blob: 278e6f3fa62ce13143ca9848c79f634bd5701d31 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Memory Migration functionality - linux/mm/migrate.c
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
14 */
15
16#include <linux/migrate.h>
17#include <linux/export.h>
18#include <linux/swap.h>
19#include <linux/swapops.h>
20#include <linux/pagemap.h>
21#include <linux/buffer_head.h>
22#include <linux/mm_inline.h>
23#include <linux/nsproxy.h>
24#include <linux/pagevec.h>
25#include <linux/ksm.h>
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
30#include <linux/writeback.h>
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
33#include <linux/security.h>
34#include <linux/backing-dev.h>
35#include <linux/compaction.h>
36#include <linux/syscalls.h>
37#include <linux/compat.h>
38#include <linux/hugetlb.h>
39#include <linux/hugetlb_cgroup.h>
40#include <linux/gfp.h>
David Brazdil0f672f62019-12-10 10:32:29 +000041#include <linux/pagewalk.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000042#include <linux/pfn_t.h>
43#include <linux/memremap.h>
44#include <linux/userfaultfd_k.h>
45#include <linux/balloon_compaction.h>
46#include <linux/mmu_notifier.h>
47#include <linux/page_idle.h>
48#include <linux/page_owner.h>
49#include <linux/sched/mm.h>
50#include <linux/ptrace.h>
Olivier Deprez157378f2022-04-04 15:47:50 +020051#include <linux/oom.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000052
53#include <asm/tlbflush.h>
54
55#define CREATE_TRACE_POINTS
56#include <trace/events/migrate.h>
57
58#include "internal.h"
59
60/*
61 * migrate_prep() needs to be called before we start compiling a list of pages
62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63 * undesirable, use migrate_prep_local()
64 */
65int migrate_prep(void)
66{
67 /*
68 * Clear the LRU lists so pages can be isolated.
69 * Note that pages may be moved off the LRU after we have
70 * drained them. Those pages will fail to migrate like other
71 * pages that may be busy.
72 */
73 lru_add_drain_all();
74
75 return 0;
76}
77
78/* Do the necessary work of migrate_prep but not if it involves other CPUs */
79int migrate_prep_local(void)
80{
81 lru_add_drain();
82
83 return 0;
84}
85
86int isolate_movable_page(struct page *page, isolate_mode_t mode)
87{
88 struct address_space *mapping;
89
90 /*
91 * Avoid burning cycles with pages that are yet under __free_pages(),
92 * or just got freed under us.
93 *
94 * In case we 'win' a race for a movable page being freed under us and
95 * raise its refcount preventing __free_pages() from doing its job
96 * the put_page() at the end of this block will take care of
97 * release this page, thus avoiding a nasty leakage.
98 */
99 if (unlikely(!get_page_unless_zero(page)))
100 goto out;
101
102 /*
103 * Check PageMovable before holding a PG_lock because page's owner
104 * assumes anybody doesn't touch PG_lock of newly allocated page
David Brazdil0f672f62019-12-10 10:32:29 +0000105 * so unconditionally grabbing the lock ruins page's owner side.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000106 */
107 if (unlikely(!__PageMovable(page)))
108 goto out_putpage;
109 /*
110 * As movable pages are not isolated from LRU lists, concurrent
111 * compaction threads can race against page migration functions
112 * as well as race against the releasing a page.
113 *
114 * In order to avoid having an already isolated movable page
115 * being (wrongly) re-isolated while it is under migration,
116 * or to avoid attempting to isolate pages being released,
117 * lets be sure we have the page lock
118 * before proceeding with the movable page isolation steps.
119 */
120 if (unlikely(!trylock_page(page)))
121 goto out_putpage;
122
123 if (!PageMovable(page) || PageIsolated(page))
124 goto out_no_isolated;
125
126 mapping = page_mapping(page);
127 VM_BUG_ON_PAGE(!mapping, page);
128
129 if (!mapping->a_ops->isolate_page(page, mode))
130 goto out_no_isolated;
131
132 /* Driver shouldn't use PG_isolated bit of page->flags */
133 WARN_ON_ONCE(PageIsolated(page));
134 __SetPageIsolated(page);
135 unlock_page(page);
136
137 return 0;
138
139out_no_isolated:
140 unlock_page(page);
141out_putpage:
142 put_page(page);
143out:
144 return -EBUSY;
145}
146
147/* It should be called on page which is PG_movable */
148void putback_movable_page(struct page *page)
149{
150 struct address_space *mapping;
151
152 VM_BUG_ON_PAGE(!PageLocked(page), page);
153 VM_BUG_ON_PAGE(!PageMovable(page), page);
154 VM_BUG_ON_PAGE(!PageIsolated(page), page);
155
156 mapping = page_mapping(page);
157 mapping->a_ops->putback_page(page);
158 __ClearPageIsolated(page);
159}
160
161/*
162 * Put previously isolated pages back onto the appropriate lists
163 * from where they were once taken off for compaction/migration.
164 *
165 * This function shall be used whenever the isolated pageset has been
166 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167 * and isolate_huge_page().
168 */
169void putback_movable_pages(struct list_head *l)
170{
171 struct page *page;
172 struct page *page2;
173
174 list_for_each_entry_safe(page, page2, l, lru) {
175 if (unlikely(PageHuge(page))) {
176 putback_active_hugepage(page);
177 continue;
178 }
179 list_del(&page->lru);
180 /*
181 * We isolated non-lru movable page so here we can use
182 * __PageMovable because LRU page's mapping cannot have
183 * PAGE_MAPPING_MOVABLE.
184 */
185 if (unlikely(__PageMovable(page))) {
186 VM_BUG_ON_PAGE(!PageIsolated(page), page);
187 lock_page(page);
188 if (PageMovable(page))
189 putback_movable_page(page);
190 else
191 __ClearPageIsolated(page);
192 unlock_page(page);
193 put_page(page);
194 } else {
195 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
Olivier Deprez157378f2022-04-04 15:47:50 +0200196 page_is_file_lru(page), -thp_nr_pages(page));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000197 putback_lru_page(page);
198 }
199 }
200}
201
202/*
203 * Restore a potential migration pte to a working pte entry
204 */
205static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206 unsigned long addr, void *old)
207{
208 struct page_vma_mapped_walk pvmw = {
209 .page = old,
210 .vma = vma,
211 .address = addr,
212 .flags = PVMW_SYNC | PVMW_MIGRATION,
213 };
214 struct page *new;
215 pte_t pte;
216 swp_entry_t entry;
217
218 VM_BUG_ON_PAGE(PageTail(page), page);
219 while (page_vma_mapped_walk(&pvmw)) {
220 if (PageKsm(page))
221 new = page;
222 else
223 new = page - pvmw.page->index +
224 linear_page_index(vma, pvmw.address);
225
226#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227 /* PMD-mapped THP migration entry */
228 if (!pvmw.pte) {
229 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230 remove_migration_pmd(&pvmw, new);
231 continue;
232 }
233#endif
234
235 get_page(new);
236 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237 if (pte_swp_soft_dirty(*pvmw.pte))
238 pte = pte_mksoft_dirty(pte);
239
240 /*
241 * Recheck VMA as permissions can change since migration started
242 */
243 entry = pte_to_swp_entry(*pvmw.pte);
244 if (is_write_migration_entry(entry))
245 pte = maybe_mkwrite(pte, vma);
Olivier Deprez157378f2022-04-04 15:47:50 +0200246 else if (pte_swp_uffd_wp(*pvmw.pte))
247 pte = pte_mkuffd_wp(pte);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000248
Olivier Deprez157378f2022-04-04 15:47:50 +0200249 if (unlikely(is_device_private_page(new))) {
250 entry = make_device_private_entry(new, pte_write(pte));
251 pte = swp_entry_to_pte(entry);
252 if (pte_swp_soft_dirty(*pvmw.pte))
253 pte = pte_swp_mksoft_dirty(pte);
254 if (pte_swp_uffd_wp(*pvmw.pte))
255 pte = pte_swp_mkuffd_wp(pte);
David Brazdil0f672f62019-12-10 10:32:29 +0000256 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000257
258#ifdef CONFIG_HUGETLB_PAGE
259 if (PageHuge(new)) {
260 pte = pte_mkhuge(pte);
261 pte = arch_make_huge_pte(pte, vma, new, 0);
262 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
263 if (PageAnon(new))
264 hugepage_add_anon_rmap(new, vma, pvmw.address);
265 else
266 page_dup_rmap(new, true);
267 } else
268#endif
269 {
270 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
271
272 if (PageAnon(new))
273 page_add_anon_rmap(new, vma, pvmw.address, false);
274 else
275 page_add_file_rmap(new, false);
276 }
277 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278 mlock_vma_page(new);
279
280 if (PageTransHuge(page) && PageMlocked(page))
281 clear_page_mlock(page);
282
283 /* No need to invalidate - it was non-present before */
284 update_mmu_cache(vma, pvmw.address, pvmw.pte);
285 }
286
287 return true;
288}
289
290/*
291 * Get rid of all migration entries and replace them by
292 * references to the indicated page.
293 */
294void remove_migration_ptes(struct page *old, struct page *new, bool locked)
295{
296 struct rmap_walk_control rwc = {
297 .rmap_one = remove_migration_pte,
298 .arg = old,
299 };
300
301 if (locked)
302 rmap_walk_locked(new, &rwc);
303 else
304 rmap_walk(new, &rwc);
305}
306
307/*
308 * Something used the pte of a page under migration. We need to
309 * get to the page and wait until migration is finished.
310 * When we return from this function the fault will be retried.
311 */
312void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
313 spinlock_t *ptl)
314{
315 pte_t pte;
316 swp_entry_t entry;
317 struct page *page;
318
319 spin_lock(ptl);
320 pte = *ptep;
321 if (!is_swap_pte(pte))
322 goto out;
323
324 entry = pte_to_swp_entry(pte);
325 if (!is_migration_entry(entry))
326 goto out;
327
328 page = migration_entry_to_page(entry);
Olivier Deprez0e641232021-09-23 10:07:05 +0200329 page = compound_head(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000330
331 /*
David Brazdil0f672f62019-12-10 10:32:29 +0000332 * Once page cache replacement of page migration started, page_count
333 * is zero; but we must not call put_and_wait_on_page_locked() without
334 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000335 */
336 if (!get_page_unless_zero(page))
337 goto out;
338 pte_unmap_unlock(ptep, ptl);
David Brazdil0f672f62019-12-10 10:32:29 +0000339 put_and_wait_on_page_locked(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000340 return;
341out:
342 pte_unmap_unlock(ptep, ptl);
343}
344
345void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
346 unsigned long address)
347{
348 spinlock_t *ptl = pte_lockptr(mm, pmd);
349 pte_t *ptep = pte_offset_map(pmd, address);
350 __migration_entry_wait(mm, ptep, ptl);
351}
352
353void migration_entry_wait_huge(struct vm_area_struct *vma,
354 struct mm_struct *mm, pte_t *pte)
355{
356 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
357 __migration_entry_wait(mm, pte, ptl);
358}
359
360#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
361void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
362{
363 spinlock_t *ptl;
364 struct page *page;
365
366 ptl = pmd_lock(mm, pmd);
367 if (!is_pmd_migration_entry(*pmd))
368 goto unlock;
369 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
370 if (!get_page_unless_zero(page))
371 goto unlock;
372 spin_unlock(ptl);
David Brazdil0f672f62019-12-10 10:32:29 +0000373 put_and_wait_on_page_locked(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000374 return;
375unlock:
376 spin_unlock(ptl);
377}
378#endif
379
David Brazdil0f672f62019-12-10 10:32:29 +0000380static int expected_page_refs(struct address_space *mapping, struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000381{
David Brazdil0f672f62019-12-10 10:32:29 +0000382 int expected_count = 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000383
David Brazdil0f672f62019-12-10 10:32:29 +0000384 /*
Olivier Deprez157378f2022-04-04 15:47:50 +0200385 * Device private pages have an extra refcount as they are
David Brazdil0f672f62019-12-10 10:32:29 +0000386 * ZONE_DEVICE pages.
387 */
388 expected_count += is_device_private_page(page);
389 if (mapping)
Olivier Deprez157378f2022-04-04 15:47:50 +0200390 expected_count += thp_nr_pages(page) + page_has_private(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000391
David Brazdil0f672f62019-12-10 10:32:29 +0000392 return expected_count;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000393}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000394
395/*
396 * Replace the page in the mapping.
397 *
398 * The number of remaining references must be:
399 * 1 for anonymous pages without a mapping
400 * 2 for pages with a mapping
401 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
402 */
403int migrate_page_move_mapping(struct address_space *mapping,
David Brazdil0f672f62019-12-10 10:32:29 +0000404 struct page *newpage, struct page *page, int extra_count)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000405{
David Brazdil0f672f62019-12-10 10:32:29 +0000406 XA_STATE(xas, &mapping->i_pages, page_index(page));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000407 struct zone *oldzone, *newzone;
408 int dirty;
David Brazdil0f672f62019-12-10 10:32:29 +0000409 int expected_count = expected_page_refs(mapping, page) + extra_count;
Olivier Deprez157378f2022-04-04 15:47:50 +0200410 int nr = thp_nr_pages(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000411
412 if (!mapping) {
413 /* Anonymous page without mapping */
414 if (page_count(page) != expected_count)
415 return -EAGAIN;
416
417 /* No turning back from here */
418 newpage->index = page->index;
419 newpage->mapping = page->mapping;
420 if (PageSwapBacked(page))
421 __SetPageSwapBacked(newpage);
422
423 return MIGRATEPAGE_SUCCESS;
424 }
425
426 oldzone = page_zone(page);
427 newzone = page_zone(newpage);
428
David Brazdil0f672f62019-12-10 10:32:29 +0000429 xas_lock_irq(&xas);
430 if (page_count(page) != expected_count || xas_load(&xas) != page) {
431 xas_unlock_irq(&xas);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000432 return -EAGAIN;
433 }
434
435 if (!page_ref_freeze(page, expected_count)) {
David Brazdil0f672f62019-12-10 10:32:29 +0000436 xas_unlock_irq(&xas);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000437 return -EAGAIN;
438 }
439
440 /*
441 * Now we know that no one else is looking at the page:
442 * no turning back from here.
443 */
444 newpage->index = page->index;
445 newpage->mapping = page->mapping;
Olivier Deprez157378f2022-04-04 15:47:50 +0200446 page_ref_add(newpage, nr); /* add cache reference */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000447 if (PageSwapBacked(page)) {
448 __SetPageSwapBacked(newpage);
449 if (PageSwapCache(page)) {
450 SetPageSwapCache(newpage);
451 set_page_private(newpage, page_private(page));
452 }
453 } else {
454 VM_BUG_ON_PAGE(PageSwapCache(page), page);
455 }
456
457 /* Move dirty while page refs frozen and newpage not yet exposed */
458 dirty = PageDirty(page);
459 if (dirty) {
460 ClearPageDirty(page);
461 SetPageDirty(newpage);
462 }
463
David Brazdil0f672f62019-12-10 10:32:29 +0000464 xas_store(&xas, newpage);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000465 if (PageTransHuge(page)) {
466 int i;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000467
Olivier Deprez157378f2022-04-04 15:47:50 +0200468 for (i = 1; i < nr; i++) {
David Brazdil0f672f62019-12-10 10:32:29 +0000469 xas_next(&xas);
470 xas_store(&xas, newpage);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000471 }
472 }
473
474 /*
475 * Drop cache reference from old page by unfreezing
476 * to one less reference.
477 * We know this isn't the last reference.
478 */
Olivier Deprez157378f2022-04-04 15:47:50 +0200479 page_ref_unfreeze(page, expected_count - nr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000480
David Brazdil0f672f62019-12-10 10:32:29 +0000481 xas_unlock(&xas);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000482 /* Leave irq disabled to prevent preemption while updating stats */
483
484 /*
485 * If moved to a different zone then also account
486 * the page for that zone. Other VM counters will be
487 * taken care of when we establish references to the
488 * new page and drop references to the old page.
489 *
490 * Note that anonymous pages are accounted for
491 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
492 * are mapped to swap space.
493 */
494 if (newzone != oldzone) {
Olivier Deprez157378f2022-04-04 15:47:50 +0200495 struct lruvec *old_lruvec, *new_lruvec;
496 struct mem_cgroup *memcg;
497
498 memcg = page_memcg(page);
499 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
500 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
501
502 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
503 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000504 if (PageSwapBacked(page) && !PageSwapCache(page)) {
Olivier Deprez157378f2022-04-04 15:47:50 +0200505 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
506 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000507 }
Olivier Deprez157378f2022-04-04 15:47:50 +0200508 if (dirty && mapping_can_writeback(mapping)) {
509 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
510 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
511 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
512 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000513 }
514 }
515 local_irq_enable();
516
517 return MIGRATEPAGE_SUCCESS;
518}
519EXPORT_SYMBOL(migrate_page_move_mapping);
520
521/*
522 * The expected number of remaining references is the same as that
523 * of migrate_page_move_mapping().
524 */
525int migrate_huge_page_move_mapping(struct address_space *mapping,
526 struct page *newpage, struct page *page)
527{
David Brazdil0f672f62019-12-10 10:32:29 +0000528 XA_STATE(xas, &mapping->i_pages, page_index(page));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000529 int expected_count;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000530
David Brazdil0f672f62019-12-10 10:32:29 +0000531 xas_lock_irq(&xas);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000532 expected_count = 2 + page_has_private(page);
David Brazdil0f672f62019-12-10 10:32:29 +0000533 if (page_count(page) != expected_count || xas_load(&xas) != page) {
534 xas_unlock_irq(&xas);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000535 return -EAGAIN;
536 }
537
538 if (!page_ref_freeze(page, expected_count)) {
David Brazdil0f672f62019-12-10 10:32:29 +0000539 xas_unlock_irq(&xas);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000540 return -EAGAIN;
541 }
542
543 newpage->index = page->index;
544 newpage->mapping = page->mapping;
545
546 get_page(newpage);
547
David Brazdil0f672f62019-12-10 10:32:29 +0000548 xas_store(&xas, newpage);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000549
550 page_ref_unfreeze(page, expected_count - 1);
551
David Brazdil0f672f62019-12-10 10:32:29 +0000552 xas_unlock_irq(&xas);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000553
554 return MIGRATEPAGE_SUCCESS;
555}
556
557/*
558 * Gigantic pages are so large that we do not guarantee that page++ pointer
559 * arithmetic will work across the entire page. We need something more
560 * specialized.
561 */
562static void __copy_gigantic_page(struct page *dst, struct page *src,
563 int nr_pages)
564{
565 int i;
566 struct page *dst_base = dst;
567 struct page *src_base = src;
568
569 for (i = 0; i < nr_pages; ) {
570 cond_resched();
571 copy_highpage(dst, src);
572
573 i++;
574 dst = mem_map_next(dst, dst_base, i);
575 src = mem_map_next(src, src_base, i);
576 }
577}
578
579static void copy_huge_page(struct page *dst, struct page *src)
580{
581 int i;
582 int nr_pages;
583
584 if (PageHuge(src)) {
585 /* hugetlbfs page */
586 struct hstate *h = page_hstate(src);
587 nr_pages = pages_per_huge_page(h);
588
589 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
590 __copy_gigantic_page(dst, src, nr_pages);
591 return;
592 }
593 } else {
594 /* thp page */
595 BUG_ON(!PageTransHuge(src));
Olivier Deprez157378f2022-04-04 15:47:50 +0200596 nr_pages = thp_nr_pages(src);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000597 }
598
599 for (i = 0; i < nr_pages; i++) {
600 cond_resched();
601 copy_highpage(dst + i, src + i);
602 }
603}
604
605/*
606 * Copy the page to its new location
607 */
608void migrate_page_states(struct page *newpage, struct page *page)
609{
610 int cpupid;
611
612 if (PageError(page))
613 SetPageError(newpage);
614 if (PageReferenced(page))
615 SetPageReferenced(newpage);
616 if (PageUptodate(page))
617 SetPageUptodate(newpage);
618 if (TestClearPageActive(page)) {
619 VM_BUG_ON_PAGE(PageUnevictable(page), page);
620 SetPageActive(newpage);
621 } else if (TestClearPageUnevictable(page))
622 SetPageUnevictable(newpage);
David Brazdil0f672f62019-12-10 10:32:29 +0000623 if (PageWorkingset(page))
624 SetPageWorkingset(newpage);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000625 if (PageChecked(page))
626 SetPageChecked(newpage);
627 if (PageMappedToDisk(page))
628 SetPageMappedToDisk(newpage);
629
630 /* Move dirty on pages not done by migrate_page_move_mapping() */
631 if (PageDirty(page))
632 SetPageDirty(newpage);
633
634 if (page_is_young(page))
635 set_page_young(newpage);
636 if (page_is_idle(page))
637 set_page_idle(newpage);
638
639 /*
640 * Copy NUMA information to the new page, to prevent over-eager
641 * future migrations of this same page.
642 */
643 cpupid = page_cpupid_xchg_last(page, -1);
644 page_cpupid_xchg_last(newpage, cpupid);
645
646 ksm_migrate_page(newpage, page);
647 /*
648 * Please do not reorder this without considering how mm/ksm.c's
649 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
650 */
651 if (PageSwapCache(page))
652 ClearPageSwapCache(page);
653 ClearPagePrivate(page);
654 set_page_private(page, 0);
655
656 /*
657 * If any waiters have accumulated on the new page then
658 * wake them up.
659 */
660 if (PageWriteback(newpage))
661 end_page_writeback(newpage);
662
Olivier Deprez157378f2022-04-04 15:47:50 +0200663 /*
664 * PG_readahead shares the same bit with PG_reclaim. The above
665 * end_page_writeback() may clear PG_readahead mistakenly, so set the
666 * bit after that.
667 */
668 if (PageReadahead(page))
669 SetPageReadahead(newpage);
670
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000671 copy_page_owner(page, newpage);
672
Olivier Deprez157378f2022-04-04 15:47:50 +0200673 if (!PageHuge(page))
674 mem_cgroup_migrate(page, newpage);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000675}
676EXPORT_SYMBOL(migrate_page_states);
677
678void migrate_page_copy(struct page *newpage, struct page *page)
679{
680 if (PageHuge(page) || PageTransHuge(page))
681 copy_huge_page(newpage, page);
682 else
683 copy_highpage(newpage, page);
684
685 migrate_page_states(newpage, page);
686}
687EXPORT_SYMBOL(migrate_page_copy);
688
689/************************************************************
690 * Migration functions
691 ***********************************************************/
692
693/*
694 * Common logic to directly migrate a single LRU page suitable for
695 * pages that do not use PagePrivate/PagePrivate2.
696 *
697 * Pages are locked upon entry and exit.
698 */
699int migrate_page(struct address_space *mapping,
700 struct page *newpage, struct page *page,
701 enum migrate_mode mode)
702{
703 int rc;
704
705 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
706
David Brazdil0f672f62019-12-10 10:32:29 +0000707 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000708
709 if (rc != MIGRATEPAGE_SUCCESS)
710 return rc;
711
712 if (mode != MIGRATE_SYNC_NO_COPY)
713 migrate_page_copy(newpage, page);
714 else
715 migrate_page_states(newpage, page);
716 return MIGRATEPAGE_SUCCESS;
717}
718EXPORT_SYMBOL(migrate_page);
719
720#ifdef CONFIG_BLOCK
David Brazdil0f672f62019-12-10 10:32:29 +0000721/* Returns true if all buffers are successfully locked */
722static bool buffer_migrate_lock_buffers(struct buffer_head *head,
723 enum migrate_mode mode)
724{
725 struct buffer_head *bh = head;
726
727 /* Simple case, sync compaction */
728 if (mode != MIGRATE_ASYNC) {
729 do {
730 lock_buffer(bh);
731 bh = bh->b_this_page;
732
733 } while (bh != head);
734
735 return true;
736 }
737
738 /* async case, we cannot block on lock_buffer so use trylock_buffer */
739 do {
740 if (!trylock_buffer(bh)) {
741 /*
742 * We failed to lock the buffer and cannot stall in
743 * async migration. Release the taken locks
744 */
745 struct buffer_head *failed_bh = bh;
746 bh = head;
747 while (bh != failed_bh) {
748 unlock_buffer(bh);
749 bh = bh->b_this_page;
750 }
751 return false;
752 }
753
754 bh = bh->b_this_page;
755 } while (bh != head);
756 return true;
757}
758
759static int __buffer_migrate_page(struct address_space *mapping,
760 struct page *newpage, struct page *page, enum migrate_mode mode,
761 bool check_refs)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000762{
763 struct buffer_head *bh, *head;
764 int rc;
David Brazdil0f672f62019-12-10 10:32:29 +0000765 int expected_count;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000766
767 if (!page_has_buffers(page))
768 return migrate_page(mapping, newpage, page, mode);
769
David Brazdil0f672f62019-12-10 10:32:29 +0000770 /* Check whether page does not have extra refs before we do more work */
771 expected_count = expected_page_refs(mapping, page);
772 if (page_count(page) != expected_count)
773 return -EAGAIN;
774
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000775 head = page_buffers(page);
David Brazdil0f672f62019-12-10 10:32:29 +0000776 if (!buffer_migrate_lock_buffers(head, mode))
777 return -EAGAIN;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000778
David Brazdil0f672f62019-12-10 10:32:29 +0000779 if (check_refs) {
780 bool busy;
781 bool invalidated = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000782
David Brazdil0f672f62019-12-10 10:32:29 +0000783recheck_buffers:
784 busy = false;
785 spin_lock(&mapping->private_lock);
786 bh = head;
787 do {
788 if (atomic_read(&bh->b_count)) {
789 busy = true;
790 break;
791 }
792 bh = bh->b_this_page;
793 } while (bh != head);
794 if (busy) {
795 if (invalidated) {
796 rc = -EAGAIN;
797 goto unlock_buffers;
798 }
799 spin_unlock(&mapping->private_lock);
800 invalidate_bh_lrus();
801 invalidated = true;
802 goto recheck_buffers;
803 }
804 }
805
806 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000807 if (rc != MIGRATEPAGE_SUCCESS)
David Brazdil0f672f62019-12-10 10:32:29 +0000808 goto unlock_buffers;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000809
Olivier Deprez157378f2022-04-04 15:47:50 +0200810 attach_page_private(newpage, detach_page_private(page));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000811
812 bh = head;
813 do {
814 set_bh_page(bh, newpage, bh_offset(bh));
815 bh = bh->b_this_page;
816
817 } while (bh != head);
818
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000819 if (mode != MIGRATE_SYNC_NO_COPY)
820 migrate_page_copy(newpage, page);
821 else
822 migrate_page_states(newpage, page);
823
David Brazdil0f672f62019-12-10 10:32:29 +0000824 rc = MIGRATEPAGE_SUCCESS;
825unlock_buffers:
826 if (check_refs)
827 spin_unlock(&mapping->private_lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000828 bh = head;
829 do {
830 unlock_buffer(bh);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000831 bh = bh->b_this_page;
832
833 } while (bh != head);
834
David Brazdil0f672f62019-12-10 10:32:29 +0000835 return rc;
836}
837
838/*
839 * Migration function for pages with buffers. This function can only be used
840 * if the underlying filesystem guarantees that no other references to "page"
841 * exist. For example attached buffer heads are accessed only under page lock.
842 */
843int buffer_migrate_page(struct address_space *mapping,
844 struct page *newpage, struct page *page, enum migrate_mode mode)
845{
846 return __buffer_migrate_page(mapping, newpage, page, mode, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000847}
848EXPORT_SYMBOL(buffer_migrate_page);
David Brazdil0f672f62019-12-10 10:32:29 +0000849
850/*
851 * Same as above except that this variant is more careful and checks that there
852 * are also no buffer head references. This function is the right one for
853 * mappings where buffer heads are directly looked up and referenced (such as
854 * block device mappings).
855 */
856int buffer_migrate_page_norefs(struct address_space *mapping,
857 struct page *newpage, struct page *page, enum migrate_mode mode)
858{
859 return __buffer_migrate_page(mapping, newpage, page, mode, true);
860}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000861#endif
862
863/*
864 * Writeback a page to clean the dirty state
865 */
866static int writeout(struct address_space *mapping, struct page *page)
867{
868 struct writeback_control wbc = {
869 .sync_mode = WB_SYNC_NONE,
870 .nr_to_write = 1,
871 .range_start = 0,
872 .range_end = LLONG_MAX,
873 .for_reclaim = 1
874 };
875 int rc;
876
877 if (!mapping->a_ops->writepage)
878 /* No write method for the address space */
879 return -EINVAL;
880
881 if (!clear_page_dirty_for_io(page))
882 /* Someone else already triggered a write */
883 return -EAGAIN;
884
885 /*
886 * A dirty page may imply that the underlying filesystem has
887 * the page on some queue. So the page must be clean for
888 * migration. Writeout may mean we loose the lock and the
889 * page state is no longer what we checked for earlier.
890 * At this point we know that the migration attempt cannot
891 * be successful.
892 */
893 remove_migration_ptes(page, page, false);
894
895 rc = mapping->a_ops->writepage(page, &wbc);
896
897 if (rc != AOP_WRITEPAGE_ACTIVATE)
898 /* unlocked. Relock */
899 lock_page(page);
900
901 return (rc < 0) ? -EIO : -EAGAIN;
902}
903
904/*
905 * Default handling if a filesystem does not provide a migration function.
906 */
907static int fallback_migrate_page(struct address_space *mapping,
908 struct page *newpage, struct page *page, enum migrate_mode mode)
909{
910 if (PageDirty(page)) {
911 /* Only writeback pages in full synchronous migration */
912 switch (mode) {
913 case MIGRATE_SYNC:
914 case MIGRATE_SYNC_NO_COPY:
915 break;
916 default:
917 return -EBUSY;
918 }
919 return writeout(mapping, page);
920 }
921
922 /*
923 * Buffers may be managed in a filesystem specific way.
924 * We must have no buffers or drop them.
925 */
926 if (page_has_private(page) &&
927 !try_to_release_page(page, GFP_KERNEL))
David Brazdil0f672f62019-12-10 10:32:29 +0000928 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000929
930 return migrate_page(mapping, newpage, page, mode);
931}
932
933/*
934 * Move a page to a newly allocated page
935 * The page is locked and all ptes have been successfully removed.
936 *
937 * The new page will have replaced the old page if this function
938 * is successful.
939 *
940 * Return value:
941 * < 0 - error code
942 * MIGRATEPAGE_SUCCESS - success
943 */
944static int move_to_new_page(struct page *newpage, struct page *page,
945 enum migrate_mode mode)
946{
947 struct address_space *mapping;
948 int rc = -EAGAIN;
949 bool is_lru = !__PageMovable(page);
950
951 VM_BUG_ON_PAGE(!PageLocked(page), page);
952 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
953
954 mapping = page_mapping(page);
955
956 if (likely(is_lru)) {
957 if (!mapping)
958 rc = migrate_page(mapping, newpage, page, mode);
959 else if (mapping->a_ops->migratepage)
960 /*
961 * Most pages have a mapping and most filesystems
962 * provide a migratepage callback. Anonymous pages
963 * are part of swap space which also has its own
964 * migratepage callback. This is the most common path
965 * for page migration.
966 */
967 rc = mapping->a_ops->migratepage(mapping, newpage,
968 page, mode);
969 else
970 rc = fallback_migrate_page(mapping, newpage,
971 page, mode);
972 } else {
973 /*
974 * In case of non-lru page, it could be released after
975 * isolation step. In that case, we shouldn't try migration.
976 */
977 VM_BUG_ON_PAGE(!PageIsolated(page), page);
978 if (!PageMovable(page)) {
979 rc = MIGRATEPAGE_SUCCESS;
980 __ClearPageIsolated(page);
981 goto out;
982 }
983
984 rc = mapping->a_ops->migratepage(mapping, newpage,
985 page, mode);
986 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
987 !PageIsolated(page));
988 }
989
990 /*
991 * When successful, old pagecache page->mapping must be cleared before
992 * page is freed; but stats require that PageAnon be left as PageAnon.
993 */
994 if (rc == MIGRATEPAGE_SUCCESS) {
995 if (__PageMovable(page)) {
996 VM_BUG_ON_PAGE(!PageIsolated(page), page);
997
998 /*
999 * We clear PG_movable under page_lock so any compactor
1000 * cannot try to migrate this page.
1001 */
1002 __ClearPageIsolated(page);
1003 }
1004
1005 /*
Olivier Deprez157378f2022-04-04 15:47:50 +02001006 * Anonymous and movable page->mapping will be cleared by
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001007 * free_pages_prepare so don't reset it here for keeping
1008 * the type to work PageAnon, for example.
1009 */
1010 if (!PageMappingFlags(page))
1011 page->mapping = NULL;
David Brazdil0f672f62019-12-10 10:32:29 +00001012
1013 if (likely(!is_zone_device_page(newpage)))
1014 flush_dcache_page(newpage);
1015
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001016 }
1017out:
1018 return rc;
1019}
1020
1021static int __unmap_and_move(struct page *page, struct page *newpage,
1022 int force, enum migrate_mode mode)
1023{
1024 int rc = -EAGAIN;
1025 int page_was_mapped = 0;
1026 struct anon_vma *anon_vma = NULL;
1027 bool is_lru = !__PageMovable(page);
1028
1029 if (!trylock_page(page)) {
1030 if (!force || mode == MIGRATE_ASYNC)
1031 goto out;
1032
1033 /*
1034 * It's not safe for direct compaction to call lock_page.
1035 * For example, during page readahead pages are added locked
1036 * to the LRU. Later, when the IO completes the pages are
1037 * marked uptodate and unlocked. However, the queueing
1038 * could be merging multiple pages for one bio (e.g.
Olivier Deprez157378f2022-04-04 15:47:50 +02001039 * mpage_readahead). If an allocation happens for the
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001040 * second or third page, the process can end up locking
1041 * the same page twice and deadlocking. Rather than
1042 * trying to be clever about what pages can be locked,
1043 * avoid the use of lock_page for direct compaction
1044 * altogether.
1045 */
1046 if (current->flags & PF_MEMALLOC)
1047 goto out;
1048
1049 lock_page(page);
1050 }
1051
1052 if (PageWriteback(page)) {
1053 /*
1054 * Only in the case of a full synchronous migration is it
1055 * necessary to wait for PageWriteback. In the async case,
1056 * the retry loop is too short and in the sync-light case,
1057 * the overhead of stalling is too much
1058 */
1059 switch (mode) {
1060 case MIGRATE_SYNC:
1061 case MIGRATE_SYNC_NO_COPY:
1062 break;
1063 default:
1064 rc = -EBUSY;
1065 goto out_unlock;
1066 }
1067 if (!force)
1068 goto out_unlock;
1069 wait_on_page_writeback(page);
1070 }
1071
1072 /*
1073 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1074 * we cannot notice that anon_vma is freed while we migrates a page.
1075 * This get_anon_vma() delays freeing anon_vma pointer until the end
1076 * of migration. File cache pages are no problem because of page_lock()
1077 * File Caches may use write_page() or lock_page() in migration, then,
1078 * just care Anon page here.
1079 *
1080 * Only page_get_anon_vma() understands the subtleties of
1081 * getting a hold on an anon_vma from outside one of its mms.
1082 * But if we cannot get anon_vma, then we won't need it anyway,
1083 * because that implies that the anon page is no longer mapped
1084 * (and cannot be remapped so long as we hold the page lock).
1085 */
1086 if (PageAnon(page) && !PageKsm(page))
1087 anon_vma = page_get_anon_vma(page);
1088
1089 /*
1090 * Block others from accessing the new page when we get around to
1091 * establishing additional references. We are usually the only one
1092 * holding a reference to newpage at this point. We used to have a BUG
1093 * here if trylock_page(newpage) fails, but would like to allow for
1094 * cases where there might be a race with the previous use of newpage.
1095 * This is much like races on refcount of oldpage: just don't BUG().
1096 */
1097 if (unlikely(!trylock_page(newpage)))
1098 goto out_unlock;
1099
1100 if (unlikely(!is_lru)) {
1101 rc = move_to_new_page(newpage, page, mode);
1102 goto out_unlock_both;
1103 }
1104
1105 /*
1106 * Corner case handling:
1107 * 1. When a new swap-cache page is read into, it is added to the LRU
1108 * and treated as swapcache but it has no rmap yet.
1109 * Calling try_to_unmap() against a page->mapping==NULL page will
1110 * trigger a BUG. So handle it here.
1111 * 2. An orphaned page (see truncate_complete_page) might have
1112 * fs-private metadata. The page can be picked up due to memory
1113 * offlining. Everywhere else except page reclaim, the page is
1114 * invisible to the vm, so the page can not be migrated. So try to
1115 * free the metadata, so the page can be freed.
1116 */
1117 if (!page->mapping) {
1118 VM_BUG_ON_PAGE(PageAnon(page), page);
1119 if (page_has_private(page)) {
1120 try_to_free_buffers(page);
1121 goto out_unlock_both;
1122 }
1123 } else if (page_mapped(page)) {
1124 /* Establish migration ptes */
1125 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1126 page);
Olivier Deprez157378f2022-04-04 15:47:50 +02001127 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001128 page_was_mapped = 1;
1129 }
1130
1131 if (!page_mapped(page))
1132 rc = move_to_new_page(newpage, page, mode);
1133
1134 if (page_was_mapped)
1135 remove_migration_ptes(page,
1136 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1137
1138out_unlock_both:
1139 unlock_page(newpage);
1140out_unlock:
1141 /* Drop an anon_vma reference if we took one */
1142 if (anon_vma)
1143 put_anon_vma(anon_vma);
1144 unlock_page(page);
1145out:
1146 /*
1147 * If migration is successful, decrease refcount of the newpage
1148 * which will not free the page because new page owner increased
1149 * refcounter. As well, if it is LRU page, add the page to LRU
David Brazdil0f672f62019-12-10 10:32:29 +00001150 * list in here. Use the old state of the isolated source page to
1151 * determine if we migrated a LRU page. newpage was already unlocked
1152 * and possibly modified by its owner - don't rely on the page
1153 * state.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001154 */
1155 if (rc == MIGRATEPAGE_SUCCESS) {
David Brazdil0f672f62019-12-10 10:32:29 +00001156 if (unlikely(!is_lru))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001157 put_page(newpage);
1158 else
1159 putback_lru_page(newpage);
1160 }
1161
1162 return rc;
1163}
1164
1165/*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001166 * Obtain the lock on page, remove all ptes and migrate the page
1167 * to the newly allocated page in newpage.
1168 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001169static int unmap_and_move(new_page_t get_new_page,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001170 free_page_t put_new_page,
1171 unsigned long private, struct page *page,
1172 int force, enum migrate_mode mode,
1173 enum migrate_reason reason)
1174{
1175 int rc = MIGRATEPAGE_SUCCESS;
Olivier Deprez157378f2022-04-04 15:47:50 +02001176 struct page *newpage = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001177
1178 if (!thp_migration_supported() && PageTransHuge(page))
1179 return -ENOMEM;
1180
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001181 if (page_count(page) == 1) {
1182 /* page was freed from under us. So we are done. */
1183 ClearPageActive(page);
1184 ClearPageUnevictable(page);
1185 if (unlikely(__PageMovable(page))) {
1186 lock_page(page);
1187 if (!PageMovable(page))
1188 __ClearPageIsolated(page);
1189 unlock_page(page);
1190 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001191 goto out;
1192 }
1193
Olivier Deprez157378f2022-04-04 15:47:50 +02001194 newpage = get_new_page(page, private);
1195 if (!newpage)
1196 return -ENOMEM;
1197
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001198 rc = __unmap_and_move(page, newpage, force, mode);
1199 if (rc == MIGRATEPAGE_SUCCESS)
1200 set_page_owner_migrate_reason(newpage, reason);
1201
1202out:
1203 if (rc != -EAGAIN) {
1204 /*
1205 * A page that has been migrated has all references
1206 * removed and will be freed. A page that has not been
Olivier Deprez157378f2022-04-04 15:47:50 +02001207 * migrated will have kept its references and be restored.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001208 */
1209 list_del(&page->lru);
1210
1211 /*
1212 * Compaction can migrate also non-LRU pages which are
1213 * not accounted to NR_ISOLATED_*. They can be recognized
1214 * as __PageMovable
1215 */
1216 if (likely(!__PageMovable(page)))
1217 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
Olivier Deprez157378f2022-04-04 15:47:50 +02001218 page_is_file_lru(page), -thp_nr_pages(page));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001219 }
1220
1221 /*
1222 * If migration is successful, releases reference grabbed during
1223 * isolation. Otherwise, restore the page to right list unless
1224 * we want to retry.
1225 */
1226 if (rc == MIGRATEPAGE_SUCCESS) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001227 if (reason != MR_MEMORY_FAILURE)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001228 /*
Olivier Deprez157378f2022-04-04 15:47:50 +02001229 * We release the page in page_handle_poison.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001230 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001231 put_page(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001232 } else {
1233 if (rc != -EAGAIN) {
1234 if (likely(!__PageMovable(page))) {
1235 putback_lru_page(page);
1236 goto put_new;
1237 }
1238
1239 lock_page(page);
1240 if (PageMovable(page))
1241 putback_movable_page(page);
1242 else
1243 __ClearPageIsolated(page);
1244 unlock_page(page);
1245 put_page(page);
1246 }
1247put_new:
1248 if (put_new_page)
1249 put_new_page(newpage, private);
1250 else
1251 put_page(newpage);
1252 }
1253
1254 return rc;
1255}
1256
1257/*
1258 * Counterpart of unmap_and_move_page() for hugepage migration.
1259 *
1260 * This function doesn't wait the completion of hugepage I/O
1261 * because there is no race between I/O and migration for hugepage.
1262 * Note that currently hugepage I/O occurs only in direct I/O
1263 * where no lock is held and PG_writeback is irrelevant,
1264 * and writeback status of all subpages are counted in the reference
1265 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1266 * under direct I/O, the reference of the head page is 512 and a bit more.)
1267 * This means that when we try to migrate hugepage whose subpages are
1268 * doing direct I/O, some references remain after try_to_unmap() and
1269 * hugepage migration fails without data corruption.
1270 *
1271 * There is also no race when direct I/O is issued on the page under migration,
1272 * because then pte is replaced with migration swap entry and direct I/O code
1273 * will wait in the page fault for migration to complete.
1274 */
1275static int unmap_and_move_huge_page(new_page_t get_new_page,
1276 free_page_t put_new_page, unsigned long private,
1277 struct page *hpage, int force,
1278 enum migrate_mode mode, int reason)
1279{
1280 int rc = -EAGAIN;
1281 int page_was_mapped = 0;
1282 struct page *new_hpage;
1283 struct anon_vma *anon_vma = NULL;
Olivier Deprez157378f2022-04-04 15:47:50 +02001284 struct address_space *mapping = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001285
1286 /*
David Brazdil0f672f62019-12-10 10:32:29 +00001287 * Migratability of hugepages depends on architectures and their size.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001288 * This check is necessary because some callers of hugepage migration
1289 * like soft offline and memory hotremove don't walk through page
1290 * tables or check whether the hugepage is pmd-based or not before
1291 * kicking migration.
1292 */
1293 if (!hugepage_migration_supported(page_hstate(hpage))) {
1294 putback_active_hugepage(hpage);
1295 return -ENOSYS;
1296 }
1297
1298 new_hpage = get_new_page(hpage, private);
1299 if (!new_hpage)
1300 return -ENOMEM;
1301
1302 if (!trylock_page(hpage)) {
1303 if (!force)
1304 goto out;
1305 switch (mode) {
1306 case MIGRATE_SYNC:
1307 case MIGRATE_SYNC_NO_COPY:
1308 break;
1309 default:
1310 goto out;
1311 }
1312 lock_page(hpage);
1313 }
1314
David Brazdil0f672f62019-12-10 10:32:29 +00001315 /*
1316 * Check for pages which are in the process of being freed. Without
1317 * page_mapping() set, hugetlbfs specific move page routine will not
1318 * be called and we could leak usage counts for subpools.
1319 */
1320 if (page_private(hpage) && !page_mapping(hpage)) {
1321 rc = -EBUSY;
1322 goto out_unlock;
1323 }
1324
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001325 if (PageAnon(hpage))
1326 anon_vma = page_get_anon_vma(hpage);
1327
1328 if (unlikely(!trylock_page(new_hpage)))
1329 goto put_anon;
1330
1331 if (page_mapped(hpage)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001332 bool mapping_locked = false;
1333 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1334
1335 if (!PageAnon(hpage)) {
1336 /*
1337 * In shared mappings, try_to_unmap could potentially
1338 * call huge_pmd_unshare. Because of this, take
1339 * semaphore in write mode here and set TTU_RMAP_LOCKED
1340 * to let lower levels know we have taken the lock.
1341 */
1342 mapping = hugetlb_page_mapping_lock_write(hpage);
1343 if (unlikely(!mapping))
1344 goto unlock_put_anon;
1345
1346 mapping_locked = true;
1347 ttu |= TTU_RMAP_LOCKED;
1348 }
1349
1350 try_to_unmap(hpage, ttu);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001351 page_was_mapped = 1;
Olivier Deprez157378f2022-04-04 15:47:50 +02001352
1353 if (mapping_locked)
1354 i_mmap_unlock_write(mapping);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001355 }
1356
1357 if (!page_mapped(hpage))
1358 rc = move_to_new_page(new_hpage, hpage, mode);
1359
1360 if (page_was_mapped)
1361 remove_migration_ptes(hpage,
1362 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1363
Olivier Deprez157378f2022-04-04 15:47:50 +02001364unlock_put_anon:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001365 unlock_page(new_hpage);
1366
1367put_anon:
1368 if (anon_vma)
1369 put_anon_vma(anon_vma);
1370
1371 if (rc == MIGRATEPAGE_SUCCESS) {
1372 move_hugetlb_state(hpage, new_hpage, reason);
1373 put_new_page = NULL;
1374 }
1375
David Brazdil0f672f62019-12-10 10:32:29 +00001376out_unlock:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001377 unlock_page(hpage);
1378out:
1379 if (rc != -EAGAIN)
1380 putback_active_hugepage(hpage);
1381
1382 /*
1383 * If migration was not successful and there's a freeing callback, use
1384 * it. Otherwise, put_page() will drop the reference grabbed during
1385 * isolation.
1386 */
1387 if (put_new_page)
1388 put_new_page(new_hpage, private);
1389 else
1390 putback_active_hugepage(new_hpage);
1391
1392 return rc;
1393}
1394
1395/*
1396 * migrate_pages - migrate the pages specified in a list, to the free pages
1397 * supplied as the target for the page migration
1398 *
1399 * @from: The list of pages to be migrated.
1400 * @get_new_page: The function used to allocate free pages to be used
1401 * as the target of the page migration.
1402 * @put_new_page: The function used to free target pages if migration
1403 * fails, or NULL if no special handling is necessary.
1404 * @private: Private data to be passed on to get_new_page()
1405 * @mode: The migration mode that specifies the constraints for
1406 * page migration, if any.
1407 * @reason: The reason for page migration.
1408 *
1409 * The function returns after 10 attempts or if no pages are movable any more
1410 * because the list has become empty or no retryable pages exist any more.
1411 * The caller should call putback_movable_pages() to return pages to the LRU
1412 * or free list only if ret != 0.
1413 *
1414 * Returns the number of pages that were not migrated, or an error code.
1415 */
1416int migrate_pages(struct list_head *from, new_page_t get_new_page,
1417 free_page_t put_new_page, unsigned long private,
1418 enum migrate_mode mode, int reason)
1419{
1420 int retry = 1;
Olivier Deprez157378f2022-04-04 15:47:50 +02001421 int thp_retry = 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001422 int nr_failed = 0;
1423 int nr_succeeded = 0;
Olivier Deprez157378f2022-04-04 15:47:50 +02001424 int nr_thp_succeeded = 0;
1425 int nr_thp_failed = 0;
1426 int nr_thp_split = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001427 int pass = 0;
Olivier Deprez157378f2022-04-04 15:47:50 +02001428 bool is_thp = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001429 struct page *page;
1430 struct page *page2;
1431 int swapwrite = current->flags & PF_SWAPWRITE;
Olivier Deprez157378f2022-04-04 15:47:50 +02001432 int rc, nr_subpages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001433
1434 if (!swapwrite)
1435 current->flags |= PF_SWAPWRITE;
1436
Olivier Deprez157378f2022-04-04 15:47:50 +02001437 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001438 retry = 0;
Olivier Deprez157378f2022-04-04 15:47:50 +02001439 thp_retry = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001440
1441 list_for_each_entry_safe(page, page2, from, lru) {
1442retry:
Olivier Deprez157378f2022-04-04 15:47:50 +02001443 /*
1444 * THP statistics is based on the source huge page.
1445 * Capture required information that might get lost
1446 * during migration.
1447 */
1448 is_thp = PageTransHuge(page) && !PageHuge(page);
1449 nr_subpages = thp_nr_pages(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001450 cond_resched();
1451
1452 if (PageHuge(page))
1453 rc = unmap_and_move_huge_page(get_new_page,
1454 put_new_page, private, page,
1455 pass > 2, mode, reason);
1456 else
1457 rc = unmap_and_move(get_new_page, put_new_page,
1458 private, page, pass > 2, mode,
1459 reason);
1460
1461 switch(rc) {
1462 case -ENOMEM:
1463 /*
1464 * THP migration might be unsupported or the
1465 * allocation could've failed so we should
1466 * retry on the same page with the THP split
1467 * to base pages.
1468 *
1469 * Head page is retried immediately and tail
1470 * pages are added to the tail of the list so
1471 * we encounter them after the rest of the list
1472 * is processed.
1473 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001474 if (is_thp) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001475 lock_page(page);
1476 rc = split_huge_page_to_list(page, from);
1477 unlock_page(page);
1478 if (!rc) {
1479 list_safe_reset_next(page, page2, lru);
Olivier Deprez157378f2022-04-04 15:47:50 +02001480 nr_thp_split++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001481 goto retry;
1482 }
Olivier Deprez157378f2022-04-04 15:47:50 +02001483
1484 nr_thp_failed++;
1485 nr_failed += nr_subpages;
1486 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001487 }
1488 nr_failed++;
1489 goto out;
1490 case -EAGAIN:
Olivier Deprez157378f2022-04-04 15:47:50 +02001491 if (is_thp) {
1492 thp_retry++;
1493 break;
1494 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001495 retry++;
1496 break;
1497 case MIGRATEPAGE_SUCCESS:
Olivier Deprez157378f2022-04-04 15:47:50 +02001498 if (is_thp) {
1499 nr_thp_succeeded++;
1500 nr_succeeded += nr_subpages;
1501 break;
1502 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001503 nr_succeeded++;
1504 break;
1505 default:
1506 /*
1507 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1508 * unlike -EAGAIN case, the failed page is
1509 * removed from migration page list and not
1510 * retried in the next outer loop.
1511 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001512 if (is_thp) {
1513 nr_thp_failed++;
1514 nr_failed += nr_subpages;
1515 break;
1516 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001517 nr_failed++;
1518 break;
1519 }
1520 }
1521 }
Olivier Deprez157378f2022-04-04 15:47:50 +02001522 nr_failed += retry + thp_retry;
1523 nr_thp_failed += thp_retry;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001524 rc = nr_failed;
1525out:
Olivier Deprez157378f2022-04-04 15:47:50 +02001526 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1527 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1528 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1529 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1530 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1531 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1532 nr_thp_failed, nr_thp_split, mode, reason);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001533
1534 if (!swapwrite)
1535 current->flags &= ~PF_SWAPWRITE;
1536
1537 return rc;
1538}
1539
Olivier Deprez157378f2022-04-04 15:47:50 +02001540struct page *alloc_migration_target(struct page *page, unsigned long private)
1541{
1542 struct migration_target_control *mtc;
1543 gfp_t gfp_mask;
1544 unsigned int order = 0;
1545 struct page *new_page = NULL;
1546 int nid;
1547 int zidx;
1548
1549 mtc = (struct migration_target_control *)private;
1550 gfp_mask = mtc->gfp_mask;
1551 nid = mtc->nid;
1552 if (nid == NUMA_NO_NODE)
1553 nid = page_to_nid(page);
1554
1555 if (PageHuge(page)) {
1556 struct hstate *h = page_hstate(compound_head(page));
1557
1558 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1559 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1560 }
1561
1562 if (PageTransHuge(page)) {
1563 /*
1564 * clear __GFP_RECLAIM to make the migration callback
1565 * consistent with regular THP allocations.
1566 */
1567 gfp_mask &= ~__GFP_RECLAIM;
1568 gfp_mask |= GFP_TRANSHUGE;
1569 order = HPAGE_PMD_ORDER;
1570 }
1571 zidx = zone_idx(page_zone(page));
1572 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1573 gfp_mask |= __GFP_HIGHMEM;
1574
1575 new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1576
1577 if (new_page && PageTransHuge(new_page))
1578 prep_transhuge_page(new_page);
1579
1580 return new_page;
1581}
1582
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001583#ifdef CONFIG_NUMA
1584
1585static int store_status(int __user *status, int start, int value, int nr)
1586{
1587 while (nr-- > 0) {
1588 if (put_user(value, status + start))
1589 return -EFAULT;
1590 start++;
1591 }
1592
1593 return 0;
1594}
1595
1596static int do_move_pages_to_node(struct mm_struct *mm,
1597 struct list_head *pagelist, int node)
1598{
1599 int err;
Olivier Deprez157378f2022-04-04 15:47:50 +02001600 struct migration_target_control mtc = {
1601 .nid = node,
1602 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1603 };
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001604
Olivier Deprez157378f2022-04-04 15:47:50 +02001605 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1606 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001607 if (err)
1608 putback_movable_pages(pagelist);
1609 return err;
1610}
1611
1612/*
1613 * Resolves the given address to a struct page, isolates it from the LRU and
1614 * puts it to the given pagelist.
Olivier Deprez0e641232021-09-23 10:07:05 +02001615 * Returns:
1616 * errno - if the page cannot be found/isolated
1617 * 0 - when it doesn't have to be migrated because it is already on the
1618 * target node
1619 * 1 - when it has been queued
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001620 */
1621static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1622 int node, struct list_head *pagelist, bool migrate_all)
1623{
1624 struct vm_area_struct *vma;
1625 struct page *page;
1626 unsigned int follflags;
1627 int err;
1628
Olivier Deprez157378f2022-04-04 15:47:50 +02001629 mmap_read_lock(mm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001630 err = -EFAULT;
1631 vma = find_vma(mm, addr);
1632 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1633 goto out;
1634
1635 /* FOLL_DUMP to ignore special (like zero) pages */
1636 follflags = FOLL_GET | FOLL_DUMP;
1637 page = follow_page(vma, addr, follflags);
1638
1639 err = PTR_ERR(page);
1640 if (IS_ERR(page))
1641 goto out;
1642
1643 err = -ENOENT;
1644 if (!page)
1645 goto out;
1646
1647 err = 0;
1648 if (page_to_nid(page) == node)
1649 goto out_putpage;
1650
1651 err = -EACCES;
1652 if (page_mapcount(page) > 1 && !migrate_all)
1653 goto out_putpage;
1654
1655 if (PageHuge(page)) {
1656 if (PageHead(page)) {
1657 isolate_huge_page(page, pagelist);
Olivier Deprez0e641232021-09-23 10:07:05 +02001658 err = 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001659 }
1660 } else {
1661 struct page *head;
1662
1663 head = compound_head(page);
1664 err = isolate_lru_page(head);
1665 if (err)
1666 goto out_putpage;
1667
Olivier Deprez0e641232021-09-23 10:07:05 +02001668 err = 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001669 list_add_tail(&head->lru, pagelist);
1670 mod_node_page_state(page_pgdat(head),
Olivier Deprez157378f2022-04-04 15:47:50 +02001671 NR_ISOLATED_ANON + page_is_file_lru(head),
1672 thp_nr_pages(head));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001673 }
1674out_putpage:
1675 /*
1676 * Either remove the duplicate refcount from
1677 * isolate_lru_page() or drop the page ref if it was
1678 * not isolated.
1679 */
1680 put_page(page);
1681out:
Olivier Deprez157378f2022-04-04 15:47:50 +02001682 mmap_read_unlock(mm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001683 return err;
1684}
1685
Olivier Deprez157378f2022-04-04 15:47:50 +02001686static int move_pages_and_store_status(struct mm_struct *mm, int node,
1687 struct list_head *pagelist, int __user *status,
1688 int start, int i, unsigned long nr_pages)
1689{
1690 int err;
1691
1692 if (list_empty(pagelist))
1693 return 0;
1694
1695 err = do_move_pages_to_node(mm, pagelist, node);
1696 if (err) {
1697 /*
1698 * Positive err means the number of failed
1699 * pages to migrate. Since we are going to
1700 * abort and return the number of non-migrated
1701 * pages, so need to incude the rest of the
1702 * nr_pages that have not been attempted as
1703 * well.
1704 */
1705 if (err > 0)
1706 err += nr_pages - i - 1;
1707 return err;
1708 }
1709 return store_status(status, start, node, i - start);
1710}
1711
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001712/*
1713 * Migrate an array of page address onto an array of nodes and fill
1714 * the corresponding array of status.
1715 */
1716static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1717 unsigned long nr_pages,
1718 const void __user * __user *pages,
1719 const int __user *nodes,
1720 int __user *status, int flags)
1721{
1722 int current_node = NUMA_NO_NODE;
1723 LIST_HEAD(pagelist);
1724 int start, i;
1725 int err = 0, err1;
1726
1727 migrate_prep();
1728
1729 for (i = start = 0; i < nr_pages; i++) {
1730 const void __user *p;
1731 unsigned long addr;
1732 int node;
1733
1734 err = -EFAULT;
1735 if (get_user(p, pages + i))
1736 goto out_flush;
1737 if (get_user(node, nodes + i))
1738 goto out_flush;
David Brazdil0f672f62019-12-10 10:32:29 +00001739 addr = (unsigned long)untagged_addr(p);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001740
1741 err = -ENODEV;
1742 if (node < 0 || node >= MAX_NUMNODES)
1743 goto out_flush;
1744 if (!node_state(node, N_MEMORY))
1745 goto out_flush;
1746
1747 err = -EACCES;
1748 if (!node_isset(node, task_nodes))
1749 goto out_flush;
1750
1751 if (current_node == NUMA_NO_NODE) {
1752 current_node = node;
1753 start = i;
1754 } else if (node != current_node) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001755 err = move_pages_and_store_status(mm, current_node,
1756 &pagelist, status, start, i, nr_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001757 if (err)
1758 goto out;
1759 start = i;
1760 current_node = node;
1761 }
1762
1763 /*
1764 * Errors in the page lookup or isolation are not fatal and we simply
1765 * report them via status
1766 */
1767 err = add_page_for_migration(mm, addr, current_node,
1768 &pagelist, flags & MPOL_MF_MOVE_ALL);
Olivier Deprez0e641232021-09-23 10:07:05 +02001769
Olivier Deprez157378f2022-04-04 15:47:50 +02001770 if (err > 0) {
Olivier Deprez0e641232021-09-23 10:07:05 +02001771 /* The page is successfully queued for migration */
1772 continue;
1773 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001774
Olivier Deprez157378f2022-04-04 15:47:50 +02001775 /*
1776 * If the page is already on the target node (!err), store the
1777 * node, otherwise, store the err.
1778 */
1779 err = store_status(status, i, err ? : current_node, 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001780 if (err)
1781 goto out_flush;
1782
Olivier Deprez157378f2022-04-04 15:47:50 +02001783 err = move_pages_and_store_status(mm, current_node, &pagelist,
1784 status, start, i, nr_pages);
1785 if (err)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001786 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001787 current_node = NUMA_NO_NODE;
1788 }
1789out_flush:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001790 /* Make sure we do not overwrite the existing error */
Olivier Deprez157378f2022-04-04 15:47:50 +02001791 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1792 status, start, i, nr_pages);
Olivier Deprez0e641232021-09-23 10:07:05 +02001793 if (err >= 0)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001794 err = err1;
1795out:
1796 return err;
1797}
1798
1799/*
1800 * Determine the nodes of an array of pages and store it in an array of status.
1801 */
1802static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1803 const void __user **pages, int *status)
1804{
1805 unsigned long i;
1806
Olivier Deprez157378f2022-04-04 15:47:50 +02001807 mmap_read_lock(mm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001808
1809 for (i = 0; i < nr_pages; i++) {
1810 unsigned long addr = (unsigned long)(*pages);
1811 struct vm_area_struct *vma;
1812 struct page *page;
1813 int err = -EFAULT;
1814
1815 vma = find_vma(mm, addr);
1816 if (!vma || addr < vma->vm_start)
1817 goto set_status;
1818
1819 /* FOLL_DUMP to ignore special (like zero) pages */
1820 page = follow_page(vma, addr, FOLL_DUMP);
1821
1822 err = PTR_ERR(page);
1823 if (IS_ERR(page))
1824 goto set_status;
1825
1826 err = page ? page_to_nid(page) : -ENOENT;
1827set_status:
1828 *status = err;
1829
1830 pages++;
1831 status++;
1832 }
1833
Olivier Deprez157378f2022-04-04 15:47:50 +02001834 mmap_read_unlock(mm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001835}
1836
1837/*
1838 * Determine the nodes of a user array of pages and store it in
1839 * a user array of status.
1840 */
1841static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1842 const void __user * __user *pages,
1843 int __user *status)
1844{
1845#define DO_PAGES_STAT_CHUNK_NR 16
1846 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1847 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1848
1849 while (nr_pages) {
1850 unsigned long chunk_nr;
1851
1852 chunk_nr = nr_pages;
1853 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1854 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1855
1856 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1857 break;
1858
1859 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1860
1861 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1862 break;
1863
1864 pages += chunk_nr;
1865 status += chunk_nr;
1866 nr_pages -= chunk_nr;
1867 }
1868 return nr_pages ? -EFAULT : 0;
1869}
1870
Olivier Deprez157378f2022-04-04 15:47:50 +02001871static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1872{
1873 struct task_struct *task;
1874 struct mm_struct *mm;
1875
1876 /*
1877 * There is no need to check if current process has the right to modify
1878 * the specified process when they are same.
1879 */
1880 if (!pid) {
1881 mmget(current->mm);
1882 *mem_nodes = cpuset_mems_allowed(current);
1883 return current->mm;
1884 }
1885
1886 /* Find the mm_struct */
1887 rcu_read_lock();
1888 task = find_task_by_vpid(pid);
1889 if (!task) {
1890 rcu_read_unlock();
1891 return ERR_PTR(-ESRCH);
1892 }
1893 get_task_struct(task);
1894
1895 /*
1896 * Check if this process has the right to modify the specified
1897 * process. Use the regular "ptrace_may_access()" checks.
1898 */
1899 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1900 rcu_read_unlock();
1901 mm = ERR_PTR(-EPERM);
1902 goto out;
1903 }
1904 rcu_read_unlock();
1905
1906 mm = ERR_PTR(security_task_movememory(task));
1907 if (IS_ERR(mm))
1908 goto out;
1909 *mem_nodes = cpuset_mems_allowed(task);
1910 mm = get_task_mm(task);
1911out:
1912 put_task_struct(task);
1913 if (!mm)
1914 mm = ERR_PTR(-EINVAL);
1915 return mm;
1916}
1917
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001918/*
1919 * Move a list of pages in the address space of the currently executing
1920 * process.
1921 */
1922static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1923 const void __user * __user *pages,
1924 const int __user *nodes,
1925 int __user *status, int flags)
1926{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001927 struct mm_struct *mm;
1928 int err;
1929 nodemask_t task_nodes;
1930
1931 /* Check flags */
1932 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1933 return -EINVAL;
1934
1935 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1936 return -EPERM;
1937
Olivier Deprez157378f2022-04-04 15:47:50 +02001938 mm = find_mm_struct(pid, &task_nodes);
1939 if (IS_ERR(mm))
1940 return PTR_ERR(mm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001941
1942 if (nodes)
1943 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1944 nodes, status, flags);
1945 else
1946 err = do_pages_stat(mm, nr_pages, pages, status);
1947
1948 mmput(mm);
1949 return err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001950}
1951
1952SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1953 const void __user * __user *, pages,
1954 const int __user *, nodes,
1955 int __user *, status, int, flags)
1956{
1957 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1958}
1959
1960#ifdef CONFIG_COMPAT
1961COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1962 compat_uptr_t __user *, pages32,
1963 const int __user *, nodes,
1964 int __user *, status,
1965 int, flags)
1966{
1967 const void __user * __user *pages;
1968 int i;
1969
1970 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1971 for (i = 0; i < nr_pages; i++) {
1972 compat_uptr_t p;
1973
1974 if (get_user(p, pages32 + i) ||
1975 put_user(compat_ptr(p), pages + i))
1976 return -EFAULT;
1977 }
1978 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1979}
1980#endif /* CONFIG_COMPAT */
1981
1982#ifdef CONFIG_NUMA_BALANCING
1983/*
1984 * Returns true if this is a safe migration target node for misplaced NUMA
1985 * pages. Currently it only checks the watermarks which crude
1986 */
1987static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1988 unsigned long nr_migrate_pages)
1989{
1990 int z;
1991
1992 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1993 struct zone *zone = pgdat->node_zones + z;
1994
1995 if (!populated_zone(zone))
1996 continue;
1997
1998 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1999 if (!zone_watermark_ok(zone, 0,
2000 high_wmark_pages(zone) +
2001 nr_migrate_pages,
Olivier Deprez157378f2022-04-04 15:47:50 +02002002 ZONE_MOVABLE, 0))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002003 continue;
2004 return true;
2005 }
2006 return false;
2007}
2008
2009static struct page *alloc_misplaced_dst_page(struct page *page,
2010 unsigned long data)
2011{
2012 int nid = (int) data;
2013 struct page *newpage;
2014
2015 newpage = __alloc_pages_node(nid,
2016 (GFP_HIGHUSER_MOVABLE |
2017 __GFP_THISNODE | __GFP_NOMEMALLOC |
2018 __GFP_NORETRY | __GFP_NOWARN) &
2019 ~__GFP_RECLAIM, 0);
2020
2021 return newpage;
2022}
2023
2024static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2025{
2026 int page_lru;
2027
2028 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2029
2030 /* Avoid migrating to a node that is nearly full */
David Brazdil0f672f62019-12-10 10:32:29 +00002031 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002032 return 0;
2033
2034 if (isolate_lru_page(page))
2035 return 0;
2036
2037 /*
2038 * migrate_misplaced_transhuge_page() skips page migration's usual
2039 * check on page_count(), so we must do it here, now that the page
2040 * has been isolated: a GUP pin, or any other pin, prevents migration.
2041 * The expected page count is 3: 1 for page's mapcount and 1 for the
2042 * caller's pin and 1 for the reference taken by isolate_lru_page().
2043 */
2044 if (PageTransHuge(page) && page_count(page) != 3) {
2045 putback_lru_page(page);
2046 return 0;
2047 }
2048
Olivier Deprez157378f2022-04-04 15:47:50 +02002049 page_lru = page_is_file_lru(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002050 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
Olivier Deprez157378f2022-04-04 15:47:50 +02002051 thp_nr_pages(page));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002052
2053 /*
2054 * Isolating the page has taken another reference, so the
2055 * caller's reference can be safely dropped without the page
2056 * disappearing underneath us during migration.
2057 */
2058 put_page(page);
2059 return 1;
2060}
2061
2062bool pmd_trans_migrating(pmd_t pmd)
2063{
2064 struct page *page = pmd_page(pmd);
2065 return PageLocked(page);
2066}
2067
2068/*
2069 * Attempt to migrate a misplaced page to the specified destination
2070 * node. Caller is expected to have an elevated reference count on
2071 * the page that will be dropped by this function before returning.
2072 */
2073int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2074 int node)
2075{
2076 pg_data_t *pgdat = NODE_DATA(node);
2077 int isolated;
2078 int nr_remaining;
2079 LIST_HEAD(migratepages);
2080
2081 /*
2082 * Don't migrate file pages that are mapped in multiple processes
2083 * with execute permissions as they are probably shared libraries.
2084 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002085 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002086 (vma->vm_flags & VM_EXEC))
2087 goto out;
2088
2089 /*
2090 * Also do not migrate dirty pages as not all filesystems can move
2091 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2092 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002093 if (page_is_file_lru(page) && PageDirty(page))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002094 goto out;
2095
2096 isolated = numamigrate_isolate_page(pgdat, page);
2097 if (!isolated)
2098 goto out;
2099
2100 list_add(&page->lru, &migratepages);
2101 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2102 NULL, node, MIGRATE_ASYNC,
2103 MR_NUMA_MISPLACED);
2104 if (nr_remaining) {
2105 if (!list_empty(&migratepages)) {
2106 list_del(&page->lru);
2107 dec_node_page_state(page, NR_ISOLATED_ANON +
Olivier Deprez157378f2022-04-04 15:47:50 +02002108 page_is_file_lru(page));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002109 putback_lru_page(page);
2110 }
2111 isolated = 0;
2112 } else
2113 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2114 BUG_ON(!list_empty(&migratepages));
2115 return isolated;
2116
2117out:
2118 put_page(page);
2119 return 0;
2120}
2121#endif /* CONFIG_NUMA_BALANCING */
2122
2123#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2124/*
2125 * Migrates a THP to a given target node. page must be locked and is unlocked
2126 * before returning.
2127 */
2128int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2129 struct vm_area_struct *vma,
2130 pmd_t *pmd, pmd_t entry,
2131 unsigned long address,
2132 struct page *page, int node)
2133{
2134 spinlock_t *ptl;
2135 pg_data_t *pgdat = NODE_DATA(node);
2136 int isolated = 0;
2137 struct page *new_page = NULL;
Olivier Deprez157378f2022-04-04 15:47:50 +02002138 int page_lru = page_is_file_lru(page);
David Brazdil0f672f62019-12-10 10:32:29 +00002139 unsigned long start = address & HPAGE_PMD_MASK;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002140
2141 new_page = alloc_pages_node(node,
2142 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2143 HPAGE_PMD_ORDER);
2144 if (!new_page)
2145 goto out_fail;
2146 prep_transhuge_page(new_page);
2147
2148 isolated = numamigrate_isolate_page(pgdat, page);
2149 if (!isolated) {
2150 put_page(new_page);
2151 goto out_fail;
2152 }
2153
2154 /* Prepare a page as a migration target */
2155 __SetPageLocked(new_page);
2156 if (PageSwapBacked(page))
2157 __SetPageSwapBacked(new_page);
2158
2159 /* anon mapping, we can simply copy page->mapping to the new page: */
2160 new_page->mapping = page->mapping;
2161 new_page->index = page->index;
David Brazdil0f672f62019-12-10 10:32:29 +00002162 /* flush the cache before copying using the kernel virtual address */
2163 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002164 migrate_page_copy(new_page, page);
2165 WARN_ON(PageLRU(new_page));
2166
2167 /* Recheck the target PMD */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002168 ptl = pmd_lock(mm, pmd);
2169 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2170 spin_unlock(ptl);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002171
2172 /* Reverse changes made by migrate_page_copy() */
2173 if (TestClearPageActive(new_page))
2174 SetPageActive(page);
2175 if (TestClearPageUnevictable(new_page))
2176 SetPageUnevictable(page);
2177
2178 unlock_page(new_page);
2179 put_page(new_page); /* Free it */
2180
2181 /* Retake the callers reference and putback on LRU */
2182 get_page(page);
2183 putback_lru_page(page);
2184 mod_node_page_state(page_pgdat(page),
2185 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2186
2187 goto out_unlock;
2188 }
2189
2190 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2191 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2192
2193 /*
David Brazdil0f672f62019-12-10 10:32:29 +00002194 * Overwrite the old entry under pagetable lock and establish
2195 * the new PTE. Any parallel GUP will either observe the old
2196 * page blocking on the page lock, block on the page table
2197 * lock or observe the new page. The SetPageUptodate on the
2198 * new page and page_add_new_anon_rmap guarantee the copy is
2199 * visible before the pagetable update.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002200 */
David Brazdil0f672f62019-12-10 10:32:29 +00002201 page_add_anon_rmap(new_page, vma, start, true);
2202 /*
2203 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2204 * has already been flushed globally. So no TLB can be currently
2205 * caching this non present pmd mapping. There's no need to clear the
2206 * pmd before doing set_pmd_at(), nor to flush the TLB after
2207 * set_pmd_at(). Clearing the pmd here would introduce a race
2208 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
Olivier Deprez157378f2022-04-04 15:47:50 +02002209 * mmap_lock for reading. If the pmd is set to NULL at any given time,
David Brazdil0f672f62019-12-10 10:32:29 +00002210 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2211 * pmd.
2212 */
2213 set_pmd_at(mm, start, pmd, entry);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002214 update_mmu_cache_pmd(vma, address, &entry);
2215
2216 page_ref_unfreeze(page, 2);
2217 mlock_migrate_page(new_page, page);
2218 page_remove_rmap(page, true);
2219 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2220
2221 spin_unlock(ptl);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002222
2223 /* Take an "isolate" reference and put new page on the LRU. */
2224 get_page(new_page);
2225 putback_lru_page(new_page);
2226
2227 unlock_page(new_page);
2228 unlock_page(page);
2229 put_page(page); /* Drop the rmap reference */
2230 put_page(page); /* Drop the LRU isolation reference */
2231
2232 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2233 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2234
2235 mod_node_page_state(page_pgdat(page),
2236 NR_ISOLATED_ANON + page_lru,
2237 -HPAGE_PMD_NR);
2238 return isolated;
2239
2240out_fail:
2241 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2242 ptl = pmd_lock(mm, pmd);
2243 if (pmd_same(*pmd, entry)) {
2244 entry = pmd_modify(entry, vma->vm_page_prot);
David Brazdil0f672f62019-12-10 10:32:29 +00002245 set_pmd_at(mm, start, pmd, entry);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002246 update_mmu_cache_pmd(vma, address, &entry);
2247 }
2248 spin_unlock(ptl);
2249
2250out_unlock:
2251 unlock_page(page);
2252 put_page(page);
2253 return 0;
2254}
2255#endif /* CONFIG_NUMA_BALANCING */
2256
2257#endif /* CONFIG_NUMA */
2258
David Brazdil0f672f62019-12-10 10:32:29 +00002259#ifdef CONFIG_DEVICE_PRIVATE
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002260static int migrate_vma_collect_hole(unsigned long start,
2261 unsigned long end,
Olivier Deprez157378f2022-04-04 15:47:50 +02002262 __always_unused int depth,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002263 struct mm_walk *walk)
2264{
2265 struct migrate_vma *migrate = walk->private;
2266 unsigned long addr;
2267
Olivier Deprez157378f2022-04-04 15:47:50 +02002268 /* Only allow populating anonymous memory. */
2269 if (!vma_is_anonymous(walk->vma)) {
2270 for (addr = start; addr < end; addr += PAGE_SIZE) {
2271 migrate->src[migrate->npages] = 0;
2272 migrate->dst[migrate->npages] = 0;
2273 migrate->npages++;
2274 }
2275 return 0;
2276 }
2277
2278 for (addr = start; addr < end; addr += PAGE_SIZE) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002279 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2280 migrate->dst[migrate->npages] = 0;
2281 migrate->npages++;
2282 migrate->cpages++;
2283 }
2284
2285 return 0;
2286}
2287
2288static int migrate_vma_collect_skip(unsigned long start,
2289 unsigned long end,
2290 struct mm_walk *walk)
2291{
2292 struct migrate_vma *migrate = walk->private;
2293 unsigned long addr;
2294
Olivier Deprez157378f2022-04-04 15:47:50 +02002295 for (addr = start; addr < end; addr += PAGE_SIZE) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002296 migrate->dst[migrate->npages] = 0;
2297 migrate->src[migrate->npages++] = 0;
2298 }
2299
2300 return 0;
2301}
2302
2303static int migrate_vma_collect_pmd(pmd_t *pmdp,
2304 unsigned long start,
2305 unsigned long end,
2306 struct mm_walk *walk)
2307{
2308 struct migrate_vma *migrate = walk->private;
2309 struct vm_area_struct *vma = walk->vma;
2310 struct mm_struct *mm = vma->vm_mm;
2311 unsigned long addr = start, unmapped = 0;
2312 spinlock_t *ptl;
2313 pte_t *ptep;
2314
2315again:
2316 if (pmd_none(*pmdp))
Olivier Deprez157378f2022-04-04 15:47:50 +02002317 return migrate_vma_collect_hole(start, end, -1, walk);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002318
2319 if (pmd_trans_huge(*pmdp)) {
2320 struct page *page;
2321
2322 ptl = pmd_lock(mm, pmdp);
2323 if (unlikely(!pmd_trans_huge(*pmdp))) {
2324 spin_unlock(ptl);
2325 goto again;
2326 }
2327
2328 page = pmd_page(*pmdp);
2329 if (is_huge_zero_page(page)) {
2330 spin_unlock(ptl);
2331 split_huge_pmd(vma, pmdp, addr);
2332 if (pmd_trans_unstable(pmdp))
2333 return migrate_vma_collect_skip(start, end,
2334 walk);
2335 } else {
2336 int ret;
2337
2338 get_page(page);
2339 spin_unlock(ptl);
2340 if (unlikely(!trylock_page(page)))
2341 return migrate_vma_collect_skip(start, end,
2342 walk);
2343 ret = split_huge_page(page);
2344 unlock_page(page);
2345 put_page(page);
2346 if (ret)
2347 return migrate_vma_collect_skip(start, end,
2348 walk);
2349 if (pmd_none(*pmdp))
Olivier Deprez157378f2022-04-04 15:47:50 +02002350 return migrate_vma_collect_hole(start, end, -1,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002351 walk);
2352 }
2353 }
2354
2355 if (unlikely(pmd_bad(*pmdp)))
2356 return migrate_vma_collect_skip(start, end, walk);
2357
2358 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2359 arch_enter_lazy_mmu_mode();
2360
2361 for (; addr < end; addr += PAGE_SIZE, ptep++) {
Olivier Deprez157378f2022-04-04 15:47:50 +02002362 unsigned long mpfn = 0, pfn;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002363 struct page *page;
2364 swp_entry_t entry;
2365 pte_t pte;
2366
2367 pte = *ptep;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002368
2369 if (pte_none(pte)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02002370 if (vma_is_anonymous(vma)) {
2371 mpfn = MIGRATE_PFN_MIGRATE;
2372 migrate->cpages++;
2373 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002374 goto next;
2375 }
2376
2377 if (!pte_present(pte)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002378 /*
2379 * Only care about unaddressable device page special
2380 * page table entry. Other special swap entries are not
2381 * migratable, and we ignore regular swapped page.
2382 */
2383 entry = pte_to_swp_entry(pte);
2384 if (!is_device_private_entry(entry))
2385 goto next;
2386
2387 page = device_private_entry_to_page(entry);
Olivier Deprez157378f2022-04-04 15:47:50 +02002388 if (!(migrate->flags &
2389 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2390 page->pgmap->owner != migrate->pgmap_owner)
2391 goto next;
2392
David Brazdil0f672f62019-12-10 10:32:29 +00002393 mpfn = migrate_pfn(page_to_pfn(page)) |
2394 MIGRATE_PFN_MIGRATE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002395 if (is_write_device_private_entry(entry))
2396 mpfn |= MIGRATE_PFN_WRITE;
2397 } else {
Olivier Deprez157378f2022-04-04 15:47:50 +02002398 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2399 goto next;
David Brazdil0f672f62019-12-10 10:32:29 +00002400 pfn = pte_pfn(pte);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002401 if (is_zero_pfn(pfn)) {
2402 mpfn = MIGRATE_PFN_MIGRATE;
2403 migrate->cpages++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002404 goto next;
2405 }
David Brazdil0f672f62019-12-10 10:32:29 +00002406 page = vm_normal_page(migrate->vma, addr, pte);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002407 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2408 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2409 }
2410
2411 /* FIXME support THP */
2412 if (!page || !page->mapping || PageTransCompound(page)) {
David Brazdil0f672f62019-12-10 10:32:29 +00002413 mpfn = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002414 goto next;
2415 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002416
2417 /*
2418 * By getting a reference on the page we pin it and that blocks
2419 * any kind of migration. Side effect is that it "freezes" the
2420 * pte.
2421 *
2422 * We drop this reference after isolating the page from the lru
2423 * for non device page (device page are not on the lru and thus
2424 * can't be dropped from it).
2425 */
2426 get_page(page);
2427 migrate->cpages++;
2428
2429 /*
2430 * Optimize for the common case where page is only mapped once
2431 * in one process. If we can lock the page, then we can safely
2432 * set up a special migration page table entry now.
2433 */
2434 if (trylock_page(page)) {
2435 pte_t swp_pte;
2436
2437 mpfn |= MIGRATE_PFN_LOCKED;
2438 ptep_get_and_clear(mm, addr, ptep);
2439
2440 /* Setup special migration page table entry */
2441 entry = make_migration_entry(page, mpfn &
2442 MIGRATE_PFN_WRITE);
2443 swp_pte = swp_entry_to_pte(entry);
Olivier Deprez157378f2022-04-04 15:47:50 +02002444 if (pte_present(pte)) {
2445 if (pte_soft_dirty(pte))
2446 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2447 if (pte_uffd_wp(pte))
2448 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2449 } else {
2450 if (pte_swp_soft_dirty(pte))
2451 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2452 if (pte_swp_uffd_wp(pte))
2453 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2454 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002455 set_pte_at(mm, addr, ptep, swp_pte);
2456
2457 /*
2458 * This is like regular unmap: we remove the rmap and
2459 * drop page refcount. Page won't be freed, as we took
2460 * a reference just above.
2461 */
2462 page_remove_rmap(page, false);
2463 put_page(page);
2464
2465 if (pte_present(pte))
2466 unmapped++;
2467 }
2468
2469next:
2470 migrate->dst[migrate->npages] = 0;
2471 migrate->src[migrate->npages++] = mpfn;
2472 }
2473 arch_leave_lazy_mmu_mode();
2474 pte_unmap_unlock(ptep - 1, ptl);
2475
2476 /* Only flush the TLB if we actually modified any entries */
2477 if (unmapped)
2478 flush_tlb_range(walk->vma, start, end);
2479
2480 return 0;
2481}
2482
David Brazdil0f672f62019-12-10 10:32:29 +00002483static const struct mm_walk_ops migrate_vma_walk_ops = {
2484 .pmd_entry = migrate_vma_collect_pmd,
2485 .pte_hole = migrate_vma_collect_hole,
2486};
2487
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002488/*
2489 * migrate_vma_collect() - collect pages over a range of virtual addresses
2490 * @migrate: migrate struct containing all migration information
2491 *
2492 * This will walk the CPU page table. For each virtual address backed by a
2493 * valid page, it updates the src array and takes a reference on the page, in
2494 * order to pin the page until we lock it and unmap it.
2495 */
2496static void migrate_vma_collect(struct migrate_vma *migrate)
2497{
David Brazdil0f672f62019-12-10 10:32:29 +00002498 struct mmu_notifier_range range;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002499
Olivier Deprez157378f2022-04-04 15:47:50 +02002500 /*
2501 * Note that the pgmap_owner is passed to the mmu notifier callback so
2502 * that the registered device driver can skip invalidating device
2503 * private page mappings that won't be migrated.
2504 */
2505 mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2506 migrate->vma->vm_mm, migrate->start, migrate->end,
2507 migrate->pgmap_owner);
David Brazdil0f672f62019-12-10 10:32:29 +00002508 mmu_notifier_invalidate_range_start(&range);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002509
David Brazdil0f672f62019-12-10 10:32:29 +00002510 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2511 &migrate_vma_walk_ops, migrate);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002512
David Brazdil0f672f62019-12-10 10:32:29 +00002513 mmu_notifier_invalidate_range_end(&range);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002514 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2515}
2516
2517/*
2518 * migrate_vma_check_page() - check if page is pinned or not
2519 * @page: struct page to check
2520 *
2521 * Pinned pages cannot be migrated. This is the same test as in
2522 * migrate_page_move_mapping(), except that here we allow migration of a
2523 * ZONE_DEVICE page.
2524 */
2525static bool migrate_vma_check_page(struct page *page)
2526{
2527 /*
2528 * One extra ref because caller holds an extra reference, either from
2529 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2530 * a device page.
2531 */
2532 int extra = 1;
2533
2534 /*
2535 * FIXME support THP (transparent huge page), it is bit more complex to
2536 * check them than regular pages, because they can be mapped with a pmd
2537 * or with a pte (split pte mapping).
2538 */
2539 if (PageCompound(page))
2540 return false;
2541
2542 /* Page from ZONE_DEVICE have one extra reference */
2543 if (is_zone_device_page(page)) {
2544 /*
2545 * Private page can never be pin as they have no valid pte and
2546 * GUP will fail for those. Yet if there is a pending migration
2547 * a thread might try to wait on the pte migration entry and
2548 * will bump the page reference count. Sadly there is no way to
2549 * differentiate a regular pin from migration wait. Hence to
2550 * avoid 2 racing thread trying to migrate back to CPU to enter
2551 * infinite loop (one stoping migration because the other is
2552 * waiting on pte migration entry). We always return true here.
2553 *
2554 * FIXME proper solution is to rework migration_entry_wait() so
2555 * it does not need to take a reference on page.
2556 */
David Brazdil0f672f62019-12-10 10:32:29 +00002557 return is_device_private_page(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002558 }
2559
2560 /* For file back page */
2561 if (page_mapping(page))
2562 extra += 1 + page_has_private(page);
2563
2564 if ((page_count(page) - extra) > page_mapcount(page))
2565 return false;
2566
2567 return true;
2568}
2569
2570/*
2571 * migrate_vma_prepare() - lock pages and isolate them from the lru
2572 * @migrate: migrate struct containing all migration information
2573 *
2574 * This locks pages that have been collected by migrate_vma_collect(). Once each
2575 * page is locked it is isolated from the lru (for non-device pages). Finally,
2576 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2577 * migrated by concurrent kernel threads.
2578 */
2579static void migrate_vma_prepare(struct migrate_vma *migrate)
2580{
2581 const unsigned long npages = migrate->npages;
2582 const unsigned long start = migrate->start;
2583 unsigned long addr, i, restore = 0;
2584 bool allow_drain = true;
2585
2586 lru_add_drain();
2587
2588 for (i = 0; (i < npages) && migrate->cpages; i++) {
2589 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2590 bool remap = true;
2591
2592 if (!page)
2593 continue;
2594
2595 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2596 /*
2597 * Because we are migrating several pages there can be
2598 * a deadlock between 2 concurrent migration where each
2599 * are waiting on each other page lock.
2600 *
2601 * Make migrate_vma() a best effort thing and backoff
2602 * for any page we can not lock right away.
2603 */
2604 if (!trylock_page(page)) {
2605 migrate->src[i] = 0;
2606 migrate->cpages--;
2607 put_page(page);
2608 continue;
2609 }
2610 remap = false;
2611 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2612 }
2613
2614 /* ZONE_DEVICE pages are not on LRU */
2615 if (!is_zone_device_page(page)) {
2616 if (!PageLRU(page) && allow_drain) {
2617 /* Drain CPU's pagevec */
2618 lru_add_drain_all();
2619 allow_drain = false;
2620 }
2621
2622 if (isolate_lru_page(page)) {
2623 if (remap) {
2624 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2625 migrate->cpages--;
2626 restore++;
2627 } else {
2628 migrate->src[i] = 0;
2629 unlock_page(page);
2630 migrate->cpages--;
2631 put_page(page);
2632 }
2633 continue;
2634 }
2635
2636 /* Drop the reference we took in collect */
2637 put_page(page);
2638 }
2639
2640 if (!migrate_vma_check_page(page)) {
2641 if (remap) {
2642 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2643 migrate->cpages--;
2644 restore++;
2645
2646 if (!is_zone_device_page(page)) {
2647 get_page(page);
2648 putback_lru_page(page);
2649 }
2650 } else {
2651 migrate->src[i] = 0;
2652 unlock_page(page);
2653 migrate->cpages--;
2654
2655 if (!is_zone_device_page(page))
2656 putback_lru_page(page);
2657 else
2658 put_page(page);
2659 }
2660 }
2661 }
2662
2663 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2664 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2665
2666 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2667 continue;
2668
2669 remove_migration_pte(page, migrate->vma, addr, page);
2670
2671 migrate->src[i] = 0;
2672 unlock_page(page);
2673 put_page(page);
2674 restore--;
2675 }
2676}
2677
2678/*
2679 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2680 * @migrate: migrate struct containing all migration information
2681 *
2682 * Replace page mapping (CPU page table pte) with a special migration pte entry
2683 * and check again if it has been pinned. Pinned pages are restored because we
2684 * cannot migrate them.
2685 *
2686 * This is the last step before we call the device driver callback to allocate
2687 * destination memory and copy contents of original page over to new page.
2688 */
2689static void migrate_vma_unmap(struct migrate_vma *migrate)
2690{
Olivier Deprez157378f2022-04-04 15:47:50 +02002691 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002692 const unsigned long npages = migrate->npages;
2693 const unsigned long start = migrate->start;
2694 unsigned long addr, i, restore = 0;
2695
2696 for (i = 0; i < npages; i++) {
2697 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2698
2699 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2700 continue;
2701
2702 if (page_mapped(page)) {
2703 try_to_unmap(page, flags);
2704 if (page_mapped(page))
2705 goto restore;
2706 }
2707
2708 if (migrate_vma_check_page(page))
2709 continue;
2710
2711restore:
2712 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2713 migrate->cpages--;
2714 restore++;
2715 }
2716
2717 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2718 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2719
2720 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2721 continue;
2722
2723 remove_migration_ptes(page, page, false);
2724
2725 migrate->src[i] = 0;
2726 unlock_page(page);
2727 restore--;
2728
2729 if (is_zone_device_page(page))
2730 put_page(page);
2731 else
2732 putback_lru_page(page);
2733 }
2734}
2735
David Brazdil0f672f62019-12-10 10:32:29 +00002736/**
2737 * migrate_vma_setup() - prepare to migrate a range of memory
Olivier Deprez157378f2022-04-04 15:47:50 +02002738 * @args: contains the vma, start, and pfns arrays for the migration
David Brazdil0f672f62019-12-10 10:32:29 +00002739 *
2740 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2741 * without an error.
2742 *
2743 * Prepare to migrate a range of memory virtual address range by collecting all
2744 * the pages backing each virtual address in the range, saving them inside the
2745 * src array. Then lock those pages and unmap them. Once the pages are locked
2746 * and unmapped, check whether each page is pinned or not. Pages that aren't
2747 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2748 * corresponding src array entry. Then restores any pages that are pinned, by
2749 * remapping and unlocking those pages.
2750 *
2751 * The caller should then allocate destination memory and copy source memory to
2752 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2753 * flag set). Once these are allocated and copied, the caller must update each
2754 * corresponding entry in the dst array with the pfn value of the destination
2755 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2756 * (destination pages must have their struct pages locked, via lock_page()).
2757 *
2758 * Note that the caller does not have to migrate all the pages that are marked
2759 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2760 * device memory to system memory. If the caller cannot migrate a device page
2761 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2762 * consequences for the userspace process, so it must be avoided if at all
2763 * possible.
2764 *
2765 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2766 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2767 * allowing the caller to allocate device memory for those unback virtual
2768 * address. For this the caller simply has to allocate device memory and
2769 * properly set the destination entry like for regular migration. Note that
2770 * this can still fails and thus inside the device driver must check if the
2771 * migration was successful for those entries after calling migrate_vma_pages()
2772 * just like for regular migration.
2773 *
2774 * After that, the callers must call migrate_vma_pages() to go over each entry
2775 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2776 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2777 * then migrate_vma_pages() to migrate struct page information from the source
2778 * struct page to the destination struct page. If it fails to migrate the
2779 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2780 * src array.
2781 *
2782 * At this point all successfully migrated pages have an entry in the src
2783 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2784 * array entry with MIGRATE_PFN_VALID flag set.
2785 *
2786 * Once migrate_vma_pages() returns the caller may inspect which pages were
2787 * successfully migrated, and which were not. Successfully migrated pages will
2788 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2789 *
2790 * It is safe to update device page table after migrate_vma_pages() because
Olivier Deprez157378f2022-04-04 15:47:50 +02002791 * both destination and source page are still locked, and the mmap_lock is held
David Brazdil0f672f62019-12-10 10:32:29 +00002792 * in read mode (hence no one can unmap the range being migrated).
2793 *
2794 * Once the caller is done cleaning up things and updating its page table (if it
2795 * chose to do so, this is not an obligation) it finally calls
2796 * migrate_vma_finalize() to update the CPU page table to point to new pages
2797 * for successfully migrated pages or otherwise restore the CPU page table to
2798 * point to the original source pages.
2799 */
2800int migrate_vma_setup(struct migrate_vma *args)
2801{
2802 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2803
2804 args->start &= PAGE_MASK;
2805 args->end &= PAGE_MASK;
2806 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2807 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2808 return -EINVAL;
2809 if (nr_pages <= 0)
2810 return -EINVAL;
2811 if (args->start < args->vma->vm_start ||
2812 args->start >= args->vma->vm_end)
2813 return -EINVAL;
2814 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2815 return -EINVAL;
2816 if (!args->src || !args->dst)
2817 return -EINVAL;
2818
2819 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2820 args->cpages = 0;
2821 args->npages = 0;
2822
2823 migrate_vma_collect(args);
2824
2825 if (args->cpages)
2826 migrate_vma_prepare(args);
2827 if (args->cpages)
2828 migrate_vma_unmap(args);
2829
2830 /*
2831 * At this point pages are locked and unmapped, and thus they have
2832 * stable content and can safely be copied to destination memory that
2833 * is allocated by the drivers.
2834 */
2835 return 0;
2836
2837}
2838EXPORT_SYMBOL(migrate_vma_setup);
2839
Olivier Deprez157378f2022-04-04 15:47:50 +02002840/*
2841 * This code closely matches the code in:
2842 * __handle_mm_fault()
2843 * handle_pte_fault()
2844 * do_anonymous_page()
2845 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2846 * private page.
2847 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002848static void migrate_vma_insert_page(struct migrate_vma *migrate,
2849 unsigned long addr,
2850 struct page *page,
2851 unsigned long *src,
2852 unsigned long *dst)
2853{
2854 struct vm_area_struct *vma = migrate->vma;
2855 struct mm_struct *mm = vma->vm_mm;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002856 bool flush = false;
2857 spinlock_t *ptl;
2858 pte_t entry;
2859 pgd_t *pgdp;
2860 p4d_t *p4dp;
2861 pud_t *pudp;
2862 pmd_t *pmdp;
2863 pte_t *ptep;
2864
2865 /* Only allow populating anonymous memory */
2866 if (!vma_is_anonymous(vma))
2867 goto abort;
2868
2869 pgdp = pgd_offset(mm, addr);
2870 p4dp = p4d_alloc(mm, pgdp, addr);
2871 if (!p4dp)
2872 goto abort;
2873 pudp = pud_alloc(mm, p4dp, addr);
2874 if (!pudp)
2875 goto abort;
2876 pmdp = pmd_alloc(mm, pudp, addr);
2877 if (!pmdp)
2878 goto abort;
2879
2880 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2881 goto abort;
2882
2883 /*
2884 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2885 * pte_offset_map() on pmds where a huge pmd might be created
2886 * from a different thread.
2887 *
Olivier Deprez157378f2022-04-04 15:47:50 +02002888 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002889 * parallel threads are excluded by other means.
2890 *
Olivier Deprez157378f2022-04-04 15:47:50 +02002891 * Here we only have mmap_read_lock(mm).
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002892 */
David Brazdil0f672f62019-12-10 10:32:29 +00002893 if (pte_alloc(mm, pmdp))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002894 goto abort;
2895
2896 /* See the comment in pte_alloc_one_map() */
2897 if (unlikely(pmd_trans_unstable(pmdp)))
2898 goto abort;
2899
2900 if (unlikely(anon_vma_prepare(vma)))
2901 goto abort;
Olivier Deprez157378f2022-04-04 15:47:50 +02002902 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002903 goto abort;
2904
2905 /*
2906 * The memory barrier inside __SetPageUptodate makes sure that
2907 * preceding stores to the page contents become visible before
2908 * the set_pte_at() write.
2909 */
2910 __SetPageUptodate(page);
2911
2912 if (is_zone_device_page(page)) {
2913 if (is_device_private_page(page)) {
2914 swp_entry_t swp_entry;
2915
2916 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2917 entry = swp_entry_to_pte(swp_entry);
Olivier Deprez0e641232021-09-23 10:07:05 +02002918 } else {
2919 /*
2920 * For now we only support migrating to un-addressable
2921 * device memory.
2922 */
2923 pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2924 goto abort;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002925 }
2926 } else {
2927 entry = mk_pte(page, vma->vm_page_prot);
2928 if (vma->vm_flags & VM_WRITE)
2929 entry = pte_mkwrite(pte_mkdirty(entry));
2930 }
2931
2932 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2933
Olivier Deprez157378f2022-04-04 15:47:50 +02002934 if (check_stable_address_space(mm))
2935 goto unlock_abort;
2936
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002937 if (pte_present(*ptep)) {
2938 unsigned long pfn = pte_pfn(*ptep);
2939
Olivier Deprez157378f2022-04-04 15:47:50 +02002940 if (!is_zero_pfn(pfn))
2941 goto unlock_abort;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002942 flush = true;
Olivier Deprez157378f2022-04-04 15:47:50 +02002943 } else if (!pte_none(*ptep))
2944 goto unlock_abort;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002945
2946 /*
Olivier Deprez157378f2022-04-04 15:47:50 +02002947 * Check for userfaultfd but do not deliver the fault. Instead,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002948 * just back off.
2949 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002950 if (userfaultfd_missing(vma))
2951 goto unlock_abort;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002952
2953 inc_mm_counter(mm, MM_ANONPAGES);
2954 page_add_new_anon_rmap(page, vma, addr, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002955 if (!is_zone_device_page(page))
Olivier Deprez157378f2022-04-04 15:47:50 +02002956 lru_cache_add_inactive_or_unevictable(page, vma);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002957 get_page(page);
2958
2959 if (flush) {
2960 flush_cache_page(vma, addr, pte_pfn(*ptep));
2961 ptep_clear_flush_notify(vma, addr, ptep);
2962 set_pte_at_notify(mm, addr, ptep, entry);
2963 update_mmu_cache(vma, addr, ptep);
2964 } else {
2965 /* No need to invalidate - it was non-present before */
2966 set_pte_at(mm, addr, ptep, entry);
2967 update_mmu_cache(vma, addr, ptep);
2968 }
2969
2970 pte_unmap_unlock(ptep, ptl);
2971 *src = MIGRATE_PFN_MIGRATE;
2972 return;
2973
Olivier Deprez157378f2022-04-04 15:47:50 +02002974unlock_abort:
2975 pte_unmap_unlock(ptep, ptl);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002976abort:
2977 *src &= ~MIGRATE_PFN_MIGRATE;
2978}
2979
David Brazdil0f672f62019-12-10 10:32:29 +00002980/**
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002981 * migrate_vma_pages() - migrate meta-data from src page to dst page
2982 * @migrate: migrate struct containing all migration information
2983 *
2984 * This migrates struct page meta-data from source struct page to destination
2985 * struct page. This effectively finishes the migration from source page to the
2986 * destination page.
2987 */
David Brazdil0f672f62019-12-10 10:32:29 +00002988void migrate_vma_pages(struct migrate_vma *migrate)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002989{
2990 const unsigned long npages = migrate->npages;
2991 const unsigned long start = migrate->start;
David Brazdil0f672f62019-12-10 10:32:29 +00002992 struct mmu_notifier_range range;
2993 unsigned long addr, i;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002994 bool notified = false;
2995
2996 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2997 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2998 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2999 struct address_space *mapping;
3000 int r;
3001
3002 if (!newpage) {
3003 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3004 continue;
3005 }
3006
3007 if (!page) {
Olivier Deprez157378f2022-04-04 15:47:50 +02003008 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003009 continue;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003010 if (!notified) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003011 notified = true;
David Brazdil0f672f62019-12-10 10:32:29 +00003012
3013 mmu_notifier_range_init(&range,
3014 MMU_NOTIFY_CLEAR, 0,
3015 NULL,
3016 migrate->vma->vm_mm,
3017 addr, migrate->end);
3018 mmu_notifier_invalidate_range_start(&range);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003019 }
3020 migrate_vma_insert_page(migrate, addr, newpage,
3021 &migrate->src[i],
3022 &migrate->dst[i]);
3023 continue;
3024 }
3025
3026 mapping = page_mapping(page);
3027
3028 if (is_zone_device_page(newpage)) {
3029 if (is_device_private_page(newpage)) {
3030 /*
3031 * For now only support private anonymous when
3032 * migrating to un-addressable device memory.
3033 */
3034 if (mapping) {
3035 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3036 continue;
3037 }
David Brazdil0f672f62019-12-10 10:32:29 +00003038 } else {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003039 /*
3040 * Other types of ZONE_DEVICE page are not
3041 * supported.
3042 */
3043 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3044 continue;
3045 }
3046 }
3047
3048 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3049 if (r != MIGRATEPAGE_SUCCESS)
3050 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3051 }
3052
3053 /*
3054 * No need to double call mmu_notifier->invalidate_range() callback as
3055 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3056 * did already call it.
3057 */
3058 if (notified)
David Brazdil0f672f62019-12-10 10:32:29 +00003059 mmu_notifier_invalidate_range_only_end(&range);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003060}
David Brazdil0f672f62019-12-10 10:32:29 +00003061EXPORT_SYMBOL(migrate_vma_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003062
David Brazdil0f672f62019-12-10 10:32:29 +00003063/**
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003064 * migrate_vma_finalize() - restore CPU page table entry
3065 * @migrate: migrate struct containing all migration information
3066 *
3067 * This replaces the special migration pte entry with either a mapping to the
3068 * new page if migration was successful for that page, or to the original page
3069 * otherwise.
3070 *
3071 * This also unlocks the pages and puts them back on the lru, or drops the extra
3072 * refcount, for device pages.
3073 */
David Brazdil0f672f62019-12-10 10:32:29 +00003074void migrate_vma_finalize(struct migrate_vma *migrate)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003075{
3076 const unsigned long npages = migrate->npages;
3077 unsigned long i;
3078
3079 for (i = 0; i < npages; i++) {
3080 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3081 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3082
3083 if (!page) {
3084 if (newpage) {
3085 unlock_page(newpage);
3086 put_page(newpage);
3087 }
3088 continue;
3089 }
3090
3091 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3092 if (newpage) {
3093 unlock_page(newpage);
3094 put_page(newpage);
3095 }
3096 newpage = page;
3097 }
3098
3099 remove_migration_ptes(page, newpage, false);
3100 unlock_page(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003101
3102 if (is_zone_device_page(page))
3103 put_page(page);
3104 else
3105 putback_lru_page(page);
3106
3107 if (newpage != page) {
3108 unlock_page(newpage);
3109 if (is_zone_device_page(newpage))
3110 put_page(newpage);
3111 else
3112 putback_lru_page(newpage);
3113 }
3114 }
3115}
David Brazdil0f672f62019-12-10 10:32:29 +00003116EXPORT_SYMBOL(migrate_vma_finalize);
3117#endif /* CONFIG_DEVICE_PRIVATE */