0e641232021-09-23 10:07:05 +02001661 err = 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001662 }
1663 } else {
1664 struct page *head;
1665
1666 head = compound_head(page);
1667 err = isolate_lru_page(head);
1668 if (err)
1669 goto out_putpage;
1670
Olivier Deprez0e641232021-09-23 10:07:05 +02001671 err = 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001672 list_add_tail(&head->lru, pagelist);
1673 mod_node_page_state(page_pgdat(head),
Olivier Deprez157378f2022-04-04 15:47:50 +02001674 NR_ISOLATED_ANON + page_is_file_lru(head),
1675 thp_nr_pages(head));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001676 }
1677out_putpage:
1678 /*
1679 * Either remove the duplicate refcount from
1680 * isolate_lru_page() or drop the page ref if it was
1681 * not isolated.
1682 */
1683 put_page(page);
1684out:
Olivier Deprez157378f2022-04-04 15:47:50 +02001685 mmap_read_unlock(mm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001686 return err;
1687}
1688
Olivier Deprez157378f2022-04-04 15:47:50 +02001689static int move_pages_and_store_status(struct mm_struct *mm, int node,
1690 struct list_head *pagelist, int __user *status,
1691 int start, int i, unsigned long nr_pages)
1692{
1693 int err;
1694
1695 if (list_empty(pagelist))
1696 return 0;
1697
1698 err = do_move_pages_to_node(mm, pagelist, node);
1699 if (err) {
1700 /*
1701 * Positive err means the number of failed
1702 * pages to migrate. Since we are going to
1703 * abort and return the number of non-migrated
1704 * pages, so need to incude the rest of the
1705 * nr_pages that have not been attempted as
1706 * well.
1707 */
1708 if (err > 0)
1709 err += nr_pages - i - 1;
1710 return err;
1711 }
1712 return store_status(status, start, node, i - start);
1713}
1714
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001715/*
1716 * Migrate an array of page address onto an array of nodes and fill
1717 * the corresponding array of status.
1718 */
1719static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1720 unsigned long nr_pages,
1721 const void __user * __user *pages,
1722 const int __user *nodes,
1723 int __user *status, int flags)
1724{
1725 int current_node = NUMA_NO_NODE;
1726 LIST_HEAD(pagelist);
1727 int start, i;
1728 int err = 0, err1;
1729
1730 migrate_prep();
1731
1732 for (i = start = 0; i < nr_pages; i++) {
1733 const void __user *p;
1734 unsigned long addr;
1735 int node;
1736
1737 err = -EFAULT;
1738 if (get_user(p, pages + i))
1739 goto out_flush;
1740 if (get_user(node, nodes + i))
1741 goto out_flush;
David Brazdil0f672f62019-12-10 10:32:29 +00001742 addr = (unsigned long)untagged_addr(p);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001743
1744 err = -ENODEV;
1745 if (node < 0 || node >= MAX_NUMNODES)
1746 goto out_flush;
1747 if (!node_state(node, N_MEMORY))
1748 goto out_flush;
1749
1750 err = -EACCES;
1751 if (!node_isset(node, task_nodes))
1752 goto out_flush;
1753
1754 if (current_node == NUMA_NO_NODE) {
1755 current_node = node;
1756 start = i;
1757 } else if (node != current_node) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001758 err = move_pages_and_store_status(mm, current_node,
1759 &pagelist, status, start, i, nr_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001760 if (err)
1761 goto out;
1762 start = i;
1763 current_node = node;
1764 }
1765
1766 /*
1767 * Errors in the page lookup or isolation are not fatal and we simply
1768 * report them via status
1769 */
1770 err = add_page_for_migration(mm, addr, current_node,
1771 &pagelist, flags & MPOL_MF_MOVE_ALL);
Olivier Deprez0e641232021-09-23 10:07:05 +02001772
Olivier Deprez157378f2022-04-04 15:47:50 +02001773 if (err > 0) {
Olivier Deprez0e641232021-09-23 10:07:05 +02001774 /* The page is successfully queued for migration */
1775 continue;
1776 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001777
Olivier Deprez157378f2022-04-04 15:47:50 +02001778 /*
1779 * If the page is already on the target node (!err), store the
1780 * node, otherwise, store the err.
1781 */
1782 err = store_status(status, i, err ? : current_node, 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001783 if (err)
1784 goto out_flush;
1785
Olivier Deprez157378f2022-04-04 15:47:50 +02001786 err = move_pages_and_store_status(mm, current_node, &pagelist,
1787 status, start, i, nr_pages);
1788 if (err)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001789 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001790 current_node = NUMA_NO_NODE;
1791 }
1792out_flush:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001793 /* Make sure we do not overwrite the existing error */
Olivier Deprez157378f2022-04-04 15:47:50 +02001794 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1795 status, start, i, nr_pages);
Olivier Deprez0e641232021-09-23 10:07:05 +02001796 if (err >= 0)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001797 err = err1;
1798out:
1799 return err;
1800}
1801
1802/*
1803 * Determine the nodes of an array of pages and store it in an array of status.
1804 */
1805static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1806 const void __user **pages, int *status)
1807{
1808 unsigned long i;
1809
Olivier Deprez157378f2022-04-04 15:47:50 +02001810 mmap_read_lock(mm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001811
1812 for (i = 0; i < nr_pages; i++) {
1813 unsigned long addr = (unsigned long)(*pages);
1814 struct vm_area_struct *vma;
1815 struct page *page;
1816 int err = -EFAULT;
1817
1818 vma = find_vma(mm, addr);
1819 if (!vma || addr < vma->vm_start)
1820 goto set_status;
1821
1822 /* FOLL_DUMP to ignore special (like zero) pages */
1823 page = follow_page(vma, addr, FOLL_DUMP);
1824
1825 err = PTR_ERR(page);
1826 if (IS_ERR(page))
1827 goto set_status;
1828
1829 err = page ? page_to_nid(page) : -ENOENT;
1830set_status:
1831 *status = err;
1832
1833 pages++;
1834 status++;
1835 }
1836
Olivier Deprez157378f2022-04-04 15:47:50 +02001837 mmap_read_unlock(mm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001838}
1839
1840/*
1841 * Determine the nodes of a user array of pages and store it in
1842 * a user array of status.
1843 */
1844static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1845 const void __user * __user *pages,
1846 int __user *status)
1847{
1848#define DO_PAGES_STAT_CHUNK_NR 16
1849 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1850 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1851
1852 while (nr_pages) {
1853 unsigned long chunk_nr;
1854
1855 chunk_nr = nr_pages;
1856 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1857 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1858
1859 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1860 break;
1861
1862 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1863
1864 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1865 break;
1866
1867 pages += chunk_nr;
1868 status += chunk_nr;
1869 nr_pages -= chunk_nr;
1870 }
1871 return nr_pages ? -EFAULT : 0;
1872}
1873
Olivier Deprez157378f2022-04-04 15:47:50 +02001874static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1875{
1876 struct task_struct *task;
1877 struct mm_struct *mm;
1878
1879 /*
1880 * There is no need to check if current process has the right to modify
1881 * the specified process when they are same.
1882 */
1883 if (!pid) {
1884 mmget(current->mm);
1885 *mem_nodes = cpuset_mems_allowed(current);
1886 return current->mm;
1887 }
1888
1889 /* Find the mm_struct */
1890 rcu_read_lock();
1891 task = find_task_by_vpid(pid);
1892 if (!task) {
1893 rcu_read_unlock();
1894 return ERR_PTR(-ESRCH);
1895 }
1896 get_task_struct(task);
1897
1898 /*
1899 * Check if this process has the right to modify the specified
1900 * process. Use the regular "ptrace_may_access()" checks.
1901 */
1902 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1903 rcu_read_unlock();
1904 mm = ERR_PTR(-EPERM);
1905 goto out;
1906 }
1907 rcu_read_unlock();
1908
1909 mm = ERR_PTR(security_task_movememory(task));
1910 if (IS_ERR(mm))
1911 goto out;
1912 *mem_nodes = cpuset_mems_allowed(task);
1913 mm = get_task_mm(task);
1914out:
1915 put_task_struct(task);
1916 if (!mm)
1917 mm = ERR_PTR(-EINVAL);
1918 return mm;
1919}
1920
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001921/*
1922 * Move a list of pages in the address space of the currently executing
1923 * process.
1924 */
1925static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1926 const void __user * __user *pages,
1927 const int __user *nodes,
1928 int __user *status, int flags)
1929{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001930 struct mm_struct *mm;
1931 int err;
1932 nodemask_t task_nodes;
1933
1934 /* Check flags */
1935 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1936 return -EINVAL;
1937
1938 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1939 return -EPERM;
1940
Olivier Deprez157378f2022-04-04 15:47:50 +02001941 mm = find_mm_struct(pid, &task_nodes);
1942 if (IS_ERR(mm))
1943 return PTR_ERR(mm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001944
1945 if (nodes)
1946 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1947 nodes, status, flags);
1948 else
1949 err = do_pages_stat(mm, nr_pages, pages, status);
1950
1951 mmput(mm);
1952 return err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001953}
1954
1955SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1956 const void __user * __user *, pages,
1957 const int __user *, nodes,
1958 int __user *, status, int, flags)
1959{
1960 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1961}
1962
1963#ifdef CONFIG_COMPAT
1964COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1965 compat_uptr_t __user *, pages32,
1966 const int __user *, nodes,
1967 int __user *, status,
1968 int, flags)
1969{
1970 const void __user * __user *pages;
1971 int i;
1972
1973 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1974 for (i = 0; i < nr_pages; i++) {
1975 compat_uptr_t p;
1976
1977 if (get_user(p, pages32 + i) ||
1978 put_user(compat_ptr(p), pages + i))
1979 return -EFAULT;
1980 }
1981 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1982}
1983#endif /* CONFIG_COMPAT */
1984
1985#ifdef CONFIG_NUMA_BALANCING
1986/*
1987 * Returns true if this is a safe migration target node for misplaced NUMA
1988 * pages. Currently it only checks the watermarks which crude
1989 */
1990static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1991 unsigned long nr_migrate_pages)
1992{
1993 int z;
1994
1995 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1996 struct zone *zone = pgdat->node_zones + z;
1997
1998 if (!populated_zone(zone))
1999 continue;
2000
2001 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2002 if (!zone_watermark_ok(zone, 0,
2003 high_wmark_pages(zone) +
2004 nr_migrate_pages,
Olivier Deprez157378f2022-04-04 15:47:50 +02002005 ZONE_MOVABLE, 0))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002006 continue;
2007 return true;
2008 }
2009 return false;
2010}
2011
2012static struct page *alloc_misplaced_dst_page(struct page *page,
2013 unsigned long data)
2014{
2015 int nid = (int) data;
2016 struct page *newpage;
2017
2018 newpage = __alloc_pages_node(nid,
2019 (GFP_HIGHUSER_MOVABLE |
2020 __GFP_THISNODE | __GFP_NOMEMALLOC |
2021 __GFP_NORETRY | __GFP_NOWARN) &
2022 ~__GFP_RECLAIM, 0);
2023
2024 return newpage;
2025}
2026
2027static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2028{
2029 int page_lru;
2030
2031 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2032
2033 /* Avoid migrating to a node that is nearly full */
David Brazdil0f672f62019-12-10 10:32:29 +00002034 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002035 return 0;
2036
2037 if (isolate_lru_page(page))
2038 return 0;
2039
2040 /*
2041 * migrate_misplaced_transhuge_page() skips page migration's usual
2042 * check on page_count(), so we must do it here, now that the page
2043 * has been isolated: a GUP pin, or any other pin, prevents migration.
2044 * The expected page count is 3: 1 for page's mapcount and 1 for the
2045 * caller's pin and 1 for the reference taken by isolate_lru_page().
2046 */
2047 if (PageTransHuge(page) && page_count(page) != 3) {
2048 putback_lru_page(page);
2049 return 0;
2050 }
2051
Olivier Deprez157378f2022-04-04 15:47:50 +02002052 page_lru = page_is_file_lru(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002053 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
Olivier Deprez157378f2022-04-04 15:47:50 +02002054 thp_nr_pages(page));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002055
2056 /*
2057 * Isolating the page has taken another reference, so the
2058 * caller's reference can be safely dropped without the page
2059 * disappearing underneath us during migration.
2060 */
2061 put_page(page);
2062 return 1;
2063}
2064
2065bool pmd_trans_migrating(pmd_t pmd)
2066{
2067 struct page *page = pmd_page(pmd);
2068 return PageLocked(page);
2069}
2070
2071/*
2072 * Attempt to migrate a misplaced page to the specified destination
2073 * node. Caller is expected to have an elevated reference count on
2074 * the page that will be dropped by this function before returning.
2075 */
2076int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2077 int node)
2078{
2079 pg_data_t *pgdat = NODE_DATA(node);
2080 int isolated;
2081 int nr_remaining;
2082 LIST_HEAD(migratepages);
2083
2084 /*
2085 * Don't migrate file pages that are mapped in multiple processes
2086 * with execute permissions as they are probably shared libraries.
2087 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002088 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002089 (vma->vm_flags & VM_EXEC))
2090 goto out;
2091
2092 /*
2093 * Also do not migrate dirty pages as not all filesystems can move
2094 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2095 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002096 if (page_is_file_lru(page) && PageDirty(page))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002097 goto out;
2098
2099 isolated = numamigrate_isolate_page(pgdat, page);
2100 if (!isolated)
2101 goto out;
2102
2103 list_add(&page->lru, &migratepages);
2104 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2105 NULL, node, MIGRATE_ASYNC,
2106 MR_NUMA_MISPLACED);
2107 if (nr_remaining) {
2108 if (!list_empty(&migratepages)) {
2109 list_del(&page->lru);
2110 dec_node_page_state(page, NR_ISOLATED_ANON +
Olivier Deprez157378f2022-04-04 15:47:50 +02002111 page_is_file_lru(page));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002112 putback_lru_page(page);
2113 }
2114 isolated = 0;
2115 } else
2116 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2117 BUG_ON(!list_empty(&migratepages));
2118 return isolated;
2119
2120out:
2121 put_page(page);
2122 return 0;
2123}
2124#endif /* CONFIG_NUMA_BALANCING */
2125
2126#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2127/*
2128 * Migrates a THP to a given target node. page must be locked and is unlocked
2129 * before returning.
2130 */
2131int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2132 struct vm_area_struct *vma,
2133 pmd_t *pmd, pmd_t entry,
2134 unsigned long address,
2135 struct page *page, int node)
2136{
2137 spinlock_t *ptl;
2138 pg_data_t *pgdat = NODE_DATA(node);
2139 int isolated = 0;
2140 struct page *new_page = NULL;
Olivier Deprez157378f2022-04-04 15:47:50 +02002141 int page_lru = page_is_file_lru(page);
David Brazdil0f672f62019-12-10 10:32:29 +00002142 unsigned long start = address & HPAGE_PMD_MASK;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002143
2144 new_page = alloc_pages_node(node,
2145 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2146 HPAGE_PMD_ORDER);
2147 if (!new_page)
2148 goto out_fail;
2149 prep_transhuge_page(new_page);
2150
2151 isolated = numamigrate_isolate_page(pgdat, page);
2152 if (!isolated) {
2153 put_page(new_page);
2154 goto out_fail;
2155 }
2156
2157 /* Prepare a page as a migration target */
2158 __SetPageLocked(new_page);
2159 if (PageSwapBacked(page))
2160 __SetPageSwapBacked(new_page);
2161
2162 /* anon mapping, we can simply copy page->mapping to the new page: */
2163 new_page->mapping = page->mapping;
2164 new_page->index = page->index;
David Brazdil0f672f62019-12-10 10:32:29 +00002165 /* flush the cache before copying using the kernel virtual address */
2166 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002167 migrate_page_copy(new_page, page);
2168 WARN_ON(PageLRU(new_page));
2169
2170 /* Recheck the target PMD */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002171 ptl = pmd_lock(mm, pmd);
2172 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2173 spin_unlock(ptl);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002174
2175 /* Reverse changes made by migrate_page_copy() */
2176 if (TestClearPageActive(new_page))
2177 SetPageActive(page);
2178 if (TestClearPageUnevictable(new_page))
2179 SetPageUnevictable(page);
2180
2181 unlock_page(new_page);
2182 put_page(new_page); /* Free it */
2183
2184 /* Retake the callers reference and putback on LRU */
2185 get_page(page);
2186 putback_lru_page(page);
2187 mod_node_page_state(page_pgdat(page),
2188 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2189
2190 goto out_unlock;
2191 }
2192
2193 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2194 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2195
2196 /*
David Brazdil0f672f62019-12-10 10:32:29 +00002197 * Overwrite the old entry under pagetable lock and establish
2198 * the new PTE. Any parallel GUP will either observe the old
2199 * page blocking on the page lock, block on the page table
2200 * lock or observe the new page. The SetPageUptodate on the
2201 * new page and page_add_new_anon_rmap guarantee the copy is
2202 * visible before the pagetable update.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002203 */
David Brazdil0f672f62019-12-10 10:32:29 +00002204 page_add_anon_rmap(new_page, vma, start, true);
2205 /*
2206 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2207 * has already been flushed globally. So no TLB can be currently
2208 * caching this non present pmd mapping. There's no need to clear the
2209 * pmd before doing set_pmd_at(), nor to flush the TLB after
2210 * set_pmd_at(). Clearing the pmd here would introduce a race
2211 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
Olivier Deprez157378f2022-04-04 15:47:50 +02002212 * mmap_lock for reading. If the pmd is set to NULL at any given time,
David Brazdil0f672f62019-12-10 10:32:29 +00002213 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2214 * pmd.
2215 */
2216 set_pmd_at(mm, start, pmd, entry);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002217 update_mmu_cache_pmd(vma, address, &entry);
2218
2219 page_ref_unfreeze(page, 2);
2220 mlock_migrate_page(new_page, page);
2221 page_remove_rmap(page, true);
2222 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2223
2224 spin_unlock(ptl);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002225
2226 /* Take an "isolate" reference and put new page on the LRU. */
2227 get_page(new_page);
2228 putback_lru_page(new_page);
2229
2230 unlock_page(new_page);
2231 unlock_page(page);
2232 put_page(page); /* Drop the rmap reference */
2233 put_page(page); /* Drop the LRU isolation reference */
2234
2235 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2236 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2237
2238 mod_node_page_state(page_pgdat(page),
2239 NR_ISOLATED_ANON + page_lru,
2240 -HPAGE_PMD_NR);
2241 return isolated;
2242
2243out_fail:
2244 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2245 ptl = pmd_lock(mm, pmd);
2246 if (pmd_same(*pmd, entry)) {
2247 entry = pmd_modify(entry, vma->vm_page_prot);
David Brazdil0f672f62019-12-10 10:32:29 +00002248 set_pmd_at(mm, start, pmd, entry);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002249 update_mmu_cache_pmd(vma, address, &entry);
2250 }
2251 spin_unlock(ptl);
2252
2253out_unlock:
2254 unlock_page(page);
2255 put_page(page);
2256 return 0;
2257}
2258#endif /* CONFIG_NUMA_BALANCING */
2259
2260#endif /* CONFIG_NUMA */
2261
David Brazdil0f672f62019-12-10 10:32:29 +00002262#ifdef CONFIG_DEVICE_PRIVATE
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002263static int migrate_vma_collect_hole(unsigned long start,
2264 unsigned long end,
Olivier Deprez157378f2022-04-04 15:47:50 +02002265 __always_unused int depth,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002266 struct mm_walk *walk)
2267{
2268 struct migrate_vma *migrate = walk->private;
2269 unsigned long addr;
2270
Olivier Deprez157378f2022-04-04 15:47:50 +02002271 /* Only allow populating anonymous memory. */
2272 if (!vma_is_anonymous(walk->vma)) {
2273 for (addr = start; addr < end; addr += PAGE_SIZE) {
2274 migrate->src[migrate->npages] = 0;
2275 migrate->dst[migrate->npages] = 0;
2276 migrate->npages++;
2277 }
2278 return 0;
2279 }
2280
2281 for (addr = start; addr < end; addr += PAGE_SIZE) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002282 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2283 migrate->dst[migrate->npages] = 0;
2284 migrate->npages++;
2285 migrate->cpages++;
2286 }
2287
2288 return 0;
2289}
2290
2291static int migrate_vma_collect_skip(unsigned long start,
2292 unsigned long end,
2293 struct mm_walk *walk)
2294{
2295 struct migrate_vma *migrate = walk->private;
2296 unsigned long addr;
2297
Olivier Deprez157378f2022-04-04 15:47:50 +02002298 for (addr = start; addr < end; addr += PAGE_SIZE) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002299 migrate->dst[migrate->npages] = 0;
2300 migrate->src[migrate->npages++] = 0;
2301 }
2302
2303 return 0;
2304}
2305
2306static int migrate_vma_collect_pmd(pmd_t *pmdp,
2307 unsigned long start,
2308 unsigned long end,
2309 struct mm_walk *walk)
2310{
2311 struct migrate_vma *migrate = walk->private;
2312 struct vm_area_struct *vma = walk->vma;
2313 struct mm_struct *mm = vma->vm_mm;
2314 unsigned long addr = start, unmapped = 0;
2315 spinlock_t *ptl;
2316 pte_t *ptep;
2317
2318again:
2319 if (pmd_none(*pmdp))
Olivier Deprez157378f2022-04-04 15:47:50 +02002320 return migrate_vma_collect_hole(start, end, -1, walk);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002321
2322 if (pmd_trans_huge(*pmdp)) {
2323 struct page *page;
2324
2325 ptl = pmd_lock(mm, pmdp);
2326 if (unlikely(!pmd_trans_huge(*pmdp))) {
2327 spin_unlock(ptl);
2328 goto again;
2329 }
2330
2331 page = pmd_page(*pmdp);
2332 if (is_huge_zero_page(page)) {
2333 spin_unlock(ptl);
2334 split_huge_pmd(vma, pmdp, addr);
2335 if (pmd_trans_unstable(pmdp))
2336 return migrate_vma_collect_skip(start, end,
2337 walk);
2338 } else {
2339 int ret;
2340
2341 get_page(page);
2342 spin_unlock(ptl);
2343 if (unlikely(!trylock_page(page)))
2344 return migrate_vma_collect_skip(start, end,
2345 walk);
2346 ret = split_huge_page(page);
2347 unlock_page(page);
2348 put_page(page);
2349 if (ret)
2350 return migrate_vma_collect_skip(start, end,
2351 walk);
2352 if (pmd_none(*pmdp))
Olivier Deprez157378f2022-04-04 15:47:50 +02002353 return migrate_vma_collect_hole(start, end, -1,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002354 walk);
2355 }
2356 }
2357
2358 if (unlikely(pmd_bad(*pmdp)))
2359 return migrate_vma_collect_skip(start, end, walk);
2360
2361 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2362 arch_enter_lazy_mmu_mode();
2363
2364 for (; addr < end; addr += PAGE_SIZE, ptep++) {
Olivier Deprez157378f2022-04-04 15:47:50 +02002365 unsigned long mpfn = 0, pfn;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002366 struct page *page;
2367 swp_entry_t entry;
2368 pte_t pte;
2369
2370 pte = *ptep;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002371
2372 if (pte_none(pte)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02002373 if (vma_is_anonymous(vma)) {
2374 mpfn = MIGRATE_PFN_MIGRATE;
2375 migrate->cpages++;
2376 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002377 goto next;
2378 }
2379
2380 if (!pte_present(pte)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002381 /*
2382 * Only care about unaddressable device page special
2383 * page table entry. Other special swap entries are not
2384 * migratable, and we ignore regular swapped page.
2385 */
2386 entry = pte_to_swp_entry(pte);
2387 if (!is_device_private_entry(entry))
2388 goto next;
2389
2390 page = device_private_entry_to_page(entry);
Olivier Deprez157378f2022-04-04 15:47:50 +02002391 if (!(migrate->flags &
2392 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2393 page->pgmap->owner != migrate->pgmap_owner)
2394 goto next;
2395
David Brazdil0f672f62019-12-10 10:32:29 +00002396 mpfn = migrate_pfn(page_to_pfn(page)) |
2397 MIGRATE_PFN_MIGRATE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002398 if (is_write_device_private_entry(entry))
2399 mpfn |= MIGRATE_PFN_WRITE;
2400 } else {
Olivier Deprez157378f2022-04-04 15:47:50 +02002401 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2402 goto next;
David Brazdil0f672f62019-12-10 10:32:29 +00002403 pfn = pte_pfn(pte);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002404 if (is_zero_pfn(pfn)) {
2405 mpfn = MIGRATE_PFN_MIGRATE;
2406 migrate->cpages++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002407 goto next;
2408 }
David Brazdil0f672f62019-12-10 10:32:29 +00002409 page = vm_normal_page(migrate->vma, addr, pte);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002410 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2411 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2412 }
2413
2414 /* FIXME support THP */
2415 if (!page || !page->mapping || PageTransCompound(page)) {
David Brazdil0f672f62019-12-10 10:32:29 +00002416 mpfn = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002417 goto next;
2418 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002419
2420 /*
2421 * By getting a reference on the page we pin it and that blocks
2422 * any kind of migration. Side effect is that it "freezes" the
2423 * pte.
2424 *
2425 * We drop this reference after isolating the page from the lru
2426 * for non device page (device page are not on the lru and thus
2427 * can't be dropped from it).
2428 */
2429 get_page(page);
2430 migrate->cpages++;
2431
2432 /*
2433 * Optimize for the common case where page is only mapped once
2434 * in one process. If we can lock the page, then we can safely
2435 * set up a special migration page table entry now.
2436 */
2437 if (trylock_page(page)) {
2438 pte_t swp_pte;
2439
2440 mpfn |= MIGRATE_PFN_LOCKED;
2441 ptep_get_and_clear(mm, addr, ptep);
2442
2443 /* Setup special migration page table entry */
2444 entry = make_migration_entry(page, mpfn &
2445 MIGRATE_PFN_WRITE);
2446 swp_pte = swp_entry_to_pte(entry);
Olivier Deprez157378f2022-04-04 15:47:50 +02002447 if (pte_present(pte)) {
2448 if (pte_soft_dirty(pte))
2449 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2450 if (pte_uffd_wp(pte))
2451 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2452 } else {
2453 if (pte_swp_soft_dirty(pte))
2454 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2455 if (pte_swp_uffd_wp(pte))
2456 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2457 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002458 set_pte_at(mm, addr, ptep, swp_pte);
2459
2460 /*
2461 * This is like regular unmap: we remove the rmap and
2462 * drop page refcount. Page won't be freed, as we took
2463 * a reference just above.
2464 */
2465 page_remove_rmap(page, false);
2466 put_page(page);
2467
2468 if (pte_present(pte))
2469 unmapped++;
2470 }
2471
2472next:
2473 migrate->dst[migrate->npages] = 0;
2474 migrate->src[migrate->npages++] = mpfn;
2475 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002476
2477 /* Only flush the TLB if we actually modified any entries */
2478 if (unmapped)
2479 flush_tlb_range(walk->vma, start, end);
2480
Olivier Deprez92d4c212022-12-06 15:05:30 +01002481 arch_leave_lazy_mmu_mode();
2482 pte_unmap_unlock(ptep - 1, ptl);
2483
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002484 return 0;
2485}
2486
David Brazdil0f672f62019-12-10 10:32:29 +00002487static const struct mm_walk_ops migrate_vma_walk_ops = {
2488 .pmd_entry = migrate_vma_collect_pmd,
2489 .pte_hole = migrate_vma_collect_hole,
2490};
2491
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002492/*
2493 * migrate_vma_collect() - collect pages over a range of virtual addresses
2494 * @migrate: migrate struct containing all migration information
2495 *
2496 * This will walk the CPU page table. For each virtual address backed by a
2497 * valid page, it updates the src array and takes a reference on the page, in
2498 * order to pin the page until we lock it and unmap it.
2499 */
2500static void migrate_vma_collect(struct migrate_vma *migrate)
2501{
David Brazdil0f672f62019-12-10 10:32:29 +00002502 struct mmu_notifier_range range;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002503
Olivier Deprez157378f2022-04-04 15:47:50 +02002504 /*
2505 * Note that the pgmap_owner is passed to the mmu notifier callback so
2506 * that the registered device driver can skip invalidating device
2507 * private page mappings that won't be migrated.
2508 */
2509 mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2510 migrate->vma->vm_mm, migrate->start, migrate->end,
2511 migrate->pgmap_owner);
David Brazdil0f672f62019-12-10 10:32:29 +00002512 mmu_notifier_invalidate_range_start(&range);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002513
David Brazdil0f672f62019-12-10 10:32:29 +00002514 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2515 &migrate_vma_walk_ops, migrate);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002516
David Brazdil0f672f62019-12-10 10:32:29 +00002517 mmu_notifier_invalidate_range_end(&range);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002518 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2519}
2520
2521/*
2522 * migrate_vma_check_page() - check if page is pinned or not
2523 * @page: struct page to check
2524 *
2525 * Pinned pages cannot be migrated. This is the same test as in
2526 * migrate_page_move_mapping(), except that here we allow migration of a
2527 * ZONE_DEVICE page.
2528 */
2529static bool migrate_vma_check_page(struct page *page)
2530{
2531 /*
2532 * One extra ref because caller holds an extra reference, either from
2533 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2534 * a device page.
2535 */
2536 int extra = 1;
2537
2538 /*
2539 * FIXME support THP (transparent huge page), it is bit more complex to
2540 * check them than regular pages, because they can be mapped with a pmd
2541 * or with a pte (split pte mapping).
2542 */
2543 if (PageCompound(page))
2544 return false;
2545
2546 /* Page from ZONE_DEVICE have one extra reference */
2547 if (is_zone_device_page(page)) {
2548 /*
2549 * Private page can never be pin as they have no valid pte and
2550 * GUP will fail for those. Yet if there is a pending migration
2551 * a thread might try to wait on the pte migration entry and
2552 * will bump the page reference count. Sadly there is no way to
2553 * differentiate a regular pin from migration wait. Hence to
2554 * avoid 2 racing thread trying to migrate back to CPU to enter
2555 * infinite loop (one stoping migration because the other is
2556 * waiting on pte migration entry). We always return true here.
2557 *
2558 * FIXME proper solution is to rework migration_entry_wait() so
2559 * it does not need to take a reference on page.
2560 */
David Brazdil0f672f62019-12-10 10:32:29 +00002561 return is_device_private_page(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002562 }
2563
2564 /* For file back page */
2565 if (page_mapping(page))
2566 extra += 1 + page_has_private(page);
2567
2568 if ((page_count(page) - extra) > page_mapcount(page))
2569 return false;
2570
2571 return true;
2572}
2573
2574/*
2575 * migrate_vma_prepare() - lock pages and isolate them from the lru
2576 * @migrate: migrate struct containing all migration information
2577 *
2578 * This locks pages that have been collected by migrate_vma_collect(). Once each
2579 * page is locked it is isolated from the lru (for non-device pages). Finally,
2580 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2581 * migrated by concurrent kernel threads.
2582 */
2583static void migrate_vma_prepare(struct migrate_vma *migrate)
2584{
2585 const unsigned long npages = migrate->npages;
2586 const unsigned long start = migrate->start;
2587 unsigned long addr, i, restore = 0;
2588 bool allow_drain = true;
2589
2590 lru_add_drain();
2591
2592 for (i = 0; (i < npages) && migrate->cpages; i++) {
2593 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2594 bool remap = true;
2595
2596 if (!page)
2597 continue;
2598
2599 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2600 /*
2601 * Because we are migrating several pages there can be
2602 * a deadlock between 2 concurrent migration where each
2603 * are waiting on each other page lock.
2604 *
2605 * Make migrate_vma() a best effort thing and backoff
2606 * for any page we can not lock right away.
2607 */
2608 if (!trylock_page(page)) {
2609 migrate->src[i] = 0;
2610 migrate->cpages--;
2611 put_page(page);
2612 continue;
2613 }
2614 remap = false;
2615 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2616 }
2617
2618 /* ZONE_DEVICE pages are not on LRU */
2619 if (!is_zone_device_page(page)) {
2620 if (!PageLRU(page) && allow_drain) {
2621 /* Drain CPU's pagevec */
2622 lru_add_drain_all();
2623 allow_drain = false;
2624 }
2625
2626 if (isolate_lru_page(page)) {
2627 if (remap) {
2628 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2629 migrate->cpages--;
2630 restore++;
2631 } else {
2632 migrate->src[i] = 0;
2633 unlock_page(page);
2634 migrate->cpages--;
2635 put_page(page);
2636 }
2637 continue;
2638 }
2639
2640 /* Drop the reference we took in collect */
2641 put_page(page);
2642 }
2643
2644 if (!migrate_vma_check_page(page)) {
2645 if (remap) {
2646 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2647 migrate->cpages--;
2648 restore++;
2649
2650 if (!is_zone_device_page(page)) {
2651 get_page(page);
2652 putback_lru_page(page);
2653 }
2654 } else {
2655 migrate->src[i] = 0;
2656 unlock_page(page);
2657 migrate->cpages--;
2658
2659 if (!is_zone_device_page(page))
2660 putback_lru_page(page);
2661 else
2662 put_page(page);
2663 }
2664 }
2665 }
2666
2667 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2668 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2669
2670 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2671 continue;
2672
2673 remove_migration_pte(page, migrate->vma, addr, page);
2674
2675 migrate->src[i] = 0;
2676 unlock_page(page);
2677 put_page(page);
2678 restore--;
2679 }
2680}
2681
2682/*
2683 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2684 * @migrate: migrate struct containing all migration information
2685 *
2686 * Replace page mapping (CPU page table pte) with a special migration pte entry
2687 * and check again if it has been pinned. Pinned pages are restored because we
2688 * cannot migrate them.
2689 *
2690 * This is the last step before we call the device driver callback to allocate
2691 * destination memory and copy contents of original page over to new page.
2692 */
2693static void migrate_vma_unmap(struct migrate_vma *migrate)
2694{
Olivier Deprez157378f2022-04-04 15:47:50 +02002695 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002696 const unsigned long npages = migrate->npages;
2697 const unsigned long start = migrate->start;
2698 unsigned long addr, i, restore = 0;
2699
2700 for (i = 0; i < npages; i++) {
2701 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2702
2703 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2704 continue;
2705
2706 if (page_mapped(page)) {
2707 try_to_unmap(page, flags);
2708 if (page_mapped(page))
2709 goto restore;
2710 }
2711
2712 if (migrate_vma_check_page(page))
2713 continue;
2714
2715restore:
2716 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2717 migrate->cpages--;
2718 restore++;
2719 }
2720
2721 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2722 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2723
2724 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2725 continue;
2726
2727 remove_migration_ptes(page, page, false);
2728
2729 migrate->src[i] = 0;
2730 unlock_page(page);
2731 restore--;
2732
2733 if (is_zone_device_page(page))
2734 put_page(page);
2735 else
2736 putback_lru_page(page);
2737 }
2738}
2739
David Brazdil0f672f62019-12-10 10:32:29 +00002740/**
2741 * migrate_vma_setup() - prepare to migrate a range of memory
Olivier Deprez157378f2022-04-04 15:47:50 +02002742 * @args: contains the vma, start, and pfns arrays for the migration
David Brazdil0f672f62019-12-10 10:32:29 +00002743 *
2744 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2745 * without an error.
2746 *
2747 * Prepare to migrate a range of memory virtual address range by collecting all
2748 * the pages backing each virtual address in the range, saving them inside the
2749 * src array. Then lock those pages and unmap them. Once the pages are locked
2750 * and unmapped, check whether each page is pinned or not. Pages that aren't
2751 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2752 * corresponding src array entry. Then restores any pages that are pinned, by
2753 * remapping and unlocking those pages.
2754 *
2755 * The caller should then allocate destination memory and copy source memory to
2756 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2757 * flag set). Once these are allocated and copied, the caller must update each
2758 * corresponding entry in the dst array with the pfn value of the destination
2759 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2760 * (destination pages must have their struct pages locked, via lock_page()).
2761 *
2762 * Note that the caller does not have to migrate all the pages that are marked
2763 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2764 * device memory to system memory. If the caller cannot migrate a device page
2765 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2766 * consequences for the userspace process, so it must be avoided if at all
2767 * possible.
2768 *
2769 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2770 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2771 * allowing the caller to allocate device memory for those unback virtual
2772 * address. For this the caller simply has to allocate device memory and
2773 * properly set the destination entry like for regular migration. Note that
2774 * this can still fails and thus inside the device driver must check if the
2775 * migration was successful for those entries after calling migrate_vma_pages()
2776 * just like for regular migration.
2777 *
2778 * After that, the callers must call migrate_vma_pages() to go over each entry
2779 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2780 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2781 * then migrate_vma_pages() to migrate struct page information from the source
2782 * struct page to the destination struct page. If it fails to migrate the
2783 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2784 * src array.
2785 *
2786 * At this point all successfully migrated pages have an entry in the src
2787 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2788 * array entry with MIGRATE_PFN_VALID flag set.
2789 *
2790 * Once migrate_vma_pages() returns the caller may inspect which pages were
2791 * successfully migrated, and which were not. Successfully migrated pages will
2792 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2793 *
2794 * It is safe to update device page table after migrate_vma_pages() because
Olivier Deprez157378f2022-04-04 15:47:50 +02002795 * both destination and source page are still locked, and the mmap_lock is held
David Brazdil0f672f62019-12-10 10:32:29 +00002796 * in read mode (hence no one can unmap the range being migrated).
2797 *
2798 * Once the caller is done cleaning up things and updating its page table (if it
2799 * chose to do so, this is not an obligation) it finally calls
2800 * migrate_vma_finalize() to update the CPU page table to point to new pages
2801 * for successfully migrated pages or otherwise restore the CPU page table to
2802 * point to the original source pages.
2803 */
2804int migrate_vma_setup(struct migrate_vma *args)
2805{
2806 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2807
2808 args->start &= PAGE_MASK;
2809 args->end &= PAGE_MASK;
2810 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2811 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2812 return -EINVAL;
2813 if (nr_pages <= 0)
2814 return -EINVAL;
2815 if (args->start < args->vma->vm_start ||
2816 args->start >= args->vma->vm_end)
2817 return -EINVAL;
2818 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2819 return -EINVAL;
2820 if (!args->src || !args->dst)
2821 return -EINVAL;
2822
2823 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2824 args->cpages = 0;
2825 args->npages = 0;
2826
2827 migrate_vma_collect(args);
2828
2829 if (args->cpages)
2830 migrate_vma_prepare(args);
2831 if (args->cpages)
2832 migrate_vma_unmap(args);
2833
2834 /*
2835 * At this point pages are locked and unmapped, and thus they have
2836 * stable content and can safely be copied to destination memory that
2837 * is allocated by the drivers.
2838 */
2839 return 0;
2840
2841}
2842EXPORT_SYMBOL(migrate_vma_setup);
2843
Olivier Deprez157378f2022-04-04 15:47:50 +02002844/*
2845 * This code closely matches the code in:
2846 * __handle_mm_fault()
2847 * handle_pte_fault()
2848 * do_anonymous_page()
2849 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2850 * private page.
2851 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002852static void migrate_vma_insert_page(struct migrate_vma *migrate,
2853 unsigned long addr,
2854 struct page *page,
2855 unsigned long *src,
2856 unsigned long *dst)
2857{
2858 struct vm_area_struct *vma = migrate->vma;
2859 struct mm_struct *mm = vma->vm_mm;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002860 bool flush = false;
2861 spinlock_t *ptl;
2862 pte_t entry;
2863 pgd_t *pgdp;
2864 p4d_t *p4dp;
2865 pud_t *pudp;
2866 pmd_t *pmdp;
2867 pte_t *ptep;
2868
2869 /* Only allow populating anonymous memory */
2870 if (!vma_is_anonymous(vma))
2871 goto abort;
2872
2873 pgdp = pgd_offset(mm, addr);
2874 p4dp = p4d_alloc(mm, pgdp, addr);
2875 if (!p4dp)
2876 goto abort;
2877 pudp = pud_alloc(mm, p4dp, addr);
2878 if (!pudp)
2879 goto abort;
2880 pmdp = pmd_alloc(mm, pudp, addr);
2881 if (!pmdp)
2882 goto abort;
2883
2884 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2885 goto abort;
2886
2887 /*
2888 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2889 * pte_offset_map() on pmds where a huge pmd might be created
2890 * from a different thread.
2891 *
Olivier Deprez157378f2022-04-04 15:47:50 +02002892 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002893 * parallel threads are excluded by other means.
2894 *
Olivier Deprez157378f2022-04-04 15:47:50 +02002895 * Here we only have mmap_read_lock(mm).
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002896 */
David Brazdil0f672f62019-12-10 10:32:29 +00002897 if (pte_alloc(mm, pmdp))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002898 goto abort;
2899
2900 /* See the comment in pte_alloc_one_map() */
2901 if (unlikely(pmd_trans_unstable(pmdp)))
2902 goto abort;
2903
2904 if (unlikely(anon_vma_prepare(vma)))
2905 goto abort;
Olivier Deprez157378f2022-04-04 15:47:50 +02002906 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002907 goto abort;
2908
2909 /*
2910 * The memory barrier inside __SetPageUptodate makes sure that
2911 * preceding stores to the page contents become visible before
2912 * the set_pte_at() write.
2913 */
2914 __SetPageUptodate(page);
2915
2916 if (is_zone_device_page(page)) {
2917 if (is_device_private_page(page)) {
2918 swp_entry_t swp_entry;
2919
2920 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2921 entry = swp_entry_to_pte(swp_entry);
Olivier Deprez0e641232021-09-23 10:07:05 +02002922 } else {
2923 /*
2924 * For now we only support migrating to un-addressable
2925 * device memory.
2926 */
2927 pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2928 goto abort;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002929 }
2930 } else {
2931 entry = mk_pte(page, vma->vm_page_prot);
2932 if (vma->vm_flags & VM_WRITE)
2933 entry = pte_mkwrite(pte_mkdirty(entry));
2934 }
2935
2936 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2937
Olivier Deprez157378f2022-04-04 15:47:50 +02002938 if (check_stable_address_space(mm))
2939 goto unlock_abort;
2940
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002941 if (pte_present(*ptep)) {
2942 unsigned long pfn = pte_pfn(*ptep);
2943
Olivier Deprez157378f2022-04-04 15:47:50 +02002944 if (!is_zero_pfn(pfn))
2945 goto unlock_abort;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002946 flush = true;
Olivier Deprez157378f2022-04-04 15:47:50 +02002947 } else if (!pte_none(*ptep))
2948 goto unlock_abort;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002949
2950 /*
Olivier Deprez157378f2022-04-04 15:47:50 +02002951 * Check for userfaultfd but do not deliver the fault. Instead,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002952 * just back off.
2953 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002954 if (userfaultfd_missing(vma))
2955 goto unlock_abort;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002956
2957 inc_mm_counter(mm, MM_ANONPAGES);
2958 page_add_new_anon_rmap(page, vma, addr, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002959 if (!is_zone_device_page(page))
Olivier Deprez157378f2022-04-04 15:47:50 +02002960 lru_cache_add_inactive_or_unevictable(page, vma);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002961 get_page(page);
2962
2963 if (flush) {
2964 flush_cache_page(vma, addr, pte_pfn(*ptep));
2965 ptep_clear_flush_notify(vma, addr, ptep);
2966 set_pte_at_notify(mm, addr, ptep, entry);
2967 update_mmu_cache(vma, addr, ptep);
2968 } else {
2969 /* No need to invalidate - it was non-present before */
2970 set_pte_at(mm, addr, ptep, entry);
2971 update_mmu_cache(vma, addr, ptep);
2972 }
2973
2974 pte_unmap_unlock(ptep, ptl);
2975 *src = MIGRATE_PFN_MIGRATE;
2976 return;
2977
Olivier Deprez157378f2022-04-04 15:47:50 +02002978unlock_abort:
2979 pte_unmap_unlock(ptep, ptl);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002980abort:
2981 *src &= ~MIGRATE_PFN_MIGRATE;
2982}
2983
David Brazdil0f672f62019-12-10 10:32:29 +00002984/**
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002985 * migrate_vma_pages() - migrate meta-data from src page to dst page
2986 * @migrate: migrate struct containing all migration information
2987 *
2988 * This migrates struct page meta-data from source struct page to destination
2989 * struct page. This effectively finishes the migration from source page to the
2990 * destination page.
2991 */
David Brazdil0f672f62019-12-10 10:32:29 +00002992void migrate_vma_pages(struct migrate_vma *migrate)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002993{
2994 const unsigned long npages = migrate->npages;
2995 const unsigned long start = migrate->start;
David Brazdil0f672f62019-12-10 10:32:29 +00002996 struct mmu_notifier_range range;
2997 unsigned long addr, i;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002998 bool notified = false;
2999
3000 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3001 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3002 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3003 struct address_space *mapping;
3004 int r;
3005
3006 if (!newpage) {
3007 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3008 continue;
3009 }
3010
3011 if (!page) {
Olivier Deprez157378f2022-04-04 15:47:50 +02003012 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003013 continue;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003014 if (!notified) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003015 notified = true;
David Brazdil0f672f62019-12-10 10:32:29 +00003016
3017 mmu_notifier_range_init(&range,
3018 MMU_NOTIFY_CLEAR, 0,
3019 NULL,
3020 migrate->vma->vm_mm,
3021 addr, migrate->end);
3022 mmu_notifier_invalidate_range_start(&range);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003023 }
3024 migrate_vma_insert_page(migrate, addr, newpage,
3025 &migrate->src[i],
3026 &migrate->dst[i]);
3027 continue;
3028 }
3029
3030 mapping = page_mapping(page);
3031
3032 if (is_zone_device_page(newpage)) {
3033 if (is_device_private_page(newpage)) {
3034 /*
3035 * For now only support private anonymous when
3036 * migrating to un-addressable device memory.
3037 */
3038 if (mapping) {
3039 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3040 continue;
3041 }
David Brazdil0f672f62019-12-10 10:32:29 +00003042 } else {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003043 /*
3044 * Other types of ZONE_DEVICE page are not
3045 * supported.
3046 */
3047 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3048 continue;
3049 }
3050 }
3051
3052 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3053 if (r != MIGRATEPAGE_SUCCESS)
3054 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3055 }
3056
3057 /*
3058 * No need to double call mmu_notifier->invalidate_range() callback as
3059 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3060 * did already call it.
3061 */
3062 if (notified)
David Brazdil0f672f62019-12-10 10:32:29 +00003063 mmu_notifier_invalidate_range_only_end(&range);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003064}
David Brazdil0f672f62019-12-10 10:32:29 +00003065EXPORT_SYMBOL(migrate_vma_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003066
David Brazdil0f672f62019-12-10 10:32:29 +00003067/**
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003068 * migrate_vma_finalize() - restore CPU page table entry
3069 * @migrate: migrate struct containing all migration information
3070 *
3071 * This replaces the special migration pte entry with either a mapping to the
3072 * new page if migration was successful for that page, or to the original page
3073 * otherwise.
3074 *
3075 * This also unlocks the pages and puts them back on the lru, or drops the extra
3076 * refcount, for device pages.
3077 */
David Brazdil0f672f62019-12-10 10:32:29 +00003078void migrate_vma_finalize(struct migrate_vma *migrate)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003079{
3080 const unsigned long npages = migrate->npages;
3081 unsigned long i;
3082
3083 for (i = 0; i < npages; i++) {
3084 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3085 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3086
3087 if (!page) {
3088 if (newpage) {
3089 unlock_page(newpage);
3090 put_page(newpage);
3091 }
3092 continue;
3093 }
3094
3095 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3096 if (newpage) {
3097 unlock_page(newpage);
3098 put_page(newpage);
3099 }
3100 newpage = page;
3101 }
3102
3103 remove_migration_ptes(page, newpage, false);
3104 unlock_page(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003105
3106 if (is_zone_device_page(page))
3107 put_page(page);
3108 else
3109 putback_lru_page(page);
3110
3111 if (newpage != page) {
3112 unlock_page(newpage);
3113 if (is_zone_device_page(newpage))
3114 put_page(newpage);
3115 else
3116 putback_lru_page(newpage);
3117 }
3118 }
3119}
David Brazdil0f672f62019-12-10 10:32:29 +00003120EXPORT_SYMBOL(migrate_vma_finalize);
3121#endif /* CONFIG_DEVICE_PRIVATE */