blob: f82879ae6577cd0b5cfaa3e5d4139b7b7f27d416 [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0-or-later
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * Fast Userspace Mutexes (which I call "Futexes!").
4 * (C) Rusty Russell, IBM 2002
5 *
6 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 *
9 * Removed page pinning, fix privately mapped COW pages and other cleanups
10 * (C) Copyright 2003, 2004 Jamie Lokier
11 *
12 * Robust futex support started by Ingo Molnar
13 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 *
16 * PI-futex support started by Ingo Molnar and Thomas Gleixner
17 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 *
20 * PRIVATE futexes by Eric Dumazet
21 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 *
23 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24 * Copyright (C) IBM Corporation, 2009
25 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 *
27 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28 * enough at me, Linus for the original (flawed) idea, Matthew
29 * Kirkwood for proof-of-concept implementation.
30 *
31 * "The futexes are also cursed."
32 * "But they come in a choice of three flavours!"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000033 */
David Brazdil0f672f62019-12-10 10:32:29 +000034#include <linux/compat.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000035#include <linux/slab.h>
36#include <linux/poll.h>
37#include <linux/fs.h>
38#include <linux/file.h>
39#include <linux/jhash.h>
40#include <linux/init.h>
41#include <linux/futex.h>
42#include <linux/mount.h>
43#include <linux/pagemap.h>
44#include <linux/syscalls.h>
45#include <linux/signal.h>
46#include <linux/export.h>
47#include <linux/magic.h>
48#include <linux/pid.h>
49#include <linux/nsproxy.h>
50#include <linux/ptrace.h>
51#include <linux/sched/rt.h>
52#include <linux/sched/wake_q.h>
53#include <linux/sched/mm.h>
54#include <linux/hugetlb.h>
55#include <linux/freezer.h>
David Brazdil0f672f62019-12-10 10:32:29 +000056#include <linux/memblock.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000057#include <linux/fault-inject.h>
David Brazdil0f672f62019-12-10 10:32:29 +000058#include <linux/refcount.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000059
60#include <asm/futex.h>
61
62#include "locking/rtmutex_common.h"
63
64/*
65 * READ this before attempting to hack on futexes!
66 *
67 * Basic futex operation and ordering guarantees
68 * =============================================
69 *
70 * The waiter reads the futex value in user space and calls
71 * futex_wait(). This function computes the hash bucket and acquires
72 * the hash bucket lock. After that it reads the futex user space value
73 * again and verifies that the data has not changed. If it has not changed
74 * it enqueues itself into the hash bucket, releases the hash bucket lock
75 * and schedules.
76 *
77 * The waker side modifies the user space value of the futex and calls
78 * futex_wake(). This function computes the hash bucket and acquires the
79 * hash bucket lock. Then it looks for waiters on that futex in the hash
80 * bucket and wakes them.
81 *
82 * In futex wake up scenarios where no tasks are blocked on a futex, taking
83 * the hb spinlock can be avoided and simply return. In order for this
84 * optimization to work, ordering guarantees must exist so that the waiter
85 * being added to the list is acknowledged when the list is concurrently being
86 * checked by the waker, avoiding scenarios like the following:
87 *
88 * CPU 0 CPU 1
89 * val = *futex;
90 * sys_futex(WAIT, futex, val);
91 * futex_wait(futex, val);
92 * uval = *futex;
93 * *futex = newval;
94 * sys_futex(WAKE, futex);
95 * futex_wake(futex);
96 * if (queue_empty())
97 * return;
98 * if (uval == val)
99 * lock(hash_bucket(futex));
100 * queue();
101 * unlock(hash_bucket(futex));
102 * schedule();
103 *
104 * This would cause the waiter on CPU 0 to wait forever because it
105 * missed the transition of the user space value from val to newval
106 * and the waker did not find the waiter in the hash bucket queue.
107 *
108 * The correct serialization ensures that a waiter either observes
109 * the changed user space value before blocking or is woken by a
110 * concurrent waker:
111 *
112 * CPU 0 CPU 1
113 * val = *futex;
114 * sys_futex(WAIT, futex, val);
115 * futex_wait(futex, val);
116 *
117 * waiters++; (a)
118 * smp_mb(); (A) <-- paired with -.
119 * |
120 * lock(hash_bucket(futex)); |
121 * |
122 * uval = *futex; |
123 * | *futex = newval;
124 * | sys_futex(WAKE, futex);
125 * | futex_wake(futex);
126 * |
127 * `--------> smp_mb(); (B)
128 * if (uval == val)
129 * queue();
130 * unlock(hash_bucket(futex));
131 * schedule(); if (waiters)
132 * lock(hash_bucket(futex));
133 * else wake_waiters(futex);
134 * waiters--; (b) unlock(hash_bucket(futex));
135 *
136 * Where (A) orders the waiters increment and the futex value read through
137 * atomic operations (see hb_waiters_inc) and where (B) orders the write
138 * to futex and the waiters read -- this is done by the barriers for both
139 * shared and private futexes in get_futex_key_refs().
140 *
141 * This yields the following case (where X:=waiters, Y:=futex):
142 *
143 * X = Y = 0
144 *
145 * w[X]=1 w[Y]=1
146 * MB MB
147 * r[Y]=y r[X]=x
148 *
149 * Which guarantees that x==0 && y==0 is impossible; which translates back into
150 * the guarantee that we cannot both miss the futex variable change and the
151 * enqueue.
152 *
153 * Note that a new waiter is accounted for in (a) even when it is possible that
154 * the wait call can return error, in which case we backtrack from it in (b).
155 * Refer to the comment in queue_lock().
156 *
157 * Similarly, in order to account for waiters being requeued on another
158 * address we always increment the waiters for the destination bucket before
159 * acquiring the lock. It then decrements them again after releasing it -
160 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
161 * will do the additional required waiter count housekeeping. This is done for
162 * double_lock_hb() and double_unlock_hb(), respectively.
163 */
164
David Brazdil0f672f62019-12-10 10:32:29 +0000165#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
166#define futex_cmpxchg_enabled 1
167#else
168static int __read_mostly futex_cmpxchg_enabled;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000169#endif
170
171/*
172 * Futex flags used to encode options to functions and preserve them across
173 * restarts.
174 */
175#ifdef CONFIG_MMU
176# define FLAGS_SHARED 0x01
177#else
178/*
179 * NOMMU does not have per process address space. Let the compiler optimize
180 * code away.
181 */
182# define FLAGS_SHARED 0x00
183#endif
184#define FLAGS_CLOCKRT 0x02
185#define FLAGS_HAS_TIMEOUT 0x04
186
187/*
188 * Priority Inheritance state:
189 */
190struct futex_pi_state {
191 /*
192 * list of 'owned' pi_state instances - these have to be
193 * cleaned up in do_exit() if the task exits prematurely:
194 */
195 struct list_head list;
196
197 /*
198 * The PI object:
199 */
200 struct rt_mutex pi_mutex;
201
202 struct task_struct *owner;
David Brazdil0f672f62019-12-10 10:32:29 +0000203 refcount_t refcount;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000204
205 union futex_key key;
206} __randomize_layout;
207
208/**
209 * struct futex_q - The hashed futex queue entry, one per waiting task
210 * @list: priority-sorted list of tasks waiting on this futex
211 * @task: the task waiting on the futex
212 * @lock_ptr: the hash bucket lock
213 * @key: the key the futex is hashed on
214 * @pi_state: optional priority inheritance state
215 * @rt_waiter: rt_waiter storage for use with requeue_pi
216 * @requeue_pi_key: the requeue_pi target futex key
217 * @bitset: bitset for the optional bitmasked wakeup
218 *
219 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
220 * we can wake only the relevant ones (hashed queues may be shared).
221 *
222 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
223 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
224 * The order of wakeup is always to make the first condition true, then
225 * the second.
226 *
227 * PI futexes are typically woken before they are removed from the hash list via
228 * the rt_mutex code. See unqueue_me_pi().
229 */
230struct futex_q {
231 struct plist_node list;
232
233 struct task_struct *task;
234 spinlock_t *lock_ptr;
235 union futex_key key;
236 struct futex_pi_state *pi_state;
237 struct rt_mutex_waiter *rt_waiter;
238 union futex_key *requeue_pi_key;
239 u32 bitset;
240} __randomize_layout;
241
242static const struct futex_q futex_q_init = {
243 /* list gets initialized in queue_me()*/
244 .key = FUTEX_KEY_INIT,
245 .bitset = FUTEX_BITSET_MATCH_ANY
246};
247
248/*
249 * Hash buckets are shared by all the futex_keys that hash to the same
250 * location. Each key may have multiple futex_q structures, one for each task
251 * waiting on a futex.
252 */
253struct futex_hash_bucket {
254 atomic_t waiters;
255 spinlock_t lock;
256 struct plist_head chain;
257} ____cacheline_aligned_in_smp;
258
259/*
260 * The base of the bucket array and its size are always used together
261 * (after initialization only in hash_futex()), so ensure that they
262 * reside in the same cacheline.
263 */
264static struct {
265 struct futex_hash_bucket *queues;
266 unsigned long hashsize;
267} __futex_data __read_mostly __aligned(2*sizeof(long));
268#define futex_queues (__futex_data.queues)
269#define futex_hashsize (__futex_data.hashsize)
270
271
272/*
273 * Fault injections for futexes.
274 */
275#ifdef CONFIG_FAIL_FUTEX
276
277static struct {
278 struct fault_attr attr;
279
280 bool ignore_private;
281} fail_futex = {
282 .attr = FAULT_ATTR_INITIALIZER,
283 .ignore_private = false,
284};
285
286static int __init setup_fail_futex(char *str)
287{
288 return setup_fault_attr(&fail_futex.attr, str);
289}
290__setup("fail_futex=", setup_fail_futex);
291
292static bool should_fail_futex(bool fshared)
293{
294 if (fail_futex.ignore_private && !fshared)
295 return false;
296
297 return should_fail(&fail_futex.attr, 1);
298}
299
300#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
301
302static int __init fail_futex_debugfs(void)
303{
304 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
305 struct dentry *dir;
306
307 dir = fault_create_debugfs_attr("fail_futex", NULL,
308 &fail_futex.attr);
309 if (IS_ERR(dir))
310 return PTR_ERR(dir);
311
David Brazdil0f672f62019-12-10 10:32:29 +0000312 debugfs_create_bool("ignore-private", mode, dir,
313 &fail_futex.ignore_private);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000314 return 0;
315}
316
317late_initcall(fail_futex_debugfs);
318
319#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
320
321#else
322static inline bool should_fail_futex(bool fshared)
323{
324 return false;
325}
326#endif /* CONFIG_FAIL_FUTEX */
327
David Brazdil0f672f62019-12-10 10:32:29 +0000328#ifdef CONFIG_COMPAT
329static void compat_exit_robust_list(struct task_struct *curr);
330#else
331static inline void compat_exit_robust_list(struct task_struct *curr) { }
332#endif
333
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000334static inline void futex_get_mm(union futex_key *key)
335{
336 mmgrab(key->private.mm);
337 /*
338 * Ensure futex_get_mm() implies a full barrier such that
339 * get_futex_key() implies a full barrier. This is relied upon
340 * as smp_mb(); (B), see the ordering comment above.
341 */
342 smp_mb__after_atomic();
343}
344
345/*
346 * Reflects a new waiter being added to the waitqueue.
347 */
348static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
349{
350#ifdef CONFIG_SMP
351 atomic_inc(&hb->waiters);
352 /*
353 * Full barrier (A), see the ordering comment above.
354 */
355 smp_mb__after_atomic();
356#endif
357}
358
359/*
360 * Reflects a waiter being removed from the waitqueue by wakeup
361 * paths.
362 */
363static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
364{
365#ifdef CONFIG_SMP
366 atomic_dec(&hb->waiters);
367#endif
368}
369
370static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
371{
372#ifdef CONFIG_SMP
373 return atomic_read(&hb->waiters);
374#else
375 return 1;
376#endif
377}
378
379/**
380 * hash_futex - Return the hash bucket in the global hash
381 * @key: Pointer to the futex key for which the hash is calculated
382 *
383 * We hash on the keys returned from get_futex_key (see below) and return the
384 * corresponding hash bucket in the global hash.
385 */
386static struct futex_hash_bucket *hash_futex(union futex_key *key)
387{
Olivier Deprez0e641232021-09-23 10:07:05 +0200388 u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000389 key->both.offset);
Olivier Deprez0e641232021-09-23 10:07:05 +0200390
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000391 return &futex_queues[hash & (futex_hashsize - 1)];
392}
393
394
395/**
396 * match_futex - Check whether two futex keys are equal
397 * @key1: Pointer to key1
398 * @key2: Pointer to key2
399 *
400 * Return 1 if two futex_keys are equal, 0 otherwise.
401 */
402static inline int match_futex(union futex_key *key1, union futex_key *key2)
403{
404 return (key1 && key2
405 && key1->both.word == key2->both.word
406 && key1->both.ptr == key2->both.ptr
407 && key1->both.offset == key2->both.offset);
408}
409
410/*
411 * Take a reference to the resource addressed by a key.
412 * Can be called while holding spinlocks.
413 *
414 */
415static void get_futex_key_refs(union futex_key *key)
416{
417 if (!key->both.ptr)
418 return;
419
420 /*
421 * On MMU less systems futexes are always "private" as there is no per
422 * process address space. We need the smp wmb nevertheless - yes,
423 * arch/blackfin has MMU less SMP ...
424 */
425 if (!IS_ENABLED(CONFIG_MMU)) {
426 smp_mb(); /* explicit smp_mb(); (B) */
427 return;
428 }
429
430 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
431 case FUT_OFF_INODE:
Olivier Deprez0e641232021-09-23 10:07:05 +0200432 smp_mb(); /* explicit smp_mb(); (B) */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000433 break;
434 case FUT_OFF_MMSHARED:
435 futex_get_mm(key); /* implies smp_mb(); (B) */
436 break;
437 default:
438 /*
439 * Private futexes do not hold reference on an inode or
440 * mm, therefore the only purpose of calling get_futex_key_refs
441 * is because we need the barrier for the lockless waiter check.
442 */
443 smp_mb(); /* explicit smp_mb(); (B) */
444 }
445}
446
447/*
448 * Drop a reference to the resource addressed by a key.
449 * The hash bucket spinlock must not be held. This is
450 * a no-op for private futexes, see comment in the get
451 * counterpart.
452 */
453static void drop_futex_key_refs(union futex_key *key)
454{
455 if (!key->both.ptr) {
456 /* If we're here then we tried to put a key we failed to get */
457 WARN_ON_ONCE(1);
458 return;
459 }
460
461 if (!IS_ENABLED(CONFIG_MMU))
462 return;
463
464 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
465 case FUT_OFF_INODE:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000466 break;
467 case FUT_OFF_MMSHARED:
468 mmdrop(key->private.mm);
469 break;
470 }
471}
472
David Brazdil0f672f62019-12-10 10:32:29 +0000473enum futex_access {
474 FUTEX_READ,
475 FUTEX_WRITE
476};
477
478/**
479 * futex_setup_timer - set up the sleeping hrtimer.
480 * @time: ptr to the given timeout value
481 * @timeout: the hrtimer_sleeper structure to be set up
482 * @flags: futex flags
483 * @range_ns: optional range in ns
484 *
485 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
486 * value given
487 */
488static inline struct hrtimer_sleeper *
489futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
490 int flags, u64 range_ns)
491{
492 if (!time)
493 return NULL;
494
495 hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
496 CLOCK_REALTIME : CLOCK_MONOTONIC,
497 HRTIMER_MODE_ABS);
498 /*
499 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
500 * effectively the same as calling hrtimer_set_expires().
501 */
502 hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
503
504 return timeout;
505}
506
Olivier Deprez0e641232021-09-23 10:07:05 +0200507/*
508 * Generate a machine wide unique identifier for this inode.
509 *
510 * This relies on u64 not wrapping in the life-time of the machine; which with
511 * 1ns resolution means almost 585 years.
512 *
513 * This further relies on the fact that a well formed program will not unmap
514 * the file while it has a (shared) futex waiting on it. This mapping will have
515 * a file reference which pins the mount and inode.
516 *
517 * If for some reason an inode gets evicted and read back in again, it will get
518 * a new sequence number and will _NOT_ match, even though it is the exact same
519 * file.
520 *
521 * It is important that match_futex() will never have a false-positive, esp.
522 * for PI futexes that can mess up the state. The above argues that false-negatives
523 * are only possible for malformed programs.
524 */
525static u64 get_inode_sequence_number(struct inode *inode)
526{
527 static atomic64_t i_seq;
528 u64 old;
529
530 /* Does the inode already have a sequence number? */
531 old = atomic64_read(&inode->i_sequence);
532 if (likely(old))
533 return old;
534
535 for (;;) {
536 u64 new = atomic64_add_return(1, &i_seq);
537 if (WARN_ON_ONCE(!new))
538 continue;
539
540 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
541 if (old)
542 return old;
543 return new;
544 }
545}
546
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000547/**
548 * get_futex_key() - Get parameters which are the keys for a futex
549 * @uaddr: virtual address of the futex
550 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
551 * @key: address where result is stored.
David Brazdil0f672f62019-12-10 10:32:29 +0000552 * @rw: mapping needs to be read/write (values: FUTEX_READ,
553 * FUTEX_WRITE)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000554 *
555 * Return: a negative error code or 0
556 *
557 * The key words are stored in @key on success.
558 *
Olivier Deprez0e641232021-09-23 10:07:05 +0200559 * For shared mappings (when @fshared), the key is:
560 * ( inode->i_sequence, page->index, offset_within_page )
561 * [ also see get_inode_sequence_number() ]
562 *
563 * For private mappings (or when !@fshared), the key is:
564 * ( current->mm, address, 0 )
565 *
566 * This allows (cross process, where applicable) identification of the futex
567 * without keeping the page pinned for the duration of the FUTEX_WAIT.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000568 *
569 * lock_page() might sleep, the caller should not hold a spinlock.
570 */
571static int
David Brazdil0f672f62019-12-10 10:32:29 +0000572get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000573{
574 unsigned long address = (unsigned long)uaddr;
575 struct mm_struct *mm = current->mm;
576 struct page *page, *tail;
577 struct address_space *mapping;
578 int err, ro = 0;
579
580 /*
581 * The futex address must be "naturally" aligned.
582 */
583 key->both.offset = address % PAGE_SIZE;
584 if (unlikely((address % sizeof(u32)) != 0))
585 return -EINVAL;
586 address -= key->both.offset;
587
David Brazdil0f672f62019-12-10 10:32:29 +0000588 if (unlikely(!access_ok(uaddr, sizeof(u32))))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000589 return -EFAULT;
590
591 if (unlikely(should_fail_futex(fshared)))
592 return -EFAULT;
593
594 /*
595 * PROCESS_PRIVATE futexes are fast.
596 * As the mm cannot disappear under us and the 'key' only needs
597 * virtual address, we dont even have to find the underlying vma.
598 * Note : We do have to check 'uaddr' is a valid user address,
599 * but access_ok() should be faster than find_vma()
600 */
601 if (!fshared) {
602 key->private.mm = mm;
603 key->private.address = address;
604 get_futex_key_refs(key); /* implies smp_mb(); (B) */
605 return 0;
606 }
607
608again:
609 /* Ignore any VERIFY_READ mapping (futex common case) */
610 if (unlikely(should_fail_futex(fshared)))
611 return -EFAULT;
612
David Brazdil0f672f62019-12-10 10:32:29 +0000613 err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000614 /*
615 * If write access is not required (eg. FUTEX_WAIT), try
616 * and get read-only access.
617 */
David Brazdil0f672f62019-12-10 10:32:29 +0000618 if (err == -EFAULT && rw == FUTEX_READ) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000619 err = get_user_pages_fast(address, 1, 0, &page);
620 ro = 1;
621 }
622 if (err < 0)
623 return err;
624 else
625 err = 0;
626
627 /*
628 * The treatment of mapping from this point on is critical. The page
629 * lock protects many things but in this context the page lock
630 * stabilizes mapping, prevents inode freeing in the shared
631 * file-backed region case and guards against movement to swap cache.
632 *
633 * Strictly speaking the page lock is not needed in all cases being
634 * considered here and page lock forces unnecessarily serialization
635 * From this point on, mapping will be re-verified if necessary and
636 * page lock will be acquired only if it is unavoidable
637 *
638 * Mapping checks require the head page for any compound page so the
639 * head page and mapping is looked up now. For anonymous pages, it
640 * does not matter if the page splits in the future as the key is
641 * based on the address. For filesystem-backed pages, the tail is
642 * required as the index of the page determines the key. For
643 * base pages, there is no tail page and tail == page.
644 */
645 tail = page;
646 page = compound_head(page);
647 mapping = READ_ONCE(page->mapping);
648
649 /*
650 * If page->mapping is NULL, then it cannot be a PageAnon
651 * page; but it might be the ZERO_PAGE or in the gate area or
652 * in a special mapping (all cases which we are happy to fail);
653 * or it may have been a good file page when get_user_pages_fast
654 * found it, but truncated or holepunched or subjected to
655 * invalidate_complete_page2 before we got the page lock (also
656 * cases which we are happy to fail). And we hold a reference,
657 * so refcount care in invalidate_complete_page's remove_mapping
658 * prevents drop_caches from setting mapping to NULL beneath us.
659 *
660 * The case we do have to guard against is when memory pressure made
661 * shmem_writepage move it from filecache to swapcache beneath us:
662 * an unlikely race, but we do need to retry for page->mapping.
663 */
664 if (unlikely(!mapping)) {
665 int shmem_swizzled;
666
667 /*
668 * Page lock is required to identify which special case above
669 * applies. If this is really a shmem page then the page lock
670 * will prevent unexpected transitions.
671 */
672 lock_page(page);
673 shmem_swizzled = PageSwapCache(page) || page->mapping;
674 unlock_page(page);
675 put_page(page);
676
677 if (shmem_swizzled)
678 goto again;
679
680 return -EFAULT;
681 }
682
683 /*
684 * Private mappings are handled in a simple way.
685 *
686 * If the futex key is stored on an anonymous page, then the associated
687 * object is the mm which is implicitly pinned by the calling process.
688 *
689 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
690 * it's a read-only handle, it's expected that futexes attach to
691 * the object not the particular process.
692 */
693 if (PageAnon(page)) {
694 /*
695 * A RO anonymous page will never change and thus doesn't make
696 * sense for futex operations.
697 */
698 if (unlikely(should_fail_futex(fshared)) || ro) {
699 err = -EFAULT;
700 goto out;
701 }
702
703 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
704 key->private.mm = mm;
705 key->private.address = address;
706
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000707 } else {
708 struct inode *inode;
709
710 /*
711 * The associated futex object in this case is the inode and
712 * the page->mapping must be traversed. Ordinarily this should
713 * be stabilised under page lock but it's not strictly
714 * necessary in this case as we just want to pin the inode, not
715 * update the radix tree or anything like that.
716 *
717 * The RCU read lock is taken as the inode is finally freed
718 * under RCU. If the mapping still matches expectations then the
719 * mapping->host can be safely accessed as being a valid inode.
720 */
721 rcu_read_lock();
722
723 if (READ_ONCE(page->mapping) != mapping) {
724 rcu_read_unlock();
725 put_page(page);
726
727 goto again;
728 }
729
730 inode = READ_ONCE(mapping->host);
731 if (!inode) {
732 rcu_read_unlock();
733 put_page(page);
734
735 goto again;
736 }
737
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000738 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
Olivier Deprez0e641232021-09-23 10:07:05 +0200739 key->shared.i_seq = get_inode_sequence_number(inode);
740 key->shared.pgoff = page_to_pgoff(tail);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000741 rcu_read_unlock();
742 }
743
Olivier Deprez0e641232021-09-23 10:07:05 +0200744 get_futex_key_refs(key); /* implies smp_mb(); (B) */
745
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000746out:
747 put_page(page);
748 return err;
749}
750
751static inline void put_futex_key(union futex_key *key)
752{
753 drop_futex_key_refs(key);
754}
755
756/**
757 * fault_in_user_writeable() - Fault in user address and verify RW access
758 * @uaddr: pointer to faulting user space address
759 *
760 * Slow path to fixup the fault we just took in the atomic write
761 * access to @uaddr.
762 *
763 * We have no generic implementation of a non-destructive write to the
764 * user address. We know that we faulted in the atomic pagefault
765 * disabled section so we can as well avoid the #PF overhead by
766 * calling get_user_pages() right away.
767 */
768static int fault_in_user_writeable(u32 __user *uaddr)
769{
770 struct mm_struct *mm = current->mm;
771 int ret;
772
773 down_read(&mm->mmap_sem);
774 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
775 FAULT_FLAG_WRITE, NULL);
776 up_read(&mm->mmap_sem);
777
778 return ret < 0 ? ret : 0;
779}
780
781/**
782 * futex_top_waiter() - Return the highest priority waiter on a futex
783 * @hb: the hash bucket the futex_q's reside in
784 * @key: the futex key (to distinguish it from other futex futex_q's)
785 *
786 * Must be called with the hb lock held.
787 */
788static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
789 union futex_key *key)
790{
791 struct futex_q *this;
792
793 plist_for_each_entry(this, &hb->chain, list) {
794 if (match_futex(&this->key, key))
795 return this;
796 }
797 return NULL;
798}
799
800static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
801 u32 uval, u32 newval)
802{
803 int ret;
804
805 pagefault_disable();
806 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
807 pagefault_enable();
808
809 return ret;
810}
811
812static int get_futex_value_locked(u32 *dest, u32 __user *from)
813{
814 int ret;
815
816 pagefault_disable();
817 ret = __get_user(*dest, from);
818 pagefault_enable();
819
820 return ret ? -EFAULT : 0;
821}
822
823
824/*
825 * PI code:
826 */
827static int refill_pi_state_cache(void)
828{
829 struct futex_pi_state *pi_state;
830
831 if (likely(current->pi_state_cache))
832 return 0;
833
834 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
835
836 if (!pi_state)
837 return -ENOMEM;
838
839 INIT_LIST_HEAD(&pi_state->list);
840 /* pi_mutex gets initialized later */
841 pi_state->owner = NULL;
David Brazdil0f672f62019-12-10 10:32:29 +0000842 refcount_set(&pi_state->refcount, 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000843 pi_state->key = FUTEX_KEY_INIT;
844
845 current->pi_state_cache = pi_state;
846
847 return 0;
848}
849
850static struct futex_pi_state *alloc_pi_state(void)
851{
852 struct futex_pi_state *pi_state = current->pi_state_cache;
853
854 WARN_ON(!pi_state);
855 current->pi_state_cache = NULL;
856
857 return pi_state;
858}
859
Olivier Deprez0e641232021-09-23 10:07:05 +0200860static void pi_state_update_owner(struct futex_pi_state *pi_state,
861 struct task_struct *new_owner)
862{
863 struct task_struct *old_owner = pi_state->owner;
864
865 lockdep_assert_held(&pi_state->pi_mutex.wait_lock);
866
867 if (old_owner) {
868 raw_spin_lock(&old_owner->pi_lock);
869 WARN_ON(list_empty(&pi_state->list));
870 list_del_init(&pi_state->list);
871 raw_spin_unlock(&old_owner->pi_lock);
872 }
873
874 if (new_owner) {
875 raw_spin_lock(&new_owner->pi_lock);
876 WARN_ON(!list_empty(&pi_state->list));
877 list_add(&pi_state->list, &new_owner->pi_state_list);
878 pi_state->owner = new_owner;
879 raw_spin_unlock(&new_owner->pi_lock);
880 }
881}
882
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000883static void get_pi_state(struct futex_pi_state *pi_state)
884{
David Brazdil0f672f62019-12-10 10:32:29 +0000885 WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000886}
887
888/*
889 * Drops a reference to the pi_state object and frees or caches it
890 * when the last reference is gone.
891 */
892static void put_pi_state(struct futex_pi_state *pi_state)
893{
894 if (!pi_state)
895 return;
896
David Brazdil0f672f62019-12-10 10:32:29 +0000897 if (!refcount_dec_and_test(&pi_state->refcount))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000898 return;
899
900 /*
901 * If pi_state->owner is NULL, the owner is most probably dying
902 * and has cleaned up the pi_state already
903 */
904 if (pi_state->owner) {
Olivier Deprez0e641232021-09-23 10:07:05 +0200905 unsigned long flags;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000906
Olivier Deprez0e641232021-09-23 10:07:05 +0200907 raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags);
908 pi_state_update_owner(pi_state, NULL);
909 rt_mutex_proxy_unlock(&pi_state->pi_mutex);
910 raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000911 }
912
913 if (current->pi_state_cache) {
914 kfree(pi_state);
915 } else {
916 /*
917 * pi_state->list is already empty.
918 * clear pi_state->owner.
919 * refcount is at 0 - put it back to 1.
920 */
921 pi_state->owner = NULL;
David Brazdil0f672f62019-12-10 10:32:29 +0000922 refcount_set(&pi_state->refcount, 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000923 current->pi_state_cache = pi_state;
924 }
925}
926
927#ifdef CONFIG_FUTEX_PI
928
929/*
930 * This task is holding PI mutexes at exit time => bad.
931 * Kernel cleans up PI-state, but userspace is likely hosed.
932 * (Robust-futex cleanup is separate and might save the day for userspace.)
933 */
David Brazdil0f672f62019-12-10 10:32:29 +0000934static void exit_pi_state_list(struct task_struct *curr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000935{
936 struct list_head *next, *head = &curr->pi_state_list;
937 struct futex_pi_state *pi_state;
938 struct futex_hash_bucket *hb;
939 union futex_key key = FUTEX_KEY_INIT;
940
941 if (!futex_cmpxchg_enabled)
942 return;
943 /*
944 * We are a ZOMBIE and nobody can enqueue itself on
945 * pi_state_list anymore, but we have to be careful
946 * versus waiters unqueueing themselves:
947 */
948 raw_spin_lock_irq(&curr->pi_lock);
949 while (!list_empty(head)) {
950 next = head->next;
951 pi_state = list_entry(next, struct futex_pi_state, list);
952 key = pi_state->key;
953 hb = hash_futex(&key);
954
955 /*
956 * We can race against put_pi_state() removing itself from the
957 * list (a waiter going away). put_pi_state() will first
958 * decrement the reference count and then modify the list, so
959 * its possible to see the list entry but fail this reference
960 * acquire.
961 *
962 * In that case; drop the locks to let put_pi_state() make
963 * progress and retry the loop.
964 */
David Brazdil0f672f62019-12-10 10:32:29 +0000965 if (!refcount_inc_not_zero(&pi_state->refcount)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000966 raw_spin_unlock_irq(&curr->pi_lock);
967 cpu_relax();
968 raw_spin_lock_irq(&curr->pi_lock);
969 continue;
970 }
971 raw_spin_unlock_irq(&curr->pi_lock);
972
973 spin_lock(&hb->lock);
974 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
975 raw_spin_lock(&curr->pi_lock);
976 /*
977 * We dropped the pi-lock, so re-check whether this
978 * task still owns the PI-state:
979 */
980 if (head->next != next) {
981 /* retain curr->pi_lock for the loop invariant */
982 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
983 spin_unlock(&hb->lock);
984 put_pi_state(pi_state);
985 continue;
986 }
987
988 WARN_ON(pi_state->owner != curr);
989 WARN_ON(list_empty(&pi_state->list));
990 list_del_init(&pi_state->list);
991 pi_state->owner = NULL;
992
993 raw_spin_unlock(&curr->pi_lock);
994 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
995 spin_unlock(&hb->lock);
996
997 rt_mutex_futex_unlock(&pi_state->pi_mutex);
998 put_pi_state(pi_state);
999
1000 raw_spin_lock_irq(&curr->pi_lock);
1001 }
1002 raw_spin_unlock_irq(&curr->pi_lock);
1003}
David Brazdil0f672f62019-12-10 10:32:29 +00001004#else
1005static inline void exit_pi_state_list(struct task_struct *curr) { }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001006#endif
1007
1008/*
1009 * We need to check the following states:
1010 *
1011 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
1012 *
1013 * [1] NULL | --- | --- | 0 | 0/1 | Valid
1014 * [2] NULL | --- | --- | >0 | 0/1 | Valid
1015 *
1016 * [3] Found | NULL | -- | Any | 0/1 | Invalid
1017 *
1018 * [4] Found | Found | NULL | 0 | 1 | Valid
1019 * [5] Found | Found | NULL | >0 | 1 | Invalid
1020 *
1021 * [6] Found | Found | task | 0 | 1 | Valid
1022 *
1023 * [7] Found | Found | NULL | Any | 0 | Invalid
1024 *
1025 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
1026 * [9] Found | Found | task | 0 | 0 | Invalid
1027 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
1028 *
1029 * [1] Indicates that the kernel can acquire the futex atomically. We
1030 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
1031 *
1032 * [2] Valid, if TID does not belong to a kernel thread. If no matching
1033 * thread is found then it indicates that the owner TID has died.
1034 *
1035 * [3] Invalid. The waiter is queued on a non PI futex
1036 *
1037 * [4] Valid state after exit_robust_list(), which sets the user space
1038 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
1039 *
1040 * [5] The user space value got manipulated between exit_robust_list()
1041 * and exit_pi_state_list()
1042 *
1043 * [6] Valid state after exit_pi_state_list() which sets the new owner in
1044 * the pi_state but cannot access the user space value.
1045 *
1046 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1047 *
1048 * [8] Owner and user space value match
1049 *
1050 * [9] There is no transient state which sets the user space TID to 0
1051 * except exit_robust_list(), but this is indicated by the
1052 * FUTEX_OWNER_DIED bit. See [4]
1053 *
1054 * [10] There is no transient state which leaves owner and user space
Olivier Deprez0e641232021-09-23 10:07:05 +02001055 * TID out of sync. Except one error case where the kernel is denied
1056 * write access to the user address, see fixup_pi_state_owner().
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001057 *
1058 *
1059 * Serialization and lifetime rules:
1060 *
1061 * hb->lock:
1062 *
1063 * hb -> futex_q, relation
1064 * futex_q -> pi_state, relation
1065 *
1066 * (cannot be raw because hb can contain arbitrary amount
1067 * of futex_q's)
1068 *
1069 * pi_mutex->wait_lock:
1070 *
1071 * {uval, pi_state}
1072 *
1073 * (and pi_mutex 'obviously')
1074 *
1075 * p->pi_lock:
1076 *
1077 * p->pi_state_list -> pi_state->list, relation
1078 *
1079 * pi_state->refcount:
1080 *
1081 * pi_state lifetime
1082 *
1083 *
1084 * Lock order:
1085 *
1086 * hb->lock
1087 * pi_mutex->wait_lock
1088 * p->pi_lock
1089 *
1090 */
1091
1092/*
1093 * Validate that the existing waiter has a pi_state and sanity check
1094 * the pi_state against the user space value. If correct, attach to
1095 * it.
1096 */
1097static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1098 struct futex_pi_state *pi_state,
1099 struct futex_pi_state **ps)
1100{
1101 pid_t pid = uval & FUTEX_TID_MASK;
1102 u32 uval2;
1103 int ret;
1104
1105 /*
1106 * Userspace might have messed up non-PI and PI futexes [3]
1107 */
1108 if (unlikely(!pi_state))
1109 return -EINVAL;
1110
1111 /*
1112 * We get here with hb->lock held, and having found a
1113 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1114 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1115 * which in turn means that futex_lock_pi() still has a reference on
1116 * our pi_state.
1117 *
1118 * The waiter holding a reference on @pi_state also protects against
1119 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1120 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1121 * free pi_state before we can take a reference ourselves.
1122 */
David Brazdil0f672f62019-12-10 10:32:29 +00001123 WARN_ON(!refcount_read(&pi_state->refcount));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001124
1125 /*
1126 * Now that we have a pi_state, we can acquire wait_lock
1127 * and do the state validation.
1128 */
1129 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1130
1131 /*
1132 * Since {uval, pi_state} is serialized by wait_lock, and our current
1133 * uval was read without holding it, it can have changed. Verify it
1134 * still is what we expect it to be, otherwise retry the entire
1135 * operation.
1136 */
1137 if (get_futex_value_locked(&uval2, uaddr))
1138 goto out_efault;
1139
1140 if (uval != uval2)
1141 goto out_eagain;
1142
1143 /*
1144 * Handle the owner died case:
1145 */
1146 if (uval & FUTEX_OWNER_DIED) {
1147 /*
1148 * exit_pi_state_list sets owner to NULL and wakes the
1149 * topmost waiter. The task which acquires the
1150 * pi_state->rt_mutex will fixup owner.
1151 */
1152 if (!pi_state->owner) {
1153 /*
1154 * No pi state owner, but the user space TID
1155 * is not 0. Inconsistent state. [5]
1156 */
1157 if (pid)
1158 goto out_einval;
1159 /*
1160 * Take a ref on the state and return success. [4]
1161 */
1162 goto out_attach;
1163 }
1164
1165 /*
1166 * If TID is 0, then either the dying owner has not
1167 * yet executed exit_pi_state_list() or some waiter
1168 * acquired the rtmutex in the pi state, but did not
1169 * yet fixup the TID in user space.
1170 *
1171 * Take a ref on the state and return success. [6]
1172 */
1173 if (!pid)
1174 goto out_attach;
1175 } else {
1176 /*
1177 * If the owner died bit is not set, then the pi_state
1178 * must have an owner. [7]
1179 */
1180 if (!pi_state->owner)
1181 goto out_einval;
1182 }
1183
1184 /*
1185 * Bail out if user space manipulated the futex value. If pi
1186 * state exists then the owner TID must be the same as the
1187 * user space TID. [9/10]
1188 */
1189 if (pid != task_pid_vnr(pi_state->owner))
1190 goto out_einval;
1191
1192out_attach:
1193 get_pi_state(pi_state);
1194 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1195 *ps = pi_state;
1196 return 0;
1197
1198out_einval:
1199 ret = -EINVAL;
1200 goto out_error;
1201
1202out_eagain:
1203 ret = -EAGAIN;
1204 goto out_error;
1205
1206out_efault:
1207 ret = -EFAULT;
1208 goto out_error;
1209
1210out_error:
1211 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1212 return ret;
1213}
1214
David Brazdil0f672f62019-12-10 10:32:29 +00001215/**
1216 * wait_for_owner_exiting - Block until the owner has exited
1217 * @exiting: Pointer to the exiting task
1218 *
1219 * Caller must hold a refcount on @exiting.
1220 */
1221static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1222{
1223 if (ret != -EBUSY) {
1224 WARN_ON_ONCE(exiting);
1225 return;
1226 }
1227
1228 if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1229 return;
1230
1231 mutex_lock(&exiting->futex_exit_mutex);
1232 /*
1233 * No point in doing state checking here. If the waiter got here
1234 * while the task was in exec()->exec_futex_release() then it can
1235 * have any FUTEX_STATE_* value when the waiter has acquired the
1236 * mutex. OK, if running, EXITING or DEAD if it reached exit()
1237 * already. Highly unlikely and not a problem. Just one more round
1238 * through the futex maze.
1239 */
1240 mutex_unlock(&exiting->futex_exit_mutex);
1241
1242 put_task_struct(exiting);
1243}
1244
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001245static int handle_exit_race(u32 __user *uaddr, u32 uval,
1246 struct task_struct *tsk)
1247{
1248 u32 uval2;
1249
1250 /*
David Brazdil0f672f62019-12-10 10:32:29 +00001251 * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1252 * caller that the alleged owner is busy.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001253 */
David Brazdil0f672f62019-12-10 10:32:29 +00001254 if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1255 return -EBUSY;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001256
1257 /*
1258 * Reread the user space value to handle the following situation:
1259 *
1260 * CPU0 CPU1
1261 *
1262 * sys_exit() sys_futex()
1263 * do_exit() futex_lock_pi()
1264 * futex_lock_pi_atomic()
1265 * exit_signals(tsk) No waiters:
1266 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1267 * mm_release(tsk) Set waiter bit
1268 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1269 * Set owner died attach_to_pi_owner() {
1270 * *uaddr = 0xC0000000; tsk = get_task(PID);
1271 * } if (!tsk->flags & PF_EXITING) {
1272 * ... attach();
David Brazdil0f672f62019-12-10 10:32:29 +00001273 * tsk->futex_state = } else {
1274 * FUTEX_STATE_DEAD; if (tsk->futex_state !=
1275 * FUTEX_STATE_DEAD)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001276 * return -EAGAIN;
1277 * return -ESRCH; <--- FAIL
1278 * }
1279 *
1280 * Returning ESRCH unconditionally is wrong here because the
1281 * user space value has been changed by the exiting task.
1282 *
1283 * The same logic applies to the case where the exiting task is
1284 * already gone.
1285 */
1286 if (get_futex_value_locked(&uval2, uaddr))
1287 return -EFAULT;
1288
1289 /* If the user space value has changed, try again. */
1290 if (uval2 != uval)
1291 return -EAGAIN;
1292
1293 /*
1294 * The exiting task did not have a robust list, the robust list was
1295 * corrupted or the user space value in *uaddr is simply bogus.
1296 * Give up and tell user space.
1297 */
1298 return -ESRCH;
1299}
1300
1301/*
1302 * Lookup the task for the TID provided from user space and attach to
1303 * it after doing proper sanity checks.
1304 */
1305static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
David Brazdil0f672f62019-12-10 10:32:29 +00001306 struct futex_pi_state **ps,
1307 struct task_struct **exiting)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001308{
1309 pid_t pid = uval & FUTEX_TID_MASK;
1310 struct futex_pi_state *pi_state;
1311 struct task_struct *p;
1312
1313 /*
1314 * We are the first waiter - try to look up the real owner and attach
1315 * the new pi_state to it, but bail out when TID = 0 [1]
1316 *
1317 * The !pid check is paranoid. None of the call sites should end up
1318 * with pid == 0, but better safe than sorry. Let the caller retry
1319 */
1320 if (!pid)
1321 return -EAGAIN;
1322 p = find_get_task_by_vpid(pid);
1323 if (!p)
1324 return handle_exit_race(uaddr, uval, NULL);
1325
1326 if (unlikely(p->flags & PF_KTHREAD)) {
1327 put_task_struct(p);
1328 return -EPERM;
1329 }
1330
1331 /*
David Brazdil0f672f62019-12-10 10:32:29 +00001332 * We need to look at the task state to figure out, whether the
1333 * task is exiting. To protect against the change of the task state
1334 * in futex_exit_release(), we do this protected by p->pi_lock:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001335 */
1336 raw_spin_lock_irq(&p->pi_lock);
David Brazdil0f672f62019-12-10 10:32:29 +00001337 if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001338 /*
David Brazdil0f672f62019-12-10 10:32:29 +00001339 * The task is on the way out. When the futex state is
1340 * FUTEX_STATE_DEAD, we know that the task has finished
1341 * the cleanup:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001342 */
1343 int ret = handle_exit_race(uaddr, uval, p);
1344
1345 raw_spin_unlock_irq(&p->pi_lock);
David Brazdil0f672f62019-12-10 10:32:29 +00001346 /*
1347 * If the owner task is between FUTEX_STATE_EXITING and
1348 * FUTEX_STATE_DEAD then store the task pointer and keep
1349 * the reference on the task struct. The calling code will
1350 * drop all locks, wait for the task to reach
1351 * FUTEX_STATE_DEAD and then drop the refcount. This is
1352 * required to prevent a live lock when the current task
1353 * preempted the exiting task between the two states.
1354 */
1355 if (ret == -EBUSY)
1356 *exiting = p;
1357 else
1358 put_task_struct(p);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001359 return ret;
1360 }
1361
1362 /*
1363 * No existing pi state. First waiter. [2]
1364 *
1365 * This creates pi_state, we have hb->lock held, this means nothing can
1366 * observe this state, wait_lock is irrelevant.
1367 */
1368 pi_state = alloc_pi_state();
1369
1370 /*
1371 * Initialize the pi_mutex in locked state and make @p
1372 * the owner of it:
1373 */
1374 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1375
1376 /* Store the key for possible exit cleanups: */
1377 pi_state->key = *key;
1378
1379 WARN_ON(!list_empty(&pi_state->list));
1380 list_add(&pi_state->list, &p->pi_state_list);
1381 /*
1382 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1383 * because there is no concurrency as the object is not published yet.
1384 */
1385 pi_state->owner = p;
1386 raw_spin_unlock_irq(&p->pi_lock);
1387
1388 put_task_struct(p);
1389
1390 *ps = pi_state;
1391
1392 return 0;
1393}
1394
1395static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1396 struct futex_hash_bucket *hb,
David Brazdil0f672f62019-12-10 10:32:29 +00001397 union futex_key *key, struct futex_pi_state **ps,
1398 struct task_struct **exiting)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001399{
1400 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1401
1402 /*
1403 * If there is a waiter on that futex, validate it and
1404 * attach to the pi_state when the validation succeeds.
1405 */
1406 if (top_waiter)
1407 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1408
1409 /*
1410 * We are the first waiter - try to look up the owner based on
1411 * @uval and attach to it.
1412 */
David Brazdil0f672f62019-12-10 10:32:29 +00001413 return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001414}
1415
1416static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1417{
David Brazdil0f672f62019-12-10 10:32:29 +00001418 int err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001419 u32 uninitialized_var(curval);
1420
1421 if (unlikely(should_fail_futex(true)))
1422 return -EFAULT;
1423
David Brazdil0f672f62019-12-10 10:32:29 +00001424 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1425 if (unlikely(err))
1426 return err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001427
1428 /* If user space value changed, let the caller retry */
1429 return curval != uval ? -EAGAIN : 0;
1430}
1431
1432/**
1433 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1434 * @uaddr: the pi futex user address
1435 * @hb: the pi futex hash bucket
1436 * @key: the futex key associated with uaddr and hb
1437 * @ps: the pi_state pointer where we store the result of the
1438 * lookup
1439 * @task: the task to perform the atomic lock work for. This will
1440 * be "current" except in the case of requeue pi.
David Brazdil0f672f62019-12-10 10:32:29 +00001441 * @exiting: Pointer to store the task pointer of the owner task
1442 * which is in the middle of exiting
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001443 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1444 *
1445 * Return:
1446 * - 0 - ready to wait;
1447 * - 1 - acquired the lock;
1448 * - <0 - error
1449 *
1450 * The hb->lock and futex_key refs shall be held by the caller.
David Brazdil0f672f62019-12-10 10:32:29 +00001451 *
1452 * @exiting is only set when the return value is -EBUSY. If so, this holds
1453 * a refcount on the exiting task on return and the caller needs to drop it
1454 * after waiting for the exit to complete.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001455 */
1456static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1457 union futex_key *key,
1458 struct futex_pi_state **ps,
David Brazdil0f672f62019-12-10 10:32:29 +00001459 struct task_struct *task,
1460 struct task_struct **exiting,
1461 int set_waiters)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001462{
1463 u32 uval, newval, vpid = task_pid_vnr(task);
1464 struct futex_q *top_waiter;
1465 int ret;
1466
1467 /*
1468 * Read the user space value first so we can validate a few
1469 * things before proceeding further.
1470 */
1471 if (get_futex_value_locked(&uval, uaddr))
1472 return -EFAULT;
1473
1474 if (unlikely(should_fail_futex(true)))
1475 return -EFAULT;
1476
1477 /*
1478 * Detect deadlocks.
1479 */
1480 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1481 return -EDEADLK;
1482
1483 if ((unlikely(should_fail_futex(true))))
1484 return -EDEADLK;
1485
1486 /*
1487 * Lookup existing state first. If it exists, try to attach to
1488 * its pi_state.
1489 */
1490 top_waiter = futex_top_waiter(hb, key);
1491 if (top_waiter)
1492 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1493
1494 /*
1495 * No waiter and user TID is 0. We are here because the
1496 * waiters or the owner died bit is set or called from
1497 * requeue_cmp_pi or for whatever reason something took the
1498 * syscall.
1499 */
1500 if (!(uval & FUTEX_TID_MASK)) {
1501 /*
1502 * We take over the futex. No other waiters and the user space
1503 * TID is 0. We preserve the owner died bit.
1504 */
1505 newval = uval & FUTEX_OWNER_DIED;
1506 newval |= vpid;
1507
1508 /* The futex requeue_pi code can enforce the waiters bit */
1509 if (set_waiters)
1510 newval |= FUTEX_WAITERS;
1511
1512 ret = lock_pi_update_atomic(uaddr, uval, newval);
1513 /* If the take over worked, return 1 */
1514 return ret < 0 ? ret : 1;
1515 }
1516
1517 /*
1518 * First waiter. Set the waiters bit before attaching ourself to
1519 * the owner. If owner tries to unlock, it will be forced into
1520 * the kernel and blocked on hb->lock.
1521 */
1522 newval = uval | FUTEX_WAITERS;
1523 ret = lock_pi_update_atomic(uaddr, uval, newval);
1524 if (ret)
1525 return ret;
1526 /*
1527 * If the update of the user space value succeeded, we try to
1528 * attach to the owner. If that fails, no harm done, we only
1529 * set the FUTEX_WAITERS bit in the user space variable.
1530 */
David Brazdil0f672f62019-12-10 10:32:29 +00001531 return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001532}
1533
1534/**
1535 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1536 * @q: The futex_q to unqueue
1537 *
1538 * The q->lock_ptr must not be NULL and must be held by the caller.
1539 */
1540static void __unqueue_futex(struct futex_q *q)
1541{
1542 struct futex_hash_bucket *hb;
1543
David Brazdil0f672f62019-12-10 10:32:29 +00001544 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001545 return;
David Brazdil0f672f62019-12-10 10:32:29 +00001546 lockdep_assert_held(q->lock_ptr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001547
1548 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1549 plist_del(&q->list, &hb->chain);
1550 hb_waiters_dec(hb);
1551}
1552
1553/*
1554 * The hash bucket lock must be held when this is called.
1555 * Afterwards, the futex_q must not be accessed. Callers
1556 * must ensure to later call wake_up_q() for the actual
1557 * wakeups to occur.
1558 */
1559static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1560{
1561 struct task_struct *p = q->task;
1562
1563 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1564 return;
1565
David Brazdil0f672f62019-12-10 10:32:29 +00001566 get_task_struct(p);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001567 __unqueue_futex(q);
1568 /*
1569 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1570 * is written, without taking any locks. This is possible in the event
1571 * of a spurious wakeup, for example. A memory barrier is required here
1572 * to prevent the following store to lock_ptr from getting ahead of the
1573 * plist_del in __unqueue_futex().
1574 */
1575 smp_store_release(&q->lock_ptr, NULL);
David Brazdil0f672f62019-12-10 10:32:29 +00001576
1577 /*
1578 * Queue the task for later wakeup for after we've released
1579 * the hb->lock. wake_q_add() grabs reference to p.
1580 */
1581 wake_q_add_safe(wake_q, p);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001582}
1583
1584/*
1585 * Caller must hold a reference on @pi_state.
1586 */
1587static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1588{
1589 u32 uninitialized_var(curval), newval;
1590 struct task_struct *new_owner;
1591 bool postunlock = false;
1592 DEFINE_WAKE_Q(wake_q);
1593 int ret = 0;
1594
1595 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1596 if (WARN_ON_ONCE(!new_owner)) {
1597 /*
1598 * As per the comment in futex_unlock_pi() this should not happen.
1599 *
1600 * When this happens, give up our locks and try again, giving
1601 * the futex_lock_pi() instance time to complete, either by
1602 * waiting on the rtmutex or removing itself from the futex
1603 * queue.
1604 */
1605 ret = -EAGAIN;
1606 goto out_unlock;
1607 }
1608
1609 /*
1610 * We pass it to the next owner. The WAITERS bit is always kept
1611 * enabled while there is PI state around. We cleanup the owner
1612 * died bit, because we are the owner.
1613 */
1614 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1615
Olivier Deprez0e641232021-09-23 10:07:05 +02001616 if (unlikely(should_fail_futex(true))) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001617 ret = -EFAULT;
Olivier Deprez0e641232021-09-23 10:07:05 +02001618 goto out_unlock;
1619 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001620
David Brazdil0f672f62019-12-10 10:32:29 +00001621 ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1622 if (!ret && (curval != uval)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001623 /*
1624 * If a unconditional UNLOCK_PI operation (user space did not
1625 * try the TID->0 transition) raced with a waiter setting the
1626 * FUTEX_WAITERS flag between get_user() and locking the hash
1627 * bucket lock, retry the operation.
1628 */
1629 if ((FUTEX_TID_MASK & curval) == uval)
1630 ret = -EAGAIN;
1631 else
1632 ret = -EINVAL;
1633 }
1634
Olivier Deprez0e641232021-09-23 10:07:05 +02001635 if (!ret) {
1636 /*
1637 * This is a point of no return; once we modified the uval
1638 * there is no going back and subsequent operations must
1639 * not fail.
1640 */
1641 pi_state_update_owner(pi_state, new_owner);
1642 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1643 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001644
1645out_unlock:
1646 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1647
1648 if (postunlock)
1649 rt_mutex_postunlock(&wake_q);
1650
1651 return ret;
1652}
1653
1654/*
1655 * Express the locking dependencies for lockdep:
1656 */
1657static inline void
1658double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1659{
1660 if (hb1 <= hb2) {
1661 spin_lock(&hb1->lock);
1662 if (hb1 < hb2)
1663 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1664 } else { /* hb1 > hb2 */
1665 spin_lock(&hb2->lock);
1666 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1667 }
1668}
1669
1670static inline void
1671double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1672{
1673 spin_unlock(&hb1->lock);
1674 if (hb1 != hb2)
1675 spin_unlock(&hb2->lock);
1676}
1677
1678/*
1679 * Wake up waiters matching bitset queued on this futex (uaddr).
1680 */
1681static int
1682futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1683{
1684 struct futex_hash_bucket *hb;
1685 struct futex_q *this, *next;
1686 union futex_key key = FUTEX_KEY_INIT;
1687 int ret;
1688 DEFINE_WAKE_Q(wake_q);
1689
1690 if (!bitset)
1691 return -EINVAL;
1692
David Brazdil0f672f62019-12-10 10:32:29 +00001693 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001694 if (unlikely(ret != 0))
1695 goto out;
1696
1697 hb = hash_futex(&key);
1698
1699 /* Make sure we really have tasks to wakeup */
1700 if (!hb_waiters_pending(hb))
1701 goto out_put_key;
1702
1703 spin_lock(&hb->lock);
1704
1705 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1706 if (match_futex (&this->key, &key)) {
1707 if (this->pi_state || this->rt_waiter) {
1708 ret = -EINVAL;
1709 break;
1710 }
1711
1712 /* Check if one of the bits is set in both bitsets */
1713 if (!(this->bitset & bitset))
1714 continue;
1715
1716 mark_wake_futex(&wake_q, this);
1717 if (++ret >= nr_wake)
1718 break;
1719 }
1720 }
1721
1722 spin_unlock(&hb->lock);
1723 wake_up_q(&wake_q);
1724out_put_key:
1725 put_futex_key(&key);
1726out:
1727 return ret;
1728}
1729
1730static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1731{
1732 unsigned int op = (encoded_op & 0x70000000) >> 28;
1733 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1734 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1735 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1736 int oldval, ret;
1737
1738 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1739 if (oparg < 0 || oparg > 31) {
1740 char comm[sizeof(current->comm)];
1741 /*
1742 * kill this print and return -EINVAL when userspace
1743 * is sane again
1744 */
1745 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1746 get_task_comm(comm, current), oparg);
1747 oparg &= 31;
1748 }
1749 oparg = 1 << oparg;
1750 }
1751
David Brazdil0f672f62019-12-10 10:32:29 +00001752 if (!access_ok(uaddr, sizeof(u32)))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001753 return -EFAULT;
1754
1755 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1756 if (ret)
1757 return ret;
1758
1759 switch (cmp) {
1760 case FUTEX_OP_CMP_EQ:
1761 return oldval == cmparg;
1762 case FUTEX_OP_CMP_NE:
1763 return oldval != cmparg;
1764 case FUTEX_OP_CMP_LT:
1765 return oldval < cmparg;
1766 case FUTEX_OP_CMP_GE:
1767 return oldval >= cmparg;
1768 case FUTEX_OP_CMP_LE:
1769 return oldval <= cmparg;
1770 case FUTEX_OP_CMP_GT:
1771 return oldval > cmparg;
1772 default:
1773 return -ENOSYS;
1774 }
1775}
1776
1777/*
1778 * Wake up all waiters hashed on the physical page that is mapped
1779 * to this virtual address:
1780 */
1781static int
1782futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1783 int nr_wake, int nr_wake2, int op)
1784{
1785 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1786 struct futex_hash_bucket *hb1, *hb2;
1787 struct futex_q *this, *next;
1788 int ret, op_ret;
1789 DEFINE_WAKE_Q(wake_q);
1790
1791retry:
David Brazdil0f672f62019-12-10 10:32:29 +00001792 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001793 if (unlikely(ret != 0))
1794 goto out;
David Brazdil0f672f62019-12-10 10:32:29 +00001795 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001796 if (unlikely(ret != 0))
1797 goto out_put_key1;
1798
1799 hb1 = hash_futex(&key1);
1800 hb2 = hash_futex(&key2);
1801
1802retry_private:
1803 double_lock_hb(hb1, hb2);
1804 op_ret = futex_atomic_op_inuser(op, uaddr2);
1805 if (unlikely(op_ret < 0)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001806 double_unlock_hb(hb1, hb2);
1807
David Brazdil0f672f62019-12-10 10:32:29 +00001808 if (!IS_ENABLED(CONFIG_MMU) ||
1809 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1810 /*
1811 * we don't get EFAULT from MMU faults if we don't have
1812 * an MMU, but we might get them from range checking
1813 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001814 ret = op_ret;
1815 goto out_put_keys;
1816 }
1817
David Brazdil0f672f62019-12-10 10:32:29 +00001818 if (op_ret == -EFAULT) {
1819 ret = fault_in_user_writeable(uaddr2);
1820 if (ret)
1821 goto out_put_keys;
1822 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001823
David Brazdil0f672f62019-12-10 10:32:29 +00001824 if (!(flags & FLAGS_SHARED)) {
1825 cond_resched();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001826 goto retry_private;
David Brazdil0f672f62019-12-10 10:32:29 +00001827 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001828
1829 put_futex_key(&key2);
1830 put_futex_key(&key1);
David Brazdil0f672f62019-12-10 10:32:29 +00001831 cond_resched();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001832 goto retry;
1833 }
1834
1835 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1836 if (match_futex (&this->key, &key1)) {
1837 if (this->pi_state || this->rt_waiter) {
1838 ret = -EINVAL;
1839 goto out_unlock;
1840 }
1841 mark_wake_futex(&wake_q, this);
1842 if (++ret >= nr_wake)
1843 break;
1844 }
1845 }
1846
1847 if (op_ret > 0) {
1848 op_ret = 0;
1849 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1850 if (match_futex (&this->key, &key2)) {
1851 if (this->pi_state || this->rt_waiter) {
1852 ret = -EINVAL;
1853 goto out_unlock;
1854 }
1855 mark_wake_futex(&wake_q, this);
1856 if (++op_ret >= nr_wake2)
1857 break;
1858 }
1859 }
1860 ret += op_ret;
1861 }
1862
1863out_unlock:
1864 double_unlock_hb(hb1, hb2);
1865 wake_up_q(&wake_q);
1866out_put_keys:
1867 put_futex_key(&key2);
1868out_put_key1:
1869 put_futex_key(&key1);
1870out:
1871 return ret;
1872}
1873
1874/**
1875 * requeue_futex() - Requeue a futex_q from one hb to another
1876 * @q: the futex_q to requeue
1877 * @hb1: the source hash_bucket
1878 * @hb2: the target hash_bucket
1879 * @key2: the new key for the requeued futex_q
1880 */
1881static inline
1882void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1883 struct futex_hash_bucket *hb2, union futex_key *key2)
1884{
1885
1886 /*
1887 * If key1 and key2 hash to the same bucket, no need to
1888 * requeue.
1889 */
1890 if (likely(&hb1->chain != &hb2->chain)) {
1891 plist_del(&q->list, &hb1->chain);
1892 hb_waiters_dec(hb1);
1893 hb_waiters_inc(hb2);
1894 plist_add(&q->list, &hb2->chain);
1895 q->lock_ptr = &hb2->lock;
1896 }
1897 get_futex_key_refs(key2);
1898 q->key = *key2;
1899}
1900
1901/**
1902 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1903 * @q: the futex_q
1904 * @key: the key of the requeue target futex
1905 * @hb: the hash_bucket of the requeue target futex
1906 *
1907 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1908 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1909 * to the requeue target futex so the waiter can detect the wakeup on the right
1910 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1911 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1912 * to protect access to the pi_state to fixup the owner later. Must be called
1913 * with both q->lock_ptr and hb->lock held.
1914 */
1915static inline
1916void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1917 struct futex_hash_bucket *hb)
1918{
1919 get_futex_key_refs(key);
1920 q->key = *key;
1921
1922 __unqueue_futex(q);
1923
1924 WARN_ON(!q->rt_waiter);
1925 q->rt_waiter = NULL;
1926
1927 q->lock_ptr = &hb->lock;
1928
1929 wake_up_state(q->task, TASK_NORMAL);
1930}
1931
1932/**
1933 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1934 * @pifutex: the user address of the to futex
1935 * @hb1: the from futex hash bucket, must be locked by the caller
1936 * @hb2: the to futex hash bucket, must be locked by the caller
1937 * @key1: the from futex key
1938 * @key2: the to futex key
1939 * @ps: address to store the pi_state pointer
David Brazdil0f672f62019-12-10 10:32:29 +00001940 * @exiting: Pointer to store the task pointer of the owner task
1941 * which is in the middle of exiting
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001942 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1943 *
1944 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1945 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1946 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1947 * hb1 and hb2 must be held by the caller.
1948 *
David Brazdil0f672f62019-12-10 10:32:29 +00001949 * @exiting is only set when the return value is -EBUSY. If so, this holds
1950 * a refcount on the exiting task on return and the caller needs to drop it
1951 * after waiting for the exit to complete.
1952 *
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001953 * Return:
1954 * - 0 - failed to acquire the lock atomically;
1955 * - >0 - acquired the lock, return value is vpid of the top_waiter
1956 * - <0 - error
1957 */
David Brazdil0f672f62019-12-10 10:32:29 +00001958static int
1959futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1960 struct futex_hash_bucket *hb2, union futex_key *key1,
1961 union futex_key *key2, struct futex_pi_state **ps,
1962 struct task_struct **exiting, int set_waiters)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001963{
1964 struct futex_q *top_waiter = NULL;
1965 u32 curval;
1966 int ret, vpid;
1967
1968 if (get_futex_value_locked(&curval, pifutex))
1969 return -EFAULT;
1970
1971 if (unlikely(should_fail_futex(true)))
1972 return -EFAULT;
1973
1974 /*
1975 * Find the top_waiter and determine if there are additional waiters.
1976 * If the caller intends to requeue more than 1 waiter to pifutex,
1977 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1978 * as we have means to handle the possible fault. If not, don't set
1979 * the bit unecessarily as it will force the subsequent unlock to enter
1980 * the kernel.
1981 */
1982 top_waiter = futex_top_waiter(hb1, key1);
1983
1984 /* There are no waiters, nothing for us to do. */
1985 if (!top_waiter)
1986 return 0;
1987
1988 /* Ensure we requeue to the expected futex. */
1989 if (!match_futex(top_waiter->requeue_pi_key, key2))
1990 return -EINVAL;
1991
1992 /*
1993 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1994 * the contended case or if set_waiters is 1. The pi_state is returned
1995 * in ps in contended cases.
1996 */
1997 vpid = task_pid_vnr(top_waiter->task);
1998 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
David Brazdil0f672f62019-12-10 10:32:29 +00001999 exiting, set_waiters);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002000 if (ret == 1) {
2001 requeue_pi_wake_futex(top_waiter, key2, hb2);
2002 return vpid;
2003 }
2004 return ret;
2005}
2006
2007/**
2008 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
2009 * @uaddr1: source futex user address
2010 * @flags: futex flags (FLAGS_SHARED, etc.)
2011 * @uaddr2: target futex user address
2012 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
2013 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
2014 * @cmpval: @uaddr1 expected value (or %NULL)
2015 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
2016 * pi futex (pi to pi requeue is not supported)
2017 *
2018 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
2019 * uaddr2 atomically on behalf of the top waiter.
2020 *
2021 * Return:
2022 * - >=0 - on success, the number of tasks requeued or woken;
2023 * - <0 - on error
2024 */
2025static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
2026 u32 __user *uaddr2, int nr_wake, int nr_requeue,
2027 u32 *cmpval, int requeue_pi)
2028{
2029 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
2030 int drop_count = 0, task_count = 0, ret;
2031 struct futex_pi_state *pi_state = NULL;
2032 struct futex_hash_bucket *hb1, *hb2;
2033 struct futex_q *this, *next;
2034 DEFINE_WAKE_Q(wake_q);
2035
2036 if (nr_wake < 0 || nr_requeue < 0)
2037 return -EINVAL;
2038
2039 /*
2040 * When PI not supported: return -ENOSYS if requeue_pi is true,
2041 * consequently the compiler knows requeue_pi is always false past
2042 * this point which will optimize away all the conditional code
2043 * further down.
2044 */
2045 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
2046 return -ENOSYS;
2047
2048 if (requeue_pi) {
2049 /*
2050 * Requeue PI only works on two distinct uaddrs. This
2051 * check is only valid for private futexes. See below.
2052 */
2053 if (uaddr1 == uaddr2)
2054 return -EINVAL;
2055
2056 /*
2057 * requeue_pi requires a pi_state, try to allocate it now
2058 * without any locks in case it fails.
2059 */
2060 if (refill_pi_state_cache())
2061 return -ENOMEM;
2062 /*
2063 * requeue_pi must wake as many tasks as it can, up to nr_wake
2064 * + nr_requeue, since it acquires the rt_mutex prior to
2065 * returning to userspace, so as to not leave the rt_mutex with
2066 * waiters and no owner. However, second and third wake-ups
2067 * cannot be predicted as they involve race conditions with the
2068 * first wake and a fault while looking up the pi_state. Both
2069 * pthread_cond_signal() and pthread_cond_broadcast() should
2070 * use nr_wake=1.
2071 */
2072 if (nr_wake != 1)
2073 return -EINVAL;
2074 }
2075
2076retry:
David Brazdil0f672f62019-12-10 10:32:29 +00002077 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002078 if (unlikely(ret != 0))
2079 goto out;
2080 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
David Brazdil0f672f62019-12-10 10:32:29 +00002081 requeue_pi ? FUTEX_WRITE : FUTEX_READ);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002082 if (unlikely(ret != 0))
2083 goto out_put_key1;
2084
2085 /*
2086 * The check above which compares uaddrs is not sufficient for
2087 * shared futexes. We need to compare the keys:
2088 */
2089 if (requeue_pi && match_futex(&key1, &key2)) {
2090 ret = -EINVAL;
2091 goto out_put_keys;
2092 }
2093
2094 hb1 = hash_futex(&key1);
2095 hb2 = hash_futex(&key2);
2096
2097retry_private:
2098 hb_waiters_inc(hb2);
2099 double_lock_hb(hb1, hb2);
2100
2101 if (likely(cmpval != NULL)) {
2102 u32 curval;
2103
2104 ret = get_futex_value_locked(&curval, uaddr1);
2105
2106 if (unlikely(ret)) {
2107 double_unlock_hb(hb1, hb2);
2108 hb_waiters_dec(hb2);
2109
2110 ret = get_user(curval, uaddr1);
2111 if (ret)
2112 goto out_put_keys;
2113
2114 if (!(flags & FLAGS_SHARED))
2115 goto retry_private;
2116
2117 put_futex_key(&key2);
2118 put_futex_key(&key1);
2119 goto retry;
2120 }
2121 if (curval != *cmpval) {
2122 ret = -EAGAIN;
2123 goto out_unlock;
2124 }
2125 }
2126
2127 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
David Brazdil0f672f62019-12-10 10:32:29 +00002128 struct task_struct *exiting = NULL;
2129
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002130 /*
2131 * Attempt to acquire uaddr2 and wake the top waiter. If we
2132 * intend to requeue waiters, force setting the FUTEX_WAITERS
2133 * bit. We force this here where we are able to easily handle
2134 * faults rather in the requeue loop below.
2135 */
2136 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
David Brazdil0f672f62019-12-10 10:32:29 +00002137 &key2, &pi_state,
2138 &exiting, nr_requeue);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002139
2140 /*
2141 * At this point the top_waiter has either taken uaddr2 or is
2142 * waiting on it. If the former, then the pi_state will not
2143 * exist yet, look it up one more time to ensure we have a
2144 * reference to it. If the lock was taken, ret contains the
2145 * vpid of the top waiter task.
2146 * If the lock was not taken, we have pi_state and an initial
2147 * refcount on it. In case of an error we have nothing.
2148 */
2149 if (ret > 0) {
2150 WARN_ON(pi_state);
2151 drop_count++;
2152 task_count++;
2153 /*
2154 * If we acquired the lock, then the user space value
2155 * of uaddr2 should be vpid. It cannot be changed by
2156 * the top waiter as it is blocked on hb2 lock if it
2157 * tries to do so. If something fiddled with it behind
2158 * our back the pi state lookup might unearth it. So
2159 * we rather use the known value than rereading and
2160 * handing potential crap to lookup_pi_state.
2161 *
2162 * If that call succeeds then we have pi_state and an
2163 * initial refcount on it.
2164 */
David Brazdil0f672f62019-12-10 10:32:29 +00002165 ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2166 &pi_state, &exiting);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002167 }
2168
2169 switch (ret) {
2170 case 0:
2171 /* We hold a reference on the pi state. */
2172 break;
2173
2174 /* If the above failed, then pi_state is NULL */
2175 case -EFAULT:
2176 double_unlock_hb(hb1, hb2);
2177 hb_waiters_dec(hb2);
2178 put_futex_key(&key2);
2179 put_futex_key(&key1);
2180 ret = fault_in_user_writeable(uaddr2);
2181 if (!ret)
2182 goto retry;
2183 goto out;
David Brazdil0f672f62019-12-10 10:32:29 +00002184 case -EBUSY:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002185 case -EAGAIN:
2186 /*
2187 * Two reasons for this:
David Brazdil0f672f62019-12-10 10:32:29 +00002188 * - EBUSY: Owner is exiting and we just wait for the
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002189 * exit to complete.
David Brazdil0f672f62019-12-10 10:32:29 +00002190 * - EAGAIN: The user space value changed.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002191 */
2192 double_unlock_hb(hb1, hb2);
2193 hb_waiters_dec(hb2);
2194 put_futex_key(&key2);
2195 put_futex_key(&key1);
David Brazdil0f672f62019-12-10 10:32:29 +00002196 /*
2197 * Handle the case where the owner is in the middle of
2198 * exiting. Wait for the exit to complete otherwise
2199 * this task might loop forever, aka. live lock.
2200 */
2201 wait_for_owner_exiting(ret, exiting);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002202 cond_resched();
2203 goto retry;
2204 default:
2205 goto out_unlock;
2206 }
2207 }
2208
2209 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2210 if (task_count - nr_wake >= nr_requeue)
2211 break;
2212
2213 if (!match_futex(&this->key, &key1))
2214 continue;
2215
2216 /*
2217 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2218 * be paired with each other and no other futex ops.
2219 *
2220 * We should never be requeueing a futex_q with a pi_state,
2221 * which is awaiting a futex_unlock_pi().
2222 */
2223 if ((requeue_pi && !this->rt_waiter) ||
2224 (!requeue_pi && this->rt_waiter) ||
2225 this->pi_state) {
2226 ret = -EINVAL;
2227 break;
2228 }
2229
2230 /*
2231 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2232 * lock, we already woke the top_waiter. If not, it will be
2233 * woken by futex_unlock_pi().
2234 */
2235 if (++task_count <= nr_wake && !requeue_pi) {
2236 mark_wake_futex(&wake_q, this);
2237 continue;
2238 }
2239
2240 /* Ensure we requeue to the expected futex for requeue_pi. */
2241 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2242 ret = -EINVAL;
2243 break;
2244 }
2245
2246 /*
2247 * Requeue nr_requeue waiters and possibly one more in the case
2248 * of requeue_pi if we couldn't acquire the lock atomically.
2249 */
2250 if (requeue_pi) {
2251 /*
2252 * Prepare the waiter to take the rt_mutex. Take a
2253 * refcount on the pi_state and store the pointer in
2254 * the futex_q object of the waiter.
2255 */
2256 get_pi_state(pi_state);
2257 this->pi_state = pi_state;
2258 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2259 this->rt_waiter,
2260 this->task);
2261 if (ret == 1) {
2262 /*
2263 * We got the lock. We do neither drop the
2264 * refcount on pi_state nor clear
2265 * this->pi_state because the waiter needs the
2266 * pi_state for cleaning up the user space
2267 * value. It will drop the refcount after
2268 * doing so.
2269 */
2270 requeue_pi_wake_futex(this, &key2, hb2);
2271 drop_count++;
2272 continue;
2273 } else if (ret) {
2274 /*
2275 * rt_mutex_start_proxy_lock() detected a
2276 * potential deadlock when we tried to queue
2277 * that waiter. Drop the pi_state reference
2278 * which we took above and remove the pointer
2279 * to the state from the waiters futex_q
2280 * object.
2281 */
2282 this->pi_state = NULL;
2283 put_pi_state(pi_state);
2284 /*
2285 * We stop queueing more waiters and let user
2286 * space deal with the mess.
2287 */
2288 break;
2289 }
2290 }
2291 requeue_futex(this, hb1, hb2, &key2);
2292 drop_count++;
2293 }
2294
2295 /*
2296 * We took an extra initial reference to the pi_state either
2297 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2298 * need to drop it here again.
2299 */
2300 put_pi_state(pi_state);
2301
2302out_unlock:
2303 double_unlock_hb(hb1, hb2);
2304 wake_up_q(&wake_q);
2305 hb_waiters_dec(hb2);
2306
2307 /*
2308 * drop_futex_key_refs() must be called outside the spinlocks. During
2309 * the requeue we moved futex_q's from the hash bucket at key1 to the
2310 * one at key2 and updated their key pointer. We no longer need to
2311 * hold the references to key1.
2312 */
2313 while (--drop_count >= 0)
2314 drop_futex_key_refs(&key1);
2315
2316out_put_keys:
2317 put_futex_key(&key2);
2318out_put_key1:
2319 put_futex_key(&key1);
2320out:
2321 return ret ? ret : task_count;
2322}
2323
2324/* The key must be already stored in q->key. */
2325static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2326 __acquires(&hb->lock)
2327{
2328 struct futex_hash_bucket *hb;
2329
2330 hb = hash_futex(&q->key);
2331
2332 /*
2333 * Increment the counter before taking the lock so that
2334 * a potential waker won't miss a to-be-slept task that is
2335 * waiting for the spinlock. This is safe as all queue_lock()
2336 * users end up calling queue_me(). Similarly, for housekeeping,
2337 * decrement the counter at queue_unlock() when some error has
2338 * occurred and we don't end up adding the task to the list.
2339 */
David Brazdil0f672f62019-12-10 10:32:29 +00002340 hb_waiters_inc(hb); /* implies smp_mb(); (A) */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002341
2342 q->lock_ptr = &hb->lock;
2343
David Brazdil0f672f62019-12-10 10:32:29 +00002344 spin_lock(&hb->lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002345 return hb;
2346}
2347
2348static inline void
2349queue_unlock(struct futex_hash_bucket *hb)
2350 __releases(&hb->lock)
2351{
2352 spin_unlock(&hb->lock);
2353 hb_waiters_dec(hb);
2354}
2355
2356static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2357{
2358 int prio;
2359
2360 /*
2361 * The priority used to register this element is
2362 * - either the real thread-priority for the real-time threads
2363 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2364 * - or MAX_RT_PRIO for non-RT threads.
2365 * Thus, all RT-threads are woken first in priority order, and
2366 * the others are woken last, in FIFO order.
2367 */
2368 prio = min(current->normal_prio, MAX_RT_PRIO);
2369
2370 plist_node_init(&q->list, prio);
2371 plist_add(&q->list, &hb->chain);
2372 q->task = current;
2373}
2374
2375/**
2376 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2377 * @q: The futex_q to enqueue
2378 * @hb: The destination hash bucket
2379 *
2380 * The hb->lock must be held by the caller, and is released here. A call to
2381 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2382 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2383 * or nothing if the unqueue is done as part of the wake process and the unqueue
2384 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2385 * an example).
2386 */
2387static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2388 __releases(&hb->lock)
2389{
2390 __queue_me(q, hb);
2391 spin_unlock(&hb->lock);
2392}
2393
2394/**
2395 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2396 * @q: The futex_q to unqueue
2397 *
2398 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2399 * be paired with exactly one earlier call to queue_me().
2400 *
2401 * Return:
2402 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2403 * - 0 - if the futex_q was already removed by the waking thread
2404 */
2405static int unqueue_me(struct futex_q *q)
2406{
2407 spinlock_t *lock_ptr;
2408 int ret = 0;
2409
2410 /* In the common case we don't take the spinlock, which is nice. */
2411retry:
2412 /*
2413 * q->lock_ptr can change between this read and the following spin_lock.
2414 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2415 * optimizing lock_ptr out of the logic below.
2416 */
2417 lock_ptr = READ_ONCE(q->lock_ptr);
2418 if (lock_ptr != NULL) {
2419 spin_lock(lock_ptr);
2420 /*
2421 * q->lock_ptr can change between reading it and
2422 * spin_lock(), causing us to take the wrong lock. This
2423 * corrects the race condition.
2424 *
2425 * Reasoning goes like this: if we have the wrong lock,
2426 * q->lock_ptr must have changed (maybe several times)
2427 * between reading it and the spin_lock(). It can
2428 * change again after the spin_lock() but only if it was
2429 * already changed before the spin_lock(). It cannot,
2430 * however, change back to the original value. Therefore
2431 * we can detect whether we acquired the correct lock.
2432 */
2433 if (unlikely(lock_ptr != q->lock_ptr)) {
2434 spin_unlock(lock_ptr);
2435 goto retry;
2436 }
2437 __unqueue_futex(q);
2438
2439 BUG_ON(q->pi_state);
2440
2441 spin_unlock(lock_ptr);
2442 ret = 1;
2443 }
2444
2445 drop_futex_key_refs(&q->key);
2446 return ret;
2447}
2448
2449/*
2450 * PI futexes can not be requeued and must remove themself from the
2451 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2452 * and dropped here.
2453 */
2454static void unqueue_me_pi(struct futex_q *q)
2455 __releases(q->lock_ptr)
2456{
2457 __unqueue_futex(q);
2458
2459 BUG_ON(!q->pi_state);
2460 put_pi_state(q->pi_state);
2461 q->pi_state = NULL;
2462
2463 spin_unlock(q->lock_ptr);
2464}
2465
Olivier Deprez0e641232021-09-23 10:07:05 +02002466static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2467 struct task_struct *argowner)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002468{
Olivier Deprez0e641232021-09-23 10:07:05 +02002469 u32 uval, uninitialized_var(curval), newval, newtid;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002470 struct futex_pi_state *pi_state = q->pi_state;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002471 struct task_struct *oldowner, *newowner;
Olivier Deprez0e641232021-09-23 10:07:05 +02002472 int err = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002473
2474 oldowner = pi_state->owner;
2475
2476 /*
2477 * We are here because either:
2478 *
2479 * - we stole the lock and pi_state->owner needs updating to reflect
2480 * that (@argowner == current),
2481 *
2482 * or:
2483 *
2484 * - someone stole our lock and we need to fix things to point to the
2485 * new owner (@argowner == NULL).
2486 *
2487 * Either way, we have to replace the TID in the user space variable.
2488 * This must be atomic as we have to preserve the owner died bit here.
2489 *
2490 * Note: We write the user space value _before_ changing the pi_state
2491 * because we can fault here. Imagine swapped out pages or a fork
2492 * that marked all the anonymous memory readonly for cow.
2493 *
2494 * Modifying pi_state _before_ the user space value would leave the
2495 * pi_state in an inconsistent state when we fault here, because we
2496 * need to drop the locks to handle the fault. This might be observed
2497 * in the PID check in lookup_pi_state.
2498 */
2499retry:
2500 if (!argowner) {
2501 if (oldowner != current) {
2502 /*
2503 * We raced against a concurrent self; things are
2504 * already fixed up. Nothing to do.
2505 */
Olivier Deprez0e641232021-09-23 10:07:05 +02002506 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002507 }
2508
2509 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
Olivier Deprez0e641232021-09-23 10:07:05 +02002510 /* We got the lock. pi_state is correct. Tell caller. */
2511 return 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002512 }
2513
2514 /*
Olivier Deprez0e641232021-09-23 10:07:05 +02002515 * The trylock just failed, so either there is an owner or
2516 * there is a higher priority waiter than this one.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002517 */
2518 newowner = rt_mutex_owner(&pi_state->pi_mutex);
Olivier Deprez0e641232021-09-23 10:07:05 +02002519 /*
2520 * If the higher priority waiter has not yet taken over the
2521 * rtmutex then newowner is NULL. We can't return here with
2522 * that state because it's inconsistent vs. the user space
2523 * state. So drop the locks and try again. It's a valid
2524 * situation and not any different from the other retry
2525 * conditions.
2526 */
2527 if (unlikely(!newowner)) {
2528 err = -EAGAIN;
2529 goto handle_err;
2530 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002531 } else {
2532 WARN_ON_ONCE(argowner != current);
2533 if (oldowner == current) {
2534 /*
2535 * We raced against a concurrent self; things are
2536 * already fixed up. Nothing to do.
2537 */
Olivier Deprez0e641232021-09-23 10:07:05 +02002538 return 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002539 }
2540 newowner = argowner;
2541 }
2542
2543 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2544 /* Owner died? */
2545 if (!pi_state->owner)
2546 newtid |= FUTEX_OWNER_DIED;
2547
David Brazdil0f672f62019-12-10 10:32:29 +00002548 err = get_futex_value_locked(&uval, uaddr);
2549 if (err)
2550 goto handle_err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002551
2552 for (;;) {
2553 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2554
David Brazdil0f672f62019-12-10 10:32:29 +00002555 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2556 if (err)
2557 goto handle_err;
2558
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002559 if (curval == uval)
2560 break;
2561 uval = curval;
2562 }
2563
2564 /*
2565 * We fixed up user space. Now we need to fix the pi_state
2566 * itself.
2567 */
Olivier Deprez0e641232021-09-23 10:07:05 +02002568 pi_state_update_owner(pi_state, newowner);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002569
Olivier Deprez0e641232021-09-23 10:07:05 +02002570 return argowner == current;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002571
2572 /*
David Brazdil0f672f62019-12-10 10:32:29 +00002573 * In order to reschedule or handle a page fault, we need to drop the
2574 * locks here. In the case of a fault, this gives the other task
2575 * (either the highest priority waiter itself or the task which stole
2576 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2577 * are back from handling the fault we need to check the pi_state after
2578 * reacquiring the locks and before trying to do another fixup. When
2579 * the fixup has been done already we simply return.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002580 *
2581 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2582 * drop hb->lock since the caller owns the hb -> futex_q relation.
2583 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2584 */
David Brazdil0f672f62019-12-10 10:32:29 +00002585handle_err:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002586 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2587 spin_unlock(q->lock_ptr);
2588
David Brazdil0f672f62019-12-10 10:32:29 +00002589 switch (err) {
2590 case -EFAULT:
Olivier Deprez0e641232021-09-23 10:07:05 +02002591 err = fault_in_user_writeable(uaddr);
David Brazdil0f672f62019-12-10 10:32:29 +00002592 break;
2593
2594 case -EAGAIN:
2595 cond_resched();
Olivier Deprez0e641232021-09-23 10:07:05 +02002596 err = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00002597 break;
2598
2599 default:
2600 WARN_ON_ONCE(1);
David Brazdil0f672f62019-12-10 10:32:29 +00002601 break;
2602 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002603
2604 spin_lock(q->lock_ptr);
2605 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2606
2607 /*
2608 * Check if someone else fixed it for us:
2609 */
Olivier Deprez0e641232021-09-23 10:07:05 +02002610 if (pi_state->owner != oldowner)
2611 return argowner == current;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002612
Olivier Deprez0e641232021-09-23 10:07:05 +02002613 /* Retry if err was -EAGAIN or the fault in succeeded */
2614 if (!err)
2615 goto retry;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002616
Olivier Deprez0e641232021-09-23 10:07:05 +02002617 /*
2618 * fault_in_user_writeable() failed so user state is immutable. At
2619 * best we can make the kernel state consistent but user state will
2620 * be most likely hosed and any subsequent unlock operation will be
2621 * rejected due to PI futex rule [10].
2622 *
2623 * Ensure that the rtmutex owner is also the pi_state owner despite
2624 * the user space value claiming something different. There is no
2625 * point in unlocking the rtmutex if current is the owner as it
2626 * would need to wait until the next waiter has taken the rtmutex
2627 * to guarantee consistent state. Keep it simple. Userspace asked
2628 * for this wreckaged state.
2629 *
2630 * The rtmutex has an owner - either current or some other
2631 * task. See the EAGAIN loop above.
2632 */
2633 pi_state_update_owner(pi_state, rt_mutex_owner(&pi_state->pi_mutex));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002634
Olivier Deprez0e641232021-09-23 10:07:05 +02002635 return err;
2636}
2637
2638static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2639 struct task_struct *argowner)
2640{
2641 struct futex_pi_state *pi_state = q->pi_state;
2642 int ret;
2643
2644 lockdep_assert_held(q->lock_ptr);
2645
2646 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2647 ret = __fixup_pi_state_owner(uaddr, q, argowner);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002648 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2649 return ret;
2650}
2651
2652static long futex_wait_restart(struct restart_block *restart);
2653
2654/**
2655 * fixup_owner() - Post lock pi_state and corner case management
2656 * @uaddr: user address of the futex
2657 * @q: futex_q (contains pi_state and access to the rt_mutex)
2658 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2659 *
2660 * After attempting to lock an rt_mutex, this function is called to cleanup
2661 * the pi_state owner as well as handle race conditions that may allow us to
2662 * acquire the lock. Must be called with the hb lock held.
2663 *
2664 * Return:
2665 * - 1 - success, lock taken;
2666 * - 0 - success, lock not taken;
2667 * - <0 - on error (-EFAULT)
2668 */
2669static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2670{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002671 if (locked) {
2672 /*
2673 * Got the lock. We might not be the anticipated owner if we
2674 * did a lock-steal - fix up the PI-state in that case:
2675 *
2676 * Speculative pi_state->owner read (we don't hold wait_lock);
2677 * since we own the lock pi_state->owner == current is the
2678 * stable state, anything else needs more attention.
2679 */
2680 if (q->pi_state->owner != current)
Olivier Deprez0e641232021-09-23 10:07:05 +02002681 return fixup_pi_state_owner(uaddr, q, current);
2682 return 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002683 }
2684
2685 /*
2686 * If we didn't get the lock; check if anybody stole it from us. In
2687 * that case, we need to fix up the uval to point to them instead of
2688 * us, otherwise bad things happen. [10]
2689 *
2690 * Another speculative read; pi_state->owner == current is unstable
2691 * but needs our attention.
2692 */
Olivier Deprez0e641232021-09-23 10:07:05 +02002693 if (q->pi_state->owner == current)
2694 return fixup_pi_state_owner(uaddr, q, NULL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002695
2696 /*
2697 * Paranoia check. If we did not take the lock, then we should not be
Olivier Deprez0e641232021-09-23 10:07:05 +02002698 * the owner of the rt_mutex. Warn and establish consistent state.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002699 */
Olivier Deprez0e641232021-09-23 10:07:05 +02002700 if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current))
2701 return fixup_pi_state_owner(uaddr, q, current);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002702
Olivier Deprez0e641232021-09-23 10:07:05 +02002703 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002704}
2705
2706/**
2707 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2708 * @hb: the futex hash bucket, must be locked by the caller
2709 * @q: the futex_q to queue up on
2710 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2711 */
2712static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2713 struct hrtimer_sleeper *timeout)
2714{
2715 /*
2716 * The task state is guaranteed to be set before another task can
2717 * wake it. set_current_state() is implemented using smp_store_mb() and
2718 * queue_me() calls spin_unlock() upon completion, both serializing
2719 * access to the hash list and forcing another memory barrier.
2720 */
2721 set_current_state(TASK_INTERRUPTIBLE);
2722 queue_me(q, hb);
2723
2724 /* Arm the timer */
2725 if (timeout)
David Brazdil0f672f62019-12-10 10:32:29 +00002726 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002727
2728 /*
2729 * If we have been removed from the hash list, then another task
2730 * has tried to wake us, and we can skip the call to schedule().
2731 */
2732 if (likely(!plist_node_empty(&q->list))) {
2733 /*
2734 * If the timer has already expired, current will already be
2735 * flagged for rescheduling. Only call schedule if there
2736 * is no timeout, or if it has yet to expire.
2737 */
2738 if (!timeout || timeout->task)
2739 freezable_schedule();
2740 }
2741 __set_current_state(TASK_RUNNING);
2742}
2743
2744/**
2745 * futex_wait_setup() - Prepare to wait on a futex
2746 * @uaddr: the futex userspace address
2747 * @val: the expected value
2748 * @flags: futex flags (FLAGS_SHARED, etc.)
2749 * @q: the associated futex_q
2750 * @hb: storage for hash_bucket pointer to be returned to caller
2751 *
2752 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2753 * compare it with the expected value. Handle atomic faults internally.
2754 * Return with the hb lock held and a q.key reference on success, and unlocked
2755 * with no q.key reference on failure.
2756 *
2757 * Return:
2758 * - 0 - uaddr contains val and hb has been locked;
2759 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2760 */
2761static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2762 struct futex_q *q, struct futex_hash_bucket **hb)
2763{
2764 u32 uval;
2765 int ret;
2766
2767 /*
2768 * Access the page AFTER the hash-bucket is locked.
2769 * Order is important:
2770 *
2771 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2772 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2773 *
2774 * The basic logical guarantee of a futex is that it blocks ONLY
2775 * if cond(var) is known to be true at the time of blocking, for
2776 * any cond. If we locked the hash-bucket after testing *uaddr, that
2777 * would open a race condition where we could block indefinitely with
2778 * cond(var) false, which would violate the guarantee.
2779 *
2780 * On the other hand, we insert q and release the hash-bucket only
2781 * after testing *uaddr. This guarantees that futex_wait() will NOT
2782 * absorb a wakeup if *uaddr does not match the desired values
2783 * while the syscall executes.
2784 */
2785retry:
David Brazdil0f672f62019-12-10 10:32:29 +00002786 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002787 if (unlikely(ret != 0))
2788 return ret;
2789
2790retry_private:
2791 *hb = queue_lock(q);
2792
2793 ret = get_futex_value_locked(&uval, uaddr);
2794
2795 if (ret) {
2796 queue_unlock(*hb);
2797
2798 ret = get_user(uval, uaddr);
2799 if (ret)
2800 goto out;
2801
2802 if (!(flags & FLAGS_SHARED))
2803 goto retry_private;
2804
2805 put_futex_key(&q->key);
2806 goto retry;
2807 }
2808
2809 if (uval != val) {
2810 queue_unlock(*hb);
2811 ret = -EWOULDBLOCK;
2812 }
2813
2814out:
2815 if (ret)
2816 put_futex_key(&q->key);
2817 return ret;
2818}
2819
2820static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2821 ktime_t *abs_time, u32 bitset)
2822{
David Brazdil0f672f62019-12-10 10:32:29 +00002823 struct hrtimer_sleeper timeout, *to;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002824 struct restart_block *restart;
2825 struct futex_hash_bucket *hb;
2826 struct futex_q q = futex_q_init;
2827 int ret;
2828
2829 if (!bitset)
2830 return -EINVAL;
2831 q.bitset = bitset;
2832
David Brazdil0f672f62019-12-10 10:32:29 +00002833 to = futex_setup_timer(abs_time, &timeout, flags,
2834 current->timer_slack_ns);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002835retry:
2836 /*
2837 * Prepare to wait on uaddr. On success, holds hb lock and increments
2838 * q.key refs.
2839 */
2840 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2841 if (ret)
2842 goto out;
2843
2844 /* queue_me and wait for wakeup, timeout, or a signal. */
2845 futex_wait_queue_me(hb, &q, to);
2846
2847 /* If we were woken (and unqueued), we succeeded, whatever. */
2848 ret = 0;
2849 /* unqueue_me() drops q.key ref */
2850 if (!unqueue_me(&q))
2851 goto out;
2852 ret = -ETIMEDOUT;
2853 if (to && !to->task)
2854 goto out;
2855
2856 /*
2857 * We expect signal_pending(current), but we might be the
2858 * victim of a spurious wakeup as well.
2859 */
2860 if (!signal_pending(current))
2861 goto retry;
2862
2863 ret = -ERESTARTSYS;
2864 if (!abs_time)
2865 goto out;
2866
2867 restart = &current->restart_block;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002868 restart->futex.uaddr = uaddr;
2869 restart->futex.val = val;
2870 restart->futex.time = *abs_time;
2871 restart->futex.bitset = bitset;
2872 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2873
Olivier Deprez0e641232021-09-23 10:07:05 +02002874 ret = set_restart_fn(restart, futex_wait_restart);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002875
2876out:
2877 if (to) {
2878 hrtimer_cancel(&to->timer);
2879 destroy_hrtimer_on_stack(&to->timer);
2880 }
2881 return ret;
2882}
2883
2884
2885static long futex_wait_restart(struct restart_block *restart)
2886{
2887 u32 __user *uaddr = restart->futex.uaddr;
2888 ktime_t t, *tp = NULL;
2889
2890 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2891 t = restart->futex.time;
2892 tp = &t;
2893 }
2894 restart->fn = do_no_restart_syscall;
2895
2896 return (long)futex_wait(uaddr, restart->futex.flags,
2897 restart->futex.val, tp, restart->futex.bitset);
2898}
2899
2900
2901/*
2902 * Userspace tried a 0 -> TID atomic transition of the futex value
2903 * and failed. The kernel side here does the whole locking operation:
2904 * if there are waiters then it will block as a consequence of relying
2905 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2906 * a 0 value of the futex too.).
2907 *
2908 * Also serves as futex trylock_pi()'ing, and due semantics.
2909 */
2910static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2911 ktime_t *time, int trylock)
2912{
David Brazdil0f672f62019-12-10 10:32:29 +00002913 struct hrtimer_sleeper timeout, *to;
David Brazdil0f672f62019-12-10 10:32:29 +00002914 struct task_struct *exiting = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002915 struct rt_mutex_waiter rt_waiter;
2916 struct futex_hash_bucket *hb;
2917 struct futex_q q = futex_q_init;
2918 int res, ret;
2919
2920 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2921 return -ENOSYS;
2922
2923 if (refill_pi_state_cache())
2924 return -ENOMEM;
2925
David Brazdil0f672f62019-12-10 10:32:29 +00002926 to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002927
2928retry:
David Brazdil0f672f62019-12-10 10:32:29 +00002929 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002930 if (unlikely(ret != 0))
2931 goto out;
2932
2933retry_private:
2934 hb = queue_lock(&q);
2935
David Brazdil0f672f62019-12-10 10:32:29 +00002936 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2937 &exiting, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002938 if (unlikely(ret)) {
2939 /*
2940 * Atomic work succeeded and we got the lock,
2941 * or failed. Either way, we do _not_ block.
2942 */
2943 switch (ret) {
2944 case 1:
2945 /* We got the lock. */
2946 ret = 0;
2947 goto out_unlock_put_key;
2948 case -EFAULT:
2949 goto uaddr_faulted;
David Brazdil0f672f62019-12-10 10:32:29 +00002950 case -EBUSY:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002951 case -EAGAIN:
2952 /*
2953 * Two reasons for this:
David Brazdil0f672f62019-12-10 10:32:29 +00002954 * - EBUSY: Task is exiting and we just wait for the
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002955 * exit to complete.
David Brazdil0f672f62019-12-10 10:32:29 +00002956 * - EAGAIN: The user space value changed.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002957 */
2958 queue_unlock(hb);
2959 put_futex_key(&q.key);
David Brazdil0f672f62019-12-10 10:32:29 +00002960 /*
2961 * Handle the case where the owner is in the middle of
2962 * exiting. Wait for the exit to complete otherwise
2963 * this task might loop forever, aka. live lock.
2964 */
2965 wait_for_owner_exiting(ret, exiting);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002966 cond_resched();
2967 goto retry;
2968 default:
2969 goto out_unlock_put_key;
2970 }
2971 }
2972
2973 WARN_ON(!q.pi_state);
2974
2975 /*
2976 * Only actually queue now that the atomic ops are done:
2977 */
2978 __queue_me(&q, hb);
2979
2980 if (trylock) {
2981 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2982 /* Fixup the trylock return value: */
2983 ret = ret ? 0 : -EWOULDBLOCK;
2984 goto no_block;
2985 }
2986
2987 rt_mutex_init_waiter(&rt_waiter);
2988
2989 /*
2990 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2991 * hold it while doing rt_mutex_start_proxy(), because then it will
2992 * include hb->lock in the blocking chain, even through we'll not in
2993 * fact hold it while blocking. This will lead it to report -EDEADLK
2994 * and BUG when futex_unlock_pi() interleaves with this.
2995 *
2996 * Therefore acquire wait_lock while holding hb->lock, but drop the
David Brazdil0f672f62019-12-10 10:32:29 +00002997 * latter before calling __rt_mutex_start_proxy_lock(). This
2998 * interleaves with futex_unlock_pi() -- which does a similar lock
2999 * handoff -- such that the latter can observe the futex_q::pi_state
3000 * before __rt_mutex_start_proxy_lock() is done.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003001 */
3002 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
3003 spin_unlock(q.lock_ptr);
David Brazdil0f672f62019-12-10 10:32:29 +00003004 /*
3005 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
3006 * such that futex_unlock_pi() is guaranteed to observe the waiter when
3007 * it sees the futex_q::pi_state.
3008 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003009 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
3010 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
3011
3012 if (ret) {
3013 if (ret == 1)
3014 ret = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00003015 goto cleanup;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003016 }
3017
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003018 if (unlikely(to))
David Brazdil0f672f62019-12-10 10:32:29 +00003019 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003020
3021 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
3022
David Brazdil0f672f62019-12-10 10:32:29 +00003023cleanup:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003024 spin_lock(q.lock_ptr);
3025 /*
David Brazdil0f672f62019-12-10 10:32:29 +00003026 * If we failed to acquire the lock (deadlock/signal/timeout), we must
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003027 * first acquire the hb->lock before removing the lock from the
David Brazdil0f672f62019-12-10 10:32:29 +00003028 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
3029 * lists consistent.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003030 *
3031 * In particular; it is important that futex_unlock_pi() can not
3032 * observe this inconsistency.
3033 */
3034 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
3035 ret = 0;
3036
3037no_block:
3038 /*
3039 * Fixup the pi_state owner and possibly acquire the lock if we
3040 * haven't already.
3041 */
3042 res = fixup_owner(uaddr, &q, !ret);
3043 /*
3044 * If fixup_owner() returned an error, proprogate that. If it acquired
3045 * the lock, clear our -ETIMEDOUT or -EINTR.
3046 */
3047 if (res)
3048 ret = (res < 0) ? res : 0;
3049
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003050 /* Unqueue and drop the lock */
3051 unqueue_me_pi(&q);
3052
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003053 goto out_put_key;
3054
3055out_unlock_put_key:
3056 queue_unlock(hb);
3057
3058out_put_key:
3059 put_futex_key(&q.key);
3060out:
3061 if (to) {
3062 hrtimer_cancel(&to->timer);
3063 destroy_hrtimer_on_stack(&to->timer);
3064 }
3065 return ret != -EINTR ? ret : -ERESTARTNOINTR;
3066
3067uaddr_faulted:
3068 queue_unlock(hb);
3069
3070 ret = fault_in_user_writeable(uaddr);
3071 if (ret)
3072 goto out_put_key;
3073
3074 if (!(flags & FLAGS_SHARED))
3075 goto retry_private;
3076
3077 put_futex_key(&q.key);
3078 goto retry;
3079}
3080
3081/*
3082 * Userspace attempted a TID -> 0 atomic transition, and failed.
3083 * This is the in-kernel slowpath: we look up the PI state (if any),
3084 * and do the rt-mutex unlock.
3085 */
3086static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
3087{
3088 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
3089 union futex_key key = FUTEX_KEY_INIT;
3090 struct futex_hash_bucket *hb;
3091 struct futex_q *top_waiter;
3092 int ret;
3093
3094 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3095 return -ENOSYS;
3096
3097retry:
3098 if (get_user(uval, uaddr))
3099 return -EFAULT;
3100 /*
3101 * We release only a lock we actually own:
3102 */
3103 if ((uval & FUTEX_TID_MASK) != vpid)
3104 return -EPERM;
3105
David Brazdil0f672f62019-12-10 10:32:29 +00003106 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003107 if (ret)
3108 return ret;
3109
3110 hb = hash_futex(&key);
3111 spin_lock(&hb->lock);
3112
3113 /*
3114 * Check waiters first. We do not trust user space values at
3115 * all and we at least want to know if user space fiddled
3116 * with the futex value instead of blindly unlocking.
3117 */
3118 top_waiter = futex_top_waiter(hb, &key);
3119 if (top_waiter) {
3120 struct futex_pi_state *pi_state = top_waiter->pi_state;
3121
3122 ret = -EINVAL;
3123 if (!pi_state)
3124 goto out_unlock;
3125
3126 /*
3127 * If current does not own the pi_state then the futex is
3128 * inconsistent and user space fiddled with the futex value.
3129 */
3130 if (pi_state->owner != current)
3131 goto out_unlock;
3132
3133 get_pi_state(pi_state);
3134 /*
3135 * By taking wait_lock while still holding hb->lock, we ensure
3136 * there is no point where we hold neither; and therefore
3137 * wake_futex_pi() must observe a state consistent with what we
3138 * observed.
David Brazdil0f672f62019-12-10 10:32:29 +00003139 *
3140 * In particular; this forces __rt_mutex_start_proxy() to
3141 * complete such that we're guaranteed to observe the
3142 * rt_waiter. Also see the WARN in wake_futex_pi().
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003143 */
3144 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3145 spin_unlock(&hb->lock);
3146
3147 /* drops pi_state->pi_mutex.wait_lock */
3148 ret = wake_futex_pi(uaddr, uval, pi_state);
3149
3150 put_pi_state(pi_state);
3151
3152 /*
3153 * Success, we're done! No tricky corner cases.
3154 */
3155 if (!ret)
3156 goto out_putkey;
3157 /*
3158 * The atomic access to the futex value generated a
3159 * pagefault, so retry the user-access and the wakeup:
3160 */
3161 if (ret == -EFAULT)
3162 goto pi_faulted;
3163 /*
3164 * A unconditional UNLOCK_PI op raced against a waiter
3165 * setting the FUTEX_WAITERS bit. Try again.
3166 */
David Brazdil0f672f62019-12-10 10:32:29 +00003167 if (ret == -EAGAIN)
3168 goto pi_retry;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003169 /*
3170 * wake_futex_pi has detected invalid state. Tell user
3171 * space.
3172 */
3173 goto out_putkey;
3174 }
3175
3176 /*
3177 * We have no kernel internal state, i.e. no waiters in the
3178 * kernel. Waiters which are about to queue themselves are stuck
3179 * on hb->lock. So we can safely ignore them. We do neither
3180 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3181 * owner.
3182 */
David Brazdil0f672f62019-12-10 10:32:29 +00003183 if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003184 spin_unlock(&hb->lock);
David Brazdil0f672f62019-12-10 10:32:29 +00003185 switch (ret) {
3186 case -EFAULT:
3187 goto pi_faulted;
3188
3189 case -EAGAIN:
3190 goto pi_retry;
3191
3192 default:
3193 WARN_ON_ONCE(1);
3194 goto out_putkey;
3195 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003196 }
3197
3198 /*
3199 * If uval has changed, let user space handle it.
3200 */
3201 ret = (curval == uval) ? 0 : -EAGAIN;
3202
3203out_unlock:
3204 spin_unlock(&hb->lock);
3205out_putkey:
3206 put_futex_key(&key);
3207 return ret;
3208
David Brazdil0f672f62019-12-10 10:32:29 +00003209pi_retry:
3210 put_futex_key(&key);
3211 cond_resched();
3212 goto retry;
3213
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003214pi_faulted:
3215 put_futex_key(&key);
3216
3217 ret = fault_in_user_writeable(uaddr);
3218 if (!ret)
3219 goto retry;
3220
3221 return ret;
3222}
3223
3224/**
3225 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3226 * @hb: the hash_bucket futex_q was original enqueued on
3227 * @q: the futex_q woken while waiting to be requeued
3228 * @key2: the futex_key of the requeue target futex
3229 * @timeout: the timeout associated with the wait (NULL if none)
3230 *
3231 * Detect if the task was woken on the initial futex as opposed to the requeue
3232 * target futex. If so, determine if it was a timeout or a signal that caused
3233 * the wakeup and return the appropriate error code to the caller. Must be
3234 * called with the hb lock held.
3235 *
3236 * Return:
3237 * - 0 = no early wakeup detected;
3238 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3239 */
3240static inline
3241int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3242 struct futex_q *q, union futex_key *key2,
3243 struct hrtimer_sleeper *timeout)
3244{
3245 int ret = 0;
3246
3247 /*
3248 * With the hb lock held, we avoid races while we process the wakeup.
3249 * We only need to hold hb (and not hb2) to ensure atomicity as the
3250 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3251 * It can't be requeued from uaddr2 to something else since we don't
3252 * support a PI aware source futex for requeue.
3253 */
3254 if (!match_futex(&q->key, key2)) {
3255 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3256 /*
3257 * We were woken prior to requeue by a timeout or a signal.
3258 * Unqueue the futex_q and determine which it was.
3259 */
3260 plist_del(&q->list, &hb->chain);
3261 hb_waiters_dec(hb);
3262
3263 /* Handle spurious wakeups gracefully */
3264 ret = -EWOULDBLOCK;
3265 if (timeout && !timeout->task)
3266 ret = -ETIMEDOUT;
3267 else if (signal_pending(current))
3268 ret = -ERESTARTNOINTR;
3269 }
3270 return ret;
3271}
3272
3273/**
3274 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3275 * @uaddr: the futex we initially wait on (non-pi)
3276 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3277 * the same type, no requeueing from private to shared, etc.
3278 * @val: the expected value of uaddr
3279 * @abs_time: absolute timeout
3280 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
3281 * @uaddr2: the pi futex we will take prior to returning to user-space
3282 *
3283 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3284 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3285 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3286 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3287 * without one, the pi logic would not know which task to boost/deboost, if
3288 * there was a need to.
3289 *
3290 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3291 * via the following--
3292 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3293 * 2) wakeup on uaddr2 after a requeue
3294 * 3) signal
3295 * 4) timeout
3296 *
3297 * If 3, cleanup and return -ERESTARTNOINTR.
3298 *
3299 * If 2, we may then block on trying to take the rt_mutex and return via:
3300 * 5) successful lock
3301 * 6) signal
3302 * 7) timeout
3303 * 8) other lock acquisition failure
3304 *
3305 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3306 *
3307 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3308 *
3309 * Return:
3310 * - 0 - On success;
3311 * - <0 - On error
3312 */
3313static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3314 u32 val, ktime_t *abs_time, u32 bitset,
3315 u32 __user *uaddr2)
3316{
David Brazdil0f672f62019-12-10 10:32:29 +00003317 struct hrtimer_sleeper timeout, *to;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003318 struct rt_mutex_waiter rt_waiter;
3319 struct futex_hash_bucket *hb;
3320 union futex_key key2 = FUTEX_KEY_INIT;
3321 struct futex_q q = futex_q_init;
3322 int res, ret;
3323
3324 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3325 return -ENOSYS;
3326
3327 if (uaddr == uaddr2)
3328 return -EINVAL;
3329
3330 if (!bitset)
3331 return -EINVAL;
3332
David Brazdil0f672f62019-12-10 10:32:29 +00003333 to = futex_setup_timer(abs_time, &timeout, flags,
3334 current->timer_slack_ns);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003335
3336 /*
3337 * The waiter is allocated on our stack, manipulated by the requeue
3338 * code while we sleep on uaddr.
3339 */
3340 rt_mutex_init_waiter(&rt_waiter);
3341
David Brazdil0f672f62019-12-10 10:32:29 +00003342 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003343 if (unlikely(ret != 0))
3344 goto out;
3345
3346 q.bitset = bitset;
3347 q.rt_waiter = &rt_waiter;
3348 q.requeue_pi_key = &key2;
3349
3350 /*
3351 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3352 * count.
3353 */
3354 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3355 if (ret)
3356 goto out_key2;
3357
3358 /*
3359 * The check above which compares uaddrs is not sufficient for
3360 * shared futexes. We need to compare the keys:
3361 */
3362 if (match_futex(&q.key, &key2)) {
3363 queue_unlock(hb);
3364 ret = -EINVAL;
3365 goto out_put_keys;
3366 }
3367
3368 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3369 futex_wait_queue_me(hb, &q, to);
3370
3371 spin_lock(&hb->lock);
3372 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3373 spin_unlock(&hb->lock);
3374 if (ret)
3375 goto out_put_keys;
3376
3377 /*
3378 * In order for us to be here, we know our q.key == key2, and since
3379 * we took the hb->lock above, we also know that futex_requeue() has
3380 * completed and we no longer have to concern ourselves with a wakeup
3381 * race with the atomic proxy lock acquisition by the requeue code. The
3382 * futex_requeue dropped our key1 reference and incremented our key2
3383 * reference count.
3384 */
3385
3386 /* Check if the requeue code acquired the second futex for us. */
3387 if (!q.rt_waiter) {
3388 /*
3389 * Got the lock. We might not be the anticipated owner if we
3390 * did a lock-steal - fix up the PI-state in that case.
3391 */
3392 if (q.pi_state && (q.pi_state->owner != current)) {
3393 spin_lock(q.lock_ptr);
3394 ret = fixup_pi_state_owner(uaddr2, &q, current);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003395 /*
3396 * Drop the reference to the pi state which
3397 * the requeue_pi() code acquired for us.
3398 */
3399 put_pi_state(q.pi_state);
3400 spin_unlock(q.lock_ptr);
Olivier Deprez0e641232021-09-23 10:07:05 +02003401 /*
3402 * Adjust the return value. It's either -EFAULT or
3403 * success (1) but the caller expects 0 for success.
3404 */
3405 ret = ret < 0 ? ret : 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003406 }
3407 } else {
3408 struct rt_mutex *pi_mutex;
3409
3410 /*
3411 * We have been woken up by futex_unlock_pi(), a timeout, or a
3412 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3413 * the pi_state.
3414 */
3415 WARN_ON(!q.pi_state);
3416 pi_mutex = &q.pi_state->pi_mutex;
3417 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3418
3419 spin_lock(q.lock_ptr);
3420 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3421 ret = 0;
3422
3423 debug_rt_mutex_free_waiter(&rt_waiter);
3424 /*
3425 * Fixup the pi_state owner and possibly acquire the lock if we
3426 * haven't already.
3427 */
3428 res = fixup_owner(uaddr2, &q, !ret);
3429 /*
3430 * If fixup_owner() returned an error, proprogate that. If it
3431 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3432 */
3433 if (res)
3434 ret = (res < 0) ? res : 0;
3435
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003436 /* Unqueue and drop the lock. */
3437 unqueue_me_pi(&q);
3438 }
3439
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003440 if (ret == -EINTR) {
3441 /*
3442 * We've already been requeued, but cannot restart by calling
3443 * futex_lock_pi() directly. We could restart this syscall, but
3444 * it would detect that the user space "val" changed and return
3445 * -EWOULDBLOCK. Save the overhead of the restart and return
3446 * -EWOULDBLOCK directly.
3447 */
3448 ret = -EWOULDBLOCK;
3449 }
3450
3451out_put_keys:
3452 put_futex_key(&q.key);
3453out_key2:
3454 put_futex_key(&key2);
3455
3456out:
3457 if (to) {
3458 hrtimer_cancel(&to->timer);
3459 destroy_hrtimer_on_stack(&to->timer);
3460 }
3461 return ret;
3462}
3463
3464/*
3465 * Support for robust futexes: the kernel cleans up held futexes at
3466 * thread exit time.
3467 *
3468 * Implementation: user-space maintains a per-thread list of locks it
3469 * is holding. Upon do_exit(), the kernel carefully walks this list,
3470 * and marks all locks that are owned by this thread with the
3471 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3472 * always manipulated with the lock held, so the list is private and
3473 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3474 * field, to allow the kernel to clean up if the thread dies after
3475 * acquiring the lock, but just before it could have added itself to
3476 * the list. There can only be one such pending lock.
3477 */
3478
3479/**
3480 * sys_set_robust_list() - Set the robust-futex list head of a task
3481 * @head: pointer to the list-head
3482 * @len: length of the list-head, as userspace expects
3483 */
3484SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3485 size_t, len)
3486{
3487 if (!futex_cmpxchg_enabled)
3488 return -ENOSYS;
3489 /*
3490 * The kernel knows only one size for now:
3491 */
3492 if (unlikely(len != sizeof(*head)))
3493 return -EINVAL;
3494
3495 current->robust_list = head;
3496
3497 return 0;
3498}
3499
3500/**
3501 * sys_get_robust_list() - Get the robust-futex list head of a task
3502 * @pid: pid of the process [zero for current task]
3503 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3504 * @len_ptr: pointer to a length field, the kernel fills in the header size
3505 */
3506SYSCALL_DEFINE3(get_robust_list, int, pid,
3507 struct robust_list_head __user * __user *, head_ptr,
3508 size_t __user *, len_ptr)
3509{
3510 struct robust_list_head __user *head;
3511 unsigned long ret;
3512 struct task_struct *p;
3513
3514 if (!futex_cmpxchg_enabled)
3515 return -ENOSYS;
3516
3517 rcu_read_lock();
3518
3519 ret = -ESRCH;
3520 if (!pid)
3521 p = current;
3522 else {
3523 p = find_task_by_vpid(pid);
3524 if (!p)
3525 goto err_unlock;
3526 }
3527
3528 ret = -EPERM;
3529 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3530 goto err_unlock;
3531
3532 head = p->robust_list;
3533 rcu_read_unlock();
3534
3535 if (put_user(sizeof(*head), len_ptr))
3536 return -EFAULT;
3537 return put_user(head, head_ptr);
3538
3539err_unlock:
3540 rcu_read_unlock();
3541
3542 return ret;
3543}
3544
David Brazdil0f672f62019-12-10 10:32:29 +00003545/* Constants for the pending_op argument of handle_futex_death */
3546#define HANDLE_DEATH_PENDING true
3547#define HANDLE_DEATH_LIST false
3548
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003549/*
3550 * Process a futex-list entry, check whether it's owned by the
3551 * dying task, and do notification if so:
3552 */
David Brazdil0f672f62019-12-10 10:32:29 +00003553static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3554 bool pi, bool pending_op)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003555{
3556 u32 uval, uninitialized_var(nval), mval;
David Brazdil0f672f62019-12-10 10:32:29 +00003557 int err;
3558
3559 /* Futex address must be 32bit aligned */
3560 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3561 return -1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003562
3563retry:
3564 if (get_user(uval, uaddr))
3565 return -1;
3566
David Brazdil0f672f62019-12-10 10:32:29 +00003567 /*
3568 * Special case for regular (non PI) futexes. The unlock path in
3569 * user space has two race scenarios:
3570 *
3571 * 1. The unlock path releases the user space futex value and
3572 * before it can execute the futex() syscall to wake up
3573 * waiters it is killed.
3574 *
3575 * 2. A woken up waiter is killed before it can acquire the
3576 * futex in user space.
3577 *
3578 * In both cases the TID validation below prevents a wakeup of
3579 * potential waiters which can cause these waiters to block
3580 * forever.
3581 *
3582 * In both cases the following conditions are met:
3583 *
3584 * 1) task->robust_list->list_op_pending != NULL
3585 * @pending_op == true
3586 * 2) User space futex value == 0
3587 * 3) Regular futex: @pi == false
3588 *
3589 * If these conditions are met, it is safe to attempt waking up a
3590 * potential waiter without touching the user space futex value and
3591 * trying to set the OWNER_DIED bit. The user space futex value is
3592 * uncontended and the rest of the user space mutex state is
3593 * consistent, so a woken waiter will just take over the
3594 * uncontended futex. Setting the OWNER_DIED bit would create
3595 * inconsistent state and malfunction of the user space owner died
3596 * handling.
3597 */
3598 if (pending_op && !pi && !uval) {
3599 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3600 return 0;
3601 }
3602
3603 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3604 return 0;
3605
3606 /*
3607 * Ok, this dying thread is truly holding a futex
3608 * of interest. Set the OWNER_DIED bit atomically
3609 * via cmpxchg, and if the value had FUTEX_WAITERS
3610 * set, wake up a waiter (if any). (We have to do a
3611 * futex_wake() even if OWNER_DIED is already set -
3612 * to handle the rare but possible case of recursive
3613 * thread-death.) The rest of the cleanup is done in
3614 * userspace.
3615 */
3616 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3617
3618 /*
3619 * We are not holding a lock here, but we want to have
3620 * the pagefault_disable/enable() protection because
3621 * we want to handle the fault gracefully. If the
3622 * access fails we try to fault in the futex with R/W
3623 * verification via get_user_pages. get_user() above
3624 * does not guarantee R/W access. If that fails we
3625 * give up and leave the futex locked.
3626 */
3627 if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3628 switch (err) {
3629 case -EFAULT:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003630 if (fault_in_user_writeable(uaddr))
3631 return -1;
3632 goto retry;
David Brazdil0f672f62019-12-10 10:32:29 +00003633
3634 case -EAGAIN:
3635 cond_resched();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003636 goto retry;
3637
David Brazdil0f672f62019-12-10 10:32:29 +00003638 default:
3639 WARN_ON_ONCE(1);
3640 return err;
3641 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003642 }
David Brazdil0f672f62019-12-10 10:32:29 +00003643
3644 if (nval != uval)
3645 goto retry;
3646
3647 /*
3648 * Wake robust non-PI futexes here. The wakeup of
3649 * PI futexes happens in exit_pi_state():
3650 */
3651 if (!pi && (uval & FUTEX_WAITERS))
3652 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3653
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003654 return 0;
3655}
3656
3657/*
3658 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3659 */
3660static inline int fetch_robust_entry(struct robust_list __user **entry,
3661 struct robust_list __user * __user *head,
3662 unsigned int *pi)
3663{
3664 unsigned long uentry;
3665
3666 if (get_user(uentry, (unsigned long __user *)head))
3667 return -EFAULT;
3668
3669 *entry = (void __user *)(uentry & ~1UL);
3670 *pi = uentry & 1;
3671
3672 return 0;
3673}
3674
3675/*
3676 * Walk curr->robust_list (very carefully, it's a userspace list!)
3677 * and mark any locks found there dead, and notify any waiters.
3678 *
3679 * We silently return on any sign of list-walking problem.
3680 */
David Brazdil0f672f62019-12-10 10:32:29 +00003681static void exit_robust_list(struct task_struct *curr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003682{
3683 struct robust_list_head __user *head = curr->robust_list;
3684 struct robust_list __user *entry, *next_entry, *pending;
3685 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3686 unsigned int uninitialized_var(next_pi);
3687 unsigned long futex_offset;
3688 int rc;
3689
3690 if (!futex_cmpxchg_enabled)
3691 return;
3692
3693 /*
3694 * Fetch the list head (which was registered earlier, via
3695 * sys_set_robust_list()):
3696 */
3697 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3698 return;
3699 /*
3700 * Fetch the relative futex offset:
3701 */
3702 if (get_user(futex_offset, &head->futex_offset))
3703 return;
3704 /*
3705 * Fetch any possibly pending lock-add first, and handle it
3706 * if it exists:
3707 */
3708 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3709 return;
3710
3711 next_entry = NULL; /* avoid warning with gcc */
3712 while (entry != &head->list) {
3713 /*
3714 * Fetch the next entry in the list before calling
3715 * handle_futex_death:
3716 */
3717 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3718 /*
3719 * A pending lock might already be on the list, so
3720 * don't process it twice:
3721 */
David Brazdil0f672f62019-12-10 10:32:29 +00003722 if (entry != pending) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003723 if (handle_futex_death((void __user *)entry + futex_offset,
David Brazdil0f672f62019-12-10 10:32:29 +00003724 curr, pi, HANDLE_DEATH_LIST))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003725 return;
David Brazdil0f672f62019-12-10 10:32:29 +00003726 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003727 if (rc)
3728 return;
3729 entry = next_entry;
3730 pi = next_pi;
3731 /*
3732 * Avoid excessively long or circular lists:
3733 */
3734 if (!--limit)
3735 break;
3736
3737 cond_resched();
3738 }
3739
David Brazdil0f672f62019-12-10 10:32:29 +00003740 if (pending) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003741 handle_futex_death((void __user *)pending + futex_offset,
David Brazdil0f672f62019-12-10 10:32:29 +00003742 curr, pip, HANDLE_DEATH_PENDING);
3743 }
3744}
3745
3746static void futex_cleanup(struct task_struct *tsk)
3747{
3748 if (unlikely(tsk->robust_list)) {
3749 exit_robust_list(tsk);
3750 tsk->robust_list = NULL;
3751 }
3752
3753#ifdef CONFIG_COMPAT
3754 if (unlikely(tsk->compat_robust_list)) {
3755 compat_exit_robust_list(tsk);
3756 tsk->compat_robust_list = NULL;
3757 }
3758#endif
3759
3760 if (unlikely(!list_empty(&tsk->pi_state_list)))
3761 exit_pi_state_list(tsk);
3762}
3763
3764/**
3765 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3766 * @tsk: task to set the state on
3767 *
3768 * Set the futex exit state of the task lockless. The futex waiter code
3769 * observes that state when a task is exiting and loops until the task has
3770 * actually finished the futex cleanup. The worst case for this is that the
3771 * waiter runs through the wait loop until the state becomes visible.
3772 *
3773 * This is called from the recursive fault handling path in do_exit().
3774 *
3775 * This is best effort. Either the futex exit code has run already or
3776 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3777 * take it over. If not, the problem is pushed back to user space. If the
3778 * futex exit code did not run yet, then an already queued waiter might
3779 * block forever, but there is nothing which can be done about that.
3780 */
3781void futex_exit_recursive(struct task_struct *tsk)
3782{
3783 /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3784 if (tsk->futex_state == FUTEX_STATE_EXITING)
3785 mutex_unlock(&tsk->futex_exit_mutex);
3786 tsk->futex_state = FUTEX_STATE_DEAD;
3787}
3788
3789static void futex_cleanup_begin(struct task_struct *tsk)
3790{
3791 /*
3792 * Prevent various race issues against a concurrent incoming waiter
3793 * including live locks by forcing the waiter to block on
3794 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3795 * attach_to_pi_owner().
3796 */
3797 mutex_lock(&tsk->futex_exit_mutex);
3798
3799 /*
3800 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3801 *
3802 * This ensures that all subsequent checks of tsk->futex_state in
3803 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3804 * tsk->pi_lock held.
3805 *
3806 * It guarantees also that a pi_state which was queued right before
3807 * the state change under tsk->pi_lock by a concurrent waiter must
3808 * be observed in exit_pi_state_list().
3809 */
3810 raw_spin_lock_irq(&tsk->pi_lock);
3811 tsk->futex_state = FUTEX_STATE_EXITING;
3812 raw_spin_unlock_irq(&tsk->pi_lock);
3813}
3814
3815static void futex_cleanup_end(struct task_struct *tsk, int state)
3816{
3817 /*
3818 * Lockless store. The only side effect is that an observer might
3819 * take another loop until it becomes visible.
3820 */
3821 tsk->futex_state = state;
3822 /*
3823 * Drop the exit protection. This unblocks waiters which observed
3824 * FUTEX_STATE_EXITING to reevaluate the state.
3825 */
3826 mutex_unlock(&tsk->futex_exit_mutex);
3827}
3828
3829void futex_exec_release(struct task_struct *tsk)
3830{
3831 /*
3832 * The state handling is done for consistency, but in the case of
3833 * exec() there is no way to prevent futher damage as the PID stays
3834 * the same. But for the unlikely and arguably buggy case that a
3835 * futex is held on exec(), this provides at least as much state
3836 * consistency protection which is possible.
3837 */
3838 futex_cleanup_begin(tsk);
3839 futex_cleanup(tsk);
3840 /*
3841 * Reset the state to FUTEX_STATE_OK. The task is alive and about
3842 * exec a new binary.
3843 */
3844 futex_cleanup_end(tsk, FUTEX_STATE_OK);
3845}
3846
3847void futex_exit_release(struct task_struct *tsk)
3848{
3849 futex_cleanup_begin(tsk);
3850 futex_cleanup(tsk);
3851 futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003852}
3853
3854long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3855 u32 __user *uaddr2, u32 val2, u32 val3)
3856{
3857 int cmd = op & FUTEX_CMD_MASK;
3858 unsigned int flags = 0;
3859
3860 if (!(op & FUTEX_PRIVATE_FLAG))
3861 flags |= FLAGS_SHARED;
3862
3863 if (op & FUTEX_CLOCK_REALTIME) {
3864 flags |= FLAGS_CLOCKRT;
Olivier Deprez0e641232021-09-23 10:07:05 +02003865 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003866 return -ENOSYS;
3867 }
3868
3869 switch (cmd) {
3870 case FUTEX_LOCK_PI:
3871 case FUTEX_UNLOCK_PI:
3872 case FUTEX_TRYLOCK_PI:
3873 case FUTEX_WAIT_REQUEUE_PI:
3874 case FUTEX_CMP_REQUEUE_PI:
3875 if (!futex_cmpxchg_enabled)
3876 return -ENOSYS;
3877 }
3878
3879 switch (cmd) {
3880 case FUTEX_WAIT:
3881 val3 = FUTEX_BITSET_MATCH_ANY;
3882 /* fall through */
3883 case FUTEX_WAIT_BITSET:
3884 return futex_wait(uaddr, flags, val, timeout, val3);
3885 case FUTEX_WAKE:
3886 val3 = FUTEX_BITSET_MATCH_ANY;
3887 /* fall through */
3888 case FUTEX_WAKE_BITSET:
3889 return futex_wake(uaddr, flags, val, val3);
3890 case FUTEX_REQUEUE:
3891 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3892 case FUTEX_CMP_REQUEUE:
3893 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3894 case FUTEX_WAKE_OP:
3895 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3896 case FUTEX_LOCK_PI:
3897 return futex_lock_pi(uaddr, flags, timeout, 0);
3898 case FUTEX_UNLOCK_PI:
3899 return futex_unlock_pi(uaddr, flags);
3900 case FUTEX_TRYLOCK_PI:
3901 return futex_lock_pi(uaddr, flags, NULL, 1);
3902 case FUTEX_WAIT_REQUEUE_PI:
3903 val3 = FUTEX_BITSET_MATCH_ANY;
3904 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3905 uaddr2);
3906 case FUTEX_CMP_REQUEUE_PI:
3907 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3908 }
3909 return -ENOSYS;
3910}
3911
3912
3913SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
David Brazdil0f672f62019-12-10 10:32:29 +00003914 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003915 u32, val3)
3916{
David Brazdil0f672f62019-12-10 10:32:29 +00003917 struct timespec64 ts;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003918 ktime_t t, *tp = NULL;
3919 u32 val2 = 0;
3920 int cmd = op & FUTEX_CMD_MASK;
3921
3922 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3923 cmd == FUTEX_WAIT_BITSET ||
3924 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3925 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3926 return -EFAULT;
David Brazdil0f672f62019-12-10 10:32:29 +00003927 if (get_timespec64(&ts, utime))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003928 return -EFAULT;
David Brazdil0f672f62019-12-10 10:32:29 +00003929 if (!timespec64_valid(&ts))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003930 return -EINVAL;
3931
David Brazdil0f672f62019-12-10 10:32:29 +00003932 t = timespec64_to_ktime(ts);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003933 if (cmd == FUTEX_WAIT)
3934 t = ktime_add_safe(ktime_get(), t);
3935 tp = &t;
3936 }
3937 /*
3938 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3939 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3940 */
3941 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3942 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3943 val2 = (u32) (unsigned long) utime;
3944
3945 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3946}
3947
David Brazdil0f672f62019-12-10 10:32:29 +00003948#ifdef CONFIG_COMPAT
3949/*
3950 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3951 */
3952static inline int
3953compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3954 compat_uptr_t __user *head, unsigned int *pi)
3955{
3956 if (get_user(*uentry, head))
3957 return -EFAULT;
3958
3959 *entry = compat_ptr((*uentry) & ~1);
3960 *pi = (unsigned int)(*uentry) & 1;
3961
3962 return 0;
3963}
3964
3965static void __user *futex_uaddr(struct robust_list __user *entry,
3966 compat_long_t futex_offset)
3967{
3968 compat_uptr_t base = ptr_to_compat(entry);
3969 void __user *uaddr = compat_ptr(base + futex_offset);
3970
3971 return uaddr;
3972}
3973
3974/*
3975 * Walk curr->robust_list (very carefully, it's a userspace list!)
3976 * and mark any locks found there dead, and notify any waiters.
3977 *
3978 * We silently return on any sign of list-walking problem.
3979 */
3980static void compat_exit_robust_list(struct task_struct *curr)
3981{
3982 struct compat_robust_list_head __user *head = curr->compat_robust_list;
3983 struct robust_list __user *entry, *next_entry, *pending;
3984 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3985 unsigned int uninitialized_var(next_pi);
3986 compat_uptr_t uentry, next_uentry, upending;
3987 compat_long_t futex_offset;
3988 int rc;
3989
3990 if (!futex_cmpxchg_enabled)
3991 return;
3992
3993 /*
3994 * Fetch the list head (which was registered earlier, via
3995 * sys_set_robust_list()):
3996 */
3997 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3998 return;
3999 /*
4000 * Fetch the relative futex offset:
4001 */
4002 if (get_user(futex_offset, &head->futex_offset))
4003 return;
4004 /*
4005 * Fetch any possibly pending lock-add first, and handle it
4006 * if it exists:
4007 */
4008 if (compat_fetch_robust_entry(&upending, &pending,
4009 &head->list_op_pending, &pip))
4010 return;
4011
4012 next_entry = NULL; /* avoid warning with gcc */
4013 while (entry != (struct robust_list __user *) &head->list) {
4014 /*
4015 * Fetch the next entry in the list before calling
4016 * handle_futex_death:
4017 */
4018 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
4019 (compat_uptr_t __user *)&entry->next, &next_pi);
4020 /*
4021 * A pending lock might already be on the list, so
4022 * dont process it twice:
4023 */
4024 if (entry != pending) {
4025 void __user *uaddr = futex_uaddr(entry, futex_offset);
4026
4027 if (handle_futex_death(uaddr, curr, pi,
4028 HANDLE_DEATH_LIST))
4029 return;
4030 }
4031 if (rc)
4032 return;
4033 uentry = next_uentry;
4034 entry = next_entry;
4035 pi = next_pi;
4036 /*
4037 * Avoid excessively long or circular lists:
4038 */
4039 if (!--limit)
4040 break;
4041
4042 cond_resched();
4043 }
4044 if (pending) {
4045 void __user *uaddr = futex_uaddr(pending, futex_offset);
4046
4047 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
4048 }
4049}
4050
4051COMPAT_SYSCALL_DEFINE2(set_robust_list,
4052 struct compat_robust_list_head __user *, head,
4053 compat_size_t, len)
4054{
4055 if (!futex_cmpxchg_enabled)
4056 return -ENOSYS;
4057
4058 if (unlikely(len != sizeof(*head)))
4059 return -EINVAL;
4060
4061 current->compat_robust_list = head;
4062
4063 return 0;
4064}
4065
4066COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
4067 compat_uptr_t __user *, head_ptr,
4068 compat_size_t __user *, len_ptr)
4069{
4070 struct compat_robust_list_head __user *head;
4071 unsigned long ret;
4072 struct task_struct *p;
4073
4074 if (!futex_cmpxchg_enabled)
4075 return -ENOSYS;
4076
4077 rcu_read_lock();
4078
4079 ret = -ESRCH;
4080 if (!pid)
4081 p = current;
4082 else {
4083 p = find_task_by_vpid(pid);
4084 if (!p)
4085 goto err_unlock;
4086 }
4087
4088 ret = -EPERM;
4089 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
4090 goto err_unlock;
4091
4092 head = p->compat_robust_list;
4093 rcu_read_unlock();
4094
4095 if (put_user(sizeof(*head), len_ptr))
4096 return -EFAULT;
4097 return put_user(ptr_to_compat(head), head_ptr);
4098
4099err_unlock:
4100 rcu_read_unlock();
4101
4102 return ret;
4103}
4104#endif /* CONFIG_COMPAT */
4105
4106#ifdef CONFIG_COMPAT_32BIT_TIME
4107SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
4108 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
4109 u32, val3)
4110{
4111 struct timespec64 ts;
4112 ktime_t t, *tp = NULL;
4113 int val2 = 0;
4114 int cmd = op & FUTEX_CMD_MASK;
4115
4116 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
4117 cmd == FUTEX_WAIT_BITSET ||
4118 cmd == FUTEX_WAIT_REQUEUE_PI)) {
4119 if (get_old_timespec32(&ts, utime))
4120 return -EFAULT;
4121 if (!timespec64_valid(&ts))
4122 return -EINVAL;
4123
4124 t = timespec64_to_ktime(ts);
4125 if (cmd == FUTEX_WAIT)
4126 t = ktime_add_safe(ktime_get(), t);
4127 tp = &t;
4128 }
4129 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
4130 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
4131 val2 = (int) (unsigned long) utime;
4132
4133 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
4134}
4135#endif /* CONFIG_COMPAT_32BIT_TIME */
4136
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004137static void __init futex_detect_cmpxchg(void)
4138{
4139#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4140 u32 curval;
4141
4142 /*
4143 * This will fail and we want it. Some arch implementations do
4144 * runtime detection of the futex_atomic_cmpxchg_inatomic()
4145 * functionality. We want to know that before we call in any
4146 * of the complex code paths. Also we want to prevent
4147 * registration of robust lists in that case. NULL is
4148 * guaranteed to fault and we get -EFAULT on functional
4149 * implementation, the non-functional ones will return
4150 * -ENOSYS.
4151 */
4152 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4153 futex_cmpxchg_enabled = 1;
4154#endif
4155}
4156
4157static int __init futex_init(void)
4158{
4159 unsigned int futex_shift;
4160 unsigned long i;
4161
4162#if CONFIG_BASE_SMALL
4163 futex_hashsize = 16;
4164#else
4165 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4166#endif
4167
4168 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4169 futex_hashsize, 0,
4170 futex_hashsize < 256 ? HASH_SMALL : 0,
4171 &futex_shift, NULL,
4172 futex_hashsize, futex_hashsize);
4173 futex_hashsize = 1UL << futex_shift;
4174
4175 futex_detect_cmpxchg();
4176
4177 for (i = 0; i < futex_hashsize; i++) {
4178 atomic_set(&futex_queues[i].waiters, 0);
4179 plist_head_init(&futex_queues[i].chain);
4180 spin_lock_init(&futex_queues[i].lock);
4181 }
4182
4183 return 0;
4184}
4185core_initcall(futex_init);