David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* |
| 3 | * Fast Userspace Mutexes (which I call "Futexes!"). |
| 4 | * (C) Rusty Russell, IBM 2002 |
| 5 | * |
| 6 | * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar |
| 7 | * (C) Copyright 2003 Red Hat Inc, All Rights Reserved |
| 8 | * |
| 9 | * Removed page pinning, fix privately mapped COW pages and other cleanups |
| 10 | * (C) Copyright 2003, 2004 Jamie Lokier |
| 11 | * |
| 12 | * Robust futex support started by Ingo Molnar |
| 13 | * (C) Copyright 2006 Red Hat Inc, All Rights Reserved |
| 14 | * Thanks to Thomas Gleixner for suggestions, analysis and fixes. |
| 15 | * |
| 16 | * PI-futex support started by Ingo Molnar and Thomas Gleixner |
| 17 | * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> |
| 18 | * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com> |
| 19 | * |
| 20 | * PRIVATE futexes by Eric Dumazet |
| 21 | * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com> |
| 22 | * |
| 23 | * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com> |
| 24 | * Copyright (C) IBM Corporation, 2009 |
| 25 | * Thanks to Thomas Gleixner for conceptual design and careful reviews. |
| 26 | * |
| 27 | * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly |
| 28 | * enough at me, Linus for the original (flawed) idea, Matthew |
| 29 | * Kirkwood for proof-of-concept implementation. |
| 30 | * |
| 31 | * "The futexes are also cursed." |
| 32 | * "But they come in a choice of three flavours!" |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 33 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 34 | #include <linux/compat.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 35 | #include <linux/jhash.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 36 | #include <linux/pagemap.h> |
| 37 | #include <linux/syscalls.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 38 | #include <linux/freezer.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 39 | #include <linux/memblock.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 40 | #include <linux/fault-inject.h> |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 41 | #include <linux/time_namespace.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 42 | |
| 43 | #include <asm/futex.h> |
| 44 | |
| 45 | #include "locking/rtmutex_common.h" |
| 46 | |
| 47 | /* |
| 48 | * READ this before attempting to hack on futexes! |
| 49 | * |
| 50 | * Basic futex operation and ordering guarantees |
| 51 | * ============================================= |
| 52 | * |
| 53 | * The waiter reads the futex value in user space and calls |
| 54 | * futex_wait(). This function computes the hash bucket and acquires |
| 55 | * the hash bucket lock. After that it reads the futex user space value |
| 56 | * again and verifies that the data has not changed. If it has not changed |
| 57 | * it enqueues itself into the hash bucket, releases the hash bucket lock |
| 58 | * and schedules. |
| 59 | * |
| 60 | * The waker side modifies the user space value of the futex and calls |
| 61 | * futex_wake(). This function computes the hash bucket and acquires the |
| 62 | * hash bucket lock. Then it looks for waiters on that futex in the hash |
| 63 | * bucket and wakes them. |
| 64 | * |
| 65 | * In futex wake up scenarios where no tasks are blocked on a futex, taking |
| 66 | * the hb spinlock can be avoided and simply return. In order for this |
| 67 | * optimization to work, ordering guarantees must exist so that the waiter |
| 68 | * being added to the list is acknowledged when the list is concurrently being |
| 69 | * checked by the waker, avoiding scenarios like the following: |
| 70 | * |
| 71 | * CPU 0 CPU 1 |
| 72 | * val = *futex; |
| 73 | * sys_futex(WAIT, futex, val); |
| 74 | * futex_wait(futex, val); |
| 75 | * uval = *futex; |
| 76 | * *futex = newval; |
| 77 | * sys_futex(WAKE, futex); |
| 78 | * futex_wake(futex); |
| 79 | * if (queue_empty()) |
| 80 | * return; |
| 81 | * if (uval == val) |
| 82 | * lock(hash_bucket(futex)); |
| 83 | * queue(); |
| 84 | * unlock(hash_bucket(futex)); |
| 85 | * schedule(); |
| 86 | * |
| 87 | * This would cause the waiter on CPU 0 to wait forever because it |
| 88 | * missed the transition of the user space value from val to newval |
| 89 | * and the waker did not find the waiter in the hash bucket queue. |
| 90 | * |
| 91 | * The correct serialization ensures that a waiter either observes |
| 92 | * the changed user space value before blocking or is woken by a |
| 93 | * concurrent waker: |
| 94 | * |
| 95 | * CPU 0 CPU 1 |
| 96 | * val = *futex; |
| 97 | * sys_futex(WAIT, futex, val); |
| 98 | * futex_wait(futex, val); |
| 99 | * |
| 100 | * waiters++; (a) |
| 101 | * smp_mb(); (A) <-- paired with -. |
| 102 | * | |
| 103 | * lock(hash_bucket(futex)); | |
| 104 | * | |
| 105 | * uval = *futex; | |
| 106 | * | *futex = newval; |
| 107 | * | sys_futex(WAKE, futex); |
| 108 | * | futex_wake(futex); |
| 109 | * | |
| 110 | * `--------> smp_mb(); (B) |
| 111 | * if (uval == val) |
| 112 | * queue(); |
| 113 | * unlock(hash_bucket(futex)); |
| 114 | * schedule(); if (waiters) |
| 115 | * lock(hash_bucket(futex)); |
| 116 | * else wake_waiters(futex); |
| 117 | * waiters--; (b) unlock(hash_bucket(futex)); |
| 118 | * |
| 119 | * Where (A) orders the waiters increment and the futex value read through |
| 120 | * atomic operations (see hb_waiters_inc) and where (B) orders the write |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 121 | * to futex and the waiters read (see hb_waiters_pending()). |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 122 | * |
| 123 | * This yields the following case (where X:=waiters, Y:=futex): |
| 124 | * |
| 125 | * X = Y = 0 |
| 126 | * |
| 127 | * w[X]=1 w[Y]=1 |
| 128 | * MB MB |
| 129 | * r[Y]=y r[X]=x |
| 130 | * |
| 131 | * Which guarantees that x==0 && y==0 is impossible; which translates back into |
| 132 | * the guarantee that we cannot both miss the futex variable change and the |
| 133 | * enqueue. |
| 134 | * |
| 135 | * Note that a new waiter is accounted for in (a) even when it is possible that |
| 136 | * the wait call can return error, in which case we backtrack from it in (b). |
| 137 | * Refer to the comment in queue_lock(). |
| 138 | * |
| 139 | * Similarly, in order to account for waiters being requeued on another |
| 140 | * address we always increment the waiters for the destination bucket before |
| 141 | * acquiring the lock. It then decrements them again after releasing it - |
| 142 | * the code that actually moves the futex(es) between hash buckets (requeue_futex) |
| 143 | * will do the additional required waiter count housekeeping. This is done for |
| 144 | * double_lock_hb() and double_unlock_hb(), respectively. |
| 145 | */ |
| 146 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 147 | #ifdef CONFIG_HAVE_FUTEX_CMPXCHG |
| 148 | #define futex_cmpxchg_enabled 1 |
| 149 | #else |
| 150 | static int __read_mostly futex_cmpxchg_enabled; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 151 | #endif |
| 152 | |
| 153 | /* |
| 154 | * Futex flags used to encode options to functions and preserve them across |
| 155 | * restarts. |
| 156 | */ |
| 157 | #ifdef CONFIG_MMU |
| 158 | # define FLAGS_SHARED 0x01 |
| 159 | #else |
| 160 | /* |
| 161 | * NOMMU does not have per process address space. Let the compiler optimize |
| 162 | * code away. |
| 163 | */ |
| 164 | # define FLAGS_SHARED 0x00 |
| 165 | #endif |
| 166 | #define FLAGS_CLOCKRT 0x02 |
| 167 | #define FLAGS_HAS_TIMEOUT 0x04 |
| 168 | |
| 169 | /* |
| 170 | * Priority Inheritance state: |
| 171 | */ |
| 172 | struct futex_pi_state { |
| 173 | /* |
| 174 | * list of 'owned' pi_state instances - these have to be |
| 175 | * cleaned up in do_exit() if the task exits prematurely: |
| 176 | */ |
| 177 | struct list_head list; |
| 178 | |
| 179 | /* |
| 180 | * The PI object: |
| 181 | */ |
| 182 | struct rt_mutex pi_mutex; |
| 183 | |
| 184 | struct task_struct *owner; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 185 | refcount_t refcount; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 186 | |
| 187 | union futex_key key; |
| 188 | } __randomize_layout; |
| 189 | |
| 190 | /** |
| 191 | * struct futex_q - The hashed futex queue entry, one per waiting task |
| 192 | * @list: priority-sorted list of tasks waiting on this futex |
| 193 | * @task: the task waiting on the futex |
| 194 | * @lock_ptr: the hash bucket lock |
| 195 | * @key: the key the futex is hashed on |
| 196 | * @pi_state: optional priority inheritance state |
| 197 | * @rt_waiter: rt_waiter storage for use with requeue_pi |
| 198 | * @requeue_pi_key: the requeue_pi target futex key |
| 199 | * @bitset: bitset for the optional bitmasked wakeup |
| 200 | * |
| 201 | * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so |
| 202 | * we can wake only the relevant ones (hashed queues may be shared). |
| 203 | * |
| 204 | * A futex_q has a woken state, just like tasks have TASK_RUNNING. |
| 205 | * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0. |
| 206 | * The order of wakeup is always to make the first condition true, then |
| 207 | * the second. |
| 208 | * |
| 209 | * PI futexes are typically woken before they are removed from the hash list via |
| 210 | * the rt_mutex code. See unqueue_me_pi(). |
| 211 | */ |
| 212 | struct futex_q { |
| 213 | struct plist_node list; |
| 214 | |
| 215 | struct task_struct *task; |
| 216 | spinlock_t *lock_ptr; |
| 217 | union futex_key key; |
| 218 | struct futex_pi_state *pi_state; |
| 219 | struct rt_mutex_waiter *rt_waiter; |
| 220 | union futex_key *requeue_pi_key; |
| 221 | u32 bitset; |
| 222 | } __randomize_layout; |
| 223 | |
| 224 | static const struct futex_q futex_q_init = { |
| 225 | /* list gets initialized in queue_me()*/ |
| 226 | .key = FUTEX_KEY_INIT, |
| 227 | .bitset = FUTEX_BITSET_MATCH_ANY |
| 228 | }; |
| 229 | |
| 230 | /* |
| 231 | * Hash buckets are shared by all the futex_keys that hash to the same |
| 232 | * location. Each key may have multiple futex_q structures, one for each task |
| 233 | * waiting on a futex. |
| 234 | */ |
| 235 | struct futex_hash_bucket { |
| 236 | atomic_t waiters; |
| 237 | spinlock_t lock; |
| 238 | struct plist_head chain; |
| 239 | } ____cacheline_aligned_in_smp; |
| 240 | |
| 241 | /* |
| 242 | * The base of the bucket array and its size are always used together |
| 243 | * (after initialization only in hash_futex()), so ensure that they |
| 244 | * reside in the same cacheline. |
| 245 | */ |
| 246 | static struct { |
| 247 | struct futex_hash_bucket *queues; |
| 248 | unsigned long hashsize; |
| 249 | } __futex_data __read_mostly __aligned(2*sizeof(long)); |
| 250 | #define futex_queues (__futex_data.queues) |
| 251 | #define futex_hashsize (__futex_data.hashsize) |
| 252 | |
| 253 | |
| 254 | /* |
| 255 | * Fault injections for futexes. |
| 256 | */ |
| 257 | #ifdef CONFIG_FAIL_FUTEX |
| 258 | |
| 259 | static struct { |
| 260 | struct fault_attr attr; |
| 261 | |
| 262 | bool ignore_private; |
| 263 | } fail_futex = { |
| 264 | .attr = FAULT_ATTR_INITIALIZER, |
| 265 | .ignore_private = false, |
| 266 | }; |
| 267 | |
| 268 | static int __init setup_fail_futex(char *str) |
| 269 | { |
| 270 | return setup_fault_attr(&fail_futex.attr, str); |
| 271 | } |
| 272 | __setup("fail_futex=", setup_fail_futex); |
| 273 | |
| 274 | static bool should_fail_futex(bool fshared) |
| 275 | { |
| 276 | if (fail_futex.ignore_private && !fshared) |
| 277 | return false; |
| 278 | |
| 279 | return should_fail(&fail_futex.attr, 1); |
| 280 | } |
| 281 | |
| 282 | #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS |
| 283 | |
| 284 | static int __init fail_futex_debugfs(void) |
| 285 | { |
| 286 | umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; |
| 287 | struct dentry *dir; |
| 288 | |
| 289 | dir = fault_create_debugfs_attr("fail_futex", NULL, |
| 290 | &fail_futex.attr); |
| 291 | if (IS_ERR(dir)) |
| 292 | return PTR_ERR(dir); |
| 293 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 294 | debugfs_create_bool("ignore-private", mode, dir, |
| 295 | &fail_futex.ignore_private); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 296 | return 0; |
| 297 | } |
| 298 | |
| 299 | late_initcall(fail_futex_debugfs); |
| 300 | |
| 301 | #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ |
| 302 | |
| 303 | #else |
| 304 | static inline bool should_fail_futex(bool fshared) |
| 305 | { |
| 306 | return false; |
| 307 | } |
| 308 | #endif /* CONFIG_FAIL_FUTEX */ |
| 309 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 310 | #ifdef CONFIG_COMPAT |
| 311 | static void compat_exit_robust_list(struct task_struct *curr); |
| 312 | #else |
| 313 | static inline void compat_exit_robust_list(struct task_struct *curr) { } |
| 314 | #endif |
| 315 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 316 | /* |
| 317 | * Reflects a new waiter being added to the waitqueue. |
| 318 | */ |
| 319 | static inline void hb_waiters_inc(struct futex_hash_bucket *hb) |
| 320 | { |
| 321 | #ifdef CONFIG_SMP |
| 322 | atomic_inc(&hb->waiters); |
| 323 | /* |
| 324 | * Full barrier (A), see the ordering comment above. |
| 325 | */ |
| 326 | smp_mb__after_atomic(); |
| 327 | #endif |
| 328 | } |
| 329 | |
| 330 | /* |
| 331 | * Reflects a waiter being removed from the waitqueue by wakeup |
| 332 | * paths. |
| 333 | */ |
| 334 | static inline void hb_waiters_dec(struct futex_hash_bucket *hb) |
| 335 | { |
| 336 | #ifdef CONFIG_SMP |
| 337 | atomic_dec(&hb->waiters); |
| 338 | #endif |
| 339 | } |
| 340 | |
| 341 | static inline int hb_waiters_pending(struct futex_hash_bucket *hb) |
| 342 | { |
| 343 | #ifdef CONFIG_SMP |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 344 | /* |
| 345 | * Full barrier (B), see the ordering comment above. |
| 346 | */ |
| 347 | smp_mb(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 348 | return atomic_read(&hb->waiters); |
| 349 | #else |
| 350 | return 1; |
| 351 | #endif |
| 352 | } |
| 353 | |
| 354 | /** |
| 355 | * hash_futex - Return the hash bucket in the global hash |
| 356 | * @key: Pointer to the futex key for which the hash is calculated |
| 357 | * |
| 358 | * We hash on the keys returned from get_futex_key (see below) and return the |
| 359 | * corresponding hash bucket in the global hash. |
| 360 | */ |
| 361 | static struct futex_hash_bucket *hash_futex(union futex_key *key) |
| 362 | { |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 363 | u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 364 | key->both.offset); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 365 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 366 | return &futex_queues[hash & (futex_hashsize - 1)]; |
| 367 | } |
| 368 | |
| 369 | |
| 370 | /** |
| 371 | * match_futex - Check whether two futex keys are equal |
| 372 | * @key1: Pointer to key1 |
| 373 | * @key2: Pointer to key2 |
| 374 | * |
| 375 | * Return 1 if two futex_keys are equal, 0 otherwise. |
| 376 | */ |
| 377 | static inline int match_futex(union futex_key *key1, union futex_key *key2) |
| 378 | { |
| 379 | return (key1 && key2 |
| 380 | && key1->both.word == key2->both.word |
| 381 | && key1->both.ptr == key2->both.ptr |
| 382 | && key1->both.offset == key2->both.offset); |
| 383 | } |
| 384 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 385 | enum futex_access { |
| 386 | FUTEX_READ, |
| 387 | FUTEX_WRITE |
| 388 | }; |
| 389 | |
| 390 | /** |
| 391 | * futex_setup_timer - set up the sleeping hrtimer. |
| 392 | * @time: ptr to the given timeout value |
| 393 | * @timeout: the hrtimer_sleeper structure to be set up |
| 394 | * @flags: futex flags |
| 395 | * @range_ns: optional range in ns |
| 396 | * |
| 397 | * Return: Initialized hrtimer_sleeper structure or NULL if no timeout |
| 398 | * value given |
| 399 | */ |
| 400 | static inline struct hrtimer_sleeper * |
| 401 | futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout, |
| 402 | int flags, u64 range_ns) |
| 403 | { |
| 404 | if (!time) |
| 405 | return NULL; |
| 406 | |
| 407 | hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ? |
| 408 | CLOCK_REALTIME : CLOCK_MONOTONIC, |
| 409 | HRTIMER_MODE_ABS); |
| 410 | /* |
| 411 | * If range_ns is 0, calling hrtimer_set_expires_range_ns() is |
| 412 | * effectively the same as calling hrtimer_set_expires(). |
| 413 | */ |
| 414 | hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns); |
| 415 | |
| 416 | return timeout; |
| 417 | } |
| 418 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 419 | /* |
| 420 | * Generate a machine wide unique identifier for this inode. |
| 421 | * |
| 422 | * This relies on u64 not wrapping in the life-time of the machine; which with |
| 423 | * 1ns resolution means almost 585 years. |
| 424 | * |
| 425 | * This further relies on the fact that a well formed program will not unmap |
| 426 | * the file while it has a (shared) futex waiting on it. This mapping will have |
| 427 | * a file reference which pins the mount and inode. |
| 428 | * |
| 429 | * If for some reason an inode gets evicted and read back in again, it will get |
| 430 | * a new sequence number and will _NOT_ match, even though it is the exact same |
| 431 | * file. |
| 432 | * |
| 433 | * It is important that match_futex() will never have a false-positive, esp. |
| 434 | * for PI futexes that can mess up the state. The above argues that false-negatives |
| 435 | * are only possible for malformed programs. |
| 436 | */ |
| 437 | static u64 get_inode_sequence_number(struct inode *inode) |
| 438 | { |
| 439 | static atomic64_t i_seq; |
| 440 | u64 old; |
| 441 | |
| 442 | /* Does the inode already have a sequence number? */ |
| 443 | old = atomic64_read(&inode->i_sequence); |
| 444 | if (likely(old)) |
| 445 | return old; |
| 446 | |
| 447 | for (;;) { |
| 448 | u64 new = atomic64_add_return(1, &i_seq); |
| 449 | if (WARN_ON_ONCE(!new)) |
| 450 | continue; |
| 451 | |
| 452 | old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new); |
| 453 | if (old) |
| 454 | return old; |
| 455 | return new; |
| 456 | } |
| 457 | } |
| 458 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 459 | /** |
| 460 | * get_futex_key() - Get parameters which are the keys for a futex |
| 461 | * @uaddr: virtual address of the futex |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 462 | * @fshared: false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 463 | * @key: address where result is stored. |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 464 | * @rw: mapping needs to be read/write (values: FUTEX_READ, |
| 465 | * FUTEX_WRITE) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 466 | * |
| 467 | * Return: a negative error code or 0 |
| 468 | * |
| 469 | * The key words are stored in @key on success. |
| 470 | * |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 471 | * For shared mappings (when @fshared), the key is: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 472 | * |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 473 | * ( inode->i_sequence, page->index, offset_within_page ) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 474 | * |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 475 | * [ also see get_inode_sequence_number() ] |
| 476 | * |
| 477 | * For private mappings (or when !@fshared), the key is: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 478 | * |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 479 | * ( current->mm, address, 0 ) |
| 480 | * |
| 481 | * This allows (cross process, where applicable) identification of the futex |
| 482 | * without keeping the page pinned for the duration of the FUTEX_WAIT. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 483 | * |
| 484 | * lock_page() might sleep, the caller should not hold a spinlock. |
| 485 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 486 | static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key, |
| 487 | enum futex_access rw) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 488 | { |
| 489 | unsigned long address = (unsigned long)uaddr; |
| 490 | struct mm_struct *mm = current->mm; |
| 491 | struct page *page, *tail; |
| 492 | struct address_space *mapping; |
| 493 | int err, ro = 0; |
| 494 | |
| 495 | /* |
| 496 | * The futex address must be "naturally" aligned. |
| 497 | */ |
| 498 | key->both.offset = address % PAGE_SIZE; |
| 499 | if (unlikely((address % sizeof(u32)) != 0)) |
| 500 | return -EINVAL; |
| 501 | address -= key->both.offset; |
| 502 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 503 | if (unlikely(!access_ok(uaddr, sizeof(u32)))) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 504 | return -EFAULT; |
| 505 | |
| 506 | if (unlikely(should_fail_futex(fshared))) |
| 507 | return -EFAULT; |
| 508 | |
| 509 | /* |
| 510 | * PROCESS_PRIVATE futexes are fast. |
| 511 | * As the mm cannot disappear under us and the 'key' only needs |
| 512 | * virtual address, we dont even have to find the underlying vma. |
| 513 | * Note : We do have to check 'uaddr' is a valid user address, |
| 514 | * but access_ok() should be faster than find_vma() |
| 515 | */ |
| 516 | if (!fshared) { |
| 517 | key->private.mm = mm; |
| 518 | key->private.address = address; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 519 | return 0; |
| 520 | } |
| 521 | |
| 522 | again: |
| 523 | /* Ignore any VERIFY_READ mapping (futex common case) */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 524 | if (unlikely(should_fail_futex(true))) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 525 | return -EFAULT; |
| 526 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 527 | err = get_user_pages_fast(address, 1, FOLL_WRITE, &page); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 528 | /* |
| 529 | * If write access is not required (eg. FUTEX_WAIT), try |
| 530 | * and get read-only access. |
| 531 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 532 | if (err == -EFAULT && rw == FUTEX_READ) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 533 | err = get_user_pages_fast(address, 1, 0, &page); |
| 534 | ro = 1; |
| 535 | } |
| 536 | if (err < 0) |
| 537 | return err; |
| 538 | else |
| 539 | err = 0; |
| 540 | |
| 541 | /* |
| 542 | * The treatment of mapping from this point on is critical. The page |
| 543 | * lock protects many things but in this context the page lock |
| 544 | * stabilizes mapping, prevents inode freeing in the shared |
| 545 | * file-backed region case and guards against movement to swap cache. |
| 546 | * |
| 547 | * Strictly speaking the page lock is not needed in all cases being |
| 548 | * considered here and page lock forces unnecessarily serialization |
| 549 | * From this point on, mapping will be re-verified if necessary and |
| 550 | * page lock will be acquired only if it is unavoidable |
| 551 | * |
| 552 | * Mapping checks require the head page for any compound page so the |
| 553 | * head page and mapping is looked up now. For anonymous pages, it |
| 554 | * does not matter if the page splits in the future as the key is |
| 555 | * based on the address. For filesystem-backed pages, the tail is |
| 556 | * required as the index of the page determines the key. For |
| 557 | * base pages, there is no tail page and tail == page. |
| 558 | */ |
| 559 | tail = page; |
| 560 | page = compound_head(page); |
| 561 | mapping = READ_ONCE(page->mapping); |
| 562 | |
| 563 | /* |
| 564 | * If page->mapping is NULL, then it cannot be a PageAnon |
| 565 | * page; but it might be the ZERO_PAGE or in the gate area or |
| 566 | * in a special mapping (all cases which we are happy to fail); |
| 567 | * or it may have been a good file page when get_user_pages_fast |
| 568 | * found it, but truncated or holepunched or subjected to |
| 569 | * invalidate_complete_page2 before we got the page lock (also |
| 570 | * cases which we are happy to fail). And we hold a reference, |
| 571 | * so refcount care in invalidate_complete_page's remove_mapping |
| 572 | * prevents drop_caches from setting mapping to NULL beneath us. |
| 573 | * |
| 574 | * The case we do have to guard against is when memory pressure made |
| 575 | * shmem_writepage move it from filecache to swapcache beneath us: |
| 576 | * an unlikely race, but we do need to retry for page->mapping. |
| 577 | */ |
| 578 | if (unlikely(!mapping)) { |
| 579 | int shmem_swizzled; |
| 580 | |
| 581 | /* |
| 582 | * Page lock is required to identify which special case above |
| 583 | * applies. If this is really a shmem page then the page lock |
| 584 | * will prevent unexpected transitions. |
| 585 | */ |
| 586 | lock_page(page); |
| 587 | shmem_swizzled = PageSwapCache(page) || page->mapping; |
| 588 | unlock_page(page); |
| 589 | put_page(page); |
| 590 | |
| 591 | if (shmem_swizzled) |
| 592 | goto again; |
| 593 | |
| 594 | return -EFAULT; |
| 595 | } |
| 596 | |
| 597 | /* |
| 598 | * Private mappings are handled in a simple way. |
| 599 | * |
| 600 | * If the futex key is stored on an anonymous page, then the associated |
| 601 | * object is the mm which is implicitly pinned by the calling process. |
| 602 | * |
| 603 | * NOTE: When userspace waits on a MAP_SHARED mapping, even if |
| 604 | * it's a read-only handle, it's expected that futexes attach to |
| 605 | * the object not the particular process. |
| 606 | */ |
| 607 | if (PageAnon(page)) { |
| 608 | /* |
| 609 | * A RO anonymous page will never change and thus doesn't make |
| 610 | * sense for futex operations. |
| 611 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 612 | if (unlikely(should_fail_futex(true)) || ro) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 613 | err = -EFAULT; |
| 614 | goto out; |
| 615 | } |
| 616 | |
| 617 | key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */ |
| 618 | key->private.mm = mm; |
| 619 | key->private.address = address; |
| 620 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 621 | } else { |
| 622 | struct inode *inode; |
| 623 | |
| 624 | /* |
| 625 | * The associated futex object in this case is the inode and |
| 626 | * the page->mapping must be traversed. Ordinarily this should |
| 627 | * be stabilised under page lock but it's not strictly |
| 628 | * necessary in this case as we just want to pin the inode, not |
| 629 | * update the radix tree or anything like that. |
| 630 | * |
| 631 | * The RCU read lock is taken as the inode is finally freed |
| 632 | * under RCU. If the mapping still matches expectations then the |
| 633 | * mapping->host can be safely accessed as being a valid inode. |
| 634 | */ |
| 635 | rcu_read_lock(); |
| 636 | |
| 637 | if (READ_ONCE(page->mapping) != mapping) { |
| 638 | rcu_read_unlock(); |
| 639 | put_page(page); |
| 640 | |
| 641 | goto again; |
| 642 | } |
| 643 | |
| 644 | inode = READ_ONCE(mapping->host); |
| 645 | if (!inode) { |
| 646 | rcu_read_unlock(); |
| 647 | put_page(page); |
| 648 | |
| 649 | goto again; |
| 650 | } |
| 651 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 652 | key->both.offset |= FUT_OFF_INODE; /* inode-based key */ |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 653 | key->shared.i_seq = get_inode_sequence_number(inode); |
| 654 | key->shared.pgoff = page_to_pgoff(tail); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 655 | rcu_read_unlock(); |
| 656 | } |
| 657 | |
| 658 | out: |
| 659 | put_page(page); |
| 660 | return err; |
| 661 | } |
| 662 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 663 | /** |
| 664 | * fault_in_user_writeable() - Fault in user address and verify RW access |
| 665 | * @uaddr: pointer to faulting user space address |
| 666 | * |
| 667 | * Slow path to fixup the fault we just took in the atomic write |
| 668 | * access to @uaddr. |
| 669 | * |
| 670 | * We have no generic implementation of a non-destructive write to the |
| 671 | * user address. We know that we faulted in the atomic pagefault |
| 672 | * disabled section so we can as well avoid the #PF overhead by |
| 673 | * calling get_user_pages() right away. |
| 674 | */ |
| 675 | static int fault_in_user_writeable(u32 __user *uaddr) |
| 676 | { |
| 677 | struct mm_struct *mm = current->mm; |
| 678 | int ret; |
| 679 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 680 | mmap_read_lock(mm); |
| 681 | ret = fixup_user_fault(mm, (unsigned long)uaddr, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 682 | FAULT_FLAG_WRITE, NULL); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 683 | mmap_read_unlock(mm); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 684 | |
| 685 | return ret < 0 ? ret : 0; |
| 686 | } |
| 687 | |
| 688 | /** |
| 689 | * futex_top_waiter() - Return the highest priority waiter on a futex |
| 690 | * @hb: the hash bucket the futex_q's reside in |
| 691 | * @key: the futex key (to distinguish it from other futex futex_q's) |
| 692 | * |
| 693 | * Must be called with the hb lock held. |
| 694 | */ |
| 695 | static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, |
| 696 | union futex_key *key) |
| 697 | { |
| 698 | struct futex_q *this; |
| 699 | |
| 700 | plist_for_each_entry(this, &hb->chain, list) { |
| 701 | if (match_futex(&this->key, key)) |
| 702 | return this; |
| 703 | } |
| 704 | return NULL; |
| 705 | } |
| 706 | |
| 707 | static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr, |
| 708 | u32 uval, u32 newval) |
| 709 | { |
| 710 | int ret; |
| 711 | |
| 712 | pagefault_disable(); |
| 713 | ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval); |
| 714 | pagefault_enable(); |
| 715 | |
| 716 | return ret; |
| 717 | } |
| 718 | |
| 719 | static int get_futex_value_locked(u32 *dest, u32 __user *from) |
| 720 | { |
| 721 | int ret; |
| 722 | |
| 723 | pagefault_disable(); |
| 724 | ret = __get_user(*dest, from); |
| 725 | pagefault_enable(); |
| 726 | |
| 727 | return ret ? -EFAULT : 0; |
| 728 | } |
| 729 | |
| 730 | |
| 731 | /* |
| 732 | * PI code: |
| 733 | */ |
| 734 | static int refill_pi_state_cache(void) |
| 735 | { |
| 736 | struct futex_pi_state *pi_state; |
| 737 | |
| 738 | if (likely(current->pi_state_cache)) |
| 739 | return 0; |
| 740 | |
| 741 | pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL); |
| 742 | |
| 743 | if (!pi_state) |
| 744 | return -ENOMEM; |
| 745 | |
| 746 | INIT_LIST_HEAD(&pi_state->list); |
| 747 | /* pi_mutex gets initialized later */ |
| 748 | pi_state->owner = NULL; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 749 | refcount_set(&pi_state->refcount, 1); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 750 | pi_state->key = FUTEX_KEY_INIT; |
| 751 | |
| 752 | current->pi_state_cache = pi_state; |
| 753 | |
| 754 | return 0; |
| 755 | } |
| 756 | |
| 757 | static struct futex_pi_state *alloc_pi_state(void) |
| 758 | { |
| 759 | struct futex_pi_state *pi_state = current->pi_state_cache; |
| 760 | |
| 761 | WARN_ON(!pi_state); |
| 762 | current->pi_state_cache = NULL; |
| 763 | |
| 764 | return pi_state; |
| 765 | } |
| 766 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 767 | static void pi_state_update_owner(struct futex_pi_state *pi_state, |
| 768 | struct task_struct *new_owner) |
| 769 | { |
| 770 | struct task_struct *old_owner = pi_state->owner; |
| 771 | |
| 772 | lockdep_assert_held(&pi_state->pi_mutex.wait_lock); |
| 773 | |
| 774 | if (old_owner) { |
| 775 | raw_spin_lock(&old_owner->pi_lock); |
| 776 | WARN_ON(list_empty(&pi_state->list)); |
| 777 | list_del_init(&pi_state->list); |
| 778 | raw_spin_unlock(&old_owner->pi_lock); |
| 779 | } |
| 780 | |
| 781 | if (new_owner) { |
| 782 | raw_spin_lock(&new_owner->pi_lock); |
| 783 | WARN_ON(!list_empty(&pi_state->list)); |
| 784 | list_add(&pi_state->list, &new_owner->pi_state_list); |
| 785 | pi_state->owner = new_owner; |
| 786 | raw_spin_unlock(&new_owner->pi_lock); |
| 787 | } |
| 788 | } |
| 789 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 790 | static void get_pi_state(struct futex_pi_state *pi_state) |
| 791 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 792 | WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 793 | } |
| 794 | |
| 795 | /* |
| 796 | * Drops a reference to the pi_state object and frees or caches it |
| 797 | * when the last reference is gone. |
| 798 | */ |
| 799 | static void put_pi_state(struct futex_pi_state *pi_state) |
| 800 | { |
| 801 | if (!pi_state) |
| 802 | return; |
| 803 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 804 | if (!refcount_dec_and_test(&pi_state->refcount)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 805 | return; |
| 806 | |
| 807 | /* |
| 808 | * If pi_state->owner is NULL, the owner is most probably dying |
| 809 | * and has cleaned up the pi_state already |
| 810 | */ |
| 811 | if (pi_state->owner) { |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 812 | unsigned long flags; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 813 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 814 | raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags); |
| 815 | pi_state_update_owner(pi_state, NULL); |
| 816 | rt_mutex_proxy_unlock(&pi_state->pi_mutex); |
| 817 | raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 818 | } |
| 819 | |
| 820 | if (current->pi_state_cache) { |
| 821 | kfree(pi_state); |
| 822 | } else { |
| 823 | /* |
| 824 | * pi_state->list is already empty. |
| 825 | * clear pi_state->owner. |
| 826 | * refcount is at 0 - put it back to 1. |
| 827 | */ |
| 828 | pi_state->owner = NULL; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 829 | refcount_set(&pi_state->refcount, 1); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 830 | current->pi_state_cache = pi_state; |
| 831 | } |
| 832 | } |
| 833 | |
| 834 | #ifdef CONFIG_FUTEX_PI |
| 835 | |
| 836 | /* |
| 837 | * This task is holding PI mutexes at exit time => bad. |
| 838 | * Kernel cleans up PI-state, but userspace is likely hosed. |
| 839 | * (Robust-futex cleanup is separate and might save the day for userspace.) |
| 840 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 841 | static void exit_pi_state_list(struct task_struct *curr) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 842 | { |
| 843 | struct list_head *next, *head = &curr->pi_state_list; |
| 844 | struct futex_pi_state *pi_state; |
| 845 | struct futex_hash_bucket *hb; |
| 846 | union futex_key key = FUTEX_KEY_INIT; |
| 847 | |
| 848 | if (!futex_cmpxchg_enabled) |
| 849 | return; |
| 850 | /* |
| 851 | * We are a ZOMBIE and nobody can enqueue itself on |
| 852 | * pi_state_list anymore, but we have to be careful |
| 853 | * versus waiters unqueueing themselves: |
| 854 | */ |
| 855 | raw_spin_lock_irq(&curr->pi_lock); |
| 856 | while (!list_empty(head)) { |
| 857 | next = head->next; |
| 858 | pi_state = list_entry(next, struct futex_pi_state, list); |
| 859 | key = pi_state->key; |
| 860 | hb = hash_futex(&key); |
| 861 | |
| 862 | /* |
| 863 | * We can race against put_pi_state() removing itself from the |
| 864 | * list (a waiter going away). put_pi_state() will first |
| 865 | * decrement the reference count and then modify the list, so |
| 866 | * its possible to see the list entry but fail this reference |
| 867 | * acquire. |
| 868 | * |
| 869 | * In that case; drop the locks to let put_pi_state() make |
| 870 | * progress and retry the loop. |
| 871 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 872 | if (!refcount_inc_not_zero(&pi_state->refcount)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 873 | raw_spin_unlock_irq(&curr->pi_lock); |
| 874 | cpu_relax(); |
| 875 | raw_spin_lock_irq(&curr->pi_lock); |
| 876 | continue; |
| 877 | } |
| 878 | raw_spin_unlock_irq(&curr->pi_lock); |
| 879 | |
| 880 | spin_lock(&hb->lock); |
| 881 | raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock); |
| 882 | raw_spin_lock(&curr->pi_lock); |
| 883 | /* |
| 884 | * We dropped the pi-lock, so re-check whether this |
| 885 | * task still owns the PI-state: |
| 886 | */ |
| 887 | if (head->next != next) { |
| 888 | /* retain curr->pi_lock for the loop invariant */ |
| 889 | raw_spin_unlock(&pi_state->pi_mutex.wait_lock); |
| 890 | spin_unlock(&hb->lock); |
| 891 | put_pi_state(pi_state); |
| 892 | continue; |
| 893 | } |
| 894 | |
| 895 | WARN_ON(pi_state->owner != curr); |
| 896 | WARN_ON(list_empty(&pi_state->list)); |
| 897 | list_del_init(&pi_state->list); |
| 898 | pi_state->owner = NULL; |
| 899 | |
| 900 | raw_spin_unlock(&curr->pi_lock); |
| 901 | raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock); |
| 902 | spin_unlock(&hb->lock); |
| 903 | |
| 904 | rt_mutex_futex_unlock(&pi_state->pi_mutex); |
| 905 | put_pi_state(pi_state); |
| 906 | |
| 907 | raw_spin_lock_irq(&curr->pi_lock); |
| 908 | } |
| 909 | raw_spin_unlock_irq(&curr->pi_lock); |
| 910 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 911 | #else |
| 912 | static inline void exit_pi_state_list(struct task_struct *curr) { } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 913 | #endif |
| 914 | |
| 915 | /* |
| 916 | * We need to check the following states: |
| 917 | * |
| 918 | * Waiter | pi_state | pi->owner | uTID | uODIED | ? |
| 919 | * |
| 920 | * [1] NULL | --- | --- | 0 | 0/1 | Valid |
| 921 | * [2] NULL | --- | --- | >0 | 0/1 | Valid |
| 922 | * |
| 923 | * [3] Found | NULL | -- | Any | 0/1 | Invalid |
| 924 | * |
| 925 | * [4] Found | Found | NULL | 0 | 1 | Valid |
| 926 | * [5] Found | Found | NULL | >0 | 1 | Invalid |
| 927 | * |
| 928 | * [6] Found | Found | task | 0 | 1 | Valid |
| 929 | * |
| 930 | * [7] Found | Found | NULL | Any | 0 | Invalid |
| 931 | * |
| 932 | * [8] Found | Found | task | ==taskTID | 0/1 | Valid |
| 933 | * [9] Found | Found | task | 0 | 0 | Invalid |
| 934 | * [10] Found | Found | task | !=taskTID | 0/1 | Invalid |
| 935 | * |
| 936 | * [1] Indicates that the kernel can acquire the futex atomically. We |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 937 | * came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 938 | * |
| 939 | * [2] Valid, if TID does not belong to a kernel thread. If no matching |
| 940 | * thread is found then it indicates that the owner TID has died. |
| 941 | * |
| 942 | * [3] Invalid. The waiter is queued on a non PI futex |
| 943 | * |
| 944 | * [4] Valid state after exit_robust_list(), which sets the user space |
| 945 | * value to FUTEX_WAITERS | FUTEX_OWNER_DIED. |
| 946 | * |
| 947 | * [5] The user space value got manipulated between exit_robust_list() |
| 948 | * and exit_pi_state_list() |
| 949 | * |
| 950 | * [6] Valid state after exit_pi_state_list() which sets the new owner in |
| 951 | * the pi_state but cannot access the user space value. |
| 952 | * |
| 953 | * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set. |
| 954 | * |
| 955 | * [8] Owner and user space value match |
| 956 | * |
| 957 | * [9] There is no transient state which sets the user space TID to 0 |
| 958 | * except exit_robust_list(), but this is indicated by the |
| 959 | * FUTEX_OWNER_DIED bit. See [4] |
| 960 | * |
| 961 | * [10] There is no transient state which leaves owner and user space |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 962 | * TID out of sync. Except one error case where the kernel is denied |
| 963 | * write access to the user address, see fixup_pi_state_owner(). |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 964 | * |
| 965 | * |
| 966 | * Serialization and lifetime rules: |
| 967 | * |
| 968 | * hb->lock: |
| 969 | * |
| 970 | * hb -> futex_q, relation |
| 971 | * futex_q -> pi_state, relation |
| 972 | * |
| 973 | * (cannot be raw because hb can contain arbitrary amount |
| 974 | * of futex_q's) |
| 975 | * |
| 976 | * pi_mutex->wait_lock: |
| 977 | * |
| 978 | * {uval, pi_state} |
| 979 | * |
| 980 | * (and pi_mutex 'obviously') |
| 981 | * |
| 982 | * p->pi_lock: |
| 983 | * |
| 984 | * p->pi_state_list -> pi_state->list, relation |
| 985 | * |
| 986 | * pi_state->refcount: |
| 987 | * |
| 988 | * pi_state lifetime |
| 989 | * |
| 990 | * |
| 991 | * Lock order: |
| 992 | * |
| 993 | * hb->lock |
| 994 | * pi_mutex->wait_lock |
| 995 | * p->pi_lock |
| 996 | * |
| 997 | */ |
| 998 | |
| 999 | /* |
| 1000 | * Validate that the existing waiter has a pi_state and sanity check |
| 1001 | * the pi_state against the user space value. If correct, attach to |
| 1002 | * it. |
| 1003 | */ |
| 1004 | static int attach_to_pi_state(u32 __user *uaddr, u32 uval, |
| 1005 | struct futex_pi_state *pi_state, |
| 1006 | struct futex_pi_state **ps) |
| 1007 | { |
| 1008 | pid_t pid = uval & FUTEX_TID_MASK; |
| 1009 | u32 uval2; |
| 1010 | int ret; |
| 1011 | |
| 1012 | /* |
| 1013 | * Userspace might have messed up non-PI and PI futexes [3] |
| 1014 | */ |
| 1015 | if (unlikely(!pi_state)) |
| 1016 | return -EINVAL; |
| 1017 | |
| 1018 | /* |
| 1019 | * We get here with hb->lock held, and having found a |
| 1020 | * futex_top_waiter(). This means that futex_lock_pi() of said futex_q |
| 1021 | * has dropped the hb->lock in between queue_me() and unqueue_me_pi(), |
| 1022 | * which in turn means that futex_lock_pi() still has a reference on |
| 1023 | * our pi_state. |
| 1024 | * |
| 1025 | * The waiter holding a reference on @pi_state also protects against |
| 1026 | * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi() |
| 1027 | * and futex_wait_requeue_pi() as it cannot go to 0 and consequently |
| 1028 | * free pi_state before we can take a reference ourselves. |
| 1029 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1030 | WARN_ON(!refcount_read(&pi_state->refcount)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1031 | |
| 1032 | /* |
| 1033 | * Now that we have a pi_state, we can acquire wait_lock |
| 1034 | * and do the state validation. |
| 1035 | */ |
| 1036 | raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock); |
| 1037 | |
| 1038 | /* |
| 1039 | * Since {uval, pi_state} is serialized by wait_lock, and our current |
| 1040 | * uval was read without holding it, it can have changed. Verify it |
| 1041 | * still is what we expect it to be, otherwise retry the entire |
| 1042 | * operation. |
| 1043 | */ |
| 1044 | if (get_futex_value_locked(&uval2, uaddr)) |
| 1045 | goto out_efault; |
| 1046 | |
| 1047 | if (uval != uval2) |
| 1048 | goto out_eagain; |
| 1049 | |
| 1050 | /* |
| 1051 | * Handle the owner died case: |
| 1052 | */ |
| 1053 | if (uval & FUTEX_OWNER_DIED) { |
| 1054 | /* |
| 1055 | * exit_pi_state_list sets owner to NULL and wakes the |
| 1056 | * topmost waiter. The task which acquires the |
| 1057 | * pi_state->rt_mutex will fixup owner. |
| 1058 | */ |
| 1059 | if (!pi_state->owner) { |
| 1060 | /* |
| 1061 | * No pi state owner, but the user space TID |
| 1062 | * is not 0. Inconsistent state. [5] |
| 1063 | */ |
| 1064 | if (pid) |
| 1065 | goto out_einval; |
| 1066 | /* |
| 1067 | * Take a ref on the state and return success. [4] |
| 1068 | */ |
| 1069 | goto out_attach; |
| 1070 | } |
| 1071 | |
| 1072 | /* |
| 1073 | * If TID is 0, then either the dying owner has not |
| 1074 | * yet executed exit_pi_state_list() or some waiter |
| 1075 | * acquired the rtmutex in the pi state, but did not |
| 1076 | * yet fixup the TID in user space. |
| 1077 | * |
| 1078 | * Take a ref on the state and return success. [6] |
| 1079 | */ |
| 1080 | if (!pid) |
| 1081 | goto out_attach; |
| 1082 | } else { |
| 1083 | /* |
| 1084 | * If the owner died bit is not set, then the pi_state |
| 1085 | * must have an owner. [7] |
| 1086 | */ |
| 1087 | if (!pi_state->owner) |
| 1088 | goto out_einval; |
| 1089 | } |
| 1090 | |
| 1091 | /* |
| 1092 | * Bail out if user space manipulated the futex value. If pi |
| 1093 | * state exists then the owner TID must be the same as the |
| 1094 | * user space TID. [9/10] |
| 1095 | */ |
| 1096 | if (pid != task_pid_vnr(pi_state->owner)) |
| 1097 | goto out_einval; |
| 1098 | |
| 1099 | out_attach: |
| 1100 | get_pi_state(pi_state); |
| 1101 | raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock); |
| 1102 | *ps = pi_state; |
| 1103 | return 0; |
| 1104 | |
| 1105 | out_einval: |
| 1106 | ret = -EINVAL; |
| 1107 | goto out_error; |
| 1108 | |
| 1109 | out_eagain: |
| 1110 | ret = -EAGAIN; |
| 1111 | goto out_error; |
| 1112 | |
| 1113 | out_efault: |
| 1114 | ret = -EFAULT; |
| 1115 | goto out_error; |
| 1116 | |
| 1117 | out_error: |
| 1118 | raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock); |
| 1119 | return ret; |
| 1120 | } |
| 1121 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1122 | /** |
| 1123 | * wait_for_owner_exiting - Block until the owner has exited |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1124 | * @ret: owner's current futex lock status |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1125 | * @exiting: Pointer to the exiting task |
| 1126 | * |
| 1127 | * Caller must hold a refcount on @exiting. |
| 1128 | */ |
| 1129 | static void wait_for_owner_exiting(int ret, struct task_struct *exiting) |
| 1130 | { |
| 1131 | if (ret != -EBUSY) { |
| 1132 | WARN_ON_ONCE(exiting); |
| 1133 | return; |
| 1134 | } |
| 1135 | |
| 1136 | if (WARN_ON_ONCE(ret == -EBUSY && !exiting)) |
| 1137 | return; |
| 1138 | |
| 1139 | mutex_lock(&exiting->futex_exit_mutex); |
| 1140 | /* |
| 1141 | * No point in doing state checking here. If the waiter got here |
| 1142 | * while the task was in exec()->exec_futex_release() then it can |
| 1143 | * have any FUTEX_STATE_* value when the waiter has acquired the |
| 1144 | * mutex. OK, if running, EXITING or DEAD if it reached exit() |
| 1145 | * already. Highly unlikely and not a problem. Just one more round |
| 1146 | * through the futex maze. |
| 1147 | */ |
| 1148 | mutex_unlock(&exiting->futex_exit_mutex); |
| 1149 | |
| 1150 | put_task_struct(exiting); |
| 1151 | } |
| 1152 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1153 | static int handle_exit_race(u32 __user *uaddr, u32 uval, |
| 1154 | struct task_struct *tsk) |
| 1155 | { |
| 1156 | u32 uval2; |
| 1157 | |
| 1158 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1159 | * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the |
| 1160 | * caller that the alleged owner is busy. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1161 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1162 | if (tsk && tsk->futex_state != FUTEX_STATE_DEAD) |
| 1163 | return -EBUSY; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1164 | |
| 1165 | /* |
| 1166 | * Reread the user space value to handle the following situation: |
| 1167 | * |
| 1168 | * CPU0 CPU1 |
| 1169 | * |
| 1170 | * sys_exit() sys_futex() |
| 1171 | * do_exit() futex_lock_pi() |
| 1172 | * futex_lock_pi_atomic() |
| 1173 | * exit_signals(tsk) No waiters: |
| 1174 | * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID |
| 1175 | * mm_release(tsk) Set waiter bit |
| 1176 | * exit_robust_list(tsk) { *uaddr = 0x80000PID; |
| 1177 | * Set owner died attach_to_pi_owner() { |
| 1178 | * *uaddr = 0xC0000000; tsk = get_task(PID); |
| 1179 | * } if (!tsk->flags & PF_EXITING) { |
| 1180 | * ... attach(); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1181 | * tsk->futex_state = } else { |
| 1182 | * FUTEX_STATE_DEAD; if (tsk->futex_state != |
| 1183 | * FUTEX_STATE_DEAD) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1184 | * return -EAGAIN; |
| 1185 | * return -ESRCH; <--- FAIL |
| 1186 | * } |
| 1187 | * |
| 1188 | * Returning ESRCH unconditionally is wrong here because the |
| 1189 | * user space value has been changed by the exiting task. |
| 1190 | * |
| 1191 | * The same logic applies to the case where the exiting task is |
| 1192 | * already gone. |
| 1193 | */ |
| 1194 | if (get_futex_value_locked(&uval2, uaddr)) |
| 1195 | return -EFAULT; |
| 1196 | |
| 1197 | /* If the user space value has changed, try again. */ |
| 1198 | if (uval2 != uval) |
| 1199 | return -EAGAIN; |
| 1200 | |
| 1201 | /* |
| 1202 | * The exiting task did not have a robust list, the robust list was |
| 1203 | * corrupted or the user space value in *uaddr is simply bogus. |
| 1204 | * Give up and tell user space. |
| 1205 | */ |
| 1206 | return -ESRCH; |
| 1207 | } |
| 1208 | |
| 1209 | /* |
| 1210 | * Lookup the task for the TID provided from user space and attach to |
| 1211 | * it after doing proper sanity checks. |
| 1212 | */ |
| 1213 | static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1214 | struct futex_pi_state **ps, |
| 1215 | struct task_struct **exiting) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1216 | { |
| 1217 | pid_t pid = uval & FUTEX_TID_MASK; |
| 1218 | struct futex_pi_state *pi_state; |
| 1219 | struct task_struct *p; |
| 1220 | |
| 1221 | /* |
| 1222 | * We are the first waiter - try to look up the real owner and attach |
| 1223 | * the new pi_state to it, but bail out when TID = 0 [1] |
| 1224 | * |
| 1225 | * The !pid check is paranoid. None of the call sites should end up |
| 1226 | * with pid == 0, but better safe than sorry. Let the caller retry |
| 1227 | */ |
| 1228 | if (!pid) |
| 1229 | return -EAGAIN; |
| 1230 | p = find_get_task_by_vpid(pid); |
| 1231 | if (!p) |
| 1232 | return handle_exit_race(uaddr, uval, NULL); |
| 1233 | |
| 1234 | if (unlikely(p->flags & PF_KTHREAD)) { |
| 1235 | put_task_struct(p); |
| 1236 | return -EPERM; |
| 1237 | } |
| 1238 | |
| 1239 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1240 | * We need to look at the task state to figure out, whether the |
| 1241 | * task is exiting. To protect against the change of the task state |
| 1242 | * in futex_exit_release(), we do this protected by p->pi_lock: |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1243 | */ |
| 1244 | raw_spin_lock_irq(&p->pi_lock); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1245 | if (unlikely(p->futex_state != FUTEX_STATE_OK)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1246 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1247 | * The task is on the way out. When the futex state is |
| 1248 | * FUTEX_STATE_DEAD, we know that the task has finished |
| 1249 | * the cleanup: |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1250 | */ |
| 1251 | int ret = handle_exit_race(uaddr, uval, p); |
| 1252 | |
| 1253 | raw_spin_unlock_irq(&p->pi_lock); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1254 | /* |
| 1255 | * If the owner task is between FUTEX_STATE_EXITING and |
| 1256 | * FUTEX_STATE_DEAD then store the task pointer and keep |
| 1257 | * the reference on the task struct. The calling code will |
| 1258 | * drop all locks, wait for the task to reach |
| 1259 | * FUTEX_STATE_DEAD and then drop the refcount. This is |
| 1260 | * required to prevent a live lock when the current task |
| 1261 | * preempted the exiting task between the two states. |
| 1262 | */ |
| 1263 | if (ret == -EBUSY) |
| 1264 | *exiting = p; |
| 1265 | else |
| 1266 | put_task_struct(p); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1267 | return ret; |
| 1268 | } |
| 1269 | |
| 1270 | /* |
| 1271 | * No existing pi state. First waiter. [2] |
| 1272 | * |
| 1273 | * This creates pi_state, we have hb->lock held, this means nothing can |
| 1274 | * observe this state, wait_lock is irrelevant. |
| 1275 | */ |
| 1276 | pi_state = alloc_pi_state(); |
| 1277 | |
| 1278 | /* |
| 1279 | * Initialize the pi_mutex in locked state and make @p |
| 1280 | * the owner of it: |
| 1281 | */ |
| 1282 | rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p); |
| 1283 | |
| 1284 | /* Store the key for possible exit cleanups: */ |
| 1285 | pi_state->key = *key; |
| 1286 | |
| 1287 | WARN_ON(!list_empty(&pi_state->list)); |
| 1288 | list_add(&pi_state->list, &p->pi_state_list); |
| 1289 | /* |
| 1290 | * Assignment without holding pi_state->pi_mutex.wait_lock is safe |
| 1291 | * because there is no concurrency as the object is not published yet. |
| 1292 | */ |
| 1293 | pi_state->owner = p; |
| 1294 | raw_spin_unlock_irq(&p->pi_lock); |
| 1295 | |
| 1296 | put_task_struct(p); |
| 1297 | |
| 1298 | *ps = pi_state; |
| 1299 | |
| 1300 | return 0; |
| 1301 | } |
| 1302 | |
| 1303 | static int lookup_pi_state(u32 __user *uaddr, u32 uval, |
| 1304 | struct futex_hash_bucket *hb, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1305 | union futex_key *key, struct futex_pi_state **ps, |
| 1306 | struct task_struct **exiting) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1307 | { |
| 1308 | struct futex_q *top_waiter = futex_top_waiter(hb, key); |
| 1309 | |
| 1310 | /* |
| 1311 | * If there is a waiter on that futex, validate it and |
| 1312 | * attach to the pi_state when the validation succeeds. |
| 1313 | */ |
| 1314 | if (top_waiter) |
| 1315 | return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps); |
| 1316 | |
| 1317 | /* |
| 1318 | * We are the first waiter - try to look up the owner based on |
| 1319 | * @uval and attach to it. |
| 1320 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1321 | return attach_to_pi_owner(uaddr, uval, key, ps, exiting); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1322 | } |
| 1323 | |
| 1324 | static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval) |
| 1325 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1326 | int err; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1327 | u32 curval; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1328 | |
| 1329 | if (unlikely(should_fail_futex(true))) |
| 1330 | return -EFAULT; |
| 1331 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1332 | err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval); |
| 1333 | if (unlikely(err)) |
| 1334 | return err; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1335 | |
| 1336 | /* If user space value changed, let the caller retry */ |
| 1337 | return curval != uval ? -EAGAIN : 0; |
| 1338 | } |
| 1339 | |
| 1340 | /** |
| 1341 | * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex |
| 1342 | * @uaddr: the pi futex user address |
| 1343 | * @hb: the pi futex hash bucket |
| 1344 | * @key: the futex key associated with uaddr and hb |
| 1345 | * @ps: the pi_state pointer where we store the result of the |
| 1346 | * lookup |
| 1347 | * @task: the task to perform the atomic lock work for. This will |
| 1348 | * be "current" except in the case of requeue pi. |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1349 | * @exiting: Pointer to store the task pointer of the owner task |
| 1350 | * which is in the middle of exiting |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1351 | * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0) |
| 1352 | * |
| 1353 | * Return: |
| 1354 | * - 0 - ready to wait; |
| 1355 | * - 1 - acquired the lock; |
| 1356 | * - <0 - error |
| 1357 | * |
| 1358 | * The hb->lock and futex_key refs shall be held by the caller. |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1359 | * |
| 1360 | * @exiting is only set when the return value is -EBUSY. If so, this holds |
| 1361 | * a refcount on the exiting task on return and the caller needs to drop it |
| 1362 | * after waiting for the exit to complete. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1363 | */ |
| 1364 | static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb, |
| 1365 | union futex_key *key, |
| 1366 | struct futex_pi_state **ps, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1367 | struct task_struct *task, |
| 1368 | struct task_struct **exiting, |
| 1369 | int set_waiters) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1370 | { |
| 1371 | u32 uval, newval, vpid = task_pid_vnr(task); |
| 1372 | struct futex_q *top_waiter; |
| 1373 | int ret; |
| 1374 | |
| 1375 | /* |
| 1376 | * Read the user space value first so we can validate a few |
| 1377 | * things before proceeding further. |
| 1378 | */ |
| 1379 | if (get_futex_value_locked(&uval, uaddr)) |
| 1380 | return -EFAULT; |
| 1381 | |
| 1382 | if (unlikely(should_fail_futex(true))) |
| 1383 | return -EFAULT; |
| 1384 | |
| 1385 | /* |
| 1386 | * Detect deadlocks. |
| 1387 | */ |
| 1388 | if ((unlikely((uval & FUTEX_TID_MASK) == vpid))) |
| 1389 | return -EDEADLK; |
| 1390 | |
| 1391 | if ((unlikely(should_fail_futex(true)))) |
| 1392 | return -EDEADLK; |
| 1393 | |
| 1394 | /* |
| 1395 | * Lookup existing state first. If it exists, try to attach to |
| 1396 | * its pi_state. |
| 1397 | */ |
| 1398 | top_waiter = futex_top_waiter(hb, key); |
| 1399 | if (top_waiter) |
| 1400 | return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps); |
| 1401 | |
| 1402 | /* |
| 1403 | * No waiter and user TID is 0. We are here because the |
| 1404 | * waiters or the owner died bit is set or called from |
| 1405 | * requeue_cmp_pi or for whatever reason something took the |
| 1406 | * syscall. |
| 1407 | */ |
| 1408 | if (!(uval & FUTEX_TID_MASK)) { |
| 1409 | /* |
| 1410 | * We take over the futex. No other waiters and the user space |
| 1411 | * TID is 0. We preserve the owner died bit. |
| 1412 | */ |
| 1413 | newval = uval & FUTEX_OWNER_DIED; |
| 1414 | newval |= vpid; |
| 1415 | |
| 1416 | /* The futex requeue_pi code can enforce the waiters bit */ |
| 1417 | if (set_waiters) |
| 1418 | newval |= FUTEX_WAITERS; |
| 1419 | |
| 1420 | ret = lock_pi_update_atomic(uaddr, uval, newval); |
| 1421 | /* If the take over worked, return 1 */ |
| 1422 | return ret < 0 ? ret : 1; |
| 1423 | } |
| 1424 | |
| 1425 | /* |
| 1426 | * First waiter. Set the waiters bit before attaching ourself to |
| 1427 | * the owner. If owner tries to unlock, it will be forced into |
| 1428 | * the kernel and blocked on hb->lock. |
| 1429 | */ |
| 1430 | newval = uval | FUTEX_WAITERS; |
| 1431 | ret = lock_pi_update_atomic(uaddr, uval, newval); |
| 1432 | if (ret) |
| 1433 | return ret; |
| 1434 | /* |
| 1435 | * If the update of the user space value succeeded, we try to |
| 1436 | * attach to the owner. If that fails, no harm done, we only |
| 1437 | * set the FUTEX_WAITERS bit in the user space variable. |
| 1438 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1439 | return attach_to_pi_owner(uaddr, newval, key, ps, exiting); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1440 | } |
| 1441 | |
| 1442 | /** |
| 1443 | * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket |
| 1444 | * @q: The futex_q to unqueue |
| 1445 | * |
| 1446 | * The q->lock_ptr must not be NULL and must be held by the caller. |
| 1447 | */ |
| 1448 | static void __unqueue_futex(struct futex_q *q) |
| 1449 | { |
| 1450 | struct futex_hash_bucket *hb; |
| 1451 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1452 | if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list))) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1453 | return; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1454 | lockdep_assert_held(q->lock_ptr); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1455 | |
| 1456 | hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock); |
| 1457 | plist_del(&q->list, &hb->chain); |
| 1458 | hb_waiters_dec(hb); |
| 1459 | } |
| 1460 | |
| 1461 | /* |
| 1462 | * The hash bucket lock must be held when this is called. |
| 1463 | * Afterwards, the futex_q must not be accessed. Callers |
| 1464 | * must ensure to later call wake_up_q() for the actual |
| 1465 | * wakeups to occur. |
| 1466 | */ |
| 1467 | static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q) |
| 1468 | { |
| 1469 | struct task_struct *p = q->task; |
| 1470 | |
| 1471 | if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n")) |
| 1472 | return; |
| 1473 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1474 | get_task_struct(p); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1475 | __unqueue_futex(q); |
| 1476 | /* |
| 1477 | * The waiting task can free the futex_q as soon as q->lock_ptr = NULL |
| 1478 | * is written, without taking any locks. This is possible in the event |
| 1479 | * of a spurious wakeup, for example. A memory barrier is required here |
| 1480 | * to prevent the following store to lock_ptr from getting ahead of the |
| 1481 | * plist_del in __unqueue_futex(). |
| 1482 | */ |
| 1483 | smp_store_release(&q->lock_ptr, NULL); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1484 | |
| 1485 | /* |
| 1486 | * Queue the task for later wakeup for after we've released |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1487 | * the hb->lock. |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1488 | */ |
| 1489 | wake_q_add_safe(wake_q, p); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1490 | } |
| 1491 | |
| 1492 | /* |
| 1493 | * Caller must hold a reference on @pi_state. |
| 1494 | */ |
| 1495 | static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state) |
| 1496 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1497 | u32 curval, newval; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1498 | struct task_struct *new_owner; |
| 1499 | bool postunlock = false; |
| 1500 | DEFINE_WAKE_Q(wake_q); |
| 1501 | int ret = 0; |
| 1502 | |
| 1503 | new_owner = rt_mutex_next_owner(&pi_state->pi_mutex); |
| 1504 | if (WARN_ON_ONCE(!new_owner)) { |
| 1505 | /* |
| 1506 | * As per the comment in futex_unlock_pi() this should not happen. |
| 1507 | * |
| 1508 | * When this happens, give up our locks and try again, giving |
| 1509 | * the futex_lock_pi() instance time to complete, either by |
| 1510 | * waiting on the rtmutex or removing itself from the futex |
| 1511 | * queue. |
| 1512 | */ |
| 1513 | ret = -EAGAIN; |
| 1514 | goto out_unlock; |
| 1515 | } |
| 1516 | |
| 1517 | /* |
| 1518 | * We pass it to the next owner. The WAITERS bit is always kept |
| 1519 | * enabled while there is PI state around. We cleanup the owner |
| 1520 | * died bit, because we are the owner. |
| 1521 | */ |
| 1522 | newval = FUTEX_WAITERS | task_pid_vnr(new_owner); |
| 1523 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 1524 | if (unlikely(should_fail_futex(true))) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1525 | ret = -EFAULT; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 1526 | goto out_unlock; |
| 1527 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1528 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1529 | ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval); |
| 1530 | if (!ret && (curval != uval)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1531 | /* |
| 1532 | * If a unconditional UNLOCK_PI operation (user space did not |
| 1533 | * try the TID->0 transition) raced with a waiter setting the |
| 1534 | * FUTEX_WAITERS flag between get_user() and locking the hash |
| 1535 | * bucket lock, retry the operation. |
| 1536 | */ |
| 1537 | if ((FUTEX_TID_MASK & curval) == uval) |
| 1538 | ret = -EAGAIN; |
| 1539 | else |
| 1540 | ret = -EINVAL; |
| 1541 | } |
| 1542 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 1543 | if (!ret) { |
| 1544 | /* |
| 1545 | * This is a point of no return; once we modified the uval |
| 1546 | * there is no going back and subsequent operations must |
| 1547 | * not fail. |
| 1548 | */ |
| 1549 | pi_state_update_owner(pi_state, new_owner); |
| 1550 | postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q); |
| 1551 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1552 | |
| 1553 | out_unlock: |
| 1554 | raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock); |
| 1555 | |
| 1556 | if (postunlock) |
| 1557 | rt_mutex_postunlock(&wake_q); |
| 1558 | |
| 1559 | return ret; |
| 1560 | } |
| 1561 | |
| 1562 | /* |
| 1563 | * Express the locking dependencies for lockdep: |
| 1564 | */ |
| 1565 | static inline void |
| 1566 | double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) |
| 1567 | { |
| 1568 | if (hb1 <= hb2) { |
| 1569 | spin_lock(&hb1->lock); |
| 1570 | if (hb1 < hb2) |
| 1571 | spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING); |
| 1572 | } else { /* hb1 > hb2 */ |
| 1573 | spin_lock(&hb2->lock); |
| 1574 | spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING); |
| 1575 | } |
| 1576 | } |
| 1577 | |
| 1578 | static inline void |
| 1579 | double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) |
| 1580 | { |
| 1581 | spin_unlock(&hb1->lock); |
| 1582 | if (hb1 != hb2) |
| 1583 | spin_unlock(&hb2->lock); |
| 1584 | } |
| 1585 | |
| 1586 | /* |
| 1587 | * Wake up waiters matching bitset queued on this futex (uaddr). |
| 1588 | */ |
| 1589 | static int |
| 1590 | futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset) |
| 1591 | { |
| 1592 | struct futex_hash_bucket *hb; |
| 1593 | struct futex_q *this, *next; |
| 1594 | union futex_key key = FUTEX_KEY_INIT; |
| 1595 | int ret; |
| 1596 | DEFINE_WAKE_Q(wake_q); |
| 1597 | |
| 1598 | if (!bitset) |
| 1599 | return -EINVAL; |
| 1600 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1601 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1602 | if (unlikely(ret != 0)) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1603 | return ret; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1604 | |
| 1605 | hb = hash_futex(&key); |
| 1606 | |
| 1607 | /* Make sure we really have tasks to wakeup */ |
| 1608 | if (!hb_waiters_pending(hb)) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1609 | return ret; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1610 | |
| 1611 | spin_lock(&hb->lock); |
| 1612 | |
| 1613 | plist_for_each_entry_safe(this, next, &hb->chain, list) { |
| 1614 | if (match_futex (&this->key, &key)) { |
| 1615 | if (this->pi_state || this->rt_waiter) { |
| 1616 | ret = -EINVAL; |
| 1617 | break; |
| 1618 | } |
| 1619 | |
| 1620 | /* Check if one of the bits is set in both bitsets */ |
| 1621 | if (!(this->bitset & bitset)) |
| 1622 | continue; |
| 1623 | |
| 1624 | mark_wake_futex(&wake_q, this); |
| 1625 | if (++ret >= nr_wake) |
| 1626 | break; |
| 1627 | } |
| 1628 | } |
| 1629 | |
| 1630 | spin_unlock(&hb->lock); |
| 1631 | wake_up_q(&wake_q); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1632 | return ret; |
| 1633 | } |
| 1634 | |
| 1635 | static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr) |
| 1636 | { |
| 1637 | unsigned int op = (encoded_op & 0x70000000) >> 28; |
| 1638 | unsigned int cmp = (encoded_op & 0x0f000000) >> 24; |
| 1639 | int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11); |
| 1640 | int cmparg = sign_extend32(encoded_op & 0x00000fff, 11); |
| 1641 | int oldval, ret; |
| 1642 | |
| 1643 | if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) { |
| 1644 | if (oparg < 0 || oparg > 31) { |
| 1645 | char comm[sizeof(current->comm)]; |
| 1646 | /* |
| 1647 | * kill this print and return -EINVAL when userspace |
| 1648 | * is sane again |
| 1649 | */ |
| 1650 | pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n", |
| 1651 | get_task_comm(comm, current), oparg); |
| 1652 | oparg &= 31; |
| 1653 | } |
| 1654 | oparg = 1 << oparg; |
| 1655 | } |
| 1656 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1657 | pagefault_disable(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1658 | ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1659 | pagefault_enable(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1660 | if (ret) |
| 1661 | return ret; |
| 1662 | |
| 1663 | switch (cmp) { |
| 1664 | case FUTEX_OP_CMP_EQ: |
| 1665 | return oldval == cmparg; |
| 1666 | case FUTEX_OP_CMP_NE: |
| 1667 | return oldval != cmparg; |
| 1668 | case FUTEX_OP_CMP_LT: |
| 1669 | return oldval < cmparg; |
| 1670 | case FUTEX_OP_CMP_GE: |
| 1671 | return oldval >= cmparg; |
| 1672 | case FUTEX_OP_CMP_LE: |
| 1673 | return oldval <= cmparg; |
| 1674 | case FUTEX_OP_CMP_GT: |
| 1675 | return oldval > cmparg; |
| 1676 | default: |
| 1677 | return -ENOSYS; |
| 1678 | } |
| 1679 | } |
| 1680 | |
| 1681 | /* |
| 1682 | * Wake up all waiters hashed on the physical page that is mapped |
| 1683 | * to this virtual address: |
| 1684 | */ |
| 1685 | static int |
| 1686 | futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2, |
| 1687 | int nr_wake, int nr_wake2, int op) |
| 1688 | { |
| 1689 | union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; |
| 1690 | struct futex_hash_bucket *hb1, *hb2; |
| 1691 | struct futex_q *this, *next; |
| 1692 | int ret, op_ret; |
| 1693 | DEFINE_WAKE_Q(wake_q); |
| 1694 | |
| 1695 | retry: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1696 | ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1697 | if (unlikely(ret != 0)) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1698 | return ret; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1699 | ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1700 | if (unlikely(ret != 0)) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1701 | return ret; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1702 | |
| 1703 | hb1 = hash_futex(&key1); |
| 1704 | hb2 = hash_futex(&key2); |
| 1705 | |
| 1706 | retry_private: |
| 1707 | double_lock_hb(hb1, hb2); |
| 1708 | op_ret = futex_atomic_op_inuser(op, uaddr2); |
| 1709 | if (unlikely(op_ret < 0)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1710 | double_unlock_hb(hb1, hb2); |
| 1711 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1712 | if (!IS_ENABLED(CONFIG_MMU) || |
| 1713 | unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) { |
| 1714 | /* |
| 1715 | * we don't get EFAULT from MMU faults if we don't have |
| 1716 | * an MMU, but we might get them from range checking |
| 1717 | */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1718 | ret = op_ret; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1719 | return ret; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1720 | } |
| 1721 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1722 | if (op_ret == -EFAULT) { |
| 1723 | ret = fault_in_user_writeable(uaddr2); |
| 1724 | if (ret) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1725 | return ret; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1726 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1727 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1728 | if (!(flags & FLAGS_SHARED)) { |
| 1729 | cond_resched(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1730 | goto retry_private; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1731 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1732 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1733 | cond_resched(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1734 | goto retry; |
| 1735 | } |
| 1736 | |
| 1737 | plist_for_each_entry_safe(this, next, &hb1->chain, list) { |
| 1738 | if (match_futex (&this->key, &key1)) { |
| 1739 | if (this->pi_state || this->rt_waiter) { |
| 1740 | ret = -EINVAL; |
| 1741 | goto out_unlock; |
| 1742 | } |
| 1743 | mark_wake_futex(&wake_q, this); |
| 1744 | if (++ret >= nr_wake) |
| 1745 | break; |
| 1746 | } |
| 1747 | } |
| 1748 | |
| 1749 | if (op_ret > 0) { |
| 1750 | op_ret = 0; |
| 1751 | plist_for_each_entry_safe(this, next, &hb2->chain, list) { |
| 1752 | if (match_futex (&this->key, &key2)) { |
| 1753 | if (this->pi_state || this->rt_waiter) { |
| 1754 | ret = -EINVAL; |
| 1755 | goto out_unlock; |
| 1756 | } |
| 1757 | mark_wake_futex(&wake_q, this); |
| 1758 | if (++op_ret >= nr_wake2) |
| 1759 | break; |
| 1760 | } |
| 1761 | } |
| 1762 | ret += op_ret; |
| 1763 | } |
| 1764 | |
| 1765 | out_unlock: |
| 1766 | double_unlock_hb(hb1, hb2); |
| 1767 | wake_up_q(&wake_q); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1768 | return ret; |
| 1769 | } |
| 1770 | |
| 1771 | /** |
| 1772 | * requeue_futex() - Requeue a futex_q from one hb to another |
| 1773 | * @q: the futex_q to requeue |
| 1774 | * @hb1: the source hash_bucket |
| 1775 | * @hb2: the target hash_bucket |
| 1776 | * @key2: the new key for the requeued futex_q |
| 1777 | */ |
| 1778 | static inline |
| 1779 | void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1, |
| 1780 | struct futex_hash_bucket *hb2, union futex_key *key2) |
| 1781 | { |
| 1782 | |
| 1783 | /* |
| 1784 | * If key1 and key2 hash to the same bucket, no need to |
| 1785 | * requeue. |
| 1786 | */ |
| 1787 | if (likely(&hb1->chain != &hb2->chain)) { |
| 1788 | plist_del(&q->list, &hb1->chain); |
| 1789 | hb_waiters_dec(hb1); |
| 1790 | hb_waiters_inc(hb2); |
| 1791 | plist_add(&q->list, &hb2->chain); |
| 1792 | q->lock_ptr = &hb2->lock; |
| 1793 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1794 | q->key = *key2; |
| 1795 | } |
| 1796 | |
| 1797 | /** |
| 1798 | * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue |
| 1799 | * @q: the futex_q |
| 1800 | * @key: the key of the requeue target futex |
| 1801 | * @hb: the hash_bucket of the requeue target futex |
| 1802 | * |
| 1803 | * During futex_requeue, with requeue_pi=1, it is possible to acquire the |
| 1804 | * target futex if it is uncontended or via a lock steal. Set the futex_q key |
| 1805 | * to the requeue target futex so the waiter can detect the wakeup on the right |
| 1806 | * futex, but remove it from the hb and NULL the rt_waiter so it can detect |
| 1807 | * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock |
| 1808 | * to protect access to the pi_state to fixup the owner later. Must be called |
| 1809 | * with both q->lock_ptr and hb->lock held. |
| 1810 | */ |
| 1811 | static inline |
| 1812 | void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key, |
| 1813 | struct futex_hash_bucket *hb) |
| 1814 | { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1815 | q->key = *key; |
| 1816 | |
| 1817 | __unqueue_futex(q); |
| 1818 | |
| 1819 | WARN_ON(!q->rt_waiter); |
| 1820 | q->rt_waiter = NULL; |
| 1821 | |
| 1822 | q->lock_ptr = &hb->lock; |
| 1823 | |
| 1824 | wake_up_state(q->task, TASK_NORMAL); |
| 1825 | } |
| 1826 | |
| 1827 | /** |
| 1828 | * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter |
| 1829 | * @pifutex: the user address of the to futex |
| 1830 | * @hb1: the from futex hash bucket, must be locked by the caller |
| 1831 | * @hb2: the to futex hash bucket, must be locked by the caller |
| 1832 | * @key1: the from futex key |
| 1833 | * @key2: the to futex key |
| 1834 | * @ps: address to store the pi_state pointer |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1835 | * @exiting: Pointer to store the task pointer of the owner task |
| 1836 | * which is in the middle of exiting |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1837 | * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0) |
| 1838 | * |
| 1839 | * Try and get the lock on behalf of the top waiter if we can do it atomically. |
| 1840 | * Wake the top waiter if we succeed. If the caller specified set_waiters, |
| 1841 | * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit. |
| 1842 | * hb1 and hb2 must be held by the caller. |
| 1843 | * |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1844 | * @exiting is only set when the return value is -EBUSY. If so, this holds |
| 1845 | * a refcount on the exiting task on return and the caller needs to drop it |
| 1846 | * after waiting for the exit to complete. |
| 1847 | * |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1848 | * Return: |
| 1849 | * - 0 - failed to acquire the lock atomically; |
| 1850 | * - >0 - acquired the lock, return value is vpid of the top_waiter |
| 1851 | * - <0 - error |
| 1852 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1853 | static int |
| 1854 | futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1, |
| 1855 | struct futex_hash_bucket *hb2, union futex_key *key1, |
| 1856 | union futex_key *key2, struct futex_pi_state **ps, |
| 1857 | struct task_struct **exiting, int set_waiters) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1858 | { |
| 1859 | struct futex_q *top_waiter = NULL; |
| 1860 | u32 curval; |
| 1861 | int ret, vpid; |
| 1862 | |
| 1863 | if (get_futex_value_locked(&curval, pifutex)) |
| 1864 | return -EFAULT; |
| 1865 | |
| 1866 | if (unlikely(should_fail_futex(true))) |
| 1867 | return -EFAULT; |
| 1868 | |
| 1869 | /* |
| 1870 | * Find the top_waiter and determine if there are additional waiters. |
| 1871 | * If the caller intends to requeue more than 1 waiter to pifutex, |
| 1872 | * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now, |
| 1873 | * as we have means to handle the possible fault. If not, don't set |
| 1874 | * the bit unecessarily as it will force the subsequent unlock to enter |
| 1875 | * the kernel. |
| 1876 | */ |
| 1877 | top_waiter = futex_top_waiter(hb1, key1); |
| 1878 | |
| 1879 | /* There are no waiters, nothing for us to do. */ |
| 1880 | if (!top_waiter) |
| 1881 | return 0; |
| 1882 | |
| 1883 | /* Ensure we requeue to the expected futex. */ |
| 1884 | if (!match_futex(top_waiter->requeue_pi_key, key2)) |
| 1885 | return -EINVAL; |
| 1886 | |
| 1887 | /* |
| 1888 | * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in |
| 1889 | * the contended case or if set_waiters is 1. The pi_state is returned |
| 1890 | * in ps in contended cases. |
| 1891 | */ |
| 1892 | vpid = task_pid_vnr(top_waiter->task); |
| 1893 | ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1894 | exiting, set_waiters); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1895 | if (ret == 1) { |
| 1896 | requeue_pi_wake_futex(top_waiter, key2, hb2); |
| 1897 | return vpid; |
| 1898 | } |
| 1899 | return ret; |
| 1900 | } |
| 1901 | |
| 1902 | /** |
| 1903 | * futex_requeue() - Requeue waiters from uaddr1 to uaddr2 |
| 1904 | * @uaddr1: source futex user address |
| 1905 | * @flags: futex flags (FLAGS_SHARED, etc.) |
| 1906 | * @uaddr2: target futex user address |
| 1907 | * @nr_wake: number of waiters to wake (must be 1 for requeue_pi) |
| 1908 | * @nr_requeue: number of waiters to requeue (0-INT_MAX) |
| 1909 | * @cmpval: @uaddr1 expected value (or %NULL) |
| 1910 | * @requeue_pi: if we are attempting to requeue from a non-pi futex to a |
| 1911 | * pi futex (pi to pi requeue is not supported) |
| 1912 | * |
| 1913 | * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire |
| 1914 | * uaddr2 atomically on behalf of the top waiter. |
| 1915 | * |
| 1916 | * Return: |
| 1917 | * - >=0 - on success, the number of tasks requeued or woken; |
| 1918 | * - <0 - on error |
| 1919 | */ |
| 1920 | static int futex_requeue(u32 __user *uaddr1, unsigned int flags, |
| 1921 | u32 __user *uaddr2, int nr_wake, int nr_requeue, |
| 1922 | u32 *cmpval, int requeue_pi) |
| 1923 | { |
| 1924 | union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1925 | int task_count = 0, ret; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1926 | struct futex_pi_state *pi_state = NULL; |
| 1927 | struct futex_hash_bucket *hb1, *hb2; |
| 1928 | struct futex_q *this, *next; |
| 1929 | DEFINE_WAKE_Q(wake_q); |
| 1930 | |
| 1931 | if (nr_wake < 0 || nr_requeue < 0) |
| 1932 | return -EINVAL; |
| 1933 | |
| 1934 | /* |
| 1935 | * When PI not supported: return -ENOSYS if requeue_pi is true, |
| 1936 | * consequently the compiler knows requeue_pi is always false past |
| 1937 | * this point which will optimize away all the conditional code |
| 1938 | * further down. |
| 1939 | */ |
| 1940 | if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi) |
| 1941 | return -ENOSYS; |
| 1942 | |
| 1943 | if (requeue_pi) { |
| 1944 | /* |
| 1945 | * Requeue PI only works on two distinct uaddrs. This |
| 1946 | * check is only valid for private futexes. See below. |
| 1947 | */ |
| 1948 | if (uaddr1 == uaddr2) |
| 1949 | return -EINVAL; |
| 1950 | |
| 1951 | /* |
| 1952 | * requeue_pi requires a pi_state, try to allocate it now |
| 1953 | * without any locks in case it fails. |
| 1954 | */ |
| 1955 | if (refill_pi_state_cache()) |
| 1956 | return -ENOMEM; |
| 1957 | /* |
| 1958 | * requeue_pi must wake as many tasks as it can, up to nr_wake |
| 1959 | * + nr_requeue, since it acquires the rt_mutex prior to |
| 1960 | * returning to userspace, so as to not leave the rt_mutex with |
| 1961 | * waiters and no owner. However, second and third wake-ups |
| 1962 | * cannot be predicted as they involve race conditions with the |
| 1963 | * first wake and a fault while looking up the pi_state. Both |
| 1964 | * pthread_cond_signal() and pthread_cond_broadcast() should |
| 1965 | * use nr_wake=1. |
| 1966 | */ |
| 1967 | if (nr_wake != 1) |
| 1968 | return -EINVAL; |
| 1969 | } |
| 1970 | |
| 1971 | retry: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1972 | ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1973 | if (unlikely(ret != 0)) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1974 | return ret; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1975 | ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1976 | requeue_pi ? FUTEX_WRITE : FUTEX_READ); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1977 | if (unlikely(ret != 0)) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1978 | return ret; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1979 | |
| 1980 | /* |
| 1981 | * The check above which compares uaddrs is not sufficient for |
| 1982 | * shared futexes. We need to compare the keys: |
| 1983 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1984 | if (requeue_pi && match_futex(&key1, &key2)) |
| 1985 | return -EINVAL; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1986 | |
| 1987 | hb1 = hash_futex(&key1); |
| 1988 | hb2 = hash_futex(&key2); |
| 1989 | |
| 1990 | retry_private: |
| 1991 | hb_waiters_inc(hb2); |
| 1992 | double_lock_hb(hb1, hb2); |
| 1993 | |
| 1994 | if (likely(cmpval != NULL)) { |
| 1995 | u32 curval; |
| 1996 | |
| 1997 | ret = get_futex_value_locked(&curval, uaddr1); |
| 1998 | |
| 1999 | if (unlikely(ret)) { |
| 2000 | double_unlock_hb(hb1, hb2); |
| 2001 | hb_waiters_dec(hb2); |
| 2002 | |
| 2003 | ret = get_user(curval, uaddr1); |
| 2004 | if (ret) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2005 | return ret; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2006 | |
| 2007 | if (!(flags & FLAGS_SHARED)) |
| 2008 | goto retry_private; |
| 2009 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2010 | goto retry; |
| 2011 | } |
| 2012 | if (curval != *cmpval) { |
| 2013 | ret = -EAGAIN; |
| 2014 | goto out_unlock; |
| 2015 | } |
| 2016 | } |
| 2017 | |
| 2018 | if (requeue_pi && (task_count - nr_wake < nr_requeue)) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2019 | struct task_struct *exiting = NULL; |
| 2020 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2021 | /* |
| 2022 | * Attempt to acquire uaddr2 and wake the top waiter. If we |
| 2023 | * intend to requeue waiters, force setting the FUTEX_WAITERS |
| 2024 | * bit. We force this here where we are able to easily handle |
| 2025 | * faults rather in the requeue loop below. |
| 2026 | */ |
| 2027 | ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2028 | &key2, &pi_state, |
| 2029 | &exiting, nr_requeue); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2030 | |
| 2031 | /* |
| 2032 | * At this point the top_waiter has either taken uaddr2 or is |
| 2033 | * waiting on it. If the former, then the pi_state will not |
| 2034 | * exist yet, look it up one more time to ensure we have a |
| 2035 | * reference to it. If the lock was taken, ret contains the |
| 2036 | * vpid of the top waiter task. |
| 2037 | * If the lock was not taken, we have pi_state and an initial |
| 2038 | * refcount on it. In case of an error we have nothing. |
| 2039 | */ |
| 2040 | if (ret > 0) { |
| 2041 | WARN_ON(pi_state); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2042 | task_count++; |
| 2043 | /* |
| 2044 | * If we acquired the lock, then the user space value |
| 2045 | * of uaddr2 should be vpid. It cannot be changed by |
| 2046 | * the top waiter as it is blocked on hb2 lock if it |
| 2047 | * tries to do so. If something fiddled with it behind |
| 2048 | * our back the pi state lookup might unearth it. So |
| 2049 | * we rather use the known value than rereading and |
| 2050 | * handing potential crap to lookup_pi_state. |
| 2051 | * |
| 2052 | * If that call succeeds then we have pi_state and an |
| 2053 | * initial refcount on it. |
| 2054 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2055 | ret = lookup_pi_state(uaddr2, ret, hb2, &key2, |
| 2056 | &pi_state, &exiting); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2057 | } |
| 2058 | |
| 2059 | switch (ret) { |
| 2060 | case 0: |
| 2061 | /* We hold a reference on the pi state. */ |
| 2062 | break; |
| 2063 | |
| 2064 | /* If the above failed, then pi_state is NULL */ |
| 2065 | case -EFAULT: |
| 2066 | double_unlock_hb(hb1, hb2); |
| 2067 | hb_waiters_dec(hb2); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2068 | ret = fault_in_user_writeable(uaddr2); |
| 2069 | if (!ret) |
| 2070 | goto retry; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2071 | return ret; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2072 | case -EBUSY: |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2073 | case -EAGAIN: |
| 2074 | /* |
| 2075 | * Two reasons for this: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2076 | * - EBUSY: Owner is exiting and we just wait for the |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2077 | * exit to complete. |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2078 | * - EAGAIN: The user space value changed. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2079 | */ |
| 2080 | double_unlock_hb(hb1, hb2); |
| 2081 | hb_waiters_dec(hb2); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2082 | /* |
| 2083 | * Handle the case where the owner is in the middle of |
| 2084 | * exiting. Wait for the exit to complete otherwise |
| 2085 | * this task might loop forever, aka. live lock. |
| 2086 | */ |
| 2087 | wait_for_owner_exiting(ret, exiting); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2088 | cond_resched(); |
| 2089 | goto retry; |
| 2090 | default: |
| 2091 | goto out_unlock; |
| 2092 | } |
| 2093 | } |
| 2094 | |
| 2095 | plist_for_each_entry_safe(this, next, &hb1->chain, list) { |
| 2096 | if (task_count - nr_wake >= nr_requeue) |
| 2097 | break; |
| 2098 | |
| 2099 | if (!match_futex(&this->key, &key1)) |
| 2100 | continue; |
| 2101 | |
| 2102 | /* |
| 2103 | * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always |
| 2104 | * be paired with each other and no other futex ops. |
| 2105 | * |
| 2106 | * We should never be requeueing a futex_q with a pi_state, |
| 2107 | * which is awaiting a futex_unlock_pi(). |
| 2108 | */ |
| 2109 | if ((requeue_pi && !this->rt_waiter) || |
| 2110 | (!requeue_pi && this->rt_waiter) || |
| 2111 | this->pi_state) { |
| 2112 | ret = -EINVAL; |
| 2113 | break; |
| 2114 | } |
| 2115 | |
| 2116 | /* |
| 2117 | * Wake nr_wake waiters. For requeue_pi, if we acquired the |
| 2118 | * lock, we already woke the top_waiter. If not, it will be |
| 2119 | * woken by futex_unlock_pi(). |
| 2120 | */ |
| 2121 | if (++task_count <= nr_wake && !requeue_pi) { |
| 2122 | mark_wake_futex(&wake_q, this); |
| 2123 | continue; |
| 2124 | } |
| 2125 | |
| 2126 | /* Ensure we requeue to the expected futex for requeue_pi. */ |
| 2127 | if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) { |
| 2128 | ret = -EINVAL; |
| 2129 | break; |
| 2130 | } |
| 2131 | |
| 2132 | /* |
| 2133 | * Requeue nr_requeue waiters and possibly one more in the case |
| 2134 | * of requeue_pi if we couldn't acquire the lock atomically. |
| 2135 | */ |
| 2136 | if (requeue_pi) { |
| 2137 | /* |
| 2138 | * Prepare the waiter to take the rt_mutex. Take a |
| 2139 | * refcount on the pi_state and store the pointer in |
| 2140 | * the futex_q object of the waiter. |
| 2141 | */ |
| 2142 | get_pi_state(pi_state); |
| 2143 | this->pi_state = pi_state; |
| 2144 | ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex, |
| 2145 | this->rt_waiter, |
| 2146 | this->task); |
| 2147 | if (ret == 1) { |
| 2148 | /* |
| 2149 | * We got the lock. We do neither drop the |
| 2150 | * refcount on pi_state nor clear |
| 2151 | * this->pi_state because the waiter needs the |
| 2152 | * pi_state for cleaning up the user space |
| 2153 | * value. It will drop the refcount after |
| 2154 | * doing so. |
| 2155 | */ |
| 2156 | requeue_pi_wake_futex(this, &key2, hb2); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2157 | continue; |
| 2158 | } else if (ret) { |
| 2159 | /* |
| 2160 | * rt_mutex_start_proxy_lock() detected a |
| 2161 | * potential deadlock when we tried to queue |
| 2162 | * that waiter. Drop the pi_state reference |
| 2163 | * which we took above and remove the pointer |
| 2164 | * to the state from the waiters futex_q |
| 2165 | * object. |
| 2166 | */ |
| 2167 | this->pi_state = NULL; |
| 2168 | put_pi_state(pi_state); |
| 2169 | /* |
| 2170 | * We stop queueing more waiters and let user |
| 2171 | * space deal with the mess. |
| 2172 | */ |
| 2173 | break; |
| 2174 | } |
| 2175 | } |
| 2176 | requeue_futex(this, hb1, hb2, &key2); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2177 | } |
| 2178 | |
| 2179 | /* |
| 2180 | * We took an extra initial reference to the pi_state either |
| 2181 | * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We |
| 2182 | * need to drop it here again. |
| 2183 | */ |
| 2184 | put_pi_state(pi_state); |
| 2185 | |
| 2186 | out_unlock: |
| 2187 | double_unlock_hb(hb1, hb2); |
| 2188 | wake_up_q(&wake_q); |
| 2189 | hb_waiters_dec(hb2); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2190 | return ret ? ret : task_count; |
| 2191 | } |
| 2192 | |
| 2193 | /* The key must be already stored in q->key. */ |
| 2194 | static inline struct futex_hash_bucket *queue_lock(struct futex_q *q) |
| 2195 | __acquires(&hb->lock) |
| 2196 | { |
| 2197 | struct futex_hash_bucket *hb; |
| 2198 | |
| 2199 | hb = hash_futex(&q->key); |
| 2200 | |
| 2201 | /* |
| 2202 | * Increment the counter before taking the lock so that |
| 2203 | * a potential waker won't miss a to-be-slept task that is |
| 2204 | * waiting for the spinlock. This is safe as all queue_lock() |
| 2205 | * users end up calling queue_me(). Similarly, for housekeeping, |
| 2206 | * decrement the counter at queue_unlock() when some error has |
| 2207 | * occurred and we don't end up adding the task to the list. |
| 2208 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2209 | hb_waiters_inc(hb); /* implies smp_mb(); (A) */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2210 | |
| 2211 | q->lock_ptr = &hb->lock; |
| 2212 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2213 | spin_lock(&hb->lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2214 | return hb; |
| 2215 | } |
| 2216 | |
| 2217 | static inline void |
| 2218 | queue_unlock(struct futex_hash_bucket *hb) |
| 2219 | __releases(&hb->lock) |
| 2220 | { |
| 2221 | spin_unlock(&hb->lock); |
| 2222 | hb_waiters_dec(hb); |
| 2223 | } |
| 2224 | |
| 2225 | static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb) |
| 2226 | { |
| 2227 | int prio; |
| 2228 | |
| 2229 | /* |
| 2230 | * The priority used to register this element is |
| 2231 | * - either the real thread-priority for the real-time threads |
| 2232 | * (i.e. threads with a priority lower than MAX_RT_PRIO) |
| 2233 | * - or MAX_RT_PRIO for non-RT threads. |
| 2234 | * Thus, all RT-threads are woken first in priority order, and |
| 2235 | * the others are woken last, in FIFO order. |
| 2236 | */ |
| 2237 | prio = min(current->normal_prio, MAX_RT_PRIO); |
| 2238 | |
| 2239 | plist_node_init(&q->list, prio); |
| 2240 | plist_add(&q->list, &hb->chain); |
| 2241 | q->task = current; |
| 2242 | } |
| 2243 | |
| 2244 | /** |
| 2245 | * queue_me() - Enqueue the futex_q on the futex_hash_bucket |
| 2246 | * @q: The futex_q to enqueue |
| 2247 | * @hb: The destination hash bucket |
| 2248 | * |
| 2249 | * The hb->lock must be held by the caller, and is released here. A call to |
| 2250 | * queue_me() is typically paired with exactly one call to unqueue_me(). The |
| 2251 | * exceptions involve the PI related operations, which may use unqueue_me_pi() |
| 2252 | * or nothing if the unqueue is done as part of the wake process and the unqueue |
| 2253 | * state is implicit in the state of woken task (see futex_wait_requeue_pi() for |
| 2254 | * an example). |
| 2255 | */ |
| 2256 | static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb) |
| 2257 | __releases(&hb->lock) |
| 2258 | { |
| 2259 | __queue_me(q, hb); |
| 2260 | spin_unlock(&hb->lock); |
| 2261 | } |
| 2262 | |
| 2263 | /** |
| 2264 | * unqueue_me() - Remove the futex_q from its futex_hash_bucket |
| 2265 | * @q: The futex_q to unqueue |
| 2266 | * |
| 2267 | * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must |
| 2268 | * be paired with exactly one earlier call to queue_me(). |
| 2269 | * |
| 2270 | * Return: |
| 2271 | * - 1 - if the futex_q was still queued (and we removed unqueued it); |
| 2272 | * - 0 - if the futex_q was already removed by the waking thread |
| 2273 | */ |
| 2274 | static int unqueue_me(struct futex_q *q) |
| 2275 | { |
| 2276 | spinlock_t *lock_ptr; |
| 2277 | int ret = 0; |
| 2278 | |
| 2279 | /* In the common case we don't take the spinlock, which is nice. */ |
| 2280 | retry: |
| 2281 | /* |
| 2282 | * q->lock_ptr can change between this read and the following spin_lock. |
| 2283 | * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and |
| 2284 | * optimizing lock_ptr out of the logic below. |
| 2285 | */ |
| 2286 | lock_ptr = READ_ONCE(q->lock_ptr); |
| 2287 | if (lock_ptr != NULL) { |
| 2288 | spin_lock(lock_ptr); |
| 2289 | /* |
| 2290 | * q->lock_ptr can change between reading it and |
| 2291 | * spin_lock(), causing us to take the wrong lock. This |
| 2292 | * corrects the race condition. |
| 2293 | * |
| 2294 | * Reasoning goes like this: if we have the wrong lock, |
| 2295 | * q->lock_ptr must have changed (maybe several times) |
| 2296 | * between reading it and the spin_lock(). It can |
| 2297 | * change again after the spin_lock() but only if it was |
| 2298 | * already changed before the spin_lock(). It cannot, |
| 2299 | * however, change back to the original value. Therefore |
| 2300 | * we can detect whether we acquired the correct lock. |
| 2301 | */ |
| 2302 | if (unlikely(lock_ptr != q->lock_ptr)) { |
| 2303 | spin_unlock(lock_ptr); |
| 2304 | goto retry; |
| 2305 | } |
| 2306 | __unqueue_futex(q); |
| 2307 | |
| 2308 | BUG_ON(q->pi_state); |
| 2309 | |
| 2310 | spin_unlock(lock_ptr); |
| 2311 | ret = 1; |
| 2312 | } |
| 2313 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2314 | return ret; |
| 2315 | } |
| 2316 | |
| 2317 | /* |
| 2318 | * PI futexes can not be requeued and must remove themself from the |
| 2319 | * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry |
| 2320 | * and dropped here. |
| 2321 | */ |
| 2322 | static void unqueue_me_pi(struct futex_q *q) |
| 2323 | __releases(q->lock_ptr) |
| 2324 | { |
| 2325 | __unqueue_futex(q); |
| 2326 | |
| 2327 | BUG_ON(!q->pi_state); |
| 2328 | put_pi_state(q->pi_state); |
| 2329 | q->pi_state = NULL; |
| 2330 | |
| 2331 | spin_unlock(q->lock_ptr); |
| 2332 | } |
| 2333 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 2334 | static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q, |
| 2335 | struct task_struct *argowner) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2336 | { |
| 2337 | struct futex_pi_state *pi_state = q->pi_state; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2338 | struct task_struct *oldowner, *newowner; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2339 | u32 uval, curval, newval, newtid; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 2340 | int err = 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2341 | |
| 2342 | oldowner = pi_state->owner; |
| 2343 | |
| 2344 | /* |
| 2345 | * We are here because either: |
| 2346 | * |
| 2347 | * - we stole the lock and pi_state->owner needs updating to reflect |
| 2348 | * that (@argowner == current), |
| 2349 | * |
| 2350 | * or: |
| 2351 | * |
| 2352 | * - someone stole our lock and we need to fix things to point to the |
| 2353 | * new owner (@argowner == NULL). |
| 2354 | * |
| 2355 | * Either way, we have to replace the TID in the user space variable. |
| 2356 | * This must be atomic as we have to preserve the owner died bit here. |
| 2357 | * |
| 2358 | * Note: We write the user space value _before_ changing the pi_state |
| 2359 | * because we can fault here. Imagine swapped out pages or a fork |
| 2360 | * that marked all the anonymous memory readonly for cow. |
| 2361 | * |
| 2362 | * Modifying pi_state _before_ the user space value would leave the |
| 2363 | * pi_state in an inconsistent state when we fault here, because we |
| 2364 | * need to drop the locks to handle the fault. This might be observed |
| 2365 | * in the PID check in lookup_pi_state. |
| 2366 | */ |
| 2367 | retry: |
| 2368 | if (!argowner) { |
| 2369 | if (oldowner != current) { |
| 2370 | /* |
| 2371 | * We raced against a concurrent self; things are |
| 2372 | * already fixed up. Nothing to do. |
| 2373 | */ |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 2374 | return 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2375 | } |
| 2376 | |
| 2377 | if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) { |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 2378 | /* We got the lock. pi_state is correct. Tell caller. */ |
| 2379 | return 1; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2380 | } |
| 2381 | |
| 2382 | /* |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 2383 | * The trylock just failed, so either there is an owner or |
| 2384 | * there is a higher priority waiter than this one. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2385 | */ |
| 2386 | newowner = rt_mutex_owner(&pi_state->pi_mutex); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 2387 | /* |
| 2388 | * If the higher priority waiter has not yet taken over the |
| 2389 | * rtmutex then newowner is NULL. We can't return here with |
| 2390 | * that state because it's inconsistent vs. the user space |
| 2391 | * state. So drop the locks and try again. It's a valid |
| 2392 | * situation and not any different from the other retry |
| 2393 | * conditions. |
| 2394 | */ |
| 2395 | if (unlikely(!newowner)) { |
| 2396 | err = -EAGAIN; |
| 2397 | goto handle_err; |
| 2398 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2399 | } else { |
| 2400 | WARN_ON_ONCE(argowner != current); |
| 2401 | if (oldowner == current) { |
| 2402 | /* |
| 2403 | * We raced against a concurrent self; things are |
| 2404 | * already fixed up. Nothing to do. |
| 2405 | */ |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 2406 | return 1; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2407 | } |
| 2408 | newowner = argowner; |
| 2409 | } |
| 2410 | |
| 2411 | newtid = task_pid_vnr(newowner) | FUTEX_WAITERS; |
| 2412 | /* Owner died? */ |
| 2413 | if (!pi_state->owner) |
| 2414 | newtid |= FUTEX_OWNER_DIED; |
| 2415 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2416 | err = get_futex_value_locked(&uval, uaddr); |
| 2417 | if (err) |
| 2418 | goto handle_err; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2419 | |
| 2420 | for (;;) { |
| 2421 | newval = (uval & FUTEX_OWNER_DIED) | newtid; |
| 2422 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2423 | err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval); |
| 2424 | if (err) |
| 2425 | goto handle_err; |
| 2426 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2427 | if (curval == uval) |
| 2428 | break; |
| 2429 | uval = curval; |
| 2430 | } |
| 2431 | |
| 2432 | /* |
| 2433 | * We fixed up user space. Now we need to fix the pi_state |
| 2434 | * itself. |
| 2435 | */ |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 2436 | pi_state_update_owner(pi_state, newowner); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2437 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 2438 | return argowner == current; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2439 | |
| 2440 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2441 | * In order to reschedule or handle a page fault, we need to drop the |
| 2442 | * locks here. In the case of a fault, this gives the other task |
| 2443 | * (either the highest priority waiter itself or the task which stole |
| 2444 | * the rtmutex) the chance to try the fixup of the pi_state. So once we |
| 2445 | * are back from handling the fault we need to check the pi_state after |
| 2446 | * reacquiring the locks and before trying to do another fixup. When |
| 2447 | * the fixup has been done already we simply return. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2448 | * |
| 2449 | * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely |
| 2450 | * drop hb->lock since the caller owns the hb -> futex_q relation. |
| 2451 | * Dropping the pi_mutex->wait_lock requires the state revalidate. |
| 2452 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2453 | handle_err: |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2454 | raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock); |
| 2455 | spin_unlock(q->lock_ptr); |
| 2456 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2457 | switch (err) { |
| 2458 | case -EFAULT: |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 2459 | err = fault_in_user_writeable(uaddr); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2460 | break; |
| 2461 | |
| 2462 | case -EAGAIN: |
| 2463 | cond_resched(); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 2464 | err = 0; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2465 | break; |
| 2466 | |
| 2467 | default: |
| 2468 | WARN_ON_ONCE(1); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2469 | break; |
| 2470 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2471 | |
| 2472 | spin_lock(q->lock_ptr); |
| 2473 | raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock); |
| 2474 | |
| 2475 | /* |
| 2476 | * Check if someone else fixed it for us: |
| 2477 | */ |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 2478 | if (pi_state->owner != oldowner) |
| 2479 | return argowner == current; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2480 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 2481 | /* Retry if err was -EAGAIN or the fault in succeeded */ |
| 2482 | if (!err) |
| 2483 | goto retry; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2484 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 2485 | /* |
| 2486 | * fault_in_user_writeable() failed so user state is immutable. At |
| 2487 | * best we can make the kernel state consistent but user state will |
| 2488 | * be most likely hosed and any subsequent unlock operation will be |
| 2489 | * rejected due to PI futex rule [10]. |
| 2490 | * |
| 2491 | * Ensure that the rtmutex owner is also the pi_state owner despite |
| 2492 | * the user space value claiming something different. There is no |
| 2493 | * point in unlocking the rtmutex if current is the owner as it |
| 2494 | * would need to wait until the next waiter has taken the rtmutex |
| 2495 | * to guarantee consistent state. Keep it simple. Userspace asked |
| 2496 | * for this wreckaged state. |
| 2497 | * |
| 2498 | * The rtmutex has an owner - either current or some other |
| 2499 | * task. See the EAGAIN loop above. |
| 2500 | */ |
| 2501 | pi_state_update_owner(pi_state, rt_mutex_owner(&pi_state->pi_mutex)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2502 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 2503 | return err; |
| 2504 | } |
| 2505 | |
| 2506 | static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q, |
| 2507 | struct task_struct *argowner) |
| 2508 | { |
| 2509 | struct futex_pi_state *pi_state = q->pi_state; |
| 2510 | int ret; |
| 2511 | |
| 2512 | lockdep_assert_held(q->lock_ptr); |
| 2513 | |
| 2514 | raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock); |
| 2515 | ret = __fixup_pi_state_owner(uaddr, q, argowner); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2516 | raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock); |
| 2517 | return ret; |
| 2518 | } |
| 2519 | |
| 2520 | static long futex_wait_restart(struct restart_block *restart); |
| 2521 | |
| 2522 | /** |
| 2523 | * fixup_owner() - Post lock pi_state and corner case management |
| 2524 | * @uaddr: user address of the futex |
| 2525 | * @q: futex_q (contains pi_state and access to the rt_mutex) |
| 2526 | * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0) |
| 2527 | * |
| 2528 | * After attempting to lock an rt_mutex, this function is called to cleanup |
| 2529 | * the pi_state owner as well as handle race conditions that may allow us to |
| 2530 | * acquire the lock. Must be called with the hb lock held. |
| 2531 | * |
| 2532 | * Return: |
| 2533 | * - 1 - success, lock taken; |
| 2534 | * - 0 - success, lock not taken; |
| 2535 | * - <0 - on error (-EFAULT) |
| 2536 | */ |
| 2537 | static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked) |
| 2538 | { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2539 | if (locked) { |
| 2540 | /* |
| 2541 | * Got the lock. We might not be the anticipated owner if we |
| 2542 | * did a lock-steal - fix up the PI-state in that case: |
| 2543 | * |
| 2544 | * Speculative pi_state->owner read (we don't hold wait_lock); |
| 2545 | * since we own the lock pi_state->owner == current is the |
| 2546 | * stable state, anything else needs more attention. |
| 2547 | */ |
| 2548 | if (q->pi_state->owner != current) |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 2549 | return fixup_pi_state_owner(uaddr, q, current); |
| 2550 | return 1; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2551 | } |
| 2552 | |
| 2553 | /* |
| 2554 | * If we didn't get the lock; check if anybody stole it from us. In |
| 2555 | * that case, we need to fix up the uval to point to them instead of |
| 2556 | * us, otherwise bad things happen. [10] |
| 2557 | * |
| 2558 | * Another speculative read; pi_state->owner == current is unstable |
| 2559 | * but needs our attention. |
| 2560 | */ |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 2561 | if (q->pi_state->owner == current) |
| 2562 | return fixup_pi_state_owner(uaddr, q, NULL); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2563 | |
| 2564 | /* |
| 2565 | * Paranoia check. If we did not take the lock, then we should not be |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 2566 | * the owner of the rt_mutex. Warn and establish consistent state. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2567 | */ |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 2568 | if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current)) |
| 2569 | return fixup_pi_state_owner(uaddr, q, current); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2570 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 2571 | return 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2572 | } |
| 2573 | |
| 2574 | /** |
| 2575 | * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal |
| 2576 | * @hb: the futex hash bucket, must be locked by the caller |
| 2577 | * @q: the futex_q to queue up on |
| 2578 | * @timeout: the prepared hrtimer_sleeper, or null for no timeout |
| 2579 | */ |
| 2580 | static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q, |
| 2581 | struct hrtimer_sleeper *timeout) |
| 2582 | { |
| 2583 | /* |
| 2584 | * The task state is guaranteed to be set before another task can |
| 2585 | * wake it. set_current_state() is implemented using smp_store_mb() and |
| 2586 | * queue_me() calls spin_unlock() upon completion, both serializing |
| 2587 | * access to the hash list and forcing another memory barrier. |
| 2588 | */ |
| 2589 | set_current_state(TASK_INTERRUPTIBLE); |
| 2590 | queue_me(q, hb); |
| 2591 | |
| 2592 | /* Arm the timer */ |
| 2593 | if (timeout) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2594 | hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2595 | |
| 2596 | /* |
| 2597 | * If we have been removed from the hash list, then another task |
| 2598 | * has tried to wake us, and we can skip the call to schedule(). |
| 2599 | */ |
| 2600 | if (likely(!plist_node_empty(&q->list))) { |
| 2601 | /* |
| 2602 | * If the timer has already expired, current will already be |
| 2603 | * flagged for rescheduling. Only call schedule if there |
| 2604 | * is no timeout, or if it has yet to expire. |
| 2605 | */ |
| 2606 | if (!timeout || timeout->task) |
| 2607 | freezable_schedule(); |
| 2608 | } |
| 2609 | __set_current_state(TASK_RUNNING); |
| 2610 | } |
| 2611 | |
| 2612 | /** |
| 2613 | * futex_wait_setup() - Prepare to wait on a futex |
| 2614 | * @uaddr: the futex userspace address |
| 2615 | * @val: the expected value |
| 2616 | * @flags: futex flags (FLAGS_SHARED, etc.) |
| 2617 | * @q: the associated futex_q |
| 2618 | * @hb: storage for hash_bucket pointer to be returned to caller |
| 2619 | * |
| 2620 | * Setup the futex_q and locate the hash_bucket. Get the futex value and |
| 2621 | * compare it with the expected value. Handle atomic faults internally. |
| 2622 | * Return with the hb lock held and a q.key reference on success, and unlocked |
| 2623 | * with no q.key reference on failure. |
| 2624 | * |
| 2625 | * Return: |
| 2626 | * - 0 - uaddr contains val and hb has been locked; |
| 2627 | * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked |
| 2628 | */ |
| 2629 | static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags, |
| 2630 | struct futex_q *q, struct futex_hash_bucket **hb) |
| 2631 | { |
| 2632 | u32 uval; |
| 2633 | int ret; |
| 2634 | |
| 2635 | /* |
| 2636 | * Access the page AFTER the hash-bucket is locked. |
| 2637 | * Order is important: |
| 2638 | * |
| 2639 | * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val); |
| 2640 | * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); } |
| 2641 | * |
| 2642 | * The basic logical guarantee of a futex is that it blocks ONLY |
| 2643 | * if cond(var) is known to be true at the time of blocking, for |
| 2644 | * any cond. If we locked the hash-bucket after testing *uaddr, that |
| 2645 | * would open a race condition where we could block indefinitely with |
| 2646 | * cond(var) false, which would violate the guarantee. |
| 2647 | * |
| 2648 | * On the other hand, we insert q and release the hash-bucket only |
| 2649 | * after testing *uaddr. This guarantees that futex_wait() will NOT |
| 2650 | * absorb a wakeup if *uaddr does not match the desired values |
| 2651 | * while the syscall executes. |
| 2652 | */ |
| 2653 | retry: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2654 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2655 | if (unlikely(ret != 0)) |
| 2656 | return ret; |
| 2657 | |
| 2658 | retry_private: |
| 2659 | *hb = queue_lock(q); |
| 2660 | |
| 2661 | ret = get_futex_value_locked(&uval, uaddr); |
| 2662 | |
| 2663 | if (ret) { |
| 2664 | queue_unlock(*hb); |
| 2665 | |
| 2666 | ret = get_user(uval, uaddr); |
| 2667 | if (ret) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2668 | return ret; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2669 | |
| 2670 | if (!(flags & FLAGS_SHARED)) |
| 2671 | goto retry_private; |
| 2672 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2673 | goto retry; |
| 2674 | } |
| 2675 | |
| 2676 | if (uval != val) { |
| 2677 | queue_unlock(*hb); |
| 2678 | ret = -EWOULDBLOCK; |
| 2679 | } |
| 2680 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2681 | return ret; |
| 2682 | } |
| 2683 | |
| 2684 | static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, |
| 2685 | ktime_t *abs_time, u32 bitset) |
| 2686 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2687 | struct hrtimer_sleeper timeout, *to; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2688 | struct restart_block *restart; |
| 2689 | struct futex_hash_bucket *hb; |
| 2690 | struct futex_q q = futex_q_init; |
| 2691 | int ret; |
| 2692 | |
| 2693 | if (!bitset) |
| 2694 | return -EINVAL; |
| 2695 | q.bitset = bitset; |
| 2696 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2697 | to = futex_setup_timer(abs_time, &timeout, flags, |
| 2698 | current->timer_slack_ns); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2699 | retry: |
| 2700 | /* |
| 2701 | * Prepare to wait on uaddr. On success, holds hb lock and increments |
| 2702 | * q.key refs. |
| 2703 | */ |
| 2704 | ret = futex_wait_setup(uaddr, val, flags, &q, &hb); |
| 2705 | if (ret) |
| 2706 | goto out; |
| 2707 | |
| 2708 | /* queue_me and wait for wakeup, timeout, or a signal. */ |
| 2709 | futex_wait_queue_me(hb, &q, to); |
| 2710 | |
| 2711 | /* If we were woken (and unqueued), we succeeded, whatever. */ |
| 2712 | ret = 0; |
| 2713 | /* unqueue_me() drops q.key ref */ |
| 2714 | if (!unqueue_me(&q)) |
| 2715 | goto out; |
| 2716 | ret = -ETIMEDOUT; |
| 2717 | if (to && !to->task) |
| 2718 | goto out; |
| 2719 | |
| 2720 | /* |
| 2721 | * We expect signal_pending(current), but we might be the |
| 2722 | * victim of a spurious wakeup as well. |
| 2723 | */ |
| 2724 | if (!signal_pending(current)) |
| 2725 | goto retry; |
| 2726 | |
| 2727 | ret = -ERESTARTSYS; |
| 2728 | if (!abs_time) |
| 2729 | goto out; |
| 2730 | |
| 2731 | restart = ¤t->restart_block; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2732 | restart->futex.uaddr = uaddr; |
| 2733 | restart->futex.val = val; |
| 2734 | restart->futex.time = *abs_time; |
| 2735 | restart->futex.bitset = bitset; |
| 2736 | restart->futex.flags = flags | FLAGS_HAS_TIMEOUT; |
| 2737 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 2738 | ret = set_restart_fn(restart, futex_wait_restart); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2739 | |
| 2740 | out: |
| 2741 | if (to) { |
| 2742 | hrtimer_cancel(&to->timer); |
| 2743 | destroy_hrtimer_on_stack(&to->timer); |
| 2744 | } |
| 2745 | return ret; |
| 2746 | } |
| 2747 | |
| 2748 | |
| 2749 | static long futex_wait_restart(struct restart_block *restart) |
| 2750 | { |
| 2751 | u32 __user *uaddr = restart->futex.uaddr; |
| 2752 | ktime_t t, *tp = NULL; |
| 2753 | |
| 2754 | if (restart->futex.flags & FLAGS_HAS_TIMEOUT) { |
| 2755 | t = restart->futex.time; |
| 2756 | tp = &t; |
| 2757 | } |
| 2758 | restart->fn = do_no_restart_syscall; |
| 2759 | |
| 2760 | return (long)futex_wait(uaddr, restart->futex.flags, |
| 2761 | restart->futex.val, tp, restart->futex.bitset); |
| 2762 | } |
| 2763 | |
| 2764 | |
| 2765 | /* |
| 2766 | * Userspace tried a 0 -> TID atomic transition of the futex value |
| 2767 | * and failed. The kernel side here does the whole locking operation: |
| 2768 | * if there are waiters then it will block as a consequence of relying |
| 2769 | * on rt-mutexes, it does PI, etc. (Due to races the kernel might see |
| 2770 | * a 0 value of the futex too.). |
| 2771 | * |
| 2772 | * Also serves as futex trylock_pi()'ing, and due semantics. |
| 2773 | */ |
| 2774 | static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, |
| 2775 | ktime_t *time, int trylock) |
| 2776 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2777 | struct hrtimer_sleeper timeout, *to; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2778 | struct task_struct *exiting = NULL; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2779 | struct rt_mutex_waiter rt_waiter; |
| 2780 | struct futex_hash_bucket *hb; |
| 2781 | struct futex_q q = futex_q_init; |
| 2782 | int res, ret; |
| 2783 | |
| 2784 | if (!IS_ENABLED(CONFIG_FUTEX_PI)) |
| 2785 | return -ENOSYS; |
| 2786 | |
| 2787 | if (refill_pi_state_cache()) |
| 2788 | return -ENOMEM; |
| 2789 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2790 | to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2791 | |
| 2792 | retry: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2793 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2794 | if (unlikely(ret != 0)) |
| 2795 | goto out; |
| 2796 | |
| 2797 | retry_private: |
| 2798 | hb = queue_lock(&q); |
| 2799 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2800 | ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, |
| 2801 | &exiting, 0); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2802 | if (unlikely(ret)) { |
| 2803 | /* |
| 2804 | * Atomic work succeeded and we got the lock, |
| 2805 | * or failed. Either way, we do _not_ block. |
| 2806 | */ |
| 2807 | switch (ret) { |
| 2808 | case 1: |
| 2809 | /* We got the lock. */ |
| 2810 | ret = 0; |
| 2811 | goto out_unlock_put_key; |
| 2812 | case -EFAULT: |
| 2813 | goto uaddr_faulted; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2814 | case -EBUSY: |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2815 | case -EAGAIN: |
| 2816 | /* |
| 2817 | * Two reasons for this: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2818 | * - EBUSY: Task is exiting and we just wait for the |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2819 | * exit to complete. |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2820 | * - EAGAIN: The user space value changed. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2821 | */ |
| 2822 | queue_unlock(hb); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2823 | /* |
| 2824 | * Handle the case where the owner is in the middle of |
| 2825 | * exiting. Wait for the exit to complete otherwise |
| 2826 | * this task might loop forever, aka. live lock. |
| 2827 | */ |
| 2828 | wait_for_owner_exiting(ret, exiting); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2829 | cond_resched(); |
| 2830 | goto retry; |
| 2831 | default: |
| 2832 | goto out_unlock_put_key; |
| 2833 | } |
| 2834 | } |
| 2835 | |
| 2836 | WARN_ON(!q.pi_state); |
| 2837 | |
| 2838 | /* |
| 2839 | * Only actually queue now that the atomic ops are done: |
| 2840 | */ |
| 2841 | __queue_me(&q, hb); |
| 2842 | |
| 2843 | if (trylock) { |
| 2844 | ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex); |
| 2845 | /* Fixup the trylock return value: */ |
| 2846 | ret = ret ? 0 : -EWOULDBLOCK; |
| 2847 | goto no_block; |
| 2848 | } |
| 2849 | |
| 2850 | rt_mutex_init_waiter(&rt_waiter); |
| 2851 | |
| 2852 | /* |
| 2853 | * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not |
| 2854 | * hold it while doing rt_mutex_start_proxy(), because then it will |
| 2855 | * include hb->lock in the blocking chain, even through we'll not in |
| 2856 | * fact hold it while blocking. This will lead it to report -EDEADLK |
| 2857 | * and BUG when futex_unlock_pi() interleaves with this. |
| 2858 | * |
| 2859 | * Therefore acquire wait_lock while holding hb->lock, but drop the |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2860 | * latter before calling __rt_mutex_start_proxy_lock(). This |
| 2861 | * interleaves with futex_unlock_pi() -- which does a similar lock |
| 2862 | * handoff -- such that the latter can observe the futex_q::pi_state |
| 2863 | * before __rt_mutex_start_proxy_lock() is done. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2864 | */ |
| 2865 | raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock); |
| 2866 | spin_unlock(q.lock_ptr); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2867 | /* |
| 2868 | * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter |
| 2869 | * such that futex_unlock_pi() is guaranteed to observe the waiter when |
| 2870 | * it sees the futex_q::pi_state. |
| 2871 | */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2872 | ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current); |
| 2873 | raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock); |
| 2874 | |
| 2875 | if (ret) { |
| 2876 | if (ret == 1) |
| 2877 | ret = 0; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2878 | goto cleanup; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2879 | } |
| 2880 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2881 | if (unlikely(to)) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2882 | hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2883 | |
| 2884 | ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter); |
| 2885 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2886 | cleanup: |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2887 | spin_lock(q.lock_ptr); |
| 2888 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2889 | * If we failed to acquire the lock (deadlock/signal/timeout), we must |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2890 | * first acquire the hb->lock before removing the lock from the |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2891 | * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait |
| 2892 | * lists consistent. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2893 | * |
| 2894 | * In particular; it is important that futex_unlock_pi() can not |
| 2895 | * observe this inconsistency. |
| 2896 | */ |
| 2897 | if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter)) |
| 2898 | ret = 0; |
| 2899 | |
| 2900 | no_block: |
| 2901 | /* |
| 2902 | * Fixup the pi_state owner and possibly acquire the lock if we |
| 2903 | * haven't already. |
| 2904 | */ |
| 2905 | res = fixup_owner(uaddr, &q, !ret); |
| 2906 | /* |
| 2907 | * If fixup_owner() returned an error, proprogate that. If it acquired |
| 2908 | * the lock, clear our -ETIMEDOUT or -EINTR. |
| 2909 | */ |
| 2910 | if (res) |
| 2911 | ret = (res < 0) ? res : 0; |
| 2912 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2913 | /* Unqueue and drop the lock */ |
| 2914 | unqueue_me_pi(&q); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2915 | goto out; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2916 | |
| 2917 | out_unlock_put_key: |
| 2918 | queue_unlock(hb); |
| 2919 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2920 | out: |
| 2921 | if (to) { |
| 2922 | hrtimer_cancel(&to->timer); |
| 2923 | destroy_hrtimer_on_stack(&to->timer); |
| 2924 | } |
| 2925 | return ret != -EINTR ? ret : -ERESTARTNOINTR; |
| 2926 | |
| 2927 | uaddr_faulted: |
| 2928 | queue_unlock(hb); |
| 2929 | |
| 2930 | ret = fault_in_user_writeable(uaddr); |
| 2931 | if (ret) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2932 | goto out; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2933 | |
| 2934 | if (!(flags & FLAGS_SHARED)) |
| 2935 | goto retry_private; |
| 2936 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2937 | goto retry; |
| 2938 | } |
| 2939 | |
| 2940 | /* |
| 2941 | * Userspace attempted a TID -> 0 atomic transition, and failed. |
| 2942 | * This is the in-kernel slowpath: we look up the PI state (if any), |
| 2943 | * and do the rt-mutex unlock. |
| 2944 | */ |
| 2945 | static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags) |
| 2946 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2947 | u32 curval, uval, vpid = task_pid_vnr(current); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2948 | union futex_key key = FUTEX_KEY_INIT; |
| 2949 | struct futex_hash_bucket *hb; |
| 2950 | struct futex_q *top_waiter; |
| 2951 | int ret; |
| 2952 | |
| 2953 | if (!IS_ENABLED(CONFIG_FUTEX_PI)) |
| 2954 | return -ENOSYS; |
| 2955 | |
| 2956 | retry: |
| 2957 | if (get_user(uval, uaddr)) |
| 2958 | return -EFAULT; |
| 2959 | /* |
| 2960 | * We release only a lock we actually own: |
| 2961 | */ |
| 2962 | if ((uval & FUTEX_TID_MASK) != vpid) |
| 2963 | return -EPERM; |
| 2964 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2965 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2966 | if (ret) |
| 2967 | return ret; |
| 2968 | |
| 2969 | hb = hash_futex(&key); |
| 2970 | spin_lock(&hb->lock); |
| 2971 | |
| 2972 | /* |
| 2973 | * Check waiters first. We do not trust user space values at |
| 2974 | * all and we at least want to know if user space fiddled |
| 2975 | * with the futex value instead of blindly unlocking. |
| 2976 | */ |
| 2977 | top_waiter = futex_top_waiter(hb, &key); |
| 2978 | if (top_waiter) { |
| 2979 | struct futex_pi_state *pi_state = top_waiter->pi_state; |
| 2980 | |
| 2981 | ret = -EINVAL; |
| 2982 | if (!pi_state) |
| 2983 | goto out_unlock; |
| 2984 | |
| 2985 | /* |
| 2986 | * If current does not own the pi_state then the futex is |
| 2987 | * inconsistent and user space fiddled with the futex value. |
| 2988 | */ |
| 2989 | if (pi_state->owner != current) |
| 2990 | goto out_unlock; |
| 2991 | |
| 2992 | get_pi_state(pi_state); |
| 2993 | /* |
| 2994 | * By taking wait_lock while still holding hb->lock, we ensure |
| 2995 | * there is no point where we hold neither; and therefore |
| 2996 | * wake_futex_pi() must observe a state consistent with what we |
| 2997 | * observed. |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2998 | * |
| 2999 | * In particular; this forces __rt_mutex_start_proxy() to |
| 3000 | * complete such that we're guaranteed to observe the |
| 3001 | * rt_waiter. Also see the WARN in wake_futex_pi(). |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3002 | */ |
| 3003 | raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock); |
| 3004 | spin_unlock(&hb->lock); |
| 3005 | |
| 3006 | /* drops pi_state->pi_mutex.wait_lock */ |
| 3007 | ret = wake_futex_pi(uaddr, uval, pi_state); |
| 3008 | |
| 3009 | put_pi_state(pi_state); |
| 3010 | |
| 3011 | /* |
| 3012 | * Success, we're done! No tricky corner cases. |
| 3013 | */ |
| 3014 | if (!ret) |
| 3015 | goto out_putkey; |
| 3016 | /* |
| 3017 | * The atomic access to the futex value generated a |
| 3018 | * pagefault, so retry the user-access and the wakeup: |
| 3019 | */ |
| 3020 | if (ret == -EFAULT) |
| 3021 | goto pi_faulted; |
| 3022 | /* |
| 3023 | * A unconditional UNLOCK_PI op raced against a waiter |
| 3024 | * setting the FUTEX_WAITERS bit. Try again. |
| 3025 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3026 | if (ret == -EAGAIN) |
| 3027 | goto pi_retry; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3028 | /* |
| 3029 | * wake_futex_pi has detected invalid state. Tell user |
| 3030 | * space. |
| 3031 | */ |
| 3032 | goto out_putkey; |
| 3033 | } |
| 3034 | |
| 3035 | /* |
| 3036 | * We have no kernel internal state, i.e. no waiters in the |
| 3037 | * kernel. Waiters which are about to queue themselves are stuck |
| 3038 | * on hb->lock. So we can safely ignore them. We do neither |
| 3039 | * preserve the WAITERS bit not the OWNER_DIED one. We are the |
| 3040 | * owner. |
| 3041 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3042 | if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3043 | spin_unlock(&hb->lock); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3044 | switch (ret) { |
| 3045 | case -EFAULT: |
| 3046 | goto pi_faulted; |
| 3047 | |
| 3048 | case -EAGAIN: |
| 3049 | goto pi_retry; |
| 3050 | |
| 3051 | default: |
| 3052 | WARN_ON_ONCE(1); |
| 3053 | goto out_putkey; |
| 3054 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3055 | } |
| 3056 | |
| 3057 | /* |
| 3058 | * If uval has changed, let user space handle it. |
| 3059 | */ |
| 3060 | ret = (curval == uval) ? 0 : -EAGAIN; |
| 3061 | |
| 3062 | out_unlock: |
| 3063 | spin_unlock(&hb->lock); |
| 3064 | out_putkey: |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3065 | return ret; |
| 3066 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3067 | pi_retry: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3068 | cond_resched(); |
| 3069 | goto retry; |
| 3070 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3071 | pi_faulted: |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3072 | |
| 3073 | ret = fault_in_user_writeable(uaddr); |
| 3074 | if (!ret) |
| 3075 | goto retry; |
| 3076 | |
| 3077 | return ret; |
| 3078 | } |
| 3079 | |
| 3080 | /** |
| 3081 | * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex |
| 3082 | * @hb: the hash_bucket futex_q was original enqueued on |
| 3083 | * @q: the futex_q woken while waiting to be requeued |
| 3084 | * @key2: the futex_key of the requeue target futex |
| 3085 | * @timeout: the timeout associated with the wait (NULL if none) |
| 3086 | * |
| 3087 | * Detect if the task was woken on the initial futex as opposed to the requeue |
| 3088 | * target futex. If so, determine if it was a timeout or a signal that caused |
| 3089 | * the wakeup and return the appropriate error code to the caller. Must be |
| 3090 | * called with the hb lock held. |
| 3091 | * |
| 3092 | * Return: |
| 3093 | * - 0 = no early wakeup detected; |
| 3094 | * - <0 = -ETIMEDOUT or -ERESTARTNOINTR |
| 3095 | */ |
| 3096 | static inline |
| 3097 | int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb, |
| 3098 | struct futex_q *q, union futex_key *key2, |
| 3099 | struct hrtimer_sleeper *timeout) |
| 3100 | { |
| 3101 | int ret = 0; |
| 3102 | |
| 3103 | /* |
| 3104 | * With the hb lock held, we avoid races while we process the wakeup. |
| 3105 | * We only need to hold hb (and not hb2) to ensure atomicity as the |
| 3106 | * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb. |
| 3107 | * It can't be requeued from uaddr2 to something else since we don't |
| 3108 | * support a PI aware source futex for requeue. |
| 3109 | */ |
| 3110 | if (!match_futex(&q->key, key2)) { |
| 3111 | WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr)); |
| 3112 | /* |
| 3113 | * We were woken prior to requeue by a timeout or a signal. |
| 3114 | * Unqueue the futex_q and determine which it was. |
| 3115 | */ |
| 3116 | plist_del(&q->list, &hb->chain); |
| 3117 | hb_waiters_dec(hb); |
| 3118 | |
| 3119 | /* Handle spurious wakeups gracefully */ |
| 3120 | ret = -EWOULDBLOCK; |
| 3121 | if (timeout && !timeout->task) |
| 3122 | ret = -ETIMEDOUT; |
| 3123 | else if (signal_pending(current)) |
| 3124 | ret = -ERESTARTNOINTR; |
| 3125 | } |
| 3126 | return ret; |
| 3127 | } |
| 3128 | |
| 3129 | /** |
| 3130 | * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2 |
| 3131 | * @uaddr: the futex we initially wait on (non-pi) |
| 3132 | * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be |
| 3133 | * the same type, no requeueing from private to shared, etc. |
| 3134 | * @val: the expected value of uaddr |
| 3135 | * @abs_time: absolute timeout |
| 3136 | * @bitset: 32 bit wakeup bitset set by userspace, defaults to all |
| 3137 | * @uaddr2: the pi futex we will take prior to returning to user-space |
| 3138 | * |
| 3139 | * The caller will wait on uaddr and will be requeued by futex_requeue() to |
| 3140 | * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake |
| 3141 | * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to |
| 3142 | * userspace. This ensures the rt_mutex maintains an owner when it has waiters; |
| 3143 | * without one, the pi logic would not know which task to boost/deboost, if |
| 3144 | * there was a need to. |
| 3145 | * |
| 3146 | * We call schedule in futex_wait_queue_me() when we enqueue and return there |
| 3147 | * via the following-- |
| 3148 | * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue() |
| 3149 | * 2) wakeup on uaddr2 after a requeue |
| 3150 | * 3) signal |
| 3151 | * 4) timeout |
| 3152 | * |
| 3153 | * If 3, cleanup and return -ERESTARTNOINTR. |
| 3154 | * |
| 3155 | * If 2, we may then block on trying to take the rt_mutex and return via: |
| 3156 | * 5) successful lock |
| 3157 | * 6) signal |
| 3158 | * 7) timeout |
| 3159 | * 8) other lock acquisition failure |
| 3160 | * |
| 3161 | * If 6, return -EWOULDBLOCK (restarting the syscall would do the same). |
| 3162 | * |
| 3163 | * If 4 or 7, we cleanup and return with -ETIMEDOUT. |
| 3164 | * |
| 3165 | * Return: |
| 3166 | * - 0 - On success; |
| 3167 | * - <0 - On error |
| 3168 | */ |
| 3169 | static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags, |
| 3170 | u32 val, ktime_t *abs_time, u32 bitset, |
| 3171 | u32 __user *uaddr2) |
| 3172 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3173 | struct hrtimer_sleeper timeout, *to; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3174 | struct rt_mutex_waiter rt_waiter; |
| 3175 | struct futex_hash_bucket *hb; |
| 3176 | union futex_key key2 = FUTEX_KEY_INIT; |
| 3177 | struct futex_q q = futex_q_init; |
| 3178 | int res, ret; |
| 3179 | |
| 3180 | if (!IS_ENABLED(CONFIG_FUTEX_PI)) |
| 3181 | return -ENOSYS; |
| 3182 | |
| 3183 | if (uaddr == uaddr2) |
| 3184 | return -EINVAL; |
| 3185 | |
| 3186 | if (!bitset) |
| 3187 | return -EINVAL; |
| 3188 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3189 | to = futex_setup_timer(abs_time, &timeout, flags, |
| 3190 | current->timer_slack_ns); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3191 | |
| 3192 | /* |
| 3193 | * The waiter is allocated on our stack, manipulated by the requeue |
| 3194 | * code while we sleep on uaddr. |
| 3195 | */ |
| 3196 | rt_mutex_init_waiter(&rt_waiter); |
| 3197 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3198 | ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3199 | if (unlikely(ret != 0)) |
| 3200 | goto out; |
| 3201 | |
| 3202 | q.bitset = bitset; |
| 3203 | q.rt_waiter = &rt_waiter; |
| 3204 | q.requeue_pi_key = &key2; |
| 3205 | |
| 3206 | /* |
| 3207 | * Prepare to wait on uaddr. On success, increments q.key (key1) ref |
| 3208 | * count. |
| 3209 | */ |
| 3210 | ret = futex_wait_setup(uaddr, val, flags, &q, &hb); |
| 3211 | if (ret) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3212 | goto out; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3213 | |
| 3214 | /* |
| 3215 | * The check above which compares uaddrs is not sufficient for |
| 3216 | * shared futexes. We need to compare the keys: |
| 3217 | */ |
| 3218 | if (match_futex(&q.key, &key2)) { |
| 3219 | queue_unlock(hb); |
| 3220 | ret = -EINVAL; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3221 | goto out; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3222 | } |
| 3223 | |
| 3224 | /* Queue the futex_q, drop the hb lock, wait for wakeup. */ |
| 3225 | futex_wait_queue_me(hb, &q, to); |
| 3226 | |
| 3227 | spin_lock(&hb->lock); |
| 3228 | ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to); |
| 3229 | spin_unlock(&hb->lock); |
| 3230 | if (ret) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3231 | goto out; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3232 | |
| 3233 | /* |
| 3234 | * In order for us to be here, we know our q.key == key2, and since |
| 3235 | * we took the hb->lock above, we also know that futex_requeue() has |
| 3236 | * completed and we no longer have to concern ourselves with a wakeup |
| 3237 | * race with the atomic proxy lock acquisition by the requeue code. The |
| 3238 | * futex_requeue dropped our key1 reference and incremented our key2 |
| 3239 | * reference count. |
| 3240 | */ |
| 3241 | |
| 3242 | /* Check if the requeue code acquired the second futex for us. */ |
| 3243 | if (!q.rt_waiter) { |
| 3244 | /* |
| 3245 | * Got the lock. We might not be the anticipated owner if we |
| 3246 | * did a lock-steal - fix up the PI-state in that case. |
| 3247 | */ |
| 3248 | if (q.pi_state && (q.pi_state->owner != current)) { |
| 3249 | spin_lock(q.lock_ptr); |
| 3250 | ret = fixup_pi_state_owner(uaddr2, &q, current); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3251 | /* |
| 3252 | * Drop the reference to the pi state which |
| 3253 | * the requeue_pi() code acquired for us. |
| 3254 | */ |
| 3255 | put_pi_state(q.pi_state); |
| 3256 | spin_unlock(q.lock_ptr); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 3257 | /* |
| 3258 | * Adjust the return value. It's either -EFAULT or |
| 3259 | * success (1) but the caller expects 0 for success. |
| 3260 | */ |
| 3261 | ret = ret < 0 ? ret : 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3262 | } |
| 3263 | } else { |
| 3264 | struct rt_mutex *pi_mutex; |
| 3265 | |
| 3266 | /* |
| 3267 | * We have been woken up by futex_unlock_pi(), a timeout, or a |
| 3268 | * signal. futex_unlock_pi() will not destroy the lock_ptr nor |
| 3269 | * the pi_state. |
| 3270 | */ |
| 3271 | WARN_ON(!q.pi_state); |
| 3272 | pi_mutex = &q.pi_state->pi_mutex; |
| 3273 | ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter); |
| 3274 | |
| 3275 | spin_lock(q.lock_ptr); |
| 3276 | if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter)) |
| 3277 | ret = 0; |
| 3278 | |
| 3279 | debug_rt_mutex_free_waiter(&rt_waiter); |
| 3280 | /* |
| 3281 | * Fixup the pi_state owner and possibly acquire the lock if we |
| 3282 | * haven't already. |
| 3283 | */ |
| 3284 | res = fixup_owner(uaddr2, &q, !ret); |
| 3285 | /* |
| 3286 | * If fixup_owner() returned an error, proprogate that. If it |
| 3287 | * acquired the lock, clear -ETIMEDOUT or -EINTR. |
| 3288 | */ |
| 3289 | if (res) |
| 3290 | ret = (res < 0) ? res : 0; |
| 3291 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3292 | /* Unqueue and drop the lock. */ |
| 3293 | unqueue_me_pi(&q); |
| 3294 | } |
| 3295 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3296 | if (ret == -EINTR) { |
| 3297 | /* |
| 3298 | * We've already been requeued, but cannot restart by calling |
| 3299 | * futex_lock_pi() directly. We could restart this syscall, but |
| 3300 | * it would detect that the user space "val" changed and return |
| 3301 | * -EWOULDBLOCK. Save the overhead of the restart and return |
| 3302 | * -EWOULDBLOCK directly. |
| 3303 | */ |
| 3304 | ret = -EWOULDBLOCK; |
| 3305 | } |
| 3306 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3307 | out: |
| 3308 | if (to) { |
| 3309 | hrtimer_cancel(&to->timer); |
| 3310 | destroy_hrtimer_on_stack(&to->timer); |
| 3311 | } |
| 3312 | return ret; |
| 3313 | } |
| 3314 | |
| 3315 | /* |
| 3316 | * Support for robust futexes: the kernel cleans up held futexes at |
| 3317 | * thread exit time. |
| 3318 | * |
| 3319 | * Implementation: user-space maintains a per-thread list of locks it |
| 3320 | * is holding. Upon do_exit(), the kernel carefully walks this list, |
| 3321 | * and marks all locks that are owned by this thread with the |
| 3322 | * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is |
| 3323 | * always manipulated with the lock held, so the list is private and |
| 3324 | * per-thread. Userspace also maintains a per-thread 'list_op_pending' |
| 3325 | * field, to allow the kernel to clean up if the thread dies after |
| 3326 | * acquiring the lock, but just before it could have added itself to |
| 3327 | * the list. There can only be one such pending lock. |
| 3328 | */ |
| 3329 | |
| 3330 | /** |
| 3331 | * sys_set_robust_list() - Set the robust-futex list head of a task |
| 3332 | * @head: pointer to the list-head |
| 3333 | * @len: length of the list-head, as userspace expects |
| 3334 | */ |
| 3335 | SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head, |
| 3336 | size_t, len) |
| 3337 | { |
| 3338 | if (!futex_cmpxchg_enabled) |
| 3339 | return -ENOSYS; |
| 3340 | /* |
| 3341 | * The kernel knows only one size for now: |
| 3342 | */ |
| 3343 | if (unlikely(len != sizeof(*head))) |
| 3344 | return -EINVAL; |
| 3345 | |
| 3346 | current->robust_list = head; |
| 3347 | |
| 3348 | return 0; |
| 3349 | } |
| 3350 | |
| 3351 | /** |
| 3352 | * sys_get_robust_list() - Get the robust-futex list head of a task |
| 3353 | * @pid: pid of the process [zero for current task] |
| 3354 | * @head_ptr: pointer to a list-head pointer, the kernel fills it in |
| 3355 | * @len_ptr: pointer to a length field, the kernel fills in the header size |
| 3356 | */ |
| 3357 | SYSCALL_DEFINE3(get_robust_list, int, pid, |
| 3358 | struct robust_list_head __user * __user *, head_ptr, |
| 3359 | size_t __user *, len_ptr) |
| 3360 | { |
| 3361 | struct robust_list_head __user *head; |
| 3362 | unsigned long ret; |
| 3363 | struct task_struct *p; |
| 3364 | |
| 3365 | if (!futex_cmpxchg_enabled) |
| 3366 | return -ENOSYS; |
| 3367 | |
| 3368 | rcu_read_lock(); |
| 3369 | |
| 3370 | ret = -ESRCH; |
| 3371 | if (!pid) |
| 3372 | p = current; |
| 3373 | else { |
| 3374 | p = find_task_by_vpid(pid); |
| 3375 | if (!p) |
| 3376 | goto err_unlock; |
| 3377 | } |
| 3378 | |
| 3379 | ret = -EPERM; |
| 3380 | if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS)) |
| 3381 | goto err_unlock; |
| 3382 | |
| 3383 | head = p->robust_list; |
| 3384 | rcu_read_unlock(); |
| 3385 | |
| 3386 | if (put_user(sizeof(*head), len_ptr)) |
| 3387 | return -EFAULT; |
| 3388 | return put_user(head, head_ptr); |
| 3389 | |
| 3390 | err_unlock: |
| 3391 | rcu_read_unlock(); |
| 3392 | |
| 3393 | return ret; |
| 3394 | } |
| 3395 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3396 | /* Constants for the pending_op argument of handle_futex_death */ |
| 3397 | #define HANDLE_DEATH_PENDING true |
| 3398 | #define HANDLE_DEATH_LIST false |
| 3399 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3400 | /* |
| 3401 | * Process a futex-list entry, check whether it's owned by the |
| 3402 | * dying task, and do notification if so: |
| 3403 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3404 | static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, |
| 3405 | bool pi, bool pending_op) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3406 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3407 | u32 uval, nval, mval; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3408 | int err; |
| 3409 | |
| 3410 | /* Futex address must be 32bit aligned */ |
| 3411 | if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0) |
| 3412 | return -1; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3413 | |
| 3414 | retry: |
| 3415 | if (get_user(uval, uaddr)) |
| 3416 | return -1; |
| 3417 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3418 | /* |
| 3419 | * Special case for regular (non PI) futexes. The unlock path in |
| 3420 | * user space has two race scenarios: |
| 3421 | * |
| 3422 | * 1. The unlock path releases the user space futex value and |
| 3423 | * before it can execute the futex() syscall to wake up |
| 3424 | * waiters it is killed. |
| 3425 | * |
| 3426 | * 2. A woken up waiter is killed before it can acquire the |
| 3427 | * futex in user space. |
| 3428 | * |
| 3429 | * In both cases the TID validation below prevents a wakeup of |
| 3430 | * potential waiters which can cause these waiters to block |
| 3431 | * forever. |
| 3432 | * |
| 3433 | * In both cases the following conditions are met: |
| 3434 | * |
| 3435 | * 1) task->robust_list->list_op_pending != NULL |
| 3436 | * @pending_op == true |
| 3437 | * 2) User space futex value == 0 |
| 3438 | * 3) Regular futex: @pi == false |
| 3439 | * |
| 3440 | * If these conditions are met, it is safe to attempt waking up a |
| 3441 | * potential waiter without touching the user space futex value and |
| 3442 | * trying to set the OWNER_DIED bit. The user space futex value is |
| 3443 | * uncontended and the rest of the user space mutex state is |
| 3444 | * consistent, so a woken waiter will just take over the |
| 3445 | * uncontended futex. Setting the OWNER_DIED bit would create |
| 3446 | * inconsistent state and malfunction of the user space owner died |
| 3447 | * handling. |
| 3448 | */ |
| 3449 | if (pending_op && !pi && !uval) { |
| 3450 | futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY); |
| 3451 | return 0; |
| 3452 | } |
| 3453 | |
| 3454 | if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr)) |
| 3455 | return 0; |
| 3456 | |
| 3457 | /* |
| 3458 | * Ok, this dying thread is truly holding a futex |
| 3459 | * of interest. Set the OWNER_DIED bit atomically |
| 3460 | * via cmpxchg, and if the value had FUTEX_WAITERS |
| 3461 | * set, wake up a waiter (if any). (We have to do a |
| 3462 | * futex_wake() even if OWNER_DIED is already set - |
| 3463 | * to handle the rare but possible case of recursive |
| 3464 | * thread-death.) The rest of the cleanup is done in |
| 3465 | * userspace. |
| 3466 | */ |
| 3467 | mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED; |
| 3468 | |
| 3469 | /* |
| 3470 | * We are not holding a lock here, but we want to have |
| 3471 | * the pagefault_disable/enable() protection because |
| 3472 | * we want to handle the fault gracefully. If the |
| 3473 | * access fails we try to fault in the futex with R/W |
| 3474 | * verification via get_user_pages. get_user() above |
| 3475 | * does not guarantee R/W access. If that fails we |
| 3476 | * give up and leave the futex locked. |
| 3477 | */ |
| 3478 | if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) { |
| 3479 | switch (err) { |
| 3480 | case -EFAULT: |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3481 | if (fault_in_user_writeable(uaddr)) |
| 3482 | return -1; |
| 3483 | goto retry; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3484 | |
| 3485 | case -EAGAIN: |
| 3486 | cond_resched(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3487 | goto retry; |
| 3488 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3489 | default: |
| 3490 | WARN_ON_ONCE(1); |
| 3491 | return err; |
| 3492 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3493 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3494 | |
| 3495 | if (nval != uval) |
| 3496 | goto retry; |
| 3497 | |
| 3498 | /* |
| 3499 | * Wake robust non-PI futexes here. The wakeup of |
| 3500 | * PI futexes happens in exit_pi_state(): |
| 3501 | */ |
| 3502 | if (!pi && (uval & FUTEX_WAITERS)) |
| 3503 | futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY); |
| 3504 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3505 | return 0; |
| 3506 | } |
| 3507 | |
| 3508 | /* |
| 3509 | * Fetch a robust-list pointer. Bit 0 signals PI futexes: |
| 3510 | */ |
| 3511 | static inline int fetch_robust_entry(struct robust_list __user **entry, |
| 3512 | struct robust_list __user * __user *head, |
| 3513 | unsigned int *pi) |
| 3514 | { |
| 3515 | unsigned long uentry; |
| 3516 | |
| 3517 | if (get_user(uentry, (unsigned long __user *)head)) |
| 3518 | return -EFAULT; |
| 3519 | |
| 3520 | *entry = (void __user *)(uentry & ~1UL); |
| 3521 | *pi = uentry & 1; |
| 3522 | |
| 3523 | return 0; |
| 3524 | } |
| 3525 | |
| 3526 | /* |
| 3527 | * Walk curr->robust_list (very carefully, it's a userspace list!) |
| 3528 | * and mark any locks found there dead, and notify any waiters. |
| 3529 | * |
| 3530 | * We silently return on any sign of list-walking problem. |
| 3531 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3532 | static void exit_robust_list(struct task_struct *curr) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3533 | { |
| 3534 | struct robust_list_head __user *head = curr->robust_list; |
| 3535 | struct robust_list __user *entry, *next_entry, *pending; |
| 3536 | unsigned int limit = ROBUST_LIST_LIMIT, pi, pip; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3537 | unsigned int next_pi; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3538 | unsigned long futex_offset; |
| 3539 | int rc; |
| 3540 | |
| 3541 | if (!futex_cmpxchg_enabled) |
| 3542 | return; |
| 3543 | |
| 3544 | /* |
| 3545 | * Fetch the list head (which was registered earlier, via |
| 3546 | * sys_set_robust_list()): |
| 3547 | */ |
| 3548 | if (fetch_robust_entry(&entry, &head->list.next, &pi)) |
| 3549 | return; |
| 3550 | /* |
| 3551 | * Fetch the relative futex offset: |
| 3552 | */ |
| 3553 | if (get_user(futex_offset, &head->futex_offset)) |
| 3554 | return; |
| 3555 | /* |
| 3556 | * Fetch any possibly pending lock-add first, and handle it |
| 3557 | * if it exists: |
| 3558 | */ |
| 3559 | if (fetch_robust_entry(&pending, &head->list_op_pending, &pip)) |
| 3560 | return; |
| 3561 | |
| 3562 | next_entry = NULL; /* avoid warning with gcc */ |
| 3563 | while (entry != &head->list) { |
| 3564 | /* |
| 3565 | * Fetch the next entry in the list before calling |
| 3566 | * handle_futex_death: |
| 3567 | */ |
| 3568 | rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi); |
| 3569 | /* |
| 3570 | * A pending lock might already be on the list, so |
| 3571 | * don't process it twice: |
| 3572 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3573 | if (entry != pending) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3574 | if (handle_futex_death((void __user *)entry + futex_offset, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3575 | curr, pi, HANDLE_DEATH_LIST)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3576 | return; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3577 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3578 | if (rc) |
| 3579 | return; |
| 3580 | entry = next_entry; |
| 3581 | pi = next_pi; |
| 3582 | /* |
| 3583 | * Avoid excessively long or circular lists: |
| 3584 | */ |
| 3585 | if (!--limit) |
| 3586 | break; |
| 3587 | |
| 3588 | cond_resched(); |
| 3589 | } |
| 3590 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3591 | if (pending) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3592 | handle_futex_death((void __user *)pending + futex_offset, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3593 | curr, pip, HANDLE_DEATH_PENDING); |
| 3594 | } |
| 3595 | } |
| 3596 | |
| 3597 | static void futex_cleanup(struct task_struct *tsk) |
| 3598 | { |
| 3599 | if (unlikely(tsk->robust_list)) { |
| 3600 | exit_robust_list(tsk); |
| 3601 | tsk->robust_list = NULL; |
| 3602 | } |
| 3603 | |
| 3604 | #ifdef CONFIG_COMPAT |
| 3605 | if (unlikely(tsk->compat_robust_list)) { |
| 3606 | compat_exit_robust_list(tsk); |
| 3607 | tsk->compat_robust_list = NULL; |
| 3608 | } |
| 3609 | #endif |
| 3610 | |
| 3611 | if (unlikely(!list_empty(&tsk->pi_state_list))) |
| 3612 | exit_pi_state_list(tsk); |
| 3613 | } |
| 3614 | |
| 3615 | /** |
| 3616 | * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD |
| 3617 | * @tsk: task to set the state on |
| 3618 | * |
| 3619 | * Set the futex exit state of the task lockless. The futex waiter code |
| 3620 | * observes that state when a task is exiting and loops until the task has |
| 3621 | * actually finished the futex cleanup. The worst case for this is that the |
| 3622 | * waiter runs through the wait loop until the state becomes visible. |
| 3623 | * |
| 3624 | * This is called from the recursive fault handling path in do_exit(). |
| 3625 | * |
| 3626 | * This is best effort. Either the futex exit code has run already or |
| 3627 | * not. If the OWNER_DIED bit has been set on the futex then the waiter can |
| 3628 | * take it over. If not, the problem is pushed back to user space. If the |
| 3629 | * futex exit code did not run yet, then an already queued waiter might |
| 3630 | * block forever, but there is nothing which can be done about that. |
| 3631 | */ |
| 3632 | void futex_exit_recursive(struct task_struct *tsk) |
| 3633 | { |
| 3634 | /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */ |
| 3635 | if (tsk->futex_state == FUTEX_STATE_EXITING) |
| 3636 | mutex_unlock(&tsk->futex_exit_mutex); |
| 3637 | tsk->futex_state = FUTEX_STATE_DEAD; |
| 3638 | } |
| 3639 | |
| 3640 | static void futex_cleanup_begin(struct task_struct *tsk) |
| 3641 | { |
| 3642 | /* |
| 3643 | * Prevent various race issues against a concurrent incoming waiter |
| 3644 | * including live locks by forcing the waiter to block on |
| 3645 | * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in |
| 3646 | * attach_to_pi_owner(). |
| 3647 | */ |
| 3648 | mutex_lock(&tsk->futex_exit_mutex); |
| 3649 | |
| 3650 | /* |
| 3651 | * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock. |
| 3652 | * |
| 3653 | * This ensures that all subsequent checks of tsk->futex_state in |
| 3654 | * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with |
| 3655 | * tsk->pi_lock held. |
| 3656 | * |
| 3657 | * It guarantees also that a pi_state which was queued right before |
| 3658 | * the state change under tsk->pi_lock by a concurrent waiter must |
| 3659 | * be observed in exit_pi_state_list(). |
| 3660 | */ |
| 3661 | raw_spin_lock_irq(&tsk->pi_lock); |
| 3662 | tsk->futex_state = FUTEX_STATE_EXITING; |
| 3663 | raw_spin_unlock_irq(&tsk->pi_lock); |
| 3664 | } |
| 3665 | |
| 3666 | static void futex_cleanup_end(struct task_struct *tsk, int state) |
| 3667 | { |
| 3668 | /* |
| 3669 | * Lockless store. The only side effect is that an observer might |
| 3670 | * take another loop until it becomes visible. |
| 3671 | */ |
| 3672 | tsk->futex_state = state; |
| 3673 | /* |
| 3674 | * Drop the exit protection. This unblocks waiters which observed |
| 3675 | * FUTEX_STATE_EXITING to reevaluate the state. |
| 3676 | */ |
| 3677 | mutex_unlock(&tsk->futex_exit_mutex); |
| 3678 | } |
| 3679 | |
| 3680 | void futex_exec_release(struct task_struct *tsk) |
| 3681 | { |
| 3682 | /* |
| 3683 | * The state handling is done for consistency, but in the case of |
| 3684 | * exec() there is no way to prevent futher damage as the PID stays |
| 3685 | * the same. But for the unlikely and arguably buggy case that a |
| 3686 | * futex is held on exec(), this provides at least as much state |
| 3687 | * consistency protection which is possible. |
| 3688 | */ |
| 3689 | futex_cleanup_begin(tsk); |
| 3690 | futex_cleanup(tsk); |
| 3691 | /* |
| 3692 | * Reset the state to FUTEX_STATE_OK. The task is alive and about |
| 3693 | * exec a new binary. |
| 3694 | */ |
| 3695 | futex_cleanup_end(tsk, FUTEX_STATE_OK); |
| 3696 | } |
| 3697 | |
| 3698 | void futex_exit_release(struct task_struct *tsk) |
| 3699 | { |
| 3700 | futex_cleanup_begin(tsk); |
| 3701 | futex_cleanup(tsk); |
| 3702 | futex_cleanup_end(tsk, FUTEX_STATE_DEAD); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3703 | } |
| 3704 | |
| 3705 | long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout, |
| 3706 | u32 __user *uaddr2, u32 val2, u32 val3) |
| 3707 | { |
| 3708 | int cmd = op & FUTEX_CMD_MASK; |
| 3709 | unsigned int flags = 0; |
| 3710 | |
| 3711 | if (!(op & FUTEX_PRIVATE_FLAG)) |
| 3712 | flags |= FLAGS_SHARED; |
| 3713 | |
| 3714 | if (op & FUTEX_CLOCK_REALTIME) { |
| 3715 | flags |= FLAGS_CLOCKRT; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 3716 | if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3717 | return -ENOSYS; |
| 3718 | } |
| 3719 | |
| 3720 | switch (cmd) { |
| 3721 | case FUTEX_LOCK_PI: |
| 3722 | case FUTEX_UNLOCK_PI: |
| 3723 | case FUTEX_TRYLOCK_PI: |
| 3724 | case FUTEX_WAIT_REQUEUE_PI: |
| 3725 | case FUTEX_CMP_REQUEUE_PI: |
| 3726 | if (!futex_cmpxchg_enabled) |
| 3727 | return -ENOSYS; |
| 3728 | } |
| 3729 | |
| 3730 | switch (cmd) { |
| 3731 | case FUTEX_WAIT: |
| 3732 | val3 = FUTEX_BITSET_MATCH_ANY; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3733 | fallthrough; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3734 | case FUTEX_WAIT_BITSET: |
| 3735 | return futex_wait(uaddr, flags, val, timeout, val3); |
| 3736 | case FUTEX_WAKE: |
| 3737 | val3 = FUTEX_BITSET_MATCH_ANY; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3738 | fallthrough; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3739 | case FUTEX_WAKE_BITSET: |
| 3740 | return futex_wake(uaddr, flags, val, val3); |
| 3741 | case FUTEX_REQUEUE: |
| 3742 | return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0); |
| 3743 | case FUTEX_CMP_REQUEUE: |
| 3744 | return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0); |
| 3745 | case FUTEX_WAKE_OP: |
| 3746 | return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3); |
| 3747 | case FUTEX_LOCK_PI: |
| 3748 | return futex_lock_pi(uaddr, flags, timeout, 0); |
| 3749 | case FUTEX_UNLOCK_PI: |
| 3750 | return futex_unlock_pi(uaddr, flags); |
| 3751 | case FUTEX_TRYLOCK_PI: |
| 3752 | return futex_lock_pi(uaddr, flags, NULL, 1); |
| 3753 | case FUTEX_WAIT_REQUEUE_PI: |
| 3754 | val3 = FUTEX_BITSET_MATCH_ANY; |
| 3755 | return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3, |
| 3756 | uaddr2); |
| 3757 | case FUTEX_CMP_REQUEUE_PI: |
| 3758 | return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1); |
| 3759 | } |
| 3760 | return -ENOSYS; |
| 3761 | } |
| 3762 | |
| 3763 | |
| 3764 | SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3765 | struct __kernel_timespec __user *, utime, u32 __user *, uaddr2, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3766 | u32, val3) |
| 3767 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3768 | struct timespec64 ts; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3769 | ktime_t t, *tp = NULL; |
| 3770 | u32 val2 = 0; |
| 3771 | int cmd = op & FUTEX_CMD_MASK; |
| 3772 | |
| 3773 | if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI || |
| 3774 | cmd == FUTEX_WAIT_BITSET || |
| 3775 | cmd == FUTEX_WAIT_REQUEUE_PI)) { |
| 3776 | if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG)))) |
| 3777 | return -EFAULT; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3778 | if (get_timespec64(&ts, utime)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3779 | return -EFAULT; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3780 | if (!timespec64_valid(&ts)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3781 | return -EINVAL; |
| 3782 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3783 | t = timespec64_to_ktime(ts); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3784 | if (cmd == FUTEX_WAIT) |
| 3785 | t = ktime_add_safe(ktime_get(), t); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3786 | else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME)) |
| 3787 | t = timens_ktime_to_host(CLOCK_MONOTONIC, t); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3788 | tp = &t; |
| 3789 | } |
| 3790 | /* |
| 3791 | * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*. |
| 3792 | * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP. |
| 3793 | */ |
| 3794 | if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE || |
| 3795 | cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP) |
| 3796 | val2 = (u32) (unsigned long) utime; |
| 3797 | |
| 3798 | return do_futex(uaddr, op, val, tp, uaddr2, val2, val3); |
| 3799 | } |
| 3800 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3801 | #ifdef CONFIG_COMPAT |
| 3802 | /* |
| 3803 | * Fetch a robust-list pointer. Bit 0 signals PI futexes: |
| 3804 | */ |
| 3805 | static inline int |
| 3806 | compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry, |
| 3807 | compat_uptr_t __user *head, unsigned int *pi) |
| 3808 | { |
| 3809 | if (get_user(*uentry, head)) |
| 3810 | return -EFAULT; |
| 3811 | |
| 3812 | *entry = compat_ptr((*uentry) & ~1); |
| 3813 | *pi = (unsigned int)(*uentry) & 1; |
| 3814 | |
| 3815 | return 0; |
| 3816 | } |
| 3817 | |
| 3818 | static void __user *futex_uaddr(struct robust_list __user *entry, |
| 3819 | compat_long_t futex_offset) |
| 3820 | { |
| 3821 | compat_uptr_t base = ptr_to_compat(entry); |
| 3822 | void __user *uaddr = compat_ptr(base + futex_offset); |
| 3823 | |
| 3824 | return uaddr; |
| 3825 | } |
| 3826 | |
| 3827 | /* |
| 3828 | * Walk curr->robust_list (very carefully, it's a userspace list!) |
| 3829 | * and mark any locks found there dead, and notify any waiters. |
| 3830 | * |
| 3831 | * We silently return on any sign of list-walking problem. |
| 3832 | */ |
| 3833 | static void compat_exit_robust_list(struct task_struct *curr) |
| 3834 | { |
| 3835 | struct compat_robust_list_head __user *head = curr->compat_robust_list; |
| 3836 | struct robust_list __user *entry, *next_entry, *pending; |
| 3837 | unsigned int limit = ROBUST_LIST_LIMIT, pi, pip; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3838 | unsigned int next_pi; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3839 | compat_uptr_t uentry, next_uentry, upending; |
| 3840 | compat_long_t futex_offset; |
| 3841 | int rc; |
| 3842 | |
| 3843 | if (!futex_cmpxchg_enabled) |
| 3844 | return; |
| 3845 | |
| 3846 | /* |
| 3847 | * Fetch the list head (which was registered earlier, via |
| 3848 | * sys_set_robust_list()): |
| 3849 | */ |
| 3850 | if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi)) |
| 3851 | return; |
| 3852 | /* |
| 3853 | * Fetch the relative futex offset: |
| 3854 | */ |
| 3855 | if (get_user(futex_offset, &head->futex_offset)) |
| 3856 | return; |
| 3857 | /* |
| 3858 | * Fetch any possibly pending lock-add first, and handle it |
| 3859 | * if it exists: |
| 3860 | */ |
| 3861 | if (compat_fetch_robust_entry(&upending, &pending, |
| 3862 | &head->list_op_pending, &pip)) |
| 3863 | return; |
| 3864 | |
| 3865 | next_entry = NULL; /* avoid warning with gcc */ |
| 3866 | while (entry != (struct robust_list __user *) &head->list) { |
| 3867 | /* |
| 3868 | * Fetch the next entry in the list before calling |
| 3869 | * handle_futex_death: |
| 3870 | */ |
| 3871 | rc = compat_fetch_robust_entry(&next_uentry, &next_entry, |
| 3872 | (compat_uptr_t __user *)&entry->next, &next_pi); |
| 3873 | /* |
| 3874 | * A pending lock might already be on the list, so |
| 3875 | * dont process it twice: |
| 3876 | */ |
| 3877 | if (entry != pending) { |
| 3878 | void __user *uaddr = futex_uaddr(entry, futex_offset); |
| 3879 | |
| 3880 | if (handle_futex_death(uaddr, curr, pi, |
| 3881 | HANDLE_DEATH_LIST)) |
| 3882 | return; |
| 3883 | } |
| 3884 | if (rc) |
| 3885 | return; |
| 3886 | uentry = next_uentry; |
| 3887 | entry = next_entry; |
| 3888 | pi = next_pi; |
| 3889 | /* |
| 3890 | * Avoid excessively long or circular lists: |
| 3891 | */ |
| 3892 | if (!--limit) |
| 3893 | break; |
| 3894 | |
| 3895 | cond_resched(); |
| 3896 | } |
| 3897 | if (pending) { |
| 3898 | void __user *uaddr = futex_uaddr(pending, futex_offset); |
| 3899 | |
| 3900 | handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING); |
| 3901 | } |
| 3902 | } |
| 3903 | |
| 3904 | COMPAT_SYSCALL_DEFINE2(set_robust_list, |
| 3905 | struct compat_robust_list_head __user *, head, |
| 3906 | compat_size_t, len) |
| 3907 | { |
| 3908 | if (!futex_cmpxchg_enabled) |
| 3909 | return -ENOSYS; |
| 3910 | |
| 3911 | if (unlikely(len != sizeof(*head))) |
| 3912 | return -EINVAL; |
| 3913 | |
| 3914 | current->compat_robust_list = head; |
| 3915 | |
| 3916 | return 0; |
| 3917 | } |
| 3918 | |
| 3919 | COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid, |
| 3920 | compat_uptr_t __user *, head_ptr, |
| 3921 | compat_size_t __user *, len_ptr) |
| 3922 | { |
| 3923 | struct compat_robust_list_head __user *head; |
| 3924 | unsigned long ret; |
| 3925 | struct task_struct *p; |
| 3926 | |
| 3927 | if (!futex_cmpxchg_enabled) |
| 3928 | return -ENOSYS; |
| 3929 | |
| 3930 | rcu_read_lock(); |
| 3931 | |
| 3932 | ret = -ESRCH; |
| 3933 | if (!pid) |
| 3934 | p = current; |
| 3935 | else { |
| 3936 | p = find_task_by_vpid(pid); |
| 3937 | if (!p) |
| 3938 | goto err_unlock; |
| 3939 | } |
| 3940 | |
| 3941 | ret = -EPERM; |
| 3942 | if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS)) |
| 3943 | goto err_unlock; |
| 3944 | |
| 3945 | head = p->compat_robust_list; |
| 3946 | rcu_read_unlock(); |
| 3947 | |
| 3948 | if (put_user(sizeof(*head), len_ptr)) |
| 3949 | return -EFAULT; |
| 3950 | return put_user(ptr_to_compat(head), head_ptr); |
| 3951 | |
| 3952 | err_unlock: |
| 3953 | rcu_read_unlock(); |
| 3954 | |
| 3955 | return ret; |
| 3956 | } |
| 3957 | #endif /* CONFIG_COMPAT */ |
| 3958 | |
| 3959 | #ifdef CONFIG_COMPAT_32BIT_TIME |
| 3960 | SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val, |
| 3961 | struct old_timespec32 __user *, utime, u32 __user *, uaddr2, |
| 3962 | u32, val3) |
| 3963 | { |
| 3964 | struct timespec64 ts; |
| 3965 | ktime_t t, *tp = NULL; |
| 3966 | int val2 = 0; |
| 3967 | int cmd = op & FUTEX_CMD_MASK; |
| 3968 | |
| 3969 | if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI || |
| 3970 | cmd == FUTEX_WAIT_BITSET || |
| 3971 | cmd == FUTEX_WAIT_REQUEUE_PI)) { |
| 3972 | if (get_old_timespec32(&ts, utime)) |
| 3973 | return -EFAULT; |
| 3974 | if (!timespec64_valid(&ts)) |
| 3975 | return -EINVAL; |
| 3976 | |
| 3977 | t = timespec64_to_ktime(ts); |
| 3978 | if (cmd == FUTEX_WAIT) |
| 3979 | t = ktime_add_safe(ktime_get(), t); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3980 | else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME)) |
| 3981 | t = timens_ktime_to_host(CLOCK_MONOTONIC, t); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3982 | tp = &t; |
| 3983 | } |
| 3984 | if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE || |
| 3985 | cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP) |
| 3986 | val2 = (int) (unsigned long) utime; |
| 3987 | |
| 3988 | return do_futex(uaddr, op, val, tp, uaddr2, val2, val3); |
| 3989 | } |
| 3990 | #endif /* CONFIG_COMPAT_32BIT_TIME */ |
| 3991 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3992 | static void __init futex_detect_cmpxchg(void) |
| 3993 | { |
| 3994 | #ifndef CONFIG_HAVE_FUTEX_CMPXCHG |
| 3995 | u32 curval; |
| 3996 | |
| 3997 | /* |
| 3998 | * This will fail and we want it. Some arch implementations do |
| 3999 | * runtime detection of the futex_atomic_cmpxchg_inatomic() |
| 4000 | * functionality. We want to know that before we call in any |
| 4001 | * of the complex code paths. Also we want to prevent |
| 4002 | * registration of robust lists in that case. NULL is |
| 4003 | * guaranteed to fault and we get -EFAULT on functional |
| 4004 | * implementation, the non-functional ones will return |
| 4005 | * -ENOSYS. |
| 4006 | */ |
| 4007 | if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT) |
| 4008 | futex_cmpxchg_enabled = 1; |
| 4009 | #endif |
| 4010 | } |
| 4011 | |
| 4012 | static int __init futex_init(void) |
| 4013 | { |
| 4014 | unsigned int futex_shift; |
| 4015 | unsigned long i; |
| 4016 | |
| 4017 | #if CONFIG_BASE_SMALL |
| 4018 | futex_hashsize = 16; |
| 4019 | #else |
| 4020 | futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus()); |
| 4021 | #endif |
| 4022 | |
| 4023 | futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues), |
| 4024 | futex_hashsize, 0, |
| 4025 | futex_hashsize < 256 ? HASH_SMALL : 0, |
| 4026 | &futex_shift, NULL, |
| 4027 | futex_hashsize, futex_hashsize); |
| 4028 | futex_hashsize = 1UL << futex_shift; |
| 4029 | |
| 4030 | futex_detect_cmpxchg(); |
| 4031 | |
| 4032 | for (i = 0; i < futex_hashsize; i++) { |
| 4033 | atomic_set(&futex_queues[i].waiters, 0); |
| 4034 | plist_head_init(&futex_queues[i].chain); |
| 4035 | spin_lock_init(&futex_queues[i].lock); |
| 4036 | } |
| 4037 | |
| 4038 | return 0; |
| 4039 | } |
| 4040 | core_initcall(futex_init); |