David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * This file contains common generic and tag-based KASAN code. |
| 4 | * |
| 5 | * Copyright (c) 2014 Samsung Electronics Co., Ltd. |
| 6 | * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> |
| 7 | * |
| 8 | * Some code borrowed from https://github.com/xairy/kasan-prototype by |
| 9 | * Andrey Konovalov <andreyknvl@gmail.com> |
| 10 | * |
| 11 | * This program is free software; you can redistribute it and/or modify |
| 12 | * it under the terms of the GNU General Public License version 2 as |
| 13 | * published by the Free Software Foundation. |
| 14 | * |
| 15 | */ |
| 16 | |
| 17 | #include <linux/export.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 18 | #include <linux/init.h> |
| 19 | #include <linux/kasan.h> |
| 20 | #include <linux/kernel.h> |
| 21 | #include <linux/kmemleak.h> |
| 22 | #include <linux/linkage.h> |
| 23 | #include <linux/memblock.h> |
| 24 | #include <linux/memory.h> |
| 25 | #include <linux/mm.h> |
| 26 | #include <linux/module.h> |
| 27 | #include <linux/printk.h> |
| 28 | #include <linux/sched.h> |
| 29 | #include <linux/sched/task_stack.h> |
| 30 | #include <linux/slab.h> |
| 31 | #include <linux/stacktrace.h> |
| 32 | #include <linux/string.h> |
| 33 | #include <linux/types.h> |
| 34 | #include <linux/vmalloc.h> |
| 35 | #include <linux/bug.h> |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 36 | |
| 37 | #include <asm/cacheflush.h> |
| 38 | #include <asm/tlbflush.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 39 | |
| 40 | #include "kasan.h" |
| 41 | #include "../slab.h" |
| 42 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 43 | depot_stack_handle_t kasan_save_stack(gfp_t flags) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 44 | { |
| 45 | unsigned long entries[KASAN_STACK_DEPTH]; |
| 46 | unsigned int nr_entries; |
| 47 | |
| 48 | nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0); |
| 49 | nr_entries = filter_irq_stacks(entries, nr_entries); |
| 50 | return stack_depot_save(entries, nr_entries, flags); |
| 51 | } |
| 52 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 53 | void kasan_set_track(struct kasan_track *track, gfp_t flags) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 54 | { |
| 55 | track->pid = current->pid; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 56 | track->stack = kasan_save_stack(flags); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 57 | } |
| 58 | |
| 59 | void kasan_enable_current(void) |
| 60 | { |
| 61 | current->kasan_depth++; |
| 62 | } |
| 63 | |
| 64 | void kasan_disable_current(void) |
| 65 | { |
| 66 | current->kasan_depth--; |
| 67 | } |
| 68 | |
| 69 | bool __kasan_check_read(const volatile void *p, unsigned int size) |
| 70 | { |
| 71 | return check_memory_region((unsigned long)p, size, false, _RET_IP_); |
| 72 | } |
| 73 | EXPORT_SYMBOL(__kasan_check_read); |
| 74 | |
| 75 | bool __kasan_check_write(const volatile void *p, unsigned int size) |
| 76 | { |
| 77 | return check_memory_region((unsigned long)p, size, true, _RET_IP_); |
| 78 | } |
| 79 | EXPORT_SYMBOL(__kasan_check_write); |
| 80 | |
| 81 | #undef memset |
| 82 | void *memset(void *addr, int c, size_t len) |
| 83 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 84 | if (!check_memory_region((unsigned long)addr, len, true, _RET_IP_)) |
| 85 | return NULL; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 86 | |
| 87 | return __memset(addr, c, len); |
| 88 | } |
| 89 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 90 | #ifdef __HAVE_ARCH_MEMMOVE |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 91 | #undef memmove |
| 92 | void *memmove(void *dest, const void *src, size_t len) |
| 93 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 94 | if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) || |
| 95 | !check_memory_region((unsigned long)dest, len, true, _RET_IP_)) |
| 96 | return NULL; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 97 | |
| 98 | return __memmove(dest, src, len); |
| 99 | } |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 100 | #endif |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 101 | |
| 102 | #undef memcpy |
| 103 | void *memcpy(void *dest, const void *src, size_t len) |
| 104 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 105 | if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) || |
| 106 | !check_memory_region((unsigned long)dest, len, true, _RET_IP_)) |
| 107 | return NULL; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 108 | |
| 109 | return __memcpy(dest, src, len); |
| 110 | } |
| 111 | |
| 112 | /* |
| 113 | * Poisons the shadow memory for 'size' bytes starting from 'addr'. |
| 114 | * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE. |
| 115 | */ |
| 116 | void kasan_poison_shadow(const void *address, size_t size, u8 value) |
| 117 | { |
| 118 | void *shadow_start, *shadow_end; |
| 119 | |
| 120 | /* |
| 121 | * Perform shadow offset calculation based on untagged address, as |
| 122 | * some of the callers (e.g. kasan_poison_object_data) pass tagged |
| 123 | * addresses to this function. |
| 124 | */ |
| 125 | address = reset_tag(address); |
| 126 | |
| 127 | shadow_start = kasan_mem_to_shadow(address); |
| 128 | shadow_end = kasan_mem_to_shadow(address + size); |
| 129 | |
| 130 | __memset(shadow_start, value, shadow_end - shadow_start); |
| 131 | } |
| 132 | |
| 133 | void kasan_unpoison_shadow(const void *address, size_t size) |
| 134 | { |
| 135 | u8 tag = get_tag(address); |
| 136 | |
| 137 | /* |
| 138 | * Perform shadow offset calculation based on untagged address, as |
| 139 | * some of the callers (e.g. kasan_unpoison_object_data) pass tagged |
| 140 | * addresses to this function. |
| 141 | */ |
| 142 | address = reset_tag(address); |
| 143 | |
| 144 | kasan_poison_shadow(address, size, tag); |
| 145 | |
| 146 | if (size & KASAN_SHADOW_MASK) { |
| 147 | u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size); |
| 148 | |
| 149 | if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) |
| 150 | *shadow = tag; |
| 151 | else |
| 152 | *shadow = size & KASAN_SHADOW_MASK; |
| 153 | } |
| 154 | } |
| 155 | |
| 156 | static void __kasan_unpoison_stack(struct task_struct *task, const void *sp) |
| 157 | { |
| 158 | void *base = task_stack_page(task); |
| 159 | size_t size = sp - base; |
| 160 | |
| 161 | kasan_unpoison_shadow(base, size); |
| 162 | } |
| 163 | |
| 164 | /* Unpoison the entire stack for a task. */ |
| 165 | void kasan_unpoison_task_stack(struct task_struct *task) |
| 166 | { |
| 167 | __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE); |
| 168 | } |
| 169 | |
| 170 | /* Unpoison the stack for the current task beyond a watermark sp value. */ |
| 171 | asmlinkage void kasan_unpoison_task_stack_below(const void *watermark) |
| 172 | { |
| 173 | /* |
| 174 | * Calculate the task stack base address. Avoid using 'current' |
| 175 | * because this function is called by early resume code which hasn't |
| 176 | * yet set up the percpu register (%gs). |
| 177 | */ |
| 178 | void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1)); |
| 179 | |
| 180 | kasan_unpoison_shadow(base, watermark - base); |
| 181 | } |
| 182 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 183 | void kasan_alloc_pages(struct page *page, unsigned int order) |
| 184 | { |
| 185 | u8 tag; |
| 186 | unsigned long i; |
| 187 | |
| 188 | if (unlikely(PageHighMem(page))) |
| 189 | return; |
| 190 | |
| 191 | tag = random_tag(); |
| 192 | for (i = 0; i < (1 << order); i++) |
| 193 | page_kasan_tag_set(page + i, tag); |
| 194 | kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order); |
| 195 | } |
| 196 | |
| 197 | void kasan_free_pages(struct page *page, unsigned int order) |
| 198 | { |
| 199 | if (likely(!PageHighMem(page))) |
| 200 | kasan_poison_shadow(page_address(page), |
| 201 | PAGE_SIZE << order, |
| 202 | KASAN_FREE_PAGE); |
| 203 | } |
| 204 | |
| 205 | /* |
| 206 | * Adaptive redzone policy taken from the userspace AddressSanitizer runtime. |
| 207 | * For larger allocations larger redzones are used. |
| 208 | */ |
| 209 | static inline unsigned int optimal_redzone(unsigned int object_size) |
| 210 | { |
| 211 | if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) |
| 212 | return 0; |
| 213 | |
| 214 | return |
| 215 | object_size <= 64 - 16 ? 16 : |
| 216 | object_size <= 128 - 32 ? 32 : |
| 217 | object_size <= 512 - 64 ? 64 : |
| 218 | object_size <= 4096 - 128 ? 128 : |
| 219 | object_size <= (1 << 14) - 256 ? 256 : |
| 220 | object_size <= (1 << 15) - 512 ? 512 : |
| 221 | object_size <= (1 << 16) - 1024 ? 1024 : 2048; |
| 222 | } |
| 223 | |
| 224 | void kasan_cache_create(struct kmem_cache *cache, unsigned int *size, |
| 225 | slab_flags_t *flags) |
| 226 | { |
| 227 | unsigned int orig_size = *size; |
| 228 | unsigned int redzone_size; |
| 229 | int redzone_adjust; |
| 230 | |
| 231 | /* Add alloc meta. */ |
| 232 | cache->kasan_info.alloc_meta_offset = *size; |
| 233 | *size += sizeof(struct kasan_alloc_meta); |
| 234 | |
| 235 | /* Add free meta. */ |
| 236 | if (IS_ENABLED(CONFIG_KASAN_GENERIC) && |
| 237 | (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor || |
| 238 | cache->object_size < sizeof(struct kasan_free_meta))) { |
| 239 | cache->kasan_info.free_meta_offset = *size; |
| 240 | *size += sizeof(struct kasan_free_meta); |
| 241 | } |
| 242 | |
| 243 | redzone_size = optimal_redzone(cache->object_size); |
| 244 | redzone_adjust = redzone_size - (*size - cache->object_size); |
| 245 | if (redzone_adjust > 0) |
| 246 | *size += redzone_adjust; |
| 247 | |
| 248 | *size = min_t(unsigned int, KMALLOC_MAX_SIZE, |
| 249 | max(*size, cache->object_size + redzone_size)); |
| 250 | |
| 251 | /* |
| 252 | * If the metadata doesn't fit, don't enable KASAN at all. |
| 253 | */ |
| 254 | if (*size <= cache->kasan_info.alloc_meta_offset || |
| 255 | *size <= cache->kasan_info.free_meta_offset) { |
| 256 | cache->kasan_info.alloc_meta_offset = 0; |
| 257 | cache->kasan_info.free_meta_offset = 0; |
| 258 | *size = orig_size; |
| 259 | return; |
| 260 | } |
| 261 | |
| 262 | *flags |= SLAB_KASAN; |
| 263 | } |
| 264 | |
| 265 | size_t kasan_metadata_size(struct kmem_cache *cache) |
| 266 | { |
| 267 | return (cache->kasan_info.alloc_meta_offset ? |
| 268 | sizeof(struct kasan_alloc_meta) : 0) + |
| 269 | (cache->kasan_info.free_meta_offset ? |
| 270 | sizeof(struct kasan_free_meta) : 0); |
| 271 | } |
| 272 | |
| 273 | struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache, |
| 274 | const void *object) |
| 275 | { |
| 276 | return (void *)object + cache->kasan_info.alloc_meta_offset; |
| 277 | } |
| 278 | |
| 279 | struct kasan_free_meta *get_free_info(struct kmem_cache *cache, |
| 280 | const void *object) |
| 281 | { |
| 282 | BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32); |
| 283 | return (void *)object + cache->kasan_info.free_meta_offset; |
| 284 | } |
| 285 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 286 | void kasan_poison_slab(struct page *page) |
| 287 | { |
| 288 | unsigned long i; |
| 289 | |
| 290 | for (i = 0; i < compound_nr(page); i++) |
| 291 | page_kasan_tag_reset(page + i); |
| 292 | kasan_poison_shadow(page_address(page), page_size(page), |
| 293 | KASAN_KMALLOC_REDZONE); |
| 294 | } |
| 295 | |
| 296 | void kasan_unpoison_object_data(struct kmem_cache *cache, void *object) |
| 297 | { |
| 298 | kasan_unpoison_shadow(object, cache->object_size); |
| 299 | } |
| 300 | |
| 301 | void kasan_poison_object_data(struct kmem_cache *cache, void *object) |
| 302 | { |
| 303 | kasan_poison_shadow(object, |
| 304 | round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE), |
| 305 | KASAN_KMALLOC_REDZONE); |
| 306 | } |
| 307 | |
| 308 | /* |
| 309 | * This function assigns a tag to an object considering the following: |
| 310 | * 1. A cache might have a constructor, which might save a pointer to a slab |
| 311 | * object somewhere (e.g. in the object itself). We preassign a tag for |
| 312 | * each object in caches with constructors during slab creation and reuse |
| 313 | * the same tag each time a particular object is allocated. |
| 314 | * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be |
| 315 | * accessed after being freed. We preassign tags for objects in these |
| 316 | * caches as well. |
| 317 | * 3. For SLAB allocator we can't preassign tags randomly since the freelist |
| 318 | * is stored as an array of indexes instead of a linked list. Assign tags |
| 319 | * based on objects indexes, so that objects that are next to each other |
| 320 | * get different tags. |
| 321 | */ |
| 322 | static u8 assign_tag(struct kmem_cache *cache, const void *object, |
| 323 | bool init, bool keep_tag) |
| 324 | { |
| 325 | /* |
| 326 | * 1. When an object is kmalloc()'ed, two hooks are called: |
| 327 | * kasan_slab_alloc() and kasan_kmalloc(). We assign the |
| 328 | * tag only in the first one. |
| 329 | * 2. We reuse the same tag for krealloc'ed objects. |
| 330 | */ |
| 331 | if (keep_tag) |
| 332 | return get_tag(object); |
| 333 | |
| 334 | /* |
| 335 | * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU |
| 336 | * set, assign a tag when the object is being allocated (init == false). |
| 337 | */ |
| 338 | if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU)) |
| 339 | return init ? KASAN_TAG_KERNEL : random_tag(); |
| 340 | |
| 341 | /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */ |
| 342 | #ifdef CONFIG_SLAB |
| 343 | /* For SLAB assign tags based on the object index in the freelist. */ |
| 344 | return (u8)obj_to_index(cache, virt_to_page(object), (void *)object); |
| 345 | #else |
| 346 | /* |
| 347 | * For SLUB assign a random tag during slab creation, otherwise reuse |
| 348 | * the already assigned tag. |
| 349 | */ |
| 350 | return init ? random_tag() : get_tag(object); |
| 351 | #endif |
| 352 | } |
| 353 | |
| 354 | void * __must_check kasan_init_slab_obj(struct kmem_cache *cache, |
| 355 | const void *object) |
| 356 | { |
| 357 | struct kasan_alloc_meta *alloc_info; |
| 358 | |
| 359 | if (!(cache->flags & SLAB_KASAN)) |
| 360 | return (void *)object; |
| 361 | |
| 362 | alloc_info = get_alloc_info(cache, object); |
| 363 | __memset(alloc_info, 0, sizeof(*alloc_info)); |
| 364 | |
| 365 | if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) |
| 366 | object = set_tag(object, |
| 367 | assign_tag(cache, object, true, false)); |
| 368 | |
| 369 | return (void *)object; |
| 370 | } |
| 371 | |
| 372 | static inline bool shadow_invalid(u8 tag, s8 shadow_byte) |
| 373 | { |
| 374 | if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
| 375 | return shadow_byte < 0 || |
| 376 | shadow_byte >= KASAN_SHADOW_SCALE_SIZE; |
| 377 | |
| 378 | /* else CONFIG_KASAN_SW_TAGS: */ |
| 379 | if ((u8)shadow_byte == KASAN_TAG_INVALID) |
| 380 | return true; |
| 381 | if ((tag != KASAN_TAG_KERNEL) && (tag != (u8)shadow_byte)) |
| 382 | return true; |
| 383 | |
| 384 | return false; |
| 385 | } |
| 386 | |
| 387 | static bool __kasan_slab_free(struct kmem_cache *cache, void *object, |
| 388 | unsigned long ip, bool quarantine) |
| 389 | { |
| 390 | s8 shadow_byte; |
| 391 | u8 tag; |
| 392 | void *tagged_object; |
| 393 | unsigned long rounded_up_size; |
| 394 | |
| 395 | tag = get_tag(object); |
| 396 | tagged_object = object; |
| 397 | object = reset_tag(object); |
| 398 | |
| 399 | if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) != |
| 400 | object)) { |
| 401 | kasan_report_invalid_free(tagged_object, ip); |
| 402 | return true; |
| 403 | } |
| 404 | |
| 405 | /* RCU slabs could be legally used after free within the RCU period */ |
| 406 | if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU)) |
| 407 | return false; |
| 408 | |
| 409 | shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object)); |
| 410 | if (shadow_invalid(tag, shadow_byte)) { |
| 411 | kasan_report_invalid_free(tagged_object, ip); |
| 412 | return true; |
| 413 | } |
| 414 | |
| 415 | rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE); |
| 416 | kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE); |
| 417 | |
| 418 | if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) || |
| 419 | unlikely(!(cache->flags & SLAB_KASAN))) |
| 420 | return false; |
| 421 | |
| 422 | kasan_set_free_info(cache, object, tag); |
| 423 | |
| 424 | quarantine_put(get_free_info(cache, object), cache); |
| 425 | |
| 426 | return IS_ENABLED(CONFIG_KASAN_GENERIC); |
| 427 | } |
| 428 | |
| 429 | bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip) |
| 430 | { |
| 431 | return __kasan_slab_free(cache, object, ip, true); |
| 432 | } |
| 433 | |
| 434 | static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object, |
| 435 | size_t size, gfp_t flags, bool keep_tag) |
| 436 | { |
| 437 | unsigned long redzone_start; |
| 438 | unsigned long redzone_end; |
| 439 | u8 tag = 0xff; |
| 440 | |
| 441 | if (gfpflags_allow_blocking(flags)) |
| 442 | quarantine_reduce(); |
| 443 | |
| 444 | if (unlikely(object == NULL)) |
| 445 | return NULL; |
| 446 | |
| 447 | redzone_start = round_up((unsigned long)(object + size), |
| 448 | KASAN_SHADOW_SCALE_SIZE); |
| 449 | redzone_end = round_up((unsigned long)object + cache->object_size, |
| 450 | KASAN_SHADOW_SCALE_SIZE); |
| 451 | |
| 452 | if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) |
| 453 | tag = assign_tag(cache, object, false, keep_tag); |
| 454 | |
| 455 | /* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */ |
| 456 | kasan_unpoison_shadow(set_tag(object, tag), size); |
| 457 | kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start, |
| 458 | KASAN_KMALLOC_REDZONE); |
| 459 | |
| 460 | if (cache->flags & SLAB_KASAN) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 461 | kasan_set_track(&get_alloc_info(cache, object)->alloc_track, flags); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 462 | |
| 463 | return set_tag(object, tag); |
| 464 | } |
| 465 | |
| 466 | void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object, |
| 467 | gfp_t flags) |
| 468 | { |
| 469 | return __kasan_kmalloc(cache, object, cache->object_size, flags, false); |
| 470 | } |
| 471 | |
| 472 | void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object, |
| 473 | size_t size, gfp_t flags) |
| 474 | { |
| 475 | return __kasan_kmalloc(cache, object, size, flags, true); |
| 476 | } |
| 477 | EXPORT_SYMBOL(kasan_kmalloc); |
| 478 | |
| 479 | void * __must_check kasan_kmalloc_large(const void *ptr, size_t size, |
| 480 | gfp_t flags) |
| 481 | { |
| 482 | struct page *page; |
| 483 | unsigned long redzone_start; |
| 484 | unsigned long redzone_end; |
| 485 | |
| 486 | if (gfpflags_allow_blocking(flags)) |
| 487 | quarantine_reduce(); |
| 488 | |
| 489 | if (unlikely(ptr == NULL)) |
| 490 | return NULL; |
| 491 | |
| 492 | page = virt_to_page(ptr); |
| 493 | redzone_start = round_up((unsigned long)(ptr + size), |
| 494 | KASAN_SHADOW_SCALE_SIZE); |
| 495 | redzone_end = (unsigned long)ptr + page_size(page); |
| 496 | |
| 497 | kasan_unpoison_shadow(ptr, size); |
| 498 | kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start, |
| 499 | KASAN_PAGE_REDZONE); |
| 500 | |
| 501 | return (void *)ptr; |
| 502 | } |
| 503 | |
| 504 | void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags) |
| 505 | { |
| 506 | struct page *page; |
| 507 | |
| 508 | if (unlikely(object == ZERO_SIZE_PTR)) |
| 509 | return (void *)object; |
| 510 | |
| 511 | page = virt_to_head_page(object); |
| 512 | |
| 513 | if (unlikely(!PageSlab(page))) |
| 514 | return kasan_kmalloc_large(object, size, flags); |
| 515 | else |
| 516 | return __kasan_kmalloc(page->slab_cache, object, size, |
| 517 | flags, true); |
| 518 | } |
| 519 | |
| 520 | void kasan_poison_kfree(void *ptr, unsigned long ip) |
| 521 | { |
| 522 | struct page *page; |
| 523 | |
| 524 | page = virt_to_head_page(ptr); |
| 525 | |
| 526 | if (unlikely(!PageSlab(page))) { |
| 527 | if (ptr != page_address(page)) { |
| 528 | kasan_report_invalid_free(ptr, ip); |
| 529 | return; |
| 530 | } |
| 531 | kasan_poison_shadow(ptr, page_size(page), KASAN_FREE_PAGE); |
| 532 | } else { |
| 533 | __kasan_slab_free(page->slab_cache, ptr, ip, false); |
| 534 | } |
| 535 | } |
| 536 | |
| 537 | void kasan_kfree_large(void *ptr, unsigned long ip) |
| 538 | { |
| 539 | if (ptr != page_address(virt_to_head_page(ptr))) |
| 540 | kasan_report_invalid_free(ptr, ip); |
| 541 | /* The object will be poisoned by page_alloc. */ |
| 542 | } |
| 543 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 544 | #ifndef CONFIG_KASAN_VMALLOC |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 545 | int kasan_module_alloc(void *addr, size_t size) |
| 546 | { |
| 547 | void *ret; |
| 548 | size_t scaled_size; |
| 549 | size_t shadow_size; |
| 550 | unsigned long shadow_start; |
| 551 | |
| 552 | shadow_start = (unsigned long)kasan_mem_to_shadow(addr); |
| 553 | scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT; |
| 554 | shadow_size = round_up(scaled_size, PAGE_SIZE); |
| 555 | |
| 556 | if (WARN_ON(!PAGE_ALIGNED(shadow_start))) |
| 557 | return -EINVAL; |
| 558 | |
| 559 | ret = __vmalloc_node_range(shadow_size, 1, shadow_start, |
| 560 | shadow_start + shadow_size, |
| 561 | GFP_KERNEL, |
| 562 | PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE, |
| 563 | __builtin_return_address(0)); |
| 564 | |
| 565 | if (ret) { |
| 566 | __memset(ret, KASAN_SHADOW_INIT, shadow_size); |
| 567 | find_vm_area(addr)->flags |= VM_KASAN; |
| 568 | kmemleak_ignore(ret); |
| 569 | return 0; |
| 570 | } |
| 571 | |
| 572 | return -ENOMEM; |
| 573 | } |
| 574 | |
| 575 | void kasan_free_shadow(const struct vm_struct *vm) |
| 576 | { |
| 577 | if (vm->flags & VM_KASAN) |
| 578 | vfree(kasan_mem_to_shadow(vm->addr)); |
| 579 | } |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 580 | #endif |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 581 | |
| 582 | #ifdef CONFIG_MEMORY_HOTPLUG |
| 583 | static bool shadow_mapped(unsigned long addr) |
| 584 | { |
| 585 | pgd_t *pgd = pgd_offset_k(addr); |
| 586 | p4d_t *p4d; |
| 587 | pud_t *pud; |
| 588 | pmd_t *pmd; |
| 589 | pte_t *pte; |
| 590 | |
| 591 | if (pgd_none(*pgd)) |
| 592 | return false; |
| 593 | p4d = p4d_offset(pgd, addr); |
| 594 | if (p4d_none(*p4d)) |
| 595 | return false; |
| 596 | pud = pud_offset(p4d, addr); |
| 597 | if (pud_none(*pud)) |
| 598 | return false; |
| 599 | |
| 600 | /* |
| 601 | * We can't use pud_large() or pud_huge(), the first one is |
| 602 | * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse |
| 603 | * pud_bad(), if pud is bad then it's bad because it's huge. |
| 604 | */ |
| 605 | if (pud_bad(*pud)) |
| 606 | return true; |
| 607 | pmd = pmd_offset(pud, addr); |
| 608 | if (pmd_none(*pmd)) |
| 609 | return false; |
| 610 | |
| 611 | if (pmd_bad(*pmd)) |
| 612 | return true; |
| 613 | pte = pte_offset_kernel(pmd, addr); |
| 614 | return !pte_none(*pte); |
| 615 | } |
| 616 | |
| 617 | static int __meminit kasan_mem_notifier(struct notifier_block *nb, |
| 618 | unsigned long action, void *data) |
| 619 | { |
| 620 | struct memory_notify *mem_data = data; |
| 621 | unsigned long nr_shadow_pages, start_kaddr, shadow_start; |
| 622 | unsigned long shadow_end, shadow_size; |
| 623 | |
| 624 | nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT; |
| 625 | start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn); |
| 626 | shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr); |
| 627 | shadow_size = nr_shadow_pages << PAGE_SHIFT; |
| 628 | shadow_end = shadow_start + shadow_size; |
| 629 | |
| 630 | if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) || |
| 631 | WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT))) |
| 632 | return NOTIFY_BAD; |
| 633 | |
| 634 | switch (action) { |
| 635 | case MEM_GOING_ONLINE: { |
| 636 | void *ret; |
| 637 | |
| 638 | /* |
| 639 | * If shadow is mapped already than it must have been mapped |
| 640 | * during the boot. This could happen if we onlining previously |
| 641 | * offlined memory. |
| 642 | */ |
| 643 | if (shadow_mapped(shadow_start)) |
| 644 | return NOTIFY_OK; |
| 645 | |
| 646 | ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start, |
| 647 | shadow_end, GFP_KERNEL, |
| 648 | PAGE_KERNEL, VM_NO_GUARD, |
| 649 | pfn_to_nid(mem_data->start_pfn), |
| 650 | __builtin_return_address(0)); |
| 651 | if (!ret) |
| 652 | return NOTIFY_BAD; |
| 653 | |
| 654 | kmemleak_ignore(ret); |
| 655 | return NOTIFY_OK; |
| 656 | } |
| 657 | case MEM_CANCEL_ONLINE: |
| 658 | case MEM_OFFLINE: { |
| 659 | struct vm_struct *vm; |
| 660 | |
| 661 | /* |
| 662 | * shadow_start was either mapped during boot by kasan_init() |
| 663 | * or during memory online by __vmalloc_node_range(). |
| 664 | * In the latter case we can use vfree() to free shadow. |
| 665 | * Non-NULL result of the find_vm_area() will tell us if |
| 666 | * that was the second case. |
| 667 | * |
| 668 | * Currently it's not possible to free shadow mapped |
| 669 | * during boot by kasan_init(). It's because the code |
| 670 | * to do that hasn't been written yet. So we'll just |
| 671 | * leak the memory. |
| 672 | */ |
| 673 | vm = find_vm_area((void *)shadow_start); |
| 674 | if (vm) |
| 675 | vfree((void *)shadow_start); |
| 676 | } |
| 677 | } |
| 678 | |
| 679 | return NOTIFY_OK; |
| 680 | } |
| 681 | |
| 682 | static int __init kasan_memhotplug_init(void) |
| 683 | { |
| 684 | hotplug_memory_notifier(kasan_mem_notifier, 0); |
| 685 | |
| 686 | return 0; |
| 687 | } |
| 688 | |
| 689 | core_initcall(kasan_memhotplug_init); |
| 690 | #endif |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 691 | |
| 692 | #ifdef CONFIG_KASAN_VMALLOC |
| 693 | static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr, |
| 694 | void *unused) |
| 695 | { |
| 696 | unsigned long page; |
| 697 | pte_t pte; |
| 698 | |
| 699 | if (likely(!pte_none(*ptep))) |
| 700 | return 0; |
| 701 | |
| 702 | page = __get_free_page(GFP_KERNEL); |
| 703 | if (!page) |
| 704 | return -ENOMEM; |
| 705 | |
| 706 | memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE); |
| 707 | pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL); |
| 708 | |
| 709 | spin_lock(&init_mm.page_table_lock); |
| 710 | if (likely(pte_none(*ptep))) { |
| 711 | set_pte_at(&init_mm, addr, ptep, pte); |
| 712 | page = 0; |
| 713 | } |
| 714 | spin_unlock(&init_mm.page_table_lock); |
| 715 | if (page) |
| 716 | free_page(page); |
| 717 | return 0; |
| 718 | } |
| 719 | |
| 720 | int kasan_populate_vmalloc(unsigned long addr, unsigned long size) |
| 721 | { |
| 722 | unsigned long shadow_start, shadow_end; |
| 723 | int ret; |
| 724 | |
| 725 | if (!is_vmalloc_or_module_addr((void *)addr)) |
| 726 | return 0; |
| 727 | |
| 728 | shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr); |
| 729 | shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE); |
| 730 | shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size); |
| 731 | shadow_end = ALIGN(shadow_end, PAGE_SIZE); |
| 732 | |
| 733 | ret = apply_to_page_range(&init_mm, shadow_start, |
| 734 | shadow_end - shadow_start, |
| 735 | kasan_populate_vmalloc_pte, NULL); |
| 736 | if (ret) |
| 737 | return ret; |
| 738 | |
| 739 | flush_cache_vmap(shadow_start, shadow_end); |
| 740 | |
| 741 | /* |
| 742 | * We need to be careful about inter-cpu effects here. Consider: |
| 743 | * |
| 744 | * CPU#0 CPU#1 |
| 745 | * WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ; |
| 746 | * p[99] = 1; |
| 747 | * |
| 748 | * With compiler instrumentation, that ends up looking like this: |
| 749 | * |
| 750 | * CPU#0 CPU#1 |
| 751 | * // vmalloc() allocates memory |
| 752 | * // let a = area->addr |
| 753 | * // we reach kasan_populate_vmalloc |
| 754 | * // and call kasan_unpoison_shadow: |
| 755 | * STORE shadow(a), unpoison_val |
| 756 | * ... |
| 757 | * STORE shadow(a+99), unpoison_val x = LOAD p |
| 758 | * // rest of vmalloc process <data dependency> |
| 759 | * STORE p, a LOAD shadow(x+99) |
| 760 | * |
| 761 | * If there is no barrier between the end of unpoisioning the shadow |
| 762 | * and the store of the result to p, the stores could be committed |
| 763 | * in a different order by CPU#0, and CPU#1 could erroneously observe |
| 764 | * poison in the shadow. |
| 765 | * |
| 766 | * We need some sort of barrier between the stores. |
| 767 | * |
| 768 | * In the vmalloc() case, this is provided by a smp_wmb() in |
| 769 | * clear_vm_uninitialized_flag(). In the per-cpu allocator and in |
| 770 | * get_vm_area() and friends, the caller gets shadow allocated but |
| 771 | * doesn't have any pages mapped into the virtual address space that |
| 772 | * has been reserved. Mapping those pages in will involve taking and |
| 773 | * releasing a page-table lock, which will provide the barrier. |
| 774 | */ |
| 775 | |
| 776 | return 0; |
| 777 | } |
| 778 | |
| 779 | /* |
| 780 | * Poison the shadow for a vmalloc region. Called as part of the |
| 781 | * freeing process at the time the region is freed. |
| 782 | */ |
| 783 | void kasan_poison_vmalloc(const void *start, unsigned long size) |
| 784 | { |
| 785 | if (!is_vmalloc_or_module_addr(start)) |
| 786 | return; |
| 787 | |
| 788 | size = round_up(size, KASAN_SHADOW_SCALE_SIZE); |
| 789 | kasan_poison_shadow(start, size, KASAN_VMALLOC_INVALID); |
| 790 | } |
| 791 | |
| 792 | void kasan_unpoison_vmalloc(const void *start, unsigned long size) |
| 793 | { |
| 794 | if (!is_vmalloc_or_module_addr(start)) |
| 795 | return; |
| 796 | |
| 797 | kasan_unpoison_shadow(start, size); |
| 798 | } |
| 799 | |
| 800 | static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr, |
| 801 | void *unused) |
| 802 | { |
| 803 | unsigned long page; |
| 804 | |
| 805 | page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT); |
| 806 | |
| 807 | spin_lock(&init_mm.page_table_lock); |
| 808 | |
| 809 | if (likely(!pte_none(*ptep))) { |
| 810 | pte_clear(&init_mm, addr, ptep); |
| 811 | free_page(page); |
| 812 | } |
| 813 | spin_unlock(&init_mm.page_table_lock); |
| 814 | |
| 815 | return 0; |
| 816 | } |
| 817 | |
| 818 | /* |
| 819 | * Release the backing for the vmalloc region [start, end), which |
| 820 | * lies within the free region [free_region_start, free_region_end). |
| 821 | * |
| 822 | * This can be run lazily, long after the region was freed. It runs |
| 823 | * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap |
| 824 | * infrastructure. |
| 825 | * |
| 826 | * How does this work? |
| 827 | * ------------------- |
| 828 | * |
| 829 | * We have a region that is page aligned, labelled as A. |
| 830 | * That might not map onto the shadow in a way that is page-aligned: |
| 831 | * |
| 832 | * start end |
| 833 | * v v |
| 834 | * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc |
| 835 | * -------- -------- -------- -------- -------- |
| 836 | * | | | | | |
| 837 | * | | | /-------/ | |
| 838 | * \-------\|/------/ |/---------------/ |
| 839 | * ||| || |
| 840 | * |??AAAAAA|AAAAAAAA|AA??????| < shadow |
| 841 | * (1) (2) (3) |
| 842 | * |
| 843 | * First we align the start upwards and the end downwards, so that the |
| 844 | * shadow of the region aligns with shadow page boundaries. In the |
| 845 | * example, this gives us the shadow page (2). This is the shadow entirely |
| 846 | * covered by this allocation. |
| 847 | * |
| 848 | * Then we have the tricky bits. We want to know if we can free the |
| 849 | * partially covered shadow pages - (1) and (3) in the example. For this, |
| 850 | * we are given the start and end of the free region that contains this |
| 851 | * allocation. Extending our previous example, we could have: |
| 852 | * |
| 853 | * free_region_start free_region_end |
| 854 | * | start end | |
| 855 | * v v v v |
| 856 | * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc |
| 857 | * -------- -------- -------- -------- -------- |
| 858 | * | | | | | |
| 859 | * | | | /-------/ | |
| 860 | * \-------\|/------/ |/---------------/ |
| 861 | * ||| || |
| 862 | * |FFAAAAAA|AAAAAAAA|AAF?????| < shadow |
| 863 | * (1) (2) (3) |
| 864 | * |
| 865 | * Once again, we align the start of the free region up, and the end of |
| 866 | * the free region down so that the shadow is page aligned. So we can free |
| 867 | * page (1) - we know no allocation currently uses anything in that page, |
| 868 | * because all of it is in the vmalloc free region. But we cannot free |
| 869 | * page (3), because we can't be sure that the rest of it is unused. |
| 870 | * |
| 871 | * We only consider pages that contain part of the original region for |
| 872 | * freeing: we don't try to free other pages from the free region or we'd |
| 873 | * end up trying to free huge chunks of virtual address space. |
| 874 | * |
| 875 | * Concurrency |
| 876 | * ----------- |
| 877 | * |
| 878 | * How do we know that we're not freeing a page that is simultaneously |
| 879 | * being used for a fresh allocation in kasan_populate_vmalloc(_pte)? |
| 880 | * |
| 881 | * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running |
| 882 | * at the same time. While we run under free_vmap_area_lock, the population |
| 883 | * code does not. |
| 884 | * |
| 885 | * free_vmap_area_lock instead operates to ensure that the larger range |
| 886 | * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and |
| 887 | * the per-cpu region-finding algorithm both run under free_vmap_area_lock, |
| 888 | * no space identified as free will become used while we are running. This |
| 889 | * means that so long as we are careful with alignment and only free shadow |
| 890 | * pages entirely covered by the free region, we will not run in to any |
| 891 | * trouble - any simultaneous allocations will be for disjoint regions. |
| 892 | */ |
| 893 | void kasan_release_vmalloc(unsigned long start, unsigned long end, |
| 894 | unsigned long free_region_start, |
| 895 | unsigned long free_region_end) |
| 896 | { |
| 897 | void *shadow_start, *shadow_end; |
| 898 | unsigned long region_start, region_end; |
| 899 | unsigned long size; |
| 900 | |
| 901 | region_start = ALIGN(start, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE); |
| 902 | region_end = ALIGN_DOWN(end, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE); |
| 903 | |
| 904 | free_region_start = ALIGN(free_region_start, |
| 905 | PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE); |
| 906 | |
| 907 | if (start != region_start && |
| 908 | free_region_start < region_start) |
| 909 | region_start -= PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE; |
| 910 | |
| 911 | free_region_end = ALIGN_DOWN(free_region_end, |
| 912 | PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE); |
| 913 | |
| 914 | if (end != region_end && |
| 915 | free_region_end > region_end) |
| 916 | region_end += PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE; |
| 917 | |
| 918 | shadow_start = kasan_mem_to_shadow((void *)region_start); |
| 919 | shadow_end = kasan_mem_to_shadow((void *)region_end); |
| 920 | |
| 921 | if (shadow_end > shadow_start) { |
| 922 | size = shadow_end - shadow_start; |
| 923 | apply_to_existing_page_range(&init_mm, |
| 924 | (unsigned long)shadow_start, |
| 925 | size, kasan_depopulate_vmalloc_pte, |
| 926 | NULL); |
| 927 | flush_tlb_kernel_range((unsigned long)shadow_start, |
| 928 | (unsigned long)shadow_end); |
| 929 | } |
| 930 | } |
| 931 | #endif |