David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * This file contains common generic and tag-based KASAN code. |
| 4 | * |
| 5 | * Copyright (c) 2014 Samsung Electronics Co., Ltd. |
| 6 | * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> |
| 7 | * |
| 8 | * Some code borrowed from https://github.com/xairy/kasan-prototype by |
| 9 | * Andrey Konovalov <andreyknvl@gmail.com> |
| 10 | * |
| 11 | * This program is free software; you can redistribute it and/or modify |
| 12 | * it under the terms of the GNU General Public License version 2 as |
| 13 | * published by the Free Software Foundation. |
| 14 | * |
| 15 | */ |
| 16 | |
| 17 | #include <linux/export.h> |
| 18 | #include <linux/interrupt.h> |
| 19 | #include <linux/init.h> |
| 20 | #include <linux/kasan.h> |
| 21 | #include <linux/kernel.h> |
| 22 | #include <linux/kmemleak.h> |
| 23 | #include <linux/linkage.h> |
| 24 | #include <linux/memblock.h> |
| 25 | #include <linux/memory.h> |
| 26 | #include <linux/mm.h> |
| 27 | #include <linux/module.h> |
| 28 | #include <linux/printk.h> |
| 29 | #include <linux/sched.h> |
| 30 | #include <linux/sched/task_stack.h> |
| 31 | #include <linux/slab.h> |
| 32 | #include <linux/stacktrace.h> |
| 33 | #include <linux/string.h> |
| 34 | #include <linux/types.h> |
| 35 | #include <linux/vmalloc.h> |
| 36 | #include <linux/bug.h> |
| 37 | #include <linux/uaccess.h> |
| 38 | |
| 39 | #include "kasan.h" |
| 40 | #include "../slab.h" |
| 41 | |
| 42 | static inline int in_irqentry_text(unsigned long ptr) |
| 43 | { |
| 44 | return (ptr >= (unsigned long)&__irqentry_text_start && |
| 45 | ptr < (unsigned long)&__irqentry_text_end) || |
| 46 | (ptr >= (unsigned long)&__softirqentry_text_start && |
| 47 | ptr < (unsigned long)&__softirqentry_text_end); |
| 48 | } |
| 49 | |
| 50 | static inline unsigned int filter_irq_stacks(unsigned long *entries, |
| 51 | unsigned int nr_entries) |
| 52 | { |
| 53 | unsigned int i; |
| 54 | |
| 55 | for (i = 0; i < nr_entries; i++) { |
| 56 | if (in_irqentry_text(entries[i])) { |
| 57 | /* Include the irqentry function into the stack. */ |
| 58 | return i + 1; |
| 59 | } |
| 60 | } |
| 61 | return nr_entries; |
| 62 | } |
| 63 | |
| 64 | static inline depot_stack_handle_t save_stack(gfp_t flags) |
| 65 | { |
| 66 | unsigned long entries[KASAN_STACK_DEPTH]; |
| 67 | unsigned int nr_entries; |
| 68 | |
| 69 | nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0); |
| 70 | nr_entries = filter_irq_stacks(entries, nr_entries); |
| 71 | return stack_depot_save(entries, nr_entries, flags); |
| 72 | } |
| 73 | |
| 74 | static inline void set_track(struct kasan_track *track, gfp_t flags) |
| 75 | { |
| 76 | track->pid = current->pid; |
| 77 | track->stack = save_stack(flags); |
| 78 | } |
| 79 | |
| 80 | void kasan_enable_current(void) |
| 81 | { |
| 82 | current->kasan_depth++; |
| 83 | } |
| 84 | |
| 85 | void kasan_disable_current(void) |
| 86 | { |
| 87 | current->kasan_depth--; |
| 88 | } |
| 89 | |
| 90 | bool __kasan_check_read(const volatile void *p, unsigned int size) |
| 91 | { |
| 92 | return check_memory_region((unsigned long)p, size, false, _RET_IP_); |
| 93 | } |
| 94 | EXPORT_SYMBOL(__kasan_check_read); |
| 95 | |
| 96 | bool __kasan_check_write(const volatile void *p, unsigned int size) |
| 97 | { |
| 98 | return check_memory_region((unsigned long)p, size, true, _RET_IP_); |
| 99 | } |
| 100 | EXPORT_SYMBOL(__kasan_check_write); |
| 101 | |
| 102 | #undef memset |
| 103 | void *memset(void *addr, int c, size_t len) |
| 104 | { |
| 105 | check_memory_region((unsigned long)addr, len, true, _RET_IP_); |
| 106 | |
| 107 | return __memset(addr, c, len); |
| 108 | } |
| 109 | |
| 110 | #undef memmove |
| 111 | void *memmove(void *dest, const void *src, size_t len) |
| 112 | { |
| 113 | check_memory_region((unsigned long)src, len, false, _RET_IP_); |
| 114 | check_memory_region((unsigned long)dest, len, true, _RET_IP_); |
| 115 | |
| 116 | return __memmove(dest, src, len); |
| 117 | } |
| 118 | |
| 119 | #undef memcpy |
| 120 | void *memcpy(void *dest, const void *src, size_t len) |
| 121 | { |
| 122 | check_memory_region((unsigned long)src, len, false, _RET_IP_); |
| 123 | check_memory_region((unsigned long)dest, len, true, _RET_IP_); |
| 124 | |
| 125 | return __memcpy(dest, src, len); |
| 126 | } |
| 127 | |
| 128 | /* |
| 129 | * Poisons the shadow memory for 'size' bytes starting from 'addr'. |
| 130 | * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE. |
| 131 | */ |
| 132 | void kasan_poison_shadow(const void *address, size_t size, u8 value) |
| 133 | { |
| 134 | void *shadow_start, *shadow_end; |
| 135 | |
| 136 | /* |
| 137 | * Perform shadow offset calculation based on untagged address, as |
| 138 | * some of the callers (e.g. kasan_poison_object_data) pass tagged |
| 139 | * addresses to this function. |
| 140 | */ |
| 141 | address = reset_tag(address); |
| 142 | |
| 143 | shadow_start = kasan_mem_to_shadow(address); |
| 144 | shadow_end = kasan_mem_to_shadow(address + size); |
| 145 | |
| 146 | __memset(shadow_start, value, shadow_end - shadow_start); |
| 147 | } |
| 148 | |
| 149 | void kasan_unpoison_shadow(const void *address, size_t size) |
| 150 | { |
| 151 | u8 tag = get_tag(address); |
| 152 | |
| 153 | /* |
| 154 | * Perform shadow offset calculation based on untagged address, as |
| 155 | * some of the callers (e.g. kasan_unpoison_object_data) pass tagged |
| 156 | * addresses to this function. |
| 157 | */ |
| 158 | address = reset_tag(address); |
| 159 | |
| 160 | kasan_poison_shadow(address, size, tag); |
| 161 | |
| 162 | if (size & KASAN_SHADOW_MASK) { |
| 163 | u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size); |
| 164 | |
| 165 | if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) |
| 166 | *shadow = tag; |
| 167 | else |
| 168 | *shadow = size & KASAN_SHADOW_MASK; |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | static void __kasan_unpoison_stack(struct task_struct *task, const void *sp) |
| 173 | { |
| 174 | void *base = task_stack_page(task); |
| 175 | size_t size = sp - base; |
| 176 | |
| 177 | kasan_unpoison_shadow(base, size); |
| 178 | } |
| 179 | |
| 180 | /* Unpoison the entire stack for a task. */ |
| 181 | void kasan_unpoison_task_stack(struct task_struct *task) |
| 182 | { |
| 183 | __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE); |
| 184 | } |
| 185 | |
| 186 | /* Unpoison the stack for the current task beyond a watermark sp value. */ |
| 187 | asmlinkage void kasan_unpoison_task_stack_below(const void *watermark) |
| 188 | { |
| 189 | /* |
| 190 | * Calculate the task stack base address. Avoid using 'current' |
| 191 | * because this function is called by early resume code which hasn't |
| 192 | * yet set up the percpu register (%gs). |
| 193 | */ |
| 194 | void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1)); |
| 195 | |
| 196 | kasan_unpoison_shadow(base, watermark - base); |
| 197 | } |
| 198 | |
| 199 | /* |
| 200 | * Clear all poison for the region between the current SP and a provided |
| 201 | * watermark value, as is sometimes required prior to hand-crafted asm function |
| 202 | * returns in the middle of functions. |
| 203 | */ |
| 204 | void kasan_unpoison_stack_above_sp_to(const void *watermark) |
| 205 | { |
| 206 | const void *sp = __builtin_frame_address(0); |
| 207 | size_t size = watermark - sp; |
| 208 | |
| 209 | if (WARN_ON(sp > watermark)) |
| 210 | return; |
| 211 | kasan_unpoison_shadow(sp, size); |
| 212 | } |
| 213 | |
| 214 | void kasan_alloc_pages(struct page *page, unsigned int order) |
| 215 | { |
| 216 | u8 tag; |
| 217 | unsigned long i; |
| 218 | |
| 219 | if (unlikely(PageHighMem(page))) |
| 220 | return; |
| 221 | |
| 222 | tag = random_tag(); |
| 223 | for (i = 0; i < (1 << order); i++) |
| 224 | page_kasan_tag_set(page + i, tag); |
| 225 | kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order); |
| 226 | } |
| 227 | |
| 228 | void kasan_free_pages(struct page *page, unsigned int order) |
| 229 | { |
| 230 | if (likely(!PageHighMem(page))) |
| 231 | kasan_poison_shadow(page_address(page), |
| 232 | PAGE_SIZE << order, |
| 233 | KASAN_FREE_PAGE); |
| 234 | } |
| 235 | |
| 236 | /* |
| 237 | * Adaptive redzone policy taken from the userspace AddressSanitizer runtime. |
| 238 | * For larger allocations larger redzones are used. |
| 239 | */ |
| 240 | static inline unsigned int optimal_redzone(unsigned int object_size) |
| 241 | { |
| 242 | if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) |
| 243 | return 0; |
| 244 | |
| 245 | return |
| 246 | object_size <= 64 - 16 ? 16 : |
| 247 | object_size <= 128 - 32 ? 32 : |
| 248 | object_size <= 512 - 64 ? 64 : |
| 249 | object_size <= 4096 - 128 ? 128 : |
| 250 | object_size <= (1 << 14) - 256 ? 256 : |
| 251 | object_size <= (1 << 15) - 512 ? 512 : |
| 252 | object_size <= (1 << 16) - 1024 ? 1024 : 2048; |
| 253 | } |
| 254 | |
| 255 | void kasan_cache_create(struct kmem_cache *cache, unsigned int *size, |
| 256 | slab_flags_t *flags) |
| 257 | { |
| 258 | unsigned int orig_size = *size; |
| 259 | unsigned int redzone_size; |
| 260 | int redzone_adjust; |
| 261 | |
| 262 | /* Add alloc meta. */ |
| 263 | cache->kasan_info.alloc_meta_offset = *size; |
| 264 | *size += sizeof(struct kasan_alloc_meta); |
| 265 | |
| 266 | /* Add free meta. */ |
| 267 | if (IS_ENABLED(CONFIG_KASAN_GENERIC) && |
| 268 | (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor || |
| 269 | cache->object_size < sizeof(struct kasan_free_meta))) { |
| 270 | cache->kasan_info.free_meta_offset = *size; |
| 271 | *size += sizeof(struct kasan_free_meta); |
| 272 | } |
| 273 | |
| 274 | redzone_size = optimal_redzone(cache->object_size); |
| 275 | redzone_adjust = redzone_size - (*size - cache->object_size); |
| 276 | if (redzone_adjust > 0) |
| 277 | *size += redzone_adjust; |
| 278 | |
| 279 | *size = min_t(unsigned int, KMALLOC_MAX_SIZE, |
| 280 | max(*size, cache->object_size + redzone_size)); |
| 281 | |
| 282 | /* |
| 283 | * If the metadata doesn't fit, don't enable KASAN at all. |
| 284 | */ |
| 285 | if (*size <= cache->kasan_info.alloc_meta_offset || |
| 286 | *size <= cache->kasan_info.free_meta_offset) { |
| 287 | cache->kasan_info.alloc_meta_offset = 0; |
| 288 | cache->kasan_info.free_meta_offset = 0; |
| 289 | *size = orig_size; |
| 290 | return; |
| 291 | } |
| 292 | |
| 293 | *flags |= SLAB_KASAN; |
| 294 | } |
| 295 | |
| 296 | size_t kasan_metadata_size(struct kmem_cache *cache) |
| 297 | { |
| 298 | return (cache->kasan_info.alloc_meta_offset ? |
| 299 | sizeof(struct kasan_alloc_meta) : 0) + |
| 300 | (cache->kasan_info.free_meta_offset ? |
| 301 | sizeof(struct kasan_free_meta) : 0); |
| 302 | } |
| 303 | |
| 304 | struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache, |
| 305 | const void *object) |
| 306 | { |
| 307 | return (void *)object + cache->kasan_info.alloc_meta_offset; |
| 308 | } |
| 309 | |
| 310 | struct kasan_free_meta *get_free_info(struct kmem_cache *cache, |
| 311 | const void *object) |
| 312 | { |
| 313 | BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32); |
| 314 | return (void *)object + cache->kasan_info.free_meta_offset; |
| 315 | } |
| 316 | |
| 317 | |
| 318 | static void kasan_set_free_info(struct kmem_cache *cache, |
| 319 | void *object, u8 tag) |
| 320 | { |
| 321 | struct kasan_alloc_meta *alloc_meta; |
| 322 | u8 idx = 0; |
| 323 | |
| 324 | alloc_meta = get_alloc_info(cache, object); |
| 325 | |
| 326 | #ifdef CONFIG_KASAN_SW_TAGS_IDENTIFY |
| 327 | idx = alloc_meta->free_track_idx; |
| 328 | alloc_meta->free_pointer_tag[idx] = tag; |
| 329 | alloc_meta->free_track_idx = (idx + 1) % KASAN_NR_FREE_STACKS; |
| 330 | #endif |
| 331 | |
| 332 | set_track(&alloc_meta->free_track[idx], GFP_NOWAIT); |
| 333 | } |
| 334 | |
| 335 | void kasan_poison_slab(struct page *page) |
| 336 | { |
| 337 | unsigned long i; |
| 338 | |
| 339 | for (i = 0; i < compound_nr(page); i++) |
| 340 | page_kasan_tag_reset(page + i); |
| 341 | kasan_poison_shadow(page_address(page), page_size(page), |
| 342 | KASAN_KMALLOC_REDZONE); |
| 343 | } |
| 344 | |
| 345 | void kasan_unpoison_object_data(struct kmem_cache *cache, void *object) |
| 346 | { |
| 347 | kasan_unpoison_shadow(object, cache->object_size); |
| 348 | } |
| 349 | |
| 350 | void kasan_poison_object_data(struct kmem_cache *cache, void *object) |
| 351 | { |
| 352 | kasan_poison_shadow(object, |
| 353 | round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE), |
| 354 | KASAN_KMALLOC_REDZONE); |
| 355 | } |
| 356 | |
| 357 | /* |
| 358 | * This function assigns a tag to an object considering the following: |
| 359 | * 1. A cache might have a constructor, which might save a pointer to a slab |
| 360 | * object somewhere (e.g. in the object itself). We preassign a tag for |
| 361 | * each object in caches with constructors during slab creation and reuse |
| 362 | * the same tag each time a particular object is allocated. |
| 363 | * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be |
| 364 | * accessed after being freed. We preassign tags for objects in these |
| 365 | * caches as well. |
| 366 | * 3. For SLAB allocator we can't preassign tags randomly since the freelist |
| 367 | * is stored as an array of indexes instead of a linked list. Assign tags |
| 368 | * based on objects indexes, so that objects that are next to each other |
| 369 | * get different tags. |
| 370 | */ |
| 371 | static u8 assign_tag(struct kmem_cache *cache, const void *object, |
| 372 | bool init, bool keep_tag) |
| 373 | { |
| 374 | /* |
| 375 | * 1. When an object is kmalloc()'ed, two hooks are called: |
| 376 | * kasan_slab_alloc() and kasan_kmalloc(). We assign the |
| 377 | * tag only in the first one. |
| 378 | * 2. We reuse the same tag for krealloc'ed objects. |
| 379 | */ |
| 380 | if (keep_tag) |
| 381 | return get_tag(object); |
| 382 | |
| 383 | /* |
| 384 | * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU |
| 385 | * set, assign a tag when the object is being allocated (init == false). |
| 386 | */ |
| 387 | if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU)) |
| 388 | return init ? KASAN_TAG_KERNEL : random_tag(); |
| 389 | |
| 390 | /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */ |
| 391 | #ifdef CONFIG_SLAB |
| 392 | /* For SLAB assign tags based on the object index in the freelist. */ |
| 393 | return (u8)obj_to_index(cache, virt_to_page(object), (void *)object); |
| 394 | #else |
| 395 | /* |
| 396 | * For SLUB assign a random tag during slab creation, otherwise reuse |
| 397 | * the already assigned tag. |
| 398 | */ |
| 399 | return init ? random_tag() : get_tag(object); |
| 400 | #endif |
| 401 | } |
| 402 | |
| 403 | void * __must_check kasan_init_slab_obj(struct kmem_cache *cache, |
| 404 | const void *object) |
| 405 | { |
| 406 | struct kasan_alloc_meta *alloc_info; |
| 407 | |
| 408 | if (!(cache->flags & SLAB_KASAN)) |
| 409 | return (void *)object; |
| 410 | |
| 411 | alloc_info = get_alloc_info(cache, object); |
| 412 | __memset(alloc_info, 0, sizeof(*alloc_info)); |
| 413 | |
| 414 | if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) |
| 415 | object = set_tag(object, |
| 416 | assign_tag(cache, object, true, false)); |
| 417 | |
| 418 | return (void *)object; |
| 419 | } |
| 420 | |
| 421 | static inline bool shadow_invalid(u8 tag, s8 shadow_byte) |
| 422 | { |
| 423 | if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
| 424 | return shadow_byte < 0 || |
| 425 | shadow_byte >= KASAN_SHADOW_SCALE_SIZE; |
| 426 | |
| 427 | /* else CONFIG_KASAN_SW_TAGS: */ |
| 428 | if ((u8)shadow_byte == KASAN_TAG_INVALID) |
| 429 | return true; |
| 430 | if ((tag != KASAN_TAG_KERNEL) && (tag != (u8)shadow_byte)) |
| 431 | return true; |
| 432 | |
| 433 | return false; |
| 434 | } |
| 435 | |
| 436 | static bool __kasan_slab_free(struct kmem_cache *cache, void *object, |
| 437 | unsigned long ip, bool quarantine) |
| 438 | { |
| 439 | s8 shadow_byte; |
| 440 | u8 tag; |
| 441 | void *tagged_object; |
| 442 | unsigned long rounded_up_size; |
| 443 | |
| 444 | tag = get_tag(object); |
| 445 | tagged_object = object; |
| 446 | object = reset_tag(object); |
| 447 | |
| 448 | if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) != |
| 449 | object)) { |
| 450 | kasan_report_invalid_free(tagged_object, ip); |
| 451 | return true; |
| 452 | } |
| 453 | |
| 454 | /* RCU slabs could be legally used after free within the RCU period */ |
| 455 | if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU)) |
| 456 | return false; |
| 457 | |
| 458 | shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object)); |
| 459 | if (shadow_invalid(tag, shadow_byte)) { |
| 460 | kasan_report_invalid_free(tagged_object, ip); |
| 461 | return true; |
| 462 | } |
| 463 | |
| 464 | rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE); |
| 465 | kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE); |
| 466 | |
| 467 | if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) || |
| 468 | unlikely(!(cache->flags & SLAB_KASAN))) |
| 469 | return false; |
| 470 | |
| 471 | kasan_set_free_info(cache, object, tag); |
| 472 | |
| 473 | quarantine_put(get_free_info(cache, object), cache); |
| 474 | |
| 475 | return IS_ENABLED(CONFIG_KASAN_GENERIC); |
| 476 | } |
| 477 | |
| 478 | bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip) |
| 479 | { |
| 480 | return __kasan_slab_free(cache, object, ip, true); |
| 481 | } |
| 482 | |
| 483 | static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object, |
| 484 | size_t size, gfp_t flags, bool keep_tag) |
| 485 | { |
| 486 | unsigned long redzone_start; |
| 487 | unsigned long redzone_end; |
| 488 | u8 tag = 0xff; |
| 489 | |
| 490 | if (gfpflags_allow_blocking(flags)) |
| 491 | quarantine_reduce(); |
| 492 | |
| 493 | if (unlikely(object == NULL)) |
| 494 | return NULL; |
| 495 | |
| 496 | redzone_start = round_up((unsigned long)(object + size), |
| 497 | KASAN_SHADOW_SCALE_SIZE); |
| 498 | redzone_end = round_up((unsigned long)object + cache->object_size, |
| 499 | KASAN_SHADOW_SCALE_SIZE); |
| 500 | |
| 501 | if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) |
| 502 | tag = assign_tag(cache, object, false, keep_tag); |
| 503 | |
| 504 | /* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */ |
| 505 | kasan_unpoison_shadow(set_tag(object, tag), size); |
| 506 | kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start, |
| 507 | KASAN_KMALLOC_REDZONE); |
| 508 | |
| 509 | if (cache->flags & SLAB_KASAN) |
| 510 | set_track(&get_alloc_info(cache, object)->alloc_track, flags); |
| 511 | |
| 512 | return set_tag(object, tag); |
| 513 | } |
| 514 | |
| 515 | void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object, |
| 516 | gfp_t flags) |
| 517 | { |
| 518 | return __kasan_kmalloc(cache, object, cache->object_size, flags, false); |
| 519 | } |
| 520 | |
| 521 | void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object, |
| 522 | size_t size, gfp_t flags) |
| 523 | { |
| 524 | return __kasan_kmalloc(cache, object, size, flags, true); |
| 525 | } |
| 526 | EXPORT_SYMBOL(kasan_kmalloc); |
| 527 | |
| 528 | void * __must_check kasan_kmalloc_large(const void *ptr, size_t size, |
| 529 | gfp_t flags) |
| 530 | { |
| 531 | struct page *page; |
| 532 | unsigned long redzone_start; |
| 533 | unsigned long redzone_end; |
| 534 | |
| 535 | if (gfpflags_allow_blocking(flags)) |
| 536 | quarantine_reduce(); |
| 537 | |
| 538 | if (unlikely(ptr == NULL)) |
| 539 | return NULL; |
| 540 | |
| 541 | page = virt_to_page(ptr); |
| 542 | redzone_start = round_up((unsigned long)(ptr + size), |
| 543 | KASAN_SHADOW_SCALE_SIZE); |
| 544 | redzone_end = (unsigned long)ptr + page_size(page); |
| 545 | |
| 546 | kasan_unpoison_shadow(ptr, size); |
| 547 | kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start, |
| 548 | KASAN_PAGE_REDZONE); |
| 549 | |
| 550 | return (void *)ptr; |
| 551 | } |
| 552 | |
| 553 | void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags) |
| 554 | { |
| 555 | struct page *page; |
| 556 | |
| 557 | if (unlikely(object == ZERO_SIZE_PTR)) |
| 558 | return (void *)object; |
| 559 | |
| 560 | page = virt_to_head_page(object); |
| 561 | |
| 562 | if (unlikely(!PageSlab(page))) |
| 563 | return kasan_kmalloc_large(object, size, flags); |
| 564 | else |
| 565 | return __kasan_kmalloc(page->slab_cache, object, size, |
| 566 | flags, true); |
| 567 | } |
| 568 | |
| 569 | void kasan_poison_kfree(void *ptr, unsigned long ip) |
| 570 | { |
| 571 | struct page *page; |
| 572 | |
| 573 | page = virt_to_head_page(ptr); |
| 574 | |
| 575 | if (unlikely(!PageSlab(page))) { |
| 576 | if (ptr != page_address(page)) { |
| 577 | kasan_report_invalid_free(ptr, ip); |
| 578 | return; |
| 579 | } |
| 580 | kasan_poison_shadow(ptr, page_size(page), KASAN_FREE_PAGE); |
| 581 | } else { |
| 582 | __kasan_slab_free(page->slab_cache, ptr, ip, false); |
| 583 | } |
| 584 | } |
| 585 | |
| 586 | void kasan_kfree_large(void *ptr, unsigned long ip) |
| 587 | { |
| 588 | if (ptr != page_address(virt_to_head_page(ptr))) |
| 589 | kasan_report_invalid_free(ptr, ip); |
| 590 | /* The object will be poisoned by page_alloc. */ |
| 591 | } |
| 592 | |
| 593 | int kasan_module_alloc(void *addr, size_t size) |
| 594 | { |
| 595 | void *ret; |
| 596 | size_t scaled_size; |
| 597 | size_t shadow_size; |
| 598 | unsigned long shadow_start; |
| 599 | |
| 600 | shadow_start = (unsigned long)kasan_mem_to_shadow(addr); |
| 601 | scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT; |
| 602 | shadow_size = round_up(scaled_size, PAGE_SIZE); |
| 603 | |
| 604 | if (WARN_ON(!PAGE_ALIGNED(shadow_start))) |
| 605 | return -EINVAL; |
| 606 | |
| 607 | ret = __vmalloc_node_range(shadow_size, 1, shadow_start, |
| 608 | shadow_start + shadow_size, |
| 609 | GFP_KERNEL, |
| 610 | PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE, |
| 611 | __builtin_return_address(0)); |
| 612 | |
| 613 | if (ret) { |
| 614 | __memset(ret, KASAN_SHADOW_INIT, shadow_size); |
| 615 | find_vm_area(addr)->flags |= VM_KASAN; |
| 616 | kmemleak_ignore(ret); |
| 617 | return 0; |
| 618 | } |
| 619 | |
| 620 | return -ENOMEM; |
| 621 | } |
| 622 | |
| 623 | void kasan_free_shadow(const struct vm_struct *vm) |
| 624 | { |
| 625 | if (vm->flags & VM_KASAN) |
| 626 | vfree(kasan_mem_to_shadow(vm->addr)); |
| 627 | } |
| 628 | |
| 629 | extern void __kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip); |
| 630 | |
| 631 | void kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip) |
| 632 | { |
| 633 | unsigned long flags = user_access_save(); |
| 634 | __kasan_report(addr, size, is_write, ip); |
| 635 | user_access_restore(flags); |
| 636 | } |
| 637 | |
| 638 | #ifdef CONFIG_MEMORY_HOTPLUG |
| 639 | static bool shadow_mapped(unsigned long addr) |
| 640 | { |
| 641 | pgd_t *pgd = pgd_offset_k(addr); |
| 642 | p4d_t *p4d; |
| 643 | pud_t *pud; |
| 644 | pmd_t *pmd; |
| 645 | pte_t *pte; |
| 646 | |
| 647 | if (pgd_none(*pgd)) |
| 648 | return false; |
| 649 | p4d = p4d_offset(pgd, addr); |
| 650 | if (p4d_none(*p4d)) |
| 651 | return false; |
| 652 | pud = pud_offset(p4d, addr); |
| 653 | if (pud_none(*pud)) |
| 654 | return false; |
| 655 | |
| 656 | /* |
| 657 | * We can't use pud_large() or pud_huge(), the first one is |
| 658 | * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse |
| 659 | * pud_bad(), if pud is bad then it's bad because it's huge. |
| 660 | */ |
| 661 | if (pud_bad(*pud)) |
| 662 | return true; |
| 663 | pmd = pmd_offset(pud, addr); |
| 664 | if (pmd_none(*pmd)) |
| 665 | return false; |
| 666 | |
| 667 | if (pmd_bad(*pmd)) |
| 668 | return true; |
| 669 | pte = pte_offset_kernel(pmd, addr); |
| 670 | return !pte_none(*pte); |
| 671 | } |
| 672 | |
| 673 | static int __meminit kasan_mem_notifier(struct notifier_block *nb, |
| 674 | unsigned long action, void *data) |
| 675 | { |
| 676 | struct memory_notify *mem_data = data; |
| 677 | unsigned long nr_shadow_pages, start_kaddr, shadow_start; |
| 678 | unsigned long shadow_end, shadow_size; |
| 679 | |
| 680 | nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT; |
| 681 | start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn); |
| 682 | shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr); |
| 683 | shadow_size = nr_shadow_pages << PAGE_SHIFT; |
| 684 | shadow_end = shadow_start + shadow_size; |
| 685 | |
| 686 | if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) || |
| 687 | WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT))) |
| 688 | return NOTIFY_BAD; |
| 689 | |
| 690 | switch (action) { |
| 691 | case MEM_GOING_ONLINE: { |
| 692 | void *ret; |
| 693 | |
| 694 | /* |
| 695 | * If shadow is mapped already than it must have been mapped |
| 696 | * during the boot. This could happen if we onlining previously |
| 697 | * offlined memory. |
| 698 | */ |
| 699 | if (shadow_mapped(shadow_start)) |
| 700 | return NOTIFY_OK; |
| 701 | |
| 702 | ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start, |
| 703 | shadow_end, GFP_KERNEL, |
| 704 | PAGE_KERNEL, VM_NO_GUARD, |
| 705 | pfn_to_nid(mem_data->start_pfn), |
| 706 | __builtin_return_address(0)); |
| 707 | if (!ret) |
| 708 | return NOTIFY_BAD; |
| 709 | |
| 710 | kmemleak_ignore(ret); |
| 711 | return NOTIFY_OK; |
| 712 | } |
| 713 | case MEM_CANCEL_ONLINE: |
| 714 | case MEM_OFFLINE: { |
| 715 | struct vm_struct *vm; |
| 716 | |
| 717 | /* |
| 718 | * shadow_start was either mapped during boot by kasan_init() |
| 719 | * or during memory online by __vmalloc_node_range(). |
| 720 | * In the latter case we can use vfree() to free shadow. |
| 721 | * Non-NULL result of the find_vm_area() will tell us if |
| 722 | * that was the second case. |
| 723 | * |
| 724 | * Currently it's not possible to free shadow mapped |
| 725 | * during boot by kasan_init(). It's because the code |
| 726 | * to do that hasn't been written yet. So we'll just |
| 727 | * leak the memory. |
| 728 | */ |
| 729 | vm = find_vm_area((void *)shadow_start); |
| 730 | if (vm) |
| 731 | vfree((void *)shadow_start); |
| 732 | } |
| 733 | } |
| 734 | |
| 735 | return NOTIFY_OK; |
| 736 | } |
| 737 | |
| 738 | static int __init kasan_memhotplug_init(void) |
| 739 | { |
| 740 | hotplug_memory_notifier(kasan_mem_notifier, 0); |
| 741 | |
| 742 | return 0; |
| 743 | } |
| 744 | |
| 745 | core_initcall(kasan_memhotplug_init); |
| 746 | #endif |