Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Memory Migration functionality - linux/mm/migrate.c |
| 4 | * |
| 5 | * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter |
| 6 | * |
| 7 | * Page migration was first developed in the context of the memory hotplug |
| 8 | * project. The main authors of the migration code are: |
| 9 | * |
| 10 | * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> |
| 11 | * Hirokazu Takahashi <taka@valinux.co.jp> |
| 12 | * Dave Hansen <haveblue@us.ibm.com> |
| 13 | * Christoph Lameter |
| 14 | */ |
| 15 | |
| 16 | #include <linux/migrate.h> |
| 17 | #include <linux/export.h> |
| 18 | #include <linux/swap.h> |
| 19 | #include <linux/swapops.h> |
| 20 | #include <linux/pagemap.h> |
| 21 | #include <linux/buffer_head.h> |
| 22 | #include <linux/mm_inline.h> |
| 23 | #include <linux/nsproxy.h> |
| 24 | #include <linux/pagevec.h> |
| 25 | #include <linux/ksm.h> |
| 26 | #include <linux/rmap.h> |
| 27 | #include <linux/topology.h> |
| 28 | #include <linux/cpu.h> |
| 29 | #include <linux/cpuset.h> |
| 30 | #include <linux/writeback.h> |
| 31 | #include <linux/mempolicy.h> |
| 32 | #include <linux/vmalloc.h> |
| 33 | #include <linux/security.h> |
| 34 | #include <linux/backing-dev.h> |
| 35 | #include <linux/compaction.h> |
| 36 | #include <linux/syscalls.h> |
| 37 | #include <linux/compat.h> |
| 38 | #include <linux/hugetlb.h> |
| 39 | #include <linux/hugetlb_cgroup.h> |
| 40 | #include <linux/gfp.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 41 | #include <linux/pagewalk.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 42 | #include <linux/pfn_t.h> |
| 43 | #include <linux/memremap.h> |
| 44 | #include <linux/userfaultfd_k.h> |
| 45 | #include <linux/balloon_compaction.h> |
| 46 | #include <linux/mmu_notifier.h> |
| 47 | #include <linux/page_idle.h> |
| 48 | #include <linux/page_owner.h> |
| 49 | #include <linux/sched/mm.h> |
| 50 | #include <linux/ptrace.h> |
| 51 | |
| 52 | #include <asm/tlbflush.h> |
| 53 | |
| 54 | #define CREATE_TRACE_POINTS |
| 55 | #include <trace/events/migrate.h> |
| 56 | |
| 57 | #include "internal.h" |
| 58 | |
| 59 | /* |
| 60 | * migrate_prep() needs to be called before we start compiling a list of pages |
| 61 | * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is |
| 62 | * undesirable, use migrate_prep_local() |
| 63 | */ |
| 64 | int migrate_prep(void) |
| 65 | { |
| 66 | /* |
| 67 | * Clear the LRU lists so pages can be isolated. |
| 68 | * Note that pages may be moved off the LRU after we have |
| 69 | * drained them. Those pages will fail to migrate like other |
| 70 | * pages that may be busy. |
| 71 | */ |
| 72 | lru_add_drain_all(); |
| 73 | |
| 74 | return 0; |
| 75 | } |
| 76 | |
| 77 | /* Do the necessary work of migrate_prep but not if it involves other CPUs */ |
| 78 | int migrate_prep_local(void) |
| 79 | { |
| 80 | lru_add_drain(); |
| 81 | |
| 82 | return 0; |
| 83 | } |
| 84 | |
| 85 | int isolate_movable_page(struct page *page, isolate_mode_t mode) |
| 86 | { |
| 87 | struct address_space *mapping; |
| 88 | |
| 89 | /* |
| 90 | * Avoid burning cycles with pages that are yet under __free_pages(), |
| 91 | * or just got freed under us. |
| 92 | * |
| 93 | * In case we 'win' a race for a movable page being freed under us and |
| 94 | * raise its refcount preventing __free_pages() from doing its job |
| 95 | * the put_page() at the end of this block will take care of |
| 96 | * release this page, thus avoiding a nasty leakage. |
| 97 | */ |
| 98 | if (unlikely(!get_page_unless_zero(page))) |
| 99 | goto out; |
| 100 | |
| 101 | /* |
| 102 | * Check PageMovable before holding a PG_lock because page's owner |
| 103 | * assumes anybody doesn't touch PG_lock of newly allocated page |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 104 | * so unconditionally grabbing the lock ruins page's owner side. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 105 | */ |
| 106 | if (unlikely(!__PageMovable(page))) |
| 107 | goto out_putpage; |
| 108 | /* |
| 109 | * As movable pages are not isolated from LRU lists, concurrent |
| 110 | * compaction threads can race against page migration functions |
| 111 | * as well as race against the releasing a page. |
| 112 | * |
| 113 | * In order to avoid having an already isolated movable page |
| 114 | * being (wrongly) re-isolated while it is under migration, |
| 115 | * or to avoid attempting to isolate pages being released, |
| 116 | * lets be sure we have the page lock |
| 117 | * before proceeding with the movable page isolation steps. |
| 118 | */ |
| 119 | if (unlikely(!trylock_page(page))) |
| 120 | goto out_putpage; |
| 121 | |
| 122 | if (!PageMovable(page) || PageIsolated(page)) |
| 123 | goto out_no_isolated; |
| 124 | |
| 125 | mapping = page_mapping(page); |
| 126 | VM_BUG_ON_PAGE(!mapping, page); |
| 127 | |
| 128 | if (!mapping->a_ops->isolate_page(page, mode)) |
| 129 | goto out_no_isolated; |
| 130 | |
| 131 | /* Driver shouldn't use PG_isolated bit of page->flags */ |
| 132 | WARN_ON_ONCE(PageIsolated(page)); |
| 133 | __SetPageIsolated(page); |
| 134 | unlock_page(page); |
| 135 | |
| 136 | return 0; |
| 137 | |
| 138 | out_no_isolated: |
| 139 | unlock_page(page); |
| 140 | out_putpage: |
| 141 | put_page(page); |
| 142 | out: |
| 143 | return -EBUSY; |
| 144 | } |
| 145 | |
| 146 | /* It should be called on page which is PG_movable */ |
| 147 | void putback_movable_page(struct page *page) |
| 148 | { |
| 149 | struct address_space *mapping; |
| 150 | |
| 151 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
| 152 | VM_BUG_ON_PAGE(!PageMovable(page), page); |
| 153 | VM_BUG_ON_PAGE(!PageIsolated(page), page); |
| 154 | |
| 155 | mapping = page_mapping(page); |
| 156 | mapping->a_ops->putback_page(page); |
| 157 | __ClearPageIsolated(page); |
| 158 | } |
| 159 | |
| 160 | /* |
| 161 | * Put previously isolated pages back onto the appropriate lists |
| 162 | * from where they were once taken off for compaction/migration. |
| 163 | * |
| 164 | * This function shall be used whenever the isolated pageset has been |
| 165 | * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() |
| 166 | * and isolate_huge_page(). |
| 167 | */ |
| 168 | void putback_movable_pages(struct list_head *l) |
| 169 | { |
| 170 | struct page *page; |
| 171 | struct page *page2; |
| 172 | |
| 173 | list_for_each_entry_safe(page, page2, l, lru) { |
| 174 | if (unlikely(PageHuge(page))) { |
| 175 | putback_active_hugepage(page); |
| 176 | continue; |
| 177 | } |
| 178 | list_del(&page->lru); |
| 179 | /* |
| 180 | * We isolated non-lru movable page so here we can use |
| 181 | * __PageMovable because LRU page's mapping cannot have |
| 182 | * PAGE_MAPPING_MOVABLE. |
| 183 | */ |
| 184 | if (unlikely(__PageMovable(page))) { |
| 185 | VM_BUG_ON_PAGE(!PageIsolated(page), page); |
| 186 | lock_page(page); |
| 187 | if (PageMovable(page)) |
| 188 | putback_movable_page(page); |
| 189 | else |
| 190 | __ClearPageIsolated(page); |
| 191 | unlock_page(page); |
| 192 | put_page(page); |
| 193 | } else { |
| 194 | mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + |
| 195 | page_is_file_cache(page), -hpage_nr_pages(page)); |
| 196 | putback_lru_page(page); |
| 197 | } |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | /* |
| 202 | * Restore a potential migration pte to a working pte entry |
| 203 | */ |
| 204 | static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, |
| 205 | unsigned long addr, void *old) |
| 206 | { |
| 207 | struct page_vma_mapped_walk pvmw = { |
| 208 | .page = old, |
| 209 | .vma = vma, |
| 210 | .address = addr, |
| 211 | .flags = PVMW_SYNC | PVMW_MIGRATION, |
| 212 | }; |
| 213 | struct page *new; |
| 214 | pte_t pte; |
| 215 | swp_entry_t entry; |
| 216 | |
| 217 | VM_BUG_ON_PAGE(PageTail(page), page); |
| 218 | while (page_vma_mapped_walk(&pvmw)) { |
| 219 | if (PageKsm(page)) |
| 220 | new = page; |
| 221 | else |
| 222 | new = page - pvmw.page->index + |
| 223 | linear_page_index(vma, pvmw.address); |
| 224 | |
| 225 | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION |
| 226 | /* PMD-mapped THP migration entry */ |
| 227 | if (!pvmw.pte) { |
| 228 | VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); |
| 229 | remove_migration_pmd(&pvmw, new); |
| 230 | continue; |
| 231 | } |
| 232 | #endif |
| 233 | |
| 234 | get_page(new); |
| 235 | pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); |
| 236 | if (pte_swp_soft_dirty(*pvmw.pte)) |
| 237 | pte = pte_mksoft_dirty(pte); |
| 238 | |
| 239 | /* |
| 240 | * Recheck VMA as permissions can change since migration started |
| 241 | */ |
| 242 | entry = pte_to_swp_entry(*pvmw.pte); |
| 243 | if (is_write_migration_entry(entry)) |
| 244 | pte = maybe_mkwrite(pte, vma); |
| 245 | |
| 246 | if (unlikely(is_zone_device_page(new))) { |
| 247 | if (is_device_private_page(new)) { |
| 248 | entry = make_device_private_entry(new, pte_write(pte)); |
| 249 | pte = swp_entry_to_pte(entry); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 250 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 251 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 252 | |
| 253 | #ifdef CONFIG_HUGETLB_PAGE |
| 254 | if (PageHuge(new)) { |
| 255 | pte = pte_mkhuge(pte); |
| 256 | pte = arch_make_huge_pte(pte, vma, new, 0); |
| 257 | set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); |
| 258 | if (PageAnon(new)) |
| 259 | hugepage_add_anon_rmap(new, vma, pvmw.address); |
| 260 | else |
| 261 | page_dup_rmap(new, true); |
| 262 | } else |
| 263 | #endif |
| 264 | { |
| 265 | set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); |
| 266 | |
| 267 | if (PageAnon(new)) |
| 268 | page_add_anon_rmap(new, vma, pvmw.address, false); |
| 269 | else |
| 270 | page_add_file_rmap(new, false); |
| 271 | } |
| 272 | if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) |
| 273 | mlock_vma_page(new); |
| 274 | |
| 275 | if (PageTransHuge(page) && PageMlocked(page)) |
| 276 | clear_page_mlock(page); |
| 277 | |
| 278 | /* No need to invalidate - it was non-present before */ |
| 279 | update_mmu_cache(vma, pvmw.address, pvmw.pte); |
| 280 | } |
| 281 | |
| 282 | return true; |
| 283 | } |
| 284 | |
| 285 | /* |
| 286 | * Get rid of all migration entries and replace them by |
| 287 | * references to the indicated page. |
| 288 | */ |
| 289 | void remove_migration_ptes(struct page *old, struct page *new, bool locked) |
| 290 | { |
| 291 | struct rmap_walk_control rwc = { |
| 292 | .rmap_one = remove_migration_pte, |
| 293 | .arg = old, |
| 294 | }; |
| 295 | |
| 296 | if (locked) |
| 297 | rmap_walk_locked(new, &rwc); |
| 298 | else |
| 299 | rmap_walk(new, &rwc); |
| 300 | } |
| 301 | |
| 302 | /* |
| 303 | * Something used the pte of a page under migration. We need to |
| 304 | * get to the page and wait until migration is finished. |
| 305 | * When we return from this function the fault will be retried. |
| 306 | */ |
| 307 | void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, |
| 308 | spinlock_t *ptl) |
| 309 | { |
| 310 | pte_t pte; |
| 311 | swp_entry_t entry; |
| 312 | struct page *page; |
| 313 | |
| 314 | spin_lock(ptl); |
| 315 | pte = *ptep; |
| 316 | if (!is_swap_pte(pte)) |
| 317 | goto out; |
| 318 | |
| 319 | entry = pte_to_swp_entry(pte); |
| 320 | if (!is_migration_entry(entry)) |
| 321 | goto out; |
| 322 | |
| 323 | page = migration_entry_to_page(entry); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 324 | page = compound_head(page); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 325 | |
| 326 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 327 | * Once page cache replacement of page migration started, page_count |
| 328 | * is zero; but we must not call put_and_wait_on_page_locked() without |
| 329 | * a ref. Use get_page_unless_zero(), and just fault again if it fails. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 330 | */ |
| 331 | if (!get_page_unless_zero(page)) |
| 332 | goto out; |
| 333 | pte_unmap_unlock(ptep, ptl); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 334 | put_and_wait_on_page_locked(page); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 335 | return; |
| 336 | out: |
| 337 | pte_unmap_unlock(ptep, ptl); |
| 338 | } |
| 339 | |
| 340 | void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, |
| 341 | unsigned long address) |
| 342 | { |
| 343 | spinlock_t *ptl = pte_lockptr(mm, pmd); |
| 344 | pte_t *ptep = pte_offset_map(pmd, address); |
| 345 | __migration_entry_wait(mm, ptep, ptl); |
| 346 | } |
| 347 | |
| 348 | void migration_entry_wait_huge(struct vm_area_struct *vma, |
| 349 | struct mm_struct *mm, pte_t *pte) |
| 350 | { |
| 351 | spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); |
| 352 | __migration_entry_wait(mm, pte, ptl); |
| 353 | } |
| 354 | |
| 355 | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION |
| 356 | void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) |
| 357 | { |
| 358 | spinlock_t *ptl; |
| 359 | struct page *page; |
| 360 | |
| 361 | ptl = pmd_lock(mm, pmd); |
| 362 | if (!is_pmd_migration_entry(*pmd)) |
| 363 | goto unlock; |
| 364 | page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); |
| 365 | if (!get_page_unless_zero(page)) |
| 366 | goto unlock; |
| 367 | spin_unlock(ptl); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 368 | put_and_wait_on_page_locked(page); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 369 | return; |
| 370 | unlock: |
| 371 | spin_unlock(ptl); |
| 372 | } |
| 373 | #endif |
| 374 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 375 | static int expected_page_refs(struct address_space *mapping, struct page *page) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 376 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 377 | int expected_count = 1; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 378 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 379 | /* |
| 380 | * Device public or private pages have an extra refcount as they are |
| 381 | * ZONE_DEVICE pages. |
| 382 | */ |
| 383 | expected_count += is_device_private_page(page); |
| 384 | if (mapping) |
| 385 | expected_count += hpage_nr_pages(page) + page_has_private(page); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 386 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 387 | return expected_count; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 388 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 389 | |
| 390 | /* |
| 391 | * Replace the page in the mapping. |
| 392 | * |
| 393 | * The number of remaining references must be: |
| 394 | * 1 for anonymous pages without a mapping |
| 395 | * 2 for pages with a mapping |
| 396 | * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. |
| 397 | */ |
| 398 | int migrate_page_move_mapping(struct address_space *mapping, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 399 | struct page *newpage, struct page *page, int extra_count) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 400 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 401 | XA_STATE(xas, &mapping->i_pages, page_index(page)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 402 | struct zone *oldzone, *newzone; |
| 403 | int dirty; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 404 | int expected_count = expected_page_refs(mapping, page) + extra_count; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 405 | |
| 406 | if (!mapping) { |
| 407 | /* Anonymous page without mapping */ |
| 408 | if (page_count(page) != expected_count) |
| 409 | return -EAGAIN; |
| 410 | |
| 411 | /* No turning back from here */ |
| 412 | newpage->index = page->index; |
| 413 | newpage->mapping = page->mapping; |
| 414 | if (PageSwapBacked(page)) |
| 415 | __SetPageSwapBacked(newpage); |
| 416 | |
| 417 | return MIGRATEPAGE_SUCCESS; |
| 418 | } |
| 419 | |
| 420 | oldzone = page_zone(page); |
| 421 | newzone = page_zone(newpage); |
| 422 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 423 | xas_lock_irq(&xas); |
| 424 | if (page_count(page) != expected_count || xas_load(&xas) != page) { |
| 425 | xas_unlock_irq(&xas); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 426 | return -EAGAIN; |
| 427 | } |
| 428 | |
| 429 | if (!page_ref_freeze(page, expected_count)) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 430 | xas_unlock_irq(&xas); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 431 | return -EAGAIN; |
| 432 | } |
| 433 | |
| 434 | /* |
| 435 | * Now we know that no one else is looking at the page: |
| 436 | * no turning back from here. |
| 437 | */ |
| 438 | newpage->index = page->index; |
| 439 | newpage->mapping = page->mapping; |
| 440 | page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */ |
| 441 | if (PageSwapBacked(page)) { |
| 442 | __SetPageSwapBacked(newpage); |
| 443 | if (PageSwapCache(page)) { |
| 444 | SetPageSwapCache(newpage); |
| 445 | set_page_private(newpage, page_private(page)); |
| 446 | } |
| 447 | } else { |
| 448 | VM_BUG_ON_PAGE(PageSwapCache(page), page); |
| 449 | } |
| 450 | |
| 451 | /* Move dirty while page refs frozen and newpage not yet exposed */ |
| 452 | dirty = PageDirty(page); |
| 453 | if (dirty) { |
| 454 | ClearPageDirty(page); |
| 455 | SetPageDirty(newpage); |
| 456 | } |
| 457 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 458 | xas_store(&xas, newpage); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 459 | if (PageTransHuge(page)) { |
| 460 | int i; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 461 | |
| 462 | for (i = 1; i < HPAGE_PMD_NR; i++) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 463 | xas_next(&xas); |
| 464 | xas_store(&xas, newpage); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 465 | } |
| 466 | } |
| 467 | |
| 468 | /* |
| 469 | * Drop cache reference from old page by unfreezing |
| 470 | * to one less reference. |
| 471 | * We know this isn't the last reference. |
| 472 | */ |
| 473 | page_ref_unfreeze(page, expected_count - hpage_nr_pages(page)); |
| 474 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 475 | xas_unlock(&xas); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 476 | /* Leave irq disabled to prevent preemption while updating stats */ |
| 477 | |
| 478 | /* |
| 479 | * If moved to a different zone then also account |
| 480 | * the page for that zone. Other VM counters will be |
| 481 | * taken care of when we establish references to the |
| 482 | * new page and drop references to the old page. |
| 483 | * |
| 484 | * Note that anonymous pages are accounted for |
| 485 | * via NR_FILE_PAGES and NR_ANON_MAPPED if they |
| 486 | * are mapped to swap space. |
| 487 | */ |
| 488 | if (newzone != oldzone) { |
| 489 | __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES); |
| 490 | __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES); |
| 491 | if (PageSwapBacked(page) && !PageSwapCache(page)) { |
| 492 | __dec_node_state(oldzone->zone_pgdat, NR_SHMEM); |
| 493 | __inc_node_state(newzone->zone_pgdat, NR_SHMEM); |
| 494 | } |
| 495 | if (dirty && mapping_cap_account_dirty(mapping)) { |
| 496 | __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); |
| 497 | __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); |
| 498 | __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); |
| 499 | __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); |
| 500 | } |
| 501 | } |
| 502 | local_irq_enable(); |
| 503 | |
| 504 | return MIGRATEPAGE_SUCCESS; |
| 505 | } |
| 506 | EXPORT_SYMBOL(migrate_page_move_mapping); |
| 507 | |
| 508 | /* |
| 509 | * The expected number of remaining references is the same as that |
| 510 | * of migrate_page_move_mapping(). |
| 511 | */ |
| 512 | int migrate_huge_page_move_mapping(struct address_space *mapping, |
| 513 | struct page *newpage, struct page *page) |
| 514 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 515 | XA_STATE(xas, &mapping->i_pages, page_index(page)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 516 | int expected_count; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 517 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 518 | xas_lock_irq(&xas); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 519 | expected_count = 2 + page_has_private(page); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 520 | if (page_count(page) != expected_count || xas_load(&xas) != page) { |
| 521 | xas_unlock_irq(&xas); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 522 | return -EAGAIN; |
| 523 | } |
| 524 | |
| 525 | if (!page_ref_freeze(page, expected_count)) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 526 | xas_unlock_irq(&xas); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 527 | return -EAGAIN; |
| 528 | } |
| 529 | |
| 530 | newpage->index = page->index; |
| 531 | newpage->mapping = page->mapping; |
| 532 | |
| 533 | get_page(newpage); |
| 534 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 535 | xas_store(&xas, newpage); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 536 | |
| 537 | page_ref_unfreeze(page, expected_count - 1); |
| 538 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 539 | xas_unlock_irq(&xas); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 540 | |
| 541 | return MIGRATEPAGE_SUCCESS; |
| 542 | } |
| 543 | |
| 544 | /* |
| 545 | * Gigantic pages are so large that we do not guarantee that page++ pointer |
| 546 | * arithmetic will work across the entire page. We need something more |
| 547 | * specialized. |
| 548 | */ |
| 549 | static void __copy_gigantic_page(struct page *dst, struct page *src, |
| 550 | int nr_pages) |
| 551 | { |
| 552 | int i; |
| 553 | struct page *dst_base = dst; |
| 554 | struct page *src_base = src; |
| 555 | |
| 556 | for (i = 0; i < nr_pages; ) { |
| 557 | cond_resched(); |
| 558 | copy_highpage(dst, src); |
| 559 | |
| 560 | i++; |
| 561 | dst = mem_map_next(dst, dst_base, i); |
| 562 | src = mem_map_next(src, src_base, i); |
| 563 | } |
| 564 | } |
| 565 | |
| 566 | static void copy_huge_page(struct page *dst, struct page *src) |
| 567 | { |
| 568 | int i; |
| 569 | int nr_pages; |
| 570 | |
| 571 | if (PageHuge(src)) { |
| 572 | /* hugetlbfs page */ |
| 573 | struct hstate *h = page_hstate(src); |
| 574 | nr_pages = pages_per_huge_page(h); |
| 575 | |
| 576 | if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { |
| 577 | __copy_gigantic_page(dst, src, nr_pages); |
| 578 | return; |
| 579 | } |
| 580 | } else { |
| 581 | /* thp page */ |
| 582 | BUG_ON(!PageTransHuge(src)); |
| 583 | nr_pages = hpage_nr_pages(src); |
| 584 | } |
| 585 | |
| 586 | for (i = 0; i < nr_pages; i++) { |
| 587 | cond_resched(); |
| 588 | copy_highpage(dst + i, src + i); |
| 589 | } |
| 590 | } |
| 591 | |
| 592 | /* |
| 593 | * Copy the page to its new location |
| 594 | */ |
| 595 | void migrate_page_states(struct page *newpage, struct page *page) |
| 596 | { |
| 597 | int cpupid; |
| 598 | |
| 599 | if (PageError(page)) |
| 600 | SetPageError(newpage); |
| 601 | if (PageReferenced(page)) |
| 602 | SetPageReferenced(newpage); |
| 603 | if (PageUptodate(page)) |
| 604 | SetPageUptodate(newpage); |
| 605 | if (TestClearPageActive(page)) { |
| 606 | VM_BUG_ON_PAGE(PageUnevictable(page), page); |
| 607 | SetPageActive(newpage); |
| 608 | } else if (TestClearPageUnevictable(page)) |
| 609 | SetPageUnevictable(newpage); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 610 | if (PageWorkingset(page)) |
| 611 | SetPageWorkingset(newpage); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 612 | if (PageChecked(page)) |
| 613 | SetPageChecked(newpage); |
| 614 | if (PageMappedToDisk(page)) |
| 615 | SetPageMappedToDisk(newpage); |
| 616 | |
| 617 | /* Move dirty on pages not done by migrate_page_move_mapping() */ |
| 618 | if (PageDirty(page)) |
| 619 | SetPageDirty(newpage); |
| 620 | |
| 621 | if (page_is_young(page)) |
| 622 | set_page_young(newpage); |
| 623 | if (page_is_idle(page)) |
| 624 | set_page_idle(newpage); |
| 625 | |
| 626 | /* |
| 627 | * Copy NUMA information to the new page, to prevent over-eager |
| 628 | * future migrations of this same page. |
| 629 | */ |
| 630 | cpupid = page_cpupid_xchg_last(page, -1); |
| 631 | page_cpupid_xchg_last(newpage, cpupid); |
| 632 | |
| 633 | ksm_migrate_page(newpage, page); |
| 634 | /* |
| 635 | * Please do not reorder this without considering how mm/ksm.c's |
| 636 | * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). |
| 637 | */ |
| 638 | if (PageSwapCache(page)) |
| 639 | ClearPageSwapCache(page); |
| 640 | ClearPagePrivate(page); |
| 641 | set_page_private(page, 0); |
| 642 | |
| 643 | /* |
| 644 | * If any waiters have accumulated on the new page then |
| 645 | * wake them up. |
| 646 | */ |
| 647 | if (PageWriteback(newpage)) |
| 648 | end_page_writeback(newpage); |
| 649 | |
| 650 | copy_page_owner(page, newpage); |
| 651 | |
| 652 | mem_cgroup_migrate(page, newpage); |
| 653 | } |
| 654 | EXPORT_SYMBOL(migrate_page_states); |
| 655 | |
| 656 | void migrate_page_copy(struct page *newpage, struct page *page) |
| 657 | { |
| 658 | if (PageHuge(page) || PageTransHuge(page)) |
| 659 | copy_huge_page(newpage, page); |
| 660 | else |
| 661 | copy_highpage(newpage, page); |
| 662 | |
| 663 | migrate_page_states(newpage, page); |
| 664 | } |
| 665 | EXPORT_SYMBOL(migrate_page_copy); |
| 666 | |
| 667 | /************************************************************ |
| 668 | * Migration functions |
| 669 | ***********************************************************/ |
| 670 | |
| 671 | /* |
| 672 | * Common logic to directly migrate a single LRU page suitable for |
| 673 | * pages that do not use PagePrivate/PagePrivate2. |
| 674 | * |
| 675 | * Pages are locked upon entry and exit. |
| 676 | */ |
| 677 | int migrate_page(struct address_space *mapping, |
| 678 | struct page *newpage, struct page *page, |
| 679 | enum migrate_mode mode) |
| 680 | { |
| 681 | int rc; |
| 682 | |
| 683 | BUG_ON(PageWriteback(page)); /* Writeback must be complete */ |
| 684 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 685 | rc = migrate_page_move_mapping(mapping, newpage, page, 0); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 686 | |
| 687 | if (rc != MIGRATEPAGE_SUCCESS) |
| 688 | return rc; |
| 689 | |
| 690 | if (mode != MIGRATE_SYNC_NO_COPY) |
| 691 | migrate_page_copy(newpage, page); |
| 692 | else |
| 693 | migrate_page_states(newpage, page); |
| 694 | return MIGRATEPAGE_SUCCESS; |
| 695 | } |
| 696 | EXPORT_SYMBOL(migrate_page); |
| 697 | |
| 698 | #ifdef CONFIG_BLOCK |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 699 | /* Returns true if all buffers are successfully locked */ |
| 700 | static bool buffer_migrate_lock_buffers(struct buffer_head *head, |
| 701 | enum migrate_mode mode) |
| 702 | { |
| 703 | struct buffer_head *bh = head; |
| 704 | |
| 705 | /* Simple case, sync compaction */ |
| 706 | if (mode != MIGRATE_ASYNC) { |
| 707 | do { |
| 708 | lock_buffer(bh); |
| 709 | bh = bh->b_this_page; |
| 710 | |
| 711 | } while (bh != head); |
| 712 | |
| 713 | return true; |
| 714 | } |
| 715 | |
| 716 | /* async case, we cannot block on lock_buffer so use trylock_buffer */ |
| 717 | do { |
| 718 | if (!trylock_buffer(bh)) { |
| 719 | /* |
| 720 | * We failed to lock the buffer and cannot stall in |
| 721 | * async migration. Release the taken locks |
| 722 | */ |
| 723 | struct buffer_head *failed_bh = bh; |
| 724 | bh = head; |
| 725 | while (bh != failed_bh) { |
| 726 | unlock_buffer(bh); |
| 727 | bh = bh->b_this_page; |
| 728 | } |
| 729 | return false; |
| 730 | } |
| 731 | |
| 732 | bh = bh->b_this_page; |
| 733 | } while (bh != head); |
| 734 | return true; |
| 735 | } |
| 736 | |
| 737 | static int __buffer_migrate_page(struct address_space *mapping, |
| 738 | struct page *newpage, struct page *page, enum migrate_mode mode, |
| 739 | bool check_refs) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 740 | { |
| 741 | struct buffer_head *bh, *head; |
| 742 | int rc; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 743 | int expected_count; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 744 | |
| 745 | if (!page_has_buffers(page)) |
| 746 | return migrate_page(mapping, newpage, page, mode); |
| 747 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 748 | /* Check whether page does not have extra refs before we do more work */ |
| 749 | expected_count = expected_page_refs(mapping, page); |
| 750 | if (page_count(page) != expected_count) |
| 751 | return -EAGAIN; |
| 752 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 753 | head = page_buffers(page); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 754 | if (!buffer_migrate_lock_buffers(head, mode)) |
| 755 | return -EAGAIN; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 756 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 757 | if (check_refs) { |
| 758 | bool busy; |
| 759 | bool invalidated = false; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 760 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 761 | recheck_buffers: |
| 762 | busy = false; |
| 763 | spin_lock(&mapping->private_lock); |
| 764 | bh = head; |
| 765 | do { |
| 766 | if (atomic_read(&bh->b_count)) { |
| 767 | busy = true; |
| 768 | break; |
| 769 | } |
| 770 | bh = bh->b_this_page; |
| 771 | } while (bh != head); |
| 772 | if (busy) { |
| 773 | if (invalidated) { |
| 774 | rc = -EAGAIN; |
| 775 | goto unlock_buffers; |
| 776 | } |
| 777 | spin_unlock(&mapping->private_lock); |
| 778 | invalidate_bh_lrus(); |
| 779 | invalidated = true; |
| 780 | goto recheck_buffers; |
| 781 | } |
| 782 | } |
| 783 | |
| 784 | rc = migrate_page_move_mapping(mapping, newpage, page, 0); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 785 | if (rc != MIGRATEPAGE_SUCCESS) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 786 | goto unlock_buffers; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 787 | |
| 788 | ClearPagePrivate(page); |
| 789 | set_page_private(newpage, page_private(page)); |
| 790 | set_page_private(page, 0); |
| 791 | put_page(page); |
| 792 | get_page(newpage); |
| 793 | |
| 794 | bh = head; |
| 795 | do { |
| 796 | set_bh_page(bh, newpage, bh_offset(bh)); |
| 797 | bh = bh->b_this_page; |
| 798 | |
| 799 | } while (bh != head); |
| 800 | |
| 801 | SetPagePrivate(newpage); |
| 802 | |
| 803 | if (mode != MIGRATE_SYNC_NO_COPY) |
| 804 | migrate_page_copy(newpage, page); |
| 805 | else |
| 806 | migrate_page_states(newpage, page); |
| 807 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 808 | rc = MIGRATEPAGE_SUCCESS; |
| 809 | unlock_buffers: |
| 810 | if (check_refs) |
| 811 | spin_unlock(&mapping->private_lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 812 | bh = head; |
| 813 | do { |
| 814 | unlock_buffer(bh); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 815 | bh = bh->b_this_page; |
| 816 | |
| 817 | } while (bh != head); |
| 818 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 819 | return rc; |
| 820 | } |
| 821 | |
| 822 | /* |
| 823 | * Migration function for pages with buffers. This function can only be used |
| 824 | * if the underlying filesystem guarantees that no other references to "page" |
| 825 | * exist. For example attached buffer heads are accessed only under page lock. |
| 826 | */ |
| 827 | int buffer_migrate_page(struct address_space *mapping, |
| 828 | struct page *newpage, struct page *page, enum migrate_mode mode) |
| 829 | { |
| 830 | return __buffer_migrate_page(mapping, newpage, page, mode, false); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 831 | } |
| 832 | EXPORT_SYMBOL(buffer_migrate_page); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 833 | |
| 834 | /* |
| 835 | * Same as above except that this variant is more careful and checks that there |
| 836 | * are also no buffer head references. This function is the right one for |
| 837 | * mappings where buffer heads are directly looked up and referenced (such as |
| 838 | * block device mappings). |
| 839 | */ |
| 840 | int buffer_migrate_page_norefs(struct address_space *mapping, |
| 841 | struct page *newpage, struct page *page, enum migrate_mode mode) |
| 842 | { |
| 843 | return __buffer_migrate_page(mapping, newpage, page, mode, true); |
| 844 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 845 | #endif |
| 846 | |
| 847 | /* |
| 848 | * Writeback a page to clean the dirty state |
| 849 | */ |
| 850 | static int writeout(struct address_space *mapping, struct page *page) |
| 851 | { |
| 852 | struct writeback_control wbc = { |
| 853 | .sync_mode = WB_SYNC_NONE, |
| 854 | .nr_to_write = 1, |
| 855 | .range_start = 0, |
| 856 | .range_end = LLONG_MAX, |
| 857 | .for_reclaim = 1 |
| 858 | }; |
| 859 | int rc; |
| 860 | |
| 861 | if (!mapping->a_ops->writepage) |
| 862 | /* No write method for the address space */ |
| 863 | return -EINVAL; |
| 864 | |
| 865 | if (!clear_page_dirty_for_io(page)) |
| 866 | /* Someone else already triggered a write */ |
| 867 | return -EAGAIN; |
| 868 | |
| 869 | /* |
| 870 | * A dirty page may imply that the underlying filesystem has |
| 871 | * the page on some queue. So the page must be clean for |
| 872 | * migration. Writeout may mean we loose the lock and the |
| 873 | * page state is no longer what we checked for earlier. |
| 874 | * At this point we know that the migration attempt cannot |
| 875 | * be successful. |
| 876 | */ |
| 877 | remove_migration_ptes(page, page, false); |
| 878 | |
| 879 | rc = mapping->a_ops->writepage(page, &wbc); |
| 880 | |
| 881 | if (rc != AOP_WRITEPAGE_ACTIVATE) |
| 882 | /* unlocked. Relock */ |
| 883 | lock_page(page); |
| 884 | |
| 885 | return (rc < 0) ? -EIO : -EAGAIN; |
| 886 | } |
| 887 | |
| 888 | /* |
| 889 | * Default handling if a filesystem does not provide a migration function. |
| 890 | */ |
| 891 | static int fallback_migrate_page(struct address_space *mapping, |
| 892 | struct page *newpage, struct page *page, enum migrate_mode mode) |
| 893 | { |
| 894 | if (PageDirty(page)) { |
| 895 | /* Only writeback pages in full synchronous migration */ |
| 896 | switch (mode) { |
| 897 | case MIGRATE_SYNC: |
| 898 | case MIGRATE_SYNC_NO_COPY: |
| 899 | break; |
| 900 | default: |
| 901 | return -EBUSY; |
| 902 | } |
| 903 | return writeout(mapping, page); |
| 904 | } |
| 905 | |
| 906 | /* |
| 907 | * Buffers may be managed in a filesystem specific way. |
| 908 | * We must have no buffers or drop them. |
| 909 | */ |
| 910 | if (page_has_private(page) && |
| 911 | !try_to_release_page(page, GFP_KERNEL)) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 912 | return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 913 | |
| 914 | return migrate_page(mapping, newpage, page, mode); |
| 915 | } |
| 916 | |
| 917 | /* |
| 918 | * Move a page to a newly allocated page |
| 919 | * The page is locked and all ptes have been successfully removed. |
| 920 | * |
| 921 | * The new page will have replaced the old page if this function |
| 922 | * is successful. |
| 923 | * |
| 924 | * Return value: |
| 925 | * < 0 - error code |
| 926 | * MIGRATEPAGE_SUCCESS - success |
| 927 | */ |
| 928 | static int move_to_new_page(struct page *newpage, struct page *page, |
| 929 | enum migrate_mode mode) |
| 930 | { |
| 931 | struct address_space *mapping; |
| 932 | int rc = -EAGAIN; |
| 933 | bool is_lru = !__PageMovable(page); |
| 934 | |
| 935 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
| 936 | VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); |
| 937 | |
| 938 | mapping = page_mapping(page); |
| 939 | |
| 940 | if (likely(is_lru)) { |
| 941 | if (!mapping) |
| 942 | rc = migrate_page(mapping, newpage, page, mode); |
| 943 | else if (mapping->a_ops->migratepage) |
| 944 | /* |
| 945 | * Most pages have a mapping and most filesystems |
| 946 | * provide a migratepage callback. Anonymous pages |
| 947 | * are part of swap space which also has its own |
| 948 | * migratepage callback. This is the most common path |
| 949 | * for page migration. |
| 950 | */ |
| 951 | rc = mapping->a_ops->migratepage(mapping, newpage, |
| 952 | page, mode); |
| 953 | else |
| 954 | rc = fallback_migrate_page(mapping, newpage, |
| 955 | page, mode); |
| 956 | } else { |
| 957 | /* |
| 958 | * In case of non-lru page, it could be released after |
| 959 | * isolation step. In that case, we shouldn't try migration. |
| 960 | */ |
| 961 | VM_BUG_ON_PAGE(!PageIsolated(page), page); |
| 962 | if (!PageMovable(page)) { |
| 963 | rc = MIGRATEPAGE_SUCCESS; |
| 964 | __ClearPageIsolated(page); |
| 965 | goto out; |
| 966 | } |
| 967 | |
| 968 | rc = mapping->a_ops->migratepage(mapping, newpage, |
| 969 | page, mode); |
| 970 | WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && |
| 971 | !PageIsolated(page)); |
| 972 | } |
| 973 | |
| 974 | /* |
| 975 | * When successful, old pagecache page->mapping must be cleared before |
| 976 | * page is freed; but stats require that PageAnon be left as PageAnon. |
| 977 | */ |
| 978 | if (rc == MIGRATEPAGE_SUCCESS) { |
| 979 | if (__PageMovable(page)) { |
| 980 | VM_BUG_ON_PAGE(!PageIsolated(page), page); |
| 981 | |
| 982 | /* |
| 983 | * We clear PG_movable under page_lock so any compactor |
| 984 | * cannot try to migrate this page. |
| 985 | */ |
| 986 | __ClearPageIsolated(page); |
| 987 | } |
| 988 | |
| 989 | /* |
| 990 | * Anonymous and movable page->mapping will be cleard by |
| 991 | * free_pages_prepare so don't reset it here for keeping |
| 992 | * the type to work PageAnon, for example. |
| 993 | */ |
| 994 | if (!PageMappingFlags(page)) |
| 995 | page->mapping = NULL; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 996 | |
| 997 | if (likely(!is_zone_device_page(newpage))) |
| 998 | flush_dcache_page(newpage); |
| 999 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1000 | } |
| 1001 | out: |
| 1002 | return rc; |
| 1003 | } |
| 1004 | |
| 1005 | static int __unmap_and_move(struct page *page, struct page *newpage, |
| 1006 | int force, enum migrate_mode mode) |
| 1007 | { |
| 1008 | int rc = -EAGAIN; |
| 1009 | int page_was_mapped = 0; |
| 1010 | struct anon_vma *anon_vma = NULL; |
| 1011 | bool is_lru = !__PageMovable(page); |
| 1012 | |
| 1013 | if (!trylock_page(page)) { |
| 1014 | if (!force || mode == MIGRATE_ASYNC) |
| 1015 | goto out; |
| 1016 | |
| 1017 | /* |
| 1018 | * It's not safe for direct compaction to call lock_page. |
| 1019 | * For example, during page readahead pages are added locked |
| 1020 | * to the LRU. Later, when the IO completes the pages are |
| 1021 | * marked uptodate and unlocked. However, the queueing |
| 1022 | * could be merging multiple pages for one bio (e.g. |
| 1023 | * mpage_readpages). If an allocation happens for the |
| 1024 | * second or third page, the process can end up locking |
| 1025 | * the same page twice and deadlocking. Rather than |
| 1026 | * trying to be clever about what pages can be locked, |
| 1027 | * avoid the use of lock_page for direct compaction |
| 1028 | * altogether. |
| 1029 | */ |
| 1030 | if (current->flags & PF_MEMALLOC) |
| 1031 | goto out; |
| 1032 | |
| 1033 | lock_page(page); |
| 1034 | } |
| 1035 | |
| 1036 | if (PageWriteback(page)) { |
| 1037 | /* |
| 1038 | * Only in the case of a full synchronous migration is it |
| 1039 | * necessary to wait for PageWriteback. In the async case, |
| 1040 | * the retry loop is too short and in the sync-light case, |
| 1041 | * the overhead of stalling is too much |
| 1042 | */ |
| 1043 | switch (mode) { |
| 1044 | case MIGRATE_SYNC: |
| 1045 | case MIGRATE_SYNC_NO_COPY: |
| 1046 | break; |
| 1047 | default: |
| 1048 | rc = -EBUSY; |
| 1049 | goto out_unlock; |
| 1050 | } |
| 1051 | if (!force) |
| 1052 | goto out_unlock; |
| 1053 | wait_on_page_writeback(page); |
| 1054 | } |
| 1055 | |
| 1056 | /* |
| 1057 | * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, |
| 1058 | * we cannot notice that anon_vma is freed while we migrates a page. |
| 1059 | * This get_anon_vma() delays freeing anon_vma pointer until the end |
| 1060 | * of migration. File cache pages are no problem because of page_lock() |
| 1061 | * File Caches may use write_page() or lock_page() in migration, then, |
| 1062 | * just care Anon page here. |
| 1063 | * |
| 1064 | * Only page_get_anon_vma() understands the subtleties of |
| 1065 | * getting a hold on an anon_vma from outside one of its mms. |
| 1066 | * But if we cannot get anon_vma, then we won't need it anyway, |
| 1067 | * because that implies that the anon page is no longer mapped |
| 1068 | * (and cannot be remapped so long as we hold the page lock). |
| 1069 | */ |
| 1070 | if (PageAnon(page) && !PageKsm(page)) |
| 1071 | anon_vma = page_get_anon_vma(page); |
| 1072 | |
| 1073 | /* |
| 1074 | * Block others from accessing the new page when we get around to |
| 1075 | * establishing additional references. We are usually the only one |
| 1076 | * holding a reference to newpage at this point. We used to have a BUG |
| 1077 | * here if trylock_page(newpage) fails, but would like to allow for |
| 1078 | * cases where there might be a race with the previous use of newpage. |
| 1079 | * This is much like races on refcount of oldpage: just don't BUG(). |
| 1080 | */ |
| 1081 | if (unlikely(!trylock_page(newpage))) |
| 1082 | goto out_unlock; |
| 1083 | |
| 1084 | if (unlikely(!is_lru)) { |
| 1085 | rc = move_to_new_page(newpage, page, mode); |
| 1086 | goto out_unlock_both; |
| 1087 | } |
| 1088 | |
| 1089 | /* |
| 1090 | * Corner case handling: |
| 1091 | * 1. When a new swap-cache page is read into, it is added to the LRU |
| 1092 | * and treated as swapcache but it has no rmap yet. |
| 1093 | * Calling try_to_unmap() against a page->mapping==NULL page will |
| 1094 | * trigger a BUG. So handle it here. |
| 1095 | * 2. An orphaned page (see truncate_complete_page) might have |
| 1096 | * fs-private metadata. The page can be picked up due to memory |
| 1097 | * offlining. Everywhere else except page reclaim, the page is |
| 1098 | * invisible to the vm, so the page can not be migrated. So try to |
| 1099 | * free the metadata, so the page can be freed. |
| 1100 | */ |
| 1101 | if (!page->mapping) { |
| 1102 | VM_BUG_ON_PAGE(PageAnon(page), page); |
| 1103 | if (page_has_private(page)) { |
| 1104 | try_to_free_buffers(page); |
| 1105 | goto out_unlock_both; |
| 1106 | } |
| 1107 | } else if (page_mapped(page)) { |
| 1108 | /* Establish migration ptes */ |
| 1109 | VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, |
| 1110 | page); |
| 1111 | try_to_unmap(page, |
| 1112 | TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); |
| 1113 | page_was_mapped = 1; |
| 1114 | } |
| 1115 | |
| 1116 | if (!page_mapped(page)) |
| 1117 | rc = move_to_new_page(newpage, page, mode); |
| 1118 | |
| 1119 | if (page_was_mapped) |
| 1120 | remove_migration_ptes(page, |
| 1121 | rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); |
| 1122 | |
| 1123 | out_unlock_both: |
| 1124 | unlock_page(newpage); |
| 1125 | out_unlock: |
| 1126 | /* Drop an anon_vma reference if we took one */ |
| 1127 | if (anon_vma) |
| 1128 | put_anon_vma(anon_vma); |
| 1129 | unlock_page(page); |
| 1130 | out: |
| 1131 | /* |
| 1132 | * If migration is successful, decrease refcount of the newpage |
| 1133 | * which will not free the page because new page owner increased |
| 1134 | * refcounter. As well, if it is LRU page, add the page to LRU |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1135 | * list in here. Use the old state of the isolated source page to |
| 1136 | * determine if we migrated a LRU page. newpage was already unlocked |
| 1137 | * and possibly modified by its owner - don't rely on the page |
| 1138 | * state. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1139 | */ |
| 1140 | if (rc == MIGRATEPAGE_SUCCESS) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1141 | if (unlikely(!is_lru)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1142 | put_page(newpage); |
| 1143 | else |
| 1144 | putback_lru_page(newpage); |
| 1145 | } |
| 1146 | |
| 1147 | return rc; |
| 1148 | } |
| 1149 | |
| 1150 | /* |
| 1151 | * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work |
| 1152 | * around it. |
| 1153 | */ |
| 1154 | #if defined(CONFIG_ARM) && \ |
| 1155 | defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700 |
| 1156 | #define ICE_noinline noinline |
| 1157 | #else |
| 1158 | #define ICE_noinline |
| 1159 | #endif |
| 1160 | |
| 1161 | /* |
| 1162 | * Obtain the lock on page, remove all ptes and migrate the page |
| 1163 | * to the newly allocated page in newpage. |
| 1164 | */ |
| 1165 | static ICE_noinline int unmap_and_move(new_page_t get_new_page, |
| 1166 | free_page_t put_new_page, |
| 1167 | unsigned long private, struct page *page, |
| 1168 | int force, enum migrate_mode mode, |
| 1169 | enum migrate_reason reason) |
| 1170 | { |
| 1171 | int rc = MIGRATEPAGE_SUCCESS; |
| 1172 | struct page *newpage; |
| 1173 | |
| 1174 | if (!thp_migration_supported() && PageTransHuge(page)) |
| 1175 | return -ENOMEM; |
| 1176 | |
| 1177 | newpage = get_new_page(page, private); |
| 1178 | if (!newpage) |
| 1179 | return -ENOMEM; |
| 1180 | |
| 1181 | if (page_count(page) == 1) { |
| 1182 | /* page was freed from under us. So we are done. */ |
| 1183 | ClearPageActive(page); |
| 1184 | ClearPageUnevictable(page); |
| 1185 | if (unlikely(__PageMovable(page))) { |
| 1186 | lock_page(page); |
| 1187 | if (!PageMovable(page)) |
| 1188 | __ClearPageIsolated(page); |
| 1189 | unlock_page(page); |
| 1190 | } |
| 1191 | if (put_new_page) |
| 1192 | put_new_page(newpage, private); |
| 1193 | else |
| 1194 | put_page(newpage); |
| 1195 | goto out; |
| 1196 | } |
| 1197 | |
| 1198 | rc = __unmap_and_move(page, newpage, force, mode); |
| 1199 | if (rc == MIGRATEPAGE_SUCCESS) |
| 1200 | set_page_owner_migrate_reason(newpage, reason); |
| 1201 | |
| 1202 | out: |
| 1203 | if (rc != -EAGAIN) { |
| 1204 | /* |
| 1205 | * A page that has been migrated has all references |
| 1206 | * removed and will be freed. A page that has not been |
| 1207 | * migrated will have kepts its references and be |
| 1208 | * restored. |
| 1209 | */ |
| 1210 | list_del(&page->lru); |
| 1211 | |
| 1212 | /* |
| 1213 | * Compaction can migrate also non-LRU pages which are |
| 1214 | * not accounted to NR_ISOLATED_*. They can be recognized |
| 1215 | * as __PageMovable |
| 1216 | */ |
| 1217 | if (likely(!__PageMovable(page))) |
| 1218 | mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + |
| 1219 | page_is_file_cache(page), -hpage_nr_pages(page)); |
| 1220 | } |
| 1221 | |
| 1222 | /* |
| 1223 | * If migration is successful, releases reference grabbed during |
| 1224 | * isolation. Otherwise, restore the page to right list unless |
| 1225 | * we want to retry. |
| 1226 | */ |
| 1227 | if (rc == MIGRATEPAGE_SUCCESS) { |
| 1228 | put_page(page); |
| 1229 | if (reason == MR_MEMORY_FAILURE) { |
| 1230 | /* |
| 1231 | * Set PG_HWPoison on just freed page |
| 1232 | * intentionally. Although it's rather weird, |
| 1233 | * it's how HWPoison flag works at the moment. |
| 1234 | */ |
| 1235 | if (set_hwpoison_free_buddy_page(page)) |
| 1236 | num_poisoned_pages_inc(); |
| 1237 | } |
| 1238 | } else { |
| 1239 | if (rc != -EAGAIN) { |
| 1240 | if (likely(!__PageMovable(page))) { |
| 1241 | putback_lru_page(page); |
| 1242 | goto put_new; |
| 1243 | } |
| 1244 | |
| 1245 | lock_page(page); |
| 1246 | if (PageMovable(page)) |
| 1247 | putback_movable_page(page); |
| 1248 | else |
| 1249 | __ClearPageIsolated(page); |
| 1250 | unlock_page(page); |
| 1251 | put_page(page); |
| 1252 | } |
| 1253 | put_new: |
| 1254 | if (put_new_page) |
| 1255 | put_new_page(newpage, private); |
| 1256 | else |
| 1257 | put_page(newpage); |
| 1258 | } |
| 1259 | |
| 1260 | return rc; |
| 1261 | } |
| 1262 | |
| 1263 | /* |
| 1264 | * Counterpart of unmap_and_move_page() for hugepage migration. |
| 1265 | * |
| 1266 | * This function doesn't wait the completion of hugepage I/O |
| 1267 | * because there is no race between I/O and migration for hugepage. |
| 1268 | * Note that currently hugepage I/O occurs only in direct I/O |
| 1269 | * where no lock is held and PG_writeback is irrelevant, |
| 1270 | * and writeback status of all subpages are counted in the reference |
| 1271 | * count of the head page (i.e. if all subpages of a 2MB hugepage are |
| 1272 | * under direct I/O, the reference of the head page is 512 and a bit more.) |
| 1273 | * This means that when we try to migrate hugepage whose subpages are |
| 1274 | * doing direct I/O, some references remain after try_to_unmap() and |
| 1275 | * hugepage migration fails without data corruption. |
| 1276 | * |
| 1277 | * There is also no race when direct I/O is issued on the page under migration, |
| 1278 | * because then pte is replaced with migration swap entry and direct I/O code |
| 1279 | * will wait in the page fault for migration to complete. |
| 1280 | */ |
| 1281 | static int unmap_and_move_huge_page(new_page_t get_new_page, |
| 1282 | free_page_t put_new_page, unsigned long private, |
| 1283 | struct page *hpage, int force, |
| 1284 | enum migrate_mode mode, int reason) |
| 1285 | { |
| 1286 | int rc = -EAGAIN; |
| 1287 | int page_was_mapped = 0; |
| 1288 | struct page *new_hpage; |
| 1289 | struct anon_vma *anon_vma = NULL; |
| 1290 | |
| 1291 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1292 | * Migratability of hugepages depends on architectures and their size. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1293 | * This check is necessary because some callers of hugepage migration |
| 1294 | * like soft offline and memory hotremove don't walk through page |
| 1295 | * tables or check whether the hugepage is pmd-based or not before |
| 1296 | * kicking migration. |
| 1297 | */ |
| 1298 | if (!hugepage_migration_supported(page_hstate(hpage))) { |
| 1299 | putback_active_hugepage(hpage); |
| 1300 | return -ENOSYS; |
| 1301 | } |
| 1302 | |
| 1303 | new_hpage = get_new_page(hpage, private); |
| 1304 | if (!new_hpage) |
| 1305 | return -ENOMEM; |
| 1306 | |
| 1307 | if (!trylock_page(hpage)) { |
| 1308 | if (!force) |
| 1309 | goto out; |
| 1310 | switch (mode) { |
| 1311 | case MIGRATE_SYNC: |
| 1312 | case MIGRATE_SYNC_NO_COPY: |
| 1313 | break; |
| 1314 | default: |
| 1315 | goto out; |
| 1316 | } |
| 1317 | lock_page(hpage); |
| 1318 | } |
| 1319 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1320 | /* |
| 1321 | * Check for pages which are in the process of being freed. Without |
| 1322 | * page_mapping() set, hugetlbfs specific move page routine will not |
| 1323 | * be called and we could leak usage counts for subpools. |
| 1324 | */ |
| 1325 | if (page_private(hpage) && !page_mapping(hpage)) { |
| 1326 | rc = -EBUSY; |
| 1327 | goto out_unlock; |
| 1328 | } |
| 1329 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1330 | if (PageAnon(hpage)) |
| 1331 | anon_vma = page_get_anon_vma(hpage); |
| 1332 | |
| 1333 | if (unlikely(!trylock_page(new_hpage))) |
| 1334 | goto put_anon; |
| 1335 | |
| 1336 | if (page_mapped(hpage)) { |
| 1337 | try_to_unmap(hpage, |
| 1338 | TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); |
| 1339 | page_was_mapped = 1; |
| 1340 | } |
| 1341 | |
| 1342 | if (!page_mapped(hpage)) |
| 1343 | rc = move_to_new_page(new_hpage, hpage, mode); |
| 1344 | |
| 1345 | if (page_was_mapped) |
| 1346 | remove_migration_ptes(hpage, |
| 1347 | rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); |
| 1348 | |
| 1349 | unlock_page(new_hpage); |
| 1350 | |
| 1351 | put_anon: |
| 1352 | if (anon_vma) |
| 1353 | put_anon_vma(anon_vma); |
| 1354 | |
| 1355 | if (rc == MIGRATEPAGE_SUCCESS) { |
| 1356 | move_hugetlb_state(hpage, new_hpage, reason); |
| 1357 | put_new_page = NULL; |
| 1358 | } |
| 1359 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1360 | out_unlock: |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1361 | unlock_page(hpage); |
| 1362 | out: |
| 1363 | if (rc != -EAGAIN) |
| 1364 | putback_active_hugepage(hpage); |
| 1365 | |
| 1366 | /* |
| 1367 | * If migration was not successful and there's a freeing callback, use |
| 1368 | * it. Otherwise, put_page() will drop the reference grabbed during |
| 1369 | * isolation. |
| 1370 | */ |
| 1371 | if (put_new_page) |
| 1372 | put_new_page(new_hpage, private); |
| 1373 | else |
| 1374 | putback_active_hugepage(new_hpage); |
| 1375 | |
| 1376 | return rc; |
| 1377 | } |
| 1378 | |
| 1379 | /* |
| 1380 | * migrate_pages - migrate the pages specified in a list, to the free pages |
| 1381 | * supplied as the target for the page migration |
| 1382 | * |
| 1383 | * @from: The list of pages to be migrated. |
| 1384 | * @get_new_page: The function used to allocate free pages to be used |
| 1385 | * as the target of the page migration. |
| 1386 | * @put_new_page: The function used to free target pages if migration |
| 1387 | * fails, or NULL if no special handling is necessary. |
| 1388 | * @private: Private data to be passed on to get_new_page() |
| 1389 | * @mode: The migration mode that specifies the constraints for |
| 1390 | * page migration, if any. |
| 1391 | * @reason: The reason for page migration. |
| 1392 | * |
| 1393 | * The function returns after 10 attempts or if no pages are movable any more |
| 1394 | * because the list has become empty or no retryable pages exist any more. |
| 1395 | * The caller should call putback_movable_pages() to return pages to the LRU |
| 1396 | * or free list only if ret != 0. |
| 1397 | * |
| 1398 | * Returns the number of pages that were not migrated, or an error code. |
| 1399 | */ |
| 1400 | int migrate_pages(struct list_head *from, new_page_t get_new_page, |
| 1401 | free_page_t put_new_page, unsigned long private, |
| 1402 | enum migrate_mode mode, int reason) |
| 1403 | { |
| 1404 | int retry = 1; |
| 1405 | int nr_failed = 0; |
| 1406 | int nr_succeeded = 0; |
| 1407 | int pass = 0; |
| 1408 | struct page *page; |
| 1409 | struct page *page2; |
| 1410 | int swapwrite = current->flags & PF_SWAPWRITE; |
| 1411 | int rc; |
| 1412 | |
| 1413 | if (!swapwrite) |
| 1414 | current->flags |= PF_SWAPWRITE; |
| 1415 | |
| 1416 | for(pass = 0; pass < 10 && retry; pass++) { |
| 1417 | retry = 0; |
| 1418 | |
| 1419 | list_for_each_entry_safe(page, page2, from, lru) { |
| 1420 | retry: |
| 1421 | cond_resched(); |
| 1422 | |
| 1423 | if (PageHuge(page)) |
| 1424 | rc = unmap_and_move_huge_page(get_new_page, |
| 1425 | put_new_page, private, page, |
| 1426 | pass > 2, mode, reason); |
| 1427 | else |
| 1428 | rc = unmap_and_move(get_new_page, put_new_page, |
| 1429 | private, page, pass > 2, mode, |
| 1430 | reason); |
| 1431 | |
| 1432 | switch(rc) { |
| 1433 | case -ENOMEM: |
| 1434 | /* |
| 1435 | * THP migration might be unsupported or the |
| 1436 | * allocation could've failed so we should |
| 1437 | * retry on the same page with the THP split |
| 1438 | * to base pages. |
| 1439 | * |
| 1440 | * Head page is retried immediately and tail |
| 1441 | * pages are added to the tail of the list so |
| 1442 | * we encounter them after the rest of the list |
| 1443 | * is processed. |
| 1444 | */ |
| 1445 | if (PageTransHuge(page) && !PageHuge(page)) { |
| 1446 | lock_page(page); |
| 1447 | rc = split_huge_page_to_list(page, from); |
| 1448 | unlock_page(page); |
| 1449 | if (!rc) { |
| 1450 | list_safe_reset_next(page, page2, lru); |
| 1451 | goto retry; |
| 1452 | } |
| 1453 | } |
| 1454 | nr_failed++; |
| 1455 | goto out; |
| 1456 | case -EAGAIN: |
| 1457 | retry++; |
| 1458 | break; |
| 1459 | case MIGRATEPAGE_SUCCESS: |
| 1460 | nr_succeeded++; |
| 1461 | break; |
| 1462 | default: |
| 1463 | /* |
| 1464 | * Permanent failure (-EBUSY, -ENOSYS, etc.): |
| 1465 | * unlike -EAGAIN case, the failed page is |
| 1466 | * removed from migration page list and not |
| 1467 | * retried in the next outer loop. |
| 1468 | */ |
| 1469 | nr_failed++; |
| 1470 | break; |
| 1471 | } |
| 1472 | } |
| 1473 | } |
| 1474 | nr_failed += retry; |
| 1475 | rc = nr_failed; |
| 1476 | out: |
| 1477 | if (nr_succeeded) |
| 1478 | count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); |
| 1479 | if (nr_failed) |
| 1480 | count_vm_events(PGMIGRATE_FAIL, nr_failed); |
| 1481 | trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); |
| 1482 | |
| 1483 | if (!swapwrite) |
| 1484 | current->flags &= ~PF_SWAPWRITE; |
| 1485 | |
| 1486 | return rc; |
| 1487 | } |
| 1488 | |
| 1489 | #ifdef CONFIG_NUMA |
| 1490 | |
| 1491 | static int store_status(int __user *status, int start, int value, int nr) |
| 1492 | { |
| 1493 | while (nr-- > 0) { |
| 1494 | if (put_user(value, status + start)) |
| 1495 | return -EFAULT; |
| 1496 | start++; |
| 1497 | } |
| 1498 | |
| 1499 | return 0; |
| 1500 | } |
| 1501 | |
| 1502 | static int do_move_pages_to_node(struct mm_struct *mm, |
| 1503 | struct list_head *pagelist, int node) |
| 1504 | { |
| 1505 | int err; |
| 1506 | |
| 1507 | if (list_empty(pagelist)) |
| 1508 | return 0; |
| 1509 | |
| 1510 | err = migrate_pages(pagelist, alloc_new_node_page, NULL, node, |
| 1511 | MIGRATE_SYNC, MR_SYSCALL); |
| 1512 | if (err) |
| 1513 | putback_movable_pages(pagelist); |
| 1514 | return err; |
| 1515 | } |
| 1516 | |
| 1517 | /* |
| 1518 | * Resolves the given address to a struct page, isolates it from the LRU and |
| 1519 | * puts it to the given pagelist. |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1520 | * Returns: |
| 1521 | * errno - if the page cannot be found/isolated |
| 1522 | * 0 - when it doesn't have to be migrated because it is already on the |
| 1523 | * target node |
| 1524 | * 1 - when it has been queued |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1525 | */ |
| 1526 | static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, |
| 1527 | int node, struct list_head *pagelist, bool migrate_all) |
| 1528 | { |
| 1529 | struct vm_area_struct *vma; |
| 1530 | struct page *page; |
| 1531 | unsigned int follflags; |
| 1532 | int err; |
| 1533 | |
| 1534 | down_read(&mm->mmap_sem); |
| 1535 | err = -EFAULT; |
| 1536 | vma = find_vma(mm, addr); |
| 1537 | if (!vma || addr < vma->vm_start || !vma_migratable(vma)) |
| 1538 | goto out; |
| 1539 | |
| 1540 | /* FOLL_DUMP to ignore special (like zero) pages */ |
| 1541 | follflags = FOLL_GET | FOLL_DUMP; |
| 1542 | page = follow_page(vma, addr, follflags); |
| 1543 | |
| 1544 | err = PTR_ERR(page); |
| 1545 | if (IS_ERR(page)) |
| 1546 | goto out; |
| 1547 | |
| 1548 | err = -ENOENT; |
| 1549 | if (!page) |
| 1550 | goto out; |
| 1551 | |
| 1552 | err = 0; |
| 1553 | if (page_to_nid(page) == node) |
| 1554 | goto out_putpage; |
| 1555 | |
| 1556 | err = -EACCES; |
| 1557 | if (page_mapcount(page) > 1 && !migrate_all) |
| 1558 | goto out_putpage; |
| 1559 | |
| 1560 | if (PageHuge(page)) { |
| 1561 | if (PageHead(page)) { |
| 1562 | isolate_huge_page(page, pagelist); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1563 | err = 1; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1564 | } |
| 1565 | } else { |
| 1566 | struct page *head; |
| 1567 | |
| 1568 | head = compound_head(page); |
| 1569 | err = isolate_lru_page(head); |
| 1570 | if (err) |
| 1571 | goto out_putpage; |
| 1572 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1573 | err = 1; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1574 | list_add_tail(&head->lru, pagelist); |
| 1575 | mod_node_page_state(page_pgdat(head), |
| 1576 | NR_ISOLATED_ANON + page_is_file_cache(head), |
| 1577 | hpage_nr_pages(head)); |
| 1578 | } |
| 1579 | out_putpage: |
| 1580 | /* |
| 1581 | * Either remove the duplicate refcount from |
| 1582 | * isolate_lru_page() or drop the page ref if it was |
| 1583 | * not isolated. |
| 1584 | */ |
| 1585 | put_page(page); |
| 1586 | out: |
| 1587 | up_read(&mm->mmap_sem); |
| 1588 | return err; |
| 1589 | } |
| 1590 | |
| 1591 | /* |
| 1592 | * Migrate an array of page address onto an array of nodes and fill |
| 1593 | * the corresponding array of status. |
| 1594 | */ |
| 1595 | static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, |
| 1596 | unsigned long nr_pages, |
| 1597 | const void __user * __user *pages, |
| 1598 | const int __user *nodes, |
| 1599 | int __user *status, int flags) |
| 1600 | { |
| 1601 | int current_node = NUMA_NO_NODE; |
| 1602 | LIST_HEAD(pagelist); |
| 1603 | int start, i; |
| 1604 | int err = 0, err1; |
| 1605 | |
| 1606 | migrate_prep(); |
| 1607 | |
| 1608 | for (i = start = 0; i < nr_pages; i++) { |
| 1609 | const void __user *p; |
| 1610 | unsigned long addr; |
| 1611 | int node; |
| 1612 | |
| 1613 | err = -EFAULT; |
| 1614 | if (get_user(p, pages + i)) |
| 1615 | goto out_flush; |
| 1616 | if (get_user(node, nodes + i)) |
| 1617 | goto out_flush; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1618 | addr = (unsigned long)untagged_addr(p); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1619 | |
| 1620 | err = -ENODEV; |
| 1621 | if (node < 0 || node >= MAX_NUMNODES) |
| 1622 | goto out_flush; |
| 1623 | if (!node_state(node, N_MEMORY)) |
| 1624 | goto out_flush; |
| 1625 | |
| 1626 | err = -EACCES; |
| 1627 | if (!node_isset(node, task_nodes)) |
| 1628 | goto out_flush; |
| 1629 | |
| 1630 | if (current_node == NUMA_NO_NODE) { |
| 1631 | current_node = node; |
| 1632 | start = i; |
| 1633 | } else if (node != current_node) { |
| 1634 | err = do_move_pages_to_node(mm, &pagelist, current_node); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1635 | if (err) { |
| 1636 | /* |
| 1637 | * Positive err means the number of failed |
| 1638 | * pages to migrate. Since we are going to |
| 1639 | * abort and return the number of non-migrated |
| 1640 | * pages, so need to incude the rest of the |
| 1641 | * nr_pages that have not been attempted as |
| 1642 | * well. |
| 1643 | */ |
| 1644 | if (err > 0) |
| 1645 | err += nr_pages - i - 1; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1646 | goto out; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1647 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1648 | err = store_status(status, start, current_node, i - start); |
| 1649 | if (err) |
| 1650 | goto out; |
| 1651 | start = i; |
| 1652 | current_node = node; |
| 1653 | } |
| 1654 | |
| 1655 | /* |
| 1656 | * Errors in the page lookup or isolation are not fatal and we simply |
| 1657 | * report them via status |
| 1658 | */ |
| 1659 | err = add_page_for_migration(mm, addr, current_node, |
| 1660 | &pagelist, flags & MPOL_MF_MOVE_ALL); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1661 | |
| 1662 | if (!err) { |
| 1663 | /* The page is already on the target node */ |
| 1664 | err = store_status(status, i, current_node, 1); |
| 1665 | if (err) |
| 1666 | goto out_flush; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1667 | continue; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1668 | } else if (err > 0) { |
| 1669 | /* The page is successfully queued for migration */ |
| 1670 | continue; |
| 1671 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1672 | |
| 1673 | err = store_status(status, i, err, 1); |
| 1674 | if (err) |
| 1675 | goto out_flush; |
| 1676 | |
| 1677 | err = do_move_pages_to_node(mm, &pagelist, current_node); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1678 | if (err) { |
| 1679 | if (err > 0) |
| 1680 | err += nr_pages - i - 1; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1681 | goto out; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1682 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1683 | if (i > start) { |
| 1684 | err = store_status(status, start, current_node, i - start); |
| 1685 | if (err) |
| 1686 | goto out; |
| 1687 | } |
| 1688 | current_node = NUMA_NO_NODE; |
| 1689 | } |
| 1690 | out_flush: |
| 1691 | if (list_empty(&pagelist)) |
| 1692 | return err; |
| 1693 | |
| 1694 | /* Make sure we do not overwrite the existing error */ |
| 1695 | err1 = do_move_pages_to_node(mm, &pagelist, current_node); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1696 | /* |
| 1697 | * Don't have to report non-attempted pages here since: |
| 1698 | * - If the above loop is done gracefully all pages have been |
| 1699 | * attempted. |
| 1700 | * - If the above loop is aborted it means a fatal error |
| 1701 | * happened, should return ret. |
| 1702 | */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1703 | if (!err1) |
| 1704 | err1 = store_status(status, start, current_node, i - start); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1705 | if (err >= 0) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1706 | err = err1; |
| 1707 | out: |
| 1708 | return err; |
| 1709 | } |
| 1710 | |
| 1711 | /* |
| 1712 | * Determine the nodes of an array of pages and store it in an array of status. |
| 1713 | */ |
| 1714 | static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, |
| 1715 | const void __user **pages, int *status) |
| 1716 | { |
| 1717 | unsigned long i; |
| 1718 | |
| 1719 | down_read(&mm->mmap_sem); |
| 1720 | |
| 1721 | for (i = 0; i < nr_pages; i++) { |
| 1722 | unsigned long addr = (unsigned long)(*pages); |
| 1723 | struct vm_area_struct *vma; |
| 1724 | struct page *page; |
| 1725 | int err = -EFAULT; |
| 1726 | |
| 1727 | vma = find_vma(mm, addr); |
| 1728 | if (!vma || addr < vma->vm_start) |
| 1729 | goto set_status; |
| 1730 | |
| 1731 | /* FOLL_DUMP to ignore special (like zero) pages */ |
| 1732 | page = follow_page(vma, addr, FOLL_DUMP); |
| 1733 | |
| 1734 | err = PTR_ERR(page); |
| 1735 | if (IS_ERR(page)) |
| 1736 | goto set_status; |
| 1737 | |
| 1738 | err = page ? page_to_nid(page) : -ENOENT; |
| 1739 | set_status: |
| 1740 | *status = err; |
| 1741 | |
| 1742 | pages++; |
| 1743 | status++; |
| 1744 | } |
| 1745 | |
| 1746 | up_read(&mm->mmap_sem); |
| 1747 | } |
| 1748 | |
| 1749 | /* |
| 1750 | * Determine the nodes of a user array of pages and store it in |
| 1751 | * a user array of status. |
| 1752 | */ |
| 1753 | static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, |
| 1754 | const void __user * __user *pages, |
| 1755 | int __user *status) |
| 1756 | { |
| 1757 | #define DO_PAGES_STAT_CHUNK_NR 16 |
| 1758 | const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; |
| 1759 | int chunk_status[DO_PAGES_STAT_CHUNK_NR]; |
| 1760 | |
| 1761 | while (nr_pages) { |
| 1762 | unsigned long chunk_nr; |
| 1763 | |
| 1764 | chunk_nr = nr_pages; |
| 1765 | if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) |
| 1766 | chunk_nr = DO_PAGES_STAT_CHUNK_NR; |
| 1767 | |
| 1768 | if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) |
| 1769 | break; |
| 1770 | |
| 1771 | do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); |
| 1772 | |
| 1773 | if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) |
| 1774 | break; |
| 1775 | |
| 1776 | pages += chunk_nr; |
| 1777 | status += chunk_nr; |
| 1778 | nr_pages -= chunk_nr; |
| 1779 | } |
| 1780 | return nr_pages ? -EFAULT : 0; |
| 1781 | } |
| 1782 | |
| 1783 | /* |
| 1784 | * Move a list of pages in the address space of the currently executing |
| 1785 | * process. |
| 1786 | */ |
| 1787 | static int kernel_move_pages(pid_t pid, unsigned long nr_pages, |
| 1788 | const void __user * __user *pages, |
| 1789 | const int __user *nodes, |
| 1790 | int __user *status, int flags) |
| 1791 | { |
| 1792 | struct task_struct *task; |
| 1793 | struct mm_struct *mm; |
| 1794 | int err; |
| 1795 | nodemask_t task_nodes; |
| 1796 | |
| 1797 | /* Check flags */ |
| 1798 | if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) |
| 1799 | return -EINVAL; |
| 1800 | |
| 1801 | if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) |
| 1802 | return -EPERM; |
| 1803 | |
| 1804 | /* Find the mm_struct */ |
| 1805 | rcu_read_lock(); |
| 1806 | task = pid ? find_task_by_vpid(pid) : current; |
| 1807 | if (!task) { |
| 1808 | rcu_read_unlock(); |
| 1809 | return -ESRCH; |
| 1810 | } |
| 1811 | get_task_struct(task); |
| 1812 | |
| 1813 | /* |
| 1814 | * Check if this process has the right to modify the specified |
| 1815 | * process. Use the regular "ptrace_may_access()" checks. |
| 1816 | */ |
| 1817 | if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { |
| 1818 | rcu_read_unlock(); |
| 1819 | err = -EPERM; |
| 1820 | goto out; |
| 1821 | } |
| 1822 | rcu_read_unlock(); |
| 1823 | |
| 1824 | err = security_task_movememory(task); |
| 1825 | if (err) |
| 1826 | goto out; |
| 1827 | |
| 1828 | task_nodes = cpuset_mems_allowed(task); |
| 1829 | mm = get_task_mm(task); |
| 1830 | put_task_struct(task); |
| 1831 | |
| 1832 | if (!mm) |
| 1833 | return -EINVAL; |
| 1834 | |
| 1835 | if (nodes) |
| 1836 | err = do_pages_move(mm, task_nodes, nr_pages, pages, |
| 1837 | nodes, status, flags); |
| 1838 | else |
| 1839 | err = do_pages_stat(mm, nr_pages, pages, status); |
| 1840 | |
| 1841 | mmput(mm); |
| 1842 | return err; |
| 1843 | |
| 1844 | out: |
| 1845 | put_task_struct(task); |
| 1846 | return err; |
| 1847 | } |
| 1848 | |
| 1849 | SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, |
| 1850 | const void __user * __user *, pages, |
| 1851 | const int __user *, nodes, |
| 1852 | int __user *, status, int, flags) |
| 1853 | { |
| 1854 | return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); |
| 1855 | } |
| 1856 | |
| 1857 | #ifdef CONFIG_COMPAT |
| 1858 | COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, |
| 1859 | compat_uptr_t __user *, pages32, |
| 1860 | const int __user *, nodes, |
| 1861 | int __user *, status, |
| 1862 | int, flags) |
| 1863 | { |
| 1864 | const void __user * __user *pages; |
| 1865 | int i; |
| 1866 | |
| 1867 | pages = compat_alloc_user_space(nr_pages * sizeof(void *)); |
| 1868 | for (i = 0; i < nr_pages; i++) { |
| 1869 | compat_uptr_t p; |
| 1870 | |
| 1871 | if (get_user(p, pages32 + i) || |
| 1872 | put_user(compat_ptr(p), pages + i)) |
| 1873 | return -EFAULT; |
| 1874 | } |
| 1875 | return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); |
| 1876 | } |
| 1877 | #endif /* CONFIG_COMPAT */ |
| 1878 | |
| 1879 | #ifdef CONFIG_NUMA_BALANCING |
| 1880 | /* |
| 1881 | * Returns true if this is a safe migration target node for misplaced NUMA |
| 1882 | * pages. Currently it only checks the watermarks which crude |
| 1883 | */ |
| 1884 | static bool migrate_balanced_pgdat(struct pglist_data *pgdat, |
| 1885 | unsigned long nr_migrate_pages) |
| 1886 | { |
| 1887 | int z; |
| 1888 | |
| 1889 | for (z = pgdat->nr_zones - 1; z >= 0; z--) { |
| 1890 | struct zone *zone = pgdat->node_zones + z; |
| 1891 | |
| 1892 | if (!populated_zone(zone)) |
| 1893 | continue; |
| 1894 | |
| 1895 | /* Avoid waking kswapd by allocating pages_to_migrate pages. */ |
| 1896 | if (!zone_watermark_ok(zone, 0, |
| 1897 | high_wmark_pages(zone) + |
| 1898 | nr_migrate_pages, |
| 1899 | 0, 0)) |
| 1900 | continue; |
| 1901 | return true; |
| 1902 | } |
| 1903 | return false; |
| 1904 | } |
| 1905 | |
| 1906 | static struct page *alloc_misplaced_dst_page(struct page *page, |
| 1907 | unsigned long data) |
| 1908 | { |
| 1909 | int nid = (int) data; |
| 1910 | struct page *newpage; |
| 1911 | |
| 1912 | newpage = __alloc_pages_node(nid, |
| 1913 | (GFP_HIGHUSER_MOVABLE | |
| 1914 | __GFP_THISNODE | __GFP_NOMEMALLOC | |
| 1915 | __GFP_NORETRY | __GFP_NOWARN) & |
| 1916 | ~__GFP_RECLAIM, 0); |
| 1917 | |
| 1918 | return newpage; |
| 1919 | } |
| 1920 | |
| 1921 | static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) |
| 1922 | { |
| 1923 | int page_lru; |
| 1924 | |
| 1925 | VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); |
| 1926 | |
| 1927 | /* Avoid migrating to a node that is nearly full */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1928 | if (!migrate_balanced_pgdat(pgdat, compound_nr(page))) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1929 | return 0; |
| 1930 | |
| 1931 | if (isolate_lru_page(page)) |
| 1932 | return 0; |
| 1933 | |
| 1934 | /* |
| 1935 | * migrate_misplaced_transhuge_page() skips page migration's usual |
| 1936 | * check on page_count(), so we must do it here, now that the page |
| 1937 | * has been isolated: a GUP pin, or any other pin, prevents migration. |
| 1938 | * The expected page count is 3: 1 for page's mapcount and 1 for the |
| 1939 | * caller's pin and 1 for the reference taken by isolate_lru_page(). |
| 1940 | */ |
| 1941 | if (PageTransHuge(page) && page_count(page) != 3) { |
| 1942 | putback_lru_page(page); |
| 1943 | return 0; |
| 1944 | } |
| 1945 | |
| 1946 | page_lru = page_is_file_cache(page); |
| 1947 | mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, |
| 1948 | hpage_nr_pages(page)); |
| 1949 | |
| 1950 | /* |
| 1951 | * Isolating the page has taken another reference, so the |
| 1952 | * caller's reference can be safely dropped without the page |
| 1953 | * disappearing underneath us during migration. |
| 1954 | */ |
| 1955 | put_page(page); |
| 1956 | return 1; |
| 1957 | } |
| 1958 | |
| 1959 | bool pmd_trans_migrating(pmd_t pmd) |
| 1960 | { |
| 1961 | struct page *page = pmd_page(pmd); |
| 1962 | return PageLocked(page); |
| 1963 | } |
| 1964 | |
| 1965 | /* |
| 1966 | * Attempt to migrate a misplaced page to the specified destination |
| 1967 | * node. Caller is expected to have an elevated reference count on |
| 1968 | * the page that will be dropped by this function before returning. |
| 1969 | */ |
| 1970 | int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, |
| 1971 | int node) |
| 1972 | { |
| 1973 | pg_data_t *pgdat = NODE_DATA(node); |
| 1974 | int isolated; |
| 1975 | int nr_remaining; |
| 1976 | LIST_HEAD(migratepages); |
| 1977 | |
| 1978 | /* |
| 1979 | * Don't migrate file pages that are mapped in multiple processes |
| 1980 | * with execute permissions as they are probably shared libraries. |
| 1981 | */ |
| 1982 | if (page_mapcount(page) != 1 && page_is_file_cache(page) && |
| 1983 | (vma->vm_flags & VM_EXEC)) |
| 1984 | goto out; |
| 1985 | |
| 1986 | /* |
| 1987 | * Also do not migrate dirty pages as not all filesystems can move |
| 1988 | * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. |
| 1989 | */ |
| 1990 | if (page_is_file_cache(page) && PageDirty(page)) |
| 1991 | goto out; |
| 1992 | |
| 1993 | isolated = numamigrate_isolate_page(pgdat, page); |
| 1994 | if (!isolated) |
| 1995 | goto out; |
| 1996 | |
| 1997 | list_add(&page->lru, &migratepages); |
| 1998 | nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, |
| 1999 | NULL, node, MIGRATE_ASYNC, |
| 2000 | MR_NUMA_MISPLACED); |
| 2001 | if (nr_remaining) { |
| 2002 | if (!list_empty(&migratepages)) { |
| 2003 | list_del(&page->lru); |
| 2004 | dec_node_page_state(page, NR_ISOLATED_ANON + |
| 2005 | page_is_file_cache(page)); |
| 2006 | putback_lru_page(page); |
| 2007 | } |
| 2008 | isolated = 0; |
| 2009 | } else |
| 2010 | count_vm_numa_event(NUMA_PAGE_MIGRATE); |
| 2011 | BUG_ON(!list_empty(&migratepages)); |
| 2012 | return isolated; |
| 2013 | |
| 2014 | out: |
| 2015 | put_page(page); |
| 2016 | return 0; |
| 2017 | } |
| 2018 | #endif /* CONFIG_NUMA_BALANCING */ |
| 2019 | |
| 2020 | #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) |
| 2021 | /* |
| 2022 | * Migrates a THP to a given target node. page must be locked and is unlocked |
| 2023 | * before returning. |
| 2024 | */ |
| 2025 | int migrate_misplaced_transhuge_page(struct mm_struct *mm, |
| 2026 | struct vm_area_struct *vma, |
| 2027 | pmd_t *pmd, pmd_t entry, |
| 2028 | unsigned long address, |
| 2029 | struct page *page, int node) |
| 2030 | { |
| 2031 | spinlock_t *ptl; |
| 2032 | pg_data_t *pgdat = NODE_DATA(node); |
| 2033 | int isolated = 0; |
| 2034 | struct page *new_page = NULL; |
| 2035 | int page_lru = page_is_file_cache(page); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2036 | unsigned long start = address & HPAGE_PMD_MASK; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2037 | |
| 2038 | new_page = alloc_pages_node(node, |
| 2039 | (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), |
| 2040 | HPAGE_PMD_ORDER); |
| 2041 | if (!new_page) |
| 2042 | goto out_fail; |
| 2043 | prep_transhuge_page(new_page); |
| 2044 | |
| 2045 | isolated = numamigrate_isolate_page(pgdat, page); |
| 2046 | if (!isolated) { |
| 2047 | put_page(new_page); |
| 2048 | goto out_fail; |
| 2049 | } |
| 2050 | |
| 2051 | /* Prepare a page as a migration target */ |
| 2052 | __SetPageLocked(new_page); |
| 2053 | if (PageSwapBacked(page)) |
| 2054 | __SetPageSwapBacked(new_page); |
| 2055 | |
| 2056 | /* anon mapping, we can simply copy page->mapping to the new page: */ |
| 2057 | new_page->mapping = page->mapping; |
| 2058 | new_page->index = page->index; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2059 | /* flush the cache before copying using the kernel virtual address */ |
| 2060 | flush_cache_range(vma, start, start + HPAGE_PMD_SIZE); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2061 | migrate_page_copy(new_page, page); |
| 2062 | WARN_ON(PageLRU(new_page)); |
| 2063 | |
| 2064 | /* Recheck the target PMD */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2065 | ptl = pmd_lock(mm, pmd); |
| 2066 | if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { |
| 2067 | spin_unlock(ptl); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2068 | |
| 2069 | /* Reverse changes made by migrate_page_copy() */ |
| 2070 | if (TestClearPageActive(new_page)) |
| 2071 | SetPageActive(page); |
| 2072 | if (TestClearPageUnevictable(new_page)) |
| 2073 | SetPageUnevictable(page); |
| 2074 | |
| 2075 | unlock_page(new_page); |
| 2076 | put_page(new_page); /* Free it */ |
| 2077 | |
| 2078 | /* Retake the callers reference and putback on LRU */ |
| 2079 | get_page(page); |
| 2080 | putback_lru_page(page); |
| 2081 | mod_node_page_state(page_pgdat(page), |
| 2082 | NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); |
| 2083 | |
| 2084 | goto out_unlock; |
| 2085 | } |
| 2086 | |
| 2087 | entry = mk_huge_pmd(new_page, vma->vm_page_prot); |
| 2088 | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); |
| 2089 | |
| 2090 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2091 | * Overwrite the old entry under pagetable lock and establish |
| 2092 | * the new PTE. Any parallel GUP will either observe the old |
| 2093 | * page blocking on the page lock, block on the page table |
| 2094 | * lock or observe the new page. The SetPageUptodate on the |
| 2095 | * new page and page_add_new_anon_rmap guarantee the copy is |
| 2096 | * visible before the pagetable update. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2097 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2098 | page_add_anon_rmap(new_page, vma, start, true); |
| 2099 | /* |
| 2100 | * At this point the pmd is numa/protnone (i.e. non present) and the TLB |
| 2101 | * has already been flushed globally. So no TLB can be currently |
| 2102 | * caching this non present pmd mapping. There's no need to clear the |
| 2103 | * pmd before doing set_pmd_at(), nor to flush the TLB after |
| 2104 | * set_pmd_at(). Clearing the pmd here would introduce a race |
| 2105 | * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the |
| 2106 | * mmap_sem for reading. If the pmd is set to NULL at any given time, |
| 2107 | * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this |
| 2108 | * pmd. |
| 2109 | */ |
| 2110 | set_pmd_at(mm, start, pmd, entry); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2111 | update_mmu_cache_pmd(vma, address, &entry); |
| 2112 | |
| 2113 | page_ref_unfreeze(page, 2); |
| 2114 | mlock_migrate_page(new_page, page); |
| 2115 | page_remove_rmap(page, true); |
| 2116 | set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); |
| 2117 | |
| 2118 | spin_unlock(ptl); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2119 | |
| 2120 | /* Take an "isolate" reference and put new page on the LRU. */ |
| 2121 | get_page(new_page); |
| 2122 | putback_lru_page(new_page); |
| 2123 | |
| 2124 | unlock_page(new_page); |
| 2125 | unlock_page(page); |
| 2126 | put_page(page); /* Drop the rmap reference */ |
| 2127 | put_page(page); /* Drop the LRU isolation reference */ |
| 2128 | |
| 2129 | count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); |
| 2130 | count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); |
| 2131 | |
| 2132 | mod_node_page_state(page_pgdat(page), |
| 2133 | NR_ISOLATED_ANON + page_lru, |
| 2134 | -HPAGE_PMD_NR); |
| 2135 | return isolated; |
| 2136 | |
| 2137 | out_fail: |
| 2138 | count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); |
| 2139 | ptl = pmd_lock(mm, pmd); |
| 2140 | if (pmd_same(*pmd, entry)) { |
| 2141 | entry = pmd_modify(entry, vma->vm_page_prot); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2142 | set_pmd_at(mm, start, pmd, entry); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2143 | update_mmu_cache_pmd(vma, address, &entry); |
| 2144 | } |
| 2145 | spin_unlock(ptl); |
| 2146 | |
| 2147 | out_unlock: |
| 2148 | unlock_page(page); |
| 2149 | put_page(page); |
| 2150 | return 0; |
| 2151 | } |
| 2152 | #endif /* CONFIG_NUMA_BALANCING */ |
| 2153 | |
| 2154 | #endif /* CONFIG_NUMA */ |
| 2155 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2156 | #ifdef CONFIG_DEVICE_PRIVATE |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2157 | static int migrate_vma_collect_hole(unsigned long start, |
| 2158 | unsigned long end, |
| 2159 | struct mm_walk *walk) |
| 2160 | { |
| 2161 | struct migrate_vma *migrate = walk->private; |
| 2162 | unsigned long addr; |
| 2163 | |
| 2164 | for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { |
| 2165 | migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; |
| 2166 | migrate->dst[migrate->npages] = 0; |
| 2167 | migrate->npages++; |
| 2168 | migrate->cpages++; |
| 2169 | } |
| 2170 | |
| 2171 | return 0; |
| 2172 | } |
| 2173 | |
| 2174 | static int migrate_vma_collect_skip(unsigned long start, |
| 2175 | unsigned long end, |
| 2176 | struct mm_walk *walk) |
| 2177 | { |
| 2178 | struct migrate_vma *migrate = walk->private; |
| 2179 | unsigned long addr; |
| 2180 | |
| 2181 | for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { |
| 2182 | migrate->dst[migrate->npages] = 0; |
| 2183 | migrate->src[migrate->npages++] = 0; |
| 2184 | } |
| 2185 | |
| 2186 | return 0; |
| 2187 | } |
| 2188 | |
| 2189 | static int migrate_vma_collect_pmd(pmd_t *pmdp, |
| 2190 | unsigned long start, |
| 2191 | unsigned long end, |
| 2192 | struct mm_walk *walk) |
| 2193 | { |
| 2194 | struct migrate_vma *migrate = walk->private; |
| 2195 | struct vm_area_struct *vma = walk->vma; |
| 2196 | struct mm_struct *mm = vma->vm_mm; |
| 2197 | unsigned long addr = start, unmapped = 0; |
| 2198 | spinlock_t *ptl; |
| 2199 | pte_t *ptep; |
| 2200 | |
| 2201 | again: |
| 2202 | if (pmd_none(*pmdp)) |
| 2203 | return migrate_vma_collect_hole(start, end, walk); |
| 2204 | |
| 2205 | if (pmd_trans_huge(*pmdp)) { |
| 2206 | struct page *page; |
| 2207 | |
| 2208 | ptl = pmd_lock(mm, pmdp); |
| 2209 | if (unlikely(!pmd_trans_huge(*pmdp))) { |
| 2210 | spin_unlock(ptl); |
| 2211 | goto again; |
| 2212 | } |
| 2213 | |
| 2214 | page = pmd_page(*pmdp); |
| 2215 | if (is_huge_zero_page(page)) { |
| 2216 | spin_unlock(ptl); |
| 2217 | split_huge_pmd(vma, pmdp, addr); |
| 2218 | if (pmd_trans_unstable(pmdp)) |
| 2219 | return migrate_vma_collect_skip(start, end, |
| 2220 | walk); |
| 2221 | } else { |
| 2222 | int ret; |
| 2223 | |
| 2224 | get_page(page); |
| 2225 | spin_unlock(ptl); |
| 2226 | if (unlikely(!trylock_page(page))) |
| 2227 | return migrate_vma_collect_skip(start, end, |
| 2228 | walk); |
| 2229 | ret = split_huge_page(page); |
| 2230 | unlock_page(page); |
| 2231 | put_page(page); |
| 2232 | if (ret) |
| 2233 | return migrate_vma_collect_skip(start, end, |
| 2234 | walk); |
| 2235 | if (pmd_none(*pmdp)) |
| 2236 | return migrate_vma_collect_hole(start, end, |
| 2237 | walk); |
| 2238 | } |
| 2239 | } |
| 2240 | |
| 2241 | if (unlikely(pmd_bad(*pmdp))) |
| 2242 | return migrate_vma_collect_skip(start, end, walk); |
| 2243 | |
| 2244 | ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); |
| 2245 | arch_enter_lazy_mmu_mode(); |
| 2246 | |
| 2247 | for (; addr < end; addr += PAGE_SIZE, ptep++) { |
| 2248 | unsigned long mpfn, pfn; |
| 2249 | struct page *page; |
| 2250 | swp_entry_t entry; |
| 2251 | pte_t pte; |
| 2252 | |
| 2253 | pte = *ptep; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2254 | |
| 2255 | if (pte_none(pte)) { |
| 2256 | mpfn = MIGRATE_PFN_MIGRATE; |
| 2257 | migrate->cpages++; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2258 | goto next; |
| 2259 | } |
| 2260 | |
| 2261 | if (!pte_present(pte)) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2262 | mpfn = 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2263 | |
| 2264 | /* |
| 2265 | * Only care about unaddressable device page special |
| 2266 | * page table entry. Other special swap entries are not |
| 2267 | * migratable, and we ignore regular swapped page. |
| 2268 | */ |
| 2269 | entry = pte_to_swp_entry(pte); |
| 2270 | if (!is_device_private_entry(entry)) |
| 2271 | goto next; |
| 2272 | |
| 2273 | page = device_private_entry_to_page(entry); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2274 | mpfn = migrate_pfn(page_to_pfn(page)) | |
| 2275 | MIGRATE_PFN_MIGRATE; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2276 | if (is_write_device_private_entry(entry)) |
| 2277 | mpfn |= MIGRATE_PFN_WRITE; |
| 2278 | } else { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2279 | pfn = pte_pfn(pte); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2280 | if (is_zero_pfn(pfn)) { |
| 2281 | mpfn = MIGRATE_PFN_MIGRATE; |
| 2282 | migrate->cpages++; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2283 | goto next; |
| 2284 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2285 | page = vm_normal_page(migrate->vma, addr, pte); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2286 | mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; |
| 2287 | mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; |
| 2288 | } |
| 2289 | |
| 2290 | /* FIXME support THP */ |
| 2291 | if (!page || !page->mapping || PageTransCompound(page)) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2292 | mpfn = 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2293 | goto next; |
| 2294 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2295 | |
| 2296 | /* |
| 2297 | * By getting a reference on the page we pin it and that blocks |
| 2298 | * any kind of migration. Side effect is that it "freezes" the |
| 2299 | * pte. |
| 2300 | * |
| 2301 | * We drop this reference after isolating the page from the lru |
| 2302 | * for non device page (device page are not on the lru and thus |
| 2303 | * can't be dropped from it). |
| 2304 | */ |
| 2305 | get_page(page); |
| 2306 | migrate->cpages++; |
| 2307 | |
| 2308 | /* |
| 2309 | * Optimize for the common case where page is only mapped once |
| 2310 | * in one process. If we can lock the page, then we can safely |
| 2311 | * set up a special migration page table entry now. |
| 2312 | */ |
| 2313 | if (trylock_page(page)) { |
| 2314 | pte_t swp_pte; |
| 2315 | |
| 2316 | mpfn |= MIGRATE_PFN_LOCKED; |
| 2317 | ptep_get_and_clear(mm, addr, ptep); |
| 2318 | |
| 2319 | /* Setup special migration page table entry */ |
| 2320 | entry = make_migration_entry(page, mpfn & |
| 2321 | MIGRATE_PFN_WRITE); |
| 2322 | swp_pte = swp_entry_to_pte(entry); |
| 2323 | if (pte_soft_dirty(pte)) |
| 2324 | swp_pte = pte_swp_mksoft_dirty(swp_pte); |
| 2325 | set_pte_at(mm, addr, ptep, swp_pte); |
| 2326 | |
| 2327 | /* |
| 2328 | * This is like regular unmap: we remove the rmap and |
| 2329 | * drop page refcount. Page won't be freed, as we took |
| 2330 | * a reference just above. |
| 2331 | */ |
| 2332 | page_remove_rmap(page, false); |
| 2333 | put_page(page); |
| 2334 | |
| 2335 | if (pte_present(pte)) |
| 2336 | unmapped++; |
| 2337 | } |
| 2338 | |
| 2339 | next: |
| 2340 | migrate->dst[migrate->npages] = 0; |
| 2341 | migrate->src[migrate->npages++] = mpfn; |
| 2342 | } |
| 2343 | arch_leave_lazy_mmu_mode(); |
| 2344 | pte_unmap_unlock(ptep - 1, ptl); |
| 2345 | |
| 2346 | /* Only flush the TLB if we actually modified any entries */ |
| 2347 | if (unmapped) |
| 2348 | flush_tlb_range(walk->vma, start, end); |
| 2349 | |
| 2350 | return 0; |
| 2351 | } |
| 2352 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2353 | static const struct mm_walk_ops migrate_vma_walk_ops = { |
| 2354 | .pmd_entry = migrate_vma_collect_pmd, |
| 2355 | .pte_hole = migrate_vma_collect_hole, |
| 2356 | }; |
| 2357 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2358 | /* |
| 2359 | * migrate_vma_collect() - collect pages over a range of virtual addresses |
| 2360 | * @migrate: migrate struct containing all migration information |
| 2361 | * |
| 2362 | * This will walk the CPU page table. For each virtual address backed by a |
| 2363 | * valid page, it updates the src array and takes a reference on the page, in |
| 2364 | * order to pin the page until we lock it and unmap it. |
| 2365 | */ |
| 2366 | static void migrate_vma_collect(struct migrate_vma *migrate) |
| 2367 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2368 | struct mmu_notifier_range range; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2369 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2370 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, |
| 2371 | migrate->vma->vm_mm, migrate->start, migrate->end); |
| 2372 | mmu_notifier_invalidate_range_start(&range); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2373 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2374 | walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, |
| 2375 | &migrate_vma_walk_ops, migrate); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2376 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2377 | mmu_notifier_invalidate_range_end(&range); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2378 | migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); |
| 2379 | } |
| 2380 | |
| 2381 | /* |
| 2382 | * migrate_vma_check_page() - check if page is pinned or not |
| 2383 | * @page: struct page to check |
| 2384 | * |
| 2385 | * Pinned pages cannot be migrated. This is the same test as in |
| 2386 | * migrate_page_move_mapping(), except that here we allow migration of a |
| 2387 | * ZONE_DEVICE page. |
| 2388 | */ |
| 2389 | static bool migrate_vma_check_page(struct page *page) |
| 2390 | { |
| 2391 | /* |
| 2392 | * One extra ref because caller holds an extra reference, either from |
| 2393 | * isolate_lru_page() for a regular page, or migrate_vma_collect() for |
| 2394 | * a device page. |
| 2395 | */ |
| 2396 | int extra = 1; |
| 2397 | |
| 2398 | /* |
| 2399 | * FIXME support THP (transparent huge page), it is bit more complex to |
| 2400 | * check them than regular pages, because they can be mapped with a pmd |
| 2401 | * or with a pte (split pte mapping). |
| 2402 | */ |
| 2403 | if (PageCompound(page)) |
| 2404 | return false; |
| 2405 | |
| 2406 | /* Page from ZONE_DEVICE have one extra reference */ |
| 2407 | if (is_zone_device_page(page)) { |
| 2408 | /* |
| 2409 | * Private page can never be pin as they have no valid pte and |
| 2410 | * GUP will fail for those. Yet if there is a pending migration |
| 2411 | * a thread might try to wait on the pte migration entry and |
| 2412 | * will bump the page reference count. Sadly there is no way to |
| 2413 | * differentiate a regular pin from migration wait. Hence to |
| 2414 | * avoid 2 racing thread trying to migrate back to CPU to enter |
| 2415 | * infinite loop (one stoping migration because the other is |
| 2416 | * waiting on pte migration entry). We always return true here. |
| 2417 | * |
| 2418 | * FIXME proper solution is to rework migration_entry_wait() so |
| 2419 | * it does not need to take a reference on page. |
| 2420 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2421 | return is_device_private_page(page); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2422 | } |
| 2423 | |
| 2424 | /* For file back page */ |
| 2425 | if (page_mapping(page)) |
| 2426 | extra += 1 + page_has_private(page); |
| 2427 | |
| 2428 | if ((page_count(page) - extra) > page_mapcount(page)) |
| 2429 | return false; |
| 2430 | |
| 2431 | return true; |
| 2432 | } |
| 2433 | |
| 2434 | /* |
| 2435 | * migrate_vma_prepare() - lock pages and isolate them from the lru |
| 2436 | * @migrate: migrate struct containing all migration information |
| 2437 | * |
| 2438 | * This locks pages that have been collected by migrate_vma_collect(). Once each |
| 2439 | * page is locked it is isolated from the lru (for non-device pages). Finally, |
| 2440 | * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be |
| 2441 | * migrated by concurrent kernel threads. |
| 2442 | */ |
| 2443 | static void migrate_vma_prepare(struct migrate_vma *migrate) |
| 2444 | { |
| 2445 | const unsigned long npages = migrate->npages; |
| 2446 | const unsigned long start = migrate->start; |
| 2447 | unsigned long addr, i, restore = 0; |
| 2448 | bool allow_drain = true; |
| 2449 | |
| 2450 | lru_add_drain(); |
| 2451 | |
| 2452 | for (i = 0; (i < npages) && migrate->cpages; i++) { |
| 2453 | struct page *page = migrate_pfn_to_page(migrate->src[i]); |
| 2454 | bool remap = true; |
| 2455 | |
| 2456 | if (!page) |
| 2457 | continue; |
| 2458 | |
| 2459 | if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { |
| 2460 | /* |
| 2461 | * Because we are migrating several pages there can be |
| 2462 | * a deadlock between 2 concurrent migration where each |
| 2463 | * are waiting on each other page lock. |
| 2464 | * |
| 2465 | * Make migrate_vma() a best effort thing and backoff |
| 2466 | * for any page we can not lock right away. |
| 2467 | */ |
| 2468 | if (!trylock_page(page)) { |
| 2469 | migrate->src[i] = 0; |
| 2470 | migrate->cpages--; |
| 2471 | put_page(page); |
| 2472 | continue; |
| 2473 | } |
| 2474 | remap = false; |
| 2475 | migrate->src[i] |= MIGRATE_PFN_LOCKED; |
| 2476 | } |
| 2477 | |
| 2478 | /* ZONE_DEVICE pages are not on LRU */ |
| 2479 | if (!is_zone_device_page(page)) { |
| 2480 | if (!PageLRU(page) && allow_drain) { |
| 2481 | /* Drain CPU's pagevec */ |
| 2482 | lru_add_drain_all(); |
| 2483 | allow_drain = false; |
| 2484 | } |
| 2485 | |
| 2486 | if (isolate_lru_page(page)) { |
| 2487 | if (remap) { |
| 2488 | migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; |
| 2489 | migrate->cpages--; |
| 2490 | restore++; |
| 2491 | } else { |
| 2492 | migrate->src[i] = 0; |
| 2493 | unlock_page(page); |
| 2494 | migrate->cpages--; |
| 2495 | put_page(page); |
| 2496 | } |
| 2497 | continue; |
| 2498 | } |
| 2499 | |
| 2500 | /* Drop the reference we took in collect */ |
| 2501 | put_page(page); |
| 2502 | } |
| 2503 | |
| 2504 | if (!migrate_vma_check_page(page)) { |
| 2505 | if (remap) { |
| 2506 | migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; |
| 2507 | migrate->cpages--; |
| 2508 | restore++; |
| 2509 | |
| 2510 | if (!is_zone_device_page(page)) { |
| 2511 | get_page(page); |
| 2512 | putback_lru_page(page); |
| 2513 | } |
| 2514 | } else { |
| 2515 | migrate->src[i] = 0; |
| 2516 | unlock_page(page); |
| 2517 | migrate->cpages--; |
| 2518 | |
| 2519 | if (!is_zone_device_page(page)) |
| 2520 | putback_lru_page(page); |
| 2521 | else |
| 2522 | put_page(page); |
| 2523 | } |
| 2524 | } |
| 2525 | } |
| 2526 | |
| 2527 | for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { |
| 2528 | struct page *page = migrate_pfn_to_page(migrate->src[i]); |
| 2529 | |
| 2530 | if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) |
| 2531 | continue; |
| 2532 | |
| 2533 | remove_migration_pte(page, migrate->vma, addr, page); |
| 2534 | |
| 2535 | migrate->src[i] = 0; |
| 2536 | unlock_page(page); |
| 2537 | put_page(page); |
| 2538 | restore--; |
| 2539 | } |
| 2540 | } |
| 2541 | |
| 2542 | /* |
| 2543 | * migrate_vma_unmap() - replace page mapping with special migration pte entry |
| 2544 | * @migrate: migrate struct containing all migration information |
| 2545 | * |
| 2546 | * Replace page mapping (CPU page table pte) with a special migration pte entry |
| 2547 | * and check again if it has been pinned. Pinned pages are restored because we |
| 2548 | * cannot migrate them. |
| 2549 | * |
| 2550 | * This is the last step before we call the device driver callback to allocate |
| 2551 | * destination memory and copy contents of original page over to new page. |
| 2552 | */ |
| 2553 | static void migrate_vma_unmap(struct migrate_vma *migrate) |
| 2554 | { |
| 2555 | int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; |
| 2556 | const unsigned long npages = migrate->npages; |
| 2557 | const unsigned long start = migrate->start; |
| 2558 | unsigned long addr, i, restore = 0; |
| 2559 | |
| 2560 | for (i = 0; i < npages; i++) { |
| 2561 | struct page *page = migrate_pfn_to_page(migrate->src[i]); |
| 2562 | |
| 2563 | if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) |
| 2564 | continue; |
| 2565 | |
| 2566 | if (page_mapped(page)) { |
| 2567 | try_to_unmap(page, flags); |
| 2568 | if (page_mapped(page)) |
| 2569 | goto restore; |
| 2570 | } |
| 2571 | |
| 2572 | if (migrate_vma_check_page(page)) |
| 2573 | continue; |
| 2574 | |
| 2575 | restore: |
| 2576 | migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; |
| 2577 | migrate->cpages--; |
| 2578 | restore++; |
| 2579 | } |
| 2580 | |
| 2581 | for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { |
| 2582 | struct page *page = migrate_pfn_to_page(migrate->src[i]); |
| 2583 | |
| 2584 | if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) |
| 2585 | continue; |
| 2586 | |
| 2587 | remove_migration_ptes(page, page, false); |
| 2588 | |
| 2589 | migrate->src[i] = 0; |
| 2590 | unlock_page(page); |
| 2591 | restore--; |
| 2592 | |
| 2593 | if (is_zone_device_page(page)) |
| 2594 | put_page(page); |
| 2595 | else |
| 2596 | putback_lru_page(page); |
| 2597 | } |
| 2598 | } |
| 2599 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2600 | /** |
| 2601 | * migrate_vma_setup() - prepare to migrate a range of memory |
| 2602 | * @args: contains the vma, start, and and pfns arrays for the migration |
| 2603 | * |
| 2604 | * Returns: negative errno on failures, 0 when 0 or more pages were migrated |
| 2605 | * without an error. |
| 2606 | * |
| 2607 | * Prepare to migrate a range of memory virtual address range by collecting all |
| 2608 | * the pages backing each virtual address in the range, saving them inside the |
| 2609 | * src array. Then lock those pages and unmap them. Once the pages are locked |
| 2610 | * and unmapped, check whether each page is pinned or not. Pages that aren't |
| 2611 | * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the |
| 2612 | * corresponding src array entry. Then restores any pages that are pinned, by |
| 2613 | * remapping and unlocking those pages. |
| 2614 | * |
| 2615 | * The caller should then allocate destination memory and copy source memory to |
| 2616 | * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE |
| 2617 | * flag set). Once these are allocated and copied, the caller must update each |
| 2618 | * corresponding entry in the dst array with the pfn value of the destination |
| 2619 | * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set |
| 2620 | * (destination pages must have their struct pages locked, via lock_page()). |
| 2621 | * |
| 2622 | * Note that the caller does not have to migrate all the pages that are marked |
| 2623 | * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from |
| 2624 | * device memory to system memory. If the caller cannot migrate a device page |
| 2625 | * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe |
| 2626 | * consequences for the userspace process, so it must be avoided if at all |
| 2627 | * possible. |
| 2628 | * |
| 2629 | * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we |
| 2630 | * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus |
| 2631 | * allowing the caller to allocate device memory for those unback virtual |
| 2632 | * address. For this the caller simply has to allocate device memory and |
| 2633 | * properly set the destination entry like for regular migration. Note that |
| 2634 | * this can still fails and thus inside the device driver must check if the |
| 2635 | * migration was successful for those entries after calling migrate_vma_pages() |
| 2636 | * just like for regular migration. |
| 2637 | * |
| 2638 | * After that, the callers must call migrate_vma_pages() to go over each entry |
| 2639 | * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag |
| 2640 | * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, |
| 2641 | * then migrate_vma_pages() to migrate struct page information from the source |
| 2642 | * struct page to the destination struct page. If it fails to migrate the |
| 2643 | * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the |
| 2644 | * src array. |
| 2645 | * |
| 2646 | * At this point all successfully migrated pages have an entry in the src |
| 2647 | * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst |
| 2648 | * array entry with MIGRATE_PFN_VALID flag set. |
| 2649 | * |
| 2650 | * Once migrate_vma_pages() returns the caller may inspect which pages were |
| 2651 | * successfully migrated, and which were not. Successfully migrated pages will |
| 2652 | * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. |
| 2653 | * |
| 2654 | * It is safe to update device page table after migrate_vma_pages() because |
| 2655 | * both destination and source page are still locked, and the mmap_sem is held |
| 2656 | * in read mode (hence no one can unmap the range being migrated). |
| 2657 | * |
| 2658 | * Once the caller is done cleaning up things and updating its page table (if it |
| 2659 | * chose to do so, this is not an obligation) it finally calls |
| 2660 | * migrate_vma_finalize() to update the CPU page table to point to new pages |
| 2661 | * for successfully migrated pages or otherwise restore the CPU page table to |
| 2662 | * point to the original source pages. |
| 2663 | */ |
| 2664 | int migrate_vma_setup(struct migrate_vma *args) |
| 2665 | { |
| 2666 | long nr_pages = (args->end - args->start) >> PAGE_SHIFT; |
| 2667 | |
| 2668 | args->start &= PAGE_MASK; |
| 2669 | args->end &= PAGE_MASK; |
| 2670 | if (!args->vma || is_vm_hugetlb_page(args->vma) || |
| 2671 | (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) |
| 2672 | return -EINVAL; |
| 2673 | if (nr_pages <= 0) |
| 2674 | return -EINVAL; |
| 2675 | if (args->start < args->vma->vm_start || |
| 2676 | args->start >= args->vma->vm_end) |
| 2677 | return -EINVAL; |
| 2678 | if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) |
| 2679 | return -EINVAL; |
| 2680 | if (!args->src || !args->dst) |
| 2681 | return -EINVAL; |
| 2682 | |
| 2683 | memset(args->src, 0, sizeof(*args->src) * nr_pages); |
| 2684 | args->cpages = 0; |
| 2685 | args->npages = 0; |
| 2686 | |
| 2687 | migrate_vma_collect(args); |
| 2688 | |
| 2689 | if (args->cpages) |
| 2690 | migrate_vma_prepare(args); |
| 2691 | if (args->cpages) |
| 2692 | migrate_vma_unmap(args); |
| 2693 | |
| 2694 | /* |
| 2695 | * At this point pages are locked and unmapped, and thus they have |
| 2696 | * stable content and can safely be copied to destination memory that |
| 2697 | * is allocated by the drivers. |
| 2698 | */ |
| 2699 | return 0; |
| 2700 | |
| 2701 | } |
| 2702 | EXPORT_SYMBOL(migrate_vma_setup); |
| 2703 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2704 | static void migrate_vma_insert_page(struct migrate_vma *migrate, |
| 2705 | unsigned long addr, |
| 2706 | struct page *page, |
| 2707 | unsigned long *src, |
| 2708 | unsigned long *dst) |
| 2709 | { |
| 2710 | struct vm_area_struct *vma = migrate->vma; |
| 2711 | struct mm_struct *mm = vma->vm_mm; |
| 2712 | struct mem_cgroup *memcg; |
| 2713 | bool flush = false; |
| 2714 | spinlock_t *ptl; |
| 2715 | pte_t entry; |
| 2716 | pgd_t *pgdp; |
| 2717 | p4d_t *p4dp; |
| 2718 | pud_t *pudp; |
| 2719 | pmd_t *pmdp; |
| 2720 | pte_t *ptep; |
| 2721 | |
| 2722 | /* Only allow populating anonymous memory */ |
| 2723 | if (!vma_is_anonymous(vma)) |
| 2724 | goto abort; |
| 2725 | |
| 2726 | pgdp = pgd_offset(mm, addr); |
| 2727 | p4dp = p4d_alloc(mm, pgdp, addr); |
| 2728 | if (!p4dp) |
| 2729 | goto abort; |
| 2730 | pudp = pud_alloc(mm, p4dp, addr); |
| 2731 | if (!pudp) |
| 2732 | goto abort; |
| 2733 | pmdp = pmd_alloc(mm, pudp, addr); |
| 2734 | if (!pmdp) |
| 2735 | goto abort; |
| 2736 | |
| 2737 | if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) |
| 2738 | goto abort; |
| 2739 | |
| 2740 | /* |
| 2741 | * Use pte_alloc() instead of pte_alloc_map(). We can't run |
| 2742 | * pte_offset_map() on pmds where a huge pmd might be created |
| 2743 | * from a different thread. |
| 2744 | * |
| 2745 | * pte_alloc_map() is safe to use under down_write(mmap_sem) or when |
| 2746 | * parallel threads are excluded by other means. |
| 2747 | * |
| 2748 | * Here we only have down_read(mmap_sem). |
| 2749 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2750 | if (pte_alloc(mm, pmdp)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2751 | goto abort; |
| 2752 | |
| 2753 | /* See the comment in pte_alloc_one_map() */ |
| 2754 | if (unlikely(pmd_trans_unstable(pmdp))) |
| 2755 | goto abort; |
| 2756 | |
| 2757 | if (unlikely(anon_vma_prepare(vma))) |
| 2758 | goto abort; |
| 2759 | if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) |
| 2760 | goto abort; |
| 2761 | |
| 2762 | /* |
| 2763 | * The memory barrier inside __SetPageUptodate makes sure that |
| 2764 | * preceding stores to the page contents become visible before |
| 2765 | * the set_pte_at() write. |
| 2766 | */ |
| 2767 | __SetPageUptodate(page); |
| 2768 | |
| 2769 | if (is_zone_device_page(page)) { |
| 2770 | if (is_device_private_page(page)) { |
| 2771 | swp_entry_t swp_entry; |
| 2772 | |
| 2773 | swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); |
| 2774 | entry = swp_entry_to_pte(swp_entry); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 2775 | } else { |
| 2776 | /* |
| 2777 | * For now we only support migrating to un-addressable |
| 2778 | * device memory. |
| 2779 | */ |
| 2780 | pr_warn_once("Unsupported ZONE_DEVICE page type.\n"); |
| 2781 | goto abort; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2782 | } |
| 2783 | } else { |
| 2784 | entry = mk_pte(page, vma->vm_page_prot); |
| 2785 | if (vma->vm_flags & VM_WRITE) |
| 2786 | entry = pte_mkwrite(pte_mkdirty(entry)); |
| 2787 | } |
| 2788 | |
| 2789 | ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); |
| 2790 | |
| 2791 | if (pte_present(*ptep)) { |
| 2792 | unsigned long pfn = pte_pfn(*ptep); |
| 2793 | |
| 2794 | if (!is_zero_pfn(pfn)) { |
| 2795 | pte_unmap_unlock(ptep, ptl); |
| 2796 | mem_cgroup_cancel_charge(page, memcg, false); |
| 2797 | goto abort; |
| 2798 | } |
| 2799 | flush = true; |
| 2800 | } else if (!pte_none(*ptep)) { |
| 2801 | pte_unmap_unlock(ptep, ptl); |
| 2802 | mem_cgroup_cancel_charge(page, memcg, false); |
| 2803 | goto abort; |
| 2804 | } |
| 2805 | |
| 2806 | /* |
| 2807 | * Check for usefaultfd but do not deliver the fault. Instead, |
| 2808 | * just back off. |
| 2809 | */ |
| 2810 | if (userfaultfd_missing(vma)) { |
| 2811 | pte_unmap_unlock(ptep, ptl); |
| 2812 | mem_cgroup_cancel_charge(page, memcg, false); |
| 2813 | goto abort; |
| 2814 | } |
| 2815 | |
| 2816 | inc_mm_counter(mm, MM_ANONPAGES); |
| 2817 | page_add_new_anon_rmap(page, vma, addr, false); |
| 2818 | mem_cgroup_commit_charge(page, memcg, false, false); |
| 2819 | if (!is_zone_device_page(page)) |
| 2820 | lru_cache_add_active_or_unevictable(page, vma); |
| 2821 | get_page(page); |
| 2822 | |
| 2823 | if (flush) { |
| 2824 | flush_cache_page(vma, addr, pte_pfn(*ptep)); |
| 2825 | ptep_clear_flush_notify(vma, addr, ptep); |
| 2826 | set_pte_at_notify(mm, addr, ptep, entry); |
| 2827 | update_mmu_cache(vma, addr, ptep); |
| 2828 | } else { |
| 2829 | /* No need to invalidate - it was non-present before */ |
| 2830 | set_pte_at(mm, addr, ptep, entry); |
| 2831 | update_mmu_cache(vma, addr, ptep); |
| 2832 | } |
| 2833 | |
| 2834 | pte_unmap_unlock(ptep, ptl); |
| 2835 | *src = MIGRATE_PFN_MIGRATE; |
| 2836 | return; |
| 2837 | |
| 2838 | abort: |
| 2839 | *src &= ~MIGRATE_PFN_MIGRATE; |
| 2840 | } |
| 2841 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2842 | /** |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2843 | * migrate_vma_pages() - migrate meta-data from src page to dst page |
| 2844 | * @migrate: migrate struct containing all migration information |
| 2845 | * |
| 2846 | * This migrates struct page meta-data from source struct page to destination |
| 2847 | * struct page. This effectively finishes the migration from source page to the |
| 2848 | * destination page. |
| 2849 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2850 | void migrate_vma_pages(struct migrate_vma *migrate) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2851 | { |
| 2852 | const unsigned long npages = migrate->npages; |
| 2853 | const unsigned long start = migrate->start; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2854 | struct mmu_notifier_range range; |
| 2855 | unsigned long addr, i; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2856 | bool notified = false; |
| 2857 | |
| 2858 | for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { |
| 2859 | struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); |
| 2860 | struct page *page = migrate_pfn_to_page(migrate->src[i]); |
| 2861 | struct address_space *mapping; |
| 2862 | int r; |
| 2863 | |
| 2864 | if (!newpage) { |
| 2865 | migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; |
| 2866 | continue; |
| 2867 | } |
| 2868 | |
| 2869 | if (!page) { |
| 2870 | if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) { |
| 2871 | continue; |
| 2872 | } |
| 2873 | if (!notified) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2874 | notified = true; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2875 | |
| 2876 | mmu_notifier_range_init(&range, |
| 2877 | MMU_NOTIFY_CLEAR, 0, |
| 2878 | NULL, |
| 2879 | migrate->vma->vm_mm, |
| 2880 | addr, migrate->end); |
| 2881 | mmu_notifier_invalidate_range_start(&range); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2882 | } |
| 2883 | migrate_vma_insert_page(migrate, addr, newpage, |
| 2884 | &migrate->src[i], |
| 2885 | &migrate->dst[i]); |
| 2886 | continue; |
| 2887 | } |
| 2888 | |
| 2889 | mapping = page_mapping(page); |
| 2890 | |
| 2891 | if (is_zone_device_page(newpage)) { |
| 2892 | if (is_device_private_page(newpage)) { |
| 2893 | /* |
| 2894 | * For now only support private anonymous when |
| 2895 | * migrating to un-addressable device memory. |
| 2896 | */ |
| 2897 | if (mapping) { |
| 2898 | migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; |
| 2899 | continue; |
| 2900 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2901 | } else { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2902 | /* |
| 2903 | * Other types of ZONE_DEVICE page are not |
| 2904 | * supported. |
| 2905 | */ |
| 2906 | migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; |
| 2907 | continue; |
| 2908 | } |
| 2909 | } |
| 2910 | |
| 2911 | r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); |
| 2912 | if (r != MIGRATEPAGE_SUCCESS) |
| 2913 | migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; |
| 2914 | } |
| 2915 | |
| 2916 | /* |
| 2917 | * No need to double call mmu_notifier->invalidate_range() callback as |
| 2918 | * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() |
| 2919 | * did already call it. |
| 2920 | */ |
| 2921 | if (notified) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2922 | mmu_notifier_invalidate_range_only_end(&range); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2923 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2924 | EXPORT_SYMBOL(migrate_vma_pages); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2925 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2926 | /** |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2927 | * migrate_vma_finalize() - restore CPU page table entry |
| 2928 | * @migrate: migrate struct containing all migration information |
| 2929 | * |
| 2930 | * This replaces the special migration pte entry with either a mapping to the |
| 2931 | * new page if migration was successful for that page, or to the original page |
| 2932 | * otherwise. |
| 2933 | * |
| 2934 | * This also unlocks the pages and puts them back on the lru, or drops the extra |
| 2935 | * refcount, for device pages. |
| 2936 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2937 | void migrate_vma_finalize(struct migrate_vma *migrate) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2938 | { |
| 2939 | const unsigned long npages = migrate->npages; |
| 2940 | unsigned long i; |
| 2941 | |
| 2942 | for (i = 0; i < npages; i++) { |
| 2943 | struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); |
| 2944 | struct page *page = migrate_pfn_to_page(migrate->src[i]); |
| 2945 | |
| 2946 | if (!page) { |
| 2947 | if (newpage) { |
| 2948 | unlock_page(newpage); |
| 2949 | put_page(newpage); |
| 2950 | } |
| 2951 | continue; |
| 2952 | } |
| 2953 | |
| 2954 | if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { |
| 2955 | if (newpage) { |
| 2956 | unlock_page(newpage); |
| 2957 | put_page(newpage); |
| 2958 | } |
| 2959 | newpage = page; |
| 2960 | } |
| 2961 | |
| 2962 | remove_migration_ptes(page, newpage, false); |
| 2963 | unlock_page(page); |
| 2964 | migrate->cpages--; |
| 2965 | |
| 2966 | if (is_zone_device_page(page)) |
| 2967 | put_page(page); |
| 2968 | else |
| 2969 | putback_lru_page(page); |
| 2970 | |
| 2971 | if (newpage != page) { |
| 2972 | unlock_page(newpage); |
| 2973 | if (is_zone_device_page(newpage)) |
| 2974 | put_page(newpage); |
| 2975 | else |
| 2976 | putback_lru_page(newpage); |
| 2977 | } |
| 2978 | } |
| 2979 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2980 | EXPORT_SYMBOL(migrate_vma_finalize); |
| 2981 | #endif /* CONFIG_DEVICE_PRIVATE */ |