blob: 5092ef2aa8a1f6e903d9c66b94f8daaaf68fc768 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Memory Migration functionality - linux/mm/migrate.c
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
14 */
15
16#include <linux/migrate.h>
17#include <linux/export.h>
18#include <linux/swap.h>
19#include <linux/swapops.h>
20#include <linux/pagemap.h>
21#include <linux/buffer_head.h>
22#include <linux/mm_inline.h>
23#include <linux/nsproxy.h>
24#include <linux/pagevec.h>
25#include <linux/ksm.h>
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
30#include <linux/writeback.h>
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
33#include <linux/security.h>
34#include <linux/backing-dev.h>
35#include <linux/compaction.h>
36#include <linux/syscalls.h>
37#include <linux/compat.h>
38#include <linux/hugetlb.h>
39#include <linux/hugetlb_cgroup.h>
40#include <linux/gfp.h>
David Brazdil0f672f62019-12-10 10:32:29 +000041#include <linux/pagewalk.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000042#include <linux/pfn_t.h>
43#include <linux/memremap.h>
44#include <linux/userfaultfd_k.h>
45#include <linux/balloon_compaction.h>
46#include <linux/mmu_notifier.h>
47#include <linux/page_idle.h>
48#include <linux/page_owner.h>
49#include <linux/sched/mm.h>
50#include <linux/ptrace.h>
51
52#include <asm/tlbflush.h>
53
54#define CREATE_TRACE_POINTS
55#include <trace/events/migrate.h>
56
57#include "internal.h"
58
59/*
60 * migrate_prep() needs to be called before we start compiling a list of pages
61 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
62 * undesirable, use migrate_prep_local()
63 */
64int migrate_prep(void)
65{
66 /*
67 * Clear the LRU lists so pages can be isolated.
68 * Note that pages may be moved off the LRU after we have
69 * drained them. Those pages will fail to migrate like other
70 * pages that may be busy.
71 */
72 lru_add_drain_all();
73
74 return 0;
75}
76
77/* Do the necessary work of migrate_prep but not if it involves other CPUs */
78int migrate_prep_local(void)
79{
80 lru_add_drain();
81
82 return 0;
83}
84
85int isolate_movable_page(struct page *page, isolate_mode_t mode)
86{
87 struct address_space *mapping;
88
89 /*
90 * Avoid burning cycles with pages that are yet under __free_pages(),
91 * or just got freed under us.
92 *
93 * In case we 'win' a race for a movable page being freed under us and
94 * raise its refcount preventing __free_pages() from doing its job
95 * the put_page() at the end of this block will take care of
96 * release this page, thus avoiding a nasty leakage.
97 */
98 if (unlikely(!get_page_unless_zero(page)))
99 goto out;
100
101 /*
102 * Check PageMovable before holding a PG_lock because page's owner
103 * assumes anybody doesn't touch PG_lock of newly allocated page
David Brazdil0f672f62019-12-10 10:32:29 +0000104 * so unconditionally grabbing the lock ruins page's owner side.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000105 */
106 if (unlikely(!__PageMovable(page)))
107 goto out_putpage;
108 /*
109 * As movable pages are not isolated from LRU lists, concurrent
110 * compaction threads can race against page migration functions
111 * as well as race against the releasing a page.
112 *
113 * In order to avoid having an already isolated movable page
114 * being (wrongly) re-isolated while it is under migration,
115 * or to avoid attempting to isolate pages being released,
116 * lets be sure we have the page lock
117 * before proceeding with the movable page isolation steps.
118 */
119 if (unlikely(!trylock_page(page)))
120 goto out_putpage;
121
122 if (!PageMovable(page) || PageIsolated(page))
123 goto out_no_isolated;
124
125 mapping = page_mapping(page);
126 VM_BUG_ON_PAGE(!mapping, page);
127
128 if (!mapping->a_ops->isolate_page(page, mode))
129 goto out_no_isolated;
130
131 /* Driver shouldn't use PG_isolated bit of page->flags */
132 WARN_ON_ONCE(PageIsolated(page));
133 __SetPageIsolated(page);
134 unlock_page(page);
135
136 return 0;
137
138out_no_isolated:
139 unlock_page(page);
140out_putpage:
141 put_page(page);
142out:
143 return -EBUSY;
144}
145
146/* It should be called on page which is PG_movable */
147void putback_movable_page(struct page *page)
148{
149 struct address_space *mapping;
150
151 VM_BUG_ON_PAGE(!PageLocked(page), page);
152 VM_BUG_ON_PAGE(!PageMovable(page), page);
153 VM_BUG_ON_PAGE(!PageIsolated(page), page);
154
155 mapping = page_mapping(page);
156 mapping->a_ops->putback_page(page);
157 __ClearPageIsolated(page);
158}
159
160/*
161 * Put previously isolated pages back onto the appropriate lists
162 * from where they were once taken off for compaction/migration.
163 *
164 * This function shall be used whenever the isolated pageset has been
165 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
166 * and isolate_huge_page().
167 */
168void putback_movable_pages(struct list_head *l)
169{
170 struct page *page;
171 struct page *page2;
172
173 list_for_each_entry_safe(page, page2, l, lru) {
174 if (unlikely(PageHuge(page))) {
175 putback_active_hugepage(page);
176 continue;
177 }
178 list_del(&page->lru);
179 /*
180 * We isolated non-lru movable page so here we can use
181 * __PageMovable because LRU page's mapping cannot have
182 * PAGE_MAPPING_MOVABLE.
183 */
184 if (unlikely(__PageMovable(page))) {
185 VM_BUG_ON_PAGE(!PageIsolated(page), page);
186 lock_page(page);
187 if (PageMovable(page))
188 putback_movable_page(page);
189 else
190 __ClearPageIsolated(page);
191 unlock_page(page);
192 put_page(page);
193 } else {
194 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
195 page_is_file_cache(page), -hpage_nr_pages(page));
196 putback_lru_page(page);
197 }
198 }
199}
200
201/*
202 * Restore a potential migration pte to a working pte entry
203 */
204static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
205 unsigned long addr, void *old)
206{
207 struct page_vma_mapped_walk pvmw = {
208 .page = old,
209 .vma = vma,
210 .address = addr,
211 .flags = PVMW_SYNC | PVMW_MIGRATION,
212 };
213 struct page *new;
214 pte_t pte;
215 swp_entry_t entry;
216
217 VM_BUG_ON_PAGE(PageTail(page), page);
218 while (page_vma_mapped_walk(&pvmw)) {
219 if (PageKsm(page))
220 new = page;
221 else
222 new = page - pvmw.page->index +
223 linear_page_index(vma, pvmw.address);
224
225#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
226 /* PMD-mapped THP migration entry */
227 if (!pvmw.pte) {
228 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
229 remove_migration_pmd(&pvmw, new);
230 continue;
231 }
232#endif
233
234 get_page(new);
235 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
236 if (pte_swp_soft_dirty(*pvmw.pte))
237 pte = pte_mksoft_dirty(pte);
238
239 /*
240 * Recheck VMA as permissions can change since migration started
241 */
242 entry = pte_to_swp_entry(*pvmw.pte);
243 if (is_write_migration_entry(entry))
244 pte = maybe_mkwrite(pte, vma);
245
246 if (unlikely(is_zone_device_page(new))) {
247 if (is_device_private_page(new)) {
248 entry = make_device_private_entry(new, pte_write(pte));
249 pte = swp_entry_to_pte(entry);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000250 }
David Brazdil0f672f62019-12-10 10:32:29 +0000251 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000252
253#ifdef CONFIG_HUGETLB_PAGE
254 if (PageHuge(new)) {
255 pte = pte_mkhuge(pte);
256 pte = arch_make_huge_pte(pte, vma, new, 0);
257 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
258 if (PageAnon(new))
259 hugepage_add_anon_rmap(new, vma, pvmw.address);
260 else
261 page_dup_rmap(new, true);
262 } else
263#endif
264 {
265 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
266
267 if (PageAnon(new))
268 page_add_anon_rmap(new, vma, pvmw.address, false);
269 else
270 page_add_file_rmap(new, false);
271 }
272 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
273 mlock_vma_page(new);
274
275 if (PageTransHuge(page) && PageMlocked(page))
276 clear_page_mlock(page);
277
278 /* No need to invalidate - it was non-present before */
279 update_mmu_cache(vma, pvmw.address, pvmw.pte);
280 }
281
282 return true;
283}
284
285/*
286 * Get rid of all migration entries and replace them by
287 * references to the indicated page.
288 */
289void remove_migration_ptes(struct page *old, struct page *new, bool locked)
290{
291 struct rmap_walk_control rwc = {
292 .rmap_one = remove_migration_pte,
293 .arg = old,
294 };
295
296 if (locked)
297 rmap_walk_locked(new, &rwc);
298 else
299 rmap_walk(new, &rwc);
300}
301
302/*
303 * Something used the pte of a page under migration. We need to
304 * get to the page and wait until migration is finished.
305 * When we return from this function the fault will be retried.
306 */
307void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
308 spinlock_t *ptl)
309{
310 pte_t pte;
311 swp_entry_t entry;
312 struct page *page;
313
314 spin_lock(ptl);
315 pte = *ptep;
316 if (!is_swap_pte(pte))
317 goto out;
318
319 entry = pte_to_swp_entry(pte);
320 if (!is_migration_entry(entry))
321 goto out;
322
323 page = migration_entry_to_page(entry);
Olivier Deprez0e641232021-09-23 10:07:05 +0200324 page = compound_head(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000325
326 /*
David Brazdil0f672f62019-12-10 10:32:29 +0000327 * Once page cache replacement of page migration started, page_count
328 * is zero; but we must not call put_and_wait_on_page_locked() without
329 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000330 */
331 if (!get_page_unless_zero(page))
332 goto out;
333 pte_unmap_unlock(ptep, ptl);
David Brazdil0f672f62019-12-10 10:32:29 +0000334 put_and_wait_on_page_locked(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000335 return;
336out:
337 pte_unmap_unlock(ptep, ptl);
338}
339
340void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
341 unsigned long address)
342{
343 spinlock_t *ptl = pte_lockptr(mm, pmd);
344 pte_t *ptep = pte_offset_map(pmd, address);
345 __migration_entry_wait(mm, ptep, ptl);
346}
347
348void migration_entry_wait_huge(struct vm_area_struct *vma,
349 struct mm_struct *mm, pte_t *pte)
350{
351 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
352 __migration_entry_wait(mm, pte, ptl);
353}
354
355#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
357{
358 spinlock_t *ptl;
359 struct page *page;
360
361 ptl = pmd_lock(mm, pmd);
362 if (!is_pmd_migration_entry(*pmd))
363 goto unlock;
364 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
365 if (!get_page_unless_zero(page))
366 goto unlock;
367 spin_unlock(ptl);
David Brazdil0f672f62019-12-10 10:32:29 +0000368 put_and_wait_on_page_locked(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000369 return;
370unlock:
371 spin_unlock(ptl);
372}
373#endif
374
David Brazdil0f672f62019-12-10 10:32:29 +0000375static int expected_page_refs(struct address_space *mapping, struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000376{
David Brazdil0f672f62019-12-10 10:32:29 +0000377 int expected_count = 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000378
David Brazdil0f672f62019-12-10 10:32:29 +0000379 /*
380 * Device public or private pages have an extra refcount as they are
381 * ZONE_DEVICE pages.
382 */
383 expected_count += is_device_private_page(page);
384 if (mapping)
385 expected_count += hpage_nr_pages(page) + page_has_private(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000386
David Brazdil0f672f62019-12-10 10:32:29 +0000387 return expected_count;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000388}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000389
390/*
391 * Replace the page in the mapping.
392 *
393 * The number of remaining references must be:
394 * 1 for anonymous pages without a mapping
395 * 2 for pages with a mapping
396 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
397 */
398int migrate_page_move_mapping(struct address_space *mapping,
David Brazdil0f672f62019-12-10 10:32:29 +0000399 struct page *newpage, struct page *page, int extra_count)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000400{
David Brazdil0f672f62019-12-10 10:32:29 +0000401 XA_STATE(xas, &mapping->i_pages, page_index(page));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000402 struct zone *oldzone, *newzone;
403 int dirty;
David Brazdil0f672f62019-12-10 10:32:29 +0000404 int expected_count = expected_page_refs(mapping, page) + extra_count;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000405
406 if (!mapping) {
407 /* Anonymous page without mapping */
408 if (page_count(page) != expected_count)
409 return -EAGAIN;
410
411 /* No turning back from here */
412 newpage->index = page->index;
413 newpage->mapping = page->mapping;
414 if (PageSwapBacked(page))
415 __SetPageSwapBacked(newpage);
416
417 return MIGRATEPAGE_SUCCESS;
418 }
419
420 oldzone = page_zone(page);
421 newzone = page_zone(newpage);
422
David Brazdil0f672f62019-12-10 10:32:29 +0000423 xas_lock_irq(&xas);
424 if (page_count(page) != expected_count || xas_load(&xas) != page) {
425 xas_unlock_irq(&xas);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000426 return -EAGAIN;
427 }
428
429 if (!page_ref_freeze(page, expected_count)) {
David Brazdil0f672f62019-12-10 10:32:29 +0000430 xas_unlock_irq(&xas);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000431 return -EAGAIN;
432 }
433
434 /*
435 * Now we know that no one else is looking at the page:
436 * no turning back from here.
437 */
438 newpage->index = page->index;
439 newpage->mapping = page->mapping;
440 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
441 if (PageSwapBacked(page)) {
442 __SetPageSwapBacked(newpage);
443 if (PageSwapCache(page)) {
444 SetPageSwapCache(newpage);
445 set_page_private(newpage, page_private(page));
446 }
447 } else {
448 VM_BUG_ON_PAGE(PageSwapCache(page), page);
449 }
450
451 /* Move dirty while page refs frozen and newpage not yet exposed */
452 dirty = PageDirty(page);
453 if (dirty) {
454 ClearPageDirty(page);
455 SetPageDirty(newpage);
456 }
457
David Brazdil0f672f62019-12-10 10:32:29 +0000458 xas_store(&xas, newpage);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000459 if (PageTransHuge(page)) {
460 int i;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000461
462 for (i = 1; i < HPAGE_PMD_NR; i++) {
David Brazdil0f672f62019-12-10 10:32:29 +0000463 xas_next(&xas);
464 xas_store(&xas, newpage);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000465 }
466 }
467
468 /*
469 * Drop cache reference from old page by unfreezing
470 * to one less reference.
471 * We know this isn't the last reference.
472 */
473 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
474
David Brazdil0f672f62019-12-10 10:32:29 +0000475 xas_unlock(&xas);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000476 /* Leave irq disabled to prevent preemption while updating stats */
477
478 /*
479 * If moved to a different zone then also account
480 * the page for that zone. Other VM counters will be
481 * taken care of when we establish references to the
482 * new page and drop references to the old page.
483 *
484 * Note that anonymous pages are accounted for
485 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
486 * are mapped to swap space.
487 */
488 if (newzone != oldzone) {
489 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
490 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
491 if (PageSwapBacked(page) && !PageSwapCache(page)) {
492 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
493 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
494 }
495 if (dirty && mapping_cap_account_dirty(mapping)) {
496 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
497 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
498 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
499 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
500 }
501 }
502 local_irq_enable();
503
504 return MIGRATEPAGE_SUCCESS;
505}
506EXPORT_SYMBOL(migrate_page_move_mapping);
507
508/*
509 * The expected number of remaining references is the same as that
510 * of migrate_page_move_mapping().
511 */
512int migrate_huge_page_move_mapping(struct address_space *mapping,
513 struct page *newpage, struct page *page)
514{
David Brazdil0f672f62019-12-10 10:32:29 +0000515 XA_STATE(xas, &mapping->i_pages, page_index(page));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000516 int expected_count;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000517
David Brazdil0f672f62019-12-10 10:32:29 +0000518 xas_lock_irq(&xas);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000519 expected_count = 2 + page_has_private(page);
David Brazdil0f672f62019-12-10 10:32:29 +0000520 if (page_count(page) != expected_count || xas_load(&xas) != page) {
521 xas_unlock_irq(&xas);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000522 return -EAGAIN;
523 }
524
525 if (!page_ref_freeze(page, expected_count)) {
David Brazdil0f672f62019-12-10 10:32:29 +0000526 xas_unlock_irq(&xas);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000527 return -EAGAIN;
528 }
529
530 newpage->index = page->index;
531 newpage->mapping = page->mapping;
532
533 get_page(newpage);
534
David Brazdil0f672f62019-12-10 10:32:29 +0000535 xas_store(&xas, newpage);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000536
537 page_ref_unfreeze(page, expected_count - 1);
538
David Brazdil0f672f62019-12-10 10:32:29 +0000539 xas_unlock_irq(&xas);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000540
541 return MIGRATEPAGE_SUCCESS;
542}
543
544/*
545 * Gigantic pages are so large that we do not guarantee that page++ pointer
546 * arithmetic will work across the entire page. We need something more
547 * specialized.
548 */
549static void __copy_gigantic_page(struct page *dst, struct page *src,
550 int nr_pages)
551{
552 int i;
553 struct page *dst_base = dst;
554 struct page *src_base = src;
555
556 for (i = 0; i < nr_pages; ) {
557 cond_resched();
558 copy_highpage(dst, src);
559
560 i++;
561 dst = mem_map_next(dst, dst_base, i);
562 src = mem_map_next(src, src_base, i);
563 }
564}
565
566static void copy_huge_page(struct page *dst, struct page *src)
567{
568 int i;
569 int nr_pages;
570
571 if (PageHuge(src)) {
572 /* hugetlbfs page */
573 struct hstate *h = page_hstate(src);
574 nr_pages = pages_per_huge_page(h);
575
576 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
577 __copy_gigantic_page(dst, src, nr_pages);
578 return;
579 }
580 } else {
581 /* thp page */
582 BUG_ON(!PageTransHuge(src));
583 nr_pages = hpage_nr_pages(src);
584 }
585
586 for (i = 0; i < nr_pages; i++) {
587 cond_resched();
588 copy_highpage(dst + i, src + i);
589 }
590}
591
592/*
593 * Copy the page to its new location
594 */
595void migrate_page_states(struct page *newpage, struct page *page)
596{
597 int cpupid;
598
599 if (PageError(page))
600 SetPageError(newpage);
601 if (PageReferenced(page))
602 SetPageReferenced(newpage);
603 if (PageUptodate(page))
604 SetPageUptodate(newpage);
605 if (TestClearPageActive(page)) {
606 VM_BUG_ON_PAGE(PageUnevictable(page), page);
607 SetPageActive(newpage);
608 } else if (TestClearPageUnevictable(page))
609 SetPageUnevictable(newpage);
David Brazdil0f672f62019-12-10 10:32:29 +0000610 if (PageWorkingset(page))
611 SetPageWorkingset(newpage);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000612 if (PageChecked(page))
613 SetPageChecked(newpage);
614 if (PageMappedToDisk(page))
615 SetPageMappedToDisk(newpage);
616
617 /* Move dirty on pages not done by migrate_page_move_mapping() */
618 if (PageDirty(page))
619 SetPageDirty(newpage);
620
621 if (page_is_young(page))
622 set_page_young(newpage);
623 if (page_is_idle(page))
624 set_page_idle(newpage);
625
626 /*
627 * Copy NUMA information to the new page, to prevent over-eager
628 * future migrations of this same page.
629 */
630 cpupid = page_cpupid_xchg_last(page, -1);
631 page_cpupid_xchg_last(newpage, cpupid);
632
633 ksm_migrate_page(newpage, page);
634 /*
635 * Please do not reorder this without considering how mm/ksm.c's
636 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
637 */
638 if (PageSwapCache(page))
639 ClearPageSwapCache(page);
640 ClearPagePrivate(page);
641 set_page_private(page, 0);
642
643 /*
644 * If any waiters have accumulated on the new page then
645 * wake them up.
646 */
647 if (PageWriteback(newpage))
648 end_page_writeback(newpage);
649
650 copy_page_owner(page, newpage);
651
652 mem_cgroup_migrate(page, newpage);
653}
654EXPORT_SYMBOL(migrate_page_states);
655
656void migrate_page_copy(struct page *newpage, struct page *page)
657{
658 if (PageHuge(page) || PageTransHuge(page))
659 copy_huge_page(newpage, page);
660 else
661 copy_highpage(newpage, page);
662
663 migrate_page_states(newpage, page);
664}
665EXPORT_SYMBOL(migrate_page_copy);
666
667/************************************************************
668 * Migration functions
669 ***********************************************************/
670
671/*
672 * Common logic to directly migrate a single LRU page suitable for
673 * pages that do not use PagePrivate/PagePrivate2.
674 *
675 * Pages are locked upon entry and exit.
676 */
677int migrate_page(struct address_space *mapping,
678 struct page *newpage, struct page *page,
679 enum migrate_mode mode)
680{
681 int rc;
682
683 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
684
David Brazdil0f672f62019-12-10 10:32:29 +0000685 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000686
687 if (rc != MIGRATEPAGE_SUCCESS)
688 return rc;
689
690 if (mode != MIGRATE_SYNC_NO_COPY)
691 migrate_page_copy(newpage, page);
692 else
693 migrate_page_states(newpage, page);
694 return MIGRATEPAGE_SUCCESS;
695}
696EXPORT_SYMBOL(migrate_page);
697
698#ifdef CONFIG_BLOCK
David Brazdil0f672f62019-12-10 10:32:29 +0000699/* Returns true if all buffers are successfully locked */
700static bool buffer_migrate_lock_buffers(struct buffer_head *head,
701 enum migrate_mode mode)
702{
703 struct buffer_head *bh = head;
704
705 /* Simple case, sync compaction */
706 if (mode != MIGRATE_ASYNC) {
707 do {
708 lock_buffer(bh);
709 bh = bh->b_this_page;
710
711 } while (bh != head);
712
713 return true;
714 }
715
716 /* async case, we cannot block on lock_buffer so use trylock_buffer */
717 do {
718 if (!trylock_buffer(bh)) {
719 /*
720 * We failed to lock the buffer and cannot stall in
721 * async migration. Release the taken locks
722 */
723 struct buffer_head *failed_bh = bh;
724 bh = head;
725 while (bh != failed_bh) {
726 unlock_buffer(bh);
727 bh = bh->b_this_page;
728 }
729 return false;
730 }
731
732 bh = bh->b_this_page;
733 } while (bh != head);
734 return true;
735}
736
737static int __buffer_migrate_page(struct address_space *mapping,
738 struct page *newpage, struct page *page, enum migrate_mode mode,
739 bool check_refs)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000740{
741 struct buffer_head *bh, *head;
742 int rc;
David Brazdil0f672f62019-12-10 10:32:29 +0000743 int expected_count;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000744
745 if (!page_has_buffers(page))
746 return migrate_page(mapping, newpage, page, mode);
747
David Brazdil0f672f62019-12-10 10:32:29 +0000748 /* Check whether page does not have extra refs before we do more work */
749 expected_count = expected_page_refs(mapping, page);
750 if (page_count(page) != expected_count)
751 return -EAGAIN;
752
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000753 head = page_buffers(page);
David Brazdil0f672f62019-12-10 10:32:29 +0000754 if (!buffer_migrate_lock_buffers(head, mode))
755 return -EAGAIN;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000756
David Brazdil0f672f62019-12-10 10:32:29 +0000757 if (check_refs) {
758 bool busy;
759 bool invalidated = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000760
David Brazdil0f672f62019-12-10 10:32:29 +0000761recheck_buffers:
762 busy = false;
763 spin_lock(&mapping->private_lock);
764 bh = head;
765 do {
766 if (atomic_read(&bh->b_count)) {
767 busy = true;
768 break;
769 }
770 bh = bh->b_this_page;
771 } while (bh != head);
772 if (busy) {
773 if (invalidated) {
774 rc = -EAGAIN;
775 goto unlock_buffers;
776 }
777 spin_unlock(&mapping->private_lock);
778 invalidate_bh_lrus();
779 invalidated = true;
780 goto recheck_buffers;
781 }
782 }
783
784 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000785 if (rc != MIGRATEPAGE_SUCCESS)
David Brazdil0f672f62019-12-10 10:32:29 +0000786 goto unlock_buffers;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000787
788 ClearPagePrivate(page);
789 set_page_private(newpage, page_private(page));
790 set_page_private(page, 0);
791 put_page(page);
792 get_page(newpage);
793
794 bh = head;
795 do {
796 set_bh_page(bh, newpage, bh_offset(bh));
797 bh = bh->b_this_page;
798
799 } while (bh != head);
800
801 SetPagePrivate(newpage);
802
803 if (mode != MIGRATE_SYNC_NO_COPY)
804 migrate_page_copy(newpage, page);
805 else
806 migrate_page_states(newpage, page);
807
David Brazdil0f672f62019-12-10 10:32:29 +0000808 rc = MIGRATEPAGE_SUCCESS;
809unlock_buffers:
810 if (check_refs)
811 spin_unlock(&mapping->private_lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000812 bh = head;
813 do {
814 unlock_buffer(bh);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000815 bh = bh->b_this_page;
816
817 } while (bh != head);
818
David Brazdil0f672f62019-12-10 10:32:29 +0000819 return rc;
820}
821
822/*
823 * Migration function for pages with buffers. This function can only be used
824 * if the underlying filesystem guarantees that no other references to "page"
825 * exist. For example attached buffer heads are accessed only under page lock.
826 */
827int buffer_migrate_page(struct address_space *mapping,
828 struct page *newpage, struct page *page, enum migrate_mode mode)
829{
830 return __buffer_migrate_page(mapping, newpage, page, mode, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000831}
832EXPORT_SYMBOL(buffer_migrate_page);
David Brazdil0f672f62019-12-10 10:32:29 +0000833
834/*
835 * Same as above except that this variant is more careful and checks that there
836 * are also no buffer head references. This function is the right one for
837 * mappings where buffer heads are directly looked up and referenced (such as
838 * block device mappings).
839 */
840int buffer_migrate_page_norefs(struct address_space *mapping,
841 struct page *newpage, struct page *page, enum migrate_mode mode)
842{
843 return __buffer_migrate_page(mapping, newpage, page, mode, true);
844}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000845#endif
846
847/*
848 * Writeback a page to clean the dirty state
849 */
850static int writeout(struct address_space *mapping, struct page *page)
851{
852 struct writeback_control wbc = {
853 .sync_mode = WB_SYNC_NONE,
854 .nr_to_write = 1,
855 .range_start = 0,
856 .range_end = LLONG_MAX,
857 .for_reclaim = 1
858 };
859 int rc;
860
861 if (!mapping->a_ops->writepage)
862 /* No write method for the address space */
863 return -EINVAL;
864
865 if (!clear_page_dirty_for_io(page))
866 /* Someone else already triggered a write */
867 return -EAGAIN;
868
869 /*
870 * A dirty page may imply that the underlying filesystem has
871 * the page on some queue. So the page must be clean for
872 * migration. Writeout may mean we loose the lock and the
873 * page state is no longer what we checked for earlier.
874 * At this point we know that the migration attempt cannot
875 * be successful.
876 */
877 remove_migration_ptes(page, page, false);
878
879 rc = mapping->a_ops->writepage(page, &wbc);
880
881 if (rc != AOP_WRITEPAGE_ACTIVATE)
882 /* unlocked. Relock */
883 lock_page(page);
884
885 return (rc < 0) ? -EIO : -EAGAIN;
886}
887
888/*
889 * Default handling if a filesystem does not provide a migration function.
890 */
891static int fallback_migrate_page(struct address_space *mapping,
892 struct page *newpage, struct page *page, enum migrate_mode mode)
893{
894 if (PageDirty(page)) {
895 /* Only writeback pages in full synchronous migration */
896 switch (mode) {
897 case MIGRATE_SYNC:
898 case MIGRATE_SYNC_NO_COPY:
899 break;
900 default:
901 return -EBUSY;
902 }
903 return writeout(mapping, page);
904 }
905
906 /*
907 * Buffers may be managed in a filesystem specific way.
908 * We must have no buffers or drop them.
909 */
910 if (page_has_private(page) &&
911 !try_to_release_page(page, GFP_KERNEL))
David Brazdil0f672f62019-12-10 10:32:29 +0000912 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000913
914 return migrate_page(mapping, newpage, page, mode);
915}
916
917/*
918 * Move a page to a newly allocated page
919 * The page is locked and all ptes have been successfully removed.
920 *
921 * The new page will have replaced the old page if this function
922 * is successful.
923 *
924 * Return value:
925 * < 0 - error code
926 * MIGRATEPAGE_SUCCESS - success
927 */
928static int move_to_new_page(struct page *newpage, struct page *page,
929 enum migrate_mode mode)
930{
931 struct address_space *mapping;
932 int rc = -EAGAIN;
933 bool is_lru = !__PageMovable(page);
934
935 VM_BUG_ON_PAGE(!PageLocked(page), page);
936 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
937
938 mapping = page_mapping(page);
939
940 if (likely(is_lru)) {
941 if (!mapping)
942 rc = migrate_page(mapping, newpage, page, mode);
943 else if (mapping->a_ops->migratepage)
944 /*
945 * Most pages have a mapping and most filesystems
946 * provide a migratepage callback. Anonymous pages
947 * are part of swap space which also has its own
948 * migratepage callback. This is the most common path
949 * for page migration.
950 */
951 rc = mapping->a_ops->migratepage(mapping, newpage,
952 page, mode);
953 else
954 rc = fallback_migrate_page(mapping, newpage,
955 page, mode);
956 } else {
957 /*
958 * In case of non-lru page, it could be released after
959 * isolation step. In that case, we shouldn't try migration.
960 */
961 VM_BUG_ON_PAGE(!PageIsolated(page), page);
962 if (!PageMovable(page)) {
963 rc = MIGRATEPAGE_SUCCESS;
964 __ClearPageIsolated(page);
965 goto out;
966 }
967
968 rc = mapping->a_ops->migratepage(mapping, newpage,
969 page, mode);
970 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
971 !PageIsolated(page));
972 }
973
974 /*
975 * When successful, old pagecache page->mapping must be cleared before
976 * page is freed; but stats require that PageAnon be left as PageAnon.
977 */
978 if (rc == MIGRATEPAGE_SUCCESS) {
979 if (__PageMovable(page)) {
980 VM_BUG_ON_PAGE(!PageIsolated(page), page);
981
982 /*
983 * We clear PG_movable under page_lock so any compactor
984 * cannot try to migrate this page.
985 */
986 __ClearPageIsolated(page);
987 }
988
989 /*
990 * Anonymous and movable page->mapping will be cleard by
991 * free_pages_prepare so don't reset it here for keeping
992 * the type to work PageAnon, for example.
993 */
994 if (!PageMappingFlags(page))
995 page->mapping = NULL;
David Brazdil0f672f62019-12-10 10:32:29 +0000996
997 if (likely(!is_zone_device_page(newpage)))
998 flush_dcache_page(newpage);
999
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001000 }
1001out:
1002 return rc;
1003}
1004
1005static int __unmap_and_move(struct page *page, struct page *newpage,
1006 int force, enum migrate_mode mode)
1007{
1008 int rc = -EAGAIN;
1009 int page_was_mapped = 0;
1010 struct anon_vma *anon_vma = NULL;
1011 bool is_lru = !__PageMovable(page);
1012
1013 if (!trylock_page(page)) {
1014 if (!force || mode == MIGRATE_ASYNC)
1015 goto out;
1016
1017 /*
1018 * It's not safe for direct compaction to call lock_page.
1019 * For example, during page readahead pages are added locked
1020 * to the LRU. Later, when the IO completes the pages are
1021 * marked uptodate and unlocked. However, the queueing
1022 * could be merging multiple pages for one bio (e.g.
1023 * mpage_readpages). If an allocation happens for the
1024 * second or third page, the process can end up locking
1025 * the same page twice and deadlocking. Rather than
1026 * trying to be clever about what pages can be locked,
1027 * avoid the use of lock_page for direct compaction
1028 * altogether.
1029 */
1030 if (current->flags & PF_MEMALLOC)
1031 goto out;
1032
1033 lock_page(page);
1034 }
1035
1036 if (PageWriteback(page)) {
1037 /*
1038 * Only in the case of a full synchronous migration is it
1039 * necessary to wait for PageWriteback. In the async case,
1040 * the retry loop is too short and in the sync-light case,
1041 * the overhead of stalling is too much
1042 */
1043 switch (mode) {
1044 case MIGRATE_SYNC:
1045 case MIGRATE_SYNC_NO_COPY:
1046 break;
1047 default:
1048 rc = -EBUSY;
1049 goto out_unlock;
1050 }
1051 if (!force)
1052 goto out_unlock;
1053 wait_on_page_writeback(page);
1054 }
1055
1056 /*
1057 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1058 * we cannot notice that anon_vma is freed while we migrates a page.
1059 * This get_anon_vma() delays freeing anon_vma pointer until the end
1060 * of migration. File cache pages are no problem because of page_lock()
1061 * File Caches may use write_page() or lock_page() in migration, then,
1062 * just care Anon page here.
1063 *
1064 * Only page_get_anon_vma() understands the subtleties of
1065 * getting a hold on an anon_vma from outside one of its mms.
1066 * But if we cannot get anon_vma, then we won't need it anyway,
1067 * because that implies that the anon page is no longer mapped
1068 * (and cannot be remapped so long as we hold the page lock).
1069 */
1070 if (PageAnon(page) && !PageKsm(page))
1071 anon_vma = page_get_anon_vma(page);
1072
1073 /*
1074 * Block others from accessing the new page when we get around to
1075 * establishing additional references. We are usually the only one
1076 * holding a reference to newpage at this point. We used to have a BUG
1077 * here if trylock_page(newpage) fails, but would like to allow for
1078 * cases where there might be a race with the previous use of newpage.
1079 * This is much like races on refcount of oldpage: just don't BUG().
1080 */
1081 if (unlikely(!trylock_page(newpage)))
1082 goto out_unlock;
1083
1084 if (unlikely(!is_lru)) {
1085 rc = move_to_new_page(newpage, page, mode);
1086 goto out_unlock_both;
1087 }
1088
1089 /*
1090 * Corner case handling:
1091 * 1. When a new swap-cache page is read into, it is added to the LRU
1092 * and treated as swapcache but it has no rmap yet.
1093 * Calling try_to_unmap() against a page->mapping==NULL page will
1094 * trigger a BUG. So handle it here.
1095 * 2. An orphaned page (see truncate_complete_page) might have
1096 * fs-private metadata. The page can be picked up due to memory
1097 * offlining. Everywhere else except page reclaim, the page is
1098 * invisible to the vm, so the page can not be migrated. So try to
1099 * free the metadata, so the page can be freed.
1100 */
1101 if (!page->mapping) {
1102 VM_BUG_ON_PAGE(PageAnon(page), page);
1103 if (page_has_private(page)) {
1104 try_to_free_buffers(page);
1105 goto out_unlock_both;
1106 }
1107 } else if (page_mapped(page)) {
1108 /* Establish migration ptes */
1109 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1110 page);
1111 try_to_unmap(page,
1112 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1113 page_was_mapped = 1;
1114 }
1115
1116 if (!page_mapped(page))
1117 rc = move_to_new_page(newpage, page, mode);
1118
1119 if (page_was_mapped)
1120 remove_migration_ptes(page,
1121 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1122
1123out_unlock_both:
1124 unlock_page(newpage);
1125out_unlock:
1126 /* Drop an anon_vma reference if we took one */
1127 if (anon_vma)
1128 put_anon_vma(anon_vma);
1129 unlock_page(page);
1130out:
1131 /*
1132 * If migration is successful, decrease refcount of the newpage
1133 * which will not free the page because new page owner increased
1134 * refcounter. As well, if it is LRU page, add the page to LRU
David Brazdil0f672f62019-12-10 10:32:29 +00001135 * list in here. Use the old state of the isolated source page to
1136 * determine if we migrated a LRU page. newpage was already unlocked
1137 * and possibly modified by its owner - don't rely on the page
1138 * state.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001139 */
1140 if (rc == MIGRATEPAGE_SUCCESS) {
David Brazdil0f672f62019-12-10 10:32:29 +00001141 if (unlikely(!is_lru))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001142 put_page(newpage);
1143 else
1144 putback_lru_page(newpage);
1145 }
1146
1147 return rc;
1148}
1149
1150/*
1151 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1152 * around it.
1153 */
1154#if defined(CONFIG_ARM) && \
1155 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1156#define ICE_noinline noinline
1157#else
1158#define ICE_noinline
1159#endif
1160
1161/*
1162 * Obtain the lock on page, remove all ptes and migrate the page
1163 * to the newly allocated page in newpage.
1164 */
1165static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1166 free_page_t put_new_page,
1167 unsigned long private, struct page *page,
1168 int force, enum migrate_mode mode,
1169 enum migrate_reason reason)
1170{
1171 int rc = MIGRATEPAGE_SUCCESS;
1172 struct page *newpage;
1173
1174 if (!thp_migration_supported() && PageTransHuge(page))
1175 return -ENOMEM;
1176
1177 newpage = get_new_page(page, private);
1178 if (!newpage)
1179 return -ENOMEM;
1180
1181 if (page_count(page) == 1) {
1182 /* page was freed from under us. So we are done. */
1183 ClearPageActive(page);
1184 ClearPageUnevictable(page);
1185 if (unlikely(__PageMovable(page))) {
1186 lock_page(page);
1187 if (!PageMovable(page))
1188 __ClearPageIsolated(page);
1189 unlock_page(page);
1190 }
1191 if (put_new_page)
1192 put_new_page(newpage, private);
1193 else
1194 put_page(newpage);
1195 goto out;
1196 }
1197
1198 rc = __unmap_and_move(page, newpage, force, mode);
1199 if (rc == MIGRATEPAGE_SUCCESS)
1200 set_page_owner_migrate_reason(newpage, reason);
1201
1202out:
1203 if (rc != -EAGAIN) {
1204 /*
1205 * A page that has been migrated has all references
1206 * removed and will be freed. A page that has not been
1207 * migrated will have kepts its references and be
1208 * restored.
1209 */
1210 list_del(&page->lru);
1211
1212 /*
1213 * Compaction can migrate also non-LRU pages which are
1214 * not accounted to NR_ISOLATED_*. They can be recognized
1215 * as __PageMovable
1216 */
1217 if (likely(!__PageMovable(page)))
1218 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1219 page_is_file_cache(page), -hpage_nr_pages(page));
1220 }
1221
1222 /*
1223 * If migration is successful, releases reference grabbed during
1224 * isolation. Otherwise, restore the page to right list unless
1225 * we want to retry.
1226 */
1227 if (rc == MIGRATEPAGE_SUCCESS) {
1228 put_page(page);
1229 if (reason == MR_MEMORY_FAILURE) {
1230 /*
1231 * Set PG_HWPoison on just freed page
1232 * intentionally. Although it's rather weird,
1233 * it's how HWPoison flag works at the moment.
1234 */
1235 if (set_hwpoison_free_buddy_page(page))
1236 num_poisoned_pages_inc();
1237 }
1238 } else {
1239 if (rc != -EAGAIN) {
1240 if (likely(!__PageMovable(page))) {
1241 putback_lru_page(page);
1242 goto put_new;
1243 }
1244
1245 lock_page(page);
1246 if (PageMovable(page))
1247 putback_movable_page(page);
1248 else
1249 __ClearPageIsolated(page);
1250 unlock_page(page);
1251 put_page(page);
1252 }
1253put_new:
1254 if (put_new_page)
1255 put_new_page(newpage, private);
1256 else
1257 put_page(newpage);
1258 }
1259
1260 return rc;
1261}
1262
1263/*
1264 * Counterpart of unmap_and_move_page() for hugepage migration.
1265 *
1266 * This function doesn't wait the completion of hugepage I/O
1267 * because there is no race between I/O and migration for hugepage.
1268 * Note that currently hugepage I/O occurs only in direct I/O
1269 * where no lock is held and PG_writeback is irrelevant,
1270 * and writeback status of all subpages are counted in the reference
1271 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1272 * under direct I/O, the reference of the head page is 512 and a bit more.)
1273 * This means that when we try to migrate hugepage whose subpages are
1274 * doing direct I/O, some references remain after try_to_unmap() and
1275 * hugepage migration fails without data corruption.
1276 *
1277 * There is also no race when direct I/O is issued on the page under migration,
1278 * because then pte is replaced with migration swap entry and direct I/O code
1279 * will wait in the page fault for migration to complete.
1280 */
1281static int unmap_and_move_huge_page(new_page_t get_new_page,
1282 free_page_t put_new_page, unsigned long private,
1283 struct page *hpage, int force,
1284 enum migrate_mode mode, int reason)
1285{
1286 int rc = -EAGAIN;
1287 int page_was_mapped = 0;
1288 struct page *new_hpage;
1289 struct anon_vma *anon_vma = NULL;
1290
1291 /*
David Brazdil0f672f62019-12-10 10:32:29 +00001292 * Migratability of hugepages depends on architectures and their size.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001293 * This check is necessary because some callers of hugepage migration
1294 * like soft offline and memory hotremove don't walk through page
1295 * tables or check whether the hugepage is pmd-based or not before
1296 * kicking migration.
1297 */
1298 if (!hugepage_migration_supported(page_hstate(hpage))) {
1299 putback_active_hugepage(hpage);
1300 return -ENOSYS;
1301 }
1302
1303 new_hpage = get_new_page(hpage, private);
1304 if (!new_hpage)
1305 return -ENOMEM;
1306
1307 if (!trylock_page(hpage)) {
1308 if (!force)
1309 goto out;
1310 switch (mode) {
1311 case MIGRATE_SYNC:
1312 case MIGRATE_SYNC_NO_COPY:
1313 break;
1314 default:
1315 goto out;
1316 }
1317 lock_page(hpage);
1318 }
1319
David Brazdil0f672f62019-12-10 10:32:29 +00001320 /*
1321 * Check for pages which are in the process of being freed. Without
1322 * page_mapping() set, hugetlbfs specific move page routine will not
1323 * be called and we could leak usage counts for subpools.
1324 */
1325 if (page_private(hpage) && !page_mapping(hpage)) {
1326 rc = -EBUSY;
1327 goto out_unlock;
1328 }
1329
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001330 if (PageAnon(hpage))
1331 anon_vma = page_get_anon_vma(hpage);
1332
1333 if (unlikely(!trylock_page(new_hpage)))
1334 goto put_anon;
1335
1336 if (page_mapped(hpage)) {
1337 try_to_unmap(hpage,
1338 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1339 page_was_mapped = 1;
1340 }
1341
1342 if (!page_mapped(hpage))
1343 rc = move_to_new_page(new_hpage, hpage, mode);
1344
1345 if (page_was_mapped)
1346 remove_migration_ptes(hpage,
1347 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1348
1349 unlock_page(new_hpage);
1350
1351put_anon:
1352 if (anon_vma)
1353 put_anon_vma(anon_vma);
1354
1355 if (rc == MIGRATEPAGE_SUCCESS) {
1356 move_hugetlb_state(hpage, new_hpage, reason);
1357 put_new_page = NULL;
1358 }
1359
David Brazdil0f672f62019-12-10 10:32:29 +00001360out_unlock:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001361 unlock_page(hpage);
1362out:
1363 if (rc != -EAGAIN)
1364 putback_active_hugepage(hpage);
1365
1366 /*
1367 * If migration was not successful and there's a freeing callback, use
1368 * it. Otherwise, put_page() will drop the reference grabbed during
1369 * isolation.
1370 */
1371 if (put_new_page)
1372 put_new_page(new_hpage, private);
1373 else
1374 putback_active_hugepage(new_hpage);
1375
1376 return rc;
1377}
1378
1379/*
1380 * migrate_pages - migrate the pages specified in a list, to the free pages
1381 * supplied as the target for the page migration
1382 *
1383 * @from: The list of pages to be migrated.
1384 * @get_new_page: The function used to allocate free pages to be used
1385 * as the target of the page migration.
1386 * @put_new_page: The function used to free target pages if migration
1387 * fails, or NULL if no special handling is necessary.
1388 * @private: Private data to be passed on to get_new_page()
1389 * @mode: The migration mode that specifies the constraints for
1390 * page migration, if any.
1391 * @reason: The reason for page migration.
1392 *
1393 * The function returns after 10 attempts or if no pages are movable any more
1394 * because the list has become empty or no retryable pages exist any more.
1395 * The caller should call putback_movable_pages() to return pages to the LRU
1396 * or free list only if ret != 0.
1397 *
1398 * Returns the number of pages that were not migrated, or an error code.
1399 */
1400int migrate_pages(struct list_head *from, new_page_t get_new_page,
1401 free_page_t put_new_page, unsigned long private,
1402 enum migrate_mode mode, int reason)
1403{
1404 int retry = 1;
1405 int nr_failed = 0;
1406 int nr_succeeded = 0;
1407 int pass = 0;
1408 struct page *page;
1409 struct page *page2;
1410 int swapwrite = current->flags & PF_SWAPWRITE;
1411 int rc;
1412
1413 if (!swapwrite)
1414 current->flags |= PF_SWAPWRITE;
1415
1416 for(pass = 0; pass < 10 && retry; pass++) {
1417 retry = 0;
1418
1419 list_for_each_entry_safe(page, page2, from, lru) {
1420retry:
1421 cond_resched();
1422
1423 if (PageHuge(page))
1424 rc = unmap_and_move_huge_page(get_new_page,
1425 put_new_page, private, page,
1426 pass > 2, mode, reason);
1427 else
1428 rc = unmap_and_move(get_new_page, put_new_page,
1429 private, page, pass > 2, mode,
1430 reason);
1431
1432 switch(rc) {
1433 case -ENOMEM:
1434 /*
1435 * THP migration might be unsupported or the
1436 * allocation could've failed so we should
1437 * retry on the same page with the THP split
1438 * to base pages.
1439 *
1440 * Head page is retried immediately and tail
1441 * pages are added to the tail of the list so
1442 * we encounter them after the rest of the list
1443 * is processed.
1444 */
1445 if (PageTransHuge(page) && !PageHuge(page)) {
1446 lock_page(page);
1447 rc = split_huge_page_to_list(page, from);
1448 unlock_page(page);
1449 if (!rc) {
1450 list_safe_reset_next(page, page2, lru);
1451 goto retry;
1452 }
1453 }
1454 nr_failed++;
1455 goto out;
1456 case -EAGAIN:
1457 retry++;
1458 break;
1459 case MIGRATEPAGE_SUCCESS:
1460 nr_succeeded++;
1461 break;
1462 default:
1463 /*
1464 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1465 * unlike -EAGAIN case, the failed page is
1466 * removed from migration page list and not
1467 * retried in the next outer loop.
1468 */
1469 nr_failed++;
1470 break;
1471 }
1472 }
1473 }
1474 nr_failed += retry;
1475 rc = nr_failed;
1476out:
1477 if (nr_succeeded)
1478 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1479 if (nr_failed)
1480 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1481 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1482
1483 if (!swapwrite)
1484 current->flags &= ~PF_SWAPWRITE;
1485
1486 return rc;
1487}
1488
1489#ifdef CONFIG_NUMA
1490
1491static int store_status(int __user *status, int start, int value, int nr)
1492{
1493 while (nr-- > 0) {
1494 if (put_user(value, status + start))
1495 return -EFAULT;
1496 start++;
1497 }
1498
1499 return 0;
1500}
1501
1502static int do_move_pages_to_node(struct mm_struct *mm,
1503 struct list_head *pagelist, int node)
1504{
1505 int err;
1506
1507 if (list_empty(pagelist))
1508 return 0;
1509
1510 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1511 MIGRATE_SYNC, MR_SYSCALL);
1512 if (err)
1513 putback_movable_pages(pagelist);
1514 return err;
1515}
1516
1517/*
1518 * Resolves the given address to a struct page, isolates it from the LRU and
1519 * puts it to the given pagelist.
Olivier Deprez0e641232021-09-23 10:07:05 +02001520 * Returns:
1521 * errno - if the page cannot be found/isolated
1522 * 0 - when it doesn't have to be migrated because it is already on the
1523 * target node
1524 * 1 - when it has been queued
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001525 */
1526static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1527 int node, struct list_head *pagelist, bool migrate_all)
1528{
1529 struct vm_area_struct *vma;
1530 struct page *page;
1531 unsigned int follflags;
1532 int err;
1533
1534 down_read(&mm->mmap_sem);
1535 err = -EFAULT;
1536 vma = find_vma(mm, addr);
1537 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1538 goto out;
1539
1540 /* FOLL_DUMP to ignore special (like zero) pages */
1541 follflags = FOLL_GET | FOLL_DUMP;
1542 page = follow_page(vma, addr, follflags);
1543
1544 err = PTR_ERR(page);
1545 if (IS_ERR(page))
1546 goto out;
1547
1548 err = -ENOENT;
1549 if (!page)
1550 goto out;
1551
1552 err = 0;
1553 if (page_to_nid(page) == node)
1554 goto out_putpage;
1555
1556 err = -EACCES;
1557 if (page_mapcount(page) > 1 && !migrate_all)
1558 goto out_putpage;
1559
1560 if (PageHuge(page)) {
1561 if (PageHead(page)) {
1562 isolate_huge_page(page, pagelist);
Olivier Deprez0e641232021-09-23 10:07:05 +02001563 err = 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001564 }
1565 } else {
1566 struct page *head;
1567
1568 head = compound_head(page);
1569 err = isolate_lru_page(head);
1570 if (err)
1571 goto out_putpage;
1572
Olivier Deprez0e641232021-09-23 10:07:05 +02001573 err = 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001574 list_add_tail(&head->lru, pagelist);
1575 mod_node_page_state(page_pgdat(head),
1576 NR_ISOLATED_ANON + page_is_file_cache(head),
1577 hpage_nr_pages(head));
1578 }
1579out_putpage:
1580 /*
1581 * Either remove the duplicate refcount from
1582 * isolate_lru_page() or drop the page ref if it was
1583 * not isolated.
1584 */
1585 put_page(page);
1586out:
1587 up_read(&mm->mmap_sem);
1588 return err;
1589}
1590
1591/*
1592 * Migrate an array of page address onto an array of nodes and fill
1593 * the corresponding array of status.
1594 */
1595static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1596 unsigned long nr_pages,
1597 const void __user * __user *pages,
1598 const int __user *nodes,
1599 int __user *status, int flags)
1600{
1601 int current_node = NUMA_NO_NODE;
1602 LIST_HEAD(pagelist);
1603 int start, i;
1604 int err = 0, err1;
1605
1606 migrate_prep();
1607
1608 for (i = start = 0; i < nr_pages; i++) {
1609 const void __user *p;
1610 unsigned long addr;
1611 int node;
1612
1613 err = -EFAULT;
1614 if (get_user(p, pages + i))
1615 goto out_flush;
1616 if (get_user(node, nodes + i))
1617 goto out_flush;
David Brazdil0f672f62019-12-10 10:32:29 +00001618 addr = (unsigned long)untagged_addr(p);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001619
1620 err = -ENODEV;
1621 if (node < 0 || node >= MAX_NUMNODES)
1622 goto out_flush;
1623 if (!node_state(node, N_MEMORY))
1624 goto out_flush;
1625
1626 err = -EACCES;
1627 if (!node_isset(node, task_nodes))
1628 goto out_flush;
1629
1630 if (current_node == NUMA_NO_NODE) {
1631 current_node = node;
1632 start = i;
1633 } else if (node != current_node) {
1634 err = do_move_pages_to_node(mm, &pagelist, current_node);
Olivier Deprez0e641232021-09-23 10:07:05 +02001635 if (err) {
1636 /*
1637 * Positive err means the number of failed
1638 * pages to migrate. Since we are going to
1639 * abort and return the number of non-migrated
1640 * pages, so need to incude the rest of the
1641 * nr_pages that have not been attempted as
1642 * well.
1643 */
1644 if (err > 0)
1645 err += nr_pages - i - 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001646 goto out;
Olivier Deprez0e641232021-09-23 10:07:05 +02001647 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001648 err = store_status(status, start, current_node, i - start);
1649 if (err)
1650 goto out;
1651 start = i;
1652 current_node = node;
1653 }
1654
1655 /*
1656 * Errors in the page lookup or isolation are not fatal and we simply
1657 * report them via status
1658 */
1659 err = add_page_for_migration(mm, addr, current_node,
1660 &pagelist, flags & MPOL_MF_MOVE_ALL);
Olivier Deprez0e641232021-09-23 10:07:05 +02001661
1662 if (!err) {
1663 /* The page is already on the target node */
1664 err = store_status(status, i, current_node, 1);
1665 if (err)
1666 goto out_flush;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001667 continue;
Olivier Deprez0e641232021-09-23 10:07:05 +02001668 } else if (err > 0) {
1669 /* The page is successfully queued for migration */
1670 continue;
1671 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001672
1673 err = store_status(status, i, err, 1);
1674 if (err)
1675 goto out_flush;
1676
1677 err = do_move_pages_to_node(mm, &pagelist, current_node);
Olivier Deprez0e641232021-09-23 10:07:05 +02001678 if (err) {
1679 if (err > 0)
1680 err += nr_pages - i - 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001681 goto out;
Olivier Deprez0e641232021-09-23 10:07:05 +02001682 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001683 if (i > start) {
1684 err = store_status(status, start, current_node, i - start);
1685 if (err)
1686 goto out;
1687 }
1688 current_node = NUMA_NO_NODE;
1689 }
1690out_flush:
1691 if (list_empty(&pagelist))
1692 return err;
1693
1694 /* Make sure we do not overwrite the existing error */
1695 err1 = do_move_pages_to_node(mm, &pagelist, current_node);
Olivier Deprez0e641232021-09-23 10:07:05 +02001696 /*
1697 * Don't have to report non-attempted pages here since:
1698 * - If the above loop is done gracefully all pages have been
1699 * attempted.
1700 * - If the above loop is aborted it means a fatal error
1701 * happened, should return ret.
1702 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001703 if (!err1)
1704 err1 = store_status(status, start, current_node, i - start);
Olivier Deprez0e641232021-09-23 10:07:05 +02001705 if (err >= 0)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001706 err = err1;
1707out:
1708 return err;
1709}
1710
1711/*
1712 * Determine the nodes of an array of pages and store it in an array of status.
1713 */
1714static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1715 const void __user **pages, int *status)
1716{
1717 unsigned long i;
1718
1719 down_read(&mm->mmap_sem);
1720
1721 for (i = 0; i < nr_pages; i++) {
1722 unsigned long addr = (unsigned long)(*pages);
1723 struct vm_area_struct *vma;
1724 struct page *page;
1725 int err = -EFAULT;
1726
1727 vma = find_vma(mm, addr);
1728 if (!vma || addr < vma->vm_start)
1729 goto set_status;
1730
1731 /* FOLL_DUMP to ignore special (like zero) pages */
1732 page = follow_page(vma, addr, FOLL_DUMP);
1733
1734 err = PTR_ERR(page);
1735 if (IS_ERR(page))
1736 goto set_status;
1737
1738 err = page ? page_to_nid(page) : -ENOENT;
1739set_status:
1740 *status = err;
1741
1742 pages++;
1743 status++;
1744 }
1745
1746 up_read(&mm->mmap_sem);
1747}
1748
1749/*
1750 * Determine the nodes of a user array of pages and store it in
1751 * a user array of status.
1752 */
1753static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1754 const void __user * __user *pages,
1755 int __user *status)
1756{
1757#define DO_PAGES_STAT_CHUNK_NR 16
1758 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1759 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1760
1761 while (nr_pages) {
1762 unsigned long chunk_nr;
1763
1764 chunk_nr = nr_pages;
1765 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1766 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1767
1768 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1769 break;
1770
1771 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1772
1773 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1774 break;
1775
1776 pages += chunk_nr;
1777 status += chunk_nr;
1778 nr_pages -= chunk_nr;
1779 }
1780 return nr_pages ? -EFAULT : 0;
1781}
1782
1783/*
1784 * Move a list of pages in the address space of the currently executing
1785 * process.
1786 */
1787static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1788 const void __user * __user *pages,
1789 const int __user *nodes,
1790 int __user *status, int flags)
1791{
1792 struct task_struct *task;
1793 struct mm_struct *mm;
1794 int err;
1795 nodemask_t task_nodes;
1796
1797 /* Check flags */
1798 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1799 return -EINVAL;
1800
1801 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1802 return -EPERM;
1803
1804 /* Find the mm_struct */
1805 rcu_read_lock();
1806 task = pid ? find_task_by_vpid(pid) : current;
1807 if (!task) {
1808 rcu_read_unlock();
1809 return -ESRCH;
1810 }
1811 get_task_struct(task);
1812
1813 /*
1814 * Check if this process has the right to modify the specified
1815 * process. Use the regular "ptrace_may_access()" checks.
1816 */
1817 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1818 rcu_read_unlock();
1819 err = -EPERM;
1820 goto out;
1821 }
1822 rcu_read_unlock();
1823
1824 err = security_task_movememory(task);
1825 if (err)
1826 goto out;
1827
1828 task_nodes = cpuset_mems_allowed(task);
1829 mm = get_task_mm(task);
1830 put_task_struct(task);
1831
1832 if (!mm)
1833 return -EINVAL;
1834
1835 if (nodes)
1836 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1837 nodes, status, flags);
1838 else
1839 err = do_pages_stat(mm, nr_pages, pages, status);
1840
1841 mmput(mm);
1842 return err;
1843
1844out:
1845 put_task_struct(task);
1846 return err;
1847}
1848
1849SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1850 const void __user * __user *, pages,
1851 const int __user *, nodes,
1852 int __user *, status, int, flags)
1853{
1854 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1855}
1856
1857#ifdef CONFIG_COMPAT
1858COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1859 compat_uptr_t __user *, pages32,
1860 const int __user *, nodes,
1861 int __user *, status,
1862 int, flags)
1863{
1864 const void __user * __user *pages;
1865 int i;
1866
1867 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1868 for (i = 0; i < nr_pages; i++) {
1869 compat_uptr_t p;
1870
1871 if (get_user(p, pages32 + i) ||
1872 put_user(compat_ptr(p), pages + i))
1873 return -EFAULT;
1874 }
1875 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1876}
1877#endif /* CONFIG_COMPAT */
1878
1879#ifdef CONFIG_NUMA_BALANCING
1880/*
1881 * Returns true if this is a safe migration target node for misplaced NUMA
1882 * pages. Currently it only checks the watermarks which crude
1883 */
1884static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1885 unsigned long nr_migrate_pages)
1886{
1887 int z;
1888
1889 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1890 struct zone *zone = pgdat->node_zones + z;
1891
1892 if (!populated_zone(zone))
1893 continue;
1894
1895 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1896 if (!zone_watermark_ok(zone, 0,
1897 high_wmark_pages(zone) +
1898 nr_migrate_pages,
1899 0, 0))
1900 continue;
1901 return true;
1902 }
1903 return false;
1904}
1905
1906static struct page *alloc_misplaced_dst_page(struct page *page,
1907 unsigned long data)
1908{
1909 int nid = (int) data;
1910 struct page *newpage;
1911
1912 newpage = __alloc_pages_node(nid,
1913 (GFP_HIGHUSER_MOVABLE |
1914 __GFP_THISNODE | __GFP_NOMEMALLOC |
1915 __GFP_NORETRY | __GFP_NOWARN) &
1916 ~__GFP_RECLAIM, 0);
1917
1918 return newpage;
1919}
1920
1921static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1922{
1923 int page_lru;
1924
1925 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1926
1927 /* Avoid migrating to a node that is nearly full */
David Brazdil0f672f62019-12-10 10:32:29 +00001928 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001929 return 0;
1930
1931 if (isolate_lru_page(page))
1932 return 0;
1933
1934 /*
1935 * migrate_misplaced_transhuge_page() skips page migration's usual
1936 * check on page_count(), so we must do it here, now that the page
1937 * has been isolated: a GUP pin, or any other pin, prevents migration.
1938 * The expected page count is 3: 1 for page's mapcount and 1 for the
1939 * caller's pin and 1 for the reference taken by isolate_lru_page().
1940 */
1941 if (PageTransHuge(page) && page_count(page) != 3) {
1942 putback_lru_page(page);
1943 return 0;
1944 }
1945
1946 page_lru = page_is_file_cache(page);
1947 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1948 hpage_nr_pages(page));
1949
1950 /*
1951 * Isolating the page has taken another reference, so the
1952 * caller's reference can be safely dropped without the page
1953 * disappearing underneath us during migration.
1954 */
1955 put_page(page);
1956 return 1;
1957}
1958
1959bool pmd_trans_migrating(pmd_t pmd)
1960{
1961 struct page *page = pmd_page(pmd);
1962 return PageLocked(page);
1963}
1964
1965/*
1966 * Attempt to migrate a misplaced page to the specified destination
1967 * node. Caller is expected to have an elevated reference count on
1968 * the page that will be dropped by this function before returning.
1969 */
1970int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1971 int node)
1972{
1973 pg_data_t *pgdat = NODE_DATA(node);
1974 int isolated;
1975 int nr_remaining;
1976 LIST_HEAD(migratepages);
1977
1978 /*
1979 * Don't migrate file pages that are mapped in multiple processes
1980 * with execute permissions as they are probably shared libraries.
1981 */
1982 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1983 (vma->vm_flags & VM_EXEC))
1984 goto out;
1985
1986 /*
1987 * Also do not migrate dirty pages as not all filesystems can move
1988 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1989 */
1990 if (page_is_file_cache(page) && PageDirty(page))
1991 goto out;
1992
1993 isolated = numamigrate_isolate_page(pgdat, page);
1994 if (!isolated)
1995 goto out;
1996
1997 list_add(&page->lru, &migratepages);
1998 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1999 NULL, node, MIGRATE_ASYNC,
2000 MR_NUMA_MISPLACED);
2001 if (nr_remaining) {
2002 if (!list_empty(&migratepages)) {
2003 list_del(&page->lru);
2004 dec_node_page_state(page, NR_ISOLATED_ANON +
2005 page_is_file_cache(page));
2006 putback_lru_page(page);
2007 }
2008 isolated = 0;
2009 } else
2010 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2011 BUG_ON(!list_empty(&migratepages));
2012 return isolated;
2013
2014out:
2015 put_page(page);
2016 return 0;
2017}
2018#endif /* CONFIG_NUMA_BALANCING */
2019
2020#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2021/*
2022 * Migrates a THP to a given target node. page must be locked and is unlocked
2023 * before returning.
2024 */
2025int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2026 struct vm_area_struct *vma,
2027 pmd_t *pmd, pmd_t entry,
2028 unsigned long address,
2029 struct page *page, int node)
2030{
2031 spinlock_t *ptl;
2032 pg_data_t *pgdat = NODE_DATA(node);
2033 int isolated = 0;
2034 struct page *new_page = NULL;
2035 int page_lru = page_is_file_cache(page);
David Brazdil0f672f62019-12-10 10:32:29 +00002036 unsigned long start = address & HPAGE_PMD_MASK;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002037
2038 new_page = alloc_pages_node(node,
2039 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2040 HPAGE_PMD_ORDER);
2041 if (!new_page)
2042 goto out_fail;
2043 prep_transhuge_page(new_page);
2044
2045 isolated = numamigrate_isolate_page(pgdat, page);
2046 if (!isolated) {
2047 put_page(new_page);
2048 goto out_fail;
2049 }
2050
2051 /* Prepare a page as a migration target */
2052 __SetPageLocked(new_page);
2053 if (PageSwapBacked(page))
2054 __SetPageSwapBacked(new_page);
2055
2056 /* anon mapping, we can simply copy page->mapping to the new page: */
2057 new_page->mapping = page->mapping;
2058 new_page->index = page->index;
David Brazdil0f672f62019-12-10 10:32:29 +00002059 /* flush the cache before copying using the kernel virtual address */
2060 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002061 migrate_page_copy(new_page, page);
2062 WARN_ON(PageLRU(new_page));
2063
2064 /* Recheck the target PMD */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002065 ptl = pmd_lock(mm, pmd);
2066 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2067 spin_unlock(ptl);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002068
2069 /* Reverse changes made by migrate_page_copy() */
2070 if (TestClearPageActive(new_page))
2071 SetPageActive(page);
2072 if (TestClearPageUnevictable(new_page))
2073 SetPageUnevictable(page);
2074
2075 unlock_page(new_page);
2076 put_page(new_page); /* Free it */
2077
2078 /* Retake the callers reference and putback on LRU */
2079 get_page(page);
2080 putback_lru_page(page);
2081 mod_node_page_state(page_pgdat(page),
2082 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2083
2084 goto out_unlock;
2085 }
2086
2087 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2088 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2089
2090 /*
David Brazdil0f672f62019-12-10 10:32:29 +00002091 * Overwrite the old entry under pagetable lock and establish
2092 * the new PTE. Any parallel GUP will either observe the old
2093 * page blocking on the page lock, block on the page table
2094 * lock or observe the new page. The SetPageUptodate on the
2095 * new page and page_add_new_anon_rmap guarantee the copy is
2096 * visible before the pagetable update.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002097 */
David Brazdil0f672f62019-12-10 10:32:29 +00002098 page_add_anon_rmap(new_page, vma, start, true);
2099 /*
2100 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2101 * has already been flushed globally. So no TLB can be currently
2102 * caching this non present pmd mapping. There's no need to clear the
2103 * pmd before doing set_pmd_at(), nor to flush the TLB after
2104 * set_pmd_at(). Clearing the pmd here would introduce a race
2105 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2106 * mmap_sem for reading. If the pmd is set to NULL at any given time,
2107 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2108 * pmd.
2109 */
2110 set_pmd_at(mm, start, pmd, entry);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002111 update_mmu_cache_pmd(vma, address, &entry);
2112
2113 page_ref_unfreeze(page, 2);
2114 mlock_migrate_page(new_page, page);
2115 page_remove_rmap(page, true);
2116 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2117
2118 spin_unlock(ptl);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002119
2120 /* Take an "isolate" reference and put new page on the LRU. */
2121 get_page(new_page);
2122 putback_lru_page(new_page);
2123
2124 unlock_page(new_page);
2125 unlock_page(page);
2126 put_page(page); /* Drop the rmap reference */
2127 put_page(page); /* Drop the LRU isolation reference */
2128
2129 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2130 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2131
2132 mod_node_page_state(page_pgdat(page),
2133 NR_ISOLATED_ANON + page_lru,
2134 -HPAGE_PMD_NR);
2135 return isolated;
2136
2137out_fail:
2138 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2139 ptl = pmd_lock(mm, pmd);
2140 if (pmd_same(*pmd, entry)) {
2141 entry = pmd_modify(entry, vma->vm_page_prot);
David Brazdil0f672f62019-12-10 10:32:29 +00002142 set_pmd_at(mm, start, pmd, entry);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002143 update_mmu_cache_pmd(vma, address, &entry);
2144 }
2145 spin_unlock(ptl);
2146
2147out_unlock:
2148 unlock_page(page);
2149 put_page(page);
2150 return 0;
2151}
2152#endif /* CONFIG_NUMA_BALANCING */
2153
2154#endif /* CONFIG_NUMA */
2155
David Brazdil0f672f62019-12-10 10:32:29 +00002156#ifdef CONFIG_DEVICE_PRIVATE
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002157static int migrate_vma_collect_hole(unsigned long start,
2158 unsigned long end,
2159 struct mm_walk *walk)
2160{
2161 struct migrate_vma *migrate = walk->private;
2162 unsigned long addr;
2163
2164 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2165 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2166 migrate->dst[migrate->npages] = 0;
2167 migrate->npages++;
2168 migrate->cpages++;
2169 }
2170
2171 return 0;
2172}
2173
2174static int migrate_vma_collect_skip(unsigned long start,
2175 unsigned long end,
2176 struct mm_walk *walk)
2177{
2178 struct migrate_vma *migrate = walk->private;
2179 unsigned long addr;
2180
2181 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2182 migrate->dst[migrate->npages] = 0;
2183 migrate->src[migrate->npages++] = 0;
2184 }
2185
2186 return 0;
2187}
2188
2189static int migrate_vma_collect_pmd(pmd_t *pmdp,
2190 unsigned long start,
2191 unsigned long end,
2192 struct mm_walk *walk)
2193{
2194 struct migrate_vma *migrate = walk->private;
2195 struct vm_area_struct *vma = walk->vma;
2196 struct mm_struct *mm = vma->vm_mm;
2197 unsigned long addr = start, unmapped = 0;
2198 spinlock_t *ptl;
2199 pte_t *ptep;
2200
2201again:
2202 if (pmd_none(*pmdp))
2203 return migrate_vma_collect_hole(start, end, walk);
2204
2205 if (pmd_trans_huge(*pmdp)) {
2206 struct page *page;
2207
2208 ptl = pmd_lock(mm, pmdp);
2209 if (unlikely(!pmd_trans_huge(*pmdp))) {
2210 spin_unlock(ptl);
2211 goto again;
2212 }
2213
2214 page = pmd_page(*pmdp);
2215 if (is_huge_zero_page(page)) {
2216 spin_unlock(ptl);
2217 split_huge_pmd(vma, pmdp, addr);
2218 if (pmd_trans_unstable(pmdp))
2219 return migrate_vma_collect_skip(start, end,
2220 walk);
2221 } else {
2222 int ret;
2223
2224 get_page(page);
2225 spin_unlock(ptl);
2226 if (unlikely(!trylock_page(page)))
2227 return migrate_vma_collect_skip(start, end,
2228 walk);
2229 ret = split_huge_page(page);
2230 unlock_page(page);
2231 put_page(page);
2232 if (ret)
2233 return migrate_vma_collect_skip(start, end,
2234 walk);
2235 if (pmd_none(*pmdp))
2236 return migrate_vma_collect_hole(start, end,
2237 walk);
2238 }
2239 }
2240
2241 if (unlikely(pmd_bad(*pmdp)))
2242 return migrate_vma_collect_skip(start, end, walk);
2243
2244 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2245 arch_enter_lazy_mmu_mode();
2246
2247 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2248 unsigned long mpfn, pfn;
2249 struct page *page;
2250 swp_entry_t entry;
2251 pte_t pte;
2252
2253 pte = *ptep;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002254
2255 if (pte_none(pte)) {
2256 mpfn = MIGRATE_PFN_MIGRATE;
2257 migrate->cpages++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002258 goto next;
2259 }
2260
2261 if (!pte_present(pte)) {
David Brazdil0f672f62019-12-10 10:32:29 +00002262 mpfn = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002263
2264 /*
2265 * Only care about unaddressable device page special
2266 * page table entry. Other special swap entries are not
2267 * migratable, and we ignore regular swapped page.
2268 */
2269 entry = pte_to_swp_entry(pte);
2270 if (!is_device_private_entry(entry))
2271 goto next;
2272
2273 page = device_private_entry_to_page(entry);
David Brazdil0f672f62019-12-10 10:32:29 +00002274 mpfn = migrate_pfn(page_to_pfn(page)) |
2275 MIGRATE_PFN_MIGRATE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002276 if (is_write_device_private_entry(entry))
2277 mpfn |= MIGRATE_PFN_WRITE;
2278 } else {
David Brazdil0f672f62019-12-10 10:32:29 +00002279 pfn = pte_pfn(pte);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002280 if (is_zero_pfn(pfn)) {
2281 mpfn = MIGRATE_PFN_MIGRATE;
2282 migrate->cpages++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002283 goto next;
2284 }
David Brazdil0f672f62019-12-10 10:32:29 +00002285 page = vm_normal_page(migrate->vma, addr, pte);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002286 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2287 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2288 }
2289
2290 /* FIXME support THP */
2291 if (!page || !page->mapping || PageTransCompound(page)) {
David Brazdil0f672f62019-12-10 10:32:29 +00002292 mpfn = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002293 goto next;
2294 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002295
2296 /*
2297 * By getting a reference on the page we pin it and that blocks
2298 * any kind of migration. Side effect is that it "freezes" the
2299 * pte.
2300 *
2301 * We drop this reference after isolating the page from the lru
2302 * for non device page (device page are not on the lru and thus
2303 * can't be dropped from it).
2304 */
2305 get_page(page);
2306 migrate->cpages++;
2307
2308 /*
2309 * Optimize for the common case where page is only mapped once
2310 * in one process. If we can lock the page, then we can safely
2311 * set up a special migration page table entry now.
2312 */
2313 if (trylock_page(page)) {
2314 pte_t swp_pte;
2315
2316 mpfn |= MIGRATE_PFN_LOCKED;
2317 ptep_get_and_clear(mm, addr, ptep);
2318
2319 /* Setup special migration page table entry */
2320 entry = make_migration_entry(page, mpfn &
2321 MIGRATE_PFN_WRITE);
2322 swp_pte = swp_entry_to_pte(entry);
2323 if (pte_soft_dirty(pte))
2324 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2325 set_pte_at(mm, addr, ptep, swp_pte);
2326
2327 /*
2328 * This is like regular unmap: we remove the rmap and
2329 * drop page refcount. Page won't be freed, as we took
2330 * a reference just above.
2331 */
2332 page_remove_rmap(page, false);
2333 put_page(page);
2334
2335 if (pte_present(pte))
2336 unmapped++;
2337 }
2338
2339next:
2340 migrate->dst[migrate->npages] = 0;
2341 migrate->src[migrate->npages++] = mpfn;
2342 }
2343 arch_leave_lazy_mmu_mode();
2344 pte_unmap_unlock(ptep - 1, ptl);
2345
2346 /* Only flush the TLB if we actually modified any entries */
2347 if (unmapped)
2348 flush_tlb_range(walk->vma, start, end);
2349
2350 return 0;
2351}
2352
David Brazdil0f672f62019-12-10 10:32:29 +00002353static const struct mm_walk_ops migrate_vma_walk_ops = {
2354 .pmd_entry = migrate_vma_collect_pmd,
2355 .pte_hole = migrate_vma_collect_hole,
2356};
2357
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002358/*
2359 * migrate_vma_collect() - collect pages over a range of virtual addresses
2360 * @migrate: migrate struct containing all migration information
2361 *
2362 * This will walk the CPU page table. For each virtual address backed by a
2363 * valid page, it updates the src array and takes a reference on the page, in
2364 * order to pin the page until we lock it and unmap it.
2365 */
2366static void migrate_vma_collect(struct migrate_vma *migrate)
2367{
David Brazdil0f672f62019-12-10 10:32:29 +00002368 struct mmu_notifier_range range;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002369
David Brazdil0f672f62019-12-10 10:32:29 +00002370 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
2371 migrate->vma->vm_mm, migrate->start, migrate->end);
2372 mmu_notifier_invalidate_range_start(&range);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002373
David Brazdil0f672f62019-12-10 10:32:29 +00002374 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2375 &migrate_vma_walk_ops, migrate);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002376
David Brazdil0f672f62019-12-10 10:32:29 +00002377 mmu_notifier_invalidate_range_end(&range);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002378 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2379}
2380
2381/*
2382 * migrate_vma_check_page() - check if page is pinned or not
2383 * @page: struct page to check
2384 *
2385 * Pinned pages cannot be migrated. This is the same test as in
2386 * migrate_page_move_mapping(), except that here we allow migration of a
2387 * ZONE_DEVICE page.
2388 */
2389static bool migrate_vma_check_page(struct page *page)
2390{
2391 /*
2392 * One extra ref because caller holds an extra reference, either from
2393 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2394 * a device page.
2395 */
2396 int extra = 1;
2397
2398 /*
2399 * FIXME support THP (transparent huge page), it is bit more complex to
2400 * check them than regular pages, because they can be mapped with a pmd
2401 * or with a pte (split pte mapping).
2402 */
2403 if (PageCompound(page))
2404 return false;
2405
2406 /* Page from ZONE_DEVICE have one extra reference */
2407 if (is_zone_device_page(page)) {
2408 /*
2409 * Private page can never be pin as they have no valid pte and
2410 * GUP will fail for those. Yet if there is a pending migration
2411 * a thread might try to wait on the pte migration entry and
2412 * will bump the page reference count. Sadly there is no way to
2413 * differentiate a regular pin from migration wait. Hence to
2414 * avoid 2 racing thread trying to migrate back to CPU to enter
2415 * infinite loop (one stoping migration because the other is
2416 * waiting on pte migration entry). We always return true here.
2417 *
2418 * FIXME proper solution is to rework migration_entry_wait() so
2419 * it does not need to take a reference on page.
2420 */
David Brazdil0f672f62019-12-10 10:32:29 +00002421 return is_device_private_page(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002422 }
2423
2424 /* For file back page */
2425 if (page_mapping(page))
2426 extra += 1 + page_has_private(page);
2427
2428 if ((page_count(page) - extra) > page_mapcount(page))
2429 return false;
2430
2431 return true;
2432}
2433
2434/*
2435 * migrate_vma_prepare() - lock pages and isolate them from the lru
2436 * @migrate: migrate struct containing all migration information
2437 *
2438 * This locks pages that have been collected by migrate_vma_collect(). Once each
2439 * page is locked it is isolated from the lru (for non-device pages). Finally,
2440 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2441 * migrated by concurrent kernel threads.
2442 */
2443static void migrate_vma_prepare(struct migrate_vma *migrate)
2444{
2445 const unsigned long npages = migrate->npages;
2446 const unsigned long start = migrate->start;
2447 unsigned long addr, i, restore = 0;
2448 bool allow_drain = true;
2449
2450 lru_add_drain();
2451
2452 for (i = 0; (i < npages) && migrate->cpages; i++) {
2453 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2454 bool remap = true;
2455
2456 if (!page)
2457 continue;
2458
2459 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2460 /*
2461 * Because we are migrating several pages there can be
2462 * a deadlock between 2 concurrent migration where each
2463 * are waiting on each other page lock.
2464 *
2465 * Make migrate_vma() a best effort thing and backoff
2466 * for any page we can not lock right away.
2467 */
2468 if (!trylock_page(page)) {
2469 migrate->src[i] = 0;
2470 migrate->cpages--;
2471 put_page(page);
2472 continue;
2473 }
2474 remap = false;
2475 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2476 }
2477
2478 /* ZONE_DEVICE pages are not on LRU */
2479 if (!is_zone_device_page(page)) {
2480 if (!PageLRU(page) && allow_drain) {
2481 /* Drain CPU's pagevec */
2482 lru_add_drain_all();
2483 allow_drain = false;
2484 }
2485
2486 if (isolate_lru_page(page)) {
2487 if (remap) {
2488 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2489 migrate->cpages--;
2490 restore++;
2491 } else {
2492 migrate->src[i] = 0;
2493 unlock_page(page);
2494 migrate->cpages--;
2495 put_page(page);
2496 }
2497 continue;
2498 }
2499
2500 /* Drop the reference we took in collect */
2501 put_page(page);
2502 }
2503
2504 if (!migrate_vma_check_page(page)) {
2505 if (remap) {
2506 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2507 migrate->cpages--;
2508 restore++;
2509
2510 if (!is_zone_device_page(page)) {
2511 get_page(page);
2512 putback_lru_page(page);
2513 }
2514 } else {
2515 migrate->src[i] = 0;
2516 unlock_page(page);
2517 migrate->cpages--;
2518
2519 if (!is_zone_device_page(page))
2520 putback_lru_page(page);
2521 else
2522 put_page(page);
2523 }
2524 }
2525 }
2526
2527 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2528 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2529
2530 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2531 continue;
2532
2533 remove_migration_pte(page, migrate->vma, addr, page);
2534
2535 migrate->src[i] = 0;
2536 unlock_page(page);
2537 put_page(page);
2538 restore--;
2539 }
2540}
2541
2542/*
2543 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2544 * @migrate: migrate struct containing all migration information
2545 *
2546 * Replace page mapping (CPU page table pte) with a special migration pte entry
2547 * and check again if it has been pinned. Pinned pages are restored because we
2548 * cannot migrate them.
2549 *
2550 * This is the last step before we call the device driver callback to allocate
2551 * destination memory and copy contents of original page over to new page.
2552 */
2553static void migrate_vma_unmap(struct migrate_vma *migrate)
2554{
2555 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2556 const unsigned long npages = migrate->npages;
2557 const unsigned long start = migrate->start;
2558 unsigned long addr, i, restore = 0;
2559
2560 for (i = 0; i < npages; i++) {
2561 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2562
2563 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2564 continue;
2565
2566 if (page_mapped(page)) {
2567 try_to_unmap(page, flags);
2568 if (page_mapped(page))
2569 goto restore;
2570 }
2571
2572 if (migrate_vma_check_page(page))
2573 continue;
2574
2575restore:
2576 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2577 migrate->cpages--;
2578 restore++;
2579 }
2580
2581 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2582 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2583
2584 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2585 continue;
2586
2587 remove_migration_ptes(page, page, false);
2588
2589 migrate->src[i] = 0;
2590 unlock_page(page);
2591 restore--;
2592
2593 if (is_zone_device_page(page))
2594 put_page(page);
2595 else
2596 putback_lru_page(page);
2597 }
2598}
2599
David Brazdil0f672f62019-12-10 10:32:29 +00002600/**
2601 * migrate_vma_setup() - prepare to migrate a range of memory
2602 * @args: contains the vma, start, and and pfns arrays for the migration
2603 *
2604 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2605 * without an error.
2606 *
2607 * Prepare to migrate a range of memory virtual address range by collecting all
2608 * the pages backing each virtual address in the range, saving them inside the
2609 * src array. Then lock those pages and unmap them. Once the pages are locked
2610 * and unmapped, check whether each page is pinned or not. Pages that aren't
2611 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2612 * corresponding src array entry. Then restores any pages that are pinned, by
2613 * remapping and unlocking those pages.
2614 *
2615 * The caller should then allocate destination memory and copy source memory to
2616 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2617 * flag set). Once these are allocated and copied, the caller must update each
2618 * corresponding entry in the dst array with the pfn value of the destination
2619 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2620 * (destination pages must have their struct pages locked, via lock_page()).
2621 *
2622 * Note that the caller does not have to migrate all the pages that are marked
2623 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2624 * device memory to system memory. If the caller cannot migrate a device page
2625 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2626 * consequences for the userspace process, so it must be avoided if at all
2627 * possible.
2628 *
2629 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2630 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2631 * allowing the caller to allocate device memory for those unback virtual
2632 * address. For this the caller simply has to allocate device memory and
2633 * properly set the destination entry like for regular migration. Note that
2634 * this can still fails and thus inside the device driver must check if the
2635 * migration was successful for those entries after calling migrate_vma_pages()
2636 * just like for regular migration.
2637 *
2638 * After that, the callers must call migrate_vma_pages() to go over each entry
2639 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2640 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2641 * then migrate_vma_pages() to migrate struct page information from the source
2642 * struct page to the destination struct page. If it fails to migrate the
2643 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2644 * src array.
2645 *
2646 * At this point all successfully migrated pages have an entry in the src
2647 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2648 * array entry with MIGRATE_PFN_VALID flag set.
2649 *
2650 * Once migrate_vma_pages() returns the caller may inspect which pages were
2651 * successfully migrated, and which were not. Successfully migrated pages will
2652 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2653 *
2654 * It is safe to update device page table after migrate_vma_pages() because
2655 * both destination and source page are still locked, and the mmap_sem is held
2656 * in read mode (hence no one can unmap the range being migrated).
2657 *
2658 * Once the caller is done cleaning up things and updating its page table (if it
2659 * chose to do so, this is not an obligation) it finally calls
2660 * migrate_vma_finalize() to update the CPU page table to point to new pages
2661 * for successfully migrated pages or otherwise restore the CPU page table to
2662 * point to the original source pages.
2663 */
2664int migrate_vma_setup(struct migrate_vma *args)
2665{
2666 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2667
2668 args->start &= PAGE_MASK;
2669 args->end &= PAGE_MASK;
2670 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2671 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2672 return -EINVAL;
2673 if (nr_pages <= 0)
2674 return -EINVAL;
2675 if (args->start < args->vma->vm_start ||
2676 args->start >= args->vma->vm_end)
2677 return -EINVAL;
2678 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2679 return -EINVAL;
2680 if (!args->src || !args->dst)
2681 return -EINVAL;
2682
2683 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2684 args->cpages = 0;
2685 args->npages = 0;
2686
2687 migrate_vma_collect(args);
2688
2689 if (args->cpages)
2690 migrate_vma_prepare(args);
2691 if (args->cpages)
2692 migrate_vma_unmap(args);
2693
2694 /*
2695 * At this point pages are locked and unmapped, and thus they have
2696 * stable content and can safely be copied to destination memory that
2697 * is allocated by the drivers.
2698 */
2699 return 0;
2700
2701}
2702EXPORT_SYMBOL(migrate_vma_setup);
2703
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002704static void migrate_vma_insert_page(struct migrate_vma *migrate,
2705 unsigned long addr,
2706 struct page *page,
2707 unsigned long *src,
2708 unsigned long *dst)
2709{
2710 struct vm_area_struct *vma = migrate->vma;
2711 struct mm_struct *mm = vma->vm_mm;
2712 struct mem_cgroup *memcg;
2713 bool flush = false;
2714 spinlock_t *ptl;
2715 pte_t entry;
2716 pgd_t *pgdp;
2717 p4d_t *p4dp;
2718 pud_t *pudp;
2719 pmd_t *pmdp;
2720 pte_t *ptep;
2721
2722 /* Only allow populating anonymous memory */
2723 if (!vma_is_anonymous(vma))
2724 goto abort;
2725
2726 pgdp = pgd_offset(mm, addr);
2727 p4dp = p4d_alloc(mm, pgdp, addr);
2728 if (!p4dp)
2729 goto abort;
2730 pudp = pud_alloc(mm, p4dp, addr);
2731 if (!pudp)
2732 goto abort;
2733 pmdp = pmd_alloc(mm, pudp, addr);
2734 if (!pmdp)
2735 goto abort;
2736
2737 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2738 goto abort;
2739
2740 /*
2741 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2742 * pte_offset_map() on pmds where a huge pmd might be created
2743 * from a different thread.
2744 *
2745 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2746 * parallel threads are excluded by other means.
2747 *
2748 * Here we only have down_read(mmap_sem).
2749 */
David Brazdil0f672f62019-12-10 10:32:29 +00002750 if (pte_alloc(mm, pmdp))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002751 goto abort;
2752
2753 /* See the comment in pte_alloc_one_map() */
2754 if (unlikely(pmd_trans_unstable(pmdp)))
2755 goto abort;
2756
2757 if (unlikely(anon_vma_prepare(vma)))
2758 goto abort;
2759 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2760 goto abort;
2761
2762 /*
2763 * The memory barrier inside __SetPageUptodate makes sure that
2764 * preceding stores to the page contents become visible before
2765 * the set_pte_at() write.
2766 */
2767 __SetPageUptodate(page);
2768
2769 if (is_zone_device_page(page)) {
2770 if (is_device_private_page(page)) {
2771 swp_entry_t swp_entry;
2772
2773 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2774 entry = swp_entry_to_pte(swp_entry);
Olivier Deprez0e641232021-09-23 10:07:05 +02002775 } else {
2776 /*
2777 * For now we only support migrating to un-addressable
2778 * device memory.
2779 */
2780 pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2781 goto abort;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002782 }
2783 } else {
2784 entry = mk_pte(page, vma->vm_page_prot);
2785 if (vma->vm_flags & VM_WRITE)
2786 entry = pte_mkwrite(pte_mkdirty(entry));
2787 }
2788
2789 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2790
2791 if (pte_present(*ptep)) {
2792 unsigned long pfn = pte_pfn(*ptep);
2793
2794 if (!is_zero_pfn(pfn)) {
2795 pte_unmap_unlock(ptep, ptl);
2796 mem_cgroup_cancel_charge(page, memcg, false);
2797 goto abort;
2798 }
2799 flush = true;
2800 } else if (!pte_none(*ptep)) {
2801 pte_unmap_unlock(ptep, ptl);
2802 mem_cgroup_cancel_charge(page, memcg, false);
2803 goto abort;
2804 }
2805
2806 /*
2807 * Check for usefaultfd but do not deliver the fault. Instead,
2808 * just back off.
2809 */
2810 if (userfaultfd_missing(vma)) {
2811 pte_unmap_unlock(ptep, ptl);
2812 mem_cgroup_cancel_charge(page, memcg, false);
2813 goto abort;
2814 }
2815
2816 inc_mm_counter(mm, MM_ANONPAGES);
2817 page_add_new_anon_rmap(page, vma, addr, false);
2818 mem_cgroup_commit_charge(page, memcg, false, false);
2819 if (!is_zone_device_page(page))
2820 lru_cache_add_active_or_unevictable(page, vma);
2821 get_page(page);
2822
2823 if (flush) {
2824 flush_cache_page(vma, addr, pte_pfn(*ptep));
2825 ptep_clear_flush_notify(vma, addr, ptep);
2826 set_pte_at_notify(mm, addr, ptep, entry);
2827 update_mmu_cache(vma, addr, ptep);
2828 } else {
2829 /* No need to invalidate - it was non-present before */
2830 set_pte_at(mm, addr, ptep, entry);
2831 update_mmu_cache(vma, addr, ptep);
2832 }
2833
2834 pte_unmap_unlock(ptep, ptl);
2835 *src = MIGRATE_PFN_MIGRATE;
2836 return;
2837
2838abort:
2839 *src &= ~MIGRATE_PFN_MIGRATE;
2840}
2841
David Brazdil0f672f62019-12-10 10:32:29 +00002842/**
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002843 * migrate_vma_pages() - migrate meta-data from src page to dst page
2844 * @migrate: migrate struct containing all migration information
2845 *
2846 * This migrates struct page meta-data from source struct page to destination
2847 * struct page. This effectively finishes the migration from source page to the
2848 * destination page.
2849 */
David Brazdil0f672f62019-12-10 10:32:29 +00002850void migrate_vma_pages(struct migrate_vma *migrate)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002851{
2852 const unsigned long npages = migrate->npages;
2853 const unsigned long start = migrate->start;
David Brazdil0f672f62019-12-10 10:32:29 +00002854 struct mmu_notifier_range range;
2855 unsigned long addr, i;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002856 bool notified = false;
2857
2858 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2859 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2860 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2861 struct address_space *mapping;
2862 int r;
2863
2864 if (!newpage) {
2865 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2866 continue;
2867 }
2868
2869 if (!page) {
2870 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2871 continue;
2872 }
2873 if (!notified) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002874 notified = true;
David Brazdil0f672f62019-12-10 10:32:29 +00002875
2876 mmu_notifier_range_init(&range,
2877 MMU_NOTIFY_CLEAR, 0,
2878 NULL,
2879 migrate->vma->vm_mm,
2880 addr, migrate->end);
2881 mmu_notifier_invalidate_range_start(&range);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002882 }
2883 migrate_vma_insert_page(migrate, addr, newpage,
2884 &migrate->src[i],
2885 &migrate->dst[i]);
2886 continue;
2887 }
2888
2889 mapping = page_mapping(page);
2890
2891 if (is_zone_device_page(newpage)) {
2892 if (is_device_private_page(newpage)) {
2893 /*
2894 * For now only support private anonymous when
2895 * migrating to un-addressable device memory.
2896 */
2897 if (mapping) {
2898 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2899 continue;
2900 }
David Brazdil0f672f62019-12-10 10:32:29 +00002901 } else {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002902 /*
2903 * Other types of ZONE_DEVICE page are not
2904 * supported.
2905 */
2906 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2907 continue;
2908 }
2909 }
2910
2911 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2912 if (r != MIGRATEPAGE_SUCCESS)
2913 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2914 }
2915
2916 /*
2917 * No need to double call mmu_notifier->invalidate_range() callback as
2918 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2919 * did already call it.
2920 */
2921 if (notified)
David Brazdil0f672f62019-12-10 10:32:29 +00002922 mmu_notifier_invalidate_range_only_end(&range);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002923}
David Brazdil0f672f62019-12-10 10:32:29 +00002924EXPORT_SYMBOL(migrate_vma_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002925
David Brazdil0f672f62019-12-10 10:32:29 +00002926/**
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002927 * migrate_vma_finalize() - restore CPU page table entry
2928 * @migrate: migrate struct containing all migration information
2929 *
2930 * This replaces the special migration pte entry with either a mapping to the
2931 * new page if migration was successful for that page, or to the original page
2932 * otherwise.
2933 *
2934 * This also unlocks the pages and puts them back on the lru, or drops the extra
2935 * refcount, for device pages.
2936 */
David Brazdil0f672f62019-12-10 10:32:29 +00002937void migrate_vma_finalize(struct migrate_vma *migrate)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002938{
2939 const unsigned long npages = migrate->npages;
2940 unsigned long i;
2941
2942 for (i = 0; i < npages; i++) {
2943 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2944 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2945
2946 if (!page) {
2947 if (newpage) {
2948 unlock_page(newpage);
2949 put_page(newpage);
2950 }
2951 continue;
2952 }
2953
2954 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2955 if (newpage) {
2956 unlock_page(newpage);
2957 put_page(newpage);
2958 }
2959 newpage = page;
2960 }
2961
2962 remove_migration_ptes(page, newpage, false);
2963 unlock_page(page);
2964 migrate->cpages--;
2965
2966 if (is_zone_device_page(page))
2967 put_page(page);
2968 else
2969 putback_lru_page(page);
2970
2971 if (newpage != page) {
2972 unlock_page(newpage);
2973 if (is_zone_device_page(newpage))
2974 put_page(newpage);
2975 else
2976 putback_lru_page(newpage);
2977 }
2978 }
2979}
David Brazdil0f672f62019-12-10 10:32:29 +00002980EXPORT_SYMBOL(migrate_vma_finalize);
2981#endif /* CONFIG_DEVICE_PRIVATE */