blob: 015bf2ba4a0b6eb511170b2c4d9fdb98d5e15d9e [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0-only
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
David Brazdil0f672f62019-12-10 10:32:29 +00004 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005 */
David Brazdil0f672f62019-12-10 10:32:29 +00006#include <uapi/linux/btf.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007#include <linux/kernel.h>
8#include <linux/types.h>
9#include <linux/slab.h>
10#include <linux/bpf.h>
David Brazdil0f672f62019-12-10 10:32:29 +000011#include <linux/btf.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012#include <linux/bpf_verifier.h>
13#include <linux/filter.h>
14#include <net/netlink.h>
15#include <linux/file.h>
16#include <linux/vmalloc.h>
17#include <linux/stringify.h>
18#include <linux/bsearch.h>
19#include <linux/sort.h>
20#include <linux/perf_event.h>
David Brazdil0f672f62019-12-10 10:32:29 +000021#include <linux/ctype.h>
Olivier Deprez157378f2022-04-04 15:47:50 +020022#include <linux/error-injection.h>
23#include <linux/bpf_lsm.h>
24#include <linux/btf_ids.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000025
26#include "disasm.h"
27
28static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
Olivier Deprez157378f2022-04-04 15:47:50 +020029#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000030 [_id] = & _name ## _verifier_ops,
31#define BPF_MAP_TYPE(_id, _ops)
Olivier Deprez157378f2022-04-04 15:47:50 +020032#define BPF_LINK_TYPE(_id, _name)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000033#include <linux/bpf_types.h>
34#undef BPF_PROG_TYPE
35#undef BPF_MAP_TYPE
Olivier Deprez157378f2022-04-04 15:47:50 +020036#undef BPF_LINK_TYPE
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000037};
38
39/* bpf_check() is a static code analyzer that walks eBPF program
40 * instruction by instruction and updates register/stack state.
41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42 *
43 * The first pass is depth-first-search to check that the program is a DAG.
44 * It rejects the following programs:
45 * - larger than BPF_MAXINSNS insns
46 * - if loop is present (detected via back-edge)
47 * - unreachable insns exist (shouldn't be a forest. program = one function)
48 * - out of bounds or malformed jumps
49 * The second pass is all possible path descent from the 1st insn.
50 * Since it's analyzing all pathes through the program, the length of the
51 * analysis is limited to 64k insn, which may be hit even if total number of
52 * insn is less then 4K, but there are too many branches that change stack/regs.
53 * Number of 'branches to be analyzed' is limited to 1k
54 *
55 * On entry to each instruction, each register has a type, and the instruction
56 * changes the types of the registers depending on instruction semantics.
57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * copied to R1.
59 *
60 * All registers are 64-bit.
61 * R0 - return register
62 * R1-R5 argument passing registers
63 * R6-R9 callee saved registers
64 * R10 - frame pointer read-only
65 *
66 * At the start of BPF program the register R1 contains a pointer to bpf_context
67 * and has type PTR_TO_CTX.
68 *
69 * Verifier tracks arithmetic operations on pointers in case:
70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
73 * and 2nd arithmetic instruction is pattern matched to recognize
74 * that it wants to construct a pointer to some element within stack.
75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
76 * (and -20 constant is saved for further stack bounds checking).
77 * Meaning that this reg is a pointer to stack plus known immediate constant.
78 *
79 * Most of the time the registers have SCALAR_VALUE type, which
80 * means the register has some value, but it's not a valid pointer.
81 * (like pointer plus pointer becomes SCALAR_VALUE type)
82 *
83 * When verifier sees load or store instructions the type of base register
David Brazdil0f672f62019-12-10 10:32:29 +000084 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85 * four pointer types recognized by check_mem_access() function.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000086 *
87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88 * and the range of [ptr, ptr + map's value_size) is accessible.
89 *
90 * registers used to pass values to function calls are checked against
91 * function argument constraints.
92 *
93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94 * It means that the register type passed to this function must be
95 * PTR_TO_STACK and it will be used inside the function as
96 * 'pointer to map element key'
97 *
98 * For example the argument constraints for bpf_map_lookup_elem():
99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100 * .arg1_type = ARG_CONST_MAP_PTR,
101 * .arg2_type = ARG_PTR_TO_MAP_KEY,
102 *
103 * ret_type says that this function returns 'pointer to map elem value or null'
104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105 * 2nd argument should be a pointer to stack, which will be used inside
106 * the helper function as a pointer to map element key.
107 *
108 * On the kernel side the helper function looks like:
109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110 * {
111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112 * void *key = (void *) (unsigned long) r2;
113 * void *value;
114 *
115 * here kernel can access 'key' and 'map' pointers safely, knowing that
116 * [key, key + map->key_size) bytes are valid and were initialized on
117 * the stack of eBPF program.
118 * }
119 *
120 * Corresponding eBPF program may look like:
121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125 * here verifier looks at prototype of map_lookup_elem() and sees:
126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128 *
129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131 * and were initialized prior to this call.
132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135 * returns ether pointer to map value or NULL.
136 *
137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138 * insn, the register holding that pointer in the true branch changes state to
139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140 * branch. See check_cond_jmp_op().
141 *
142 * After the call R0 is set to return type of the function and registers R1-R5
143 * are set to NOT_INIT to indicate that they are no longer readable.
David Brazdil0f672f62019-12-10 10:32:29 +0000144 *
145 * The following reference types represent a potential reference to a kernel
146 * resource which, after first being allocated, must be checked and freed by
147 * the BPF program:
148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149 *
150 * When the verifier sees a helper call return a reference type, it allocates a
151 * pointer id for the reference and stores it in the current function state.
152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154 * passes through a NULL-check conditional. For the branch wherein the state is
155 * changed to CONST_IMM, the verifier releases the reference.
156 *
157 * For each helper function that allocates a reference, such as
158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159 * bpf_sk_release(). When a reference type passes into the release function,
160 * the verifier also releases the reference. If any unchecked or unreleased
161 * reference remains at the end of the program, the verifier rejects it.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000162 */
163
164/* verifier_state + insn_idx are pushed to stack when branch is encountered */
165struct bpf_verifier_stack_elem {
166 /* verifer state is 'st'
167 * before processing instruction 'insn_idx'
168 * and after processing instruction 'prev_insn_idx'
169 */
170 struct bpf_verifier_state st;
171 int insn_idx;
172 int prev_insn_idx;
173 struct bpf_verifier_stack_elem *next;
Olivier Deprez157378f2022-04-04 15:47:50 +0200174 /* length of verifier log at the time this state was pushed on stack */
175 u32 log_pos;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000176};
177
David Brazdil0f672f62019-12-10 10:32:29 +0000178#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
179#define BPF_COMPLEXITY_LIMIT_STATES 64
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000180
Olivier Deprez157378f2022-04-04 15:47:50 +0200181#define BPF_MAP_KEY_POISON (1ULL << 63)
182#define BPF_MAP_KEY_SEEN (1ULL << 62)
183
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000184#define BPF_MAP_PTR_UNPRIV 1UL
185#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
186 POISON_POINTER_DELTA))
187#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188
189static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190{
Olivier Deprez157378f2022-04-04 15:47:50 +0200191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000192}
193
194static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195{
Olivier Deprez157378f2022-04-04 15:47:50 +0200196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000197}
198
199static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 const struct bpf_map *map, bool unpriv)
201{
202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 unpriv |= bpf_map_ptr_unpriv(aux);
Olivier Deprez157378f2022-04-04 15:47:50 +0200204 aux->map_ptr_state = (unsigned long)map |
205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206}
207
208static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209{
210 return aux->map_key_state & BPF_MAP_KEY_POISON;
211}
212
213static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214{
215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216}
217
218static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219{
220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221}
222
223static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224{
225 bool poisoned = bpf_map_key_poisoned(aux);
226
227 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000229}
230
231struct bpf_call_arg_meta {
232 struct bpf_map *map_ptr;
233 bool raw_mode;
234 bool pkt_access;
235 int regno;
236 int access_size;
Olivier Deprez157378f2022-04-04 15:47:50 +0200237 int mem_size;
Olivier Deprez0e641232021-09-23 10:07:05 +0200238 u64 msize_max_value;
David Brazdil0f672f62019-12-10 10:32:29 +0000239 int ref_obj_id;
240 int func_id;
Olivier Deprez157378f2022-04-04 15:47:50 +0200241 u32 btf_id;
242 u32 ret_btf_id;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000243};
244
Olivier Deprez157378f2022-04-04 15:47:50 +0200245struct btf *btf_vmlinux;
246
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000247static DEFINE_MUTEX(bpf_verifier_lock);
248
David Brazdil0f672f62019-12-10 10:32:29 +0000249static const struct bpf_line_info *
250find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
251{
252 const struct bpf_line_info *linfo;
253 const struct bpf_prog *prog;
254 u32 i, nr_linfo;
255
256 prog = env->prog;
257 nr_linfo = prog->aux->nr_linfo;
258
259 if (!nr_linfo || insn_off >= prog->len)
260 return NULL;
261
262 linfo = prog->aux->linfo;
263 for (i = 1; i < nr_linfo; i++)
264 if (insn_off < linfo[i].insn_off)
265 break;
266
267 return &linfo[i - 1];
268}
269
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000270void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
271 va_list args)
272{
273 unsigned int n;
274
275 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
276
277 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
278 "verifier log line truncated - local buffer too short\n");
279
280 n = min(log->len_total - log->len_used - 1, n);
281 log->kbuf[n] = '\0';
282
Olivier Deprez157378f2022-04-04 15:47:50 +0200283 if (log->level == BPF_LOG_KERNEL) {
284 pr_err("BPF:%s\n", log->kbuf);
285 return;
286 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000287 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
288 log->len_used += n;
289 else
290 log->ubuf = NULL;
291}
292
Olivier Deprez157378f2022-04-04 15:47:50 +0200293static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
294{
295 char zero = 0;
296
297 if (!bpf_verifier_log_needed(log))
298 return;
299
300 log->len_used = new_pos;
301 if (put_user(zero, log->ubuf + new_pos))
302 log->ubuf = NULL;
303}
304
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000305/* log_level controls verbosity level of eBPF verifier.
306 * bpf_verifier_log_write() is used to dump the verification trace to the log,
307 * so the user can figure out what's wrong with the program
308 */
309__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
310 const char *fmt, ...)
311{
312 va_list args;
313
314 if (!bpf_verifier_log_needed(&env->log))
315 return;
316
317 va_start(args, fmt);
318 bpf_verifier_vlog(&env->log, fmt, args);
319 va_end(args);
320}
321EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
322
323__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
324{
325 struct bpf_verifier_env *env = private_data;
326 va_list args;
327
328 if (!bpf_verifier_log_needed(&env->log))
329 return;
330
331 va_start(args, fmt);
332 bpf_verifier_vlog(&env->log, fmt, args);
333 va_end(args);
334}
335
Olivier Deprez157378f2022-04-04 15:47:50 +0200336__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
337 const char *fmt, ...)
338{
339 va_list args;
340
341 if (!bpf_verifier_log_needed(log))
342 return;
343
344 va_start(args, fmt);
345 bpf_verifier_vlog(log, fmt, args);
346 va_end(args);
347}
348
David Brazdil0f672f62019-12-10 10:32:29 +0000349static const char *ltrim(const char *s)
350{
351 while (isspace(*s))
352 s++;
353
354 return s;
355}
356
357__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
358 u32 insn_off,
359 const char *prefix_fmt, ...)
360{
361 const struct bpf_line_info *linfo;
362
363 if (!bpf_verifier_log_needed(&env->log))
364 return;
365
366 linfo = find_linfo(env, insn_off);
367 if (!linfo || linfo == env->prev_linfo)
368 return;
369
370 if (prefix_fmt) {
371 va_list args;
372
373 va_start(args, prefix_fmt);
374 bpf_verifier_vlog(&env->log, prefix_fmt, args);
375 va_end(args);
376 }
377
378 verbose(env, "%s\n",
379 ltrim(btf_name_by_offset(env->prog->aux->btf,
380 linfo->line_off)));
381
382 env->prev_linfo = linfo;
383}
384
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000385static bool type_is_pkt_pointer(enum bpf_reg_type type)
386{
387 return type == PTR_TO_PACKET ||
388 type == PTR_TO_PACKET_META;
389}
390
David Brazdil0f672f62019-12-10 10:32:29 +0000391static bool type_is_sk_pointer(enum bpf_reg_type type)
392{
393 return type == PTR_TO_SOCKET ||
394 type == PTR_TO_SOCK_COMMON ||
395 type == PTR_TO_TCP_SOCK ||
396 type == PTR_TO_XDP_SOCK;
397}
398
Olivier Deprez157378f2022-04-04 15:47:50 +0200399static bool reg_type_not_null(enum bpf_reg_type type)
400{
401 return type == PTR_TO_SOCKET ||
402 type == PTR_TO_TCP_SOCK ||
403 type == PTR_TO_MAP_VALUE ||
404 type == PTR_TO_SOCK_COMMON;
405}
406
David Brazdil0f672f62019-12-10 10:32:29 +0000407static bool reg_type_may_be_null(enum bpf_reg_type type)
408{
409 return type == PTR_TO_MAP_VALUE_OR_NULL ||
410 type == PTR_TO_SOCKET_OR_NULL ||
411 type == PTR_TO_SOCK_COMMON_OR_NULL ||
Olivier Deprez157378f2022-04-04 15:47:50 +0200412 type == PTR_TO_TCP_SOCK_OR_NULL ||
413 type == PTR_TO_BTF_ID_OR_NULL ||
414 type == PTR_TO_MEM_OR_NULL ||
415 type == PTR_TO_RDONLY_BUF_OR_NULL ||
416 type == PTR_TO_RDWR_BUF_OR_NULL;
David Brazdil0f672f62019-12-10 10:32:29 +0000417}
418
419static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
420{
421 return reg->type == PTR_TO_MAP_VALUE &&
422 map_value_has_spin_lock(reg->map_ptr);
423}
424
425static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
426{
427 return type == PTR_TO_SOCKET ||
428 type == PTR_TO_SOCKET_OR_NULL ||
429 type == PTR_TO_TCP_SOCK ||
Olivier Deprez157378f2022-04-04 15:47:50 +0200430 type == PTR_TO_TCP_SOCK_OR_NULL ||
431 type == PTR_TO_MEM ||
432 type == PTR_TO_MEM_OR_NULL;
David Brazdil0f672f62019-12-10 10:32:29 +0000433}
434
435static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
436{
437 return type == ARG_PTR_TO_SOCK_COMMON;
438}
439
Olivier Deprez157378f2022-04-04 15:47:50 +0200440static bool arg_type_may_be_null(enum bpf_arg_type type)
441{
442 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
443 type == ARG_PTR_TO_MEM_OR_NULL ||
444 type == ARG_PTR_TO_CTX_OR_NULL ||
445 type == ARG_PTR_TO_SOCKET_OR_NULL ||
446 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL;
447}
448
David Brazdil0f672f62019-12-10 10:32:29 +0000449/* Determine whether the function releases some resources allocated by another
450 * function call. The first reference type argument will be assumed to be
451 * released by release_reference().
452 */
453static bool is_release_function(enum bpf_func_id func_id)
454{
Olivier Deprez157378f2022-04-04 15:47:50 +0200455 return func_id == BPF_FUNC_sk_release ||
456 func_id == BPF_FUNC_ringbuf_submit ||
457 func_id == BPF_FUNC_ringbuf_discard;
David Brazdil0f672f62019-12-10 10:32:29 +0000458}
459
Olivier Deprez157378f2022-04-04 15:47:50 +0200460static bool may_be_acquire_function(enum bpf_func_id func_id)
David Brazdil0f672f62019-12-10 10:32:29 +0000461{
462 return func_id == BPF_FUNC_sk_lookup_tcp ||
463 func_id == BPF_FUNC_sk_lookup_udp ||
Olivier Deprez157378f2022-04-04 15:47:50 +0200464 func_id == BPF_FUNC_skc_lookup_tcp ||
465 func_id == BPF_FUNC_map_lookup_elem ||
466 func_id == BPF_FUNC_ringbuf_reserve;
467}
468
469static bool is_acquire_function(enum bpf_func_id func_id,
470 const struct bpf_map *map)
471{
472 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
473
474 if (func_id == BPF_FUNC_sk_lookup_tcp ||
475 func_id == BPF_FUNC_sk_lookup_udp ||
476 func_id == BPF_FUNC_skc_lookup_tcp ||
477 func_id == BPF_FUNC_ringbuf_reserve)
478 return true;
479
480 if (func_id == BPF_FUNC_map_lookup_elem &&
481 (map_type == BPF_MAP_TYPE_SOCKMAP ||
482 map_type == BPF_MAP_TYPE_SOCKHASH))
483 return true;
484
485 return false;
David Brazdil0f672f62019-12-10 10:32:29 +0000486}
487
488static bool is_ptr_cast_function(enum bpf_func_id func_id)
489{
490 return func_id == BPF_FUNC_tcp_sock ||
Olivier Deprez157378f2022-04-04 15:47:50 +0200491 func_id == BPF_FUNC_sk_fullsock ||
492 func_id == BPF_FUNC_skc_to_tcp_sock ||
493 func_id == BPF_FUNC_skc_to_tcp6_sock ||
494 func_id == BPF_FUNC_skc_to_udp6_sock ||
495 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
496 func_id == BPF_FUNC_skc_to_tcp_request_sock;
David Brazdil0f672f62019-12-10 10:32:29 +0000497}
498
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000499/* string representation of 'enum bpf_reg_type' */
500static const char * const reg_type_str[] = {
501 [NOT_INIT] = "?",
502 [SCALAR_VALUE] = "inv",
503 [PTR_TO_CTX] = "ctx",
504 [CONST_PTR_TO_MAP] = "map_ptr",
505 [PTR_TO_MAP_VALUE] = "map_value",
506 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
507 [PTR_TO_STACK] = "fp",
508 [PTR_TO_PACKET] = "pkt",
509 [PTR_TO_PACKET_META] = "pkt_meta",
510 [PTR_TO_PACKET_END] = "pkt_end",
David Brazdil0f672f62019-12-10 10:32:29 +0000511 [PTR_TO_FLOW_KEYS] = "flow_keys",
512 [PTR_TO_SOCKET] = "sock",
513 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
514 [PTR_TO_SOCK_COMMON] = "sock_common",
515 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
516 [PTR_TO_TCP_SOCK] = "tcp_sock",
517 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
518 [PTR_TO_TP_BUFFER] = "tp_buffer",
519 [PTR_TO_XDP_SOCK] = "xdp_sock",
Olivier Deprez157378f2022-04-04 15:47:50 +0200520 [PTR_TO_BTF_ID] = "ptr_",
521 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_",
522 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_",
523 [PTR_TO_MEM] = "mem",
524 [PTR_TO_MEM_OR_NULL] = "mem_or_null",
525 [PTR_TO_RDONLY_BUF] = "rdonly_buf",
526 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
527 [PTR_TO_RDWR_BUF] = "rdwr_buf",
528 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
David Brazdil0f672f62019-12-10 10:32:29 +0000529};
530
531static char slot_type_char[] = {
532 [STACK_INVALID] = '?',
533 [STACK_SPILL] = 'r',
534 [STACK_MISC] = 'm',
535 [STACK_ZERO] = '0',
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000536};
537
538static void print_liveness(struct bpf_verifier_env *env,
539 enum bpf_reg_liveness live)
540{
David Brazdil0f672f62019-12-10 10:32:29 +0000541 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000542 verbose(env, "_");
543 if (live & REG_LIVE_READ)
544 verbose(env, "r");
545 if (live & REG_LIVE_WRITTEN)
546 verbose(env, "w");
David Brazdil0f672f62019-12-10 10:32:29 +0000547 if (live & REG_LIVE_DONE)
548 verbose(env, "D");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000549}
550
551static struct bpf_func_state *func(struct bpf_verifier_env *env,
552 const struct bpf_reg_state *reg)
553{
554 struct bpf_verifier_state *cur = env->cur_state;
555
556 return cur->frame[reg->frameno];
557}
558
Olivier Deprez157378f2022-04-04 15:47:50 +0200559const char *kernel_type_name(u32 id)
560{
561 return btf_name_by_offset(btf_vmlinux,
562 btf_type_by_id(btf_vmlinux, id)->name_off);
563}
564
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000565static void print_verifier_state(struct bpf_verifier_env *env,
566 const struct bpf_func_state *state)
567{
568 const struct bpf_reg_state *reg;
569 enum bpf_reg_type t;
570 int i;
571
572 if (state->frameno)
573 verbose(env, " frame%d:", state->frameno);
574 for (i = 0; i < MAX_BPF_REG; i++) {
575 reg = &state->regs[i];
576 t = reg->type;
577 if (t == NOT_INIT)
578 continue;
579 verbose(env, " R%d", i);
580 print_liveness(env, reg->live);
581 verbose(env, "=%s", reg_type_str[t]);
David Brazdil0f672f62019-12-10 10:32:29 +0000582 if (t == SCALAR_VALUE && reg->precise)
583 verbose(env, "P");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000584 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
585 tnum_is_const(reg->var_off)) {
586 /* reg->off should be 0 for SCALAR_VALUE */
587 verbose(env, "%lld", reg->var_off.value + reg->off);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000588 } else {
Olivier Deprez157378f2022-04-04 15:47:50 +0200589 if (t == PTR_TO_BTF_ID ||
590 t == PTR_TO_BTF_ID_OR_NULL ||
591 t == PTR_TO_PERCPU_BTF_ID)
592 verbose(env, "%s", kernel_type_name(reg->btf_id));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000593 verbose(env, "(id=%d", reg->id);
David Brazdil0f672f62019-12-10 10:32:29 +0000594 if (reg_type_may_be_refcounted_or_null(t))
595 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000596 if (t != SCALAR_VALUE)
597 verbose(env, ",off=%d", reg->off);
598 if (type_is_pkt_pointer(t))
599 verbose(env, ",r=%d", reg->range);
600 else if (t == CONST_PTR_TO_MAP ||
601 t == PTR_TO_MAP_VALUE ||
602 t == PTR_TO_MAP_VALUE_OR_NULL)
603 verbose(env, ",ks=%d,vs=%d",
604 reg->map_ptr->key_size,
605 reg->map_ptr->value_size);
606 if (tnum_is_const(reg->var_off)) {
607 /* Typically an immediate SCALAR_VALUE, but
608 * could be a pointer whose offset is too big
609 * for reg->off
610 */
611 verbose(env, ",imm=%llx", reg->var_off.value);
612 } else {
613 if (reg->smin_value != reg->umin_value &&
614 reg->smin_value != S64_MIN)
615 verbose(env, ",smin_value=%lld",
616 (long long)reg->smin_value);
617 if (reg->smax_value != reg->umax_value &&
618 reg->smax_value != S64_MAX)
619 verbose(env, ",smax_value=%lld",
620 (long long)reg->smax_value);
621 if (reg->umin_value != 0)
622 verbose(env, ",umin_value=%llu",
623 (unsigned long long)reg->umin_value);
624 if (reg->umax_value != U64_MAX)
625 verbose(env, ",umax_value=%llu",
626 (unsigned long long)reg->umax_value);
627 if (!tnum_is_unknown(reg->var_off)) {
628 char tn_buf[48];
629
630 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
631 verbose(env, ",var_off=%s", tn_buf);
632 }
Olivier Deprez157378f2022-04-04 15:47:50 +0200633 if (reg->s32_min_value != reg->smin_value &&
634 reg->s32_min_value != S32_MIN)
635 verbose(env, ",s32_min_value=%d",
636 (int)(reg->s32_min_value));
637 if (reg->s32_max_value != reg->smax_value &&
638 reg->s32_max_value != S32_MAX)
639 verbose(env, ",s32_max_value=%d",
640 (int)(reg->s32_max_value));
641 if (reg->u32_min_value != reg->umin_value &&
642 reg->u32_min_value != U32_MIN)
643 verbose(env, ",u32_min_value=%d",
644 (int)(reg->u32_min_value));
645 if (reg->u32_max_value != reg->umax_value &&
646 reg->u32_max_value != U32_MAX)
647 verbose(env, ",u32_max_value=%d",
648 (int)(reg->u32_max_value));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000649 }
650 verbose(env, ")");
651 }
652 }
653 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
David Brazdil0f672f62019-12-10 10:32:29 +0000654 char types_buf[BPF_REG_SIZE + 1];
655 bool valid = false;
656 int j;
657
658 for (j = 0; j < BPF_REG_SIZE; j++) {
659 if (state->stack[i].slot_type[j] != STACK_INVALID)
660 valid = true;
661 types_buf[j] = slot_type_char[
662 state->stack[i].slot_type[j]];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000663 }
David Brazdil0f672f62019-12-10 10:32:29 +0000664 types_buf[BPF_REG_SIZE] = 0;
665 if (!valid)
666 continue;
667 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
668 print_liveness(env, state->stack[i].spilled_ptr.live);
669 if (state->stack[i].slot_type[0] == STACK_SPILL) {
670 reg = &state->stack[i].spilled_ptr;
671 t = reg->type;
672 verbose(env, "=%s", reg_type_str[t]);
673 if (t == SCALAR_VALUE && reg->precise)
674 verbose(env, "P");
675 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
676 verbose(env, "%lld", reg->var_off.value + reg->off);
677 } else {
678 verbose(env, "=%s", types_buf);
679 }
680 }
681 if (state->acquired_refs && state->refs[0].id) {
682 verbose(env, " refs=%d", state->refs[0].id);
683 for (i = 1; i < state->acquired_refs; i++)
684 if (state->refs[i].id)
685 verbose(env, ",%d", state->refs[i].id);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000686 }
687 verbose(env, "\n");
688}
689
David Brazdil0f672f62019-12-10 10:32:29 +0000690#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
691static int copy_##NAME##_state(struct bpf_func_state *dst, \
692 const struct bpf_func_state *src) \
693{ \
694 if (!src->FIELD) \
695 return 0; \
696 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
697 /* internal bug, make state invalid to reject the program */ \
698 memset(dst, 0, sizeof(*dst)); \
699 return -EFAULT; \
700 } \
701 memcpy(dst->FIELD, src->FIELD, \
702 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
703 return 0; \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000704}
David Brazdil0f672f62019-12-10 10:32:29 +0000705/* copy_reference_state() */
706COPY_STATE_FN(reference, acquired_refs, refs, 1)
707/* copy_stack_state() */
708COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
709#undef COPY_STATE_FN
710
711#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
712static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
713 bool copy_old) \
714{ \
715 u32 old_size = state->COUNT; \
716 struct bpf_##NAME##_state *new_##FIELD; \
717 int slot = size / SIZE; \
718 \
719 if (size <= old_size || !size) { \
720 if (copy_old) \
721 return 0; \
722 state->COUNT = slot * SIZE; \
723 if (!size && old_size) { \
724 kfree(state->FIELD); \
725 state->FIELD = NULL; \
726 } \
727 return 0; \
728 } \
729 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
730 GFP_KERNEL); \
731 if (!new_##FIELD) \
732 return -ENOMEM; \
733 if (copy_old) { \
734 if (state->FIELD) \
735 memcpy(new_##FIELD, state->FIELD, \
736 sizeof(*new_##FIELD) * (old_size / SIZE)); \
737 memset(new_##FIELD + old_size / SIZE, 0, \
738 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
739 } \
740 state->COUNT = slot * SIZE; \
741 kfree(state->FIELD); \
742 state->FIELD = new_##FIELD; \
743 return 0; \
744}
745/* realloc_reference_state() */
746REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
747/* realloc_stack_state() */
748REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
749#undef REALLOC_STATE_FN
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000750
751/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
752 * make it consume minimal amount of memory. check_stack_write() access from
753 * the program calls into realloc_func_state() to grow the stack size.
754 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
David Brazdil0f672f62019-12-10 10:32:29 +0000755 * which realloc_stack_state() copies over. It points to previous
756 * bpf_verifier_state which is never reallocated.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000757 */
David Brazdil0f672f62019-12-10 10:32:29 +0000758static int realloc_func_state(struct bpf_func_state *state, int stack_size,
759 int refs_size, bool copy_old)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000760{
David Brazdil0f672f62019-12-10 10:32:29 +0000761 int err = realloc_reference_state(state, refs_size, copy_old);
762 if (err)
763 return err;
764 return realloc_stack_state(state, stack_size, copy_old);
765}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000766
David Brazdil0f672f62019-12-10 10:32:29 +0000767/* Acquire a pointer id from the env and update the state->refs to include
768 * this new pointer reference.
769 * On success, returns a valid pointer id to associate with the register
770 * On failure, returns a negative errno.
771 */
772static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
773{
774 struct bpf_func_state *state = cur_func(env);
775 int new_ofs = state->acquired_refs;
776 int id, err;
777
778 err = realloc_reference_state(state, state->acquired_refs + 1, true);
779 if (err)
780 return err;
781 id = ++env->id_gen;
782 state->refs[new_ofs].id = id;
783 state->refs[new_ofs].insn_idx = insn_idx;
784
785 return id;
786}
787
788/* release function corresponding to acquire_reference_state(). Idempotent. */
789static int release_reference_state(struct bpf_func_state *state, int ptr_id)
790{
791 int i, last_idx;
792
793 last_idx = state->acquired_refs - 1;
794 for (i = 0; i < state->acquired_refs; i++) {
795 if (state->refs[i].id == ptr_id) {
796 if (last_idx && i != last_idx)
797 memcpy(&state->refs[i], &state->refs[last_idx],
798 sizeof(*state->refs));
799 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
800 state->acquired_refs--;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000801 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000802 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000803 }
David Brazdil0f672f62019-12-10 10:32:29 +0000804 return -EINVAL;
805}
806
807static int transfer_reference_state(struct bpf_func_state *dst,
808 struct bpf_func_state *src)
809{
810 int err = realloc_reference_state(dst, src->acquired_refs, false);
811 if (err)
812 return err;
813 err = copy_reference_state(dst, src);
814 if (err)
815 return err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000816 return 0;
817}
818
819static void free_func_state(struct bpf_func_state *state)
820{
821 if (!state)
822 return;
David Brazdil0f672f62019-12-10 10:32:29 +0000823 kfree(state->refs);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000824 kfree(state->stack);
825 kfree(state);
826}
827
David Brazdil0f672f62019-12-10 10:32:29 +0000828static void clear_jmp_history(struct bpf_verifier_state *state)
829{
830 kfree(state->jmp_history);
831 state->jmp_history = NULL;
832 state->jmp_history_cnt = 0;
833}
834
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000835static void free_verifier_state(struct bpf_verifier_state *state,
836 bool free_self)
837{
838 int i;
839
840 for (i = 0; i <= state->curframe; i++) {
841 free_func_state(state->frame[i]);
842 state->frame[i] = NULL;
843 }
David Brazdil0f672f62019-12-10 10:32:29 +0000844 clear_jmp_history(state);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000845 if (free_self)
846 kfree(state);
847}
848
849/* copy verifier state from src to dst growing dst stack space
850 * when necessary to accommodate larger src stack
851 */
852static int copy_func_state(struct bpf_func_state *dst,
853 const struct bpf_func_state *src)
854{
855 int err;
856
David Brazdil0f672f62019-12-10 10:32:29 +0000857 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
858 false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000859 if (err)
860 return err;
David Brazdil0f672f62019-12-10 10:32:29 +0000861 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
862 err = copy_reference_state(dst, src);
863 if (err)
864 return err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000865 return copy_stack_state(dst, src);
866}
867
868static int copy_verifier_state(struct bpf_verifier_state *dst_state,
869 const struct bpf_verifier_state *src)
870{
871 struct bpf_func_state *dst;
David Brazdil0f672f62019-12-10 10:32:29 +0000872 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000873 int i, err;
874
David Brazdil0f672f62019-12-10 10:32:29 +0000875 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
876 kfree(dst_state->jmp_history);
877 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
878 if (!dst_state->jmp_history)
879 return -ENOMEM;
880 }
881 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
882 dst_state->jmp_history_cnt = src->jmp_history_cnt;
883
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000884 /* if dst has more stack frames then src frame, free them */
885 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
886 free_func_state(dst_state->frame[i]);
887 dst_state->frame[i] = NULL;
888 }
David Brazdil0f672f62019-12-10 10:32:29 +0000889 dst_state->speculative = src->speculative;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000890 dst_state->curframe = src->curframe;
David Brazdil0f672f62019-12-10 10:32:29 +0000891 dst_state->active_spin_lock = src->active_spin_lock;
892 dst_state->branches = src->branches;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000893 dst_state->parent = src->parent;
David Brazdil0f672f62019-12-10 10:32:29 +0000894 dst_state->first_insn_idx = src->first_insn_idx;
895 dst_state->last_insn_idx = src->last_insn_idx;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000896 for (i = 0; i <= src->curframe; i++) {
897 dst = dst_state->frame[i];
898 if (!dst) {
899 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
900 if (!dst)
901 return -ENOMEM;
902 dst_state->frame[i] = dst;
903 }
904 err = copy_func_state(dst, src->frame[i]);
905 if (err)
906 return err;
907 }
908 return 0;
909}
910
David Brazdil0f672f62019-12-10 10:32:29 +0000911static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
912{
913 while (st) {
914 u32 br = --st->branches;
915
916 /* WARN_ON(br > 1) technically makes sense here,
917 * but see comment in push_stack(), hence:
918 */
919 WARN_ONCE((int)br < 0,
920 "BUG update_branch_counts:branches_to_explore=%d\n",
921 br);
922 if (br)
923 break;
924 st = st->parent;
925 }
926}
927
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000928static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
Olivier Deprez157378f2022-04-04 15:47:50 +0200929 int *insn_idx, bool pop_log)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000930{
931 struct bpf_verifier_state *cur = env->cur_state;
932 struct bpf_verifier_stack_elem *elem, *head = env->head;
933 int err;
934
935 if (env->head == NULL)
936 return -ENOENT;
937
938 if (cur) {
939 err = copy_verifier_state(cur, &head->st);
940 if (err)
941 return err;
942 }
Olivier Deprez157378f2022-04-04 15:47:50 +0200943 if (pop_log)
944 bpf_vlog_reset(&env->log, head->log_pos);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000945 if (insn_idx)
946 *insn_idx = head->insn_idx;
947 if (prev_insn_idx)
948 *prev_insn_idx = head->prev_insn_idx;
949 elem = head->next;
950 free_verifier_state(&head->st, false);
951 kfree(head);
952 env->head = elem;
953 env->stack_size--;
954 return 0;
955}
956
957static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
David Brazdil0f672f62019-12-10 10:32:29 +0000958 int insn_idx, int prev_insn_idx,
959 bool speculative)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000960{
961 struct bpf_verifier_state *cur = env->cur_state;
962 struct bpf_verifier_stack_elem *elem;
963 int err;
964
965 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
966 if (!elem)
967 goto err;
968
969 elem->insn_idx = insn_idx;
970 elem->prev_insn_idx = prev_insn_idx;
971 elem->next = env->head;
Olivier Deprez157378f2022-04-04 15:47:50 +0200972 elem->log_pos = env->log.len_used;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000973 env->head = elem;
974 env->stack_size++;
975 err = copy_verifier_state(&elem->st, cur);
976 if (err)
977 goto err;
David Brazdil0f672f62019-12-10 10:32:29 +0000978 elem->st.speculative |= speculative;
979 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
980 verbose(env, "The sequence of %d jumps is too complex.\n",
981 env->stack_size);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000982 goto err;
983 }
David Brazdil0f672f62019-12-10 10:32:29 +0000984 if (elem->st.parent) {
985 ++elem->st.parent->branches;
986 /* WARN_ON(branches > 2) technically makes sense here,
987 * but
988 * 1. speculative states will bump 'branches' for non-branch
989 * instructions
990 * 2. is_state_visited() heuristics may decide not to create
991 * a new state for a sequence of branches and all such current
992 * and cloned states will be pointing to a single parent state
993 * which might have large 'branches' count.
994 */
995 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000996 return &elem->st;
997err:
998 free_verifier_state(env->cur_state, true);
999 env->cur_state = NULL;
1000 /* pop all elements and return */
Olivier Deprez157378f2022-04-04 15:47:50 +02001001 while (!pop_stack(env, NULL, NULL, false));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001002 return NULL;
1003}
1004
1005#define CALLER_SAVED_REGS 6
1006static const int caller_saved[CALLER_SAVED_REGS] = {
1007 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1008};
1009
Olivier Deprez0e641232021-09-23 10:07:05 +02001010static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1011 struct bpf_reg_state *reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001012
Olivier Deprez157378f2022-04-04 15:47:50 +02001013/* This helper doesn't clear reg->id */
1014static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1015{
1016 reg->var_off = tnum_const(imm);
1017 reg->smin_value = (s64)imm;
1018 reg->smax_value = (s64)imm;
1019 reg->umin_value = imm;
1020 reg->umax_value = imm;
1021
1022 reg->s32_min_value = (s32)imm;
1023 reg->s32_max_value = (s32)imm;
1024 reg->u32_min_value = (u32)imm;
1025 reg->u32_max_value = (u32)imm;
1026}
1027
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001028/* Mark the unknown part of a register (variable offset or scalar value) as
1029 * known to have the value @imm.
1030 */
1031static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1032{
1033 /* Clear id, off, and union(map_ptr, range) */
1034 memset(((u8 *)reg) + sizeof(reg->type), 0,
1035 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
Olivier Deprez157378f2022-04-04 15:47:50 +02001036 ___mark_reg_known(reg, imm);
1037}
1038
1039static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1040{
1041 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1042 reg->s32_min_value = (s32)imm;
1043 reg->s32_max_value = (s32)imm;
1044 reg->u32_min_value = (u32)imm;
1045 reg->u32_max_value = (u32)imm;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001046}
1047
1048/* Mark the 'variable offset' part of a register as zero. This should be
1049 * used only on registers holding a pointer type.
1050 */
1051static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1052{
1053 __mark_reg_known(reg, 0);
1054}
1055
1056static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1057{
1058 __mark_reg_known(reg, 0);
1059 reg->type = SCALAR_VALUE;
1060}
1061
1062static void mark_reg_known_zero(struct bpf_verifier_env *env,
1063 struct bpf_reg_state *regs, u32 regno)
1064{
1065 if (WARN_ON(regno >= MAX_BPF_REG)) {
1066 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1067 /* Something bad happened, let's kill all regs */
1068 for (regno = 0; regno < MAX_BPF_REG; regno++)
Olivier Deprez0e641232021-09-23 10:07:05 +02001069 __mark_reg_not_init(env, regs + regno);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001070 return;
1071 }
1072 __mark_reg_known_zero(regs + regno);
1073}
1074
1075static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1076{
1077 return type_is_pkt_pointer(reg->type);
1078}
1079
1080static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1081{
1082 return reg_is_pkt_pointer(reg) ||
1083 reg->type == PTR_TO_PACKET_END;
1084}
1085
1086/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1087static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1088 enum bpf_reg_type which)
1089{
1090 /* The register can already have a range from prior markings.
1091 * This is fine as long as it hasn't been advanced from its
1092 * origin.
1093 */
1094 return reg->type == which &&
1095 reg->id == 0 &&
1096 reg->off == 0 &&
1097 tnum_equals_const(reg->var_off, 0);
1098}
1099
Olivier Deprez157378f2022-04-04 15:47:50 +02001100/* Reset the min/max bounds of a register */
1101static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1102{
1103 reg->smin_value = S64_MIN;
1104 reg->smax_value = S64_MAX;
1105 reg->umin_value = 0;
1106 reg->umax_value = U64_MAX;
1107
1108 reg->s32_min_value = S32_MIN;
1109 reg->s32_max_value = S32_MAX;
1110 reg->u32_min_value = 0;
1111 reg->u32_max_value = U32_MAX;
1112}
1113
1114static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1115{
1116 reg->smin_value = S64_MIN;
1117 reg->smax_value = S64_MAX;
1118 reg->umin_value = 0;
1119 reg->umax_value = U64_MAX;
1120}
1121
1122static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1123{
1124 reg->s32_min_value = S32_MIN;
1125 reg->s32_max_value = S32_MAX;
1126 reg->u32_min_value = 0;
1127 reg->u32_max_value = U32_MAX;
1128}
1129
1130static void __update_reg32_bounds(struct bpf_reg_state *reg)
1131{
1132 struct tnum var32_off = tnum_subreg(reg->var_off);
1133
1134 /* min signed is max(sign bit) | min(other bits) */
1135 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1136 var32_off.value | (var32_off.mask & S32_MIN));
1137 /* max signed is min(sign bit) | max(other bits) */
1138 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1139 var32_off.value | (var32_off.mask & S32_MAX));
1140 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1141 reg->u32_max_value = min(reg->u32_max_value,
1142 (u32)(var32_off.value | var32_off.mask));
1143}
1144
1145static void __update_reg64_bounds(struct bpf_reg_state *reg)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001146{
1147 /* min signed is max(sign bit) | min(other bits) */
1148 reg->smin_value = max_t(s64, reg->smin_value,
1149 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1150 /* max signed is min(sign bit) | max(other bits) */
1151 reg->smax_value = min_t(s64, reg->smax_value,
1152 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1153 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1154 reg->umax_value = min(reg->umax_value,
1155 reg->var_off.value | reg->var_off.mask);
1156}
1157
Olivier Deprez157378f2022-04-04 15:47:50 +02001158static void __update_reg_bounds(struct bpf_reg_state *reg)
1159{
1160 __update_reg32_bounds(reg);
1161 __update_reg64_bounds(reg);
1162}
1163
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001164/* Uses signed min/max values to inform unsigned, and vice-versa */
Olivier Deprez157378f2022-04-04 15:47:50 +02001165static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1166{
1167 /* Learn sign from signed bounds.
1168 * If we cannot cross the sign boundary, then signed and unsigned bounds
1169 * are the same, so combine. This works even in the negative case, e.g.
1170 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1171 */
1172 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1173 reg->s32_min_value = reg->u32_min_value =
1174 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1175 reg->s32_max_value = reg->u32_max_value =
1176 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1177 return;
1178 }
1179 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1180 * boundary, so we must be careful.
1181 */
1182 if ((s32)reg->u32_max_value >= 0) {
1183 /* Positive. We can't learn anything from the smin, but smax
1184 * is positive, hence safe.
1185 */
1186 reg->s32_min_value = reg->u32_min_value;
1187 reg->s32_max_value = reg->u32_max_value =
1188 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1189 } else if ((s32)reg->u32_min_value < 0) {
1190 /* Negative. We can't learn anything from the smax, but smin
1191 * is negative, hence safe.
1192 */
1193 reg->s32_min_value = reg->u32_min_value =
1194 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1195 reg->s32_max_value = reg->u32_max_value;
1196 }
1197}
1198
1199static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001200{
1201 /* Learn sign from signed bounds.
1202 * If we cannot cross the sign boundary, then signed and unsigned bounds
1203 * are the same, so combine. This works even in the negative case, e.g.
1204 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1205 */
1206 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1207 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1208 reg->umin_value);
1209 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1210 reg->umax_value);
1211 return;
1212 }
1213 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1214 * boundary, so we must be careful.
1215 */
1216 if ((s64)reg->umax_value >= 0) {
1217 /* Positive. We can't learn anything from the smin, but smax
1218 * is positive, hence safe.
1219 */
1220 reg->smin_value = reg->umin_value;
1221 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1222 reg->umax_value);
1223 } else if ((s64)reg->umin_value < 0) {
1224 /* Negative. We can't learn anything from the smax, but smin
1225 * is negative, hence safe.
1226 */
1227 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1228 reg->umin_value);
1229 reg->smax_value = reg->umax_value;
1230 }
1231}
1232
Olivier Deprez157378f2022-04-04 15:47:50 +02001233static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1234{
1235 __reg32_deduce_bounds(reg);
1236 __reg64_deduce_bounds(reg);
1237}
1238
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001239/* Attempts to improve var_off based on unsigned min/max information */
1240static void __reg_bound_offset(struct bpf_reg_state *reg)
1241{
Olivier Deprez157378f2022-04-04 15:47:50 +02001242 struct tnum var64_off = tnum_intersect(reg->var_off,
1243 tnum_range(reg->umin_value,
1244 reg->umax_value));
1245 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1246 tnum_range(reg->u32_min_value,
1247 reg->u32_max_value));
1248
1249 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001250}
1251
Olivier Deprez157378f2022-04-04 15:47:50 +02001252static bool __reg32_bound_s64(s32 a)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001253{
Olivier Deprez157378f2022-04-04 15:47:50 +02001254 return a >= 0 && a <= S32_MAX;
1255}
1256
1257static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1258{
1259 reg->umin_value = reg->u32_min_value;
1260 reg->umax_value = reg->u32_max_value;
1261
1262 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
1263 * be positive otherwise set to worse case bounds and refine later
1264 * from tnum.
1265 */
1266 if (__reg32_bound_s64(reg->s32_min_value) &&
1267 __reg32_bound_s64(reg->s32_max_value)) {
1268 reg->smin_value = reg->s32_min_value;
1269 reg->smax_value = reg->s32_max_value;
1270 } else {
1271 reg->smin_value = 0;
1272 reg->smax_value = U32_MAX;
1273 }
1274}
1275
1276static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1277{
1278 /* special case when 64-bit register has upper 32-bit register
1279 * zeroed. Typically happens after zext or <<32, >>32 sequence
1280 * allowing us to use 32-bit bounds directly,
1281 */
1282 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1283 __reg_assign_32_into_64(reg);
1284 } else {
1285 /* Otherwise the best we can do is push lower 32bit known and
1286 * unknown bits into register (var_off set from jmp logic)
1287 * then learn as much as possible from the 64-bit tnum
1288 * known and unknown bits. The previous smin/smax bounds are
1289 * invalid here because of jmp32 compare so mark them unknown
1290 * so they do not impact tnum bounds calculation.
1291 */
1292 __mark_reg64_unbounded(reg);
1293 __update_reg_bounds(reg);
1294 }
1295
1296 /* Intersecting with the old var_off might have improved our bounds
1297 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1298 * then new var_off is (0; 0x7f...fc) which improves our umax.
1299 */
1300 __reg_deduce_bounds(reg);
1301 __reg_bound_offset(reg);
1302 __update_reg_bounds(reg);
1303}
1304
1305static bool __reg64_bound_s32(s64 a)
1306{
1307 return a >= S32_MIN && a <= S32_MAX;
1308}
1309
1310static bool __reg64_bound_u32(u64 a)
1311{
1312 return a >= U32_MIN && a <= U32_MAX;
1313}
1314
1315static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1316{
1317 __mark_reg32_unbounded(reg);
1318
1319 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1320 reg->s32_min_value = (s32)reg->smin_value;
1321 reg->s32_max_value = (s32)reg->smax_value;
1322 }
1323 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1324 reg->u32_min_value = (u32)reg->umin_value;
1325 reg->u32_max_value = (u32)reg->umax_value;
1326 }
1327
1328 /* Intersecting with the old var_off might have improved our bounds
1329 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1330 * then new var_off is (0; 0x7f...fc) which improves our umax.
1331 */
1332 __reg_deduce_bounds(reg);
1333 __reg_bound_offset(reg);
1334 __update_reg_bounds(reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001335}
1336
1337/* Mark a register as having a completely unknown (scalar) value. */
Olivier Deprez0e641232021-09-23 10:07:05 +02001338static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1339 struct bpf_reg_state *reg)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001340{
1341 /*
1342 * Clear type, id, off, and union(map_ptr, range) and
1343 * padding between 'type' and union
1344 */
1345 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1346 reg->type = SCALAR_VALUE;
1347 reg->var_off = tnum_unknown;
1348 reg->frameno = 0;
Olivier Deprez157378f2022-04-04 15:47:50 +02001349 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001350 __mark_reg_unbounded(reg);
1351}
1352
1353static void mark_reg_unknown(struct bpf_verifier_env *env,
1354 struct bpf_reg_state *regs, u32 regno)
1355{
1356 if (WARN_ON(regno >= MAX_BPF_REG)) {
1357 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1358 /* Something bad happened, let's kill all regs except FP */
1359 for (regno = 0; regno < BPF_REG_FP; regno++)
Olivier Deprez0e641232021-09-23 10:07:05 +02001360 __mark_reg_not_init(env, regs + regno);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001361 return;
1362 }
Olivier Deprez0e641232021-09-23 10:07:05 +02001363 __mark_reg_unknown(env, regs + regno);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001364}
1365
Olivier Deprez0e641232021-09-23 10:07:05 +02001366static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1367 struct bpf_reg_state *reg)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001368{
Olivier Deprez0e641232021-09-23 10:07:05 +02001369 __mark_reg_unknown(env, reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001370 reg->type = NOT_INIT;
1371}
1372
1373static void mark_reg_not_init(struct bpf_verifier_env *env,
1374 struct bpf_reg_state *regs, u32 regno)
1375{
1376 if (WARN_ON(regno >= MAX_BPF_REG)) {
1377 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1378 /* Something bad happened, let's kill all regs except FP */
1379 for (regno = 0; regno < BPF_REG_FP; regno++)
Olivier Deprez0e641232021-09-23 10:07:05 +02001380 __mark_reg_not_init(env, regs + regno);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001381 return;
1382 }
Olivier Deprez0e641232021-09-23 10:07:05 +02001383 __mark_reg_not_init(env, regs + regno);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001384}
1385
Olivier Deprez157378f2022-04-04 15:47:50 +02001386static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1387 struct bpf_reg_state *regs, u32 regno,
1388 enum bpf_reg_type reg_type, u32 btf_id)
1389{
1390 if (reg_type == SCALAR_VALUE) {
1391 mark_reg_unknown(env, regs, regno);
1392 return;
1393 }
1394 mark_reg_known_zero(env, regs, regno);
1395 regs[regno].type = PTR_TO_BTF_ID;
1396 regs[regno].btf_id = btf_id;
1397}
1398
David Brazdil0f672f62019-12-10 10:32:29 +00001399#define DEF_NOT_SUBREG (0)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001400static void init_reg_state(struct bpf_verifier_env *env,
1401 struct bpf_func_state *state)
1402{
1403 struct bpf_reg_state *regs = state->regs;
1404 int i;
1405
1406 for (i = 0; i < MAX_BPF_REG; i++) {
1407 mark_reg_not_init(env, regs, i);
1408 regs[i].live = REG_LIVE_NONE;
David Brazdil0f672f62019-12-10 10:32:29 +00001409 regs[i].parent = NULL;
1410 regs[i].subreg_def = DEF_NOT_SUBREG;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001411 }
1412
1413 /* frame pointer */
1414 regs[BPF_REG_FP].type = PTR_TO_STACK;
1415 mark_reg_known_zero(env, regs, BPF_REG_FP);
1416 regs[BPF_REG_FP].frameno = state->frameno;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001417}
1418
1419#define BPF_MAIN_FUNC (-1)
1420static void init_func_state(struct bpf_verifier_env *env,
1421 struct bpf_func_state *state,
1422 int callsite, int frameno, int subprogno)
1423{
1424 state->callsite = callsite;
1425 state->frameno = frameno;
1426 state->subprogno = subprogno;
1427 init_reg_state(env, state);
1428}
1429
1430enum reg_arg_type {
1431 SRC_OP, /* register is used as source operand */
1432 DST_OP, /* register is used as destination operand */
1433 DST_OP_NO_MARK /* same as above, check only, don't mark */
1434};
1435
1436static int cmp_subprogs(const void *a, const void *b)
1437{
1438 return ((struct bpf_subprog_info *)a)->start -
1439 ((struct bpf_subprog_info *)b)->start;
1440}
1441
1442static int find_subprog(struct bpf_verifier_env *env, int off)
1443{
1444 struct bpf_subprog_info *p;
1445
1446 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1447 sizeof(env->subprog_info[0]), cmp_subprogs);
1448 if (!p)
1449 return -ENOENT;
1450 return p - env->subprog_info;
1451
1452}
1453
1454static int add_subprog(struct bpf_verifier_env *env, int off)
1455{
1456 int insn_cnt = env->prog->len;
1457 int ret;
1458
1459 if (off >= insn_cnt || off < 0) {
1460 verbose(env, "call to invalid destination\n");
1461 return -EINVAL;
1462 }
1463 ret = find_subprog(env, off);
1464 if (ret >= 0)
1465 return 0;
1466 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1467 verbose(env, "too many subprograms\n");
1468 return -E2BIG;
1469 }
1470 env->subprog_info[env->subprog_cnt++].start = off;
1471 sort(env->subprog_info, env->subprog_cnt,
1472 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1473 return 0;
1474}
1475
1476static int check_subprogs(struct bpf_verifier_env *env)
1477{
1478 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1479 struct bpf_subprog_info *subprog = env->subprog_info;
1480 struct bpf_insn *insn = env->prog->insnsi;
1481 int insn_cnt = env->prog->len;
1482
1483 /* Add entry function. */
1484 ret = add_subprog(env, 0);
1485 if (ret < 0)
1486 return ret;
1487
1488 /* determine subprog starts. The end is one before the next starts */
1489 for (i = 0; i < insn_cnt; i++) {
1490 if (insn[i].code != (BPF_JMP | BPF_CALL))
1491 continue;
1492 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1493 continue;
Olivier Deprez157378f2022-04-04 15:47:50 +02001494 if (!env->bpf_capable) {
1495 verbose(env,
1496 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001497 return -EPERM;
1498 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001499 ret = add_subprog(env, i + insn[i].imm + 1);
1500 if (ret < 0)
1501 return ret;
1502 }
1503
1504 /* Add a fake 'exit' subprog which could simplify subprog iteration
1505 * logic. 'subprog_cnt' should not be increased.
1506 */
1507 subprog[env->subprog_cnt].start = insn_cnt;
1508
David Brazdil0f672f62019-12-10 10:32:29 +00001509 if (env->log.level & BPF_LOG_LEVEL2)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001510 for (i = 0; i < env->subprog_cnt; i++)
1511 verbose(env, "func#%d @%d\n", i, subprog[i].start);
1512
1513 /* now check that all jumps are within the same subprog */
1514 subprog_start = subprog[cur_subprog].start;
1515 subprog_end = subprog[cur_subprog + 1].start;
1516 for (i = 0; i < insn_cnt; i++) {
1517 u8 code = insn[i].code;
1518
Olivier Deprez0e641232021-09-23 10:07:05 +02001519 if (code == (BPF_JMP | BPF_CALL) &&
1520 insn[i].imm == BPF_FUNC_tail_call &&
1521 insn[i].src_reg != BPF_PSEUDO_CALL)
1522 subprog[cur_subprog].has_tail_call = true;
Olivier Deprez157378f2022-04-04 15:47:50 +02001523 if (BPF_CLASS(code) == BPF_LD &&
1524 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1525 subprog[cur_subprog].has_ld_abs = true;
David Brazdil0f672f62019-12-10 10:32:29 +00001526 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001527 goto next;
1528 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1529 goto next;
1530 off = i + insn[i].off + 1;
1531 if (off < subprog_start || off >= subprog_end) {
1532 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1533 return -EINVAL;
1534 }
1535next:
1536 if (i == subprog_end - 1) {
1537 /* to avoid fall-through from one subprog into another
1538 * the last insn of the subprog should be either exit
1539 * or unconditional jump back
1540 */
1541 if (code != (BPF_JMP | BPF_EXIT) &&
1542 code != (BPF_JMP | BPF_JA)) {
1543 verbose(env, "last insn is not an exit or jmp\n");
1544 return -EINVAL;
1545 }
1546 subprog_start = subprog_end;
1547 cur_subprog++;
1548 if (cur_subprog < env->subprog_cnt)
1549 subprog_end = subprog[cur_subprog + 1].start;
1550 }
1551 }
1552 return 0;
1553}
1554
David Brazdil0f672f62019-12-10 10:32:29 +00001555/* Parentage chain of this register (or stack slot) should take care of all
1556 * issues like callee-saved registers, stack slot allocation time, etc.
1557 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001558static int mark_reg_read(struct bpf_verifier_env *env,
David Brazdil0f672f62019-12-10 10:32:29 +00001559 const struct bpf_reg_state *state,
1560 struct bpf_reg_state *parent, u8 flag)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001561{
1562 bool writes = parent == state->parent; /* Observe write marks */
David Brazdil0f672f62019-12-10 10:32:29 +00001563 int cnt = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001564
1565 while (parent) {
1566 /* if read wasn't screened by an earlier write ... */
David Brazdil0f672f62019-12-10 10:32:29 +00001567 if (writes && state->live & REG_LIVE_WRITTEN)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001568 break;
David Brazdil0f672f62019-12-10 10:32:29 +00001569 if (parent->live & REG_LIVE_DONE) {
1570 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1571 reg_type_str[parent->type],
1572 parent->var_off.value, parent->off);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001573 return -EFAULT;
David Brazdil0f672f62019-12-10 10:32:29 +00001574 }
1575 /* The first condition is more likely to be true than the
1576 * second, checked it first.
1577 */
1578 if ((parent->live & REG_LIVE_READ) == flag ||
1579 parent->live & REG_LIVE_READ64)
1580 /* The parentage chain never changes and
1581 * this parent was already marked as LIVE_READ.
1582 * There is no need to keep walking the chain again and
1583 * keep re-marking all parents as LIVE_READ.
1584 * This case happens when the same register is read
1585 * multiple times without writes into it in-between.
1586 * Also, if parent has the stronger REG_LIVE_READ64 set,
1587 * then no need to set the weak REG_LIVE_READ32.
1588 */
1589 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001590 /* ... then we depend on parent's value */
David Brazdil0f672f62019-12-10 10:32:29 +00001591 parent->live |= flag;
1592 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1593 if (flag == REG_LIVE_READ64)
1594 parent->live &= ~REG_LIVE_READ32;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001595 state = parent;
1596 parent = state->parent;
1597 writes = true;
David Brazdil0f672f62019-12-10 10:32:29 +00001598 cnt++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001599 }
David Brazdil0f672f62019-12-10 10:32:29 +00001600
1601 if (env->longest_mark_read_walk < cnt)
1602 env->longest_mark_read_walk = cnt;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001603 return 0;
1604}
1605
David Brazdil0f672f62019-12-10 10:32:29 +00001606/* This function is supposed to be used by the following 32-bit optimization
1607 * code only. It returns TRUE if the source or destination register operates
1608 * on 64-bit, otherwise return FALSE.
1609 */
1610static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1611 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1612{
1613 u8 code, class, op;
1614
1615 code = insn->code;
1616 class = BPF_CLASS(code);
1617 op = BPF_OP(code);
1618 if (class == BPF_JMP) {
1619 /* BPF_EXIT for "main" will reach here. Return TRUE
1620 * conservatively.
1621 */
1622 if (op == BPF_EXIT)
1623 return true;
1624 if (op == BPF_CALL) {
1625 /* BPF to BPF call will reach here because of marking
1626 * caller saved clobber with DST_OP_NO_MARK for which we
1627 * don't care the register def because they are anyway
1628 * marked as NOT_INIT already.
1629 */
1630 if (insn->src_reg == BPF_PSEUDO_CALL)
1631 return false;
1632 /* Helper call will reach here because of arg type
1633 * check, conservatively return TRUE.
1634 */
1635 if (t == SRC_OP)
1636 return true;
1637
1638 return false;
1639 }
1640 }
1641
1642 if (class == BPF_ALU64 || class == BPF_JMP ||
1643 /* BPF_END always use BPF_ALU class. */
1644 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1645 return true;
1646
1647 if (class == BPF_ALU || class == BPF_JMP32)
1648 return false;
1649
1650 if (class == BPF_LDX) {
1651 if (t != SRC_OP)
1652 return BPF_SIZE(code) == BPF_DW;
1653 /* LDX source must be ptr. */
1654 return true;
1655 }
1656
1657 if (class == BPF_STX) {
1658 if (reg->type != SCALAR_VALUE)
1659 return true;
1660 return BPF_SIZE(code) == BPF_DW;
1661 }
1662
1663 if (class == BPF_LD) {
1664 u8 mode = BPF_MODE(code);
1665
1666 /* LD_IMM64 */
1667 if (mode == BPF_IMM)
1668 return true;
1669
1670 /* Both LD_IND and LD_ABS return 32-bit data. */
1671 if (t != SRC_OP)
1672 return false;
1673
1674 /* Implicit ctx ptr. */
1675 if (regno == BPF_REG_6)
1676 return true;
1677
1678 /* Explicit source could be any width. */
1679 return true;
1680 }
1681
1682 if (class == BPF_ST)
1683 /* The only source register for BPF_ST is a ptr. */
1684 return true;
1685
1686 /* Conservatively return true at default. */
1687 return true;
1688}
1689
1690/* Return TRUE if INSN doesn't have explicit value define. */
1691static bool insn_no_def(struct bpf_insn *insn)
1692{
1693 u8 class = BPF_CLASS(insn->code);
1694
1695 return (class == BPF_JMP || class == BPF_JMP32 ||
1696 class == BPF_STX || class == BPF_ST);
1697}
1698
1699/* Return TRUE if INSN has defined any 32-bit value explicitly. */
1700static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1701{
1702 if (insn_no_def(insn))
1703 return false;
1704
1705 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1706}
1707
1708static void mark_insn_zext(struct bpf_verifier_env *env,
1709 struct bpf_reg_state *reg)
1710{
1711 s32 def_idx = reg->subreg_def;
1712
1713 if (def_idx == DEF_NOT_SUBREG)
1714 return;
1715
1716 env->insn_aux_data[def_idx - 1].zext_dst = true;
1717 /* The dst will be zero extended, so won't be sub-register anymore. */
1718 reg->subreg_def = DEF_NOT_SUBREG;
1719}
1720
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001721static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1722 enum reg_arg_type t)
1723{
1724 struct bpf_verifier_state *vstate = env->cur_state;
1725 struct bpf_func_state *state = vstate->frame[vstate->curframe];
David Brazdil0f672f62019-12-10 10:32:29 +00001726 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1727 struct bpf_reg_state *reg, *regs = state->regs;
1728 bool rw64;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001729
1730 if (regno >= MAX_BPF_REG) {
1731 verbose(env, "R%d is invalid\n", regno);
1732 return -EINVAL;
1733 }
1734
David Brazdil0f672f62019-12-10 10:32:29 +00001735 reg = &regs[regno];
1736 rw64 = is_reg64(env, insn, regno, reg, t);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001737 if (t == SRC_OP) {
1738 /* check whether register used as source operand can be read */
David Brazdil0f672f62019-12-10 10:32:29 +00001739 if (reg->type == NOT_INIT) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001740 verbose(env, "R%d !read_ok\n", regno);
1741 return -EACCES;
1742 }
David Brazdil0f672f62019-12-10 10:32:29 +00001743 /* We don't need to worry about FP liveness because it's read-only */
1744 if (regno == BPF_REG_FP)
1745 return 0;
1746
1747 if (rw64)
1748 mark_insn_zext(env, reg);
1749
1750 return mark_reg_read(env, reg, reg->parent,
1751 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001752 } else {
1753 /* check whether register used as dest operand can be written to */
1754 if (regno == BPF_REG_FP) {
1755 verbose(env, "frame pointer is read only\n");
1756 return -EACCES;
1757 }
David Brazdil0f672f62019-12-10 10:32:29 +00001758 reg->live |= REG_LIVE_WRITTEN;
1759 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001760 if (t == DST_OP)
1761 mark_reg_unknown(env, regs, regno);
1762 }
1763 return 0;
1764}
1765
David Brazdil0f672f62019-12-10 10:32:29 +00001766/* for any branch, call, exit record the history of jmps in the given state */
1767static int push_jmp_history(struct bpf_verifier_env *env,
1768 struct bpf_verifier_state *cur)
1769{
1770 u32 cnt = cur->jmp_history_cnt;
1771 struct bpf_idx_pair *p;
1772
1773 cnt++;
1774 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1775 if (!p)
1776 return -ENOMEM;
1777 p[cnt - 1].idx = env->insn_idx;
1778 p[cnt - 1].prev_idx = env->prev_insn_idx;
1779 cur->jmp_history = p;
1780 cur->jmp_history_cnt = cnt;
1781 return 0;
1782}
1783
1784/* Backtrack one insn at a time. If idx is not at the top of recorded
1785 * history then previous instruction came from straight line execution.
1786 */
1787static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1788 u32 *history)
1789{
1790 u32 cnt = *history;
1791
1792 if (cnt && st->jmp_history[cnt - 1].idx == i) {
1793 i = st->jmp_history[cnt - 1].prev_idx;
1794 (*history)--;
1795 } else {
1796 i--;
1797 }
1798 return i;
1799}
1800
1801/* For given verifier state backtrack_insn() is called from the last insn to
1802 * the first insn. Its purpose is to compute a bitmask of registers and
1803 * stack slots that needs precision in the parent verifier state.
1804 */
1805static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1806 u32 *reg_mask, u64 *stack_mask)
1807{
1808 const struct bpf_insn_cbs cbs = {
1809 .cb_print = verbose,
1810 .private_data = env,
1811 };
1812 struct bpf_insn *insn = env->prog->insnsi + idx;
1813 u8 class = BPF_CLASS(insn->code);
1814 u8 opcode = BPF_OP(insn->code);
1815 u8 mode = BPF_MODE(insn->code);
1816 u32 dreg = 1u << insn->dst_reg;
1817 u32 sreg = 1u << insn->src_reg;
1818 u32 spi;
1819
1820 if (insn->code == 0)
1821 return 0;
1822 if (env->log.level & BPF_LOG_LEVEL) {
1823 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1824 verbose(env, "%d: ", idx);
1825 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1826 }
1827
1828 if (class == BPF_ALU || class == BPF_ALU64) {
1829 if (!(*reg_mask & dreg))
1830 return 0;
1831 if (opcode == BPF_MOV) {
1832 if (BPF_SRC(insn->code) == BPF_X) {
1833 /* dreg = sreg
1834 * dreg needs precision after this insn
1835 * sreg needs precision before this insn
1836 */
1837 *reg_mask &= ~dreg;
1838 *reg_mask |= sreg;
1839 } else {
1840 /* dreg = K
1841 * dreg needs precision after this insn.
1842 * Corresponding register is already marked
1843 * as precise=true in this verifier state.
1844 * No further markings in parent are necessary
1845 */
1846 *reg_mask &= ~dreg;
1847 }
1848 } else {
1849 if (BPF_SRC(insn->code) == BPF_X) {
1850 /* dreg += sreg
1851 * both dreg and sreg need precision
1852 * before this insn
1853 */
1854 *reg_mask |= sreg;
1855 } /* else dreg += K
1856 * dreg still needs precision before this insn
1857 */
1858 }
1859 } else if (class == BPF_LDX) {
1860 if (!(*reg_mask & dreg))
1861 return 0;
1862 *reg_mask &= ~dreg;
1863
1864 /* scalars can only be spilled into stack w/o losing precision.
1865 * Load from any other memory can be zero extended.
1866 * The desire to keep that precision is already indicated
1867 * by 'precise' mark in corresponding register of this state.
1868 * No further tracking necessary.
1869 */
1870 if (insn->src_reg != BPF_REG_FP)
1871 return 0;
1872 if (BPF_SIZE(insn->code) != BPF_DW)
1873 return 0;
1874
1875 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1876 * that [fp - off] slot contains scalar that needs to be
1877 * tracked with precision
1878 */
1879 spi = (-insn->off - 1) / BPF_REG_SIZE;
1880 if (spi >= 64) {
1881 verbose(env, "BUG spi %d\n", spi);
1882 WARN_ONCE(1, "verifier backtracking bug");
1883 return -EFAULT;
1884 }
1885 *stack_mask |= 1ull << spi;
1886 } else if (class == BPF_STX || class == BPF_ST) {
1887 if (*reg_mask & dreg)
1888 /* stx & st shouldn't be using _scalar_ dst_reg
1889 * to access memory. It means backtracking
1890 * encountered a case of pointer subtraction.
1891 */
1892 return -ENOTSUPP;
1893 /* scalars can only be spilled into stack */
1894 if (insn->dst_reg != BPF_REG_FP)
1895 return 0;
1896 if (BPF_SIZE(insn->code) != BPF_DW)
1897 return 0;
1898 spi = (-insn->off - 1) / BPF_REG_SIZE;
1899 if (spi >= 64) {
1900 verbose(env, "BUG spi %d\n", spi);
1901 WARN_ONCE(1, "verifier backtracking bug");
1902 return -EFAULT;
1903 }
1904 if (!(*stack_mask & (1ull << spi)))
1905 return 0;
1906 *stack_mask &= ~(1ull << spi);
1907 if (class == BPF_STX)
1908 *reg_mask |= sreg;
1909 } else if (class == BPF_JMP || class == BPF_JMP32) {
1910 if (opcode == BPF_CALL) {
1911 if (insn->src_reg == BPF_PSEUDO_CALL)
1912 return -ENOTSUPP;
1913 /* regular helper call sets R0 */
1914 *reg_mask &= ~1;
1915 if (*reg_mask & 0x3f) {
1916 /* if backtracing was looking for registers R1-R5
1917 * they should have been found already.
1918 */
1919 verbose(env, "BUG regs %x\n", *reg_mask);
1920 WARN_ONCE(1, "verifier backtracking bug");
1921 return -EFAULT;
1922 }
1923 } else if (opcode == BPF_EXIT) {
1924 return -ENOTSUPP;
1925 }
1926 } else if (class == BPF_LD) {
1927 if (!(*reg_mask & dreg))
1928 return 0;
1929 *reg_mask &= ~dreg;
1930 /* It's ld_imm64 or ld_abs or ld_ind.
1931 * For ld_imm64 no further tracking of precision
1932 * into parent is necessary
1933 */
1934 if (mode == BPF_IND || mode == BPF_ABS)
1935 /* to be analyzed */
1936 return -ENOTSUPP;
1937 }
1938 return 0;
1939}
1940
1941/* the scalar precision tracking algorithm:
1942 * . at the start all registers have precise=false.
1943 * . scalar ranges are tracked as normal through alu and jmp insns.
1944 * . once precise value of the scalar register is used in:
1945 * . ptr + scalar alu
1946 * . if (scalar cond K|scalar)
1947 * . helper_call(.., scalar, ...) where ARG_CONST is expected
1948 * backtrack through the verifier states and mark all registers and
1949 * stack slots with spilled constants that these scalar regisers
1950 * should be precise.
1951 * . during state pruning two registers (or spilled stack slots)
1952 * are equivalent if both are not precise.
1953 *
1954 * Note the verifier cannot simply walk register parentage chain,
1955 * since many different registers and stack slots could have been
1956 * used to compute single precise scalar.
1957 *
1958 * The approach of starting with precise=true for all registers and then
1959 * backtrack to mark a register as not precise when the verifier detects
1960 * that program doesn't care about specific value (e.g., when helper
1961 * takes register as ARG_ANYTHING parameter) is not safe.
1962 *
1963 * It's ok to walk single parentage chain of the verifier states.
1964 * It's possible that this backtracking will go all the way till 1st insn.
1965 * All other branches will be explored for needing precision later.
1966 *
1967 * The backtracking needs to deal with cases like:
1968 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1969 * r9 -= r8
1970 * r5 = r9
1971 * if r5 > 0x79f goto pc+7
1972 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1973 * r5 += 1
1974 * ...
1975 * call bpf_perf_event_output#25
1976 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1977 *
1978 * and this case:
1979 * r6 = 1
1980 * call foo // uses callee's r6 inside to compute r0
1981 * r0 += r6
1982 * if r0 == 0 goto
1983 *
1984 * to track above reg_mask/stack_mask needs to be independent for each frame.
1985 *
1986 * Also if parent's curframe > frame where backtracking started,
1987 * the verifier need to mark registers in both frames, otherwise callees
1988 * may incorrectly prune callers. This is similar to
1989 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1990 *
1991 * For now backtracking falls back into conservative marking.
1992 */
1993static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1994 struct bpf_verifier_state *st)
1995{
1996 struct bpf_func_state *func;
1997 struct bpf_reg_state *reg;
1998 int i, j;
1999
2000 /* big hammer: mark all scalars precise in this path.
2001 * pop_stack may still get !precise scalars.
2002 */
2003 for (; st; st = st->parent)
2004 for (i = 0; i <= st->curframe; i++) {
2005 func = st->frame[i];
2006 for (j = 0; j < BPF_REG_FP; j++) {
2007 reg = &func->regs[j];
2008 if (reg->type != SCALAR_VALUE)
2009 continue;
2010 reg->precise = true;
2011 }
2012 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2013 if (func->stack[j].slot_type[0] != STACK_SPILL)
2014 continue;
2015 reg = &func->stack[j].spilled_ptr;
2016 if (reg->type != SCALAR_VALUE)
2017 continue;
2018 reg->precise = true;
2019 }
2020 }
2021}
2022
2023static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2024 int spi)
2025{
2026 struct bpf_verifier_state *st = env->cur_state;
2027 int first_idx = st->first_insn_idx;
2028 int last_idx = env->insn_idx;
2029 struct bpf_func_state *func;
2030 struct bpf_reg_state *reg;
2031 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2032 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2033 bool skip_first = true;
2034 bool new_marks = false;
2035 int i, err;
2036
Olivier Deprez157378f2022-04-04 15:47:50 +02002037 if (!env->bpf_capable)
David Brazdil0f672f62019-12-10 10:32:29 +00002038 return 0;
2039
2040 func = st->frame[st->curframe];
2041 if (regno >= 0) {
2042 reg = &func->regs[regno];
2043 if (reg->type != SCALAR_VALUE) {
2044 WARN_ONCE(1, "backtracing misuse");
2045 return -EFAULT;
2046 }
2047 if (!reg->precise)
2048 new_marks = true;
2049 else
2050 reg_mask = 0;
2051 reg->precise = true;
2052 }
2053
2054 while (spi >= 0) {
2055 if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2056 stack_mask = 0;
2057 break;
2058 }
2059 reg = &func->stack[spi].spilled_ptr;
2060 if (reg->type != SCALAR_VALUE) {
2061 stack_mask = 0;
2062 break;
2063 }
2064 if (!reg->precise)
2065 new_marks = true;
2066 else
2067 stack_mask = 0;
2068 reg->precise = true;
2069 break;
2070 }
2071
2072 if (!new_marks)
2073 return 0;
2074 if (!reg_mask && !stack_mask)
2075 return 0;
2076 for (;;) {
2077 DECLARE_BITMAP(mask, 64);
2078 u32 history = st->jmp_history_cnt;
2079
2080 if (env->log.level & BPF_LOG_LEVEL)
2081 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2082 for (i = last_idx;;) {
2083 if (skip_first) {
2084 err = 0;
2085 skip_first = false;
2086 } else {
2087 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2088 }
2089 if (err == -ENOTSUPP) {
2090 mark_all_scalars_precise(env, st);
2091 return 0;
2092 } else if (err) {
2093 return err;
2094 }
2095 if (!reg_mask && !stack_mask)
2096 /* Found assignment(s) into tracked register in this state.
2097 * Since this state is already marked, just return.
2098 * Nothing to be tracked further in the parent state.
2099 */
2100 return 0;
2101 if (i == first_idx)
2102 break;
2103 i = get_prev_insn_idx(st, i, &history);
2104 if (i >= env->prog->len) {
2105 /* This can happen if backtracking reached insn 0
2106 * and there are still reg_mask or stack_mask
2107 * to backtrack.
2108 * It means the backtracking missed the spot where
2109 * particular register was initialized with a constant.
2110 */
2111 verbose(env, "BUG backtracking idx %d\n", i);
2112 WARN_ONCE(1, "verifier backtracking bug");
2113 return -EFAULT;
2114 }
2115 }
2116 st = st->parent;
2117 if (!st)
2118 break;
2119
2120 new_marks = false;
2121 func = st->frame[st->curframe];
2122 bitmap_from_u64(mask, reg_mask);
2123 for_each_set_bit(i, mask, 32) {
2124 reg = &func->regs[i];
2125 if (reg->type != SCALAR_VALUE) {
2126 reg_mask &= ~(1u << i);
2127 continue;
2128 }
2129 if (!reg->precise)
2130 new_marks = true;
2131 reg->precise = true;
2132 }
2133
2134 bitmap_from_u64(mask, stack_mask);
2135 for_each_set_bit(i, mask, 64) {
2136 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2137 /* the sequence of instructions:
2138 * 2: (bf) r3 = r10
2139 * 3: (7b) *(u64 *)(r3 -8) = r0
2140 * 4: (79) r4 = *(u64 *)(r10 -8)
2141 * doesn't contain jmps. It's backtracked
2142 * as a single block.
2143 * During backtracking insn 3 is not recognized as
2144 * stack access, so at the end of backtracking
2145 * stack slot fp-8 is still marked in stack_mask.
2146 * However the parent state may not have accessed
2147 * fp-8 and it's "unallocated" stack space.
2148 * In such case fallback to conservative.
2149 */
2150 mark_all_scalars_precise(env, st);
2151 return 0;
2152 }
2153
2154 if (func->stack[i].slot_type[0] != STACK_SPILL) {
2155 stack_mask &= ~(1ull << i);
2156 continue;
2157 }
2158 reg = &func->stack[i].spilled_ptr;
2159 if (reg->type != SCALAR_VALUE) {
2160 stack_mask &= ~(1ull << i);
2161 continue;
2162 }
2163 if (!reg->precise)
2164 new_marks = true;
2165 reg->precise = true;
2166 }
2167 if (env->log.level & BPF_LOG_LEVEL) {
2168 print_verifier_state(env, func);
2169 verbose(env, "parent %s regs=%x stack=%llx marks\n",
2170 new_marks ? "didn't have" : "already had",
2171 reg_mask, stack_mask);
2172 }
2173
2174 if (!reg_mask && !stack_mask)
2175 break;
2176 if (!new_marks)
2177 break;
2178
2179 last_idx = st->last_insn_idx;
2180 first_idx = st->first_insn_idx;
2181 }
2182 return 0;
2183}
2184
2185static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2186{
2187 return __mark_chain_precision(env, regno, -1);
2188}
2189
2190static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2191{
2192 return __mark_chain_precision(env, -1, spi);
2193}
2194
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002195static bool is_spillable_regtype(enum bpf_reg_type type)
2196{
2197 switch (type) {
2198 case PTR_TO_MAP_VALUE:
2199 case PTR_TO_MAP_VALUE_OR_NULL:
2200 case PTR_TO_STACK:
2201 case PTR_TO_CTX:
2202 case PTR_TO_PACKET:
2203 case PTR_TO_PACKET_META:
2204 case PTR_TO_PACKET_END:
David Brazdil0f672f62019-12-10 10:32:29 +00002205 case PTR_TO_FLOW_KEYS:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002206 case CONST_PTR_TO_MAP:
David Brazdil0f672f62019-12-10 10:32:29 +00002207 case PTR_TO_SOCKET:
2208 case PTR_TO_SOCKET_OR_NULL:
2209 case PTR_TO_SOCK_COMMON:
2210 case PTR_TO_SOCK_COMMON_OR_NULL:
2211 case PTR_TO_TCP_SOCK:
2212 case PTR_TO_TCP_SOCK_OR_NULL:
2213 case PTR_TO_XDP_SOCK:
Olivier Deprez157378f2022-04-04 15:47:50 +02002214 case PTR_TO_BTF_ID:
2215 case PTR_TO_BTF_ID_OR_NULL:
2216 case PTR_TO_RDONLY_BUF:
2217 case PTR_TO_RDONLY_BUF_OR_NULL:
2218 case PTR_TO_RDWR_BUF:
2219 case PTR_TO_RDWR_BUF_OR_NULL:
2220 case PTR_TO_PERCPU_BTF_ID:
2221 case PTR_TO_MEM:
2222 case PTR_TO_MEM_OR_NULL:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002223 return true;
2224 default:
2225 return false;
2226 }
2227}
2228
2229/* Does this register contain a constant zero? */
2230static bool register_is_null(struct bpf_reg_state *reg)
2231{
2232 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2233}
2234
David Brazdil0f672f62019-12-10 10:32:29 +00002235static bool register_is_const(struct bpf_reg_state *reg)
2236{
2237 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2238}
2239
Olivier Deprez157378f2022-04-04 15:47:50 +02002240static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2241{
2242 return tnum_is_unknown(reg->var_off) &&
2243 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2244 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2245 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2246 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2247}
2248
2249static bool register_is_bounded(struct bpf_reg_state *reg)
2250{
2251 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2252}
2253
Olivier Deprez0e641232021-09-23 10:07:05 +02002254static bool __is_pointer_value(bool allow_ptr_leaks,
2255 const struct bpf_reg_state *reg)
2256{
2257 if (allow_ptr_leaks)
2258 return false;
2259
2260 return reg->type != SCALAR_VALUE;
2261}
2262
David Brazdil0f672f62019-12-10 10:32:29 +00002263static void save_register_state(struct bpf_func_state *state,
2264 int spi, struct bpf_reg_state *reg)
2265{
2266 int i;
2267
2268 state->stack[spi].spilled_ptr = *reg;
2269 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2270
2271 for (i = 0; i < BPF_REG_SIZE; i++)
2272 state->stack[spi].slot_type[i] = STACK_SPILL;
2273}
2274
Olivier Deprez157378f2022-04-04 15:47:50 +02002275/* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002276 * stack boundary and alignment are checked in check_mem_access()
2277 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002278static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2279 /* stack frame we're writing to */
2280 struct bpf_func_state *state,
2281 int off, int size, int value_regno,
2282 int insn_idx)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002283{
2284 struct bpf_func_state *cur; /* state of the current function */
2285 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
David Brazdil0f672f62019-12-10 10:32:29 +00002286 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2287 struct bpf_reg_state *reg = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002288
2289 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
David Brazdil0f672f62019-12-10 10:32:29 +00002290 state->acquired_refs, true);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002291 if (err)
2292 return err;
2293 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2294 * so it's aligned access and [off, off + size) are within stack limits
2295 */
2296 if (!env->allow_ptr_leaks &&
2297 state->stack[spi].slot_type[0] == STACK_SPILL &&
2298 size != BPF_REG_SIZE) {
2299 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2300 return -EACCES;
2301 }
2302
2303 cur = env->cur_state->frame[env->cur_state->curframe];
David Brazdil0f672f62019-12-10 10:32:29 +00002304 if (value_regno >= 0)
2305 reg = &cur->regs[value_regno];
Olivier Deprez157378f2022-04-04 15:47:50 +02002306 if (!env->bypass_spec_v4) {
Olivier Deprez0e641232021-09-23 10:07:05 +02002307 bool sanitize = reg && is_spillable_regtype(reg->type);
2308
2309 for (i = 0; i < size; i++) {
2310 if (state->stack[spi].slot_type[i] == STACK_INVALID) {
2311 sanitize = true;
2312 break;
2313 }
2314 }
2315
2316 if (sanitize)
2317 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
2318 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002319
Olivier Deprez157378f2022-04-04 15:47:50 +02002320 if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2321 !register_is_null(reg) && env->bpf_capable) {
David Brazdil0f672f62019-12-10 10:32:29 +00002322 if (dst_reg != BPF_REG_FP) {
2323 /* The backtracking logic can only recognize explicit
2324 * stack slot address like [fp - 8]. Other spill of
2325 * scalar via different register has to be conervative.
2326 * Backtrack from here and mark all registers as precise
2327 * that contributed into 'reg' being a constant.
2328 */
2329 err = mark_chain_precision(env, value_regno);
2330 if (err)
2331 return err;
2332 }
2333 save_register_state(state, spi, reg);
2334 } else if (reg && is_spillable_regtype(reg->type)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002335 /* register containing pointer is being spilled into stack */
2336 if (size != BPF_REG_SIZE) {
David Brazdil0f672f62019-12-10 10:32:29 +00002337 verbose_linfo(env, insn_idx, "; ");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002338 verbose(env, "invalid size of register spill\n");
2339 return -EACCES;
2340 }
David Brazdil0f672f62019-12-10 10:32:29 +00002341 if (state != cur && reg->type == PTR_TO_STACK) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002342 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2343 return -EINVAL;
2344 }
David Brazdil0f672f62019-12-10 10:32:29 +00002345 save_register_state(state, spi, reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002346 } else {
2347 u8 type = STACK_MISC;
2348
David Brazdil0f672f62019-12-10 10:32:29 +00002349 /* regular write of data into stack destroys any spilled ptr */
2350 state->stack[spi].spilled_ptr.type = NOT_INIT;
2351 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2352 if (state->stack[spi].slot_type[0] == STACK_SPILL)
2353 for (i = 0; i < BPF_REG_SIZE; i++)
2354 state->stack[spi].slot_type[i] = STACK_MISC;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002355
2356 /* only mark the slot as written if all 8 bytes were written
2357 * otherwise read propagation may incorrectly stop too soon
2358 * when stack slots are partially written.
2359 * This heuristic means that read propagation will be
2360 * conservative, since it will add reg_live_read marks
2361 * to stack slots all the way to first state when programs
2362 * writes+reads less than 8 bytes
2363 */
2364 if (size == BPF_REG_SIZE)
2365 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2366
2367 /* when we zero initialize stack slots mark them as such */
David Brazdil0f672f62019-12-10 10:32:29 +00002368 if (reg && register_is_null(reg)) {
2369 /* backtracking doesn't work for STACK_ZERO yet. */
2370 err = mark_chain_precision(env, value_regno);
2371 if (err)
2372 return err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002373 type = STACK_ZERO;
David Brazdil0f672f62019-12-10 10:32:29 +00002374 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002375
David Brazdil0f672f62019-12-10 10:32:29 +00002376 /* Mark slots affected by this stack write. */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002377 for (i = 0; i < size; i++)
2378 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2379 type;
2380 }
2381 return 0;
2382}
2383
Olivier Deprez157378f2022-04-04 15:47:50 +02002384/* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2385 * known to contain a variable offset.
2386 * This function checks whether the write is permitted and conservatively
2387 * tracks the effects of the write, considering that each stack slot in the
2388 * dynamic range is potentially written to.
2389 *
2390 * 'off' includes 'regno->off'.
2391 * 'value_regno' can be -1, meaning that an unknown value is being written to
2392 * the stack.
2393 *
2394 * Spilled pointers in range are not marked as written because we don't know
2395 * what's going to be actually written. This means that read propagation for
2396 * future reads cannot be terminated by this write.
2397 *
2398 * For privileged programs, uninitialized stack slots are considered
2399 * initialized by this write (even though we don't know exactly what offsets
2400 * are going to be written to). The idea is that we don't want the verifier to
2401 * reject future reads that access slots written to through variable offsets.
2402 */
2403static int check_stack_write_var_off(struct bpf_verifier_env *env,
2404 /* func where register points to */
2405 struct bpf_func_state *state,
2406 int ptr_regno, int off, int size,
2407 int value_regno, int insn_idx)
2408{
2409 struct bpf_func_state *cur; /* state of the current function */
2410 int min_off, max_off;
2411 int i, err;
2412 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2413 bool writing_zero = false;
2414 /* set if the fact that we're writing a zero is used to let any
2415 * stack slots remain STACK_ZERO
2416 */
2417 bool zero_used = false;
2418
2419 cur = env->cur_state->frame[env->cur_state->curframe];
2420 ptr_reg = &cur->regs[ptr_regno];
2421 min_off = ptr_reg->smin_value + off;
2422 max_off = ptr_reg->smax_value + off + size;
2423 if (value_regno >= 0)
2424 value_reg = &cur->regs[value_regno];
2425 if (value_reg && register_is_null(value_reg))
2426 writing_zero = true;
2427
2428 err = realloc_func_state(state, round_up(-min_off, BPF_REG_SIZE),
2429 state->acquired_refs, true);
2430 if (err)
2431 return err;
2432
2433
2434 /* Variable offset writes destroy any spilled pointers in range. */
2435 for (i = min_off; i < max_off; i++) {
2436 u8 new_type, *stype;
2437 int slot, spi;
2438
2439 slot = -i - 1;
2440 spi = slot / BPF_REG_SIZE;
2441 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2442
2443 if (!env->allow_ptr_leaks
2444 && *stype != NOT_INIT
2445 && *stype != SCALAR_VALUE) {
2446 /* Reject the write if there's are spilled pointers in
2447 * range. If we didn't reject here, the ptr status
2448 * would be erased below (even though not all slots are
2449 * actually overwritten), possibly opening the door to
2450 * leaks.
2451 */
2452 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2453 insn_idx, i);
2454 return -EINVAL;
2455 }
2456
2457 /* Erase all spilled pointers. */
2458 state->stack[spi].spilled_ptr.type = NOT_INIT;
2459
2460 /* Update the slot type. */
2461 new_type = STACK_MISC;
2462 if (writing_zero && *stype == STACK_ZERO) {
2463 new_type = STACK_ZERO;
2464 zero_used = true;
2465 }
2466 /* If the slot is STACK_INVALID, we check whether it's OK to
2467 * pretend that it will be initialized by this write. The slot
2468 * might not actually be written to, and so if we mark it as
2469 * initialized future reads might leak uninitialized memory.
2470 * For privileged programs, we will accept such reads to slots
2471 * that may or may not be written because, if we're reject
2472 * them, the error would be too confusing.
2473 */
2474 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2475 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2476 insn_idx, i);
2477 return -EINVAL;
2478 }
2479 *stype = new_type;
2480 }
2481 if (zero_used) {
2482 /* backtracking doesn't work for STACK_ZERO yet. */
2483 err = mark_chain_precision(env, value_regno);
2484 if (err)
2485 return err;
2486 }
2487 return 0;
2488}
2489
2490/* When register 'dst_regno' is assigned some values from stack[min_off,
2491 * max_off), we set the register's type according to the types of the
2492 * respective stack slots. If all the stack values are known to be zeros, then
2493 * so is the destination reg. Otherwise, the register is considered to be
2494 * SCALAR. This function does not deal with register filling; the caller must
2495 * ensure that all spilled registers in the stack range have been marked as
2496 * read.
2497 */
2498static void mark_reg_stack_read(struct bpf_verifier_env *env,
2499 /* func where src register points to */
2500 struct bpf_func_state *ptr_state,
2501 int min_off, int max_off, int dst_regno)
2502{
2503 struct bpf_verifier_state *vstate = env->cur_state;
2504 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2505 int i, slot, spi;
2506 u8 *stype;
2507 int zeros = 0;
2508
2509 for (i = min_off; i < max_off; i++) {
2510 slot = -i - 1;
2511 spi = slot / BPF_REG_SIZE;
2512 stype = ptr_state->stack[spi].slot_type;
2513 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
2514 break;
2515 zeros++;
2516 }
2517 if (zeros == max_off - min_off) {
2518 /* any access_size read into register is zero extended,
2519 * so the whole register == const_zero
2520 */
2521 __mark_reg_const_zero(&state->regs[dst_regno]);
2522 /* backtracking doesn't support STACK_ZERO yet,
2523 * so mark it precise here, so that later
2524 * backtracking can stop here.
2525 * Backtracking may not need this if this register
2526 * doesn't participate in pointer adjustment.
2527 * Forward propagation of precise flag is not
2528 * necessary either. This mark is only to stop
2529 * backtracking. Any register that contributed
2530 * to const 0 was marked precise before spill.
2531 */
2532 state->regs[dst_regno].precise = true;
2533 } else {
2534 /* have read misc data from the stack */
2535 mark_reg_unknown(env, state->regs, dst_regno);
2536 }
2537 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2538}
2539
2540/* Read the stack at 'off' and put the results into the register indicated by
2541 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
2542 * spilled reg.
2543 *
2544 * 'dst_regno' can be -1, meaning that the read value is not going to a
2545 * register.
2546 *
2547 * The access is assumed to be within the current stack bounds.
2548 */
2549static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
2550 /* func where src register points to */
2551 struct bpf_func_state *reg_state,
2552 int off, int size, int dst_regno)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002553{
2554 struct bpf_verifier_state *vstate = env->cur_state;
2555 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2556 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
David Brazdil0f672f62019-12-10 10:32:29 +00002557 struct bpf_reg_state *reg;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002558 u8 *stype;
2559
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002560 stype = reg_state->stack[spi].slot_type;
David Brazdil0f672f62019-12-10 10:32:29 +00002561 reg = &reg_state->stack[spi].spilled_ptr;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002562
2563 if (stype[0] == STACK_SPILL) {
2564 if (size != BPF_REG_SIZE) {
David Brazdil0f672f62019-12-10 10:32:29 +00002565 if (reg->type != SCALAR_VALUE) {
2566 verbose_linfo(env, env->insn_idx, "; ");
2567 verbose(env, "invalid size of register fill\n");
2568 return -EACCES;
2569 }
Olivier Deprez157378f2022-04-04 15:47:50 +02002570 if (dst_regno >= 0) {
2571 mark_reg_unknown(env, state->regs, dst_regno);
2572 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
David Brazdil0f672f62019-12-10 10:32:29 +00002573 }
2574 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2575 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002576 }
2577 for (i = 1; i < BPF_REG_SIZE; i++) {
2578 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2579 verbose(env, "corrupted spill memory\n");
2580 return -EACCES;
2581 }
2582 }
2583
Olivier Deprez157378f2022-04-04 15:47:50 +02002584 if (dst_regno >= 0) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002585 /* restore register state from stack */
Olivier Deprez157378f2022-04-04 15:47:50 +02002586 state->regs[dst_regno] = *reg;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002587 /* mark reg as written since spilled pointer state likely
2588 * has its liveness marks cleared by is_state_visited()
2589 * which resets stack/reg liveness for state transitions
2590 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002591 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
Olivier Deprez0e641232021-09-23 10:07:05 +02002592 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02002593 /* If dst_regno==-1, the caller is asking us whether
Olivier Deprez0e641232021-09-23 10:07:05 +02002594 * it is acceptable to use this value as a SCALAR_VALUE
2595 * (e.g. for XADD).
2596 * We must not allow unprivileged callers to do that
2597 * with spilled pointers.
2598 */
2599 verbose(env, "leaking pointer from stack off %d\n",
2600 off);
2601 return -EACCES;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002602 }
David Brazdil0f672f62019-12-10 10:32:29 +00002603 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002604 } else {
Olivier Deprez157378f2022-04-04 15:47:50 +02002605 u8 type;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002606
2607 for (i = 0; i < size; i++) {
Olivier Deprez157378f2022-04-04 15:47:50 +02002608 type = stype[(slot - i) % BPF_REG_SIZE];
2609 if (type == STACK_MISC)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002610 continue;
Olivier Deprez157378f2022-04-04 15:47:50 +02002611 if (type == STACK_ZERO)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002612 continue;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002613 verbose(env, "invalid read from stack off %d+%d size %d\n",
2614 off, i, size);
2615 return -EACCES;
2616 }
David Brazdil0f672f62019-12-10 10:32:29 +00002617 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
Olivier Deprez157378f2022-04-04 15:47:50 +02002618 if (dst_regno >= 0)
2619 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002620 }
David Brazdil0f672f62019-12-10 10:32:29 +00002621 return 0;
2622}
2623
Olivier Deprez157378f2022-04-04 15:47:50 +02002624enum stack_access_src {
2625 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
2626 ACCESS_HELPER = 2, /* the access is performed by a helper */
2627};
2628
2629static int check_stack_range_initialized(struct bpf_verifier_env *env,
2630 int regno, int off, int access_size,
2631 bool zero_size_allowed,
2632 enum stack_access_src type,
2633 struct bpf_call_arg_meta *meta);
2634
2635static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
David Brazdil0f672f62019-12-10 10:32:29 +00002636{
Olivier Deprez157378f2022-04-04 15:47:50 +02002637 return cur_regs(env) + regno;
2638}
2639
2640/* Read the stack at 'ptr_regno + off' and put the result into the register
2641 * 'dst_regno'.
2642 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
2643 * but not its variable offset.
2644 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
2645 *
2646 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
2647 * filling registers (i.e. reads of spilled register cannot be detected when
2648 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
2649 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
2650 * offset; for a fixed offset check_stack_read_fixed_off should be used
2651 * instead.
2652 */
2653static int check_stack_read_var_off(struct bpf_verifier_env *env,
2654 int ptr_regno, int off, int size, int dst_regno)
2655{
2656 /* The state of the source register. */
2657 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2658 struct bpf_func_state *ptr_state = func(env, reg);
2659 int err;
2660 int min_off, max_off;
2661
2662 /* Note that we pass a NULL meta, so raw access will not be permitted.
David Brazdil0f672f62019-12-10 10:32:29 +00002663 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002664 err = check_stack_range_initialized(env, ptr_regno, off, size,
2665 false, ACCESS_DIRECT, NULL);
2666 if (err)
2667 return err;
2668
2669 min_off = reg->smin_value + off;
2670 max_off = reg->smax_value + off;
2671 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
2672 return 0;
2673}
2674
2675/* check_stack_read dispatches to check_stack_read_fixed_off or
2676 * check_stack_read_var_off.
2677 *
2678 * The caller must ensure that the offset falls within the allocated stack
2679 * bounds.
2680 *
2681 * 'dst_regno' is a register which will receive the value from the stack. It
2682 * can be -1, meaning that the read value is not going to a register.
2683 */
2684static int check_stack_read(struct bpf_verifier_env *env,
2685 int ptr_regno, int off, int size,
2686 int dst_regno)
2687{
2688 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2689 struct bpf_func_state *state = func(env, reg);
2690 int err;
2691 /* Some accesses are only permitted with a static offset. */
2692 bool var_off = !tnum_is_const(reg->var_off);
2693
2694 /* The offset is required to be static when reads don't go to a
2695 * register, in order to not leak pointers (see
2696 * check_stack_read_fixed_off).
2697 */
2698 if (dst_regno < 0 && var_off) {
David Brazdil0f672f62019-12-10 10:32:29 +00002699 char tn_buf[48];
2700
2701 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
Olivier Deprez157378f2022-04-04 15:47:50 +02002702 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
David Brazdil0f672f62019-12-10 10:32:29 +00002703 tn_buf, off, size);
2704 return -EACCES;
2705 }
Olivier Deprez157378f2022-04-04 15:47:50 +02002706 /* Variable offset is prohibited for unprivileged mode for simplicity
2707 * since it requires corresponding support in Spectre masking for stack
2708 * ALU. See also retrieve_ptr_limit().
2709 */
2710 if (!env->bypass_spec_v1 && var_off) {
2711 char tn_buf[48];
David Brazdil0f672f62019-12-10 10:32:29 +00002712
Olivier Deprez157378f2022-04-04 15:47:50 +02002713 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2714 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
2715 ptr_regno, tn_buf);
David Brazdil0f672f62019-12-10 10:32:29 +00002716 return -EACCES;
2717 }
2718
Olivier Deprez157378f2022-04-04 15:47:50 +02002719 if (!var_off) {
2720 off += reg->var_off.value;
2721 err = check_stack_read_fixed_off(env, state, off, size,
2722 dst_regno);
2723 } else {
2724 /* Variable offset stack reads need more conservative handling
2725 * than fixed offset ones. Note that dst_regno >= 0 on this
2726 * branch.
2727 */
2728 err = check_stack_read_var_off(env, ptr_regno, off, size,
2729 dst_regno);
2730 }
2731 return err;
2732}
2733
2734
2735/* check_stack_write dispatches to check_stack_write_fixed_off or
2736 * check_stack_write_var_off.
2737 *
2738 * 'ptr_regno' is the register used as a pointer into the stack.
2739 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
2740 * 'value_regno' is the register whose value we're writing to the stack. It can
2741 * be -1, meaning that we're not writing from a register.
2742 *
2743 * The caller must ensure that the offset falls within the maximum stack size.
2744 */
2745static int check_stack_write(struct bpf_verifier_env *env,
2746 int ptr_regno, int off, int size,
2747 int value_regno, int insn_idx)
2748{
2749 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2750 struct bpf_func_state *state = func(env, reg);
2751 int err;
2752
2753 if (tnum_is_const(reg->var_off)) {
2754 off += reg->var_off.value;
2755 err = check_stack_write_fixed_off(env, state, off, size,
2756 value_regno, insn_idx);
2757 } else {
2758 /* Variable offset stack reads need more conservative handling
2759 * than fixed offset ones.
2760 */
2761 err = check_stack_write_var_off(env, state,
2762 ptr_regno, off, size,
2763 value_regno, insn_idx);
2764 }
2765 return err;
David Brazdil0f672f62019-12-10 10:32:29 +00002766}
2767
2768static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2769 int off, int size, enum bpf_access_type type)
2770{
2771 struct bpf_reg_state *regs = cur_regs(env);
2772 struct bpf_map *map = regs[regno].map_ptr;
2773 u32 cap = bpf_map_flags_to_cap(map);
2774
2775 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2776 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2777 map->value_size, off, size);
2778 return -EACCES;
2779 }
2780
2781 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2782 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2783 map->value_size, off, size);
2784 return -EACCES;
2785 }
2786
2787 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002788}
2789
Olivier Deprez157378f2022-04-04 15:47:50 +02002790/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
2791static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2792 int off, int size, u32 mem_size,
2793 bool zero_size_allowed)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002794{
Olivier Deprez157378f2022-04-04 15:47:50 +02002795 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2796 struct bpf_reg_state *reg;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002797
Olivier Deprez157378f2022-04-04 15:47:50 +02002798 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2799 return 0;
2800
2801 reg = &cur_regs(env)[regno];
2802 switch (reg->type) {
2803 case PTR_TO_MAP_VALUE:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002804 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
Olivier Deprez157378f2022-04-04 15:47:50 +02002805 mem_size, off, size);
2806 break;
2807 case PTR_TO_PACKET:
2808 case PTR_TO_PACKET_META:
2809 case PTR_TO_PACKET_END:
2810 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2811 off, size, regno, reg->id, off, mem_size);
2812 break;
2813 case PTR_TO_MEM:
2814 default:
2815 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2816 mem_size, off, size);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002817 }
Olivier Deprez157378f2022-04-04 15:47:50 +02002818
2819 return -EACCES;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002820}
2821
Olivier Deprez157378f2022-04-04 15:47:50 +02002822/* check read/write into a memory region with possible variable offset */
2823static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2824 int off, int size, u32 mem_size,
2825 bool zero_size_allowed)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002826{
2827 struct bpf_verifier_state *vstate = env->cur_state;
2828 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2829 struct bpf_reg_state *reg = &state->regs[regno];
2830 int err;
2831
Olivier Deprez157378f2022-04-04 15:47:50 +02002832 /* We may have adjusted the register pointing to memory region, so we
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002833 * need to try adding each of min_value and max_value to off
2834 * to make sure our theoretical access will be safe.
2835 */
David Brazdil0f672f62019-12-10 10:32:29 +00002836 if (env->log.level & BPF_LOG_LEVEL)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002837 print_verifier_state(env, state);
David Brazdil0f672f62019-12-10 10:32:29 +00002838
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002839 /* The minimum value is only important with signed
2840 * comparisons where we can't assume the floor of a
2841 * value is 0. If we are using signed variables for our
2842 * index'es we need to make sure that whatever we use
2843 * will have a set floor within our range.
2844 */
David Brazdil0f672f62019-12-10 10:32:29 +00002845 if (reg->smin_value < 0 &&
2846 (reg->smin_value == S64_MIN ||
2847 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2848 reg->smin_value + off < 0)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002849 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2850 regno);
2851 return -EACCES;
2852 }
Olivier Deprez157378f2022-04-04 15:47:50 +02002853 err = __check_mem_access(env, regno, reg->smin_value + off, size,
2854 mem_size, zero_size_allowed);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002855 if (err) {
Olivier Deprez157378f2022-04-04 15:47:50 +02002856 verbose(env, "R%d min value is outside of the allowed memory range\n",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002857 regno);
2858 return err;
2859 }
2860
2861 /* If we haven't set a max value then we need to bail since we can't be
2862 * sure we won't do bad things.
2863 * If reg->umax_value + off could overflow, treat that as unbounded too.
2864 */
2865 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
Olivier Deprez157378f2022-04-04 15:47:50 +02002866 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002867 regno);
2868 return -EACCES;
2869 }
Olivier Deprez157378f2022-04-04 15:47:50 +02002870 err = __check_mem_access(env, regno, reg->umax_value + off, size,
2871 mem_size, zero_size_allowed);
2872 if (err) {
2873 verbose(env, "R%d max value is outside of the allowed memory range\n",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002874 regno);
Olivier Deprez157378f2022-04-04 15:47:50 +02002875 return err;
2876 }
David Brazdil0f672f62019-12-10 10:32:29 +00002877
Olivier Deprez157378f2022-04-04 15:47:50 +02002878 return 0;
2879}
2880
2881/* check read/write into a map element with possible variable offset */
2882static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2883 int off, int size, bool zero_size_allowed)
2884{
2885 struct bpf_verifier_state *vstate = env->cur_state;
2886 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2887 struct bpf_reg_state *reg = &state->regs[regno];
2888 struct bpf_map *map = reg->map_ptr;
2889 int err;
2890
2891 err = check_mem_region_access(env, regno, off, size, map->value_size,
2892 zero_size_allowed);
2893 if (err)
2894 return err;
2895
2896 if (map_value_has_spin_lock(map)) {
2897 u32 lock = map->spin_lock_off;
David Brazdil0f672f62019-12-10 10:32:29 +00002898
2899 /* if any part of struct bpf_spin_lock can be touched by
2900 * load/store reject this program.
2901 * To check that [x1, x2) overlaps with [y1, y2)
2902 * it is sufficient to check x1 < y2 && y1 < x2.
2903 */
2904 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2905 lock < reg->umax_value + off + size) {
2906 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2907 return -EACCES;
2908 }
2909 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002910 return err;
2911}
2912
2913#define MAX_PACKET_OFF 0xffff
2914
Olivier Deprez157378f2022-04-04 15:47:50 +02002915static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
2916{
2917 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
2918}
2919
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002920static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2921 const struct bpf_call_arg_meta *meta,
2922 enum bpf_access_type t)
2923{
Olivier Deprez157378f2022-04-04 15:47:50 +02002924 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
2925
2926 switch (prog_type) {
David Brazdil0f672f62019-12-10 10:32:29 +00002927 /* Program types only with direct read access go here! */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002928 case BPF_PROG_TYPE_LWT_IN:
2929 case BPF_PROG_TYPE_LWT_OUT:
2930 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2931 case BPF_PROG_TYPE_SK_REUSEPORT:
David Brazdil0f672f62019-12-10 10:32:29 +00002932 case BPF_PROG_TYPE_FLOW_DISSECTOR:
2933 case BPF_PROG_TYPE_CGROUP_SKB:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002934 if (t == BPF_WRITE)
2935 return false;
Olivier Deprez157378f2022-04-04 15:47:50 +02002936 fallthrough;
David Brazdil0f672f62019-12-10 10:32:29 +00002937
2938 /* Program types with direct read + write access go here! */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002939 case BPF_PROG_TYPE_SCHED_CLS:
2940 case BPF_PROG_TYPE_SCHED_ACT:
2941 case BPF_PROG_TYPE_XDP:
2942 case BPF_PROG_TYPE_LWT_XMIT:
2943 case BPF_PROG_TYPE_SK_SKB:
2944 case BPF_PROG_TYPE_SK_MSG:
2945 if (meta)
2946 return meta->pkt_access;
2947
2948 env->seen_direct_write = true;
2949 return true;
David Brazdil0f672f62019-12-10 10:32:29 +00002950
2951 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2952 if (t == BPF_WRITE)
2953 env->seen_direct_write = true;
2954
2955 return true;
2956
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002957 default:
2958 return false;
2959 }
2960}
2961
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002962static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2963 int size, bool zero_size_allowed)
2964{
2965 struct bpf_reg_state *regs = cur_regs(env);
2966 struct bpf_reg_state *reg = &regs[regno];
2967 int err;
2968
2969 /* We may have added a variable offset to the packet pointer; but any
2970 * reg->range we have comes after that. We are only checking the fixed
2971 * offset.
2972 */
2973
2974 /* We don't allow negative numbers, because we aren't tracking enough
2975 * detail to prove they're safe.
2976 */
2977 if (reg->smin_value < 0) {
2978 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2979 regno);
2980 return -EACCES;
2981 }
Olivier Deprez157378f2022-04-04 15:47:50 +02002982 err = __check_mem_access(env, regno, off, size, reg->range,
2983 zero_size_allowed);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002984 if (err) {
2985 verbose(env, "R%d offset is outside of the packet\n", regno);
2986 return err;
2987 }
David Brazdil0f672f62019-12-10 10:32:29 +00002988
Olivier Deprez157378f2022-04-04 15:47:50 +02002989 /* __check_mem_access has made sure "off + size - 1" is within u16.
David Brazdil0f672f62019-12-10 10:32:29 +00002990 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2991 * otherwise find_good_pkt_pointers would have refused to set range info
Olivier Deprez157378f2022-04-04 15:47:50 +02002992 * that __check_mem_access would have rejected this pkt access.
David Brazdil0f672f62019-12-10 10:32:29 +00002993 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2994 */
2995 env->prog->aux->max_pkt_offset =
2996 max_t(u32, env->prog->aux->max_pkt_offset,
2997 off + reg->umax_value + size - 1);
2998
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002999 return err;
3000}
3001
3002/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
3003static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
Olivier Deprez157378f2022-04-04 15:47:50 +02003004 enum bpf_access_type t, enum bpf_reg_type *reg_type,
3005 u32 *btf_id)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003006{
3007 struct bpf_insn_access_aux info = {
3008 .reg_type = *reg_type,
Olivier Deprez157378f2022-04-04 15:47:50 +02003009 .log = &env->log,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003010 };
3011
3012 if (env->ops->is_valid_access &&
3013 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3014 /* A non zero info.ctx_field_size indicates that this field is a
3015 * candidate for later verifier transformation to load the whole
3016 * field and then apply a mask when accessed with a narrower
3017 * access than actual ctx access size. A zero info.ctx_field_size
3018 * will only allow for whole field access and rejects any other
3019 * type of narrower access.
3020 */
3021 *reg_type = info.reg_type;
3022
Olivier Deprez157378f2022-04-04 15:47:50 +02003023 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL)
3024 *btf_id = info.btf_id;
3025 else
3026 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003027 /* remember the offset of last byte accessed in ctx */
3028 if (env->prog->aux->max_ctx_offset < off + size)
3029 env->prog->aux->max_ctx_offset = off + size;
3030 return 0;
3031 }
3032
3033 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3034 return -EACCES;
3035}
3036
David Brazdil0f672f62019-12-10 10:32:29 +00003037static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3038 int size)
3039{
3040 if (size < 0 || off < 0 ||
3041 (u64)off + size > sizeof(struct bpf_flow_keys)) {
3042 verbose(env, "invalid access to flow keys off=%d size=%d\n",
3043 off, size);
3044 return -EACCES;
3045 }
3046 return 0;
3047}
3048
3049static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3050 u32 regno, int off, int size,
3051 enum bpf_access_type t)
3052{
3053 struct bpf_reg_state *regs = cur_regs(env);
3054 struct bpf_reg_state *reg = &regs[regno];
3055 struct bpf_insn_access_aux info = {};
3056 bool valid;
3057
3058 if (reg->smin_value < 0) {
3059 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3060 regno);
3061 return -EACCES;
3062 }
3063
3064 switch (reg->type) {
3065 case PTR_TO_SOCK_COMMON:
3066 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3067 break;
3068 case PTR_TO_SOCKET:
3069 valid = bpf_sock_is_valid_access(off, size, t, &info);
3070 break;
3071 case PTR_TO_TCP_SOCK:
3072 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3073 break;
3074 case PTR_TO_XDP_SOCK:
3075 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3076 break;
3077 default:
3078 valid = false;
3079 }
3080
3081
3082 if (valid) {
3083 env->insn_aux_data[insn_idx].ctx_field_size =
3084 info.ctx_field_size;
3085 return 0;
3086 }
3087
3088 verbose(env, "R%d invalid %s access off=%d size=%d\n",
3089 regno, reg_type_str[reg->type], off, size);
3090
3091 return -EACCES;
3092}
3093
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003094static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3095{
David Brazdil0f672f62019-12-10 10:32:29 +00003096 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003097}
3098
3099static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3100{
David Brazdil0f672f62019-12-10 10:32:29 +00003101 const struct bpf_reg_state *reg = reg_state(env, regno);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003102
3103 return reg->type == PTR_TO_CTX;
3104}
3105
David Brazdil0f672f62019-12-10 10:32:29 +00003106static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3107{
3108 const struct bpf_reg_state *reg = reg_state(env, regno);
3109
3110 return type_is_sk_pointer(reg->type);
3111}
3112
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003113static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3114{
David Brazdil0f672f62019-12-10 10:32:29 +00003115 const struct bpf_reg_state *reg = reg_state(env, regno);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003116
3117 return type_is_pkt_pointer(reg->type);
3118}
3119
David Brazdil0f672f62019-12-10 10:32:29 +00003120static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3121{
3122 const struct bpf_reg_state *reg = reg_state(env, regno);
3123
3124 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3125 return reg->type == PTR_TO_FLOW_KEYS;
3126}
3127
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003128static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3129 const struct bpf_reg_state *reg,
3130 int off, int size, bool strict)
3131{
3132 struct tnum reg_off;
3133 int ip_align;
3134
3135 /* Byte size accesses are always allowed. */
3136 if (!strict || size == 1)
3137 return 0;
3138
3139 /* For platforms that do not have a Kconfig enabling
3140 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3141 * NET_IP_ALIGN is universally set to '2'. And on platforms
3142 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3143 * to this code only in strict mode where we want to emulate
3144 * the NET_IP_ALIGN==2 checking. Therefore use an
3145 * unconditional IP align value of '2'.
3146 */
3147 ip_align = 2;
3148
3149 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3150 if (!tnum_is_aligned(reg_off, size)) {
3151 char tn_buf[48];
3152
3153 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3154 verbose(env,
3155 "misaligned packet access off %d+%s+%d+%d size %d\n",
3156 ip_align, tn_buf, reg->off, off, size);
3157 return -EACCES;
3158 }
3159
3160 return 0;
3161}
3162
3163static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3164 const struct bpf_reg_state *reg,
3165 const char *pointer_desc,
3166 int off, int size, bool strict)
3167{
3168 struct tnum reg_off;
3169
3170 /* Byte size accesses are always allowed. */
3171 if (!strict || size == 1)
3172 return 0;
3173
3174 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3175 if (!tnum_is_aligned(reg_off, size)) {
3176 char tn_buf[48];
3177
3178 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3179 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3180 pointer_desc, tn_buf, reg->off, off, size);
3181 return -EACCES;
3182 }
3183
3184 return 0;
3185}
3186
3187static int check_ptr_alignment(struct bpf_verifier_env *env,
3188 const struct bpf_reg_state *reg, int off,
3189 int size, bool strict_alignment_once)
3190{
3191 bool strict = env->strict_alignment || strict_alignment_once;
3192 const char *pointer_desc = "";
3193
3194 switch (reg->type) {
3195 case PTR_TO_PACKET:
3196 case PTR_TO_PACKET_META:
3197 /* Special case, because of NET_IP_ALIGN. Given metadata sits
3198 * right in front, treat it the very same way.
3199 */
3200 return check_pkt_ptr_alignment(env, reg, off, size, strict);
David Brazdil0f672f62019-12-10 10:32:29 +00003201 case PTR_TO_FLOW_KEYS:
3202 pointer_desc = "flow keys ";
3203 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003204 case PTR_TO_MAP_VALUE:
3205 pointer_desc = "value ";
3206 break;
3207 case PTR_TO_CTX:
3208 pointer_desc = "context ";
3209 break;
3210 case PTR_TO_STACK:
3211 pointer_desc = "stack ";
Olivier Deprez157378f2022-04-04 15:47:50 +02003212 /* The stack spill tracking logic in check_stack_write_fixed_off()
3213 * and check_stack_read_fixed_off() relies on stack accesses being
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003214 * aligned.
3215 */
3216 strict = true;
3217 break;
David Brazdil0f672f62019-12-10 10:32:29 +00003218 case PTR_TO_SOCKET:
3219 pointer_desc = "sock ";
3220 break;
3221 case PTR_TO_SOCK_COMMON:
3222 pointer_desc = "sock_common ";
3223 break;
3224 case PTR_TO_TCP_SOCK:
3225 pointer_desc = "tcp_sock ";
3226 break;
3227 case PTR_TO_XDP_SOCK:
3228 pointer_desc = "xdp_sock ";
3229 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003230 default:
3231 break;
3232 }
3233 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3234 strict);
3235}
3236
3237static int update_stack_depth(struct bpf_verifier_env *env,
3238 const struct bpf_func_state *func,
3239 int off)
3240{
3241 u16 stack = env->subprog_info[func->subprogno].stack_depth;
3242
3243 if (stack >= -off)
3244 return 0;
3245
3246 /* update known max for given subprogram */
3247 env->subprog_info[func->subprogno].stack_depth = -off;
3248 return 0;
3249}
3250
3251/* starting from main bpf function walk all instructions of the function
3252 * and recursively walk all callees that given function can call.
3253 * Ignore jump and exit insns.
3254 * Since recursion is prevented by check_cfg() this algorithm
3255 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3256 */
3257static int check_max_stack_depth(struct bpf_verifier_env *env)
3258{
3259 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3260 struct bpf_subprog_info *subprog = env->subprog_info;
3261 struct bpf_insn *insn = env->prog->insnsi;
Olivier Deprez157378f2022-04-04 15:47:50 +02003262 bool tail_call_reachable = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003263 int ret_insn[MAX_CALL_FRAMES];
3264 int ret_prog[MAX_CALL_FRAMES];
Olivier Deprez157378f2022-04-04 15:47:50 +02003265 int j;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003266
3267process_func:
Olivier Deprez0e641232021-09-23 10:07:05 +02003268 /* protect against potential stack overflow that might happen when
3269 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3270 * depth for such case down to 256 so that the worst case scenario
3271 * would result in 8k stack size (32 which is tailcall limit * 256 =
3272 * 8k).
3273 *
3274 * To get the idea what might happen, see an example:
3275 * func1 -> sub rsp, 128
3276 * subfunc1 -> sub rsp, 256
3277 * tailcall1 -> add rsp, 256
3278 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3279 * subfunc2 -> sub rsp, 64
3280 * subfunc22 -> sub rsp, 128
3281 * tailcall2 -> add rsp, 128
3282 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3283 *
3284 * tailcall will unwind the current stack frame but it will not get rid
3285 * of caller's stack as shown on the example above.
3286 */
3287 if (idx && subprog[idx].has_tail_call && depth >= 256) {
3288 verbose(env,
3289 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3290 depth);
3291 return -EACCES;
3292 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003293 /* round up to 32-bytes, since this is granularity
3294 * of interpreter stack size
3295 */
3296 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3297 if (depth > MAX_BPF_STACK) {
3298 verbose(env, "combined stack size of %d calls is %d. Too large\n",
3299 frame + 1, depth);
3300 return -EACCES;
3301 }
3302continue_func:
3303 subprog_end = subprog[idx + 1].start;
3304 for (; i < subprog_end; i++) {
3305 if (insn[i].code != (BPF_JMP | BPF_CALL))
3306 continue;
3307 if (insn[i].src_reg != BPF_PSEUDO_CALL)
3308 continue;
3309 /* remember insn and function to return to */
3310 ret_insn[frame] = i + 1;
3311 ret_prog[frame] = idx;
3312
3313 /* find the callee */
3314 i = i + insn[i].imm + 1;
3315 idx = find_subprog(env, i);
3316 if (idx < 0) {
3317 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3318 i);
3319 return -EFAULT;
3320 }
Olivier Deprez157378f2022-04-04 15:47:50 +02003321
3322 if (subprog[idx].has_tail_call)
3323 tail_call_reachable = true;
3324
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003325 frame++;
3326 if (frame >= MAX_CALL_FRAMES) {
David Brazdil0f672f62019-12-10 10:32:29 +00003327 verbose(env, "the call stack of %d frames is too deep !\n",
3328 frame);
3329 return -E2BIG;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003330 }
3331 goto process_func;
3332 }
Olivier Deprez157378f2022-04-04 15:47:50 +02003333 /* if tail call got detected across bpf2bpf calls then mark each of the
3334 * currently present subprog frames as tail call reachable subprogs;
3335 * this info will be utilized by JIT so that we will be preserving the
3336 * tail call counter throughout bpf2bpf calls combined with tailcalls
3337 */
3338 if (tail_call_reachable)
3339 for (j = 0; j < frame; j++)
3340 subprog[ret_prog[j]].tail_call_reachable = true;
3341 if (subprog[0].tail_call_reachable)
3342 env->prog->aux->tail_call_reachable = true;
3343
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003344 /* end of for() loop means the last insn of the 'subprog'
3345 * was reached. Doesn't matter whether it was JA or EXIT
3346 */
3347 if (frame == 0)
3348 return 0;
3349 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3350 frame--;
3351 i = ret_insn[frame];
3352 idx = ret_prog[frame];
3353 goto continue_func;
3354}
3355
3356#ifndef CONFIG_BPF_JIT_ALWAYS_ON
3357static int get_callee_stack_depth(struct bpf_verifier_env *env,
3358 const struct bpf_insn *insn, int idx)
3359{
3360 int start = idx + insn->imm + 1, subprog;
3361
3362 subprog = find_subprog(env, start);
3363 if (subprog < 0) {
3364 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3365 start);
3366 return -EFAULT;
3367 }
3368 return env->subprog_info[subprog].stack_depth;
3369}
3370#endif
3371
Olivier Deprez157378f2022-04-04 15:47:50 +02003372int check_ctx_reg(struct bpf_verifier_env *env,
3373 const struct bpf_reg_state *reg, int regno)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003374{
3375 /* Access to ctx or passing it to a helper is only allowed in
3376 * its original, unmodified form.
3377 */
3378
3379 if (reg->off) {
3380 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3381 regno, reg->off);
3382 return -EACCES;
3383 }
3384
3385 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3386 char tn_buf[48];
3387
3388 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3389 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3390 return -EACCES;
3391 }
3392
3393 return 0;
3394}
3395
Olivier Deprez157378f2022-04-04 15:47:50 +02003396static int __check_buffer_access(struct bpf_verifier_env *env,
3397 const char *buf_info,
3398 const struct bpf_reg_state *reg,
3399 int regno, int off, int size)
David Brazdil0f672f62019-12-10 10:32:29 +00003400{
3401 if (off < 0) {
3402 verbose(env,
Olivier Deprez157378f2022-04-04 15:47:50 +02003403 "R%d invalid %s buffer access: off=%d, size=%d\n",
3404 regno, buf_info, off, size);
David Brazdil0f672f62019-12-10 10:32:29 +00003405 return -EACCES;
3406 }
3407 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3408 char tn_buf[48];
3409
3410 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3411 verbose(env,
Olivier Deprez157378f2022-04-04 15:47:50 +02003412 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
David Brazdil0f672f62019-12-10 10:32:29 +00003413 regno, off, tn_buf);
3414 return -EACCES;
3415 }
Olivier Deprez157378f2022-04-04 15:47:50 +02003416
3417 return 0;
3418}
3419
3420static int check_tp_buffer_access(struct bpf_verifier_env *env,
3421 const struct bpf_reg_state *reg,
3422 int regno, int off, int size)
3423{
3424 int err;
3425
3426 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3427 if (err)
3428 return err;
3429
David Brazdil0f672f62019-12-10 10:32:29 +00003430 if (off + size > env->prog->aux->max_tp_access)
3431 env->prog->aux->max_tp_access = off + size;
3432
3433 return 0;
3434}
3435
Olivier Deprez157378f2022-04-04 15:47:50 +02003436static int check_buffer_access(struct bpf_verifier_env *env,
3437 const struct bpf_reg_state *reg,
3438 int regno, int off, int size,
3439 bool zero_size_allowed,
3440 const char *buf_info,
3441 u32 *max_access)
3442{
3443 int err;
3444
3445 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3446 if (err)
3447 return err;
3448
3449 if (off + size > *max_access)
3450 *max_access = off + size;
3451
3452 return 0;
3453}
3454
3455/* BPF architecture zero extends alu32 ops into 64-bit registesr */
3456static void zext_32_to_64(struct bpf_reg_state *reg)
3457{
3458 reg->var_off = tnum_subreg(reg->var_off);
3459 __reg_assign_32_into_64(reg);
3460}
David Brazdil0f672f62019-12-10 10:32:29 +00003461
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003462/* truncate register to smaller size (in bytes)
3463 * must be called with size < BPF_REG_SIZE
3464 */
3465static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3466{
3467 u64 mask;
3468
3469 /* clear high bits in bit representation */
3470 reg->var_off = tnum_cast(reg->var_off, size);
3471
3472 /* fix arithmetic bounds */
3473 mask = ((u64)1 << (size * 8)) - 1;
3474 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3475 reg->umin_value &= mask;
3476 reg->umax_value &= mask;
3477 } else {
3478 reg->umin_value = 0;
3479 reg->umax_value = mask;
3480 }
3481 reg->smin_value = reg->umin_value;
3482 reg->smax_value = reg->umax_value;
Olivier Deprez157378f2022-04-04 15:47:50 +02003483
3484 /* If size is smaller than 32bit register the 32bit register
3485 * values are also truncated so we push 64-bit bounds into
3486 * 32-bit bounds. Above were truncated < 32-bits already.
3487 */
3488 if (size >= 4)
3489 return;
3490 __reg_combine_64_into_32(reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003491}
3492
Olivier Deprez0e641232021-09-23 10:07:05 +02003493static bool bpf_map_is_rdonly(const struct bpf_map *map)
3494{
Olivier Deprez157378f2022-04-04 15:47:50 +02003495 /* A map is considered read-only if the following condition are true:
3496 *
3497 * 1) BPF program side cannot change any of the map content. The
3498 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
3499 * and was set at map creation time.
3500 * 2) The map value(s) have been initialized from user space by a
3501 * loader and then "frozen", such that no new map update/delete
3502 * operations from syscall side are possible for the rest of
3503 * the map's lifetime from that point onwards.
3504 * 3) Any parallel/pending map update/delete operations from syscall
3505 * side have been completed. Only after that point, it's safe to
3506 * assume that map value(s) are immutable.
3507 */
3508 return (map->map_flags & BPF_F_RDONLY_PROG) &&
3509 READ_ONCE(map->frozen) &&
3510 !bpf_map_write_active(map);
Olivier Deprez0e641232021-09-23 10:07:05 +02003511}
3512
3513static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3514{
3515 void *ptr;
3516 u64 addr;
3517 int err;
3518
3519 err = map->ops->map_direct_value_addr(map, &addr, off);
3520 if (err)
3521 return err;
3522 ptr = (void *)(long)addr + off;
3523
3524 switch (size) {
3525 case sizeof(u8):
3526 *val = (u64)*(u8 *)ptr;
3527 break;
3528 case sizeof(u16):
3529 *val = (u64)*(u16 *)ptr;
3530 break;
3531 case sizeof(u32):
3532 *val = (u64)*(u32 *)ptr;
3533 break;
3534 case sizeof(u64):
3535 *val = *(u64 *)ptr;
3536 break;
3537 default:
3538 return -EINVAL;
3539 }
3540 return 0;
3541}
3542
Olivier Deprez157378f2022-04-04 15:47:50 +02003543static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3544 struct bpf_reg_state *regs,
3545 int regno, int off, int size,
3546 enum bpf_access_type atype,
3547 int value_regno)
3548{
3549 struct bpf_reg_state *reg = regs + regno;
3550 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
3551 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3552 u32 btf_id;
3553 int ret;
3554
3555 if (off < 0) {
3556 verbose(env,
3557 "R%d is ptr_%s invalid negative access: off=%d\n",
3558 regno, tname, off);
3559 return -EACCES;
3560 }
3561 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3562 char tn_buf[48];
3563
3564 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3565 verbose(env,
3566 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3567 regno, tname, off, tn_buf);
3568 return -EACCES;
3569 }
3570
3571 if (env->ops->btf_struct_access) {
3572 ret = env->ops->btf_struct_access(&env->log, t, off, size,
3573 atype, &btf_id);
3574 } else {
3575 if (atype != BPF_READ) {
3576 verbose(env, "only read is supported\n");
3577 return -EACCES;
3578 }
3579
3580 ret = btf_struct_access(&env->log, t, off, size, atype,
3581 &btf_id);
3582 }
3583
3584 if (ret < 0)
3585 return ret;
3586
3587 if (atype == BPF_READ && value_regno >= 0)
3588 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3589
3590 return 0;
3591}
3592
3593static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3594 struct bpf_reg_state *regs,
3595 int regno, int off, int size,
3596 enum bpf_access_type atype,
3597 int value_regno)
3598{
3599 struct bpf_reg_state *reg = regs + regno;
3600 struct bpf_map *map = reg->map_ptr;
3601 const struct btf_type *t;
3602 const char *tname;
3603 u32 btf_id;
3604 int ret;
3605
3606 if (!btf_vmlinux) {
3607 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3608 return -ENOTSUPP;
3609 }
3610
3611 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3612 verbose(env, "map_ptr access not supported for map type %d\n",
3613 map->map_type);
3614 return -ENOTSUPP;
3615 }
3616
3617 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3618 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3619
3620 if (!env->allow_ptr_to_map_access) {
3621 verbose(env,
3622 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3623 tname);
3624 return -EPERM;
3625 }
3626
3627 if (off < 0) {
3628 verbose(env, "R%d is %s invalid negative access: off=%d\n",
3629 regno, tname, off);
3630 return -EACCES;
3631 }
3632
3633 if (atype != BPF_READ) {
3634 verbose(env, "only read from %s is supported\n", tname);
3635 return -EACCES;
3636 }
3637
3638 ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id);
3639 if (ret < 0)
3640 return ret;
3641
3642 if (value_regno >= 0)
3643 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3644
3645 return 0;
3646}
3647
3648/* Check that the stack access at the given offset is within bounds. The
3649 * maximum valid offset is -1.
3650 *
3651 * The minimum valid offset is -MAX_BPF_STACK for writes, and
3652 * -state->allocated_stack for reads.
3653 */
3654static int check_stack_slot_within_bounds(int off,
3655 struct bpf_func_state *state,
3656 enum bpf_access_type t)
3657{
3658 int min_valid_off;
3659
3660 if (t == BPF_WRITE)
3661 min_valid_off = -MAX_BPF_STACK;
3662 else
3663 min_valid_off = -state->allocated_stack;
3664
3665 if (off < min_valid_off || off > -1)
3666 return -EACCES;
3667 return 0;
3668}
3669
3670/* Check that the stack access at 'regno + off' falls within the maximum stack
3671 * bounds.
3672 *
3673 * 'off' includes `regno->offset`, but not its dynamic part (if any).
3674 */
3675static int check_stack_access_within_bounds(
3676 struct bpf_verifier_env *env,
3677 int regno, int off, int access_size,
3678 enum stack_access_src src, enum bpf_access_type type)
3679{
3680 struct bpf_reg_state *regs = cur_regs(env);
3681 struct bpf_reg_state *reg = regs + regno;
3682 struct bpf_func_state *state = func(env, reg);
3683 int min_off, max_off;
3684 int err;
3685 char *err_extra;
3686
3687 if (src == ACCESS_HELPER)
3688 /* We don't know if helpers are reading or writing (or both). */
3689 err_extra = " indirect access to";
3690 else if (type == BPF_READ)
3691 err_extra = " read from";
3692 else
3693 err_extra = " write to";
3694
3695 if (tnum_is_const(reg->var_off)) {
3696 min_off = reg->var_off.value + off;
3697 if (access_size > 0)
3698 max_off = min_off + access_size - 1;
3699 else
3700 max_off = min_off;
3701 } else {
3702 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3703 reg->smin_value <= -BPF_MAX_VAR_OFF) {
3704 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
3705 err_extra, regno);
3706 return -EACCES;
3707 }
3708 min_off = reg->smin_value + off;
3709 if (access_size > 0)
3710 max_off = reg->smax_value + off + access_size - 1;
3711 else
3712 max_off = min_off;
3713 }
3714
3715 err = check_stack_slot_within_bounds(min_off, state, type);
3716 if (!err)
3717 err = check_stack_slot_within_bounds(max_off, state, type);
3718
3719 if (err) {
3720 if (tnum_is_const(reg->var_off)) {
3721 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
3722 err_extra, regno, off, access_size);
3723 } else {
3724 char tn_buf[48];
3725
3726 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3727 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
3728 err_extra, regno, tn_buf, access_size);
3729 }
3730 }
3731 return err;
3732}
3733
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003734/* check whether memory at (regno + off) is accessible for t = (read | write)
3735 * if t==write, value_regno is a register which value is stored into memory
3736 * if t==read, value_regno is a register which will receive the value from memory
3737 * if t==write && value_regno==-1, some unknown value is stored into memory
3738 * if t==read && value_regno==-1, don't care what we read from memory
3739 */
3740static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3741 int off, int bpf_size, enum bpf_access_type t,
3742 int value_regno, bool strict_alignment_once)
3743{
3744 struct bpf_reg_state *regs = cur_regs(env);
3745 struct bpf_reg_state *reg = regs + regno;
3746 struct bpf_func_state *state;
3747 int size, err = 0;
3748
3749 size = bpf_size_to_bytes(bpf_size);
3750 if (size < 0)
3751 return size;
3752
3753 /* alignment checks will add in reg->off themselves */
3754 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3755 if (err)
3756 return err;
3757
3758 /* for access checks, reg->off is just part of off */
3759 off += reg->off;
3760
3761 if (reg->type == PTR_TO_MAP_VALUE) {
3762 if (t == BPF_WRITE && value_regno >= 0 &&
3763 is_pointer_value(env, value_regno)) {
3764 verbose(env, "R%d leaks addr into map\n", value_regno);
3765 return -EACCES;
3766 }
David Brazdil0f672f62019-12-10 10:32:29 +00003767 err = check_map_access_type(env, regno, off, size, t);
3768 if (err)
3769 return err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003770 err = check_map_access(env, regno, off, size, false);
Olivier Deprez0e641232021-09-23 10:07:05 +02003771 if (!err && t == BPF_READ && value_regno >= 0) {
3772 struct bpf_map *map = reg->map_ptr;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003773
Olivier Deprez0e641232021-09-23 10:07:05 +02003774 /* if map is read-only, track its contents as scalars */
3775 if (tnum_is_const(reg->var_off) &&
3776 bpf_map_is_rdonly(map) &&
3777 map->ops->map_direct_value_addr) {
3778 int map_off = off + reg->var_off.value;
3779 u64 val = 0;
3780
3781 err = bpf_map_direct_read(map, map_off, size,
3782 &val);
3783 if (err)
3784 return err;
3785
3786 regs[value_regno].type = SCALAR_VALUE;
3787 __mark_reg_known(&regs[value_regno], val);
3788 } else {
3789 mark_reg_unknown(env, regs, value_regno);
3790 }
3791 }
Olivier Deprez157378f2022-04-04 15:47:50 +02003792 } else if (reg->type == PTR_TO_MEM) {
3793 if (t == BPF_WRITE && value_regno >= 0 &&
3794 is_pointer_value(env, value_regno)) {
3795 verbose(env, "R%d leaks addr into mem\n", value_regno);
3796 return -EACCES;
3797 }
3798 err = check_mem_region_access(env, regno, off, size,
3799 reg->mem_size, false);
3800 if (!err && t == BPF_READ && value_regno >= 0)
3801 mark_reg_unknown(env, regs, value_regno);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003802 } else if (reg->type == PTR_TO_CTX) {
3803 enum bpf_reg_type reg_type = SCALAR_VALUE;
Olivier Deprez157378f2022-04-04 15:47:50 +02003804 u32 btf_id = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003805
3806 if (t == BPF_WRITE && value_regno >= 0 &&
3807 is_pointer_value(env, value_regno)) {
3808 verbose(env, "R%d leaks addr into ctx\n", value_regno);
3809 return -EACCES;
3810 }
3811
3812 err = check_ctx_reg(env, reg, regno);
3813 if (err < 0)
3814 return err;
3815
Olivier Deprez157378f2022-04-04 15:47:50 +02003816 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf_id);
3817 if (err)
3818 verbose_linfo(env, insn_idx, "; ");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003819 if (!err && t == BPF_READ && value_regno >= 0) {
3820 /* ctx access returns either a scalar, or a
3821 * PTR_TO_PACKET[_META,_END]. In the latter
3822 * case, we know the offset is zero.
3823 */
David Brazdil0f672f62019-12-10 10:32:29 +00003824 if (reg_type == SCALAR_VALUE) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003825 mark_reg_unknown(env, regs, value_regno);
David Brazdil0f672f62019-12-10 10:32:29 +00003826 } else {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003827 mark_reg_known_zero(env, regs,
3828 value_regno);
David Brazdil0f672f62019-12-10 10:32:29 +00003829 if (reg_type_may_be_null(reg_type))
3830 regs[value_regno].id = ++env->id_gen;
3831 /* A load of ctx field could have different
3832 * actual load size with the one encoded in the
3833 * insn. When the dst is PTR, it is for sure not
3834 * a sub-register.
3835 */
3836 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
Olivier Deprez157378f2022-04-04 15:47:50 +02003837 if (reg_type == PTR_TO_BTF_ID ||
3838 reg_type == PTR_TO_BTF_ID_OR_NULL)
3839 regs[value_regno].btf_id = btf_id;
David Brazdil0f672f62019-12-10 10:32:29 +00003840 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003841 regs[value_regno].type = reg_type;
3842 }
3843
3844 } else if (reg->type == PTR_TO_STACK) {
Olivier Deprez157378f2022-04-04 15:47:50 +02003845 /* Basic bounds checks. */
3846 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
David Brazdil0f672f62019-12-10 10:32:29 +00003847 if (err)
3848 return err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003849
3850 state = func(env, reg);
3851 err = update_stack_depth(env, state, off);
3852 if (err)
3853 return err;
3854
Olivier Deprez157378f2022-04-04 15:47:50 +02003855 if (t == BPF_READ)
3856 err = check_stack_read(env, regno, off, size,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003857 value_regno);
Olivier Deprez157378f2022-04-04 15:47:50 +02003858 else
3859 err = check_stack_write(env, regno, off, size,
3860 value_regno, insn_idx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003861 } else if (reg_is_pkt_pointer(reg)) {
3862 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3863 verbose(env, "cannot write into packet\n");
3864 return -EACCES;
3865 }
3866 if (t == BPF_WRITE && value_regno >= 0 &&
3867 is_pointer_value(env, value_regno)) {
3868 verbose(env, "R%d leaks addr into packet\n",
3869 value_regno);
3870 return -EACCES;
3871 }
3872 err = check_packet_access(env, regno, off, size, false);
3873 if (!err && t == BPF_READ && value_regno >= 0)
3874 mark_reg_unknown(env, regs, value_regno);
David Brazdil0f672f62019-12-10 10:32:29 +00003875 } else if (reg->type == PTR_TO_FLOW_KEYS) {
3876 if (t == BPF_WRITE && value_regno >= 0 &&
3877 is_pointer_value(env, value_regno)) {
3878 verbose(env, "R%d leaks addr into flow keys\n",
3879 value_regno);
3880 return -EACCES;
3881 }
3882
3883 err = check_flow_keys_access(env, off, size);
3884 if (!err && t == BPF_READ && value_regno >= 0)
3885 mark_reg_unknown(env, regs, value_regno);
3886 } else if (type_is_sk_pointer(reg->type)) {
3887 if (t == BPF_WRITE) {
3888 verbose(env, "R%d cannot write into %s\n",
3889 regno, reg_type_str[reg->type]);
3890 return -EACCES;
3891 }
3892 err = check_sock_access(env, insn_idx, regno, off, size, t);
3893 if (!err && value_regno >= 0)
3894 mark_reg_unknown(env, regs, value_regno);
3895 } else if (reg->type == PTR_TO_TP_BUFFER) {
3896 err = check_tp_buffer_access(env, reg, regno, off, size);
3897 if (!err && t == BPF_READ && value_regno >= 0)
3898 mark_reg_unknown(env, regs, value_regno);
Olivier Deprez157378f2022-04-04 15:47:50 +02003899 } else if (reg->type == PTR_TO_BTF_ID) {
3900 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3901 value_regno);
3902 } else if (reg->type == CONST_PTR_TO_MAP) {
3903 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
3904 value_regno);
3905 } else if (reg->type == PTR_TO_RDONLY_BUF) {
3906 if (t == BPF_WRITE) {
3907 verbose(env, "R%d cannot write into %s\n",
3908 regno, reg_type_str[reg->type]);
3909 return -EACCES;
3910 }
3911 err = check_buffer_access(env, reg, regno, off, size, false,
3912 "rdonly",
3913 &env->prog->aux->max_rdonly_access);
3914 if (!err && value_regno >= 0)
3915 mark_reg_unknown(env, regs, value_regno);
3916 } else if (reg->type == PTR_TO_RDWR_BUF) {
3917 err = check_buffer_access(env, reg, regno, off, size, false,
3918 "rdwr",
3919 &env->prog->aux->max_rdwr_access);
3920 if (!err && t == BPF_READ && value_regno >= 0)
3921 mark_reg_unknown(env, regs, value_regno);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003922 } else {
3923 verbose(env, "R%d invalid mem access '%s'\n", regno,
3924 reg_type_str[reg->type]);
3925 return -EACCES;
3926 }
3927
3928 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
3929 regs[value_regno].type == SCALAR_VALUE) {
3930 /* b/h/w load zero-extends, mark upper bits as known 0 */
3931 coerce_reg_to_size(&regs[value_regno], size);
3932 }
3933 return err;
3934}
3935
3936static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
3937{
3938 int err;
3939
3940 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3941 insn->imm != 0) {
3942 verbose(env, "BPF_XADD uses reserved fields\n");
3943 return -EINVAL;
3944 }
3945
3946 /* check src1 operand */
3947 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3948 if (err)
3949 return err;
3950
3951 /* check src2 operand */
3952 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3953 if (err)
3954 return err;
3955
3956 if (is_pointer_value(env, insn->src_reg)) {
3957 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
3958 return -EACCES;
3959 }
3960
3961 if (is_ctx_reg(env, insn->dst_reg) ||
David Brazdil0f672f62019-12-10 10:32:29 +00003962 is_pkt_reg(env, insn->dst_reg) ||
3963 is_flow_key_reg(env, insn->dst_reg) ||
3964 is_sk_reg(env, insn->dst_reg)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003965 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
David Brazdil0f672f62019-12-10 10:32:29 +00003966 insn->dst_reg,
3967 reg_type_str[reg_state(env, insn->dst_reg)->type]);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003968 return -EACCES;
3969 }
3970
3971 /* check whether atomic_add can read the memory */
3972 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3973 BPF_SIZE(insn->code), BPF_READ, -1, true);
3974 if (err)
3975 return err;
3976
3977 /* check whether atomic_add can write into the same memory */
3978 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3979 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
3980}
3981
Olivier Deprez157378f2022-04-04 15:47:50 +02003982/* When register 'regno' is used to read the stack (either directly or through
3983 * a helper function) make sure that it's within stack boundary and, depending
3984 * on the access type, that all elements of the stack are initialized.
3985 *
3986 * 'off' includes 'regno->off', but not its dynamic part (if any).
3987 *
3988 * All registers that have been spilled on the stack in the slots within the
3989 * read offsets are marked as read.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003990 */
Olivier Deprez157378f2022-04-04 15:47:50 +02003991static int check_stack_range_initialized(
3992 struct bpf_verifier_env *env, int regno, int off,
3993 int access_size, bool zero_size_allowed,
3994 enum stack_access_src type, struct bpf_call_arg_meta *meta)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003995{
David Brazdil0f672f62019-12-10 10:32:29 +00003996 struct bpf_reg_state *reg = reg_state(env, regno);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003997 struct bpf_func_state *state = func(env, reg);
David Brazdil0f672f62019-12-10 10:32:29 +00003998 int err, min_off, max_off, i, j, slot, spi;
Olivier Deprez157378f2022-04-04 15:47:50 +02003999 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4000 enum bpf_access_type bounds_check_type;
4001 /* Some accesses can write anything into the stack, others are
4002 * read-only.
4003 */
4004 bool clobber = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004005
Olivier Deprez157378f2022-04-04 15:47:50 +02004006 if (access_size == 0 && !zero_size_allowed) {
4007 verbose(env, "invalid zero-sized read\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004008 return -EACCES;
4009 }
4010
Olivier Deprez157378f2022-04-04 15:47:50 +02004011 if (type == ACCESS_HELPER) {
4012 /* The bounds checks for writes are more permissive than for
4013 * reads. However, if raw_mode is not set, we'll do extra
4014 * checks below.
4015 */
4016 bounds_check_type = BPF_WRITE;
4017 clobber = true;
4018 } else {
4019 bounds_check_type = BPF_READ;
4020 }
4021 err = check_stack_access_within_bounds(env, regno, off, access_size,
4022 type, bounds_check_type);
4023 if (err)
4024 return err;
4025
4026
David Brazdil0f672f62019-12-10 10:32:29 +00004027 if (tnum_is_const(reg->var_off)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02004028 min_off = max_off = reg->var_off.value + off;
David Brazdil0f672f62019-12-10 10:32:29 +00004029 } else {
4030 /* Variable offset is prohibited for unprivileged mode for
4031 * simplicity since it requires corresponding support in
4032 * Spectre masking for stack ALU.
4033 * See also retrieve_ptr_limit().
4034 */
Olivier Deprez157378f2022-04-04 15:47:50 +02004035 if (!env->bypass_spec_v1) {
David Brazdil0f672f62019-12-10 10:32:29 +00004036 char tn_buf[48];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004037
David Brazdil0f672f62019-12-10 10:32:29 +00004038 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
Olivier Deprez157378f2022-04-04 15:47:50 +02004039 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4040 regno, err_extra, tn_buf);
David Brazdil0f672f62019-12-10 10:32:29 +00004041 return -EACCES;
4042 }
4043 /* Only initialized buffer on stack is allowed to be accessed
4044 * with variable offset. With uninitialized buffer it's hard to
4045 * guarantee that whole memory is marked as initialized on
4046 * helper return since specific bounds are unknown what may
4047 * cause uninitialized stack leaking.
4048 */
4049 if (meta && meta->raw_mode)
4050 meta = NULL;
4051
Olivier Deprez157378f2022-04-04 15:47:50 +02004052 min_off = reg->smin_value + off;
4053 max_off = reg->smax_value + off;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004054 }
4055
4056 if (meta && meta->raw_mode) {
4057 meta->access_size = access_size;
4058 meta->regno = regno;
4059 return 0;
4060 }
4061
David Brazdil0f672f62019-12-10 10:32:29 +00004062 for (i = min_off; i < max_off + access_size; i++) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004063 u8 *stype;
4064
David Brazdil0f672f62019-12-10 10:32:29 +00004065 slot = -i - 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004066 spi = slot / BPF_REG_SIZE;
4067 if (state->allocated_stack <= slot)
4068 goto err;
4069 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4070 if (*stype == STACK_MISC)
4071 goto mark;
4072 if (*stype == STACK_ZERO) {
Olivier Deprez157378f2022-04-04 15:47:50 +02004073 if (clobber) {
4074 /* helper can write anything into the stack */
4075 *stype = STACK_MISC;
4076 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004077 goto mark;
4078 }
Olivier Deprez157378f2022-04-04 15:47:50 +02004079
David Brazdil0f672f62019-12-10 10:32:29 +00004080 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
Olivier Deprez157378f2022-04-04 15:47:50 +02004081 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4082 goto mark;
4083
4084 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4085 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4086 env->allow_ptr_leaks)) {
4087 if (clobber) {
4088 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4089 for (j = 0; j < BPF_REG_SIZE; j++)
4090 state->stack[spi].slot_type[j] = STACK_MISC;
4091 }
David Brazdil0f672f62019-12-10 10:32:29 +00004092 goto mark;
4093 }
4094
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004095err:
David Brazdil0f672f62019-12-10 10:32:29 +00004096 if (tnum_is_const(reg->var_off)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02004097 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4098 err_extra, regno, min_off, i - min_off, access_size);
David Brazdil0f672f62019-12-10 10:32:29 +00004099 } else {
4100 char tn_buf[48];
4101
4102 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
Olivier Deprez157378f2022-04-04 15:47:50 +02004103 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4104 err_extra, regno, tn_buf, i - min_off, access_size);
David Brazdil0f672f62019-12-10 10:32:29 +00004105 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004106 return -EACCES;
4107mark:
4108 /* reading any byte out of 8-byte 'spill_slot' will cause
4109 * the whole slot to be marked as 'read'
4110 */
David Brazdil0f672f62019-12-10 10:32:29 +00004111 mark_reg_read(env, &state->stack[spi].spilled_ptr,
4112 state->stack[spi].spilled_ptr.parent,
4113 REG_LIVE_READ64);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004114 }
David Brazdil0f672f62019-12-10 10:32:29 +00004115 return update_stack_depth(env, state, min_off);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004116}
4117
4118static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4119 int access_size, bool zero_size_allowed,
4120 struct bpf_call_arg_meta *meta)
4121{
4122 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4123
4124 switch (reg->type) {
4125 case PTR_TO_PACKET:
4126 case PTR_TO_PACKET_META:
4127 return check_packet_access(env, regno, reg->off, access_size,
4128 zero_size_allowed);
4129 case PTR_TO_MAP_VALUE:
David Brazdil0f672f62019-12-10 10:32:29 +00004130 if (check_map_access_type(env, regno, reg->off, access_size,
4131 meta && meta->raw_mode ? BPF_WRITE :
4132 BPF_READ))
4133 return -EACCES;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004134 return check_map_access(env, regno, reg->off, access_size,
4135 zero_size_allowed);
Olivier Deprez157378f2022-04-04 15:47:50 +02004136 case PTR_TO_MEM:
4137 return check_mem_region_access(env, regno, reg->off,
4138 access_size, reg->mem_size,
4139 zero_size_allowed);
4140 case PTR_TO_RDONLY_BUF:
4141 if (meta && meta->raw_mode)
4142 return -EACCES;
4143 return check_buffer_access(env, reg, regno, reg->off,
4144 access_size, zero_size_allowed,
4145 "rdonly",
4146 &env->prog->aux->max_rdonly_access);
4147 case PTR_TO_RDWR_BUF:
4148 return check_buffer_access(env, reg, regno, reg->off,
4149 access_size, zero_size_allowed,
4150 "rdwr",
4151 &env->prog->aux->max_rdwr_access);
4152 case PTR_TO_STACK:
4153 return check_stack_range_initialized(
4154 env,
4155 regno, reg->off, access_size,
4156 zero_size_allowed, ACCESS_HELPER, meta);
4157 default: /* scalar_value or invalid ptr */
4158 /* Allow zero-byte read from NULL, regardless of pointer type */
4159 if (zero_size_allowed && access_size == 0 &&
4160 register_is_null(reg))
4161 return 0;
4162
4163 verbose(env, "R%d type=%s expected=%s\n", regno,
4164 reg_type_str[reg->type],
4165 reg_type_str[PTR_TO_STACK]);
4166 return -EACCES;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004167 }
4168}
4169
David Brazdil0f672f62019-12-10 10:32:29 +00004170/* Implementation details:
4171 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4172 * Two bpf_map_lookups (even with the same key) will have different reg->id.
4173 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4174 * value_or_null->value transition, since the verifier only cares about
4175 * the range of access to valid map value pointer and doesn't care about actual
4176 * address of the map element.
4177 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4178 * reg->id > 0 after value_or_null->value transition. By doing so
4179 * two bpf_map_lookups will be considered two different pointers that
4180 * point to different bpf_spin_locks.
4181 * The verifier allows taking only one bpf_spin_lock at a time to avoid
4182 * dead-locks.
4183 * Since only one bpf_spin_lock is allowed the checks are simpler than
4184 * reg_is_refcounted() logic. The verifier needs to remember only
4185 * one spin_lock instead of array of acquired_refs.
4186 * cur_state->active_spin_lock remembers which map value element got locked
4187 * and clears it after bpf_spin_unlock.
4188 */
4189static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4190 bool is_lock)
4191{
4192 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4193 struct bpf_verifier_state *cur = env->cur_state;
4194 bool is_const = tnum_is_const(reg->var_off);
4195 struct bpf_map *map = reg->map_ptr;
4196 u64 val = reg->var_off.value;
4197
David Brazdil0f672f62019-12-10 10:32:29 +00004198 if (!is_const) {
4199 verbose(env,
4200 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4201 regno);
4202 return -EINVAL;
4203 }
4204 if (!map->btf) {
4205 verbose(env,
4206 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
4207 map->name);
4208 return -EINVAL;
4209 }
4210 if (!map_value_has_spin_lock(map)) {
4211 if (map->spin_lock_off == -E2BIG)
4212 verbose(env,
4213 "map '%s' has more than one 'struct bpf_spin_lock'\n",
4214 map->name);
4215 else if (map->spin_lock_off == -ENOENT)
4216 verbose(env,
4217 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
4218 map->name);
4219 else
4220 verbose(env,
4221 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4222 map->name);
4223 return -EINVAL;
4224 }
4225 if (map->spin_lock_off != val + reg->off) {
4226 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4227 val + reg->off);
4228 return -EINVAL;
4229 }
4230 if (is_lock) {
4231 if (cur->active_spin_lock) {
4232 verbose(env,
4233 "Locking two bpf_spin_locks are not allowed\n");
4234 return -EINVAL;
4235 }
4236 cur->active_spin_lock = reg->id;
4237 } else {
4238 if (!cur->active_spin_lock) {
4239 verbose(env, "bpf_spin_unlock without taking a lock\n");
4240 return -EINVAL;
4241 }
4242 if (cur->active_spin_lock != reg->id) {
4243 verbose(env, "bpf_spin_unlock of different lock\n");
4244 return -EINVAL;
4245 }
4246 cur->active_spin_lock = 0;
4247 }
4248 return 0;
4249}
4250
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004251static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4252{
4253 return type == ARG_PTR_TO_MEM ||
4254 type == ARG_PTR_TO_MEM_OR_NULL ||
4255 type == ARG_PTR_TO_UNINIT_MEM;
4256}
4257
4258static bool arg_type_is_mem_size(enum bpf_arg_type type)
4259{
4260 return type == ARG_CONST_SIZE ||
4261 type == ARG_CONST_SIZE_OR_ZERO;
4262}
4263
Olivier Deprez157378f2022-04-04 15:47:50 +02004264static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4265{
4266 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4267}
4268
David Brazdil0f672f62019-12-10 10:32:29 +00004269static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4270{
4271 return type == ARG_PTR_TO_INT ||
4272 type == ARG_PTR_TO_LONG;
4273}
4274
4275static int int_ptr_type_to_size(enum bpf_arg_type type)
4276{
4277 if (type == ARG_PTR_TO_INT)
4278 return sizeof(u32);
4279 else if (type == ARG_PTR_TO_LONG)
4280 return sizeof(u64);
4281
4282 return -EINVAL;
4283}
4284
Olivier Deprez157378f2022-04-04 15:47:50 +02004285static int resolve_map_arg_type(struct bpf_verifier_env *env,
4286 const struct bpf_call_arg_meta *meta,
4287 enum bpf_arg_type *arg_type)
4288{
4289 if (!meta->map_ptr) {
4290 /* kernel subsystem misconfigured verifier */
4291 verbose(env, "invalid map_ptr to access map->type\n");
4292 return -EACCES;
4293 }
4294
4295 switch (meta->map_ptr->map_type) {
4296 case BPF_MAP_TYPE_SOCKMAP:
4297 case BPF_MAP_TYPE_SOCKHASH:
4298 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4299 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4300 } else {
4301 verbose(env, "invalid arg_type for sockmap/sockhash\n");
4302 return -EINVAL;
4303 }
4304 break;
4305
4306 default:
4307 break;
4308 }
4309 return 0;
4310}
4311
4312struct bpf_reg_types {
4313 const enum bpf_reg_type types[10];
4314 u32 *btf_id;
4315};
4316
4317static const struct bpf_reg_types map_key_value_types = {
4318 .types = {
4319 PTR_TO_STACK,
4320 PTR_TO_PACKET,
4321 PTR_TO_PACKET_META,
4322 PTR_TO_MAP_VALUE,
4323 },
4324};
4325
4326static const struct bpf_reg_types sock_types = {
4327 .types = {
4328 PTR_TO_SOCK_COMMON,
4329 PTR_TO_SOCKET,
4330 PTR_TO_TCP_SOCK,
4331 PTR_TO_XDP_SOCK,
4332 },
4333};
4334
4335#ifdef CONFIG_NET
4336static const struct bpf_reg_types btf_id_sock_common_types = {
4337 .types = {
4338 PTR_TO_SOCK_COMMON,
4339 PTR_TO_SOCKET,
4340 PTR_TO_TCP_SOCK,
4341 PTR_TO_XDP_SOCK,
4342 PTR_TO_BTF_ID,
4343 },
4344 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4345};
4346#endif
4347
4348static const struct bpf_reg_types mem_types = {
4349 .types = {
4350 PTR_TO_STACK,
4351 PTR_TO_PACKET,
4352 PTR_TO_PACKET_META,
4353 PTR_TO_MAP_VALUE,
4354 PTR_TO_MEM,
4355 PTR_TO_RDONLY_BUF,
4356 PTR_TO_RDWR_BUF,
4357 },
4358};
4359
4360static const struct bpf_reg_types int_ptr_types = {
4361 .types = {
4362 PTR_TO_STACK,
4363 PTR_TO_PACKET,
4364 PTR_TO_PACKET_META,
4365 PTR_TO_MAP_VALUE,
4366 },
4367};
4368
4369static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4370static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4371static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4372static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4373static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4374static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4375static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4376static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4377
4378static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4379 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
4380 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
4381 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types,
4382 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types,
4383 [ARG_CONST_SIZE] = &scalar_types,
4384 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
4385 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
4386 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
4387 [ARG_PTR_TO_CTX] = &context_types,
4388 [ARG_PTR_TO_CTX_OR_NULL] = &context_types,
4389 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
4390#ifdef CONFIG_NET
4391 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
4392#endif
4393 [ARG_PTR_TO_SOCKET] = &fullsock_types,
4394 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types,
4395 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
4396 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
4397 [ARG_PTR_TO_MEM] = &mem_types,
4398 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types,
4399 [ARG_PTR_TO_UNINIT_MEM] = &mem_types,
4400 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
4401 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types,
4402 [ARG_PTR_TO_INT] = &int_ptr_types,
4403 [ARG_PTR_TO_LONG] = &int_ptr_types,
4404 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
4405};
4406
4407static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004408 enum bpf_arg_type arg_type,
Olivier Deprez157378f2022-04-04 15:47:50 +02004409 const u32 *arg_btf_id)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004410{
4411 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
Olivier Deprez157378f2022-04-04 15:47:50 +02004412 enum bpf_reg_type expected, type = reg->type;
4413 const struct bpf_reg_types *compatible;
4414 int i, j;
4415
4416 compatible = compatible_reg_types[arg_type];
4417 if (!compatible) {
4418 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4419 return -EFAULT;
4420 }
4421
4422 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4423 expected = compatible->types[i];
4424 if (expected == NOT_INIT)
4425 break;
4426
4427 if (type == expected)
4428 goto found;
4429 }
4430
4431 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4432 for (j = 0; j + 1 < i; j++)
4433 verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4434 verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4435 return -EACCES;
4436
4437found:
4438 if (type == PTR_TO_BTF_ID) {
4439 if (!arg_btf_id) {
4440 if (!compatible->btf_id) {
4441 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4442 return -EFAULT;
4443 }
4444 arg_btf_id = compatible->btf_id;
4445 }
4446
4447 if (!btf_struct_ids_match(&env->log, reg->off, reg->btf_id,
4448 *arg_btf_id)) {
4449 verbose(env, "R%d is of type %s but %s is expected\n",
4450 regno, kernel_type_name(reg->btf_id),
4451 kernel_type_name(*arg_btf_id));
4452 return -EACCES;
4453 }
4454
4455 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4456 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4457 regno);
4458 return -EACCES;
4459 }
4460 }
4461
4462 return 0;
4463}
4464
4465static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4466 struct bpf_call_arg_meta *meta,
4467 const struct bpf_func_proto *fn)
4468{
4469 u32 regno = BPF_REG_1 + arg;
4470 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4471 enum bpf_arg_type arg_type = fn->arg_type[arg];
4472 enum bpf_reg_type type = reg->type;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004473 int err = 0;
4474
4475 if (arg_type == ARG_DONTCARE)
4476 return 0;
4477
4478 err = check_reg_arg(env, regno, SRC_OP);
4479 if (err)
4480 return err;
4481
4482 if (arg_type == ARG_ANYTHING) {
4483 if (is_pointer_value(env, regno)) {
4484 verbose(env, "R%d leaks addr into helper function\n",
4485 regno);
4486 return -EACCES;
4487 }
4488 return 0;
4489 }
4490
4491 if (type_is_pkt_pointer(type) &&
4492 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4493 verbose(env, "helper access to the packet is not allowed\n");
4494 return -EACCES;
4495 }
4496
Olivier Deprez157378f2022-04-04 15:47:50 +02004497 if (arg_type == ARG_PTR_TO_MAP_VALUE ||
David Brazdil0f672f62019-12-10 10:32:29 +00004498 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4499 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
Olivier Deprez157378f2022-04-04 15:47:50 +02004500 err = resolve_map_arg_type(env, meta, &arg_type);
4501 if (err)
4502 return err;
4503 }
4504
4505 if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4506 /* A NULL register has a SCALAR_VALUE type, so skip
4507 * type checking.
4508 */
4509 goto skip_type_check;
4510
4511 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4512 if (err)
4513 return err;
4514
4515 if (type == PTR_TO_CTX) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004516 err = check_ctx_reg(env, reg, regno);
4517 if (err < 0)
4518 return err;
Olivier Deprez157378f2022-04-04 15:47:50 +02004519 }
4520
4521skip_type_check:
4522 if (reg->ref_obj_id) {
4523 if (meta->ref_obj_id) {
4524 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4525 regno, reg->ref_obj_id,
4526 meta->ref_obj_id);
David Brazdil0f672f62019-12-10 10:32:29 +00004527 return -EFAULT;
4528 }
Olivier Deprez157378f2022-04-04 15:47:50 +02004529 meta->ref_obj_id = reg->ref_obj_id;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004530 }
4531
4532 if (arg_type == ARG_CONST_MAP_PTR) {
4533 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4534 meta->map_ptr = reg->map_ptr;
4535 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4536 /* bpf_map_xxx(..., map_ptr, ..., key) call:
4537 * check that [key, key + map->key_size) are within
4538 * stack limits and initialized
4539 */
4540 if (!meta->map_ptr) {
4541 /* in function declaration map_ptr must come before
4542 * map_key, so that it's verified and known before
4543 * we have to check map_key here. Otherwise it means
4544 * that kernel subsystem misconfigured verifier
4545 */
4546 verbose(env, "invalid map_ptr to access map->key\n");
4547 return -EACCES;
4548 }
4549 err = check_helper_mem_access(env, regno,
4550 meta->map_ptr->key_size, false,
4551 NULL);
David Brazdil0f672f62019-12-10 10:32:29 +00004552 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4553 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4554 !register_is_null(reg)) ||
4555 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004556 /* bpf_map_xxx(..., map_ptr, ..., value) call:
4557 * check [value, value + map->value_size) validity
4558 */
4559 if (!meta->map_ptr) {
4560 /* kernel subsystem misconfigured verifier */
4561 verbose(env, "invalid map_ptr to access map->value\n");
4562 return -EACCES;
4563 }
David Brazdil0f672f62019-12-10 10:32:29 +00004564 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004565 err = check_helper_mem_access(env, regno,
4566 meta->map_ptr->value_size, false,
David Brazdil0f672f62019-12-10 10:32:29 +00004567 meta);
Olivier Deprez157378f2022-04-04 15:47:50 +02004568 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4569 if (!reg->btf_id) {
4570 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4571 return -EACCES;
4572 }
4573 meta->ret_btf_id = reg->btf_id;
4574 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4575 if (meta->func_id == BPF_FUNC_spin_lock) {
4576 if (process_spin_lock(env, regno, true))
4577 return -EACCES;
4578 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
4579 if (process_spin_lock(env, regno, false))
4580 return -EACCES;
4581 } else {
4582 verbose(env, "verifier internal error\n");
4583 return -EFAULT;
4584 }
4585 } else if (arg_type_is_mem_ptr(arg_type)) {
4586 /* The access to this pointer is only checked when we hit the
4587 * next is_mem_size argument below.
4588 */
4589 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004590 } else if (arg_type_is_mem_size(arg_type)) {
4591 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
4592
Olivier Deprez157378f2022-04-04 15:47:50 +02004593 /* This is used to refine r0 return value bounds for helpers
4594 * that enforce this value as an upper bound on return values.
4595 * See do_refine_retval_range() for helpers that can refine
4596 * the return value. C type of helper is u32 so we pull register
4597 * bound from umax_value however, if negative verifier errors
4598 * out. Only upper bounds can be learned because retval is an
4599 * int type and negative retvals are allowed.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004600 */
Olivier Deprez0e641232021-09-23 10:07:05 +02004601 meta->msize_max_value = reg->umax_value;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004602
4603 /* The register is SCALAR_VALUE; the access check
4604 * happens using its boundaries.
4605 */
4606 if (!tnum_is_const(reg->var_off))
4607 /* For unprivileged variable accesses, disable raw
4608 * mode so that the program is required to
4609 * initialize all the memory that the helper could
4610 * just partially fill up.
4611 */
4612 meta = NULL;
4613
4614 if (reg->smin_value < 0) {
4615 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
4616 regno);
4617 return -EACCES;
4618 }
4619
4620 if (reg->umin_value == 0) {
4621 err = check_helper_mem_access(env, regno - 1, 0,
4622 zero_size_allowed,
4623 meta);
4624 if (err)
4625 return err;
4626 }
4627
4628 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
4629 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
4630 regno);
4631 return -EACCES;
4632 }
4633 err = check_helper_mem_access(env, regno - 1,
4634 reg->umax_value,
4635 zero_size_allowed, meta);
David Brazdil0f672f62019-12-10 10:32:29 +00004636 if (!err)
4637 err = mark_chain_precision(env, regno);
Olivier Deprez157378f2022-04-04 15:47:50 +02004638 } else if (arg_type_is_alloc_size(arg_type)) {
4639 if (!tnum_is_const(reg->var_off)) {
4640 verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n",
4641 regno);
4642 return -EACCES;
4643 }
4644 meta->mem_size = reg->var_off.value;
David Brazdil0f672f62019-12-10 10:32:29 +00004645 } else if (arg_type_is_int_ptr(arg_type)) {
4646 int size = int_ptr_type_to_size(arg_type);
4647
4648 err = check_helper_mem_access(env, regno, size, false, meta);
4649 if (err)
4650 return err;
4651 err = check_ptr_alignment(env, reg, 0, size, true);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004652 }
4653
4654 return err;
Olivier Deprez157378f2022-04-04 15:47:50 +02004655}
4656
4657static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
4658{
4659 enum bpf_attach_type eatype = env->prog->expected_attach_type;
4660 enum bpf_prog_type type = resolve_prog_type(env->prog);
4661
4662 if (func_id != BPF_FUNC_map_update_elem)
4663 return false;
4664
4665 /* It's not possible to get access to a locked struct sock in these
4666 * contexts, so updating is safe.
4667 */
4668 switch (type) {
4669 case BPF_PROG_TYPE_TRACING:
4670 if (eatype == BPF_TRACE_ITER)
4671 return true;
4672 break;
4673 case BPF_PROG_TYPE_SOCKET_FILTER:
4674 case BPF_PROG_TYPE_SCHED_CLS:
4675 case BPF_PROG_TYPE_SCHED_ACT:
4676 case BPF_PROG_TYPE_XDP:
4677 case BPF_PROG_TYPE_SK_REUSEPORT:
4678 case BPF_PROG_TYPE_FLOW_DISSECTOR:
4679 case BPF_PROG_TYPE_SK_LOOKUP:
4680 return true;
4681 default:
4682 break;
4683 }
4684
4685 verbose(env, "cannot update sockmap in this context\n");
4686 return false;
4687}
4688
4689static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
4690{
4691 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004692}
4693
4694static int check_map_func_compatibility(struct bpf_verifier_env *env,
4695 struct bpf_map *map, int func_id)
4696{
4697 if (!map)
4698 return 0;
4699
4700 /* We need a two way check, first is from map perspective ... */
4701 switch (map->map_type) {
4702 case BPF_MAP_TYPE_PROG_ARRAY:
4703 if (func_id != BPF_FUNC_tail_call)
4704 goto error;
4705 break;
4706 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4707 if (func_id != BPF_FUNC_perf_event_read &&
4708 func_id != BPF_FUNC_perf_event_output &&
Olivier Deprez157378f2022-04-04 15:47:50 +02004709 func_id != BPF_FUNC_skb_output &&
4710 func_id != BPF_FUNC_perf_event_read_value &&
4711 func_id != BPF_FUNC_xdp_output)
4712 goto error;
4713 break;
4714 case BPF_MAP_TYPE_RINGBUF:
4715 if (func_id != BPF_FUNC_ringbuf_output &&
4716 func_id != BPF_FUNC_ringbuf_reserve &&
4717 func_id != BPF_FUNC_ringbuf_query)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004718 goto error;
4719 break;
4720 case BPF_MAP_TYPE_STACK_TRACE:
4721 if (func_id != BPF_FUNC_get_stackid)
4722 goto error;
4723 break;
4724 case BPF_MAP_TYPE_CGROUP_ARRAY:
4725 if (func_id != BPF_FUNC_skb_under_cgroup &&
4726 func_id != BPF_FUNC_current_task_under_cgroup)
4727 goto error;
4728 break;
4729 case BPF_MAP_TYPE_CGROUP_STORAGE:
David Brazdil0f672f62019-12-10 10:32:29 +00004730 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004731 if (func_id != BPF_FUNC_get_local_storage)
4732 goto error;
4733 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004734 case BPF_MAP_TYPE_DEVMAP:
David Brazdil0f672f62019-12-10 10:32:29 +00004735 case BPF_MAP_TYPE_DEVMAP_HASH:
4736 if (func_id != BPF_FUNC_redirect_map &&
4737 func_id != BPF_FUNC_map_lookup_elem)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004738 goto error;
4739 break;
4740 /* Restrict bpf side of cpumap and xskmap, open when use-cases
4741 * appear.
4742 */
4743 case BPF_MAP_TYPE_CPUMAP:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004744 if (func_id != BPF_FUNC_redirect_map)
4745 goto error;
4746 break;
David Brazdil0f672f62019-12-10 10:32:29 +00004747 case BPF_MAP_TYPE_XSKMAP:
4748 if (func_id != BPF_FUNC_redirect_map &&
4749 func_id != BPF_FUNC_map_lookup_elem)
4750 goto error;
4751 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004752 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4753 case BPF_MAP_TYPE_HASH_OF_MAPS:
4754 if (func_id != BPF_FUNC_map_lookup_elem)
4755 goto error;
4756 break;
4757 case BPF_MAP_TYPE_SOCKMAP:
4758 if (func_id != BPF_FUNC_sk_redirect_map &&
4759 func_id != BPF_FUNC_sock_map_update &&
4760 func_id != BPF_FUNC_map_delete_elem &&
Olivier Deprez157378f2022-04-04 15:47:50 +02004761 func_id != BPF_FUNC_msg_redirect_map &&
4762 func_id != BPF_FUNC_sk_select_reuseport &&
4763 func_id != BPF_FUNC_map_lookup_elem &&
4764 !may_update_sockmap(env, func_id))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004765 goto error;
4766 break;
4767 case BPF_MAP_TYPE_SOCKHASH:
4768 if (func_id != BPF_FUNC_sk_redirect_hash &&
4769 func_id != BPF_FUNC_sock_hash_update &&
4770 func_id != BPF_FUNC_map_delete_elem &&
Olivier Deprez157378f2022-04-04 15:47:50 +02004771 func_id != BPF_FUNC_msg_redirect_hash &&
4772 func_id != BPF_FUNC_sk_select_reuseport &&
4773 func_id != BPF_FUNC_map_lookup_elem &&
4774 !may_update_sockmap(env, func_id))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004775 goto error;
4776 break;
4777 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4778 if (func_id != BPF_FUNC_sk_select_reuseport)
4779 goto error;
4780 break;
David Brazdil0f672f62019-12-10 10:32:29 +00004781 case BPF_MAP_TYPE_QUEUE:
4782 case BPF_MAP_TYPE_STACK:
4783 if (func_id != BPF_FUNC_map_peek_elem &&
4784 func_id != BPF_FUNC_map_pop_elem &&
4785 func_id != BPF_FUNC_map_push_elem)
4786 goto error;
4787 break;
4788 case BPF_MAP_TYPE_SK_STORAGE:
4789 if (func_id != BPF_FUNC_sk_storage_get &&
4790 func_id != BPF_FUNC_sk_storage_delete)
4791 goto error;
4792 break;
Olivier Deprez157378f2022-04-04 15:47:50 +02004793 case BPF_MAP_TYPE_INODE_STORAGE:
4794 if (func_id != BPF_FUNC_inode_storage_get &&
4795 func_id != BPF_FUNC_inode_storage_delete)
4796 goto error;
4797 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004798 default:
4799 break;
4800 }
4801
4802 /* ... and second from the function itself. */
4803 switch (func_id) {
4804 case BPF_FUNC_tail_call:
4805 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4806 goto error;
Olivier Deprez157378f2022-04-04 15:47:50 +02004807 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
4808 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004809 return -EINVAL;
4810 }
4811 break;
4812 case BPF_FUNC_perf_event_read:
4813 case BPF_FUNC_perf_event_output:
4814 case BPF_FUNC_perf_event_read_value:
Olivier Deprez157378f2022-04-04 15:47:50 +02004815 case BPF_FUNC_skb_output:
4816 case BPF_FUNC_xdp_output:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004817 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4818 goto error;
4819 break;
Olivier Deprez157378f2022-04-04 15:47:50 +02004820 case BPF_FUNC_ringbuf_output:
4821 case BPF_FUNC_ringbuf_reserve:
4822 case BPF_FUNC_ringbuf_query:
4823 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
4824 goto error;
4825 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004826 case BPF_FUNC_get_stackid:
4827 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4828 goto error;
4829 break;
4830 case BPF_FUNC_current_task_under_cgroup:
4831 case BPF_FUNC_skb_under_cgroup:
4832 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4833 goto error;
4834 break;
4835 case BPF_FUNC_redirect_map:
4836 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
David Brazdil0f672f62019-12-10 10:32:29 +00004837 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004838 map->map_type != BPF_MAP_TYPE_CPUMAP &&
4839 map->map_type != BPF_MAP_TYPE_XSKMAP)
4840 goto error;
4841 break;
4842 case BPF_FUNC_sk_redirect_map:
4843 case BPF_FUNC_msg_redirect_map:
4844 case BPF_FUNC_sock_map_update:
4845 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
4846 goto error;
4847 break;
4848 case BPF_FUNC_sk_redirect_hash:
4849 case BPF_FUNC_msg_redirect_hash:
4850 case BPF_FUNC_sock_hash_update:
4851 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
4852 goto error;
4853 break;
4854 case BPF_FUNC_get_local_storage:
David Brazdil0f672f62019-12-10 10:32:29 +00004855 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
4856 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004857 goto error;
4858 break;
4859 case BPF_FUNC_sk_select_reuseport:
Olivier Deprez157378f2022-04-04 15:47:50 +02004860 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
4861 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
4862 map->map_type != BPF_MAP_TYPE_SOCKHASH)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004863 goto error;
4864 break;
David Brazdil0f672f62019-12-10 10:32:29 +00004865 case BPF_FUNC_map_peek_elem:
4866 case BPF_FUNC_map_pop_elem:
4867 case BPF_FUNC_map_push_elem:
4868 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4869 map->map_type != BPF_MAP_TYPE_STACK)
4870 goto error;
4871 break;
4872 case BPF_FUNC_sk_storage_get:
4873 case BPF_FUNC_sk_storage_delete:
4874 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4875 goto error;
4876 break;
Olivier Deprez157378f2022-04-04 15:47:50 +02004877 case BPF_FUNC_inode_storage_get:
4878 case BPF_FUNC_inode_storage_delete:
4879 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
4880 goto error;
4881 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004882 default:
4883 break;
4884 }
4885
4886 return 0;
4887error:
4888 verbose(env, "cannot pass map_type %d into func %s#%d\n",
4889 map->map_type, func_id_name(func_id), func_id);
4890 return -EINVAL;
4891}
4892
4893static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
4894{
4895 int count = 0;
4896
4897 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
4898 count++;
4899 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
4900 count++;
4901 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
4902 count++;
4903 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
4904 count++;
4905 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
4906 count++;
4907
4908 /* We only support one arg being in raw mode at the moment,
4909 * which is sufficient for the helper functions we have
4910 * right now.
4911 */
4912 return count <= 1;
4913}
4914
4915static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
4916 enum bpf_arg_type arg_next)
4917{
4918 return (arg_type_is_mem_ptr(arg_curr) &&
4919 !arg_type_is_mem_size(arg_next)) ||
4920 (!arg_type_is_mem_ptr(arg_curr) &&
4921 arg_type_is_mem_size(arg_next));
4922}
4923
4924static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
4925{
4926 /* bpf_xxx(..., buf, len) call will access 'len'
4927 * bytes from memory 'buf'. Both arg types need
4928 * to be paired, so make sure there's no buggy
4929 * helper function specification.
4930 */
4931 if (arg_type_is_mem_size(fn->arg1_type) ||
4932 arg_type_is_mem_ptr(fn->arg5_type) ||
4933 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
4934 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
4935 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
4936 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
4937 return false;
4938
4939 return true;
4940}
4941
David Brazdil0f672f62019-12-10 10:32:29 +00004942static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
4943{
4944 int count = 0;
4945
4946 if (arg_type_may_be_refcounted(fn->arg1_type))
4947 count++;
4948 if (arg_type_may_be_refcounted(fn->arg2_type))
4949 count++;
4950 if (arg_type_may_be_refcounted(fn->arg3_type))
4951 count++;
4952 if (arg_type_may_be_refcounted(fn->arg4_type))
4953 count++;
4954 if (arg_type_may_be_refcounted(fn->arg5_type))
4955 count++;
4956
4957 /* A reference acquiring function cannot acquire
4958 * another refcounted ptr.
4959 */
Olivier Deprez157378f2022-04-04 15:47:50 +02004960 if (may_be_acquire_function(func_id) && count)
David Brazdil0f672f62019-12-10 10:32:29 +00004961 return false;
4962
4963 /* We only support one arg being unreferenced at the moment,
4964 * which is sufficient for the helper functions we have right now.
4965 */
4966 return count <= 1;
4967}
4968
Olivier Deprez157378f2022-04-04 15:47:50 +02004969static bool check_btf_id_ok(const struct bpf_func_proto *fn)
4970{
4971 int i;
4972
4973 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
4974 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
4975 return false;
4976
4977 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
4978 return false;
4979 }
4980
4981 return true;
4982}
4983
David Brazdil0f672f62019-12-10 10:32:29 +00004984static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004985{
4986 return check_raw_mode_ok(fn) &&
David Brazdil0f672f62019-12-10 10:32:29 +00004987 check_arg_pair_ok(fn) &&
Olivier Deprez157378f2022-04-04 15:47:50 +02004988 check_btf_id_ok(fn) &&
David Brazdil0f672f62019-12-10 10:32:29 +00004989 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004990}
4991
4992/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
4993 * are now invalid, so turn them into unknown SCALAR_VALUE.
4994 */
4995static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
4996 struct bpf_func_state *state)
4997{
4998 struct bpf_reg_state *regs = state->regs, *reg;
4999 int i;
5000
5001 for (i = 0; i < MAX_BPF_REG; i++)
5002 if (reg_is_pkt_pointer_any(&regs[i]))
5003 mark_reg_unknown(env, regs, i);
5004
David Brazdil0f672f62019-12-10 10:32:29 +00005005 bpf_for_each_spilled_reg(i, state, reg) {
5006 if (!reg)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005007 continue;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005008 if (reg_is_pkt_pointer_any(reg))
Olivier Deprez0e641232021-09-23 10:07:05 +02005009 __mark_reg_unknown(env, reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005010 }
5011}
5012
5013static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5014{
5015 struct bpf_verifier_state *vstate = env->cur_state;
5016 int i;
5017
5018 for (i = 0; i <= vstate->curframe; i++)
5019 __clear_all_pkt_pointers(env, vstate->frame[i]);
5020}
5021
David Brazdil0f672f62019-12-10 10:32:29 +00005022static void release_reg_references(struct bpf_verifier_env *env,
5023 struct bpf_func_state *state,
5024 int ref_obj_id)
5025{
5026 struct bpf_reg_state *regs = state->regs, *reg;
5027 int i;
5028
5029 for (i = 0; i < MAX_BPF_REG; i++)
5030 if (regs[i].ref_obj_id == ref_obj_id)
5031 mark_reg_unknown(env, regs, i);
5032
5033 bpf_for_each_spilled_reg(i, state, reg) {
5034 if (!reg)
5035 continue;
5036 if (reg->ref_obj_id == ref_obj_id)
Olivier Deprez0e641232021-09-23 10:07:05 +02005037 __mark_reg_unknown(env, reg);
David Brazdil0f672f62019-12-10 10:32:29 +00005038 }
5039}
5040
5041/* The pointer with the specified id has released its reference to kernel
5042 * resources. Identify all copies of the same pointer and clear the reference.
5043 */
5044static int release_reference(struct bpf_verifier_env *env,
5045 int ref_obj_id)
5046{
5047 struct bpf_verifier_state *vstate = env->cur_state;
5048 int err;
5049 int i;
5050
5051 err = release_reference_state(cur_func(env), ref_obj_id);
5052 if (err)
5053 return err;
5054
5055 for (i = 0; i <= vstate->curframe; i++)
5056 release_reg_references(env, vstate->frame[i], ref_obj_id);
5057
5058 return 0;
5059}
5060
Olivier Deprez157378f2022-04-04 15:47:50 +02005061static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5062 struct bpf_reg_state *regs)
5063{
5064 int i;
5065
5066 /* after the call registers r0 - r5 were scratched */
5067 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5068 mark_reg_not_init(env, regs, caller_saved[i]);
5069 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5070 }
5071}
5072
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005073static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5074 int *insn_idx)
5075{
5076 struct bpf_verifier_state *state = env->cur_state;
Olivier Deprez157378f2022-04-04 15:47:50 +02005077 struct bpf_func_info_aux *func_info_aux;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005078 struct bpf_func_state *caller, *callee;
David Brazdil0f672f62019-12-10 10:32:29 +00005079 int i, err, subprog, target_insn;
Olivier Deprez157378f2022-04-04 15:47:50 +02005080 bool is_global = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005081
5082 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5083 verbose(env, "the call stack of %d frames is too deep\n",
5084 state->curframe + 2);
5085 return -E2BIG;
5086 }
5087
5088 target_insn = *insn_idx + insn->imm;
5089 subprog = find_subprog(env, target_insn + 1);
5090 if (subprog < 0) {
5091 verbose(env, "verifier bug. No program starts at insn %d\n",
5092 target_insn + 1);
5093 return -EFAULT;
5094 }
5095
5096 caller = state->frame[state->curframe];
5097 if (state->frame[state->curframe + 1]) {
5098 verbose(env, "verifier bug. Frame %d already allocated\n",
5099 state->curframe + 1);
5100 return -EFAULT;
5101 }
5102
Olivier Deprez157378f2022-04-04 15:47:50 +02005103 func_info_aux = env->prog->aux->func_info_aux;
5104 if (func_info_aux)
5105 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5106 err = btf_check_func_arg_match(env, subprog, caller->regs);
5107 if (err == -EFAULT)
5108 return err;
5109 if (is_global) {
5110 if (err) {
5111 verbose(env, "Caller passes invalid args into func#%d\n",
5112 subprog);
5113 return err;
5114 } else {
5115 if (env->log.level & BPF_LOG_LEVEL)
5116 verbose(env,
5117 "Func#%d is global and valid. Skipping.\n",
5118 subprog);
5119 clear_caller_saved_regs(env, caller->regs);
5120
5121 /* All global functions return a 64-bit SCALAR_VALUE */
5122 mark_reg_unknown(env, caller->regs, BPF_REG_0);
5123 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5124
5125 /* continue with next insn after call */
5126 return 0;
5127 }
5128 }
5129
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005130 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5131 if (!callee)
5132 return -ENOMEM;
5133 state->frame[state->curframe + 1] = callee;
5134
5135 /* callee cannot access r0, r6 - r9 for reading and has to write
5136 * into its own stack before reading from it.
5137 * callee can read/write into caller's stack
5138 */
5139 init_func_state(env, callee,
5140 /* remember the callsite, it will be used by bpf_exit */
5141 *insn_idx /* callsite */,
5142 state->curframe + 1 /* frameno within this callchain */,
5143 subprog /* subprog number within this prog */);
5144
David Brazdil0f672f62019-12-10 10:32:29 +00005145 /* Transfer references to the callee */
5146 err = transfer_reference_state(callee, caller);
5147 if (err)
5148 return err;
5149
5150 /* copy r1 - r5 args that callee can access. The copy includes parent
5151 * pointers, which connects us up to the liveness chain
5152 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005153 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
5154 callee->regs[i] = caller->regs[i];
5155
Olivier Deprez157378f2022-04-04 15:47:50 +02005156 clear_caller_saved_regs(env, caller->regs);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005157
5158 /* only increment it after check_reg_arg() finished */
5159 state->curframe++;
5160
5161 /* and go analyze first insn of the callee */
5162 *insn_idx = target_insn;
5163
David Brazdil0f672f62019-12-10 10:32:29 +00005164 if (env->log.level & BPF_LOG_LEVEL) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005165 verbose(env, "caller:\n");
5166 print_verifier_state(env, caller);
5167 verbose(env, "callee:\n");
5168 print_verifier_state(env, callee);
5169 }
5170 return 0;
5171}
5172
5173static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
5174{
5175 struct bpf_verifier_state *state = env->cur_state;
5176 struct bpf_func_state *caller, *callee;
5177 struct bpf_reg_state *r0;
David Brazdil0f672f62019-12-10 10:32:29 +00005178 int err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005179
5180 callee = state->frame[state->curframe];
5181 r0 = &callee->regs[BPF_REG_0];
5182 if (r0->type == PTR_TO_STACK) {
5183 /* technically it's ok to return caller's stack pointer
5184 * (or caller's caller's pointer) back to the caller,
5185 * since these pointers are valid. Only current stack
5186 * pointer will be invalid as soon as function exits,
5187 * but let's be conservative
5188 */
5189 verbose(env, "cannot return stack pointer to the caller\n");
5190 return -EINVAL;
5191 }
5192
5193 state->curframe--;
5194 caller = state->frame[state->curframe];
5195 /* return to the caller whatever r0 had in the callee */
5196 caller->regs[BPF_REG_0] = *r0;
5197
David Brazdil0f672f62019-12-10 10:32:29 +00005198 /* Transfer references to the caller */
5199 err = transfer_reference_state(caller, callee);
5200 if (err)
5201 return err;
5202
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005203 *insn_idx = callee->callsite + 1;
David Brazdil0f672f62019-12-10 10:32:29 +00005204 if (env->log.level & BPF_LOG_LEVEL) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005205 verbose(env, "returning from callee:\n");
5206 print_verifier_state(env, callee);
5207 verbose(env, "to caller at %d:\n", *insn_idx);
5208 print_verifier_state(env, caller);
5209 }
5210 /* clear everything in the callee */
5211 free_func_state(callee);
5212 state->frame[state->curframe + 1] = NULL;
5213 return 0;
5214}
5215
Olivier Deprez157378f2022-04-04 15:47:50 +02005216static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
5217 int func_id,
5218 struct bpf_call_arg_meta *meta)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005219{
5220 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
5221
5222 if (ret_type != RET_INTEGER ||
5223 (func_id != BPF_FUNC_get_stack &&
Olivier Deprez157378f2022-04-04 15:47:50 +02005224 func_id != BPF_FUNC_probe_read_str &&
5225 func_id != BPF_FUNC_probe_read_kernel_str &&
5226 func_id != BPF_FUNC_probe_read_user_str))
5227 return;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005228
Olivier Deprez0e641232021-09-23 10:07:05 +02005229 ret_reg->smax_value = meta->msize_max_value;
Olivier Deprez157378f2022-04-04 15:47:50 +02005230 ret_reg->s32_max_value = meta->msize_max_value;
5231 ret_reg->smin_value = -MAX_ERRNO;
5232 ret_reg->s32_min_value = -MAX_ERRNO;
Olivier Deprez0e641232021-09-23 10:07:05 +02005233 __reg_deduce_bounds(ret_reg);
5234 __reg_bound_offset(ret_reg);
5235 __update_reg_bounds(ret_reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005236}
5237
5238static int
5239record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5240 int func_id, int insn_idx)
5241{
5242 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
David Brazdil0f672f62019-12-10 10:32:29 +00005243 struct bpf_map *map = meta->map_ptr;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005244
5245 if (func_id != BPF_FUNC_tail_call &&
5246 func_id != BPF_FUNC_map_lookup_elem &&
5247 func_id != BPF_FUNC_map_update_elem &&
David Brazdil0f672f62019-12-10 10:32:29 +00005248 func_id != BPF_FUNC_map_delete_elem &&
5249 func_id != BPF_FUNC_map_push_elem &&
5250 func_id != BPF_FUNC_map_pop_elem &&
5251 func_id != BPF_FUNC_map_peek_elem)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005252 return 0;
5253
David Brazdil0f672f62019-12-10 10:32:29 +00005254 if (map == NULL) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005255 verbose(env, "kernel subsystem misconfigured verifier\n");
5256 return -EINVAL;
5257 }
5258
David Brazdil0f672f62019-12-10 10:32:29 +00005259 /* In case of read-only, some additional restrictions
5260 * need to be applied in order to prevent altering the
5261 * state of the map from program side.
5262 */
5263 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
5264 (func_id == BPF_FUNC_map_delete_elem ||
5265 func_id == BPF_FUNC_map_update_elem ||
5266 func_id == BPF_FUNC_map_push_elem ||
5267 func_id == BPF_FUNC_map_pop_elem)) {
5268 verbose(env, "write into map forbidden\n");
5269 return -EACCES;
5270 }
5271
Olivier Deprez157378f2022-04-04 15:47:50 +02005272 if (!BPF_MAP_PTR(aux->map_ptr_state))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005273 bpf_map_ptr_store(aux, meta->map_ptr,
Olivier Deprez157378f2022-04-04 15:47:50 +02005274 !meta->map_ptr->bypass_spec_v1);
5275 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005276 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
Olivier Deprez157378f2022-04-04 15:47:50 +02005277 !meta->map_ptr->bypass_spec_v1);
5278 return 0;
5279}
5280
5281static int
5282record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5283 int func_id, int insn_idx)
5284{
5285 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5286 struct bpf_reg_state *regs = cur_regs(env), *reg;
5287 struct bpf_map *map = meta->map_ptr;
5288 struct tnum range;
5289 u64 val;
5290 int err;
5291
5292 if (func_id != BPF_FUNC_tail_call)
5293 return 0;
5294 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5295 verbose(env, "kernel subsystem misconfigured verifier\n");
5296 return -EINVAL;
5297 }
5298
5299 range = tnum_range(0, map->max_entries - 1);
5300 reg = &regs[BPF_REG_3];
5301
5302 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
5303 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5304 return 0;
5305 }
5306
5307 err = mark_chain_precision(env, BPF_REG_3);
5308 if (err)
5309 return err;
5310
5311 val = reg->var_off.value;
5312 if (bpf_map_key_unseen(aux))
5313 bpf_map_key_store(aux, val);
5314 else if (!bpf_map_key_poisoned(aux) &&
5315 bpf_map_key_immediate(aux) != val)
5316 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005317 return 0;
5318}
5319
David Brazdil0f672f62019-12-10 10:32:29 +00005320static int check_reference_leak(struct bpf_verifier_env *env)
5321{
5322 struct bpf_func_state *state = cur_func(env);
5323 int i;
5324
5325 for (i = 0; i < state->acquired_refs; i++) {
5326 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5327 state->refs[i].id, state->refs[i].insn_idx);
5328 }
5329 return state->acquired_refs ? -EINVAL : 0;
5330}
5331
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005332static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
5333{
5334 const struct bpf_func_proto *fn = NULL;
5335 struct bpf_reg_state *regs;
5336 struct bpf_call_arg_meta meta;
5337 bool changes_data;
5338 int i, err;
5339
5340 /* find function prototype */
5341 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5342 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5343 func_id);
5344 return -EINVAL;
5345 }
5346
5347 if (env->ops->get_func_proto)
5348 fn = env->ops->get_func_proto(func_id, env->prog);
5349 if (!fn) {
5350 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5351 func_id);
5352 return -EINVAL;
5353 }
5354
5355 /* eBPF programs must be GPL compatible to use GPL-ed functions */
5356 if (!env->prog->gpl_compatible && fn->gpl_only) {
5357 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5358 return -EINVAL;
5359 }
5360
Olivier Deprez157378f2022-04-04 15:47:50 +02005361 if (fn->allowed && !fn->allowed(env->prog)) {
5362 verbose(env, "helper call is not allowed in probe\n");
5363 return -EINVAL;
5364 }
5365
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005366 /* With LD_ABS/IND some JITs save/restore skb from r1. */
5367 changes_data = bpf_helper_changes_pkt_data(fn->func);
5368 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5369 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5370 func_id_name(func_id), func_id);
5371 return -EINVAL;
5372 }
5373
5374 memset(&meta, 0, sizeof(meta));
5375 meta.pkt_access = fn->pkt_access;
5376
David Brazdil0f672f62019-12-10 10:32:29 +00005377 err = check_func_proto(fn, func_id);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005378 if (err) {
5379 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
5380 func_id_name(func_id), func_id);
5381 return err;
5382 }
5383
David Brazdil0f672f62019-12-10 10:32:29 +00005384 meta.func_id = func_id;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005385 /* check args */
Olivier Deprez157378f2022-04-04 15:47:50 +02005386 for (i = 0; i < 5; i++) {
5387 err = check_func_arg(env, i, &meta, fn);
5388 if (err)
5389 return err;
5390 }
5391
5392 err = record_func_map(env, &meta, func_id, insn_idx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005393 if (err)
5394 return err;
5395
Olivier Deprez157378f2022-04-04 15:47:50 +02005396 err = record_func_key(env, &meta, func_id, insn_idx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005397 if (err)
5398 return err;
5399
5400 /* Mark slots with STACK_MISC in case of raw mode, stack offset
5401 * is inferred from register state.
5402 */
5403 for (i = 0; i < meta.access_size; i++) {
5404 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
5405 BPF_WRITE, -1, false);
5406 if (err)
5407 return err;
5408 }
5409
David Brazdil0f672f62019-12-10 10:32:29 +00005410 if (func_id == BPF_FUNC_tail_call) {
5411 err = check_reference_leak(env);
5412 if (err) {
5413 verbose(env, "tail_call would lead to reference leak\n");
5414 return err;
5415 }
5416 } else if (is_release_function(func_id)) {
5417 err = release_reference(env, meta.ref_obj_id);
5418 if (err) {
5419 verbose(env, "func %s#%d reference has not been acquired before\n",
5420 func_id_name(func_id), func_id);
5421 return err;
5422 }
5423 }
5424
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005425 regs = cur_regs(env);
5426
5427 /* check that flags argument in get_local_storage(map, flags) is 0,
5428 * this is required because get_local_storage() can't return an error.
5429 */
5430 if (func_id == BPF_FUNC_get_local_storage &&
5431 !register_is_null(&regs[BPF_REG_2])) {
5432 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
5433 return -EINVAL;
5434 }
5435
5436 /* reset caller saved regs */
5437 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5438 mark_reg_not_init(env, regs, caller_saved[i]);
5439 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5440 }
5441
David Brazdil0f672f62019-12-10 10:32:29 +00005442 /* helper call returns 64-bit value. */
5443 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5444
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005445 /* update return register (already marked as written above) */
5446 if (fn->ret_type == RET_INTEGER) {
5447 /* sets type to SCALAR_VALUE */
5448 mark_reg_unknown(env, regs, BPF_REG_0);
5449 } else if (fn->ret_type == RET_VOID) {
5450 regs[BPF_REG_0].type = NOT_INIT;
5451 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
5452 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005453 /* There is no offset yet applied, variable or fixed */
5454 mark_reg_known_zero(env, regs, BPF_REG_0);
5455 /* remember map_ptr, so that check_map_access()
5456 * can check 'value_size' boundary of memory access
5457 * to map element returned from bpf_map_lookup_elem()
5458 */
5459 if (meta.map_ptr == NULL) {
5460 verbose(env,
5461 "kernel subsystem misconfigured verifier\n");
5462 return -EINVAL;
5463 }
5464 regs[BPF_REG_0].map_ptr = meta.map_ptr;
David Brazdil0f672f62019-12-10 10:32:29 +00005465 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5466 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
5467 if (map_value_has_spin_lock(meta.map_ptr))
5468 regs[BPF_REG_0].id = ++env->id_gen;
5469 } else {
5470 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
David Brazdil0f672f62019-12-10 10:32:29 +00005471 }
5472 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
5473 mark_reg_known_zero(env, regs, BPF_REG_0);
5474 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
David Brazdil0f672f62019-12-10 10:32:29 +00005475 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
5476 mark_reg_known_zero(env, regs, BPF_REG_0);
5477 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
David Brazdil0f672f62019-12-10 10:32:29 +00005478 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
5479 mark_reg_known_zero(env, regs, BPF_REG_0);
5480 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
Olivier Deprez157378f2022-04-04 15:47:50 +02005481 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
5482 mark_reg_known_zero(env, regs, BPF_REG_0);
5483 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
5484 regs[BPF_REG_0].mem_size = meta.mem_size;
5485 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
5486 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
5487 const struct btf_type *t;
5488
5489 mark_reg_known_zero(env, regs, BPF_REG_0);
5490 t = btf_type_skip_modifiers(btf_vmlinux, meta.ret_btf_id, NULL);
5491 if (!btf_type_is_struct(t)) {
5492 u32 tsize;
5493 const struct btf_type *ret;
5494 const char *tname;
5495
5496 /* resolve the type size of ksym. */
5497 ret = btf_resolve_size(btf_vmlinux, t, &tsize);
5498 if (IS_ERR(ret)) {
5499 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
5500 verbose(env, "unable to resolve the size of type '%s': %ld\n",
5501 tname, PTR_ERR(ret));
5502 return -EINVAL;
5503 }
5504 regs[BPF_REG_0].type =
5505 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5506 PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
5507 regs[BPF_REG_0].mem_size = tsize;
5508 } else {
5509 regs[BPF_REG_0].type =
5510 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5511 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
5512 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
5513 }
5514 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL) {
5515 int ret_btf_id;
5516
5517 mark_reg_known_zero(env, regs, BPF_REG_0);
5518 regs[BPF_REG_0].type = PTR_TO_BTF_ID_OR_NULL;
5519 ret_btf_id = *fn->ret_btf_id;
5520 if (ret_btf_id == 0) {
5521 verbose(env, "invalid return type %d of func %s#%d\n",
5522 fn->ret_type, func_id_name(func_id), func_id);
5523 return -EINVAL;
5524 }
5525 regs[BPF_REG_0].btf_id = ret_btf_id;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005526 } else {
5527 verbose(env, "unknown return type %d of func %s#%d\n",
5528 fn->ret_type, func_id_name(func_id), func_id);
5529 return -EINVAL;
5530 }
5531
Olivier Deprez157378f2022-04-04 15:47:50 +02005532 if (reg_type_may_be_null(regs[BPF_REG_0].type))
5533 regs[BPF_REG_0].id = ++env->id_gen;
5534
David Brazdil0f672f62019-12-10 10:32:29 +00005535 if (is_ptr_cast_function(func_id)) {
5536 /* For release_reference() */
5537 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
Olivier Deprez157378f2022-04-04 15:47:50 +02005538 } else if (is_acquire_function(func_id, meta.map_ptr)) {
David Brazdil0f672f62019-12-10 10:32:29 +00005539 int id = acquire_reference_state(env, insn_idx);
5540
5541 if (id < 0)
5542 return id;
5543 /* For mark_ptr_or_null_reg() */
5544 regs[BPF_REG_0].id = id;
5545 /* For release_reference() */
5546 regs[BPF_REG_0].ref_obj_id = id;
5547 }
5548
Olivier Deprez157378f2022-04-04 15:47:50 +02005549 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005550
5551 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
5552 if (err)
5553 return err;
5554
Olivier Deprez157378f2022-04-04 15:47:50 +02005555 if ((func_id == BPF_FUNC_get_stack ||
5556 func_id == BPF_FUNC_get_task_stack) &&
5557 !env->prog->has_callchain_buf) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005558 const char *err_str;
5559
5560#ifdef CONFIG_PERF_EVENTS
5561 err = get_callchain_buffers(sysctl_perf_event_max_stack);
5562 err_str = "cannot get callchain buffer for func %s#%d\n";
5563#else
5564 err = -ENOTSUPP;
5565 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
5566#endif
5567 if (err) {
5568 verbose(env, err_str, func_id_name(func_id), func_id);
5569 return err;
5570 }
5571
5572 env->prog->has_callchain_buf = true;
5573 }
5574
Olivier Deprez157378f2022-04-04 15:47:50 +02005575 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
5576 env->prog->call_get_stack = true;
5577
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005578 if (changes_data)
5579 clear_all_pkt_pointers(env);
5580 return 0;
5581}
5582
5583static bool signed_add_overflows(s64 a, s64 b)
5584{
5585 /* Do the add in u64, where overflow is well-defined */
5586 s64 res = (s64)((u64)a + (u64)b);
5587
5588 if (b < 0)
5589 return res > a;
5590 return res < a;
5591}
5592
Olivier Deprez157378f2022-04-04 15:47:50 +02005593static bool signed_add32_overflows(s32 a, s32 b)
5594{
5595 /* Do the add in u32, where overflow is well-defined */
5596 s32 res = (s32)((u32)a + (u32)b);
5597
5598 if (b < 0)
5599 return res > a;
5600 return res < a;
5601}
5602
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005603static bool signed_sub_overflows(s64 a, s64 b)
5604{
5605 /* Do the sub in u64, where overflow is well-defined */
5606 s64 res = (s64)((u64)a - (u64)b);
5607
5608 if (b < 0)
5609 return res < a;
5610 return res > a;
5611}
5612
Olivier Deprez157378f2022-04-04 15:47:50 +02005613static bool signed_sub32_overflows(s32 a, s32 b)
5614{
5615 /* Do the sub in u32, where overflow is well-defined */
5616 s32 res = (s32)((u32)a - (u32)b);
5617
5618 if (b < 0)
5619 return res < a;
5620 return res > a;
5621}
5622
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005623static bool check_reg_sane_offset(struct bpf_verifier_env *env,
5624 const struct bpf_reg_state *reg,
5625 enum bpf_reg_type type)
5626{
5627 bool known = tnum_is_const(reg->var_off);
5628 s64 val = reg->var_off.value;
5629 s64 smin = reg->smin_value;
5630
5631 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
5632 verbose(env, "math between %s pointer and %lld is not allowed\n",
5633 reg_type_str[type], val);
5634 return false;
5635 }
5636
5637 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
5638 verbose(env, "%s pointer offset %d is not allowed\n",
5639 reg_type_str[type], reg->off);
5640 return false;
5641 }
5642
5643 if (smin == S64_MIN) {
5644 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
5645 reg_type_str[type]);
5646 return false;
5647 }
5648
5649 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
5650 verbose(env, "value %lld makes %s pointer be out of bounds\n",
5651 smin, reg_type_str[type]);
5652 return false;
5653 }
5654
5655 return true;
5656}
5657
David Brazdil0f672f62019-12-10 10:32:29 +00005658static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
5659{
5660 return &env->insn_aux_data[env->insn_idx];
5661}
5662
Olivier Deprez0e641232021-09-23 10:07:05 +02005663enum {
5664 REASON_BOUNDS = -1,
5665 REASON_TYPE = -2,
5666 REASON_PATHS = -3,
5667 REASON_LIMIT = -4,
5668 REASON_STACK = -5,
5669};
5670
David Brazdil0f672f62019-12-10 10:32:29 +00005671static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
Olivier Deprez0e641232021-09-23 10:07:05 +02005672 u32 *alu_limit, bool mask_to_left)
David Brazdil0f672f62019-12-10 10:32:29 +00005673{
Olivier Deprez0e641232021-09-23 10:07:05 +02005674 u32 max = 0, ptr_limit = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00005675
5676 switch (ptr_reg->type) {
5677 case PTR_TO_STACK:
Olivier Deprez0e641232021-09-23 10:07:05 +02005678 /* Offset 0 is out-of-bounds, but acceptable start for the
5679 * left direction, see BPF_REG_FP. Also, unknown scalar
5680 * offset where we would need to deal with min/max bounds is
5681 * currently prohibited for unprivileged.
David Brazdil0f672f62019-12-10 10:32:29 +00005682 */
Olivier Deprez0e641232021-09-23 10:07:05 +02005683 max = MAX_BPF_STACK + mask_to_left;
5684 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
5685 break;
David Brazdil0f672f62019-12-10 10:32:29 +00005686 case PTR_TO_MAP_VALUE:
Olivier Deprez0e641232021-09-23 10:07:05 +02005687 max = ptr_reg->map_ptr->value_size;
5688 ptr_limit = (mask_to_left ?
5689 ptr_reg->smin_value :
5690 ptr_reg->umax_value) + ptr_reg->off;
5691 break;
David Brazdil0f672f62019-12-10 10:32:29 +00005692 default:
Olivier Deprez0e641232021-09-23 10:07:05 +02005693 return REASON_TYPE;
David Brazdil0f672f62019-12-10 10:32:29 +00005694 }
Olivier Deprez0e641232021-09-23 10:07:05 +02005695
5696 if (ptr_limit >= max)
5697 return REASON_LIMIT;
5698 *alu_limit = ptr_limit;
5699 return 0;
David Brazdil0f672f62019-12-10 10:32:29 +00005700}
5701
5702static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
5703 const struct bpf_insn *insn)
5704{
Olivier Deprez157378f2022-04-04 15:47:50 +02005705 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
David Brazdil0f672f62019-12-10 10:32:29 +00005706}
5707
5708static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
5709 u32 alu_state, u32 alu_limit)
5710{
5711 /* If we arrived here from different branches with different
5712 * state or limits to sanitize, then this won't work.
5713 */
5714 if (aux->alu_state &&
5715 (aux->alu_state != alu_state ||
5716 aux->alu_limit != alu_limit))
Olivier Deprez0e641232021-09-23 10:07:05 +02005717 return REASON_PATHS;
David Brazdil0f672f62019-12-10 10:32:29 +00005718
5719 /* Corresponding fixup done in fixup_bpf_calls(). */
5720 aux->alu_state = alu_state;
5721 aux->alu_limit = alu_limit;
5722 return 0;
5723}
5724
5725static int sanitize_val_alu(struct bpf_verifier_env *env,
5726 struct bpf_insn *insn)
5727{
5728 struct bpf_insn_aux_data *aux = cur_aux(env);
5729
5730 if (can_skip_alu_sanitation(env, insn))
5731 return 0;
5732
5733 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
5734}
5735
Olivier Deprez0e641232021-09-23 10:07:05 +02005736static bool sanitize_needed(u8 opcode)
5737{
5738 return opcode == BPF_ADD || opcode == BPF_SUB;
5739}
5740
5741struct bpf_sanitize_info {
5742 struct bpf_insn_aux_data aux;
5743 bool mask_to_left;
5744};
5745
5746static struct bpf_verifier_state *
5747sanitize_speculative_path(struct bpf_verifier_env *env,
5748 const struct bpf_insn *insn,
5749 u32 next_idx, u32 curr_idx)
5750{
5751 struct bpf_verifier_state *branch;
5752 struct bpf_reg_state *regs;
5753
5754 branch = push_stack(env, next_idx, curr_idx, true);
5755 if (branch && insn) {
5756 regs = branch->frame[branch->curframe]->regs;
5757 if (BPF_SRC(insn->code) == BPF_K) {
5758 mark_reg_unknown(env, regs, insn->dst_reg);
5759 } else if (BPF_SRC(insn->code) == BPF_X) {
5760 mark_reg_unknown(env, regs, insn->dst_reg);
5761 mark_reg_unknown(env, regs, insn->src_reg);
5762 }
5763 }
5764 return branch;
5765}
5766
David Brazdil0f672f62019-12-10 10:32:29 +00005767static int sanitize_ptr_alu(struct bpf_verifier_env *env,
5768 struct bpf_insn *insn,
5769 const struct bpf_reg_state *ptr_reg,
Olivier Deprez0e641232021-09-23 10:07:05 +02005770 const struct bpf_reg_state *off_reg,
David Brazdil0f672f62019-12-10 10:32:29 +00005771 struct bpf_reg_state *dst_reg,
Olivier Deprez0e641232021-09-23 10:07:05 +02005772 struct bpf_sanitize_info *info,
5773 const bool commit_window)
David Brazdil0f672f62019-12-10 10:32:29 +00005774{
Olivier Deprez0e641232021-09-23 10:07:05 +02005775 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
David Brazdil0f672f62019-12-10 10:32:29 +00005776 struct bpf_verifier_state *vstate = env->cur_state;
Olivier Deprez0e641232021-09-23 10:07:05 +02005777 bool off_is_imm = tnum_is_const(off_reg->var_off);
5778 bool off_is_neg = off_reg->smin_value < 0;
David Brazdil0f672f62019-12-10 10:32:29 +00005779 bool ptr_is_dst_reg = ptr_reg == dst_reg;
5780 u8 opcode = BPF_OP(insn->code);
5781 u32 alu_state, alu_limit;
5782 struct bpf_reg_state tmp;
5783 bool ret;
Olivier Deprez0e641232021-09-23 10:07:05 +02005784 int err;
David Brazdil0f672f62019-12-10 10:32:29 +00005785
5786 if (can_skip_alu_sanitation(env, insn))
5787 return 0;
5788
5789 /* We already marked aux for masking from non-speculative
5790 * paths, thus we got here in the first place. We only care
5791 * to explore bad access from here.
5792 */
5793 if (vstate->speculative)
5794 goto do_sim;
5795
Olivier Deprez0e641232021-09-23 10:07:05 +02005796 if (!commit_window) {
5797 if (!tnum_is_const(off_reg->var_off) &&
5798 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
5799 return REASON_BOUNDS;
David Brazdil0f672f62019-12-10 10:32:29 +00005800
Olivier Deprez0e641232021-09-23 10:07:05 +02005801 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
5802 (opcode == BPF_SUB && !off_is_neg);
5803 }
5804
5805 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
5806 if (err < 0)
5807 return err;
5808
5809 if (commit_window) {
5810 /* In commit phase we narrow the masking window based on
5811 * the observed pointer move after the simulated operation.
5812 */
5813 alu_state = info->aux.alu_state;
5814 alu_limit = abs(info->aux.alu_limit - alu_limit);
5815 } else {
5816 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
5817 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
5818 alu_state |= ptr_is_dst_reg ?
5819 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
5820
5821 /* Limit pruning on unknown scalars to enable deep search for
5822 * potential masking differences from other program paths.
5823 */
5824 if (!off_is_imm)
5825 env->explore_alu_limits = true;
5826 }
5827
5828 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
5829 if (err < 0)
5830 return err;
David Brazdil0f672f62019-12-10 10:32:29 +00005831do_sim:
Olivier Deprez0e641232021-09-23 10:07:05 +02005832 /* If we're in commit phase, we're done here given we already
5833 * pushed the truncated dst_reg into the speculative verification
5834 * stack.
5835 *
5836 * Also, when register is a known constant, we rewrite register-based
5837 * operation to immediate-based, and thus do not need masking (and as
5838 * a consequence, do not need to simulate the zero-truncation either).
5839 */
5840 if (commit_window || off_is_imm)
5841 return 0;
5842
David Brazdil0f672f62019-12-10 10:32:29 +00005843 /* Simulate and find potential out-of-bounds access under
5844 * speculative execution from truncation as a result of
5845 * masking when off was not within expected range. If off
5846 * sits in dst, then we temporarily need to move ptr there
5847 * to simulate dst (== 0) +/-= ptr. Needed, for example,
5848 * for cases where we use K-based arithmetic in one direction
5849 * and truncated reg-based in the other in order to explore
5850 * bad access.
5851 */
5852 if (!ptr_is_dst_reg) {
5853 tmp = *dst_reg;
5854 *dst_reg = *ptr_reg;
5855 }
Olivier Deprez0e641232021-09-23 10:07:05 +02005856 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
5857 env->insn_idx);
David Brazdil0f672f62019-12-10 10:32:29 +00005858 if (!ptr_is_dst_reg && ret)
5859 *dst_reg = tmp;
Olivier Deprez0e641232021-09-23 10:07:05 +02005860 return !ret ? REASON_STACK : 0;
5861}
5862
5863static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
5864{
5865 struct bpf_verifier_state *vstate = env->cur_state;
5866
5867 /* If we simulate paths under speculation, we don't update the
5868 * insn as 'seen' such that when we verify unreachable paths in
5869 * the non-speculative domain, sanitize_dead_code() can still
5870 * rewrite/sanitize them.
5871 */
5872 if (!vstate->speculative)
Olivier Deprez157378f2022-04-04 15:47:50 +02005873 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
Olivier Deprez0e641232021-09-23 10:07:05 +02005874}
5875
5876static int sanitize_err(struct bpf_verifier_env *env,
5877 const struct bpf_insn *insn, int reason,
5878 const struct bpf_reg_state *off_reg,
5879 const struct bpf_reg_state *dst_reg)
5880{
5881 static const char *err = "pointer arithmetic with it prohibited for !root";
5882 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
5883 u32 dst = insn->dst_reg, src = insn->src_reg;
5884
5885 switch (reason) {
5886 case REASON_BOUNDS:
5887 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
5888 off_reg == dst_reg ? dst : src, err);
5889 break;
5890 case REASON_TYPE:
5891 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
5892 off_reg == dst_reg ? src : dst, err);
5893 break;
5894 case REASON_PATHS:
5895 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
5896 dst, op, err);
5897 break;
5898 case REASON_LIMIT:
5899 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
5900 dst, op, err);
5901 break;
5902 case REASON_STACK:
5903 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
5904 dst, err);
5905 break;
5906 default:
5907 verbose(env, "verifier internal error: unknown reason (%d)\n",
5908 reason);
5909 break;
5910 }
5911
5912 return -EACCES;
5913}
5914
Olivier Deprez157378f2022-04-04 15:47:50 +02005915/* check that stack access falls within stack limits and that 'reg' doesn't
5916 * have a variable offset.
5917 *
5918 * Variable offset is prohibited for unprivileged mode for simplicity since it
5919 * requires corresponding support in Spectre masking for stack ALU. See also
5920 * retrieve_ptr_limit().
5921 *
5922 *
5923 * 'off' includes 'reg->off'.
5924 */
5925static int check_stack_access_for_ptr_arithmetic(
5926 struct bpf_verifier_env *env,
5927 int regno,
5928 const struct bpf_reg_state *reg,
5929 int off)
5930{
5931 if (!tnum_is_const(reg->var_off)) {
5932 char tn_buf[48];
5933
5934 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5935 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
5936 regno, tn_buf, off);
5937 return -EACCES;
5938 }
5939
5940 if (off >= 0 || off < -MAX_BPF_STACK) {
5941 verbose(env, "R%d stack pointer arithmetic goes out of range, "
5942 "prohibited for !root; off=%d\n", regno, off);
5943 return -EACCES;
5944 }
5945
5946 return 0;
5947}
5948
Olivier Deprez0e641232021-09-23 10:07:05 +02005949static int sanitize_check_bounds(struct bpf_verifier_env *env,
5950 const struct bpf_insn *insn,
5951 const struct bpf_reg_state *dst_reg)
5952{
5953 u32 dst = insn->dst_reg;
5954
5955 /* For unprivileged we require that resulting offset must be in bounds
5956 * in order to be able to sanitize access later on.
5957 */
Olivier Deprez157378f2022-04-04 15:47:50 +02005958 if (env->bypass_spec_v1)
Olivier Deprez0e641232021-09-23 10:07:05 +02005959 return 0;
5960
5961 switch (dst_reg->type) {
5962 case PTR_TO_STACK:
Olivier Deprez157378f2022-04-04 15:47:50 +02005963 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
5964 dst_reg->off + dst_reg->var_off.value))
Olivier Deprez0e641232021-09-23 10:07:05 +02005965 return -EACCES;
Olivier Deprez0e641232021-09-23 10:07:05 +02005966 break;
5967 case PTR_TO_MAP_VALUE:
5968 if (check_map_access(env, dst, dst_reg->off, 1, false)) {
5969 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
5970 "prohibited for !root\n", dst);
5971 return -EACCES;
5972 }
5973 break;
5974 default:
5975 break;
5976 }
5977
5978 return 0;
David Brazdil0f672f62019-12-10 10:32:29 +00005979}
5980
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005981/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
5982 * Caller should also handle BPF_MOV case separately.
5983 * If we return -EACCES, caller may want to try again treating pointer as a
5984 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
5985 */
5986static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
5987 struct bpf_insn *insn,
5988 const struct bpf_reg_state *ptr_reg,
5989 const struct bpf_reg_state *off_reg)
5990{
5991 struct bpf_verifier_state *vstate = env->cur_state;
5992 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5993 struct bpf_reg_state *regs = state->regs, *dst_reg;
5994 bool known = tnum_is_const(off_reg->var_off);
5995 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
5996 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
5997 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
5998 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
Olivier Deprez0e641232021-09-23 10:07:05 +02005999 struct bpf_sanitize_info info = {};
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006000 u8 opcode = BPF_OP(insn->code);
Olivier Deprez0e641232021-09-23 10:07:05 +02006001 u32 dst = insn->dst_reg;
David Brazdil0f672f62019-12-10 10:32:29 +00006002 int ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006003
6004 dst_reg = &regs[dst];
6005
6006 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
6007 smin_val > smax_val || umin_val > umax_val) {
6008 /* Taint dst register if offset had invalid bounds derived from
6009 * e.g. dead branches.
6010 */
Olivier Deprez0e641232021-09-23 10:07:05 +02006011 __mark_reg_unknown(env, dst_reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006012 return 0;
6013 }
6014
6015 if (BPF_CLASS(insn->code) != BPF_ALU64) {
6016 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
Olivier Deprez157378f2022-04-04 15:47:50 +02006017 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6018 __mark_reg_unknown(env, dst_reg);
6019 return 0;
6020 }
6021
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006022 verbose(env,
6023 "R%d 32-bit pointer arithmetic prohibited\n",
6024 dst);
6025 return -EACCES;
6026 }
6027
David Brazdil0f672f62019-12-10 10:32:29 +00006028 switch (ptr_reg->type) {
6029 case PTR_TO_MAP_VALUE_OR_NULL:
6030 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
6031 dst, reg_type_str[ptr_reg->type]);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006032 return -EACCES;
David Brazdil0f672f62019-12-10 10:32:29 +00006033 case CONST_PTR_TO_MAP:
Olivier Deprez0e641232021-09-23 10:07:05 +02006034 /* smin_val represents the known value */
6035 if (known && smin_val == 0 && opcode == BPF_ADD)
6036 break;
Olivier Deprez157378f2022-04-04 15:47:50 +02006037 fallthrough;
David Brazdil0f672f62019-12-10 10:32:29 +00006038 case PTR_TO_PACKET_END:
6039 case PTR_TO_SOCKET:
David Brazdil0f672f62019-12-10 10:32:29 +00006040 case PTR_TO_SOCK_COMMON:
David Brazdil0f672f62019-12-10 10:32:29 +00006041 case PTR_TO_TCP_SOCK:
David Brazdil0f672f62019-12-10 10:32:29 +00006042 case PTR_TO_XDP_SOCK:
Olivier Deprez157378f2022-04-04 15:47:50 +02006043reject:
David Brazdil0f672f62019-12-10 10:32:29 +00006044 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
6045 dst, reg_type_str[ptr_reg->type]);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006046 return -EACCES;
David Brazdil0f672f62019-12-10 10:32:29 +00006047 default:
Olivier Deprez157378f2022-04-04 15:47:50 +02006048 if (reg_type_may_be_null(ptr_reg->type))
6049 goto reject;
David Brazdil0f672f62019-12-10 10:32:29 +00006050 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006051 }
6052
6053 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
6054 * The id may be overwritten later if we create a new variable offset.
6055 */
6056 dst_reg->type = ptr_reg->type;
6057 dst_reg->id = ptr_reg->id;
6058
6059 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
6060 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
6061 return -EINVAL;
6062
Olivier Deprez157378f2022-04-04 15:47:50 +02006063 /* pointer types do not carry 32-bit bounds at the moment. */
6064 __mark_reg32_unbounded(dst_reg);
6065
Olivier Deprez0e641232021-09-23 10:07:05 +02006066 if (sanitize_needed(opcode)) {
6067 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
6068 &info, false);
6069 if (ret < 0)
6070 return sanitize_err(env, insn, ret, off_reg, dst_reg);
6071 }
6072
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006073 switch (opcode) {
6074 case BPF_ADD:
6075 /* We can take a fixed offset as long as it doesn't overflow
6076 * the s32 'off' field
6077 */
6078 if (known && (ptr_reg->off + smin_val ==
6079 (s64)(s32)(ptr_reg->off + smin_val))) {
6080 /* pointer += K. Accumulate it into fixed offset */
6081 dst_reg->smin_value = smin_ptr;
6082 dst_reg->smax_value = smax_ptr;
6083 dst_reg->umin_value = umin_ptr;
6084 dst_reg->umax_value = umax_ptr;
6085 dst_reg->var_off = ptr_reg->var_off;
6086 dst_reg->off = ptr_reg->off + smin_val;
6087 dst_reg->raw = ptr_reg->raw;
6088 break;
6089 }
6090 /* A new variable offset is created. Note that off_reg->off
6091 * == 0, since it's a scalar.
6092 * dst_reg gets the pointer type and since some positive
6093 * integer value was added to the pointer, give it a new 'id'
6094 * if it's a PTR_TO_PACKET.
6095 * this creates a new 'base' pointer, off_reg (variable) gets
6096 * added into the variable offset, and we copy the fixed offset
6097 * from ptr_reg.
6098 */
6099 if (signed_add_overflows(smin_ptr, smin_val) ||
6100 signed_add_overflows(smax_ptr, smax_val)) {
6101 dst_reg->smin_value = S64_MIN;
6102 dst_reg->smax_value = S64_MAX;
6103 } else {
6104 dst_reg->smin_value = smin_ptr + smin_val;
6105 dst_reg->smax_value = smax_ptr + smax_val;
6106 }
6107 if (umin_ptr + umin_val < umin_ptr ||
6108 umax_ptr + umax_val < umax_ptr) {
6109 dst_reg->umin_value = 0;
6110 dst_reg->umax_value = U64_MAX;
6111 } else {
6112 dst_reg->umin_value = umin_ptr + umin_val;
6113 dst_reg->umax_value = umax_ptr + umax_val;
6114 }
6115 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
6116 dst_reg->off = ptr_reg->off;
6117 dst_reg->raw = ptr_reg->raw;
6118 if (reg_is_pkt_pointer(ptr_reg)) {
6119 dst_reg->id = ++env->id_gen;
6120 /* something was added to pkt_ptr, set range to zero */
6121 dst_reg->raw = 0;
6122 }
6123 break;
6124 case BPF_SUB:
6125 if (dst_reg == off_reg) {
6126 /* scalar -= pointer. Creates an unknown scalar */
6127 verbose(env, "R%d tried to subtract pointer from scalar\n",
6128 dst);
6129 return -EACCES;
6130 }
6131 /* We don't allow subtraction from FP, because (according to
6132 * test_verifier.c test "invalid fp arithmetic", JITs might not
6133 * be able to deal with it.
6134 */
6135 if (ptr_reg->type == PTR_TO_STACK) {
6136 verbose(env, "R%d subtraction from stack pointer prohibited\n",
6137 dst);
6138 return -EACCES;
6139 }
6140 if (known && (ptr_reg->off - smin_val ==
6141 (s64)(s32)(ptr_reg->off - smin_val))) {
6142 /* pointer -= K. Subtract it from fixed offset */
6143 dst_reg->smin_value = smin_ptr;
6144 dst_reg->smax_value = smax_ptr;
6145 dst_reg->umin_value = umin_ptr;
6146 dst_reg->umax_value = umax_ptr;
6147 dst_reg->var_off = ptr_reg->var_off;
6148 dst_reg->id = ptr_reg->id;
6149 dst_reg->off = ptr_reg->off - smin_val;
6150 dst_reg->raw = ptr_reg->raw;
6151 break;
6152 }
6153 /* A new variable offset is created. If the subtrahend is known
6154 * nonnegative, then any reg->range we had before is still good.
6155 */
6156 if (signed_sub_overflows(smin_ptr, smax_val) ||
6157 signed_sub_overflows(smax_ptr, smin_val)) {
6158 /* Overflow possible, we know nothing */
6159 dst_reg->smin_value = S64_MIN;
6160 dst_reg->smax_value = S64_MAX;
6161 } else {
6162 dst_reg->smin_value = smin_ptr - smax_val;
6163 dst_reg->smax_value = smax_ptr - smin_val;
6164 }
6165 if (umin_ptr < umax_val) {
6166 /* Overflow possible, we know nothing */
6167 dst_reg->umin_value = 0;
6168 dst_reg->umax_value = U64_MAX;
6169 } else {
6170 /* Cannot overflow (as long as bounds are consistent) */
6171 dst_reg->umin_value = umin_ptr - umax_val;
6172 dst_reg->umax_value = umax_ptr - umin_val;
6173 }
6174 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
6175 dst_reg->off = ptr_reg->off;
6176 dst_reg->raw = ptr_reg->raw;
6177 if (reg_is_pkt_pointer(ptr_reg)) {
6178 dst_reg->id = ++env->id_gen;
6179 /* something was added to pkt_ptr, set range to zero */
6180 if (smin_val < 0)
6181 dst_reg->raw = 0;
6182 }
6183 break;
6184 case BPF_AND:
6185 case BPF_OR:
6186 case BPF_XOR:
6187 /* bitwise ops on pointers are troublesome, prohibit. */
6188 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
6189 dst, bpf_alu_string[opcode >> 4]);
6190 return -EACCES;
6191 default:
6192 /* other operators (e.g. MUL,LSH) produce non-pointer results */
6193 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
6194 dst, bpf_alu_string[opcode >> 4]);
6195 return -EACCES;
6196 }
6197
6198 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
6199 return -EINVAL;
6200
6201 __update_reg_bounds(dst_reg);
6202 __reg_deduce_bounds(dst_reg);
6203 __reg_bound_offset(dst_reg);
David Brazdil0f672f62019-12-10 10:32:29 +00006204
Olivier Deprez0e641232021-09-23 10:07:05 +02006205 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
6206 return -EACCES;
6207 if (sanitize_needed(opcode)) {
6208 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
6209 &info, true);
6210 if (ret < 0)
6211 return sanitize_err(env, insn, ret, off_reg, dst_reg);
David Brazdil0f672f62019-12-10 10:32:29 +00006212 }
6213
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006214 return 0;
6215}
6216
Olivier Deprez157378f2022-04-04 15:47:50 +02006217static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
6218 struct bpf_reg_state *src_reg)
6219{
6220 s32 smin_val = src_reg->s32_min_value;
6221 s32 smax_val = src_reg->s32_max_value;
6222 u32 umin_val = src_reg->u32_min_value;
6223 u32 umax_val = src_reg->u32_max_value;
6224
6225 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
6226 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
6227 dst_reg->s32_min_value = S32_MIN;
6228 dst_reg->s32_max_value = S32_MAX;
6229 } else {
6230 dst_reg->s32_min_value += smin_val;
6231 dst_reg->s32_max_value += smax_val;
6232 }
6233 if (dst_reg->u32_min_value + umin_val < umin_val ||
6234 dst_reg->u32_max_value + umax_val < umax_val) {
6235 dst_reg->u32_min_value = 0;
6236 dst_reg->u32_max_value = U32_MAX;
6237 } else {
6238 dst_reg->u32_min_value += umin_val;
6239 dst_reg->u32_max_value += umax_val;
6240 }
6241}
6242
6243static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
6244 struct bpf_reg_state *src_reg)
6245{
6246 s64 smin_val = src_reg->smin_value;
6247 s64 smax_val = src_reg->smax_value;
6248 u64 umin_val = src_reg->umin_value;
6249 u64 umax_val = src_reg->umax_value;
6250
6251 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
6252 signed_add_overflows(dst_reg->smax_value, smax_val)) {
6253 dst_reg->smin_value = S64_MIN;
6254 dst_reg->smax_value = S64_MAX;
6255 } else {
6256 dst_reg->smin_value += smin_val;
6257 dst_reg->smax_value += smax_val;
6258 }
6259 if (dst_reg->umin_value + umin_val < umin_val ||
6260 dst_reg->umax_value + umax_val < umax_val) {
6261 dst_reg->umin_value = 0;
6262 dst_reg->umax_value = U64_MAX;
6263 } else {
6264 dst_reg->umin_value += umin_val;
6265 dst_reg->umax_value += umax_val;
6266 }
6267}
6268
6269static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
6270 struct bpf_reg_state *src_reg)
6271{
6272 s32 smin_val = src_reg->s32_min_value;
6273 s32 smax_val = src_reg->s32_max_value;
6274 u32 umin_val = src_reg->u32_min_value;
6275 u32 umax_val = src_reg->u32_max_value;
6276
6277 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
6278 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
6279 /* Overflow possible, we know nothing */
6280 dst_reg->s32_min_value = S32_MIN;
6281 dst_reg->s32_max_value = S32_MAX;
6282 } else {
6283 dst_reg->s32_min_value -= smax_val;
6284 dst_reg->s32_max_value -= smin_val;
6285 }
6286 if (dst_reg->u32_min_value < umax_val) {
6287 /* Overflow possible, we know nothing */
6288 dst_reg->u32_min_value = 0;
6289 dst_reg->u32_max_value = U32_MAX;
6290 } else {
6291 /* Cannot overflow (as long as bounds are consistent) */
6292 dst_reg->u32_min_value -= umax_val;
6293 dst_reg->u32_max_value -= umin_val;
6294 }
6295}
6296
6297static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
6298 struct bpf_reg_state *src_reg)
6299{
6300 s64 smin_val = src_reg->smin_value;
6301 s64 smax_val = src_reg->smax_value;
6302 u64 umin_val = src_reg->umin_value;
6303 u64 umax_val = src_reg->umax_value;
6304
6305 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
6306 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
6307 /* Overflow possible, we know nothing */
6308 dst_reg->smin_value = S64_MIN;
6309 dst_reg->smax_value = S64_MAX;
6310 } else {
6311 dst_reg->smin_value -= smax_val;
6312 dst_reg->smax_value -= smin_val;
6313 }
6314 if (dst_reg->umin_value < umax_val) {
6315 /* Overflow possible, we know nothing */
6316 dst_reg->umin_value = 0;
6317 dst_reg->umax_value = U64_MAX;
6318 } else {
6319 /* Cannot overflow (as long as bounds are consistent) */
6320 dst_reg->umin_value -= umax_val;
6321 dst_reg->umax_value -= umin_val;
6322 }
6323}
6324
6325static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
6326 struct bpf_reg_state *src_reg)
6327{
6328 s32 smin_val = src_reg->s32_min_value;
6329 u32 umin_val = src_reg->u32_min_value;
6330 u32 umax_val = src_reg->u32_max_value;
6331
6332 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
6333 /* Ain't nobody got time to multiply that sign */
6334 __mark_reg32_unbounded(dst_reg);
6335 return;
6336 }
6337 /* Both values are positive, so we can work with unsigned and
6338 * copy the result to signed (unless it exceeds S32_MAX).
6339 */
6340 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
6341 /* Potential overflow, we know nothing */
6342 __mark_reg32_unbounded(dst_reg);
6343 return;
6344 }
6345 dst_reg->u32_min_value *= umin_val;
6346 dst_reg->u32_max_value *= umax_val;
6347 if (dst_reg->u32_max_value > S32_MAX) {
6348 /* Overflow possible, we know nothing */
6349 dst_reg->s32_min_value = S32_MIN;
6350 dst_reg->s32_max_value = S32_MAX;
6351 } else {
6352 dst_reg->s32_min_value = dst_reg->u32_min_value;
6353 dst_reg->s32_max_value = dst_reg->u32_max_value;
6354 }
6355}
6356
6357static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
6358 struct bpf_reg_state *src_reg)
6359{
6360 s64 smin_val = src_reg->smin_value;
6361 u64 umin_val = src_reg->umin_value;
6362 u64 umax_val = src_reg->umax_value;
6363
6364 if (smin_val < 0 || dst_reg->smin_value < 0) {
6365 /* Ain't nobody got time to multiply that sign */
6366 __mark_reg64_unbounded(dst_reg);
6367 return;
6368 }
6369 /* Both values are positive, so we can work with unsigned and
6370 * copy the result to signed (unless it exceeds S64_MAX).
6371 */
6372 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
6373 /* Potential overflow, we know nothing */
6374 __mark_reg64_unbounded(dst_reg);
6375 return;
6376 }
6377 dst_reg->umin_value *= umin_val;
6378 dst_reg->umax_value *= umax_val;
6379 if (dst_reg->umax_value > S64_MAX) {
6380 /* Overflow possible, we know nothing */
6381 dst_reg->smin_value = S64_MIN;
6382 dst_reg->smax_value = S64_MAX;
6383 } else {
6384 dst_reg->smin_value = dst_reg->umin_value;
6385 dst_reg->smax_value = dst_reg->umax_value;
6386 }
6387}
6388
6389static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
6390 struct bpf_reg_state *src_reg)
6391{
6392 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6393 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6394 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6395 s32 smin_val = src_reg->s32_min_value;
6396 u32 umax_val = src_reg->u32_max_value;
6397
6398 if (src_known && dst_known) {
6399 __mark_reg32_known(dst_reg, var32_off.value);
6400 return;
6401 }
6402
6403 /* We get our minimum from the var_off, since that's inherently
6404 * bitwise. Our maximum is the minimum of the operands' maxima.
6405 */
6406 dst_reg->u32_min_value = var32_off.value;
6407 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
6408 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6409 /* Lose signed bounds when ANDing negative numbers,
6410 * ain't nobody got time for that.
6411 */
6412 dst_reg->s32_min_value = S32_MIN;
6413 dst_reg->s32_max_value = S32_MAX;
6414 } else {
6415 /* ANDing two positives gives a positive, so safe to
6416 * cast result into s64.
6417 */
6418 dst_reg->s32_min_value = dst_reg->u32_min_value;
6419 dst_reg->s32_max_value = dst_reg->u32_max_value;
6420 }
6421}
6422
6423static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
6424 struct bpf_reg_state *src_reg)
6425{
6426 bool src_known = tnum_is_const(src_reg->var_off);
6427 bool dst_known = tnum_is_const(dst_reg->var_off);
6428 s64 smin_val = src_reg->smin_value;
6429 u64 umax_val = src_reg->umax_value;
6430
6431 if (src_known && dst_known) {
6432 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6433 return;
6434 }
6435
6436 /* We get our minimum from the var_off, since that's inherently
6437 * bitwise. Our maximum is the minimum of the operands' maxima.
6438 */
6439 dst_reg->umin_value = dst_reg->var_off.value;
6440 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
6441 if (dst_reg->smin_value < 0 || smin_val < 0) {
6442 /* Lose signed bounds when ANDing negative numbers,
6443 * ain't nobody got time for that.
6444 */
6445 dst_reg->smin_value = S64_MIN;
6446 dst_reg->smax_value = S64_MAX;
6447 } else {
6448 /* ANDing two positives gives a positive, so safe to
6449 * cast result into s64.
6450 */
6451 dst_reg->smin_value = dst_reg->umin_value;
6452 dst_reg->smax_value = dst_reg->umax_value;
6453 }
6454 /* We may learn something more from the var_off */
6455 __update_reg_bounds(dst_reg);
6456}
6457
6458static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
6459 struct bpf_reg_state *src_reg)
6460{
6461 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6462 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6463 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6464 s32 smin_val = src_reg->s32_min_value;
6465 u32 umin_val = src_reg->u32_min_value;
6466
6467 if (src_known && dst_known) {
6468 __mark_reg32_known(dst_reg, var32_off.value);
6469 return;
6470 }
6471
6472 /* We get our maximum from the var_off, and our minimum is the
6473 * maximum of the operands' minima
6474 */
6475 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
6476 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6477 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6478 /* Lose signed bounds when ORing negative numbers,
6479 * ain't nobody got time for that.
6480 */
6481 dst_reg->s32_min_value = S32_MIN;
6482 dst_reg->s32_max_value = S32_MAX;
6483 } else {
6484 /* ORing two positives gives a positive, so safe to
6485 * cast result into s64.
6486 */
6487 dst_reg->s32_min_value = dst_reg->u32_min_value;
6488 dst_reg->s32_max_value = dst_reg->u32_max_value;
6489 }
6490}
6491
6492static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
6493 struct bpf_reg_state *src_reg)
6494{
6495 bool src_known = tnum_is_const(src_reg->var_off);
6496 bool dst_known = tnum_is_const(dst_reg->var_off);
6497 s64 smin_val = src_reg->smin_value;
6498 u64 umin_val = src_reg->umin_value;
6499
6500 if (src_known && dst_known) {
6501 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6502 return;
6503 }
6504
6505 /* We get our maximum from the var_off, and our minimum is the
6506 * maximum of the operands' minima
6507 */
6508 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
6509 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6510 if (dst_reg->smin_value < 0 || smin_val < 0) {
6511 /* Lose signed bounds when ORing negative numbers,
6512 * ain't nobody got time for that.
6513 */
6514 dst_reg->smin_value = S64_MIN;
6515 dst_reg->smax_value = S64_MAX;
6516 } else {
6517 /* ORing two positives gives a positive, so safe to
6518 * cast result into s64.
6519 */
6520 dst_reg->smin_value = dst_reg->umin_value;
6521 dst_reg->smax_value = dst_reg->umax_value;
6522 }
6523 /* We may learn something more from the var_off */
6524 __update_reg_bounds(dst_reg);
6525}
6526
6527static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
6528 struct bpf_reg_state *src_reg)
6529{
6530 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6531 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6532 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6533 s32 smin_val = src_reg->s32_min_value;
6534
6535 if (src_known && dst_known) {
6536 __mark_reg32_known(dst_reg, var32_off.value);
6537 return;
6538 }
6539
6540 /* We get both minimum and maximum from the var32_off. */
6541 dst_reg->u32_min_value = var32_off.value;
6542 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6543
6544 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
6545 /* XORing two positive sign numbers gives a positive,
6546 * so safe to cast u32 result into s32.
6547 */
6548 dst_reg->s32_min_value = dst_reg->u32_min_value;
6549 dst_reg->s32_max_value = dst_reg->u32_max_value;
6550 } else {
6551 dst_reg->s32_min_value = S32_MIN;
6552 dst_reg->s32_max_value = S32_MAX;
6553 }
6554}
6555
6556static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
6557 struct bpf_reg_state *src_reg)
6558{
6559 bool src_known = tnum_is_const(src_reg->var_off);
6560 bool dst_known = tnum_is_const(dst_reg->var_off);
6561 s64 smin_val = src_reg->smin_value;
6562
6563 if (src_known && dst_known) {
6564 /* dst_reg->var_off.value has been updated earlier */
6565 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6566 return;
6567 }
6568
6569 /* We get both minimum and maximum from the var_off. */
6570 dst_reg->umin_value = dst_reg->var_off.value;
6571 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6572
6573 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
6574 /* XORing two positive sign numbers gives a positive,
6575 * so safe to cast u64 result into s64.
6576 */
6577 dst_reg->smin_value = dst_reg->umin_value;
6578 dst_reg->smax_value = dst_reg->umax_value;
6579 } else {
6580 dst_reg->smin_value = S64_MIN;
6581 dst_reg->smax_value = S64_MAX;
6582 }
6583
6584 __update_reg_bounds(dst_reg);
6585}
6586
6587static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6588 u64 umin_val, u64 umax_val)
6589{
6590 /* We lose all sign bit information (except what we can pick
6591 * up from var_off)
6592 */
6593 dst_reg->s32_min_value = S32_MIN;
6594 dst_reg->s32_max_value = S32_MAX;
6595 /* If we might shift our top bit out, then we know nothing */
6596 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
6597 dst_reg->u32_min_value = 0;
6598 dst_reg->u32_max_value = U32_MAX;
6599 } else {
6600 dst_reg->u32_min_value <<= umin_val;
6601 dst_reg->u32_max_value <<= umax_val;
6602 }
6603}
6604
6605static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6606 struct bpf_reg_state *src_reg)
6607{
6608 u32 umax_val = src_reg->u32_max_value;
6609 u32 umin_val = src_reg->u32_min_value;
6610 /* u32 alu operation will zext upper bits */
6611 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6612
6613 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6614 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
6615 /* Not required but being careful mark reg64 bounds as unknown so
6616 * that we are forced to pick them up from tnum and zext later and
6617 * if some path skips this step we are still safe.
6618 */
6619 __mark_reg64_unbounded(dst_reg);
6620 __update_reg32_bounds(dst_reg);
6621}
6622
6623static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
6624 u64 umin_val, u64 umax_val)
6625{
6626 /* Special case <<32 because it is a common compiler pattern to sign
6627 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
6628 * positive we know this shift will also be positive so we can track
6629 * bounds correctly. Otherwise we lose all sign bit information except
6630 * what we can pick up from var_off. Perhaps we can generalize this
6631 * later to shifts of any length.
6632 */
6633 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
6634 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
6635 else
6636 dst_reg->smax_value = S64_MAX;
6637
6638 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
6639 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
6640 else
6641 dst_reg->smin_value = S64_MIN;
6642
6643 /* If we might shift our top bit out, then we know nothing */
6644 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
6645 dst_reg->umin_value = 0;
6646 dst_reg->umax_value = U64_MAX;
6647 } else {
6648 dst_reg->umin_value <<= umin_val;
6649 dst_reg->umax_value <<= umax_val;
6650 }
6651}
6652
6653static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
6654 struct bpf_reg_state *src_reg)
6655{
6656 u64 umax_val = src_reg->umax_value;
6657 u64 umin_val = src_reg->umin_value;
6658
6659 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
6660 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
6661 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6662
6663 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
6664 /* We may learn something more from the var_off */
6665 __update_reg_bounds(dst_reg);
6666}
6667
6668static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
6669 struct bpf_reg_state *src_reg)
6670{
6671 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6672 u32 umax_val = src_reg->u32_max_value;
6673 u32 umin_val = src_reg->u32_min_value;
6674
6675 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6676 * be negative, then either:
6677 * 1) src_reg might be zero, so the sign bit of the result is
6678 * unknown, so we lose our signed bounds
6679 * 2) it's known negative, thus the unsigned bounds capture the
6680 * signed bounds
6681 * 3) the signed bounds cross zero, so they tell us nothing
6682 * about the result
6683 * If the value in dst_reg is known nonnegative, then again the
6684 * unsigned bounts capture the signed bounds.
6685 * Thus, in all cases it suffices to blow away our signed bounds
6686 * and rely on inferring new ones from the unsigned bounds and
6687 * var_off of the result.
6688 */
6689 dst_reg->s32_min_value = S32_MIN;
6690 dst_reg->s32_max_value = S32_MAX;
6691
6692 dst_reg->var_off = tnum_rshift(subreg, umin_val);
6693 dst_reg->u32_min_value >>= umax_val;
6694 dst_reg->u32_max_value >>= umin_val;
6695
6696 __mark_reg64_unbounded(dst_reg);
6697 __update_reg32_bounds(dst_reg);
6698}
6699
6700static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
6701 struct bpf_reg_state *src_reg)
6702{
6703 u64 umax_val = src_reg->umax_value;
6704 u64 umin_val = src_reg->umin_value;
6705
6706 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6707 * be negative, then either:
6708 * 1) src_reg might be zero, so the sign bit of the result is
6709 * unknown, so we lose our signed bounds
6710 * 2) it's known negative, thus the unsigned bounds capture the
6711 * signed bounds
6712 * 3) the signed bounds cross zero, so they tell us nothing
6713 * about the result
6714 * If the value in dst_reg is known nonnegative, then again the
6715 * unsigned bounts capture the signed bounds.
6716 * Thus, in all cases it suffices to blow away our signed bounds
6717 * and rely on inferring new ones from the unsigned bounds and
6718 * var_off of the result.
6719 */
6720 dst_reg->smin_value = S64_MIN;
6721 dst_reg->smax_value = S64_MAX;
6722 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
6723 dst_reg->umin_value >>= umax_val;
6724 dst_reg->umax_value >>= umin_val;
6725
6726 /* Its not easy to operate on alu32 bounds here because it depends
6727 * on bits being shifted in. Take easy way out and mark unbounded
6728 * so we can recalculate later from tnum.
6729 */
6730 __mark_reg32_unbounded(dst_reg);
6731 __update_reg_bounds(dst_reg);
6732}
6733
6734static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
6735 struct bpf_reg_state *src_reg)
6736{
6737 u64 umin_val = src_reg->u32_min_value;
6738
6739 /* Upon reaching here, src_known is true and
6740 * umax_val is equal to umin_val.
6741 */
6742 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
6743 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
6744
6745 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
6746
6747 /* blow away the dst_reg umin_value/umax_value and rely on
6748 * dst_reg var_off to refine the result.
6749 */
6750 dst_reg->u32_min_value = 0;
6751 dst_reg->u32_max_value = U32_MAX;
6752
6753 __mark_reg64_unbounded(dst_reg);
6754 __update_reg32_bounds(dst_reg);
6755}
6756
6757static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
6758 struct bpf_reg_state *src_reg)
6759{
6760 u64 umin_val = src_reg->umin_value;
6761
6762 /* Upon reaching here, src_known is true and umax_val is equal
6763 * to umin_val.
6764 */
6765 dst_reg->smin_value >>= umin_val;
6766 dst_reg->smax_value >>= umin_val;
6767
6768 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
6769
6770 /* blow away the dst_reg umin_value/umax_value and rely on
6771 * dst_reg var_off to refine the result.
6772 */
6773 dst_reg->umin_value = 0;
6774 dst_reg->umax_value = U64_MAX;
6775
6776 /* Its not easy to operate on alu32 bounds here because it depends
6777 * on bits being shifted in from upper 32-bits. Take easy way out
6778 * and mark unbounded so we can recalculate later from tnum.
6779 */
6780 __mark_reg32_unbounded(dst_reg);
6781 __update_reg_bounds(dst_reg);
6782}
6783
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006784/* WARNING: This function does calculations on 64-bit values, but the actual
6785 * execution may occur on 32-bit values. Therefore, things like bitshifts
6786 * need extra checks in the 32-bit case.
6787 */
6788static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
6789 struct bpf_insn *insn,
6790 struct bpf_reg_state *dst_reg,
6791 struct bpf_reg_state src_reg)
6792{
6793 struct bpf_reg_state *regs = cur_regs(env);
6794 u8 opcode = BPF_OP(insn->code);
Olivier Deprez157378f2022-04-04 15:47:50 +02006795 bool src_known;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006796 s64 smin_val, smax_val;
6797 u64 umin_val, umax_val;
Olivier Deprez157378f2022-04-04 15:47:50 +02006798 s32 s32_min_val, s32_max_val;
6799 u32 u32_min_val, u32_max_val;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006800 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
Olivier Deprez157378f2022-04-04 15:47:50 +02006801 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
David Brazdil0f672f62019-12-10 10:32:29 +00006802 int ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006803
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006804 smin_val = src_reg.smin_value;
6805 smax_val = src_reg.smax_value;
6806 umin_val = src_reg.umin_value;
6807 umax_val = src_reg.umax_value;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006808
Olivier Deprez157378f2022-04-04 15:47:50 +02006809 s32_min_val = src_reg.s32_min_value;
6810 s32_max_val = src_reg.s32_max_value;
6811 u32_min_val = src_reg.u32_min_value;
6812 u32_max_val = src_reg.u32_max_value;
6813
6814 if (alu32) {
6815 src_known = tnum_subreg_is_const(src_reg.var_off);
6816 if ((src_known &&
6817 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
6818 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
6819 /* Taint dst register if offset had invalid bounds
6820 * derived from e.g. dead branches.
6821 */
6822 __mark_reg_unknown(env, dst_reg);
6823 return 0;
6824 }
6825 } else {
6826 src_known = tnum_is_const(src_reg.var_off);
6827 if ((src_known &&
6828 (smin_val != smax_val || umin_val != umax_val)) ||
6829 smin_val > smax_val || umin_val > umax_val) {
6830 /* Taint dst register if offset had invalid bounds
6831 * derived from e.g. dead branches.
6832 */
6833 __mark_reg_unknown(env, dst_reg);
6834 return 0;
6835 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006836 }
6837
6838 if (!src_known &&
6839 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
Olivier Deprez0e641232021-09-23 10:07:05 +02006840 __mark_reg_unknown(env, dst_reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006841 return 0;
6842 }
6843
Olivier Deprez0e641232021-09-23 10:07:05 +02006844 if (sanitize_needed(opcode)) {
6845 ret = sanitize_val_alu(env, insn);
6846 if (ret < 0)
6847 return sanitize_err(env, insn, ret, NULL, NULL);
6848 }
6849
Olivier Deprez157378f2022-04-04 15:47:50 +02006850 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
6851 * There are two classes of instructions: The first class we track both
6852 * alu32 and alu64 sign/unsigned bounds independently this provides the
6853 * greatest amount of precision when alu operations are mixed with jmp32
6854 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
6855 * and BPF_OR. This is possible because these ops have fairly easy to
6856 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
6857 * See alu32 verifier tests for examples. The second class of
6858 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
6859 * with regards to tracking sign/unsigned bounds because the bits may
6860 * cross subreg boundaries in the alu64 case. When this happens we mark
6861 * the reg unbounded in the subreg bound space and use the resulting
6862 * tnum to calculate an approximation of the sign/unsigned bounds.
6863 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006864 switch (opcode) {
6865 case BPF_ADD:
Olivier Deprez157378f2022-04-04 15:47:50 +02006866 scalar32_min_max_add(dst_reg, &src_reg);
6867 scalar_min_max_add(dst_reg, &src_reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006868 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
6869 break;
6870 case BPF_SUB:
Olivier Deprez157378f2022-04-04 15:47:50 +02006871 scalar32_min_max_sub(dst_reg, &src_reg);
6872 scalar_min_max_sub(dst_reg, &src_reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006873 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
6874 break;
6875 case BPF_MUL:
6876 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
Olivier Deprez157378f2022-04-04 15:47:50 +02006877 scalar32_min_max_mul(dst_reg, &src_reg);
6878 scalar_min_max_mul(dst_reg, &src_reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006879 break;
6880 case BPF_AND:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006881 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
Olivier Deprez157378f2022-04-04 15:47:50 +02006882 scalar32_min_max_and(dst_reg, &src_reg);
6883 scalar_min_max_and(dst_reg, &src_reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006884 break;
6885 case BPF_OR:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006886 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
Olivier Deprez157378f2022-04-04 15:47:50 +02006887 scalar32_min_max_or(dst_reg, &src_reg);
6888 scalar_min_max_or(dst_reg, &src_reg);
6889 break;
6890 case BPF_XOR:
6891 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
6892 scalar32_min_max_xor(dst_reg, &src_reg);
6893 scalar_min_max_xor(dst_reg, &src_reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006894 break;
6895 case BPF_LSH:
6896 if (umax_val >= insn_bitness) {
6897 /* Shifts greater than 31 or 63 are undefined.
6898 * This includes shifts by a negative number.
6899 */
6900 mark_reg_unknown(env, regs, insn->dst_reg);
6901 break;
6902 }
Olivier Deprez157378f2022-04-04 15:47:50 +02006903 if (alu32)
6904 scalar32_min_max_lsh(dst_reg, &src_reg);
6905 else
6906 scalar_min_max_lsh(dst_reg, &src_reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006907 break;
6908 case BPF_RSH:
6909 if (umax_val >= insn_bitness) {
6910 /* Shifts greater than 31 or 63 are undefined.
6911 * This includes shifts by a negative number.
6912 */
6913 mark_reg_unknown(env, regs, insn->dst_reg);
6914 break;
6915 }
Olivier Deprez157378f2022-04-04 15:47:50 +02006916 if (alu32)
6917 scalar32_min_max_rsh(dst_reg, &src_reg);
6918 else
6919 scalar_min_max_rsh(dst_reg, &src_reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006920 break;
6921 case BPF_ARSH:
6922 if (umax_val >= insn_bitness) {
6923 /* Shifts greater than 31 or 63 are undefined.
6924 * This includes shifts by a negative number.
6925 */
6926 mark_reg_unknown(env, regs, insn->dst_reg);
6927 break;
6928 }
Olivier Deprez157378f2022-04-04 15:47:50 +02006929 if (alu32)
6930 scalar32_min_max_arsh(dst_reg, &src_reg);
6931 else
6932 scalar_min_max_arsh(dst_reg, &src_reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006933 break;
6934 default:
6935 mark_reg_unknown(env, regs, insn->dst_reg);
6936 break;
6937 }
6938
Olivier Deprez157378f2022-04-04 15:47:50 +02006939 /* ALU32 ops are zero extended into 64bit register */
6940 if (alu32)
6941 zext_32_to_64(dst_reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006942
Olivier Deprez157378f2022-04-04 15:47:50 +02006943 __update_reg_bounds(dst_reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006944 __reg_deduce_bounds(dst_reg);
6945 __reg_bound_offset(dst_reg);
6946 return 0;
6947}
6948
6949/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
6950 * and var_off.
6951 */
6952static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
6953 struct bpf_insn *insn)
6954{
6955 struct bpf_verifier_state *vstate = env->cur_state;
6956 struct bpf_func_state *state = vstate->frame[vstate->curframe];
6957 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
6958 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
6959 u8 opcode = BPF_OP(insn->code);
David Brazdil0f672f62019-12-10 10:32:29 +00006960 int err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006961
6962 dst_reg = &regs[insn->dst_reg];
6963 src_reg = NULL;
6964 if (dst_reg->type != SCALAR_VALUE)
6965 ptr_reg = dst_reg;
Olivier Deprez157378f2022-04-04 15:47:50 +02006966 else
6967 /* Make sure ID is cleared otherwise dst_reg min/max could be
6968 * incorrectly propagated into other registers by find_equal_scalars()
6969 */
6970 dst_reg->id = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006971 if (BPF_SRC(insn->code) == BPF_X) {
6972 src_reg = &regs[insn->src_reg];
6973 if (src_reg->type != SCALAR_VALUE) {
6974 if (dst_reg->type != SCALAR_VALUE) {
6975 /* Combining two pointers by any ALU op yields
6976 * an arbitrary scalar. Disallow all math except
6977 * pointer subtraction
6978 */
6979 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6980 mark_reg_unknown(env, regs, insn->dst_reg);
6981 return 0;
6982 }
6983 verbose(env, "R%d pointer %s pointer prohibited\n",
6984 insn->dst_reg,
6985 bpf_alu_string[opcode >> 4]);
6986 return -EACCES;
6987 } else {
6988 /* scalar += pointer
6989 * This is legal, but we have to reverse our
6990 * src/dest handling in computing the range
6991 */
David Brazdil0f672f62019-12-10 10:32:29 +00006992 err = mark_chain_precision(env, insn->dst_reg);
6993 if (err)
6994 return err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006995 return adjust_ptr_min_max_vals(env, insn,
6996 src_reg, dst_reg);
6997 }
6998 } else if (ptr_reg) {
6999 /* pointer += scalar */
David Brazdil0f672f62019-12-10 10:32:29 +00007000 err = mark_chain_precision(env, insn->src_reg);
7001 if (err)
7002 return err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007003 return adjust_ptr_min_max_vals(env, insn,
7004 dst_reg, src_reg);
7005 }
7006 } else {
7007 /* Pretend the src is a reg with a known value, since we only
7008 * need to be able to read from this state.
7009 */
7010 off_reg.type = SCALAR_VALUE;
7011 __mark_reg_known(&off_reg, insn->imm);
7012 src_reg = &off_reg;
7013 if (ptr_reg) /* pointer += K */
7014 return adjust_ptr_min_max_vals(env, insn,
7015 ptr_reg, src_reg);
7016 }
7017
7018 /* Got here implies adding two SCALAR_VALUEs */
7019 if (WARN_ON_ONCE(ptr_reg)) {
7020 print_verifier_state(env, state);
7021 verbose(env, "verifier internal error: unexpected ptr_reg\n");
7022 return -EINVAL;
7023 }
7024 if (WARN_ON(!src_reg)) {
7025 print_verifier_state(env, state);
7026 verbose(env, "verifier internal error: no src_reg\n");
7027 return -EINVAL;
7028 }
7029 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
7030}
7031
7032/* check validity of 32-bit and 64-bit arithmetic operations */
7033static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
7034{
7035 struct bpf_reg_state *regs = cur_regs(env);
7036 u8 opcode = BPF_OP(insn->code);
7037 int err;
7038
7039 if (opcode == BPF_END || opcode == BPF_NEG) {
7040 if (opcode == BPF_NEG) {
7041 if (BPF_SRC(insn->code) != 0 ||
7042 insn->src_reg != BPF_REG_0 ||
7043 insn->off != 0 || insn->imm != 0) {
7044 verbose(env, "BPF_NEG uses reserved fields\n");
7045 return -EINVAL;
7046 }
7047 } else {
7048 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
7049 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
7050 BPF_CLASS(insn->code) == BPF_ALU64) {
7051 verbose(env, "BPF_END uses reserved fields\n");
7052 return -EINVAL;
7053 }
7054 }
7055
7056 /* check src operand */
7057 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7058 if (err)
7059 return err;
7060
7061 if (is_pointer_value(env, insn->dst_reg)) {
7062 verbose(env, "R%d pointer arithmetic prohibited\n",
7063 insn->dst_reg);
7064 return -EACCES;
7065 }
7066
7067 /* check dest operand */
7068 err = check_reg_arg(env, insn->dst_reg, DST_OP);
7069 if (err)
7070 return err;
7071
7072 } else if (opcode == BPF_MOV) {
7073
7074 if (BPF_SRC(insn->code) == BPF_X) {
7075 if (insn->imm != 0 || insn->off != 0) {
7076 verbose(env, "BPF_MOV uses reserved fields\n");
7077 return -EINVAL;
7078 }
7079
7080 /* check src operand */
7081 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7082 if (err)
7083 return err;
7084 } else {
7085 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7086 verbose(env, "BPF_MOV uses reserved fields\n");
7087 return -EINVAL;
7088 }
7089 }
7090
7091 /* check dest operand, mark as required later */
7092 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7093 if (err)
7094 return err;
7095
7096 if (BPF_SRC(insn->code) == BPF_X) {
David Brazdil0f672f62019-12-10 10:32:29 +00007097 struct bpf_reg_state *src_reg = regs + insn->src_reg;
7098 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
7099
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007100 if (BPF_CLASS(insn->code) == BPF_ALU64) {
7101 /* case: R1 = R2
7102 * copy register state to dest reg
7103 */
Olivier Deprez157378f2022-04-04 15:47:50 +02007104 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
7105 /* Assign src and dst registers the same ID
7106 * that will be used by find_equal_scalars()
7107 * to propagate min/max range.
7108 */
7109 src_reg->id = ++env->id_gen;
David Brazdil0f672f62019-12-10 10:32:29 +00007110 *dst_reg = *src_reg;
7111 dst_reg->live |= REG_LIVE_WRITTEN;
7112 dst_reg->subreg_def = DEF_NOT_SUBREG;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007113 } else {
7114 /* R1 = (u32) R2 */
7115 if (is_pointer_value(env, insn->src_reg)) {
7116 verbose(env,
7117 "R%d partial copy of pointer\n",
7118 insn->src_reg);
7119 return -EACCES;
David Brazdil0f672f62019-12-10 10:32:29 +00007120 } else if (src_reg->type == SCALAR_VALUE) {
7121 *dst_reg = *src_reg;
Olivier Deprez157378f2022-04-04 15:47:50 +02007122 /* Make sure ID is cleared otherwise
7123 * dst_reg min/max could be incorrectly
7124 * propagated into src_reg by find_equal_scalars()
7125 */
7126 dst_reg->id = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00007127 dst_reg->live |= REG_LIVE_WRITTEN;
7128 dst_reg->subreg_def = env->insn_idx + 1;
7129 } else {
7130 mark_reg_unknown(env, regs,
7131 insn->dst_reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007132 }
Olivier Deprez157378f2022-04-04 15:47:50 +02007133 zext_32_to_64(dst_reg);
7134
7135 __update_reg_bounds(dst_reg);
7136 __reg_deduce_bounds(dst_reg);
7137 __reg_bound_offset(dst_reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007138 }
7139 } else {
7140 /* case: R = imm
7141 * remember the value we stored into this reg
7142 */
7143 /* clear any state __mark_reg_known doesn't set */
7144 mark_reg_unknown(env, regs, insn->dst_reg);
7145 regs[insn->dst_reg].type = SCALAR_VALUE;
7146 if (BPF_CLASS(insn->code) == BPF_ALU64) {
7147 __mark_reg_known(regs + insn->dst_reg,
7148 insn->imm);
7149 } else {
7150 __mark_reg_known(regs + insn->dst_reg,
7151 (u32)insn->imm);
7152 }
7153 }
7154
7155 } else if (opcode > BPF_END) {
7156 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
7157 return -EINVAL;
7158
7159 } else { /* all other ALU ops: and, sub, xor, add, ... */
7160
7161 if (BPF_SRC(insn->code) == BPF_X) {
7162 if (insn->imm != 0 || insn->off != 0) {
7163 verbose(env, "BPF_ALU uses reserved fields\n");
7164 return -EINVAL;
7165 }
7166 /* check src1 operand */
7167 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7168 if (err)
7169 return err;
7170 } else {
7171 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7172 verbose(env, "BPF_ALU uses reserved fields\n");
7173 return -EINVAL;
7174 }
7175 }
7176
7177 /* check src2 operand */
7178 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7179 if (err)
7180 return err;
7181
7182 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
7183 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
7184 verbose(env, "div by zero\n");
7185 return -EINVAL;
7186 }
7187
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007188 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
7189 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
7190 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
7191
7192 if (insn->imm < 0 || insn->imm >= size) {
7193 verbose(env, "invalid shift %d\n", insn->imm);
7194 return -EINVAL;
7195 }
7196 }
7197
7198 /* check dest operand */
7199 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7200 if (err)
7201 return err;
7202
7203 return adjust_reg_min_max_vals(env, insn);
7204 }
7205
7206 return 0;
7207}
7208
David Brazdil0f672f62019-12-10 10:32:29 +00007209static void __find_good_pkt_pointers(struct bpf_func_state *state,
7210 struct bpf_reg_state *dst_reg,
7211 enum bpf_reg_type type, u16 new_range)
7212{
7213 struct bpf_reg_state *reg;
7214 int i;
7215
7216 for (i = 0; i < MAX_BPF_REG; i++) {
7217 reg = &state->regs[i];
7218 if (reg->type == type && reg->id == dst_reg->id)
7219 /* keep the maximum range already checked */
7220 reg->range = max(reg->range, new_range);
7221 }
7222
7223 bpf_for_each_spilled_reg(i, state, reg) {
7224 if (!reg)
7225 continue;
7226 if (reg->type == type && reg->id == dst_reg->id)
7227 reg->range = max(reg->range, new_range);
7228 }
7229}
7230
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007231static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
7232 struct bpf_reg_state *dst_reg,
7233 enum bpf_reg_type type,
7234 bool range_right_open)
7235{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007236 u16 new_range;
David Brazdil0f672f62019-12-10 10:32:29 +00007237 int i;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007238
7239 if (dst_reg->off < 0 ||
7240 (dst_reg->off == 0 && range_right_open))
7241 /* This doesn't give us any range */
7242 return;
7243
7244 if (dst_reg->umax_value > MAX_PACKET_OFF ||
7245 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
7246 /* Risk of overflow. For instance, ptr + (1<<63) may be less
7247 * than pkt_end, but that's because it's also less than pkt.
7248 */
7249 return;
7250
7251 new_range = dst_reg->off;
7252 if (range_right_open)
Olivier Deprez157378f2022-04-04 15:47:50 +02007253 new_range++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007254
7255 /* Examples for register markings:
7256 *
7257 * pkt_data in dst register:
7258 *
7259 * r2 = r3;
7260 * r2 += 8;
7261 * if (r2 > pkt_end) goto <handle exception>
7262 * <access okay>
7263 *
7264 * r2 = r3;
7265 * r2 += 8;
7266 * if (r2 < pkt_end) goto <access okay>
7267 * <handle exception>
7268 *
7269 * Where:
7270 * r2 == dst_reg, pkt_end == src_reg
7271 * r2=pkt(id=n,off=8,r=0)
7272 * r3=pkt(id=n,off=0,r=0)
7273 *
7274 * pkt_data in src register:
7275 *
7276 * r2 = r3;
7277 * r2 += 8;
7278 * if (pkt_end >= r2) goto <access okay>
7279 * <handle exception>
7280 *
7281 * r2 = r3;
7282 * r2 += 8;
7283 * if (pkt_end <= r2) goto <handle exception>
7284 * <access okay>
7285 *
7286 * Where:
7287 * pkt_end == dst_reg, r2 == src_reg
7288 * r2=pkt(id=n,off=8,r=0)
7289 * r3=pkt(id=n,off=0,r=0)
7290 *
7291 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
7292 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
7293 * and [r3, r3 + 8-1) respectively is safe to access depending on
7294 * the check.
7295 */
7296
7297 /* If our ids match, then we must have the same max_value. And we
7298 * don't care about the other reg's fixed offset, since if it's too big
7299 * the range won't allow anything.
7300 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
7301 */
David Brazdil0f672f62019-12-10 10:32:29 +00007302 for (i = 0; i <= vstate->curframe; i++)
7303 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
7304 new_range);
7305}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007306
Olivier Deprez157378f2022-04-04 15:47:50 +02007307static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
David Brazdil0f672f62019-12-10 10:32:29 +00007308{
Olivier Deprez157378f2022-04-04 15:47:50 +02007309 struct tnum subreg = tnum_subreg(reg->var_off);
7310 s32 sval = (s32)val;
David Brazdil0f672f62019-12-10 10:32:29 +00007311
Olivier Deprez157378f2022-04-04 15:47:50 +02007312 switch (opcode) {
7313 case BPF_JEQ:
7314 if (tnum_is_const(subreg))
7315 return !!tnum_equals_const(subreg, val);
7316 break;
7317 case BPF_JNE:
7318 if (tnum_is_const(subreg))
7319 return !tnum_equals_const(subreg, val);
7320 break;
7321 case BPF_JSET:
7322 if ((~subreg.mask & subreg.value) & val)
7323 return 1;
7324 if (!((subreg.mask | subreg.value) & val))
7325 return 0;
7326 break;
7327 case BPF_JGT:
7328 if (reg->u32_min_value > val)
7329 return 1;
7330 else if (reg->u32_max_value <= val)
7331 return 0;
7332 break;
7333 case BPF_JSGT:
7334 if (reg->s32_min_value > sval)
7335 return 1;
7336 else if (reg->s32_max_value <= sval)
7337 return 0;
7338 break;
7339 case BPF_JLT:
7340 if (reg->u32_max_value < val)
7341 return 1;
7342 else if (reg->u32_min_value >= val)
7343 return 0;
7344 break;
7345 case BPF_JSLT:
7346 if (reg->s32_max_value < sval)
7347 return 1;
7348 else if (reg->s32_min_value >= sval)
7349 return 0;
7350 break;
7351 case BPF_JGE:
7352 if (reg->u32_min_value >= val)
7353 return 1;
7354 else if (reg->u32_max_value < val)
7355 return 0;
7356 break;
7357 case BPF_JSGE:
7358 if (reg->s32_min_value >= sval)
7359 return 1;
7360 else if (reg->s32_max_value < sval)
7361 return 0;
7362 break;
7363 case BPF_JLE:
7364 if (reg->u32_max_value <= val)
7365 return 1;
7366 else if (reg->u32_min_value > val)
7367 return 0;
7368 break;
7369 case BPF_JSLE:
7370 if (reg->s32_max_value <= sval)
7371 return 1;
7372 else if (reg->s32_min_value > sval)
7373 return 0;
7374 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007375 }
David Brazdil0f672f62019-12-10 10:32:29 +00007376
Olivier Deprez157378f2022-04-04 15:47:50 +02007377 return -1;
7378}
7379
7380
7381static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
7382{
7383 s64 sval = (s64)val;
7384
David Brazdil0f672f62019-12-10 10:32:29 +00007385 switch (opcode) {
7386 case BPF_JEQ:
7387 if (tnum_is_const(reg->var_off))
7388 return !!tnum_equals_const(reg->var_off, val);
7389 break;
7390 case BPF_JNE:
7391 if (tnum_is_const(reg->var_off))
7392 return !tnum_equals_const(reg->var_off, val);
7393 break;
7394 case BPF_JSET:
7395 if ((~reg->var_off.mask & reg->var_off.value) & val)
7396 return 1;
7397 if (!((reg->var_off.mask | reg->var_off.value) & val))
7398 return 0;
7399 break;
7400 case BPF_JGT:
7401 if (reg->umin_value > val)
7402 return 1;
7403 else if (reg->umax_value <= val)
7404 return 0;
7405 break;
7406 case BPF_JSGT:
7407 if (reg->smin_value > sval)
7408 return 1;
Olivier Deprez157378f2022-04-04 15:47:50 +02007409 else if (reg->smax_value <= sval)
David Brazdil0f672f62019-12-10 10:32:29 +00007410 return 0;
7411 break;
7412 case BPF_JLT:
7413 if (reg->umax_value < val)
7414 return 1;
7415 else if (reg->umin_value >= val)
7416 return 0;
7417 break;
7418 case BPF_JSLT:
7419 if (reg->smax_value < sval)
7420 return 1;
7421 else if (reg->smin_value >= sval)
7422 return 0;
7423 break;
7424 case BPF_JGE:
7425 if (reg->umin_value >= val)
7426 return 1;
7427 else if (reg->umax_value < val)
7428 return 0;
7429 break;
7430 case BPF_JSGE:
7431 if (reg->smin_value >= sval)
7432 return 1;
7433 else if (reg->smax_value < sval)
7434 return 0;
7435 break;
7436 case BPF_JLE:
7437 if (reg->umax_value <= val)
7438 return 1;
7439 else if (reg->umin_value > val)
7440 return 0;
7441 break;
7442 case BPF_JSLE:
7443 if (reg->smax_value <= sval)
7444 return 1;
7445 else if (reg->smin_value > sval)
7446 return 0;
7447 break;
7448 }
7449
7450 return -1;
7451}
7452
Olivier Deprez157378f2022-04-04 15:47:50 +02007453/* compute branch direction of the expression "if (reg opcode val) goto target;"
7454 * and return:
7455 * 1 - branch will be taken and "goto target" will be executed
7456 * 0 - branch will not be taken and fall-through to next insn
7457 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
7458 * range [0,10]
David Brazdil0f672f62019-12-10 10:32:29 +00007459 */
Olivier Deprez157378f2022-04-04 15:47:50 +02007460static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
7461 bool is_jmp32)
David Brazdil0f672f62019-12-10 10:32:29 +00007462{
Olivier Deprez157378f2022-04-04 15:47:50 +02007463 if (__is_pointer_value(false, reg)) {
7464 if (!reg_type_not_null(reg->type))
7465 return -1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007466
Olivier Deprez157378f2022-04-04 15:47:50 +02007467 /* If pointer is valid tests against zero will fail so we can
7468 * use this to direct branch taken.
Olivier Deprez0e641232021-09-23 10:07:05 +02007469 */
Olivier Deprez157378f2022-04-04 15:47:50 +02007470 if (val != 0)
7471 return -1;
Olivier Deprez0e641232021-09-23 10:07:05 +02007472
Olivier Deprez157378f2022-04-04 15:47:50 +02007473 switch (opcode) {
7474 case BPF_JEQ:
7475 return 0;
7476 case BPF_JNE:
7477 return 1;
7478 default:
7479 return -1;
7480 }
Olivier Deprez0e641232021-09-23 10:07:05 +02007481 }
Olivier Deprez0e641232021-09-23 10:07:05 +02007482
Olivier Deprez157378f2022-04-04 15:47:50 +02007483 if (is_jmp32)
7484 return is_branch32_taken(reg, val, opcode);
7485 return is_branch64_taken(reg, val, opcode);
Olivier Deprez0e641232021-09-23 10:07:05 +02007486}
7487
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007488/* Adjusts the register min/max values in the case that the dst_reg is the
7489 * variable register that we are working on, and src_reg is a constant or we're
7490 * simply doing a BPF_K check.
7491 * In JEQ/JNE cases we also adjust the var_off values.
7492 */
7493static void reg_set_min_max(struct bpf_reg_state *true_reg,
Olivier Deprez157378f2022-04-04 15:47:50 +02007494 struct bpf_reg_state *false_reg,
7495 u64 val, u32 val32,
David Brazdil0f672f62019-12-10 10:32:29 +00007496 u8 opcode, bool is_jmp32)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007497{
Olivier Deprez157378f2022-04-04 15:47:50 +02007498 struct tnum false_32off = tnum_subreg(false_reg->var_off);
7499 struct tnum false_64off = false_reg->var_off;
7500 struct tnum true_32off = tnum_subreg(true_reg->var_off);
7501 struct tnum true_64off = true_reg->var_off;
7502 s64 sval = (s64)val;
7503 s32 sval32 = (s32)val32;
David Brazdil0f672f62019-12-10 10:32:29 +00007504
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007505 /* If the dst_reg is a pointer, we can't learn anything about its
7506 * variable offset from the compare (unless src_reg were a pointer into
7507 * the same object, but we don't bother with that.
7508 * Since false_reg and true_reg have the same type by construction, we
7509 * only need to check one of them for pointerness.
7510 */
7511 if (__is_pointer_value(false, false_reg))
7512 return;
7513
7514 switch (opcode) {
7515 case BPF_JEQ:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007516 case BPF_JNE:
David Brazdil0f672f62019-12-10 10:32:29 +00007517 {
7518 struct bpf_reg_state *reg =
7519 opcode == BPF_JEQ ? true_reg : false_reg;
7520
Olivier Deprez157378f2022-04-04 15:47:50 +02007521 /* JEQ/JNE comparison doesn't change the register equivalence.
7522 * r1 = r2;
7523 * if (r1 == 42) goto label;
7524 * ...
7525 * label: // here both r1 and r2 are known to be 42.
7526 *
7527 * Hence when marking register as known preserve it's ID.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007528 */
Olivier Deprez157378f2022-04-04 15:47:50 +02007529 if (is_jmp32)
7530 __mark_reg32_known(reg, val32);
7531 else
7532 ___mark_reg_known(reg, val);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007533 break;
David Brazdil0f672f62019-12-10 10:32:29 +00007534 }
7535 case BPF_JSET:
Olivier Deprez157378f2022-04-04 15:47:50 +02007536 if (is_jmp32) {
7537 false_32off = tnum_and(false_32off, tnum_const(~val32));
7538 if (is_power_of_2(val32))
7539 true_32off = tnum_or(true_32off,
7540 tnum_const(val32));
7541 } else {
7542 false_64off = tnum_and(false_64off, tnum_const(~val));
7543 if (is_power_of_2(val))
7544 true_64off = tnum_or(true_64off,
7545 tnum_const(val));
7546 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007547 break;
7548 case BPF_JGE:
David Brazdil0f672f62019-12-10 10:32:29 +00007549 case BPF_JGT:
7550 {
Olivier Deprez157378f2022-04-04 15:47:50 +02007551 if (is_jmp32) {
7552 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
7553 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
7554
7555 false_reg->u32_max_value = min(false_reg->u32_max_value,
7556 false_umax);
7557 true_reg->u32_min_value = max(true_reg->u32_min_value,
7558 true_umin);
7559 } else {
7560 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
7561 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
7562
7563 false_reg->umax_value = min(false_reg->umax_value, false_umax);
7564 true_reg->umin_value = max(true_reg->umin_value, true_umin);
7565 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007566 break;
David Brazdil0f672f62019-12-10 10:32:29 +00007567 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007568 case BPF_JSGE:
David Brazdil0f672f62019-12-10 10:32:29 +00007569 case BPF_JSGT:
7570 {
Olivier Deprez157378f2022-04-04 15:47:50 +02007571 if (is_jmp32) {
7572 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
7573 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
David Brazdil0f672f62019-12-10 10:32:29 +00007574
Olivier Deprez157378f2022-04-04 15:47:50 +02007575 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
7576 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
7577 } else {
7578 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
7579 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
7580
7581 false_reg->smax_value = min(false_reg->smax_value, false_smax);
7582 true_reg->smin_value = max(true_reg->smin_value, true_smin);
7583 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007584 break;
David Brazdil0f672f62019-12-10 10:32:29 +00007585 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007586 case BPF_JLE:
David Brazdil0f672f62019-12-10 10:32:29 +00007587 case BPF_JLT:
7588 {
Olivier Deprez157378f2022-04-04 15:47:50 +02007589 if (is_jmp32) {
7590 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
7591 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
7592
7593 false_reg->u32_min_value = max(false_reg->u32_min_value,
7594 false_umin);
7595 true_reg->u32_max_value = min(true_reg->u32_max_value,
7596 true_umax);
7597 } else {
7598 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
7599 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
7600
7601 false_reg->umin_value = max(false_reg->umin_value, false_umin);
7602 true_reg->umax_value = min(true_reg->umax_value, true_umax);
7603 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007604 break;
David Brazdil0f672f62019-12-10 10:32:29 +00007605 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007606 case BPF_JSLE:
David Brazdil0f672f62019-12-10 10:32:29 +00007607 case BPF_JSLT:
7608 {
Olivier Deprez157378f2022-04-04 15:47:50 +02007609 if (is_jmp32) {
7610 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
7611 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
David Brazdil0f672f62019-12-10 10:32:29 +00007612
Olivier Deprez157378f2022-04-04 15:47:50 +02007613 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
7614 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
7615 } else {
7616 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
7617 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
7618
7619 false_reg->smin_value = max(false_reg->smin_value, false_smin);
7620 true_reg->smax_value = min(true_reg->smax_value, true_smax);
7621 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007622 break;
David Brazdil0f672f62019-12-10 10:32:29 +00007623 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007624 default:
Olivier Deprez157378f2022-04-04 15:47:50 +02007625 return;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007626 }
7627
Olivier Deprez157378f2022-04-04 15:47:50 +02007628 if (is_jmp32) {
7629 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
7630 tnum_subreg(false_32off));
7631 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
7632 tnum_subreg(true_32off));
7633 __reg_combine_32_into_64(false_reg);
7634 __reg_combine_32_into_64(true_reg);
7635 } else {
7636 false_reg->var_off = false_64off;
7637 true_reg->var_off = true_64off;
7638 __reg_combine_64_into_32(false_reg);
7639 __reg_combine_64_into_32(true_reg);
7640 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007641}
7642
7643/* Same as above, but for the case that dst_reg holds a constant and src_reg is
7644 * the variable reg.
7645 */
7646static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
Olivier Deprez157378f2022-04-04 15:47:50 +02007647 struct bpf_reg_state *false_reg,
7648 u64 val, u32 val32,
David Brazdil0f672f62019-12-10 10:32:29 +00007649 u8 opcode, bool is_jmp32)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007650{
Olivier Deprez157378f2022-04-04 15:47:50 +02007651 /* How can we transform "a <op> b" into "b <op> a"? */
7652 static const u8 opcode_flip[16] = {
7653 /* these stay the same */
7654 [BPF_JEQ >> 4] = BPF_JEQ,
7655 [BPF_JNE >> 4] = BPF_JNE,
7656 [BPF_JSET >> 4] = BPF_JSET,
7657 /* these swap "lesser" and "greater" (L and G in the opcodes) */
7658 [BPF_JGE >> 4] = BPF_JLE,
7659 [BPF_JGT >> 4] = BPF_JLT,
7660 [BPF_JLE >> 4] = BPF_JGE,
7661 [BPF_JLT >> 4] = BPF_JGT,
7662 [BPF_JSGE >> 4] = BPF_JSLE,
7663 [BPF_JSGT >> 4] = BPF_JSLT,
7664 [BPF_JSLE >> 4] = BPF_JSGE,
7665 [BPF_JSLT >> 4] = BPF_JSGT
7666 };
7667 opcode = opcode_flip[opcode >> 4];
7668 /* This uses zero as "not present in table"; luckily the zero opcode,
7669 * BPF_JA, can't get here.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007670 */
Olivier Deprez157378f2022-04-04 15:47:50 +02007671 if (opcode)
7672 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007673}
7674
7675/* Regs are known to be equal, so intersect their min/max/var_off */
7676static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
7677 struct bpf_reg_state *dst_reg)
7678{
7679 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
7680 dst_reg->umin_value);
7681 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
7682 dst_reg->umax_value);
7683 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
7684 dst_reg->smin_value);
7685 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
7686 dst_reg->smax_value);
7687 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
7688 dst_reg->var_off);
7689 /* We might have learned new bounds from the var_off. */
7690 __update_reg_bounds(src_reg);
7691 __update_reg_bounds(dst_reg);
7692 /* We might have learned something about the sign bit. */
7693 __reg_deduce_bounds(src_reg);
7694 __reg_deduce_bounds(dst_reg);
7695 /* We might have learned some bits from the bounds. */
7696 __reg_bound_offset(src_reg);
7697 __reg_bound_offset(dst_reg);
7698 /* Intersecting with the old var_off might have improved our bounds
7699 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
7700 * then new var_off is (0; 0x7f...fc) which improves our umax.
7701 */
7702 __update_reg_bounds(src_reg);
7703 __update_reg_bounds(dst_reg);
7704}
7705
7706static void reg_combine_min_max(struct bpf_reg_state *true_src,
7707 struct bpf_reg_state *true_dst,
7708 struct bpf_reg_state *false_src,
7709 struct bpf_reg_state *false_dst,
7710 u8 opcode)
7711{
7712 switch (opcode) {
7713 case BPF_JEQ:
7714 __reg_combine_min_max(true_src, true_dst);
7715 break;
7716 case BPF_JNE:
7717 __reg_combine_min_max(false_src, false_dst);
7718 break;
7719 }
7720}
7721
David Brazdil0f672f62019-12-10 10:32:29 +00007722static void mark_ptr_or_null_reg(struct bpf_func_state *state,
7723 struct bpf_reg_state *reg, u32 id,
7724 bool is_null)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007725{
Olivier Deprez157378f2022-04-04 15:47:50 +02007726 if (reg_type_may_be_null(reg->type) && reg->id == id &&
7727 !WARN_ON_ONCE(!reg->id)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007728 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
7729 !tnum_equals_const(reg->var_off, 0) ||
7730 reg->off)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02007731 /* Old offset (both fixed and variable parts) should
7732 * have been known-zero, because we don't allow pointer
7733 * arithmetic on pointers that might be NULL. If we
7734 * see this happening, don't convert the register.
7735 */
7736 return;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007737 }
7738 if (is_null) {
7739 reg->type = SCALAR_VALUE;
David Brazdil0f672f62019-12-10 10:32:29 +00007740 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
Olivier Deprez157378f2022-04-04 15:47:50 +02007741 const struct bpf_map *map = reg->map_ptr;
7742
7743 if (map->inner_map_meta) {
David Brazdil0f672f62019-12-10 10:32:29 +00007744 reg->type = CONST_PTR_TO_MAP;
Olivier Deprez157378f2022-04-04 15:47:50 +02007745 reg->map_ptr = map->inner_map_meta;
7746 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
David Brazdil0f672f62019-12-10 10:32:29 +00007747 reg->type = PTR_TO_XDP_SOCK;
Olivier Deprez157378f2022-04-04 15:47:50 +02007748 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
7749 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
7750 reg->type = PTR_TO_SOCKET;
David Brazdil0f672f62019-12-10 10:32:29 +00007751 } else {
7752 reg->type = PTR_TO_MAP_VALUE;
7753 }
7754 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
7755 reg->type = PTR_TO_SOCKET;
7756 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
7757 reg->type = PTR_TO_SOCK_COMMON;
7758 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
7759 reg->type = PTR_TO_TCP_SOCK;
Olivier Deprez157378f2022-04-04 15:47:50 +02007760 } else if (reg->type == PTR_TO_BTF_ID_OR_NULL) {
7761 reg->type = PTR_TO_BTF_ID;
7762 } else if (reg->type == PTR_TO_MEM_OR_NULL) {
7763 reg->type = PTR_TO_MEM;
7764 } else if (reg->type == PTR_TO_RDONLY_BUF_OR_NULL) {
7765 reg->type = PTR_TO_RDONLY_BUF;
7766 } else if (reg->type == PTR_TO_RDWR_BUF_OR_NULL) {
7767 reg->type = PTR_TO_RDWR_BUF;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007768 }
David Brazdil0f672f62019-12-10 10:32:29 +00007769 if (is_null) {
7770 /* We don't need id and ref_obj_id from this point
7771 * onwards anymore, thus we should better reset it,
7772 * so that state pruning has chances to take effect.
7773 */
7774 reg->id = 0;
7775 reg->ref_obj_id = 0;
7776 } else if (!reg_may_point_to_spin_lock(reg)) {
7777 /* For not-NULL ptr, reg->ref_obj_id will be reset
7778 * in release_reg_references().
7779 *
7780 * reg->id is still used by spin_lock ptr. Other
7781 * than spin_lock ptr type, reg->id can be reset.
7782 */
7783 reg->id = 0;
7784 }
7785 }
7786}
7787
7788static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
7789 bool is_null)
7790{
7791 struct bpf_reg_state *reg;
7792 int i;
7793
7794 for (i = 0; i < MAX_BPF_REG; i++)
7795 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
7796
7797 bpf_for_each_spilled_reg(i, state, reg) {
7798 if (!reg)
7799 continue;
7800 mark_ptr_or_null_reg(state, reg, id, is_null);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007801 }
7802}
7803
7804/* The logic is similar to find_good_pkt_pointers(), both could eventually
7805 * be folded together at some point.
7806 */
David Brazdil0f672f62019-12-10 10:32:29 +00007807static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
7808 bool is_null)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007809{
7810 struct bpf_func_state *state = vstate->frame[vstate->curframe];
7811 struct bpf_reg_state *regs = state->regs;
David Brazdil0f672f62019-12-10 10:32:29 +00007812 u32 ref_obj_id = regs[regno].ref_obj_id;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007813 u32 id = regs[regno].id;
David Brazdil0f672f62019-12-10 10:32:29 +00007814 int i;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007815
David Brazdil0f672f62019-12-10 10:32:29 +00007816 if (ref_obj_id && ref_obj_id == id && is_null)
7817 /* regs[regno] is in the " == NULL" branch.
7818 * No one could have freed the reference state before
7819 * doing the NULL check.
7820 */
7821 WARN_ON_ONCE(release_reference_state(state, id));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007822
David Brazdil0f672f62019-12-10 10:32:29 +00007823 for (i = 0; i <= vstate->curframe; i++)
7824 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007825}
7826
7827static bool try_match_pkt_pointers(const struct bpf_insn *insn,
7828 struct bpf_reg_state *dst_reg,
7829 struct bpf_reg_state *src_reg,
7830 struct bpf_verifier_state *this_branch,
7831 struct bpf_verifier_state *other_branch)
7832{
7833 if (BPF_SRC(insn->code) != BPF_X)
7834 return false;
7835
David Brazdil0f672f62019-12-10 10:32:29 +00007836 /* Pointers are always 64-bit. */
7837 if (BPF_CLASS(insn->code) == BPF_JMP32)
7838 return false;
7839
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007840 switch (BPF_OP(insn->code)) {
7841 case BPF_JGT:
7842 if ((dst_reg->type == PTR_TO_PACKET &&
7843 src_reg->type == PTR_TO_PACKET_END) ||
7844 (dst_reg->type == PTR_TO_PACKET_META &&
7845 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7846 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
7847 find_good_pkt_pointers(this_branch, dst_reg,
7848 dst_reg->type, false);
7849 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7850 src_reg->type == PTR_TO_PACKET) ||
7851 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7852 src_reg->type == PTR_TO_PACKET_META)) {
7853 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
7854 find_good_pkt_pointers(other_branch, src_reg,
7855 src_reg->type, true);
7856 } else {
7857 return false;
7858 }
7859 break;
7860 case BPF_JLT:
7861 if ((dst_reg->type == PTR_TO_PACKET &&
7862 src_reg->type == PTR_TO_PACKET_END) ||
7863 (dst_reg->type == PTR_TO_PACKET_META &&
7864 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7865 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
7866 find_good_pkt_pointers(other_branch, dst_reg,
7867 dst_reg->type, true);
7868 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7869 src_reg->type == PTR_TO_PACKET) ||
7870 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7871 src_reg->type == PTR_TO_PACKET_META)) {
7872 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
7873 find_good_pkt_pointers(this_branch, src_reg,
7874 src_reg->type, false);
7875 } else {
7876 return false;
7877 }
7878 break;
7879 case BPF_JGE:
7880 if ((dst_reg->type == PTR_TO_PACKET &&
7881 src_reg->type == PTR_TO_PACKET_END) ||
7882 (dst_reg->type == PTR_TO_PACKET_META &&
7883 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7884 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
7885 find_good_pkt_pointers(this_branch, dst_reg,
7886 dst_reg->type, true);
7887 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7888 src_reg->type == PTR_TO_PACKET) ||
7889 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7890 src_reg->type == PTR_TO_PACKET_META)) {
7891 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
7892 find_good_pkt_pointers(other_branch, src_reg,
7893 src_reg->type, false);
7894 } else {
7895 return false;
7896 }
7897 break;
7898 case BPF_JLE:
7899 if ((dst_reg->type == PTR_TO_PACKET &&
7900 src_reg->type == PTR_TO_PACKET_END) ||
7901 (dst_reg->type == PTR_TO_PACKET_META &&
7902 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7903 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
7904 find_good_pkt_pointers(other_branch, dst_reg,
7905 dst_reg->type, false);
7906 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7907 src_reg->type == PTR_TO_PACKET) ||
7908 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7909 src_reg->type == PTR_TO_PACKET_META)) {
7910 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
7911 find_good_pkt_pointers(this_branch, src_reg,
7912 src_reg->type, true);
7913 } else {
7914 return false;
7915 }
7916 break;
7917 default:
7918 return false;
7919 }
7920
7921 return true;
7922}
7923
Olivier Deprez157378f2022-04-04 15:47:50 +02007924static void find_equal_scalars(struct bpf_verifier_state *vstate,
7925 struct bpf_reg_state *known_reg)
7926{
7927 struct bpf_func_state *state;
7928 struct bpf_reg_state *reg;
7929 int i, j;
7930
7931 for (i = 0; i <= vstate->curframe; i++) {
7932 state = vstate->frame[i];
7933 for (j = 0; j < MAX_BPF_REG; j++) {
7934 reg = &state->regs[j];
7935 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
7936 *reg = *known_reg;
7937 }
7938
7939 bpf_for_each_spilled_reg(j, state, reg) {
7940 if (!reg)
7941 continue;
7942 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
7943 *reg = *known_reg;
7944 }
7945 }
7946}
7947
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007948static int check_cond_jmp_op(struct bpf_verifier_env *env,
7949 struct bpf_insn *insn, int *insn_idx)
7950{
7951 struct bpf_verifier_state *this_branch = env->cur_state;
7952 struct bpf_verifier_state *other_branch;
7953 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
David Brazdil0f672f62019-12-10 10:32:29 +00007954 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007955 u8 opcode = BPF_OP(insn->code);
David Brazdil0f672f62019-12-10 10:32:29 +00007956 bool is_jmp32;
7957 int pred = -1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007958 int err;
7959
David Brazdil0f672f62019-12-10 10:32:29 +00007960 /* Only conditional jumps are expected to reach here. */
7961 if (opcode == BPF_JA || opcode > BPF_JSLE) {
7962 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007963 return -EINVAL;
7964 }
7965
7966 if (BPF_SRC(insn->code) == BPF_X) {
7967 if (insn->imm != 0) {
David Brazdil0f672f62019-12-10 10:32:29 +00007968 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007969 return -EINVAL;
7970 }
7971
7972 /* check src1 operand */
7973 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7974 if (err)
7975 return err;
7976
7977 if (is_pointer_value(env, insn->src_reg)) {
7978 verbose(env, "R%d pointer comparison prohibited\n",
7979 insn->src_reg);
7980 return -EACCES;
7981 }
David Brazdil0f672f62019-12-10 10:32:29 +00007982 src_reg = &regs[insn->src_reg];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007983 } else {
7984 if (insn->src_reg != BPF_REG_0) {
David Brazdil0f672f62019-12-10 10:32:29 +00007985 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007986 return -EINVAL;
7987 }
7988 }
7989
7990 /* check src2 operand */
7991 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7992 if (err)
7993 return err;
7994
7995 dst_reg = &regs[insn->dst_reg];
David Brazdil0f672f62019-12-10 10:32:29 +00007996 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007997
Olivier Deprez157378f2022-04-04 15:47:50 +02007998 if (BPF_SRC(insn->code) == BPF_K) {
7999 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
8000 } else if (src_reg->type == SCALAR_VALUE &&
8001 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
8002 pred = is_branch_taken(dst_reg,
8003 tnum_subreg(src_reg->var_off).value,
8004 opcode,
8005 is_jmp32);
8006 } else if (src_reg->type == SCALAR_VALUE &&
8007 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
8008 pred = is_branch_taken(dst_reg,
8009 src_reg->var_off.value,
8010 opcode,
8011 is_jmp32);
8012 }
8013
David Brazdil0f672f62019-12-10 10:32:29 +00008014 if (pred >= 0) {
Olivier Deprez157378f2022-04-04 15:47:50 +02008015 /* If we get here with a dst_reg pointer type it is because
8016 * above is_branch_taken() special cased the 0 comparison.
8017 */
8018 if (!__is_pointer_value(false, dst_reg))
8019 err = mark_chain_precision(env, insn->dst_reg);
David Brazdil0f672f62019-12-10 10:32:29 +00008020 if (BPF_SRC(insn->code) == BPF_X && !err)
8021 err = mark_chain_precision(env, insn->src_reg);
8022 if (err)
8023 return err;
8024 }
Olivier Deprez0e641232021-09-23 10:07:05 +02008025
David Brazdil0f672f62019-12-10 10:32:29 +00008026 if (pred == 1) {
Olivier Deprez0e641232021-09-23 10:07:05 +02008027 /* Only follow the goto, ignore fall-through. If needed, push
8028 * the fall-through branch for simulation under speculative
8029 * execution.
8030 */
Olivier Deprez157378f2022-04-04 15:47:50 +02008031 if (!env->bypass_spec_v1 &&
Olivier Deprez0e641232021-09-23 10:07:05 +02008032 !sanitize_speculative_path(env, insn, *insn_idx + 1,
8033 *insn_idx))
8034 return -EFAULT;
David Brazdil0f672f62019-12-10 10:32:29 +00008035 *insn_idx += insn->off;
8036 return 0;
8037 } else if (pred == 0) {
Olivier Deprez0e641232021-09-23 10:07:05 +02008038 /* Only follow the fall-through branch, since that's where the
8039 * program will go. If needed, push the goto branch for
8040 * simulation under speculative execution.
David Brazdil0f672f62019-12-10 10:32:29 +00008041 */
Olivier Deprez157378f2022-04-04 15:47:50 +02008042 if (!env->bypass_spec_v1 &&
Olivier Deprez0e641232021-09-23 10:07:05 +02008043 !sanitize_speculative_path(env, insn,
8044 *insn_idx + insn->off + 1,
8045 *insn_idx))
8046 return -EFAULT;
David Brazdil0f672f62019-12-10 10:32:29 +00008047 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008048 }
8049
David Brazdil0f672f62019-12-10 10:32:29 +00008050 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
8051 false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008052 if (!other_branch)
8053 return -EFAULT;
8054 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
8055
8056 /* detect if we are comparing against a constant value so we can adjust
8057 * our min/max values for our dst register.
8058 * this is only legit if both are scalars (or pointers to the same
8059 * object, I suppose, but we don't support that right now), because
8060 * otherwise the different base pointers mean the offsets aren't
8061 * comparable.
8062 */
8063 if (BPF_SRC(insn->code) == BPF_X) {
David Brazdil0f672f62019-12-10 10:32:29 +00008064 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
David Brazdil0f672f62019-12-10 10:32:29 +00008065
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008066 if (dst_reg->type == SCALAR_VALUE &&
David Brazdil0f672f62019-12-10 10:32:29 +00008067 src_reg->type == SCALAR_VALUE) {
8068 if (tnum_is_const(src_reg->var_off) ||
Olivier Deprez157378f2022-04-04 15:47:50 +02008069 (is_jmp32 &&
8070 tnum_is_const(tnum_subreg(src_reg->var_off))))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008071 reg_set_min_max(&other_branch_regs[insn->dst_reg],
David Brazdil0f672f62019-12-10 10:32:29 +00008072 dst_reg,
Olivier Deprez157378f2022-04-04 15:47:50 +02008073 src_reg->var_off.value,
8074 tnum_subreg(src_reg->var_off).value,
David Brazdil0f672f62019-12-10 10:32:29 +00008075 opcode, is_jmp32);
8076 else if (tnum_is_const(dst_reg->var_off) ||
Olivier Deprez157378f2022-04-04 15:47:50 +02008077 (is_jmp32 &&
8078 tnum_is_const(tnum_subreg(dst_reg->var_off))))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008079 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
David Brazdil0f672f62019-12-10 10:32:29 +00008080 src_reg,
Olivier Deprez157378f2022-04-04 15:47:50 +02008081 dst_reg->var_off.value,
8082 tnum_subreg(dst_reg->var_off).value,
David Brazdil0f672f62019-12-10 10:32:29 +00008083 opcode, is_jmp32);
8084 else if (!is_jmp32 &&
8085 (opcode == BPF_JEQ || opcode == BPF_JNE))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008086 /* Comparing for equality, we can combine knowledge */
8087 reg_combine_min_max(&other_branch_regs[insn->src_reg],
8088 &other_branch_regs[insn->dst_reg],
David Brazdil0f672f62019-12-10 10:32:29 +00008089 src_reg, dst_reg, opcode);
Olivier Deprez157378f2022-04-04 15:47:50 +02008090 if (src_reg->id &&
8091 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
8092 find_equal_scalars(this_branch, src_reg);
8093 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
8094 }
8095
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008096 }
8097 } else if (dst_reg->type == SCALAR_VALUE) {
8098 reg_set_min_max(&other_branch_regs[insn->dst_reg],
Olivier Deprez157378f2022-04-04 15:47:50 +02008099 dst_reg, insn->imm, (u32)insn->imm,
8100 opcode, is_jmp32);
8101 }
8102
8103 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
8104 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
8105 find_equal_scalars(this_branch, dst_reg);
8106 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008107 }
8108
David Brazdil0f672f62019-12-10 10:32:29 +00008109 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
8110 * NOTE: these optimizations below are related with pointer comparison
8111 * which will never be JMP32.
8112 */
8113 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008114 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
David Brazdil0f672f62019-12-10 10:32:29 +00008115 reg_type_may_be_null(dst_reg->type)) {
8116 /* Mark all identical registers in each branch as either
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008117 * safe or unknown depending R == 0 or R != 0 conditional.
8118 */
David Brazdil0f672f62019-12-10 10:32:29 +00008119 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
8120 opcode == BPF_JNE);
8121 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
8122 opcode == BPF_JEQ);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008123 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
8124 this_branch, other_branch) &&
8125 is_pointer_value(env, insn->dst_reg)) {
8126 verbose(env, "R%d pointer comparison prohibited\n",
8127 insn->dst_reg);
8128 return -EACCES;
8129 }
David Brazdil0f672f62019-12-10 10:32:29 +00008130 if (env->log.level & BPF_LOG_LEVEL)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008131 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
8132 return 0;
8133}
8134
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008135/* verify BPF_LD_IMM64 instruction */
8136static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
8137{
David Brazdil0f672f62019-12-10 10:32:29 +00008138 struct bpf_insn_aux_data *aux = cur_aux(env);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008139 struct bpf_reg_state *regs = cur_regs(env);
Olivier Deprez157378f2022-04-04 15:47:50 +02008140 struct bpf_reg_state *dst_reg;
David Brazdil0f672f62019-12-10 10:32:29 +00008141 struct bpf_map *map;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008142 int err;
8143
8144 if (BPF_SIZE(insn->code) != BPF_DW) {
8145 verbose(env, "invalid BPF_LD_IMM insn\n");
8146 return -EINVAL;
8147 }
8148 if (insn->off != 0) {
8149 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
8150 return -EINVAL;
8151 }
8152
8153 err = check_reg_arg(env, insn->dst_reg, DST_OP);
8154 if (err)
8155 return err;
8156
Olivier Deprez157378f2022-04-04 15:47:50 +02008157 dst_reg = &regs[insn->dst_reg];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008158 if (insn->src_reg == 0) {
8159 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
8160
Olivier Deprez157378f2022-04-04 15:47:50 +02008161 dst_reg->type = SCALAR_VALUE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008162 __mark_reg_known(&regs[insn->dst_reg], imm);
8163 return 0;
8164 }
8165
Olivier Deprez157378f2022-04-04 15:47:50 +02008166 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
8167 mark_reg_known_zero(env, regs, insn->dst_reg);
8168
8169 dst_reg->type = aux->btf_var.reg_type;
8170 switch (dst_reg->type) {
8171 case PTR_TO_MEM:
8172 dst_reg->mem_size = aux->btf_var.mem_size;
8173 break;
8174 case PTR_TO_BTF_ID:
8175 case PTR_TO_PERCPU_BTF_ID:
8176 dst_reg->btf_id = aux->btf_var.btf_id;
8177 break;
8178 default:
8179 verbose(env, "bpf verifier is misconfigured\n");
8180 return -EFAULT;
8181 }
8182 return 0;
8183 }
8184
David Brazdil0f672f62019-12-10 10:32:29 +00008185 map = env->used_maps[aux->map_index];
8186 mark_reg_known_zero(env, regs, insn->dst_reg);
Olivier Deprez157378f2022-04-04 15:47:50 +02008187 dst_reg->map_ptr = map;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008188
David Brazdil0f672f62019-12-10 10:32:29 +00008189 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
Olivier Deprez157378f2022-04-04 15:47:50 +02008190 dst_reg->type = PTR_TO_MAP_VALUE;
8191 dst_reg->off = aux->map_off;
David Brazdil0f672f62019-12-10 10:32:29 +00008192 if (map_value_has_spin_lock(map))
Olivier Deprez157378f2022-04-04 15:47:50 +02008193 dst_reg->id = ++env->id_gen;
David Brazdil0f672f62019-12-10 10:32:29 +00008194 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
Olivier Deprez157378f2022-04-04 15:47:50 +02008195 dst_reg->type = CONST_PTR_TO_MAP;
David Brazdil0f672f62019-12-10 10:32:29 +00008196 } else {
8197 verbose(env, "bpf verifier is misconfigured\n");
8198 return -EINVAL;
8199 }
8200
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008201 return 0;
8202}
8203
8204static bool may_access_skb(enum bpf_prog_type type)
8205{
8206 switch (type) {
8207 case BPF_PROG_TYPE_SOCKET_FILTER:
8208 case BPF_PROG_TYPE_SCHED_CLS:
8209 case BPF_PROG_TYPE_SCHED_ACT:
8210 return true;
8211 default:
8212 return false;
8213 }
8214}
8215
8216/* verify safety of LD_ABS|LD_IND instructions:
8217 * - they can only appear in the programs where ctx == skb
8218 * - since they are wrappers of function calls, they scratch R1-R5 registers,
8219 * preserve R6-R9, and store return value into R0
8220 *
8221 * Implicit input:
8222 * ctx == skb == R6 == CTX
8223 *
8224 * Explicit input:
8225 * SRC == any register
8226 * IMM == 32-bit immediate
8227 *
8228 * Output:
8229 * R0 - 8/16/32-bit skb data converted to cpu endianness
8230 */
8231static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
8232{
8233 struct bpf_reg_state *regs = cur_regs(env);
Olivier Deprez0e641232021-09-23 10:07:05 +02008234 static const int ctx_reg = BPF_REG_6;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008235 u8 mode = BPF_MODE(insn->code);
8236 int i, err;
8237
Olivier Deprez157378f2022-04-04 15:47:50 +02008238 if (!may_access_skb(resolve_prog_type(env->prog))) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008239 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
8240 return -EINVAL;
8241 }
8242
8243 if (!env->ops->gen_ld_abs) {
8244 verbose(env, "bpf verifier is misconfigured\n");
8245 return -EINVAL;
8246 }
8247
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008248 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
8249 BPF_SIZE(insn->code) == BPF_DW ||
8250 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
8251 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
8252 return -EINVAL;
8253 }
8254
8255 /* check whether implicit source operand (register R6) is readable */
Olivier Deprez0e641232021-09-23 10:07:05 +02008256 err = check_reg_arg(env, ctx_reg, SRC_OP);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008257 if (err)
8258 return err;
8259
David Brazdil0f672f62019-12-10 10:32:29 +00008260 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
8261 * gen_ld_abs() may terminate the program at runtime, leading to
8262 * reference leak.
8263 */
8264 err = check_reference_leak(env);
8265 if (err) {
8266 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
8267 return err;
8268 }
8269
8270 if (env->cur_state->active_spin_lock) {
8271 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
8272 return -EINVAL;
8273 }
8274
Olivier Deprez0e641232021-09-23 10:07:05 +02008275 if (regs[ctx_reg].type != PTR_TO_CTX) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008276 verbose(env,
8277 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
8278 return -EINVAL;
8279 }
8280
8281 if (mode == BPF_IND) {
8282 /* check explicit source operand */
8283 err = check_reg_arg(env, insn->src_reg, SRC_OP);
8284 if (err)
8285 return err;
8286 }
8287
Olivier Deprez0e641232021-09-23 10:07:05 +02008288 err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
8289 if (err < 0)
8290 return err;
8291
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008292 /* reset caller saved regs to unreadable */
8293 for (i = 0; i < CALLER_SAVED_REGS; i++) {
8294 mark_reg_not_init(env, regs, caller_saved[i]);
8295 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8296 }
8297
8298 /* mark destination R0 register as readable, since it contains
8299 * the value fetched from the packet.
8300 * Already marked as written above.
8301 */
8302 mark_reg_unknown(env, regs, BPF_REG_0);
David Brazdil0f672f62019-12-10 10:32:29 +00008303 /* ld_abs load up to 32-bit skb data. */
8304 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008305 return 0;
8306}
8307
8308static int check_return_code(struct bpf_verifier_env *env)
8309{
David Brazdil0f672f62019-12-10 10:32:29 +00008310 struct tnum enforce_attach_type_range = tnum_unknown;
Olivier Deprez157378f2022-04-04 15:47:50 +02008311 const struct bpf_prog *prog = env->prog;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008312 struct bpf_reg_state *reg;
8313 struct tnum range = tnum_range(0, 1);
Olivier Deprez157378f2022-04-04 15:47:50 +02008314 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
8315 int err;
8316 const bool is_subprog = env->cur_state->frame[0]->subprogno;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008317
Olivier Deprez157378f2022-04-04 15:47:50 +02008318 /* LSM and struct_ops func-ptr's return type could be "void" */
8319 if (!is_subprog &&
8320 (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
8321 prog_type == BPF_PROG_TYPE_LSM) &&
8322 !prog->aux->attach_func_proto->type)
8323 return 0;
8324
8325 /* eBPF calling convetion is such that R0 is used
8326 * to return the value from eBPF program.
8327 * Make sure that it's readable at this time
8328 * of bpf_exit, which means that program wrote
8329 * something into it earlier
8330 */
8331 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
8332 if (err)
8333 return err;
8334
8335 if (is_pointer_value(env, BPF_REG_0)) {
8336 verbose(env, "R0 leaks addr as return value\n");
8337 return -EACCES;
8338 }
8339
8340 reg = cur_regs(env) + BPF_REG_0;
8341 if (is_subprog) {
8342 if (reg->type != SCALAR_VALUE) {
8343 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
8344 reg_type_str[reg->type]);
8345 return -EINVAL;
8346 }
8347 return 0;
8348 }
8349
8350 switch (prog_type) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008351 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
David Brazdil0f672f62019-12-10 10:32:29 +00008352 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
Olivier Deprez157378f2022-04-04 15:47:50 +02008353 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
8354 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
8355 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
8356 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
8357 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
David Brazdil0f672f62019-12-10 10:32:29 +00008358 range = tnum_range(1, 1);
8359 break;
8360 case BPF_PROG_TYPE_CGROUP_SKB:
8361 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
8362 range = tnum_range(0, 3);
8363 enforce_attach_type_range = tnum_range(2, 3);
8364 }
8365 break;
8366 case BPF_PROG_TYPE_CGROUP_SOCK:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008367 case BPF_PROG_TYPE_SOCK_OPS:
8368 case BPF_PROG_TYPE_CGROUP_DEVICE:
David Brazdil0f672f62019-12-10 10:32:29 +00008369 case BPF_PROG_TYPE_CGROUP_SYSCTL:
8370 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008371 break;
Olivier Deprez157378f2022-04-04 15:47:50 +02008372 case BPF_PROG_TYPE_RAW_TRACEPOINT:
8373 if (!env->prog->aux->attach_btf_id)
8374 return 0;
8375 range = tnum_const(0);
8376 break;
8377 case BPF_PROG_TYPE_TRACING:
8378 switch (env->prog->expected_attach_type) {
8379 case BPF_TRACE_FENTRY:
8380 case BPF_TRACE_FEXIT:
8381 range = tnum_const(0);
8382 break;
8383 case BPF_TRACE_RAW_TP:
8384 case BPF_MODIFY_RETURN:
8385 return 0;
8386 case BPF_TRACE_ITER:
8387 break;
8388 default:
8389 return -ENOTSUPP;
8390 }
8391 break;
8392 case BPF_PROG_TYPE_SK_LOOKUP:
8393 range = tnum_range(SK_DROP, SK_PASS);
8394 break;
8395 case BPF_PROG_TYPE_EXT:
8396 /* freplace program can return anything as its return value
8397 * depends on the to-be-replaced kernel func or bpf program.
8398 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008399 default:
8400 return 0;
8401 }
8402
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008403 if (reg->type != SCALAR_VALUE) {
8404 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
8405 reg_type_str[reg->type]);
8406 return -EINVAL;
8407 }
8408
8409 if (!tnum_in(range, reg->var_off)) {
David Brazdil0f672f62019-12-10 10:32:29 +00008410 char tn_buf[48];
8411
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008412 verbose(env, "At program exit the register R0 ");
8413 if (!tnum_is_unknown(reg->var_off)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008414 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8415 verbose(env, "has value %s", tn_buf);
8416 } else {
8417 verbose(env, "has unknown scalar value");
8418 }
David Brazdil0f672f62019-12-10 10:32:29 +00008419 tnum_strn(tn_buf, sizeof(tn_buf), range);
8420 verbose(env, " should have been in %s\n", tn_buf);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008421 return -EINVAL;
8422 }
David Brazdil0f672f62019-12-10 10:32:29 +00008423
8424 if (!tnum_is_unknown(enforce_attach_type_range) &&
8425 tnum_in(enforce_attach_type_range, reg->var_off))
8426 env->prog->enforce_expected_attach_type = 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008427 return 0;
8428}
8429
8430/* non-recursive DFS pseudo code
8431 * 1 procedure DFS-iterative(G,v):
8432 * 2 label v as discovered
8433 * 3 let S be a stack
8434 * 4 S.push(v)
8435 * 5 while S is not empty
8436 * 6 t <- S.pop()
8437 * 7 if t is what we're looking for:
8438 * 8 return t
8439 * 9 for all edges e in G.adjacentEdges(t) do
8440 * 10 if edge e is already labelled
8441 * 11 continue with the next edge
8442 * 12 w <- G.adjacentVertex(t,e)
8443 * 13 if vertex w is not discovered and not explored
8444 * 14 label e as tree-edge
8445 * 15 label w as discovered
8446 * 16 S.push(w)
8447 * 17 continue at 5
8448 * 18 else if vertex w is discovered
8449 * 19 label e as back-edge
8450 * 20 else
8451 * 21 // vertex w is explored
8452 * 22 label e as forward- or cross-edge
8453 * 23 label t as explored
8454 * 24 S.pop()
8455 *
8456 * convention:
8457 * 0x10 - discovered
8458 * 0x11 - discovered and fall-through edge labelled
8459 * 0x12 - discovered and fall-through and branch edges labelled
8460 * 0x20 - explored
8461 */
8462
8463enum {
8464 DISCOVERED = 0x10,
8465 EXPLORED = 0x20,
8466 FALLTHROUGH = 1,
8467 BRANCH = 2,
8468};
8469
David Brazdil0f672f62019-12-10 10:32:29 +00008470static u32 state_htab_size(struct bpf_verifier_env *env)
8471{
8472 return env->prog->len;
8473}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008474
David Brazdil0f672f62019-12-10 10:32:29 +00008475static struct bpf_verifier_state_list **explored_state(
8476 struct bpf_verifier_env *env,
8477 int idx)
8478{
8479 struct bpf_verifier_state *cur = env->cur_state;
8480 struct bpf_func_state *state = cur->frame[cur->curframe];
8481
8482 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
8483}
8484
8485static void init_explored_state(struct bpf_verifier_env *env, int idx)
8486{
8487 env->insn_aux_data[idx].prune_point = true;
8488}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008489
8490/* t, w, e - match pseudo-code above:
8491 * t - index of current instruction
8492 * w - next instruction
8493 * e - edge
8494 */
David Brazdil0f672f62019-12-10 10:32:29 +00008495static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
8496 bool loop_ok)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008497{
David Brazdil0f672f62019-12-10 10:32:29 +00008498 int *insn_stack = env->cfg.insn_stack;
8499 int *insn_state = env->cfg.insn_state;
8500
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008501 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
8502 return 0;
8503
8504 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
8505 return 0;
8506
8507 if (w < 0 || w >= env->prog->len) {
David Brazdil0f672f62019-12-10 10:32:29 +00008508 verbose_linfo(env, t, "%d: ", t);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008509 verbose(env, "jump out of range from insn %d to %d\n", t, w);
8510 return -EINVAL;
8511 }
8512
8513 if (e == BRANCH)
8514 /* mark branch target for state pruning */
David Brazdil0f672f62019-12-10 10:32:29 +00008515 init_explored_state(env, w);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008516
8517 if (insn_state[w] == 0) {
8518 /* tree-edge */
8519 insn_state[t] = DISCOVERED | e;
8520 insn_state[w] = DISCOVERED;
David Brazdil0f672f62019-12-10 10:32:29 +00008521 if (env->cfg.cur_stack >= env->prog->len)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008522 return -E2BIG;
David Brazdil0f672f62019-12-10 10:32:29 +00008523 insn_stack[env->cfg.cur_stack++] = w;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008524 return 1;
8525 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
Olivier Deprez157378f2022-04-04 15:47:50 +02008526 if (loop_ok && env->bpf_capable)
David Brazdil0f672f62019-12-10 10:32:29 +00008527 return 0;
8528 verbose_linfo(env, t, "%d: ", t);
8529 verbose_linfo(env, w, "%d: ", w);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008530 verbose(env, "back-edge from insn %d to %d\n", t, w);
8531 return -EINVAL;
8532 } else if (insn_state[w] == EXPLORED) {
8533 /* forward- or cross-edge */
8534 insn_state[t] = DISCOVERED | e;
8535 } else {
8536 verbose(env, "insn state internal bug\n");
8537 return -EFAULT;
8538 }
8539 return 0;
8540}
8541
8542/* non-recursive depth-first-search to detect loops in BPF program
8543 * loop == back-edge in directed graph
8544 */
8545static int check_cfg(struct bpf_verifier_env *env)
8546{
8547 struct bpf_insn *insns = env->prog->insnsi;
8548 int insn_cnt = env->prog->len;
David Brazdil0f672f62019-12-10 10:32:29 +00008549 int *insn_stack, *insn_state;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008550 int ret = 0;
8551 int i, t;
8552
David Brazdil0f672f62019-12-10 10:32:29 +00008553 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008554 if (!insn_state)
8555 return -ENOMEM;
8556
David Brazdil0f672f62019-12-10 10:32:29 +00008557 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008558 if (!insn_stack) {
David Brazdil0f672f62019-12-10 10:32:29 +00008559 kvfree(insn_state);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008560 return -ENOMEM;
8561 }
8562
8563 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
8564 insn_stack[0] = 0; /* 0 is the first instruction */
David Brazdil0f672f62019-12-10 10:32:29 +00008565 env->cfg.cur_stack = 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008566
8567peek_stack:
David Brazdil0f672f62019-12-10 10:32:29 +00008568 if (env->cfg.cur_stack == 0)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008569 goto check_state;
David Brazdil0f672f62019-12-10 10:32:29 +00008570 t = insn_stack[env->cfg.cur_stack - 1];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008571
David Brazdil0f672f62019-12-10 10:32:29 +00008572 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
8573 BPF_CLASS(insns[t].code) == BPF_JMP32) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008574 u8 opcode = BPF_OP(insns[t].code);
8575
8576 if (opcode == BPF_EXIT) {
8577 goto mark_explored;
8578 } else if (opcode == BPF_CALL) {
David Brazdil0f672f62019-12-10 10:32:29 +00008579 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008580 if (ret == 1)
8581 goto peek_stack;
8582 else if (ret < 0)
8583 goto err_free;
8584 if (t + 1 < insn_cnt)
David Brazdil0f672f62019-12-10 10:32:29 +00008585 init_explored_state(env, t + 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008586 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
David Brazdil0f672f62019-12-10 10:32:29 +00008587 init_explored_state(env, t);
8588 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
8589 env, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008590 if (ret == 1)
8591 goto peek_stack;
8592 else if (ret < 0)
8593 goto err_free;
8594 }
8595 } else if (opcode == BPF_JA) {
8596 if (BPF_SRC(insns[t].code) != BPF_K) {
8597 ret = -EINVAL;
8598 goto err_free;
8599 }
8600 /* unconditional jump with single edge */
8601 ret = push_insn(t, t + insns[t].off + 1,
David Brazdil0f672f62019-12-10 10:32:29 +00008602 FALLTHROUGH, env, true);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008603 if (ret == 1)
8604 goto peek_stack;
8605 else if (ret < 0)
8606 goto err_free;
David Brazdil0f672f62019-12-10 10:32:29 +00008607 /* unconditional jmp is not a good pruning point,
8608 * but it's marked, since backtracking needs
8609 * to record jmp history in is_state_visited().
8610 */
8611 init_explored_state(env, t + insns[t].off + 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008612 /* tell verifier to check for equivalent states
8613 * after every call and jump
8614 */
8615 if (t + 1 < insn_cnt)
David Brazdil0f672f62019-12-10 10:32:29 +00008616 init_explored_state(env, t + 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008617 } else {
8618 /* conditional jump with two edges */
David Brazdil0f672f62019-12-10 10:32:29 +00008619 init_explored_state(env, t);
8620 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008621 if (ret == 1)
8622 goto peek_stack;
8623 else if (ret < 0)
8624 goto err_free;
8625
David Brazdil0f672f62019-12-10 10:32:29 +00008626 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008627 if (ret == 1)
8628 goto peek_stack;
8629 else if (ret < 0)
8630 goto err_free;
8631 }
8632 } else {
8633 /* all other non-branch instructions with single
8634 * fall-through edge
8635 */
David Brazdil0f672f62019-12-10 10:32:29 +00008636 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008637 if (ret == 1)
8638 goto peek_stack;
8639 else if (ret < 0)
8640 goto err_free;
8641 }
8642
8643mark_explored:
8644 insn_state[t] = EXPLORED;
David Brazdil0f672f62019-12-10 10:32:29 +00008645 if (env->cfg.cur_stack-- <= 0) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008646 verbose(env, "pop stack internal bug\n");
8647 ret = -EFAULT;
8648 goto err_free;
8649 }
8650 goto peek_stack;
8651
8652check_state:
8653 for (i = 0; i < insn_cnt; i++) {
8654 if (insn_state[i] != EXPLORED) {
8655 verbose(env, "unreachable insn %d\n", i);
8656 ret = -EINVAL;
8657 goto err_free;
8658 }
8659 }
8660 ret = 0; /* cfg looks good */
8661
8662err_free:
David Brazdil0f672f62019-12-10 10:32:29 +00008663 kvfree(insn_state);
8664 kvfree(insn_stack);
8665 env->cfg.insn_state = env->cfg.insn_stack = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008666 return ret;
8667}
8668
Olivier Deprez157378f2022-04-04 15:47:50 +02008669static int check_abnormal_return(struct bpf_verifier_env *env)
8670{
8671 int i;
8672
8673 for (i = 1; i < env->subprog_cnt; i++) {
8674 if (env->subprog_info[i].has_ld_abs) {
8675 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
8676 return -EINVAL;
8677 }
8678 if (env->subprog_info[i].has_tail_call) {
8679 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
8680 return -EINVAL;
8681 }
8682 }
8683 return 0;
8684}
8685
David Brazdil0f672f62019-12-10 10:32:29 +00008686/* The minimum supported BTF func info size */
8687#define MIN_BPF_FUNCINFO_SIZE 8
8688#define MAX_FUNCINFO_REC_SIZE 252
8689
8690static int check_btf_func(struct bpf_verifier_env *env,
8691 const union bpf_attr *attr,
8692 union bpf_attr __user *uattr)
8693{
Olivier Deprez157378f2022-04-04 15:47:50 +02008694 const struct btf_type *type, *func_proto, *ret_type;
David Brazdil0f672f62019-12-10 10:32:29 +00008695 u32 i, nfuncs, urec_size, min_size;
8696 u32 krec_size = sizeof(struct bpf_func_info);
8697 struct bpf_func_info *krecord;
Olivier Deprez157378f2022-04-04 15:47:50 +02008698 struct bpf_func_info_aux *info_aux = NULL;
David Brazdil0f672f62019-12-10 10:32:29 +00008699 struct bpf_prog *prog;
8700 const struct btf *btf;
8701 void __user *urecord;
8702 u32 prev_offset = 0;
Olivier Deprez157378f2022-04-04 15:47:50 +02008703 bool scalar_return;
8704 int ret = -ENOMEM;
David Brazdil0f672f62019-12-10 10:32:29 +00008705
8706 nfuncs = attr->func_info_cnt;
Olivier Deprez157378f2022-04-04 15:47:50 +02008707 if (!nfuncs) {
8708 if (check_abnormal_return(env))
8709 return -EINVAL;
David Brazdil0f672f62019-12-10 10:32:29 +00008710 return 0;
Olivier Deprez157378f2022-04-04 15:47:50 +02008711 }
David Brazdil0f672f62019-12-10 10:32:29 +00008712
8713 if (nfuncs != env->subprog_cnt) {
8714 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
8715 return -EINVAL;
8716 }
8717
8718 urec_size = attr->func_info_rec_size;
8719 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
8720 urec_size > MAX_FUNCINFO_REC_SIZE ||
8721 urec_size % sizeof(u32)) {
8722 verbose(env, "invalid func info rec size %u\n", urec_size);
8723 return -EINVAL;
8724 }
8725
8726 prog = env->prog;
8727 btf = prog->aux->btf;
8728
8729 urecord = u64_to_user_ptr(attr->func_info);
8730 min_size = min_t(u32, krec_size, urec_size);
8731
8732 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
8733 if (!krecord)
8734 return -ENOMEM;
Olivier Deprez157378f2022-04-04 15:47:50 +02008735 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
8736 if (!info_aux)
8737 goto err_free;
David Brazdil0f672f62019-12-10 10:32:29 +00008738
8739 for (i = 0; i < nfuncs; i++) {
8740 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
8741 if (ret) {
8742 if (ret == -E2BIG) {
8743 verbose(env, "nonzero tailing record in func info");
8744 /* set the size kernel expects so loader can zero
8745 * out the rest of the record.
8746 */
8747 if (put_user(min_size, &uattr->func_info_rec_size))
8748 ret = -EFAULT;
8749 }
8750 goto err_free;
8751 }
8752
8753 if (copy_from_user(&krecord[i], urecord, min_size)) {
8754 ret = -EFAULT;
8755 goto err_free;
8756 }
8757
8758 /* check insn_off */
Olivier Deprez157378f2022-04-04 15:47:50 +02008759 ret = -EINVAL;
David Brazdil0f672f62019-12-10 10:32:29 +00008760 if (i == 0) {
8761 if (krecord[i].insn_off) {
8762 verbose(env,
8763 "nonzero insn_off %u for the first func info record",
8764 krecord[i].insn_off);
David Brazdil0f672f62019-12-10 10:32:29 +00008765 goto err_free;
8766 }
8767 } else if (krecord[i].insn_off <= prev_offset) {
8768 verbose(env,
8769 "same or smaller insn offset (%u) than previous func info record (%u)",
8770 krecord[i].insn_off, prev_offset);
David Brazdil0f672f62019-12-10 10:32:29 +00008771 goto err_free;
8772 }
8773
8774 if (env->subprog_info[i].start != krecord[i].insn_off) {
8775 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
David Brazdil0f672f62019-12-10 10:32:29 +00008776 goto err_free;
8777 }
8778
8779 /* check type_id */
8780 type = btf_type_by_id(btf, krecord[i].type_id);
Olivier Deprez157378f2022-04-04 15:47:50 +02008781 if (!type || !btf_type_is_func(type)) {
David Brazdil0f672f62019-12-10 10:32:29 +00008782 verbose(env, "invalid type id %d in func info",
8783 krecord[i].type_id);
Olivier Deprez157378f2022-04-04 15:47:50 +02008784 goto err_free;
8785 }
8786 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
8787
8788 func_proto = btf_type_by_id(btf, type->type);
8789 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
8790 /* btf_func_check() already verified it during BTF load */
8791 goto err_free;
8792 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
8793 scalar_return =
8794 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
8795 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
8796 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
8797 goto err_free;
8798 }
8799 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
8800 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
David Brazdil0f672f62019-12-10 10:32:29 +00008801 goto err_free;
8802 }
8803
8804 prev_offset = krecord[i].insn_off;
8805 urecord += urec_size;
8806 }
8807
8808 prog->aux->func_info = krecord;
8809 prog->aux->func_info_cnt = nfuncs;
Olivier Deprez157378f2022-04-04 15:47:50 +02008810 prog->aux->func_info_aux = info_aux;
David Brazdil0f672f62019-12-10 10:32:29 +00008811 return 0;
8812
8813err_free:
8814 kvfree(krecord);
Olivier Deprez157378f2022-04-04 15:47:50 +02008815 kfree(info_aux);
David Brazdil0f672f62019-12-10 10:32:29 +00008816 return ret;
8817}
8818
8819static void adjust_btf_func(struct bpf_verifier_env *env)
8820{
Olivier Deprez157378f2022-04-04 15:47:50 +02008821 struct bpf_prog_aux *aux = env->prog->aux;
David Brazdil0f672f62019-12-10 10:32:29 +00008822 int i;
8823
Olivier Deprez157378f2022-04-04 15:47:50 +02008824 if (!aux->func_info)
David Brazdil0f672f62019-12-10 10:32:29 +00008825 return;
8826
8827 for (i = 0; i < env->subprog_cnt; i++)
Olivier Deprez157378f2022-04-04 15:47:50 +02008828 aux->func_info[i].insn_off = env->subprog_info[i].start;
David Brazdil0f672f62019-12-10 10:32:29 +00008829}
8830
8831#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
8832 sizeof(((struct bpf_line_info *)(0))->line_col))
8833#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
8834
8835static int check_btf_line(struct bpf_verifier_env *env,
8836 const union bpf_attr *attr,
8837 union bpf_attr __user *uattr)
8838{
8839 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
8840 struct bpf_subprog_info *sub;
8841 struct bpf_line_info *linfo;
8842 struct bpf_prog *prog;
8843 const struct btf *btf;
8844 void __user *ulinfo;
8845 int err;
8846
8847 nr_linfo = attr->line_info_cnt;
8848 if (!nr_linfo)
8849 return 0;
Olivier Deprez157378f2022-04-04 15:47:50 +02008850 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
8851 return -EINVAL;
David Brazdil0f672f62019-12-10 10:32:29 +00008852
8853 rec_size = attr->line_info_rec_size;
8854 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
8855 rec_size > MAX_LINEINFO_REC_SIZE ||
8856 rec_size & (sizeof(u32) - 1))
8857 return -EINVAL;
8858
8859 /* Need to zero it in case the userspace may
8860 * pass in a smaller bpf_line_info object.
8861 */
8862 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
8863 GFP_KERNEL | __GFP_NOWARN);
8864 if (!linfo)
8865 return -ENOMEM;
8866
8867 prog = env->prog;
8868 btf = prog->aux->btf;
8869
8870 s = 0;
8871 sub = env->subprog_info;
8872 ulinfo = u64_to_user_ptr(attr->line_info);
8873 expected_size = sizeof(struct bpf_line_info);
8874 ncopy = min_t(u32, expected_size, rec_size);
8875 for (i = 0; i < nr_linfo; i++) {
8876 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
8877 if (err) {
8878 if (err == -E2BIG) {
8879 verbose(env, "nonzero tailing record in line_info");
8880 if (put_user(expected_size,
8881 &uattr->line_info_rec_size))
8882 err = -EFAULT;
8883 }
8884 goto err_free;
8885 }
8886
8887 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
8888 err = -EFAULT;
8889 goto err_free;
8890 }
8891
8892 /*
8893 * Check insn_off to ensure
8894 * 1) strictly increasing AND
8895 * 2) bounded by prog->len
8896 *
8897 * The linfo[0].insn_off == 0 check logically falls into
8898 * the later "missing bpf_line_info for func..." case
8899 * because the first linfo[0].insn_off must be the
8900 * first sub also and the first sub must have
8901 * subprog_info[0].start == 0.
8902 */
8903 if ((i && linfo[i].insn_off <= prev_offset) ||
8904 linfo[i].insn_off >= prog->len) {
8905 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
8906 i, linfo[i].insn_off, prev_offset,
8907 prog->len);
8908 err = -EINVAL;
8909 goto err_free;
8910 }
8911
8912 if (!prog->insnsi[linfo[i].insn_off].code) {
8913 verbose(env,
8914 "Invalid insn code at line_info[%u].insn_off\n",
8915 i);
8916 err = -EINVAL;
8917 goto err_free;
8918 }
8919
8920 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
8921 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
8922 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
8923 err = -EINVAL;
8924 goto err_free;
8925 }
8926
8927 if (s != env->subprog_cnt) {
8928 if (linfo[i].insn_off == sub[s].start) {
8929 sub[s].linfo_idx = i;
8930 s++;
8931 } else if (sub[s].start < linfo[i].insn_off) {
8932 verbose(env, "missing bpf_line_info for func#%u\n", s);
8933 err = -EINVAL;
8934 goto err_free;
8935 }
8936 }
8937
8938 prev_offset = linfo[i].insn_off;
8939 ulinfo += rec_size;
8940 }
8941
8942 if (s != env->subprog_cnt) {
8943 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
8944 env->subprog_cnt - s, s);
8945 err = -EINVAL;
8946 goto err_free;
8947 }
8948
8949 prog->aux->linfo = linfo;
8950 prog->aux->nr_linfo = nr_linfo;
8951
8952 return 0;
8953
8954err_free:
8955 kvfree(linfo);
8956 return err;
8957}
8958
8959static int check_btf_info(struct bpf_verifier_env *env,
8960 const union bpf_attr *attr,
8961 union bpf_attr __user *uattr)
8962{
8963 struct btf *btf;
8964 int err;
8965
Olivier Deprez157378f2022-04-04 15:47:50 +02008966 if (!attr->func_info_cnt && !attr->line_info_cnt) {
8967 if (check_abnormal_return(env))
8968 return -EINVAL;
David Brazdil0f672f62019-12-10 10:32:29 +00008969 return 0;
Olivier Deprez157378f2022-04-04 15:47:50 +02008970 }
David Brazdil0f672f62019-12-10 10:32:29 +00008971
8972 btf = btf_get_by_fd(attr->prog_btf_fd);
8973 if (IS_ERR(btf))
8974 return PTR_ERR(btf);
8975 env->prog->aux->btf = btf;
8976
8977 err = check_btf_func(env, attr, uattr);
8978 if (err)
8979 return err;
8980
8981 err = check_btf_line(env, attr, uattr);
8982 if (err)
8983 return err;
8984
8985 return 0;
8986}
8987
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008988/* check %cur's range satisfies %old's */
8989static bool range_within(struct bpf_reg_state *old,
8990 struct bpf_reg_state *cur)
8991{
8992 return old->umin_value <= cur->umin_value &&
8993 old->umax_value >= cur->umax_value &&
8994 old->smin_value <= cur->smin_value &&
Olivier Deprez157378f2022-04-04 15:47:50 +02008995 old->smax_value >= cur->smax_value &&
8996 old->u32_min_value <= cur->u32_min_value &&
8997 old->u32_max_value >= cur->u32_max_value &&
8998 old->s32_min_value <= cur->s32_min_value &&
8999 old->s32_max_value >= cur->s32_max_value;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009000}
9001
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009002/* If in the old state two registers had the same id, then they need to have
9003 * the same id in the new state as well. But that id could be different from
9004 * the old state, so we need to track the mapping from old to new ids.
9005 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
9006 * regs with old id 5 must also have new id 9 for the new state to be safe. But
9007 * regs with a different old id could still have new id 9, we don't care about
9008 * that.
9009 * So we look through our idmap to see if this old id has been seen before. If
9010 * so, we require the new id to match; otherwise, we add the id pair to the map.
9011 */
Olivier Deprez0e641232021-09-23 10:07:05 +02009012static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009013{
9014 unsigned int i;
9015
Olivier Deprez0e641232021-09-23 10:07:05 +02009016 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009017 if (!idmap[i].old) {
9018 /* Reached an empty slot; haven't seen this id before */
9019 idmap[i].old = old_id;
9020 idmap[i].cur = cur_id;
9021 return true;
9022 }
9023 if (idmap[i].old == old_id)
9024 return idmap[i].cur == cur_id;
9025 }
9026 /* We ran out of idmap slots, which should be impossible */
9027 WARN_ON_ONCE(1);
9028 return false;
9029}
9030
David Brazdil0f672f62019-12-10 10:32:29 +00009031static void clean_func_state(struct bpf_verifier_env *env,
9032 struct bpf_func_state *st)
9033{
9034 enum bpf_reg_liveness live;
9035 int i, j;
9036
9037 for (i = 0; i < BPF_REG_FP; i++) {
9038 live = st->regs[i].live;
9039 /* liveness must not touch this register anymore */
9040 st->regs[i].live |= REG_LIVE_DONE;
9041 if (!(live & REG_LIVE_READ))
9042 /* since the register is unused, clear its state
9043 * to make further comparison simpler
9044 */
Olivier Deprez0e641232021-09-23 10:07:05 +02009045 __mark_reg_not_init(env, &st->regs[i]);
David Brazdil0f672f62019-12-10 10:32:29 +00009046 }
9047
9048 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
9049 live = st->stack[i].spilled_ptr.live;
9050 /* liveness must not touch this stack slot anymore */
9051 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
9052 if (!(live & REG_LIVE_READ)) {
Olivier Deprez0e641232021-09-23 10:07:05 +02009053 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
David Brazdil0f672f62019-12-10 10:32:29 +00009054 for (j = 0; j < BPF_REG_SIZE; j++)
9055 st->stack[i].slot_type[j] = STACK_INVALID;
9056 }
9057 }
9058}
9059
9060static void clean_verifier_state(struct bpf_verifier_env *env,
9061 struct bpf_verifier_state *st)
9062{
9063 int i;
9064
9065 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
9066 /* all regs in this state in all frames were already marked */
9067 return;
9068
9069 for (i = 0; i <= st->curframe; i++)
9070 clean_func_state(env, st->frame[i]);
9071}
9072
9073/* the parentage chains form a tree.
9074 * the verifier states are added to state lists at given insn and
9075 * pushed into state stack for future exploration.
9076 * when the verifier reaches bpf_exit insn some of the verifer states
9077 * stored in the state lists have their final liveness state already,
9078 * but a lot of states will get revised from liveness point of view when
9079 * the verifier explores other branches.
9080 * Example:
9081 * 1: r0 = 1
9082 * 2: if r1 == 100 goto pc+1
9083 * 3: r0 = 2
9084 * 4: exit
9085 * when the verifier reaches exit insn the register r0 in the state list of
9086 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
9087 * of insn 2 and goes exploring further. At the insn 4 it will walk the
9088 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
9089 *
9090 * Since the verifier pushes the branch states as it sees them while exploring
9091 * the program the condition of walking the branch instruction for the second
9092 * time means that all states below this branch were already explored and
9093 * their final liveness markes are already propagated.
9094 * Hence when the verifier completes the search of state list in is_state_visited()
9095 * we can call this clean_live_states() function to mark all liveness states
9096 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
9097 * will not be used.
9098 * This function also clears the registers and stack for states that !READ
9099 * to simplify state merging.
9100 *
9101 * Important note here that walking the same branch instruction in the callee
9102 * doesn't meant that the states are DONE. The verifier has to compare
9103 * the callsites
9104 */
9105static void clean_live_states(struct bpf_verifier_env *env, int insn,
9106 struct bpf_verifier_state *cur)
9107{
9108 struct bpf_verifier_state_list *sl;
9109 int i;
9110
9111 sl = *explored_state(env, insn);
9112 while (sl) {
9113 if (sl->state.branches)
9114 goto next;
9115 if (sl->state.insn_idx != insn ||
9116 sl->state.curframe != cur->curframe)
9117 goto next;
9118 for (i = 0; i <= cur->curframe; i++)
9119 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
9120 goto next;
9121 clean_verifier_state(env, &sl->state);
9122next:
9123 sl = sl->next;
9124 }
9125}
9126
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009127/* Returns true if (rold safe implies rcur safe) */
Olivier Deprez0e641232021-09-23 10:07:05 +02009128static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
9129 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009130{
9131 bool equal;
9132
9133 if (!(rold->live & REG_LIVE_READ))
9134 /* explored state didn't use this */
9135 return true;
9136
David Brazdil0f672f62019-12-10 10:32:29 +00009137 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009138
9139 if (rold->type == PTR_TO_STACK)
9140 /* two stack pointers are equal only if they're pointing to
9141 * the same stack frame, since fp-8 in foo != fp-8 in bar
9142 */
9143 return equal && rold->frameno == rcur->frameno;
9144
9145 if (equal)
9146 return true;
9147
9148 if (rold->type == NOT_INIT)
9149 /* explored state can't have used this */
9150 return true;
9151 if (rcur->type == NOT_INIT)
9152 return false;
9153 switch (rold->type) {
9154 case SCALAR_VALUE:
Olivier Deprez0e641232021-09-23 10:07:05 +02009155 if (env->explore_alu_limits)
9156 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009157 if (rcur->type == SCALAR_VALUE) {
David Brazdil0f672f62019-12-10 10:32:29 +00009158 if (!rold->precise && !rcur->precise)
9159 return true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009160 /* new val must satisfy old val knowledge */
9161 return range_within(rold, rcur) &&
9162 tnum_in(rold->var_off, rcur->var_off);
9163 } else {
9164 /* We're trying to use a pointer in place of a scalar.
9165 * Even if the scalar was unbounded, this could lead to
9166 * pointer leaks because scalars are allowed to leak
9167 * while pointers are not. We could make this safe in
9168 * special cases if root is calling us, but it's
9169 * probably not worth the hassle.
9170 */
9171 return false;
9172 }
9173 case PTR_TO_MAP_VALUE:
9174 /* If the new min/max/var_off satisfy the old ones and
9175 * everything else matches, we are OK.
David Brazdil0f672f62019-12-10 10:32:29 +00009176 * 'id' is not compared, since it's only used for maps with
9177 * bpf_spin_lock inside map element and in such cases if
9178 * the rest of the prog is valid for one map element then
9179 * it's valid for all map elements regardless of the key
9180 * used in bpf_map_lookup()
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009181 */
9182 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
9183 range_within(rold, rcur) &&
9184 tnum_in(rold->var_off, rcur->var_off);
9185 case PTR_TO_MAP_VALUE_OR_NULL:
9186 /* a PTR_TO_MAP_VALUE could be safe to use as a
9187 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
9188 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
9189 * checked, doing so could have affected others with the same
9190 * id, and we can't check for that because we lost the id when
9191 * we converted to a PTR_TO_MAP_VALUE.
9192 */
9193 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
9194 return false;
9195 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
9196 return false;
9197 /* Check our ids match any regs they're supposed to */
9198 return check_ids(rold->id, rcur->id, idmap);
9199 case PTR_TO_PACKET_META:
9200 case PTR_TO_PACKET:
9201 if (rcur->type != rold->type)
9202 return false;
9203 /* We must have at least as much range as the old ptr
9204 * did, so that any accesses which were safe before are
9205 * still safe. This is true even if old range < old off,
9206 * since someone could have accessed through (ptr - k), or
9207 * even done ptr -= k in a register, to get a safe access.
9208 */
9209 if (rold->range > rcur->range)
9210 return false;
9211 /* If the offsets don't match, we can't trust our alignment;
9212 * nor can we be sure that we won't fall out of range.
9213 */
9214 if (rold->off != rcur->off)
9215 return false;
9216 /* id relations must be preserved */
9217 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
9218 return false;
9219 /* new val must satisfy old val knowledge */
9220 return range_within(rold, rcur) &&
9221 tnum_in(rold->var_off, rcur->var_off);
9222 case PTR_TO_CTX:
9223 case CONST_PTR_TO_MAP:
9224 case PTR_TO_PACKET_END:
David Brazdil0f672f62019-12-10 10:32:29 +00009225 case PTR_TO_FLOW_KEYS:
9226 case PTR_TO_SOCKET:
9227 case PTR_TO_SOCKET_OR_NULL:
9228 case PTR_TO_SOCK_COMMON:
9229 case PTR_TO_SOCK_COMMON_OR_NULL:
9230 case PTR_TO_TCP_SOCK:
9231 case PTR_TO_TCP_SOCK_OR_NULL:
9232 case PTR_TO_XDP_SOCK:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009233 /* Only valid matches are exact, which memcmp() above
9234 * would have accepted
9235 */
9236 default:
9237 /* Don't know what's going on, just say it's not safe */
9238 return false;
9239 }
9240
9241 /* Shouldn't get here; if we do, say it's not safe */
9242 WARN_ON_ONCE(1);
9243 return false;
9244}
9245
Olivier Deprez0e641232021-09-23 10:07:05 +02009246static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
9247 struct bpf_func_state *cur, struct bpf_id_pair *idmap)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009248{
9249 int i, spi;
9250
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009251 /* walk slots of the explored stack and ignore any additional
9252 * slots in the current stack, since explored(safe) state
9253 * didn't use them
9254 */
9255 for (i = 0; i < old->allocated_stack; i++) {
9256 spi = i / BPF_REG_SIZE;
9257
David Brazdil0f672f62019-12-10 10:32:29 +00009258 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
9259 i += BPF_REG_SIZE - 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009260 /* explored state didn't use this */
9261 continue;
David Brazdil0f672f62019-12-10 10:32:29 +00009262 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009263
9264 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
9265 continue;
David Brazdil0f672f62019-12-10 10:32:29 +00009266
9267 /* explored stack has more populated slots than current stack
9268 * and these slots were used
9269 */
9270 if (i >= cur->allocated_stack)
9271 return false;
9272
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009273 /* if old state was safe with misc data in the stack
9274 * it will be safe with zero-initialized stack.
9275 * The opposite is not true
9276 */
9277 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
9278 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
9279 continue;
9280 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
9281 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
9282 /* Ex: old explored (safe) state has STACK_SPILL in
Olivier Deprez157378f2022-04-04 15:47:50 +02009283 * this stack slot, but current has STACK_MISC ->
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009284 * this verifier states are not equivalent,
9285 * return false to continue verification of this path
9286 */
9287 return false;
9288 if (i % BPF_REG_SIZE)
9289 continue;
9290 if (old->stack[spi].slot_type[0] != STACK_SPILL)
9291 continue;
Olivier Deprez0e641232021-09-23 10:07:05 +02009292 if (!regsafe(env, &old->stack[spi].spilled_ptr,
9293 &cur->stack[spi].spilled_ptr, idmap))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009294 /* when explored and current stack slot are both storing
9295 * spilled registers, check that stored pointers types
9296 * are the same as well.
9297 * Ex: explored safe path could have stored
9298 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
9299 * but current path has stored:
9300 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
9301 * such verifier states are not equivalent.
9302 * return false to continue verification of this path
9303 */
9304 return false;
9305 }
9306 return true;
9307}
9308
David Brazdil0f672f62019-12-10 10:32:29 +00009309static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
9310{
9311 if (old->acquired_refs != cur->acquired_refs)
9312 return false;
9313 return !memcmp(old->refs, cur->refs,
9314 sizeof(*old->refs) * old->acquired_refs);
9315}
9316
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009317/* compare two verifier states
9318 *
9319 * all states stored in state_list are known to be valid, since
9320 * verifier reached 'bpf_exit' instruction through them
9321 *
9322 * this function is called when verifier exploring different branches of
9323 * execution popped from the state stack. If it sees an old state that has
9324 * more strict register state and more strict stack state then this execution
9325 * branch doesn't need to be explored further, since verifier already
9326 * concluded that more strict state leads to valid finish.
9327 *
9328 * Therefore two states are equivalent if register state is more conservative
9329 * and explored stack state is more conservative than the current one.
9330 * Example:
9331 * explored current
9332 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
9333 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
9334 *
9335 * In other words if current stack state (one being explored) has more
9336 * valid slots than old one that already passed validation, it means
9337 * the verifier can stop exploring and conclude that current state is valid too
9338 *
9339 * Similarly with registers. If explored state has register type as invalid
9340 * whereas register type in current state is meaningful, it means that
9341 * the current state will reach 'bpf_exit' instruction safely
9342 */
Olivier Deprez0e641232021-09-23 10:07:05 +02009343static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009344 struct bpf_func_state *cur)
9345{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009346 int i;
9347
Olivier Deprez0e641232021-09-23 10:07:05 +02009348 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
9349 for (i = 0; i < MAX_BPF_REG; i++)
9350 if (!regsafe(env, &old->regs[i], &cur->regs[i],
9351 env->idmap_scratch))
9352 return false;
9353
9354 if (!stacksafe(env, old, cur, env->idmap_scratch))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009355 return false;
9356
David Brazdil0f672f62019-12-10 10:32:29 +00009357 if (!refsafe(old, cur))
Olivier Deprez0e641232021-09-23 10:07:05 +02009358 return false;
9359
9360 return true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009361}
9362
9363static bool states_equal(struct bpf_verifier_env *env,
9364 struct bpf_verifier_state *old,
9365 struct bpf_verifier_state *cur)
9366{
9367 int i;
9368
9369 if (old->curframe != cur->curframe)
9370 return false;
9371
David Brazdil0f672f62019-12-10 10:32:29 +00009372 /* Verification state from speculative execution simulation
9373 * must never prune a non-speculative execution one.
9374 */
9375 if (old->speculative && !cur->speculative)
9376 return false;
9377
9378 if (old->active_spin_lock != cur->active_spin_lock)
9379 return false;
9380
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009381 /* for states to be equal callsites have to be the same
9382 * and all frame states need to be equivalent
9383 */
9384 for (i = 0; i <= old->curframe; i++) {
9385 if (old->frame[i]->callsite != cur->frame[i]->callsite)
9386 return false;
Olivier Deprez0e641232021-09-23 10:07:05 +02009387 if (!func_states_equal(env, old->frame[i], cur->frame[i]))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009388 return false;
9389 }
9390 return true;
9391}
9392
David Brazdil0f672f62019-12-10 10:32:29 +00009393/* Return 0 if no propagation happened. Return negative error code if error
9394 * happened. Otherwise, return the propagated bit.
9395 */
9396static int propagate_liveness_reg(struct bpf_verifier_env *env,
9397 struct bpf_reg_state *reg,
9398 struct bpf_reg_state *parent_reg)
9399{
9400 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
9401 u8 flag = reg->live & REG_LIVE_READ;
9402 int err;
9403
9404 /* When comes here, read flags of PARENT_REG or REG could be any of
9405 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
9406 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
9407 */
9408 if (parent_flag == REG_LIVE_READ64 ||
9409 /* Or if there is no read flag from REG. */
9410 !flag ||
9411 /* Or if the read flag from REG is the same as PARENT_REG. */
9412 parent_flag == flag)
9413 return 0;
9414
9415 err = mark_reg_read(env, reg, parent_reg, flag);
9416 if (err)
9417 return err;
9418
9419 return flag;
9420}
9421
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009422/* A write screens off any subsequent reads; but write marks come from the
9423 * straight-line code between a state and its parent. When we arrive at an
9424 * equivalent state (jump target or such) we didn't arrive by the straight-line
9425 * code, so read marks in the state must propagate to the parent regardless
9426 * of the state's write marks. That's what 'parent == state->parent' comparison
David Brazdil0f672f62019-12-10 10:32:29 +00009427 * in mark_reg_read() is for.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009428 */
9429static int propagate_liveness(struct bpf_verifier_env *env,
9430 const struct bpf_verifier_state *vstate,
9431 struct bpf_verifier_state *vparent)
9432{
David Brazdil0f672f62019-12-10 10:32:29 +00009433 struct bpf_reg_state *state_reg, *parent_reg;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009434 struct bpf_func_state *state, *parent;
David Brazdil0f672f62019-12-10 10:32:29 +00009435 int i, frame, err = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009436
9437 if (vparent->curframe != vstate->curframe) {
9438 WARN(1, "propagate_live: parent frame %d current frame %d\n",
9439 vparent->curframe, vstate->curframe);
9440 return -EFAULT;
9441 }
9442 /* Propagate read liveness of registers... */
9443 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
David Brazdil0f672f62019-12-10 10:32:29 +00009444 for (frame = 0; frame <= vstate->curframe; frame++) {
9445 parent = vparent->frame[frame];
9446 state = vstate->frame[frame];
9447 parent_reg = parent->regs;
9448 state_reg = state->regs;
9449 /* We don't need to worry about FP liveness, it's read-only */
9450 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
9451 err = propagate_liveness_reg(env, &state_reg[i],
9452 &parent_reg[i]);
9453 if (err < 0)
9454 return err;
9455 if (err == REG_LIVE_READ64)
9456 mark_insn_zext(env, &parent_reg[i]);
9457 }
9458
9459 /* Propagate stack slots. */
9460 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
9461 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
9462 parent_reg = &parent->stack[i].spilled_ptr;
9463 state_reg = &state->stack[i].spilled_ptr;
9464 err = propagate_liveness_reg(env, state_reg,
9465 parent_reg);
9466 if (err < 0)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009467 return err;
9468 }
9469 }
David Brazdil0f672f62019-12-10 10:32:29 +00009470 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009471}
9472
David Brazdil0f672f62019-12-10 10:32:29 +00009473/* find precise scalars in the previous equivalent state and
9474 * propagate them into the current state
9475 */
9476static int propagate_precision(struct bpf_verifier_env *env,
9477 const struct bpf_verifier_state *old)
9478{
9479 struct bpf_reg_state *state_reg;
9480 struct bpf_func_state *state;
9481 int i, err = 0;
9482
9483 state = old->frame[old->curframe];
9484 state_reg = state->regs;
9485 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
9486 if (state_reg->type != SCALAR_VALUE ||
9487 !state_reg->precise)
9488 continue;
9489 if (env->log.level & BPF_LOG_LEVEL2)
9490 verbose(env, "propagating r%d\n", i);
9491 err = mark_chain_precision(env, i);
9492 if (err < 0)
9493 return err;
9494 }
9495
9496 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
9497 if (state->stack[i].slot_type[0] != STACK_SPILL)
9498 continue;
9499 state_reg = &state->stack[i].spilled_ptr;
9500 if (state_reg->type != SCALAR_VALUE ||
9501 !state_reg->precise)
9502 continue;
9503 if (env->log.level & BPF_LOG_LEVEL2)
9504 verbose(env, "propagating fp%d\n",
9505 (-i - 1) * BPF_REG_SIZE);
9506 err = mark_chain_precision_stack(env, i);
9507 if (err < 0)
9508 return err;
9509 }
9510 return 0;
9511}
9512
9513static bool states_maybe_looping(struct bpf_verifier_state *old,
9514 struct bpf_verifier_state *cur)
9515{
9516 struct bpf_func_state *fold, *fcur;
9517 int i, fr = cur->curframe;
9518
9519 if (old->curframe != fr)
9520 return false;
9521
9522 fold = old->frame[fr];
9523 fcur = cur->frame[fr];
9524 for (i = 0; i < MAX_BPF_REG; i++)
9525 if (memcmp(&fold->regs[i], &fcur->regs[i],
9526 offsetof(struct bpf_reg_state, parent)))
9527 return false;
9528 return true;
9529}
9530
9531
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009532static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
9533{
9534 struct bpf_verifier_state_list *new_sl;
David Brazdil0f672f62019-12-10 10:32:29 +00009535 struct bpf_verifier_state_list *sl, **pprev;
9536 struct bpf_verifier_state *cur = env->cur_state, *new;
9537 int i, j, err, states_cnt = 0;
9538 bool add_new_state = env->test_state_freq ? true : false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009539
David Brazdil0f672f62019-12-10 10:32:29 +00009540 cur->last_insn_idx = env->prev_insn_idx;
9541 if (!env->insn_aux_data[insn_idx].prune_point)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009542 /* this 'insn_idx' instruction wasn't marked, so we will not
9543 * be doing state search here
9544 */
9545 return 0;
9546
David Brazdil0f672f62019-12-10 10:32:29 +00009547 /* bpf progs typically have pruning point every 4 instructions
9548 * http://vger.kernel.org/bpfconf2019.html#session-1
9549 * Do not add new state for future pruning if the verifier hasn't seen
9550 * at least 2 jumps and at least 8 instructions.
9551 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
9552 * In tests that amounts to up to 50% reduction into total verifier
9553 * memory consumption and 20% verifier time speedup.
9554 */
9555 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
9556 env->insn_processed - env->prev_insn_processed >= 8)
9557 add_new_state = true;
9558
9559 pprev = explored_state(env, insn_idx);
9560 sl = *pprev;
9561
9562 clean_live_states(env, insn_idx, cur);
9563
9564 while (sl) {
9565 states_cnt++;
9566 if (sl->state.insn_idx != insn_idx)
9567 goto next;
9568 if (sl->state.branches) {
9569 if (states_maybe_looping(&sl->state, cur) &&
9570 states_equal(env, &sl->state, cur)) {
9571 verbose_linfo(env, insn_idx, "; ");
9572 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
9573 return -EINVAL;
9574 }
9575 /* if the verifier is processing a loop, avoid adding new state
9576 * too often, since different loop iterations have distinct
9577 * states and may not help future pruning.
9578 * This threshold shouldn't be too low to make sure that
9579 * a loop with large bound will be rejected quickly.
9580 * The most abusive loop will be:
9581 * r1 += 1
9582 * if r1 < 1000000 goto pc-2
9583 * 1M insn_procssed limit / 100 == 10k peak states.
9584 * This threshold shouldn't be too high either, since states
9585 * at the end of the loop are likely to be useful in pruning.
9586 */
9587 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
9588 env->insn_processed - env->prev_insn_processed < 100)
9589 add_new_state = false;
9590 goto miss;
9591 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009592 if (states_equal(env, &sl->state, cur)) {
David Brazdil0f672f62019-12-10 10:32:29 +00009593 sl->hit_cnt++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009594 /* reached equivalent register/stack state,
9595 * prune the search.
9596 * Registers read by the continuation are read by us.
9597 * If we have any write marks in env->cur_state, they
9598 * will prevent corresponding reads in the continuation
9599 * from reaching our parent (an explored_state). Our
9600 * own state will get the read marks recorded, but
9601 * they'll be immediately forgotten as we're pruning
9602 * this state and will pop a new one.
9603 */
9604 err = propagate_liveness(env, &sl->state, cur);
David Brazdil0f672f62019-12-10 10:32:29 +00009605
9606 /* if previous state reached the exit with precision and
9607 * current state is equivalent to it (except precsion marks)
9608 * the precision needs to be propagated back in
9609 * the current state.
9610 */
9611 err = err ? : push_jmp_history(env, cur);
9612 err = err ? : propagate_precision(env, &sl->state);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009613 if (err)
9614 return err;
9615 return 1;
9616 }
David Brazdil0f672f62019-12-10 10:32:29 +00009617miss:
9618 /* when new state is not going to be added do not increase miss count.
9619 * Otherwise several loop iterations will remove the state
9620 * recorded earlier. The goal of these heuristics is to have
9621 * states from some iterations of the loop (some in the beginning
9622 * and some at the end) to help pruning.
9623 */
9624 if (add_new_state)
9625 sl->miss_cnt++;
9626 /* heuristic to determine whether this state is beneficial
9627 * to keep checking from state equivalence point of view.
9628 * Higher numbers increase max_states_per_insn and verification time,
9629 * but do not meaningfully decrease insn_processed.
9630 */
9631 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
9632 /* the state is unlikely to be useful. Remove it to
9633 * speed up verification
9634 */
9635 *pprev = sl->next;
9636 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
9637 u32 br = sl->state.branches;
9638
9639 WARN_ONCE(br,
9640 "BUG live_done but branches_to_explore %d\n",
9641 br);
9642 free_verifier_state(&sl->state, false);
9643 kfree(sl);
9644 env->peak_states--;
9645 } else {
9646 /* cannot free this state, since parentage chain may
9647 * walk it later. Add it for free_list instead to
9648 * be freed at the end of verification
9649 */
9650 sl->next = env->free_list;
9651 env->free_list = sl;
9652 }
9653 sl = *pprev;
9654 continue;
9655 }
9656next:
9657 pprev = &sl->next;
9658 sl = *pprev;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009659 }
9660
David Brazdil0f672f62019-12-10 10:32:29 +00009661 if (env->max_states_per_insn < states_cnt)
9662 env->max_states_per_insn = states_cnt;
9663
Olivier Deprez157378f2022-04-04 15:47:50 +02009664 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
David Brazdil0f672f62019-12-10 10:32:29 +00009665 return push_jmp_history(env, cur);
9666
9667 if (!add_new_state)
9668 return push_jmp_history(env, cur);
9669
9670 /* There were no equivalent states, remember the current one.
9671 * Technically the current state is not proven to be safe yet,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009672 * but it will either reach outer most bpf_exit (which means it's safe)
David Brazdil0f672f62019-12-10 10:32:29 +00009673 * or it will be rejected. When there are no loops the verifier won't be
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009674 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
David Brazdil0f672f62019-12-10 10:32:29 +00009675 * again on the way to bpf_exit.
9676 * When looping the sl->state.branches will be > 0 and this state
9677 * will not be considered for equivalence until branches == 0.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009678 */
9679 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
9680 if (!new_sl)
9681 return -ENOMEM;
David Brazdil0f672f62019-12-10 10:32:29 +00009682 env->total_states++;
9683 env->peak_states++;
9684 env->prev_jmps_processed = env->jmps_processed;
9685 env->prev_insn_processed = env->insn_processed;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009686
9687 /* add new state to the head of linked list */
David Brazdil0f672f62019-12-10 10:32:29 +00009688 new = &new_sl->state;
9689 err = copy_verifier_state(new, cur);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009690 if (err) {
David Brazdil0f672f62019-12-10 10:32:29 +00009691 free_verifier_state(new, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009692 kfree(new_sl);
9693 return err;
9694 }
David Brazdil0f672f62019-12-10 10:32:29 +00009695 new->insn_idx = insn_idx;
9696 WARN_ONCE(new->branches != 1,
9697 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
9698
9699 cur->parent = new;
9700 cur->first_insn_idx = insn_idx;
9701 clear_jmp_history(cur);
9702 new_sl->next = *explored_state(env, insn_idx);
9703 *explored_state(env, insn_idx) = new_sl;
9704 /* connect new state to parentage chain. Current frame needs all
9705 * registers connected. Only r6 - r9 of the callers are alive (pushed
9706 * to the stack implicitly by JITs) so in callers' frames connect just
9707 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
9708 * the state of the call instruction (with WRITTEN set), and r0 comes
9709 * from callee with its full parentage chain, anyway.
9710 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009711 /* clear write marks in current state: the writes we did are not writes
9712 * our child did, so they don't screen off its reads from us.
9713 * (There are no read marks in current state, because reads always mark
9714 * their parent and current state never has children yet. Only
9715 * explored_states can get read marks.)
9716 */
David Brazdil0f672f62019-12-10 10:32:29 +00009717 for (j = 0; j <= cur->curframe; j++) {
9718 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
9719 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
9720 for (i = 0; i < BPF_REG_FP; i++)
9721 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
9722 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009723
9724 /* all stack frames are accessible from callee, clear them all */
9725 for (j = 0; j <= cur->curframe; j++) {
9726 struct bpf_func_state *frame = cur->frame[j];
David Brazdil0f672f62019-12-10 10:32:29 +00009727 struct bpf_func_state *newframe = new->frame[j];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009728
David Brazdil0f672f62019-12-10 10:32:29 +00009729 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009730 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
David Brazdil0f672f62019-12-10 10:32:29 +00009731 frame->stack[i].spilled_ptr.parent =
9732 &newframe->stack[i].spilled_ptr;
9733 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009734 }
9735 return 0;
9736}
9737
David Brazdil0f672f62019-12-10 10:32:29 +00009738/* Return true if it's OK to have the same insn return a different type. */
9739static bool reg_type_mismatch_ok(enum bpf_reg_type type)
9740{
9741 switch (type) {
9742 case PTR_TO_CTX:
9743 case PTR_TO_SOCKET:
9744 case PTR_TO_SOCKET_OR_NULL:
9745 case PTR_TO_SOCK_COMMON:
9746 case PTR_TO_SOCK_COMMON_OR_NULL:
9747 case PTR_TO_TCP_SOCK:
9748 case PTR_TO_TCP_SOCK_OR_NULL:
9749 case PTR_TO_XDP_SOCK:
Olivier Deprez157378f2022-04-04 15:47:50 +02009750 case PTR_TO_BTF_ID:
9751 case PTR_TO_BTF_ID_OR_NULL:
David Brazdil0f672f62019-12-10 10:32:29 +00009752 return false;
9753 default:
9754 return true;
9755 }
9756}
9757
9758/* If an instruction was previously used with particular pointer types, then we
9759 * need to be careful to avoid cases such as the below, where it may be ok
9760 * for one branch accessing the pointer, but not ok for the other branch:
9761 *
9762 * R1 = sock_ptr
9763 * goto X;
9764 * ...
9765 * R1 = some_other_valid_ptr;
9766 * goto X;
9767 * ...
9768 * R2 = *(u32 *)(R1 + 0);
9769 */
9770static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
9771{
9772 return src != prev && (!reg_type_mismatch_ok(src) ||
9773 !reg_type_mismatch_ok(prev));
9774}
9775
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009776static int do_check(struct bpf_verifier_env *env)
9777{
Olivier Deprez157378f2022-04-04 15:47:50 +02009778 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
9779 struct bpf_verifier_state *state = env->cur_state;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009780 struct bpf_insn *insns = env->prog->insnsi;
9781 struct bpf_reg_state *regs;
David Brazdil0f672f62019-12-10 10:32:29 +00009782 int insn_cnt = env->prog->len;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009783 bool do_print_state = false;
David Brazdil0f672f62019-12-10 10:32:29 +00009784 int prev_insn_idx = -1;
9785
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009786 for (;;) {
9787 struct bpf_insn *insn;
9788 u8 class;
9789 int err;
9790
David Brazdil0f672f62019-12-10 10:32:29 +00009791 env->prev_insn_idx = prev_insn_idx;
9792 if (env->insn_idx >= insn_cnt) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009793 verbose(env, "invalid insn idx %d insn_cnt %d\n",
David Brazdil0f672f62019-12-10 10:32:29 +00009794 env->insn_idx, insn_cnt);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009795 return -EFAULT;
9796 }
9797
David Brazdil0f672f62019-12-10 10:32:29 +00009798 insn = &insns[env->insn_idx];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009799 class = BPF_CLASS(insn->code);
9800
David Brazdil0f672f62019-12-10 10:32:29 +00009801 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009802 verbose(env,
9803 "BPF program is too large. Processed %d insn\n",
David Brazdil0f672f62019-12-10 10:32:29 +00009804 env->insn_processed);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009805 return -E2BIG;
9806 }
9807
David Brazdil0f672f62019-12-10 10:32:29 +00009808 err = is_state_visited(env, env->insn_idx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009809 if (err < 0)
9810 return err;
9811 if (err == 1) {
9812 /* found equivalent state, can prune the search */
David Brazdil0f672f62019-12-10 10:32:29 +00009813 if (env->log.level & BPF_LOG_LEVEL) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009814 if (do_print_state)
David Brazdil0f672f62019-12-10 10:32:29 +00009815 verbose(env, "\nfrom %d to %d%s: safe\n",
9816 env->prev_insn_idx, env->insn_idx,
9817 env->cur_state->speculative ?
9818 " (speculative execution)" : "");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009819 else
David Brazdil0f672f62019-12-10 10:32:29 +00009820 verbose(env, "%d: safe\n", env->insn_idx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009821 }
9822 goto process_bpf_exit;
9823 }
9824
9825 if (signal_pending(current))
9826 return -EAGAIN;
9827
9828 if (need_resched())
9829 cond_resched();
9830
David Brazdil0f672f62019-12-10 10:32:29 +00009831 if (env->log.level & BPF_LOG_LEVEL2 ||
9832 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
9833 if (env->log.level & BPF_LOG_LEVEL2)
9834 verbose(env, "%d:", env->insn_idx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009835 else
David Brazdil0f672f62019-12-10 10:32:29 +00009836 verbose(env, "\nfrom %d to %d%s:",
9837 env->prev_insn_idx, env->insn_idx,
9838 env->cur_state->speculative ?
9839 " (speculative execution)" : "");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009840 print_verifier_state(env, state->frame[state->curframe]);
9841 do_print_state = false;
9842 }
9843
David Brazdil0f672f62019-12-10 10:32:29 +00009844 if (env->log.level & BPF_LOG_LEVEL) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009845 const struct bpf_insn_cbs cbs = {
9846 .cb_print = verbose,
9847 .private_data = env,
9848 };
9849
David Brazdil0f672f62019-12-10 10:32:29 +00009850 verbose_linfo(env, env->insn_idx, "; ");
9851 verbose(env, "%d: ", env->insn_idx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009852 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
9853 }
9854
9855 if (bpf_prog_is_dev_bound(env->prog->aux)) {
David Brazdil0f672f62019-12-10 10:32:29 +00009856 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
9857 env->prev_insn_idx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009858 if (err)
9859 return err;
9860 }
9861
9862 regs = cur_regs(env);
Olivier Deprez0e641232021-09-23 10:07:05 +02009863 sanitize_mark_insn_seen(env);
David Brazdil0f672f62019-12-10 10:32:29 +00009864 prev_insn_idx = env->insn_idx;
9865
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009866 if (class == BPF_ALU || class == BPF_ALU64) {
9867 err = check_alu_op(env, insn);
9868 if (err)
9869 return err;
9870
9871 } else if (class == BPF_LDX) {
9872 enum bpf_reg_type *prev_src_type, src_reg_type;
9873
9874 /* check for reserved fields is already done */
9875
9876 /* check src operand */
9877 err = check_reg_arg(env, insn->src_reg, SRC_OP);
9878 if (err)
9879 return err;
9880
9881 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9882 if (err)
9883 return err;
9884
9885 src_reg_type = regs[insn->src_reg].type;
9886
9887 /* check that memory (src_reg + off) is readable,
9888 * the state of dst_reg will be updated by this func
9889 */
David Brazdil0f672f62019-12-10 10:32:29 +00009890 err = check_mem_access(env, env->insn_idx, insn->src_reg,
9891 insn->off, BPF_SIZE(insn->code),
9892 BPF_READ, insn->dst_reg, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009893 if (err)
9894 return err;
9895
David Brazdil0f672f62019-12-10 10:32:29 +00009896 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009897
9898 if (*prev_src_type == NOT_INIT) {
9899 /* saw a valid insn
9900 * dst_reg = *(u32 *)(src_reg + off)
9901 * save type to validate intersecting paths
9902 */
9903 *prev_src_type = src_reg_type;
9904
David Brazdil0f672f62019-12-10 10:32:29 +00009905 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009906 /* ABuser program is trying to use the same insn
9907 * dst_reg = *(u32*) (src_reg + off)
9908 * with different pointer types:
9909 * src_reg == ctx in one branch and
9910 * src_reg == stack|map in some other branch.
9911 * Reject it.
9912 */
9913 verbose(env, "same insn cannot be used with different pointers\n");
9914 return -EINVAL;
9915 }
9916
9917 } else if (class == BPF_STX) {
9918 enum bpf_reg_type *prev_dst_type, dst_reg_type;
9919
9920 if (BPF_MODE(insn->code) == BPF_XADD) {
David Brazdil0f672f62019-12-10 10:32:29 +00009921 err = check_xadd(env, env->insn_idx, insn);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009922 if (err)
9923 return err;
David Brazdil0f672f62019-12-10 10:32:29 +00009924 env->insn_idx++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009925 continue;
9926 }
9927
9928 /* check src1 operand */
9929 err = check_reg_arg(env, insn->src_reg, SRC_OP);
9930 if (err)
9931 return err;
9932 /* check src2 operand */
9933 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9934 if (err)
9935 return err;
9936
9937 dst_reg_type = regs[insn->dst_reg].type;
9938
9939 /* check that memory (dst_reg + off) is writeable */
David Brazdil0f672f62019-12-10 10:32:29 +00009940 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9941 insn->off, BPF_SIZE(insn->code),
9942 BPF_WRITE, insn->src_reg, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009943 if (err)
9944 return err;
9945
David Brazdil0f672f62019-12-10 10:32:29 +00009946 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009947
9948 if (*prev_dst_type == NOT_INIT) {
9949 *prev_dst_type = dst_reg_type;
David Brazdil0f672f62019-12-10 10:32:29 +00009950 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009951 verbose(env, "same insn cannot be used with different pointers\n");
9952 return -EINVAL;
9953 }
9954
9955 } else if (class == BPF_ST) {
9956 if (BPF_MODE(insn->code) != BPF_MEM ||
9957 insn->src_reg != BPF_REG_0) {
9958 verbose(env, "BPF_ST uses reserved fields\n");
9959 return -EINVAL;
9960 }
9961 /* check src operand */
9962 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9963 if (err)
9964 return err;
9965
9966 if (is_ctx_reg(env, insn->dst_reg)) {
David Brazdil0f672f62019-12-10 10:32:29 +00009967 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
9968 insn->dst_reg,
9969 reg_type_str[reg_state(env, insn->dst_reg)->type]);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009970 return -EACCES;
9971 }
9972
9973 /* check that memory (dst_reg + off) is writeable */
David Brazdil0f672f62019-12-10 10:32:29 +00009974 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9975 insn->off, BPF_SIZE(insn->code),
9976 BPF_WRITE, -1, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009977 if (err)
9978 return err;
9979
David Brazdil0f672f62019-12-10 10:32:29 +00009980 } else if (class == BPF_JMP || class == BPF_JMP32) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009981 u8 opcode = BPF_OP(insn->code);
9982
David Brazdil0f672f62019-12-10 10:32:29 +00009983 env->jmps_processed++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009984 if (opcode == BPF_CALL) {
9985 if (BPF_SRC(insn->code) != BPF_K ||
9986 insn->off != 0 ||
9987 (insn->src_reg != BPF_REG_0 &&
9988 insn->src_reg != BPF_PSEUDO_CALL) ||
David Brazdil0f672f62019-12-10 10:32:29 +00009989 insn->dst_reg != BPF_REG_0 ||
9990 class == BPF_JMP32) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009991 verbose(env, "BPF_CALL uses reserved fields\n");
9992 return -EINVAL;
9993 }
9994
David Brazdil0f672f62019-12-10 10:32:29 +00009995 if (env->cur_state->active_spin_lock &&
9996 (insn->src_reg == BPF_PSEUDO_CALL ||
9997 insn->imm != BPF_FUNC_spin_unlock)) {
9998 verbose(env, "function calls are not allowed while holding a lock\n");
9999 return -EINVAL;
10000 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010001 if (insn->src_reg == BPF_PSEUDO_CALL)
David Brazdil0f672f62019-12-10 10:32:29 +000010002 err = check_func_call(env, insn, &env->insn_idx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010003 else
David Brazdil0f672f62019-12-10 10:32:29 +000010004 err = check_helper_call(env, insn->imm, env->insn_idx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010005 if (err)
10006 return err;
10007
10008 } else if (opcode == BPF_JA) {
10009 if (BPF_SRC(insn->code) != BPF_K ||
10010 insn->imm != 0 ||
10011 insn->src_reg != BPF_REG_0 ||
David Brazdil0f672f62019-12-10 10:32:29 +000010012 insn->dst_reg != BPF_REG_0 ||
10013 class == BPF_JMP32) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010014 verbose(env, "BPF_JA uses reserved fields\n");
10015 return -EINVAL;
10016 }
10017
David Brazdil0f672f62019-12-10 10:32:29 +000010018 env->insn_idx += insn->off + 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010019 continue;
10020
10021 } else if (opcode == BPF_EXIT) {
10022 if (BPF_SRC(insn->code) != BPF_K ||
10023 insn->imm != 0 ||
10024 insn->src_reg != BPF_REG_0 ||
David Brazdil0f672f62019-12-10 10:32:29 +000010025 insn->dst_reg != BPF_REG_0 ||
10026 class == BPF_JMP32) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010027 verbose(env, "BPF_EXIT uses reserved fields\n");
10028 return -EINVAL;
10029 }
10030
David Brazdil0f672f62019-12-10 10:32:29 +000010031 if (env->cur_state->active_spin_lock) {
10032 verbose(env, "bpf_spin_unlock is missing\n");
10033 return -EINVAL;
10034 }
10035
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010036 if (state->curframe) {
10037 /* exit from nested function */
David Brazdil0f672f62019-12-10 10:32:29 +000010038 err = prepare_func_exit(env, &env->insn_idx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010039 if (err)
10040 return err;
10041 do_print_state = true;
10042 continue;
10043 }
10044
David Brazdil0f672f62019-12-10 10:32:29 +000010045 err = check_reference_leak(env);
10046 if (err)
10047 return err;
10048
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010049 err = check_return_code(env);
10050 if (err)
10051 return err;
10052process_bpf_exit:
David Brazdil0f672f62019-12-10 10:32:29 +000010053 update_branch_counts(env, env->cur_state);
10054 err = pop_stack(env, &prev_insn_idx,
Olivier Deprez157378f2022-04-04 15:47:50 +020010055 &env->insn_idx, pop_log);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010056 if (err < 0) {
10057 if (err != -ENOENT)
10058 return err;
10059 break;
10060 } else {
10061 do_print_state = true;
10062 continue;
10063 }
10064 } else {
David Brazdil0f672f62019-12-10 10:32:29 +000010065 err = check_cond_jmp_op(env, insn, &env->insn_idx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010066 if (err)
10067 return err;
10068 }
10069 } else if (class == BPF_LD) {
10070 u8 mode = BPF_MODE(insn->code);
10071
10072 if (mode == BPF_ABS || mode == BPF_IND) {
10073 err = check_ld_abs(env, insn);
10074 if (err)
10075 return err;
10076
10077 } else if (mode == BPF_IMM) {
10078 err = check_ld_imm(env, insn);
10079 if (err)
10080 return err;
10081
David Brazdil0f672f62019-12-10 10:32:29 +000010082 env->insn_idx++;
Olivier Deprez0e641232021-09-23 10:07:05 +020010083 sanitize_mark_insn_seen(env);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010084 } else {
10085 verbose(env, "invalid BPF_LD mode\n");
10086 return -EINVAL;
10087 }
10088 } else {
10089 verbose(env, "unknown insn class %d\n", class);
10090 return -EINVAL;
10091 }
10092
David Brazdil0f672f62019-12-10 10:32:29 +000010093 env->insn_idx++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010094 }
10095
Olivier Deprez157378f2022-04-04 15:47:50 +020010096 return 0;
10097}
10098
10099/* replace pseudo btf_id with kernel symbol address */
10100static int check_pseudo_btf_id(struct bpf_verifier_env *env,
10101 struct bpf_insn *insn,
10102 struct bpf_insn_aux_data *aux)
10103{
10104 const struct btf_var_secinfo *vsi;
10105 const struct btf_type *datasec;
10106 const struct btf_type *t;
10107 const char *sym_name;
10108 bool percpu = false;
10109 u32 type, id = insn->imm;
10110 s32 datasec_id;
10111 u64 addr;
10112 int i;
10113
10114 if (!btf_vmlinux) {
10115 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
10116 return -EINVAL;
10117 }
10118
10119 if (insn[1].imm != 0) {
10120 verbose(env, "reserved field (insn[1].imm) is used in pseudo_btf_id ldimm64 insn.\n");
10121 return -EINVAL;
10122 }
10123
10124 t = btf_type_by_id(btf_vmlinux, id);
10125 if (!t) {
10126 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
10127 return -ENOENT;
10128 }
10129
10130 if (!btf_type_is_var(t)) {
10131 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n",
10132 id);
10133 return -EINVAL;
10134 }
10135
10136 sym_name = btf_name_by_offset(btf_vmlinux, t->name_off);
10137 addr = kallsyms_lookup_name(sym_name);
10138 if (!addr) {
10139 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
10140 sym_name);
10141 return -ENOENT;
10142 }
10143
10144 datasec_id = btf_find_by_name_kind(btf_vmlinux, ".data..percpu",
10145 BTF_KIND_DATASEC);
10146 if (datasec_id > 0) {
10147 datasec = btf_type_by_id(btf_vmlinux, datasec_id);
10148 for_each_vsi(i, datasec, vsi) {
10149 if (vsi->type == id) {
10150 percpu = true;
10151 break;
10152 }
10153 }
10154 }
10155
10156 insn[0].imm = (u32)addr;
10157 insn[1].imm = addr >> 32;
10158
10159 type = t->type;
10160 t = btf_type_skip_modifiers(btf_vmlinux, type, NULL);
10161 if (percpu) {
10162 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
10163 aux->btf_var.btf_id = type;
10164 } else if (!btf_type_is_struct(t)) {
10165 const struct btf_type *ret;
10166 const char *tname;
10167 u32 tsize;
10168
10169 /* resolve the type size of ksym. */
10170 ret = btf_resolve_size(btf_vmlinux, t, &tsize);
10171 if (IS_ERR(ret)) {
10172 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
10173 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
10174 tname, PTR_ERR(ret));
10175 return -EINVAL;
10176 }
10177 aux->btf_var.reg_type = PTR_TO_MEM;
10178 aux->btf_var.mem_size = tsize;
10179 } else {
10180 aux->btf_var.reg_type = PTR_TO_BTF_ID;
10181 aux->btf_var.btf_id = type;
10182 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010183 return 0;
10184}
10185
10186static int check_map_prealloc(struct bpf_map *map)
10187{
10188 return (map->map_type != BPF_MAP_TYPE_HASH &&
10189 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
10190 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
10191 !(map->map_flags & BPF_F_NO_PREALLOC);
10192}
10193
David Brazdil0f672f62019-12-10 10:32:29 +000010194static bool is_tracing_prog_type(enum bpf_prog_type type)
10195{
10196 switch (type) {
10197 case BPF_PROG_TYPE_KPROBE:
10198 case BPF_PROG_TYPE_TRACEPOINT:
10199 case BPF_PROG_TYPE_PERF_EVENT:
10200 case BPF_PROG_TYPE_RAW_TRACEPOINT:
10201 return true;
10202 default:
10203 return false;
10204 }
10205}
10206
Olivier Deprez157378f2022-04-04 15:47:50 +020010207static bool is_preallocated_map(struct bpf_map *map)
10208{
10209 if (!check_map_prealloc(map))
10210 return false;
10211 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
10212 return false;
10213 return true;
10214}
10215
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010216static int check_map_prog_compatibility(struct bpf_verifier_env *env,
10217 struct bpf_map *map,
10218 struct bpf_prog *prog)
10219
10220{
Olivier Deprez157378f2022-04-04 15:47:50 +020010221 enum bpf_prog_type prog_type = resolve_prog_type(prog);
10222 /*
10223 * Validate that trace type programs use preallocated hash maps.
10224 *
10225 * For programs attached to PERF events this is mandatory as the
10226 * perf NMI can hit any arbitrary code sequence.
10227 *
10228 * All other trace types using preallocated hash maps are unsafe as
10229 * well because tracepoint or kprobes can be inside locked regions
10230 * of the memory allocator or at a place where a recursion into the
10231 * memory allocator would see inconsistent state.
10232 *
10233 * On RT enabled kernels run-time allocation of all trace type
10234 * programs is strictly prohibited due to lock type constraints. On
10235 * !RT kernels it is allowed for backwards compatibility reasons for
10236 * now, but warnings are emitted so developers are made aware of
10237 * the unsafety and can fix their programs before this is enforced.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010238 */
Olivier Deprez157378f2022-04-04 15:47:50 +020010239 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
10240 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010241 verbose(env, "perf_event programs can only use preallocated hash map\n");
10242 return -EINVAL;
10243 }
Olivier Deprez157378f2022-04-04 15:47:50 +020010244 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
10245 verbose(env, "trace type programs can only use preallocated hash map\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010246 return -EINVAL;
10247 }
Olivier Deprez157378f2022-04-04 15:47:50 +020010248 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
10249 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010250 }
10251
Olivier Deprez157378f2022-04-04 15:47:50 +020010252 if ((is_tracing_prog_type(prog_type) ||
10253 prog_type == BPF_PROG_TYPE_SOCKET_FILTER) &&
David Brazdil0f672f62019-12-10 10:32:29 +000010254 map_value_has_spin_lock(map)) {
10255 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
10256 return -EINVAL;
10257 }
10258
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010259 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
10260 !bpf_offload_prog_map_match(prog, map)) {
10261 verbose(env, "offload device mismatch between prog and map\n");
10262 return -EINVAL;
10263 }
10264
Olivier Deprez157378f2022-04-04 15:47:50 +020010265 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
10266 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
10267 return -EINVAL;
10268 }
10269
10270 if (prog->aux->sleepable)
10271 switch (map->map_type) {
10272 case BPF_MAP_TYPE_HASH:
10273 case BPF_MAP_TYPE_LRU_HASH:
10274 case BPF_MAP_TYPE_ARRAY:
10275 if (!is_preallocated_map(map)) {
10276 verbose(env,
10277 "Sleepable programs can only use preallocated hash maps\n");
10278 return -EINVAL;
10279 }
10280 break;
10281 default:
10282 verbose(env,
10283 "Sleepable programs can only use array and hash maps\n");
10284 return -EINVAL;
10285 }
10286
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010287 return 0;
10288}
10289
David Brazdil0f672f62019-12-10 10:32:29 +000010290static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
10291{
10292 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
10293 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
10294}
10295
Olivier Deprez157378f2022-04-04 15:47:50 +020010296/* find and rewrite pseudo imm in ld_imm64 instructions:
10297 *
10298 * 1. if it accesses map FD, replace it with actual map pointer.
10299 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
10300 *
10301 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010302 */
Olivier Deprez157378f2022-04-04 15:47:50 +020010303static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010304{
10305 struct bpf_insn *insn = env->prog->insnsi;
10306 int insn_cnt = env->prog->len;
10307 int i, j, err;
10308
10309 err = bpf_prog_calc_tag(env->prog);
10310 if (err)
10311 return err;
10312
10313 for (i = 0; i < insn_cnt; i++, insn++) {
10314 if (BPF_CLASS(insn->code) == BPF_LDX &&
10315 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
10316 verbose(env, "BPF_LDX uses reserved fields\n");
10317 return -EINVAL;
10318 }
10319
10320 if (BPF_CLASS(insn->code) == BPF_STX &&
10321 ((BPF_MODE(insn->code) != BPF_MEM &&
10322 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
10323 verbose(env, "BPF_STX uses reserved fields\n");
10324 return -EINVAL;
10325 }
10326
10327 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
David Brazdil0f672f62019-12-10 10:32:29 +000010328 struct bpf_insn_aux_data *aux;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010329 struct bpf_map *map;
10330 struct fd f;
David Brazdil0f672f62019-12-10 10:32:29 +000010331 u64 addr;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010332
10333 if (i == insn_cnt - 1 || insn[1].code != 0 ||
10334 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
10335 insn[1].off != 0) {
10336 verbose(env, "invalid bpf_ld_imm64 insn\n");
10337 return -EINVAL;
10338 }
10339
David Brazdil0f672f62019-12-10 10:32:29 +000010340 if (insn[0].src_reg == 0)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010341 /* valid generic load 64-bit imm */
10342 goto next_insn;
10343
Olivier Deprez157378f2022-04-04 15:47:50 +020010344 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
10345 aux = &env->insn_aux_data[i];
10346 err = check_pseudo_btf_id(env, insn, aux);
10347 if (err)
10348 return err;
10349 goto next_insn;
10350 }
10351
David Brazdil0f672f62019-12-10 10:32:29 +000010352 /* In final convert_pseudo_ld_imm64() step, this is
10353 * converted into regular 64-bit imm load insn.
10354 */
10355 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
10356 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
10357 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
10358 insn[1].imm != 0)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010359 verbose(env,
10360 "unrecognized bpf_ld_imm64 insn\n");
10361 return -EINVAL;
10362 }
10363
David Brazdil0f672f62019-12-10 10:32:29 +000010364 f = fdget(insn[0].imm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010365 map = __bpf_map_get(f);
10366 if (IS_ERR(map)) {
10367 verbose(env, "fd %d is not pointing to valid bpf_map\n",
David Brazdil0f672f62019-12-10 10:32:29 +000010368 insn[0].imm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010369 return PTR_ERR(map);
10370 }
10371
10372 err = check_map_prog_compatibility(env, map, env->prog);
10373 if (err) {
10374 fdput(f);
10375 return err;
10376 }
10377
David Brazdil0f672f62019-12-10 10:32:29 +000010378 aux = &env->insn_aux_data[i];
10379 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
10380 addr = (unsigned long)map;
10381 } else {
10382 u32 off = insn[1].imm;
10383
10384 if (off >= BPF_MAX_VAR_OFF) {
10385 verbose(env, "direct value offset of %u is not allowed\n", off);
10386 fdput(f);
10387 return -EINVAL;
10388 }
10389
10390 if (!map->ops->map_direct_value_addr) {
10391 verbose(env, "no direct value access support for this map type\n");
10392 fdput(f);
10393 return -EINVAL;
10394 }
10395
10396 err = map->ops->map_direct_value_addr(map, &addr, off);
10397 if (err) {
10398 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
10399 map->value_size, off);
10400 fdput(f);
10401 return err;
10402 }
10403
10404 aux->map_off = off;
10405 addr += off;
10406 }
10407
10408 insn[0].imm = (u32)addr;
10409 insn[1].imm = addr >> 32;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010410
10411 /* check whether we recorded this map already */
David Brazdil0f672f62019-12-10 10:32:29 +000010412 for (j = 0; j < env->used_map_cnt; j++) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010413 if (env->used_maps[j] == map) {
David Brazdil0f672f62019-12-10 10:32:29 +000010414 aux->map_index = j;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010415 fdput(f);
10416 goto next_insn;
10417 }
David Brazdil0f672f62019-12-10 10:32:29 +000010418 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010419
10420 if (env->used_map_cnt >= MAX_USED_MAPS) {
10421 fdput(f);
10422 return -E2BIG;
10423 }
10424
10425 /* hold the map. If the program is rejected by verifier,
10426 * the map will be released by release_maps() or it
10427 * will be used by the valid program until it's unloaded
10428 * and all maps are released in free_used_maps()
10429 */
Olivier Deprez157378f2022-04-04 15:47:50 +020010430 bpf_map_inc(map);
David Brazdil0f672f62019-12-10 10:32:29 +000010431
10432 aux->map_index = env->used_map_cnt;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010433 env->used_maps[env->used_map_cnt++] = map;
10434
David Brazdil0f672f62019-12-10 10:32:29 +000010435 if (bpf_map_is_cgroup_storage(map) &&
Olivier Deprez157378f2022-04-04 15:47:50 +020010436 bpf_cgroup_storage_assign(env->prog->aux, map)) {
David Brazdil0f672f62019-12-10 10:32:29 +000010437 verbose(env, "only one cgroup storage of each type is allowed\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010438 fdput(f);
10439 return -EBUSY;
10440 }
10441
10442 fdput(f);
10443next_insn:
10444 insn++;
10445 i++;
10446 continue;
10447 }
10448
10449 /* Basic sanity check before we invest more work here. */
10450 if (!bpf_opcode_in_insntable(insn->code)) {
10451 verbose(env, "unknown opcode %02x\n", insn->code);
10452 return -EINVAL;
10453 }
10454 }
10455
10456 /* now all pseudo BPF_LD_IMM64 instructions load valid
10457 * 'struct bpf_map *' into a register instead of user map_fd.
10458 * These pointers will be used later by verifier to validate map access.
10459 */
10460 return 0;
10461}
10462
10463/* drop refcnt of maps used by the rejected program */
10464static void release_maps(struct bpf_verifier_env *env)
10465{
Olivier Deprez157378f2022-04-04 15:47:50 +020010466 __bpf_free_used_maps(env->prog->aux, env->used_maps,
10467 env->used_map_cnt);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010468}
10469
10470/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
10471static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
10472{
10473 struct bpf_insn *insn = env->prog->insnsi;
10474 int insn_cnt = env->prog->len;
10475 int i;
10476
10477 for (i = 0; i < insn_cnt; i++, insn++)
10478 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
10479 insn->src_reg = 0;
10480}
10481
10482/* single env->prog->insni[off] instruction was replaced with the range
10483 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
10484 * [0, off) and [off, end) to new locations, so the patched range stays zero
10485 */
Olivier Deprez0e641232021-09-23 10:07:05 +020010486static void adjust_insn_aux_data(struct bpf_verifier_env *env,
10487 struct bpf_insn_aux_data *new_data,
10488 struct bpf_prog *new_prog, u32 off, u32 cnt)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010489{
Olivier Deprez0e641232021-09-23 10:07:05 +020010490 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
David Brazdil0f672f62019-12-10 10:32:29 +000010491 struct bpf_insn *insn = new_prog->insnsi;
Olivier Deprez157378f2022-04-04 15:47:50 +020010492 u32 old_seen = old_data[off].seen;
David Brazdil0f672f62019-12-10 10:32:29 +000010493 u32 prog_len;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010494 int i;
10495
David Brazdil0f672f62019-12-10 10:32:29 +000010496 /* aux info at OFF always needs adjustment, no matter fast path
10497 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
10498 * original insn at old prog.
10499 */
10500 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
10501
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010502 if (cnt == 1)
Olivier Deprez0e641232021-09-23 10:07:05 +020010503 return;
David Brazdil0f672f62019-12-10 10:32:29 +000010504 prog_len = new_prog->len;
Olivier Deprez0e641232021-09-23 10:07:05 +020010505
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010506 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
10507 memcpy(new_data + off + cnt - 1, old_data + off,
10508 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
David Brazdil0f672f62019-12-10 10:32:29 +000010509 for (i = off; i < off + cnt - 1; i++) {
Olivier Deprez0e641232021-09-23 10:07:05 +020010510 /* Expand insni[off]'s seen count to the patched range. */
10511 new_data[i].seen = old_seen;
David Brazdil0f672f62019-12-10 10:32:29 +000010512 new_data[i].zext_dst = insn_has_def32(env, insn + i);
10513 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010514 env->insn_aux_data = new_data;
10515 vfree(old_data);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010516}
10517
10518static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
10519{
10520 int i;
10521
10522 if (len == 1)
10523 return;
10524 /* NOTE: fake 'exit' subprog should be updated as well. */
10525 for (i = 0; i <= env->subprog_cnt; i++) {
10526 if (env->subprog_info[i].start <= off)
10527 continue;
10528 env->subprog_info[i].start += len - 1;
10529 }
10530}
10531
Olivier Deprez157378f2022-04-04 15:47:50 +020010532static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
10533{
10534 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
10535 int i, sz = prog->aux->size_poke_tab;
10536 struct bpf_jit_poke_descriptor *desc;
10537
10538 for (i = 0; i < sz; i++) {
10539 desc = &tab[i];
10540 if (desc->insn_idx <= off)
10541 continue;
10542 desc->insn_idx += len - 1;
10543 }
10544}
10545
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010546static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
10547 const struct bpf_insn *patch, u32 len)
10548{
10549 struct bpf_prog *new_prog;
Olivier Deprez0e641232021-09-23 10:07:05 +020010550 struct bpf_insn_aux_data *new_data = NULL;
10551
10552 if (len > 1) {
10553 new_data = vzalloc(array_size(env->prog->len + len - 1,
10554 sizeof(struct bpf_insn_aux_data)));
10555 if (!new_data)
10556 return NULL;
10557 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010558
10559 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
David Brazdil0f672f62019-12-10 10:32:29 +000010560 if (IS_ERR(new_prog)) {
10561 if (PTR_ERR(new_prog) == -ERANGE)
10562 verbose(env,
10563 "insn %d cannot be patched due to 16-bit range\n",
10564 env->insn_aux_data[off].orig_idx);
Olivier Deprez0e641232021-09-23 10:07:05 +020010565 vfree(new_data);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010566 return NULL;
David Brazdil0f672f62019-12-10 10:32:29 +000010567 }
Olivier Deprez0e641232021-09-23 10:07:05 +020010568 adjust_insn_aux_data(env, new_data, new_prog, off, len);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010569 adjust_subprog_starts(env, off, len);
Olivier Deprez157378f2022-04-04 15:47:50 +020010570 adjust_poke_descs(new_prog, off, len);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010571 return new_prog;
10572}
10573
David Brazdil0f672f62019-12-10 10:32:29 +000010574static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
10575 u32 off, u32 cnt)
10576{
10577 int i, j;
10578
10579 /* find first prog starting at or after off (first to remove) */
10580 for (i = 0; i < env->subprog_cnt; i++)
10581 if (env->subprog_info[i].start >= off)
10582 break;
10583 /* find first prog starting at or after off + cnt (first to stay) */
10584 for (j = i; j < env->subprog_cnt; j++)
10585 if (env->subprog_info[j].start >= off + cnt)
10586 break;
10587 /* if j doesn't start exactly at off + cnt, we are just removing
10588 * the front of previous prog
10589 */
10590 if (env->subprog_info[j].start != off + cnt)
10591 j--;
10592
10593 if (j > i) {
10594 struct bpf_prog_aux *aux = env->prog->aux;
10595 int move;
10596
10597 /* move fake 'exit' subprog as well */
10598 move = env->subprog_cnt + 1 - j;
10599
10600 memmove(env->subprog_info + i,
10601 env->subprog_info + j,
10602 sizeof(*env->subprog_info) * move);
10603 env->subprog_cnt -= j - i;
10604
10605 /* remove func_info */
10606 if (aux->func_info) {
10607 move = aux->func_info_cnt - j;
10608
10609 memmove(aux->func_info + i,
10610 aux->func_info + j,
10611 sizeof(*aux->func_info) * move);
10612 aux->func_info_cnt -= j - i;
10613 /* func_info->insn_off is set after all code rewrites,
10614 * in adjust_btf_func() - no need to adjust
10615 */
10616 }
10617 } else {
10618 /* convert i from "first prog to remove" to "first to adjust" */
10619 if (env->subprog_info[i].start == off)
10620 i++;
10621 }
10622
10623 /* update fake 'exit' subprog as well */
10624 for (; i <= env->subprog_cnt; i++)
10625 env->subprog_info[i].start -= cnt;
10626
10627 return 0;
10628}
10629
10630static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
10631 u32 cnt)
10632{
10633 struct bpf_prog *prog = env->prog;
10634 u32 i, l_off, l_cnt, nr_linfo;
10635 struct bpf_line_info *linfo;
10636
10637 nr_linfo = prog->aux->nr_linfo;
10638 if (!nr_linfo)
10639 return 0;
10640
10641 linfo = prog->aux->linfo;
10642
10643 /* find first line info to remove, count lines to be removed */
10644 for (i = 0; i < nr_linfo; i++)
10645 if (linfo[i].insn_off >= off)
10646 break;
10647
10648 l_off = i;
10649 l_cnt = 0;
10650 for (; i < nr_linfo; i++)
10651 if (linfo[i].insn_off < off + cnt)
10652 l_cnt++;
10653 else
10654 break;
10655
10656 /* First live insn doesn't match first live linfo, it needs to "inherit"
10657 * last removed linfo. prog is already modified, so prog->len == off
10658 * means no live instructions after (tail of the program was removed).
10659 */
10660 if (prog->len != off && l_cnt &&
10661 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
10662 l_cnt--;
10663 linfo[--i].insn_off = off + cnt;
10664 }
10665
10666 /* remove the line info which refer to the removed instructions */
10667 if (l_cnt) {
10668 memmove(linfo + l_off, linfo + i,
10669 sizeof(*linfo) * (nr_linfo - i));
10670
10671 prog->aux->nr_linfo -= l_cnt;
10672 nr_linfo = prog->aux->nr_linfo;
10673 }
10674
10675 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
10676 for (i = l_off; i < nr_linfo; i++)
10677 linfo[i].insn_off -= cnt;
10678
10679 /* fix up all subprogs (incl. 'exit') which start >= off */
10680 for (i = 0; i <= env->subprog_cnt; i++)
10681 if (env->subprog_info[i].linfo_idx > l_off) {
10682 /* program may have started in the removed region but
10683 * may not be fully removed
10684 */
10685 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
10686 env->subprog_info[i].linfo_idx -= l_cnt;
10687 else
10688 env->subprog_info[i].linfo_idx = l_off;
10689 }
10690
10691 return 0;
10692}
10693
10694static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
10695{
10696 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10697 unsigned int orig_prog_len = env->prog->len;
10698 int err;
10699
10700 if (bpf_prog_is_dev_bound(env->prog->aux))
10701 bpf_prog_offload_remove_insns(env, off, cnt);
10702
10703 err = bpf_remove_insns(env->prog, off, cnt);
10704 if (err)
10705 return err;
10706
10707 err = adjust_subprog_starts_after_remove(env, off, cnt);
10708 if (err)
10709 return err;
10710
10711 err = bpf_adj_linfo_after_remove(env, off, cnt);
10712 if (err)
10713 return err;
10714
10715 memmove(aux_data + off, aux_data + off + cnt,
10716 sizeof(*aux_data) * (orig_prog_len - off - cnt));
10717
10718 return 0;
10719}
10720
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010721/* The verifier does more data flow analysis than llvm and will not
10722 * explore branches that are dead at run time. Malicious programs can
10723 * have dead code too. Therefore replace all dead at-run-time code
10724 * with 'ja -1'.
10725 *
10726 * Just nops are not optimal, e.g. if they would sit at the end of the
10727 * program and through another bug we would manage to jump there, then
10728 * we'd execute beyond program memory otherwise. Returning exception
10729 * code also wouldn't work since we can have subprogs where the dead
10730 * code could be located.
10731 */
10732static void sanitize_dead_code(struct bpf_verifier_env *env)
10733{
10734 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10735 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
10736 struct bpf_insn *insn = env->prog->insnsi;
10737 const int insn_cnt = env->prog->len;
10738 int i;
10739
10740 for (i = 0; i < insn_cnt; i++) {
10741 if (aux_data[i].seen)
10742 continue;
10743 memcpy(insn + i, &trap, sizeof(trap));
Olivier Deprez0e641232021-09-23 10:07:05 +020010744 aux_data[i].zext_dst = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010745 }
10746}
10747
David Brazdil0f672f62019-12-10 10:32:29 +000010748static bool insn_is_cond_jump(u8 code)
10749{
10750 u8 op;
10751
10752 if (BPF_CLASS(code) == BPF_JMP32)
10753 return true;
10754
10755 if (BPF_CLASS(code) != BPF_JMP)
10756 return false;
10757
10758 op = BPF_OP(code);
10759 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
10760}
10761
10762static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
10763{
10764 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10765 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10766 struct bpf_insn *insn = env->prog->insnsi;
10767 const int insn_cnt = env->prog->len;
10768 int i;
10769
10770 for (i = 0; i < insn_cnt; i++, insn++) {
10771 if (!insn_is_cond_jump(insn->code))
10772 continue;
10773
10774 if (!aux_data[i + 1].seen)
10775 ja.off = insn->off;
10776 else if (!aux_data[i + 1 + insn->off].seen)
10777 ja.off = 0;
10778 else
10779 continue;
10780
10781 if (bpf_prog_is_dev_bound(env->prog->aux))
10782 bpf_prog_offload_replace_insn(env, i, &ja);
10783
10784 memcpy(insn, &ja, sizeof(ja));
10785 }
10786}
10787
10788static int opt_remove_dead_code(struct bpf_verifier_env *env)
10789{
10790 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10791 int insn_cnt = env->prog->len;
10792 int i, err;
10793
10794 for (i = 0; i < insn_cnt; i++) {
10795 int j;
10796
10797 j = 0;
10798 while (i + j < insn_cnt && !aux_data[i + j].seen)
10799 j++;
10800 if (!j)
10801 continue;
10802
10803 err = verifier_remove_insns(env, i, j);
10804 if (err)
10805 return err;
10806 insn_cnt = env->prog->len;
10807 }
10808
10809 return 0;
10810}
10811
10812static int opt_remove_nops(struct bpf_verifier_env *env)
10813{
10814 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10815 struct bpf_insn *insn = env->prog->insnsi;
10816 int insn_cnt = env->prog->len;
10817 int i, err;
10818
10819 for (i = 0; i < insn_cnt; i++) {
10820 if (memcmp(&insn[i], &ja, sizeof(ja)))
10821 continue;
10822
10823 err = verifier_remove_insns(env, i, 1);
10824 if (err)
10825 return err;
10826 insn_cnt--;
10827 i--;
10828 }
10829
10830 return 0;
10831}
10832
10833static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
10834 const union bpf_attr *attr)
10835{
10836 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
10837 struct bpf_insn_aux_data *aux = env->insn_aux_data;
10838 int i, patch_len, delta = 0, len = env->prog->len;
10839 struct bpf_insn *insns = env->prog->insnsi;
10840 struct bpf_prog *new_prog;
10841 bool rnd_hi32;
10842
10843 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
10844 zext_patch[1] = BPF_ZEXT_REG(0);
10845 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
10846 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
10847 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
10848 for (i = 0; i < len; i++) {
10849 int adj_idx = i + delta;
10850 struct bpf_insn insn;
10851
10852 insn = insns[adj_idx];
10853 if (!aux[adj_idx].zext_dst) {
10854 u8 code, class;
10855 u32 imm_rnd;
10856
10857 if (!rnd_hi32)
10858 continue;
10859
10860 code = insn.code;
10861 class = BPF_CLASS(code);
10862 if (insn_no_def(&insn))
10863 continue;
10864
10865 /* NOTE: arg "reg" (the fourth one) is only used for
10866 * BPF_STX which has been ruled out in above
10867 * check, it is safe to pass NULL here.
10868 */
10869 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
10870 if (class == BPF_LD &&
10871 BPF_MODE(code) == BPF_IMM)
10872 i++;
10873 continue;
10874 }
10875
10876 /* ctx load could be transformed into wider load. */
10877 if (class == BPF_LDX &&
10878 aux[adj_idx].ptr_type == PTR_TO_CTX)
10879 continue;
10880
10881 imm_rnd = get_random_int();
10882 rnd_hi32_patch[0] = insn;
10883 rnd_hi32_patch[1].imm = imm_rnd;
10884 rnd_hi32_patch[3].dst_reg = insn.dst_reg;
10885 patch = rnd_hi32_patch;
10886 patch_len = 4;
10887 goto apply_patch_buffer;
10888 }
10889
10890 if (!bpf_jit_needs_zext())
10891 continue;
10892
10893 zext_patch[0] = insn;
10894 zext_patch[1].dst_reg = insn.dst_reg;
10895 zext_patch[1].src_reg = insn.dst_reg;
10896 patch = zext_patch;
10897 patch_len = 2;
10898apply_patch_buffer:
10899 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
10900 if (!new_prog)
10901 return -ENOMEM;
10902 env->prog = new_prog;
10903 insns = new_prog->insnsi;
10904 aux = env->insn_aux_data;
10905 delta += patch_len - 1;
10906 }
10907
10908 return 0;
10909}
10910
10911/* convert load instructions that access fields of a context type into a
10912 * sequence of instructions that access fields of the underlying structure:
10913 * struct __sk_buff -> struct sk_buff
10914 * struct bpf_sock_ops -> struct sock
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010915 */
10916static int convert_ctx_accesses(struct bpf_verifier_env *env)
10917{
10918 const struct bpf_verifier_ops *ops = env->ops;
10919 int i, cnt, size, ctx_field_size, delta = 0;
10920 const int insn_cnt = env->prog->len;
10921 struct bpf_insn insn_buf[16], *insn;
David Brazdil0f672f62019-12-10 10:32:29 +000010922 u32 target_size, size_default, off;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010923 struct bpf_prog *new_prog;
10924 enum bpf_access_type type;
10925 bool is_narrower_load;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010926
David Brazdil0f672f62019-12-10 10:32:29 +000010927 if (ops->gen_prologue || env->seen_direct_write) {
10928 if (!ops->gen_prologue) {
10929 verbose(env, "bpf verifier is misconfigured\n");
10930 return -EINVAL;
10931 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010932 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
10933 env->prog);
10934 if (cnt >= ARRAY_SIZE(insn_buf)) {
10935 verbose(env, "bpf verifier is misconfigured\n");
10936 return -EINVAL;
10937 } else if (cnt) {
10938 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
10939 if (!new_prog)
10940 return -ENOMEM;
10941
10942 env->prog = new_prog;
10943 delta += cnt - 1;
10944 }
10945 }
10946
David Brazdil0f672f62019-12-10 10:32:29 +000010947 if (bpf_prog_is_dev_bound(env->prog->aux))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010948 return 0;
10949
10950 insn = env->prog->insnsi + delta;
10951
10952 for (i = 0; i < insn_cnt; i++, insn++) {
David Brazdil0f672f62019-12-10 10:32:29 +000010953 bpf_convert_ctx_access_t convert_ctx_access;
Olivier Deprez0e641232021-09-23 10:07:05 +020010954 bool ctx_access;
David Brazdil0f672f62019-12-10 10:32:29 +000010955
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010956 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
10957 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
10958 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
Olivier Deprez0e641232021-09-23 10:07:05 +020010959 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010960 type = BPF_READ;
Olivier Deprez0e641232021-09-23 10:07:05 +020010961 ctx_access = true;
10962 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
10963 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
10964 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
10965 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
10966 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
10967 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
10968 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
10969 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010970 type = BPF_WRITE;
Olivier Deprez0e641232021-09-23 10:07:05 +020010971 ctx_access = BPF_CLASS(insn->code) == BPF_STX;
10972 } else {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010973 continue;
Olivier Deprez0e641232021-09-23 10:07:05 +020010974 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010975
10976 if (type == BPF_WRITE &&
Olivier Deprez0e641232021-09-23 10:07:05 +020010977 env->insn_aux_data[i + delta].sanitize_stack_spill) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010978 struct bpf_insn patch[] = {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010979 *insn,
Olivier Deprez0e641232021-09-23 10:07:05 +020010980 BPF_ST_NOSPEC(),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010981 };
10982
10983 cnt = ARRAY_SIZE(patch);
10984 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
10985 if (!new_prog)
10986 return -ENOMEM;
10987
10988 delta += cnt - 1;
10989 env->prog = new_prog;
10990 insn = new_prog->insnsi + i + delta;
10991 continue;
10992 }
10993
Olivier Deprez0e641232021-09-23 10:07:05 +020010994 if (!ctx_access)
10995 continue;
10996
David Brazdil0f672f62019-12-10 10:32:29 +000010997 switch (env->insn_aux_data[i + delta].ptr_type) {
10998 case PTR_TO_CTX:
10999 if (!ops->convert_ctx_access)
11000 continue;
11001 convert_ctx_access = ops->convert_ctx_access;
11002 break;
11003 case PTR_TO_SOCKET:
11004 case PTR_TO_SOCK_COMMON:
11005 convert_ctx_access = bpf_sock_convert_ctx_access;
11006 break;
11007 case PTR_TO_TCP_SOCK:
11008 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
11009 break;
11010 case PTR_TO_XDP_SOCK:
11011 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
11012 break;
Olivier Deprez157378f2022-04-04 15:47:50 +020011013 case PTR_TO_BTF_ID:
11014 if (type == BPF_READ) {
11015 insn->code = BPF_LDX | BPF_PROBE_MEM |
11016 BPF_SIZE((insn)->code);
11017 env->prog->aux->num_exentries++;
11018 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
11019 verbose(env, "Writes through BTF pointers are not allowed\n");
11020 return -EINVAL;
11021 }
11022 continue;
David Brazdil0f672f62019-12-10 10:32:29 +000011023 default:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011024 continue;
David Brazdil0f672f62019-12-10 10:32:29 +000011025 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011026
11027 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
11028 size = BPF_LDST_BYTES(insn);
11029
11030 /* If the read access is a narrower load of the field,
11031 * convert to a 4/8-byte load, to minimum program type specific
11032 * convert_ctx_access changes. If conversion is successful,
11033 * we will apply proper mask to the result.
11034 */
11035 is_narrower_load = size < ctx_field_size;
David Brazdil0f672f62019-12-10 10:32:29 +000011036 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
11037 off = insn->off;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011038 if (is_narrower_load) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011039 u8 size_code;
11040
11041 if (type == BPF_WRITE) {
11042 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
11043 return -EINVAL;
11044 }
11045
11046 size_code = BPF_H;
11047 if (ctx_field_size == 4)
11048 size_code = BPF_W;
11049 else if (ctx_field_size == 8)
11050 size_code = BPF_DW;
11051
11052 insn->off = off & ~(size_default - 1);
11053 insn->code = BPF_LDX | BPF_MEM | size_code;
11054 }
11055
11056 target_size = 0;
David Brazdil0f672f62019-12-10 10:32:29 +000011057 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
11058 &target_size);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011059 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
11060 (ctx_field_size && !target_size)) {
11061 verbose(env, "bpf verifier is misconfigured\n");
11062 return -EINVAL;
11063 }
11064
11065 if (is_narrower_load && size < target_size) {
David Brazdil0f672f62019-12-10 10:32:29 +000011066 u8 shift = bpf_ctx_narrow_access_offset(
11067 off, size, size_default) * 8;
Olivier Deprez0e641232021-09-23 10:07:05 +020011068 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
11069 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
11070 return -EINVAL;
11071 }
David Brazdil0f672f62019-12-10 10:32:29 +000011072 if (ctx_field_size <= 4) {
11073 if (shift)
11074 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
11075 insn->dst_reg,
11076 shift);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011077 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
11078 (1 << size * 8) - 1);
David Brazdil0f672f62019-12-10 10:32:29 +000011079 } else {
11080 if (shift)
11081 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
11082 insn->dst_reg,
11083 shift);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011084 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
David Brazdil0f672f62019-12-10 10:32:29 +000011085 (1ULL << size * 8) - 1);
11086 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011087 }
11088
11089 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11090 if (!new_prog)
11091 return -ENOMEM;
11092
11093 delta += cnt - 1;
11094
11095 /* keep walking new program and skip insns we just inserted */
11096 env->prog = new_prog;
11097 insn = new_prog->insnsi + i + delta;
11098 }
11099
11100 return 0;
11101}
11102
11103static int jit_subprogs(struct bpf_verifier_env *env)
11104{
11105 struct bpf_prog *prog = env->prog, **func, *tmp;
11106 int i, j, subprog_start, subprog_end = 0, len, subprog;
Olivier Deprez157378f2022-04-04 15:47:50 +020011107 struct bpf_map *map_ptr;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011108 struct bpf_insn *insn;
11109 void *old_bpf_func;
Olivier Deprez157378f2022-04-04 15:47:50 +020011110 int err, num_exentries;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011111
11112 if (env->subprog_cnt <= 1)
11113 return 0;
11114
11115 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11116 if (insn->code != (BPF_JMP | BPF_CALL) ||
11117 insn->src_reg != BPF_PSEUDO_CALL)
11118 continue;
11119 /* Upon error here we cannot fall back to interpreter but
11120 * need a hard reject of the program. Thus -EFAULT is
11121 * propagated in any case.
11122 */
11123 subprog = find_subprog(env, i + insn->imm + 1);
11124 if (subprog < 0) {
11125 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
11126 i + insn->imm + 1);
11127 return -EFAULT;
11128 }
11129 /* temporarily remember subprog id inside insn instead of
11130 * aux_data, since next loop will split up all insns into funcs
11131 */
11132 insn->off = subprog;
11133 /* remember original imm in case JIT fails and fallback
11134 * to interpreter will be needed
11135 */
11136 env->insn_aux_data[i].call_imm = insn->imm;
11137 /* point imm to __bpf_call_base+1 from JITs point of view */
11138 insn->imm = 1;
11139 }
11140
David Brazdil0f672f62019-12-10 10:32:29 +000011141 err = bpf_prog_alloc_jited_linfo(prog);
11142 if (err)
11143 goto out_undo_insn;
11144
11145 err = -ENOMEM;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011146 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
11147 if (!func)
11148 goto out_undo_insn;
11149
11150 for (i = 0; i < env->subprog_cnt; i++) {
11151 subprog_start = subprog_end;
11152 subprog_end = env->subprog_info[i + 1].start;
11153
11154 len = subprog_end - subprog_start;
David Brazdil0f672f62019-12-10 10:32:29 +000011155 /* BPF_PROG_RUN doesn't call subprogs directly,
11156 * hence main prog stats include the runtime of subprogs.
11157 * subprogs don't have IDs and not reachable via prog_get_next_id
11158 * func[i]->aux->stats will never be accessed and stays NULL
11159 */
11160 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011161 if (!func[i])
11162 goto out_free;
11163 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
11164 len * sizeof(struct bpf_insn));
11165 func[i]->type = prog->type;
11166 func[i]->len = len;
11167 if (bpf_prog_calc_tag(func[i]))
11168 goto out_free;
11169 func[i]->is_func = 1;
David Brazdil0f672f62019-12-10 10:32:29 +000011170 func[i]->aux->func_idx = i;
Olivier Deprez157378f2022-04-04 15:47:50 +020011171 /* Below members will be freed only at prog->aux */
David Brazdil0f672f62019-12-10 10:32:29 +000011172 func[i]->aux->btf = prog->aux->btf;
11173 func[i]->aux->func_info = prog->aux->func_info;
Olivier Deprez157378f2022-04-04 15:47:50 +020011174 func[i]->aux->poke_tab = prog->aux->poke_tab;
11175 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
11176
11177 for (j = 0; j < prog->aux->size_poke_tab; j++) {
11178 struct bpf_jit_poke_descriptor *poke;
11179
11180 poke = &prog->aux->poke_tab[j];
11181 if (poke->insn_idx < subprog_end &&
11182 poke->insn_idx >= subprog_start)
11183 poke->aux = func[i]->aux;
11184 }
David Brazdil0f672f62019-12-10 10:32:29 +000011185
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011186 /* Use bpf_prog_F_tag to indicate functions in stack traces.
11187 * Long term would need debug info to populate names
11188 */
11189 func[i]->aux->name[0] = 'F';
11190 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
11191 func[i]->jit_requested = 1;
David Brazdil0f672f62019-12-10 10:32:29 +000011192 func[i]->aux->linfo = prog->aux->linfo;
11193 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
11194 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
11195 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
Olivier Deprez157378f2022-04-04 15:47:50 +020011196 num_exentries = 0;
11197 insn = func[i]->insnsi;
11198 for (j = 0; j < func[i]->len; j++, insn++) {
11199 if (BPF_CLASS(insn->code) == BPF_LDX &&
11200 BPF_MODE(insn->code) == BPF_PROBE_MEM)
11201 num_exentries++;
11202 }
11203 func[i]->aux->num_exentries = num_exentries;
11204 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011205 func[i] = bpf_int_jit_compile(func[i]);
11206 if (!func[i]->jited) {
11207 err = -ENOTSUPP;
11208 goto out_free;
11209 }
11210 cond_resched();
11211 }
Olivier Deprez157378f2022-04-04 15:47:50 +020011212
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011213 /* at this point all bpf functions were successfully JITed
11214 * now populate all bpf_calls with correct addresses and
11215 * run last pass of JIT
11216 */
11217 for (i = 0; i < env->subprog_cnt; i++) {
11218 insn = func[i]->insnsi;
11219 for (j = 0; j < func[i]->len; j++, insn++) {
11220 if (insn->code != (BPF_JMP | BPF_CALL) ||
11221 insn->src_reg != BPF_PSEUDO_CALL)
11222 continue;
11223 subprog = insn->off;
David Brazdil0f672f62019-12-10 10:32:29 +000011224 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
11225 __bpf_call_base;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011226 }
11227
11228 /* we use the aux data to keep a list of the start addresses
11229 * of the JITed images for each function in the program
11230 *
11231 * for some architectures, such as powerpc64, the imm field
11232 * might not be large enough to hold the offset of the start
11233 * address of the callee's JITed image from __bpf_call_base
11234 *
11235 * in such cases, we can lookup the start address of a callee
11236 * by using its subprog id, available from the off field of
11237 * the call instruction, as an index for this list
11238 */
11239 func[i]->aux->func = func;
11240 func[i]->aux->func_cnt = env->subprog_cnt;
11241 }
11242 for (i = 0; i < env->subprog_cnt; i++) {
11243 old_bpf_func = func[i]->bpf_func;
11244 tmp = bpf_int_jit_compile(func[i]);
11245 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
11246 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
11247 err = -ENOTSUPP;
11248 goto out_free;
11249 }
11250 cond_resched();
11251 }
11252
11253 /* finally lock prog and jit images for all functions and
11254 * populate kallsysm
11255 */
11256 for (i = 0; i < env->subprog_cnt; i++) {
11257 bpf_prog_lock_ro(func[i]);
11258 bpf_prog_kallsyms_add(func[i]);
11259 }
11260
11261 /* Last step: make now unused interpreter insns from main
11262 * prog consistent for later dump requests, so they can
11263 * later look the same as if they were interpreted only.
11264 */
11265 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11266 if (insn->code != (BPF_JMP | BPF_CALL) ||
11267 insn->src_reg != BPF_PSEUDO_CALL)
11268 continue;
11269 insn->off = env->insn_aux_data[i].call_imm;
11270 subprog = find_subprog(env, i + insn->off + 1);
11271 insn->imm = subprog;
11272 }
11273
11274 prog->jited = 1;
11275 prog->bpf_func = func[0]->bpf_func;
11276 prog->aux->func = func;
11277 prog->aux->func_cnt = env->subprog_cnt;
David Brazdil0f672f62019-12-10 10:32:29 +000011278 bpf_prog_free_unused_jited_linfo(prog);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011279 return 0;
11280out_free:
Olivier Deprez157378f2022-04-04 15:47:50 +020011281 /* We failed JIT'ing, so at this point we need to unregister poke
11282 * descriptors from subprogs, so that kernel is not attempting to
11283 * patch it anymore as we're freeing the subprog JIT memory.
11284 */
11285 for (i = 0; i < prog->aux->size_poke_tab; i++) {
11286 map_ptr = prog->aux->poke_tab[i].tail_call.map;
11287 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
11288 }
11289 /* At this point we're guaranteed that poke descriptors are not
11290 * live anymore. We can just unlink its descriptor table as it's
11291 * released with the main prog.
11292 */
11293 for (i = 0; i < env->subprog_cnt; i++) {
11294 if (!func[i])
11295 continue;
11296 func[i]->aux->poke_tab = NULL;
11297 bpf_jit_free(func[i]);
11298 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011299 kfree(func);
11300out_undo_insn:
11301 /* cleanup main prog to be interpreted */
11302 prog->jit_requested = 0;
11303 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11304 if (insn->code != (BPF_JMP | BPF_CALL) ||
11305 insn->src_reg != BPF_PSEUDO_CALL)
11306 continue;
11307 insn->off = 0;
11308 insn->imm = env->insn_aux_data[i].call_imm;
11309 }
David Brazdil0f672f62019-12-10 10:32:29 +000011310 bpf_prog_free_jited_linfo(prog);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011311 return err;
11312}
11313
11314static int fixup_call_args(struct bpf_verifier_env *env)
11315{
11316#ifndef CONFIG_BPF_JIT_ALWAYS_ON
11317 struct bpf_prog *prog = env->prog;
11318 struct bpf_insn *insn = prog->insnsi;
11319 int i, depth;
11320#endif
David Brazdil0f672f62019-12-10 10:32:29 +000011321 int err = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011322
David Brazdil0f672f62019-12-10 10:32:29 +000011323 if (env->prog->jit_requested &&
11324 !bpf_prog_is_dev_bound(env->prog->aux)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011325 err = jit_subprogs(env);
11326 if (err == 0)
11327 return 0;
11328 if (err == -EFAULT)
11329 return err;
11330 }
11331#ifndef CONFIG_BPF_JIT_ALWAYS_ON
Olivier Deprez157378f2022-04-04 15:47:50 +020011332 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
11333 /* When JIT fails the progs with bpf2bpf calls and tail_calls
11334 * have to be rejected, since interpreter doesn't support them yet.
11335 */
11336 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
11337 return -EINVAL;
11338 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011339 for (i = 0; i < prog->len; i++, insn++) {
11340 if (insn->code != (BPF_JMP | BPF_CALL) ||
11341 insn->src_reg != BPF_PSEUDO_CALL)
11342 continue;
11343 depth = get_callee_stack_depth(env, insn, i);
11344 if (depth < 0)
11345 return depth;
11346 bpf_patch_call_args(insn, depth);
11347 }
11348 err = 0;
11349#endif
11350 return err;
11351}
11352
11353/* fixup insn->imm field of bpf_call instructions
11354 * and inline eligible helpers as explicit sequence of BPF instructions
11355 *
11356 * this function is called after eBPF program passed verification
11357 */
11358static int fixup_bpf_calls(struct bpf_verifier_env *env)
11359{
11360 struct bpf_prog *prog = env->prog;
Olivier Deprez157378f2022-04-04 15:47:50 +020011361 bool expect_blinding = bpf_jit_blinding_enabled(prog);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011362 struct bpf_insn *insn = prog->insnsi;
11363 const struct bpf_func_proto *fn;
11364 const int insn_cnt = prog->len;
11365 const struct bpf_map_ops *ops;
11366 struct bpf_insn_aux_data *aux;
11367 struct bpf_insn insn_buf[16];
11368 struct bpf_prog *new_prog;
11369 struct bpf_map *map_ptr;
Olivier Deprez157378f2022-04-04 15:47:50 +020011370 int i, ret, cnt, delta = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011371
11372 for (i = 0; i < insn_cnt; i++, insn++) {
11373 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
11374 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
11375 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
11376 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
11377 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
Olivier Deprez0e641232021-09-23 10:07:05 +020011378 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
11379 struct bpf_insn *patchlet;
11380 struct bpf_insn chk_and_div[] = {
11381 /* [R,W]x div 0 -> 0 */
11382 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11383 BPF_JNE | BPF_K, insn->src_reg,
11384 0, 2, 0),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011385 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
11386 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11387 *insn,
11388 };
Olivier Deprez0e641232021-09-23 10:07:05 +020011389 struct bpf_insn chk_and_mod[] = {
11390 /* [R,W]x mod 0 -> [R,W]x */
11391 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11392 BPF_JEQ | BPF_K, insn->src_reg,
11393 0, 1 + (is64 ? 0 : 1), 0),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011394 *insn,
Olivier Deprez0e641232021-09-23 10:07:05 +020011395 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11396 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011397 };
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011398
Olivier Deprez0e641232021-09-23 10:07:05 +020011399 patchlet = isdiv ? chk_and_div : chk_and_mod;
11400 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
11401 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011402
11403 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
11404 if (!new_prog)
11405 return -ENOMEM;
11406
11407 delta += cnt - 1;
11408 env->prog = prog = new_prog;
11409 insn = new_prog->insnsi + i + delta;
11410 continue;
11411 }
11412
11413 if (BPF_CLASS(insn->code) == BPF_LD &&
11414 (BPF_MODE(insn->code) == BPF_ABS ||
11415 BPF_MODE(insn->code) == BPF_IND)) {
11416 cnt = env->ops->gen_ld_abs(insn, insn_buf);
11417 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11418 verbose(env, "bpf verifier is misconfigured\n");
11419 return -EINVAL;
11420 }
11421
11422 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11423 if (!new_prog)
11424 return -ENOMEM;
11425
11426 delta += cnt - 1;
11427 env->prog = prog = new_prog;
11428 insn = new_prog->insnsi + i + delta;
11429 continue;
11430 }
11431
David Brazdil0f672f62019-12-10 10:32:29 +000011432 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
11433 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
11434 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
11435 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
11436 struct bpf_insn insn_buf[16];
11437 struct bpf_insn *patch = &insn_buf[0];
Olivier Deprez0e641232021-09-23 10:07:05 +020011438 bool issrc, isneg, isimm;
David Brazdil0f672f62019-12-10 10:32:29 +000011439 u32 off_reg;
11440
11441 aux = &env->insn_aux_data[i + delta];
11442 if (!aux->alu_state ||
11443 aux->alu_state == BPF_ALU_NON_POINTER)
11444 continue;
11445
11446 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
11447 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
11448 BPF_ALU_SANITIZE_SRC;
Olivier Deprez0e641232021-09-23 10:07:05 +020011449 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
David Brazdil0f672f62019-12-10 10:32:29 +000011450
11451 off_reg = issrc ? insn->src_reg : insn->dst_reg;
Olivier Deprez0e641232021-09-23 10:07:05 +020011452 if (isimm) {
11453 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
David Brazdil0f672f62019-12-10 10:32:29 +000011454 } else {
Olivier Deprez0e641232021-09-23 10:07:05 +020011455 if (isneg)
11456 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11457 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
11458 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
11459 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
11460 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
11461 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
11462 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
David Brazdil0f672f62019-12-10 10:32:29 +000011463 }
Olivier Deprez0e641232021-09-23 10:07:05 +020011464 if (!issrc)
11465 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
11466 insn->src_reg = BPF_REG_AX;
David Brazdil0f672f62019-12-10 10:32:29 +000011467 if (isneg)
11468 insn->code = insn->code == code_add ?
11469 code_sub : code_add;
11470 *patch++ = *insn;
Olivier Deprez0e641232021-09-23 10:07:05 +020011471 if (issrc && isneg && !isimm)
David Brazdil0f672f62019-12-10 10:32:29 +000011472 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11473 cnt = patch - insn_buf;
11474
11475 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11476 if (!new_prog)
11477 return -ENOMEM;
11478
11479 delta += cnt - 1;
11480 env->prog = prog = new_prog;
11481 insn = new_prog->insnsi + i + delta;
11482 continue;
11483 }
11484
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011485 if (insn->code != (BPF_JMP | BPF_CALL))
11486 continue;
11487 if (insn->src_reg == BPF_PSEUDO_CALL)
11488 continue;
11489
11490 if (insn->imm == BPF_FUNC_get_route_realm)
11491 prog->dst_needed = 1;
11492 if (insn->imm == BPF_FUNC_get_prandom_u32)
11493 bpf_user_rnd_init_once();
11494 if (insn->imm == BPF_FUNC_override_return)
11495 prog->kprobe_override = 1;
11496 if (insn->imm == BPF_FUNC_tail_call) {
11497 /* If we tail call into other programs, we
11498 * cannot make any assumptions since they can
11499 * be replaced dynamically during runtime in
11500 * the program array.
11501 */
11502 prog->cb_access = 1;
Olivier Deprez157378f2022-04-04 15:47:50 +020011503 if (!allow_tail_call_in_subprogs(env))
11504 prog->aux->stack_depth = MAX_BPF_STACK;
11505 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011506
11507 /* mark bpf_tail_call as different opcode to avoid
11508 * conditional branch in the interpeter for every normal
11509 * call and to prevent accidental JITing by JIT compiler
11510 * that doesn't support bpf_tail_call yet
11511 */
11512 insn->imm = 0;
11513 insn->code = BPF_JMP | BPF_TAIL_CALL;
11514
11515 aux = &env->insn_aux_data[i + delta];
Olivier Deprez157378f2022-04-04 15:47:50 +020011516 if (env->bpf_capable && !expect_blinding &&
11517 prog->jit_requested &&
11518 !bpf_map_key_poisoned(aux) &&
11519 !bpf_map_ptr_poisoned(aux) &&
11520 !bpf_map_ptr_unpriv(aux)) {
11521 struct bpf_jit_poke_descriptor desc = {
11522 .reason = BPF_POKE_REASON_TAIL_CALL,
11523 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
11524 .tail_call.key = bpf_map_key_immediate(aux),
11525 .insn_idx = i + delta,
11526 };
11527
11528 ret = bpf_jit_add_poke_descriptor(prog, &desc);
11529 if (ret < 0) {
11530 verbose(env, "adding tail call poke descriptor failed\n");
11531 return ret;
11532 }
11533
11534 insn->imm = ret + 1;
11535 continue;
11536 }
11537
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011538 if (!bpf_map_ptr_unpriv(aux))
11539 continue;
11540
11541 /* instead of changing every JIT dealing with tail_call
11542 * emit two extra insns:
11543 * if (index >= max_entries) goto out;
11544 * index &= array->index_mask;
11545 * to avoid out-of-bounds cpu speculation
11546 */
11547 if (bpf_map_ptr_poisoned(aux)) {
11548 verbose(env, "tail_call abusing map_ptr\n");
11549 return -EINVAL;
11550 }
11551
Olivier Deprez157378f2022-04-04 15:47:50 +020011552 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011553 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
11554 map_ptr->max_entries, 2);
11555 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
11556 container_of(map_ptr,
11557 struct bpf_array,
11558 map)->index_mask);
11559 insn_buf[2] = *insn;
11560 cnt = 3;
11561 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11562 if (!new_prog)
11563 return -ENOMEM;
11564
11565 delta += cnt - 1;
11566 env->prog = prog = new_prog;
11567 insn = new_prog->insnsi + i + delta;
11568 continue;
11569 }
11570
11571 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
11572 * and other inlining handlers are currently limited to 64 bit
11573 * only.
11574 */
11575 if (prog->jit_requested && BITS_PER_LONG == 64 &&
11576 (insn->imm == BPF_FUNC_map_lookup_elem ||
11577 insn->imm == BPF_FUNC_map_update_elem ||
David Brazdil0f672f62019-12-10 10:32:29 +000011578 insn->imm == BPF_FUNC_map_delete_elem ||
11579 insn->imm == BPF_FUNC_map_push_elem ||
11580 insn->imm == BPF_FUNC_map_pop_elem ||
11581 insn->imm == BPF_FUNC_map_peek_elem)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011582 aux = &env->insn_aux_data[i + delta];
11583 if (bpf_map_ptr_poisoned(aux))
11584 goto patch_call_imm;
11585
Olivier Deprez157378f2022-04-04 15:47:50 +020011586 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011587 ops = map_ptr->ops;
11588 if (insn->imm == BPF_FUNC_map_lookup_elem &&
11589 ops->map_gen_lookup) {
11590 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
Olivier Deprez157378f2022-04-04 15:47:50 +020011591 if (cnt == -EOPNOTSUPP)
11592 goto patch_map_ops_generic;
11593 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011594 verbose(env, "bpf verifier is misconfigured\n");
11595 return -EINVAL;
11596 }
11597
11598 new_prog = bpf_patch_insn_data(env, i + delta,
11599 insn_buf, cnt);
11600 if (!new_prog)
11601 return -ENOMEM;
11602
11603 delta += cnt - 1;
11604 env->prog = prog = new_prog;
11605 insn = new_prog->insnsi + i + delta;
11606 continue;
11607 }
11608
11609 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
11610 (void *(*)(struct bpf_map *map, void *key))NULL));
11611 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
11612 (int (*)(struct bpf_map *map, void *key))NULL));
11613 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
11614 (int (*)(struct bpf_map *map, void *key, void *value,
11615 u64 flags))NULL));
David Brazdil0f672f62019-12-10 10:32:29 +000011616 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
11617 (int (*)(struct bpf_map *map, void *value,
11618 u64 flags))NULL));
11619 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
11620 (int (*)(struct bpf_map *map, void *value))NULL));
11621 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
11622 (int (*)(struct bpf_map *map, void *value))NULL));
Olivier Deprez157378f2022-04-04 15:47:50 +020011623patch_map_ops_generic:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011624 switch (insn->imm) {
11625 case BPF_FUNC_map_lookup_elem:
11626 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
11627 __bpf_call_base;
11628 continue;
11629 case BPF_FUNC_map_update_elem:
11630 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
11631 __bpf_call_base;
11632 continue;
11633 case BPF_FUNC_map_delete_elem:
11634 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
11635 __bpf_call_base;
11636 continue;
David Brazdil0f672f62019-12-10 10:32:29 +000011637 case BPF_FUNC_map_push_elem:
11638 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
11639 __bpf_call_base;
11640 continue;
11641 case BPF_FUNC_map_pop_elem:
11642 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
11643 __bpf_call_base;
11644 continue;
11645 case BPF_FUNC_map_peek_elem:
11646 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
11647 __bpf_call_base;
11648 continue;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011649 }
11650
11651 goto patch_call_imm;
11652 }
11653
Olivier Deprez157378f2022-04-04 15:47:50 +020011654 if (prog->jit_requested && BITS_PER_LONG == 64 &&
11655 insn->imm == BPF_FUNC_jiffies64) {
11656 struct bpf_insn ld_jiffies_addr[2] = {
11657 BPF_LD_IMM64(BPF_REG_0,
11658 (unsigned long)&jiffies),
11659 };
11660
11661 insn_buf[0] = ld_jiffies_addr[0];
11662 insn_buf[1] = ld_jiffies_addr[1];
11663 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
11664 BPF_REG_0, 0);
11665 cnt = 3;
11666
11667 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
11668 cnt);
11669 if (!new_prog)
11670 return -ENOMEM;
11671
11672 delta += cnt - 1;
11673 env->prog = prog = new_prog;
11674 insn = new_prog->insnsi + i + delta;
11675 continue;
11676 }
11677
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011678patch_call_imm:
11679 fn = env->ops->get_func_proto(insn->imm, env->prog);
11680 /* all functions that have prototype and verifier allowed
11681 * programs to call them, must be real in-kernel functions
11682 */
11683 if (!fn->func) {
11684 verbose(env,
11685 "kernel subsystem misconfigured func %s#%d\n",
11686 func_id_name(insn->imm), insn->imm);
11687 return -EFAULT;
11688 }
11689 insn->imm = fn->func - __bpf_call_base;
11690 }
11691
Olivier Deprez157378f2022-04-04 15:47:50 +020011692 /* Since poke tab is now finalized, publish aux to tracker. */
11693 for (i = 0; i < prog->aux->size_poke_tab; i++) {
11694 map_ptr = prog->aux->poke_tab[i].tail_call.map;
11695 if (!map_ptr->ops->map_poke_track ||
11696 !map_ptr->ops->map_poke_untrack ||
11697 !map_ptr->ops->map_poke_run) {
11698 verbose(env, "bpf verifier is misconfigured\n");
11699 return -EINVAL;
11700 }
11701
11702 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
11703 if (ret < 0) {
11704 verbose(env, "tracking tail call prog failed\n");
11705 return ret;
11706 }
11707 }
11708
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011709 return 0;
11710}
11711
11712static void free_states(struct bpf_verifier_env *env)
11713{
11714 struct bpf_verifier_state_list *sl, *sln;
11715 int i;
11716
David Brazdil0f672f62019-12-10 10:32:29 +000011717 sl = env->free_list;
11718 while (sl) {
11719 sln = sl->next;
11720 free_verifier_state(&sl->state, false);
11721 kfree(sl);
11722 sl = sln;
11723 }
Olivier Deprez157378f2022-04-04 15:47:50 +020011724 env->free_list = NULL;
David Brazdil0f672f62019-12-10 10:32:29 +000011725
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011726 if (!env->explored_states)
11727 return;
11728
David Brazdil0f672f62019-12-10 10:32:29 +000011729 for (i = 0; i < state_htab_size(env); i++) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011730 sl = env->explored_states[i];
11731
David Brazdil0f672f62019-12-10 10:32:29 +000011732 while (sl) {
11733 sln = sl->next;
11734 free_verifier_state(&sl->state, false);
11735 kfree(sl);
11736 sl = sln;
11737 }
Olivier Deprez157378f2022-04-04 15:47:50 +020011738 env->explored_states[i] = NULL;
11739 }
11740}
11741
11742static int do_check_common(struct bpf_verifier_env *env, int subprog)
11743{
11744 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
11745 struct bpf_verifier_state *state;
11746 struct bpf_reg_state *regs;
11747 int ret, i;
11748
11749 env->prev_linfo = NULL;
11750 env->pass_cnt++;
11751
11752 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
11753 if (!state)
11754 return -ENOMEM;
11755 state->curframe = 0;
11756 state->speculative = false;
11757 state->branches = 1;
11758 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
11759 if (!state->frame[0]) {
11760 kfree(state);
11761 return -ENOMEM;
11762 }
11763 env->cur_state = state;
11764 init_func_state(env, state->frame[0],
11765 BPF_MAIN_FUNC /* callsite */,
11766 0 /* frameno */,
11767 subprog);
11768
11769 regs = state->frame[state->curframe]->regs;
11770 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
11771 ret = btf_prepare_func_args(env, subprog, regs);
11772 if (ret)
11773 goto out;
11774 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
11775 if (regs[i].type == PTR_TO_CTX)
11776 mark_reg_known_zero(env, regs, i);
11777 else if (regs[i].type == SCALAR_VALUE)
11778 mark_reg_unknown(env, regs, i);
11779 }
11780 } else {
11781 /* 1st arg to a function */
11782 regs[BPF_REG_1].type = PTR_TO_CTX;
11783 mark_reg_known_zero(env, regs, BPF_REG_1);
11784 ret = btf_check_func_arg_match(env, subprog, regs);
11785 if (ret == -EFAULT)
11786 /* unlikely verifier bug. abort.
11787 * ret == 0 and ret < 0 are sadly acceptable for
11788 * main() function due to backward compatibility.
11789 * Like socket filter program may be written as:
11790 * int bpf_prog(struct pt_regs *ctx)
11791 * and never dereference that ctx in the program.
11792 * 'struct pt_regs' is a type mismatch for socket
11793 * filter that should be using 'struct __sk_buff'.
11794 */
11795 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011796 }
11797
Olivier Deprez157378f2022-04-04 15:47:50 +020011798 ret = do_check(env);
11799out:
11800 /* check for NULL is necessary, since cur_state can be freed inside
11801 * do_check() under memory pressure.
11802 */
11803 if (env->cur_state) {
11804 free_verifier_state(env->cur_state, true);
11805 env->cur_state = NULL;
11806 }
11807 while (!pop_stack(env, NULL, NULL, false));
11808 if (!ret && pop_log)
11809 bpf_vlog_reset(&env->log, 0);
11810 free_states(env);
11811 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011812}
11813
Olivier Deprez157378f2022-04-04 15:47:50 +020011814/* Verify all global functions in a BPF program one by one based on their BTF.
11815 * All global functions must pass verification. Otherwise the whole program is rejected.
11816 * Consider:
11817 * int bar(int);
11818 * int foo(int f)
11819 * {
11820 * return bar(f);
11821 * }
11822 * int bar(int b)
11823 * {
11824 * ...
11825 * }
11826 * foo() will be verified first for R1=any_scalar_value. During verification it
11827 * will be assumed that bar() already verified successfully and call to bar()
11828 * from foo() will be checked for type match only. Later bar() will be verified
11829 * independently to check that it's safe for R1=any_scalar_value.
11830 */
11831static int do_check_subprogs(struct bpf_verifier_env *env)
11832{
11833 struct bpf_prog_aux *aux = env->prog->aux;
11834 int i, ret;
11835
11836 if (!aux->func_info)
11837 return 0;
11838
11839 for (i = 1; i < env->subprog_cnt; i++) {
11840 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
11841 continue;
11842 env->insn_idx = env->subprog_info[i].start;
11843 WARN_ON_ONCE(env->insn_idx == 0);
11844 ret = do_check_common(env, i);
11845 if (ret) {
11846 return ret;
11847 } else if (env->log.level & BPF_LOG_LEVEL) {
11848 verbose(env,
11849 "Func#%d is safe for any args that match its prototype\n",
11850 i);
11851 }
11852 }
11853 return 0;
11854}
11855
11856static int do_check_main(struct bpf_verifier_env *env)
11857{
11858 int ret;
11859
11860 env->insn_idx = 0;
11861 ret = do_check_common(env, 0);
11862 if (!ret)
11863 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
11864 return ret;
11865}
11866
11867
David Brazdil0f672f62019-12-10 10:32:29 +000011868static void print_verification_stats(struct bpf_verifier_env *env)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011869{
David Brazdil0f672f62019-12-10 10:32:29 +000011870 int i;
11871
11872 if (env->log.level & BPF_LOG_STATS) {
11873 verbose(env, "verification time %lld usec\n",
11874 div_u64(env->verification_time, 1000));
11875 verbose(env, "stack depth ");
11876 for (i = 0; i < env->subprog_cnt; i++) {
11877 u32 depth = env->subprog_info[i].stack_depth;
11878
11879 verbose(env, "%d", depth);
11880 if (i + 1 < env->subprog_cnt)
11881 verbose(env, "+");
11882 }
11883 verbose(env, "\n");
11884 }
11885 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
11886 "total_states %d peak_states %d mark_read %d\n",
11887 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
11888 env->max_states_per_insn, env->total_states,
11889 env->peak_states, env->longest_mark_read_walk);
11890}
11891
Olivier Deprez157378f2022-04-04 15:47:50 +020011892static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
11893{
11894 const struct btf_type *t, *func_proto;
11895 const struct bpf_struct_ops *st_ops;
11896 const struct btf_member *member;
11897 struct bpf_prog *prog = env->prog;
11898 u32 btf_id, member_idx;
11899 const char *mname;
11900
11901 if (!prog->gpl_compatible) {
11902 verbose(env, "struct ops programs must have a GPL compatible license\n");
11903 return -EINVAL;
11904 }
11905
11906 btf_id = prog->aux->attach_btf_id;
11907 st_ops = bpf_struct_ops_find(btf_id);
11908 if (!st_ops) {
11909 verbose(env, "attach_btf_id %u is not a supported struct\n",
11910 btf_id);
11911 return -ENOTSUPP;
11912 }
11913
11914 t = st_ops->type;
11915 member_idx = prog->expected_attach_type;
11916 if (member_idx >= btf_type_vlen(t)) {
11917 verbose(env, "attach to invalid member idx %u of struct %s\n",
11918 member_idx, st_ops->name);
11919 return -EINVAL;
11920 }
11921
11922 member = &btf_type_member(t)[member_idx];
11923 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
11924 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
11925 NULL);
11926 if (!func_proto) {
11927 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
11928 mname, member_idx, st_ops->name);
11929 return -EINVAL;
11930 }
11931
11932 if (st_ops->check_member) {
11933 int err = st_ops->check_member(t, member);
11934
11935 if (err) {
11936 verbose(env, "attach to unsupported member %s of struct %s\n",
11937 mname, st_ops->name);
11938 return err;
11939 }
11940 }
11941
11942 prog->aux->attach_func_proto = func_proto;
11943 prog->aux->attach_func_name = mname;
11944 env->ops = st_ops->verifier_ops;
11945
11946 return 0;
11947}
11948#define SECURITY_PREFIX "security_"
11949
11950static int check_attach_modify_return(unsigned long addr, const char *func_name)
11951{
11952 if (within_error_injection_list(addr) ||
11953 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
11954 return 0;
11955
11956 return -EINVAL;
11957}
11958
11959/* non exhaustive list of sleepable bpf_lsm_*() functions */
11960BTF_SET_START(btf_sleepable_lsm_hooks)
11961#ifdef CONFIG_BPF_LSM
11962BTF_ID(func, bpf_lsm_bprm_committed_creds)
11963#else
11964BTF_ID_UNUSED
11965#endif
11966BTF_SET_END(btf_sleepable_lsm_hooks)
11967
11968static int check_sleepable_lsm_hook(u32 btf_id)
11969{
11970 return btf_id_set_contains(&btf_sleepable_lsm_hooks, btf_id);
11971}
11972
11973/* list of non-sleepable functions that are otherwise on
11974 * ALLOW_ERROR_INJECTION list
11975 */
11976BTF_SET_START(btf_non_sleepable_error_inject)
11977/* Three functions below can be called from sleepable and non-sleepable context.
11978 * Assume non-sleepable from bpf safety point of view.
11979 */
11980BTF_ID(func, __add_to_page_cache_locked)
11981BTF_ID(func, should_fail_alloc_page)
11982BTF_ID(func, should_failslab)
11983BTF_SET_END(btf_non_sleepable_error_inject)
11984
11985static int check_non_sleepable_error_inject(u32 btf_id)
11986{
11987 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
11988}
11989
11990int bpf_check_attach_target(struct bpf_verifier_log *log,
11991 const struct bpf_prog *prog,
11992 const struct bpf_prog *tgt_prog,
11993 u32 btf_id,
11994 struct bpf_attach_target_info *tgt_info)
11995{
11996 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
11997 const char prefix[] = "btf_trace_";
11998 int ret = 0, subprog = -1, i;
11999 const struct btf_type *t;
12000 bool conservative = true;
12001 const char *tname;
12002 struct btf *btf;
12003 long addr = 0;
12004
12005 if (!btf_id) {
12006 bpf_log(log, "Tracing programs must provide btf_id\n");
12007 return -EINVAL;
12008 }
12009 btf = tgt_prog ? tgt_prog->aux->btf : btf_vmlinux;
12010 if (!btf) {
12011 bpf_log(log,
12012 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
12013 return -EINVAL;
12014 }
12015 t = btf_type_by_id(btf, btf_id);
12016 if (!t) {
12017 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
12018 return -EINVAL;
12019 }
12020 tname = btf_name_by_offset(btf, t->name_off);
12021 if (!tname) {
12022 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
12023 return -EINVAL;
12024 }
12025 if (tgt_prog) {
12026 struct bpf_prog_aux *aux = tgt_prog->aux;
12027
12028 for (i = 0; i < aux->func_info_cnt; i++)
12029 if (aux->func_info[i].type_id == btf_id) {
12030 subprog = i;
12031 break;
12032 }
12033 if (subprog == -1) {
12034 bpf_log(log, "Subprog %s doesn't exist\n", tname);
12035 return -EINVAL;
12036 }
12037 conservative = aux->func_info_aux[subprog].unreliable;
12038 if (prog_extension) {
12039 if (conservative) {
12040 bpf_log(log,
12041 "Cannot replace static functions\n");
12042 return -EINVAL;
12043 }
12044 if (!prog->jit_requested) {
12045 bpf_log(log,
12046 "Extension programs should be JITed\n");
12047 return -EINVAL;
12048 }
12049 }
12050 if (!tgt_prog->jited) {
12051 bpf_log(log, "Can attach to only JITed progs\n");
12052 return -EINVAL;
12053 }
12054 if (tgt_prog->type == prog->type) {
12055 /* Cannot fentry/fexit another fentry/fexit program.
12056 * Cannot attach program extension to another extension.
12057 * It's ok to attach fentry/fexit to extension program.
12058 */
12059 bpf_log(log, "Cannot recursively attach\n");
12060 return -EINVAL;
12061 }
12062 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
12063 prog_extension &&
12064 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
12065 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
12066 /* Program extensions can extend all program types
12067 * except fentry/fexit. The reason is the following.
12068 * The fentry/fexit programs are used for performance
12069 * analysis, stats and can be attached to any program
12070 * type except themselves. When extension program is
12071 * replacing XDP function it is necessary to allow
12072 * performance analysis of all functions. Both original
12073 * XDP program and its program extension. Hence
12074 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
12075 * allowed. If extending of fentry/fexit was allowed it
12076 * would be possible to create long call chain
12077 * fentry->extension->fentry->extension beyond
12078 * reasonable stack size. Hence extending fentry is not
12079 * allowed.
12080 */
12081 bpf_log(log, "Cannot extend fentry/fexit\n");
12082 return -EINVAL;
12083 }
12084 } else {
12085 if (prog_extension) {
12086 bpf_log(log, "Cannot replace kernel functions\n");
12087 return -EINVAL;
12088 }
12089 }
12090
12091 switch (prog->expected_attach_type) {
12092 case BPF_TRACE_RAW_TP:
12093 if (tgt_prog) {
12094 bpf_log(log,
12095 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
12096 return -EINVAL;
12097 }
12098 if (!btf_type_is_typedef(t)) {
12099 bpf_log(log, "attach_btf_id %u is not a typedef\n",
12100 btf_id);
12101 return -EINVAL;
12102 }
12103 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
12104 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
12105 btf_id, tname);
12106 return -EINVAL;
12107 }
12108 tname += sizeof(prefix) - 1;
12109 t = btf_type_by_id(btf, t->type);
12110 if (!btf_type_is_ptr(t))
12111 /* should never happen in valid vmlinux build */
12112 return -EINVAL;
12113 t = btf_type_by_id(btf, t->type);
12114 if (!btf_type_is_func_proto(t))
12115 /* should never happen in valid vmlinux build */
12116 return -EINVAL;
12117
12118 break;
12119 case BPF_TRACE_ITER:
12120 if (!btf_type_is_func(t)) {
12121 bpf_log(log, "attach_btf_id %u is not a function\n",
12122 btf_id);
12123 return -EINVAL;
12124 }
12125 t = btf_type_by_id(btf, t->type);
12126 if (!btf_type_is_func_proto(t))
12127 return -EINVAL;
12128 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
12129 if (ret)
12130 return ret;
12131 break;
12132 default:
12133 if (!prog_extension)
12134 return -EINVAL;
12135 fallthrough;
12136 case BPF_MODIFY_RETURN:
12137 case BPF_LSM_MAC:
12138 case BPF_TRACE_FENTRY:
12139 case BPF_TRACE_FEXIT:
12140 if (!btf_type_is_func(t)) {
12141 bpf_log(log, "attach_btf_id %u is not a function\n",
12142 btf_id);
12143 return -EINVAL;
12144 }
12145 if (prog_extension &&
12146 btf_check_type_match(log, prog, btf, t))
12147 return -EINVAL;
12148 t = btf_type_by_id(btf, t->type);
12149 if (!btf_type_is_func_proto(t))
12150 return -EINVAL;
12151
12152 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
12153 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
12154 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
12155 return -EINVAL;
12156
12157 if (tgt_prog && conservative)
12158 t = NULL;
12159
12160 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
12161 if (ret < 0)
12162 return ret;
12163
12164 if (tgt_prog) {
12165 if (subprog == 0)
12166 addr = (long) tgt_prog->bpf_func;
12167 else
12168 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
12169 } else {
12170 addr = kallsyms_lookup_name(tname);
12171 if (!addr) {
12172 bpf_log(log,
12173 "The address of function %s cannot be found\n",
12174 tname);
12175 return -ENOENT;
12176 }
12177 }
12178
12179 if (prog->aux->sleepable) {
12180 ret = -EINVAL;
12181 switch (prog->type) {
12182 case BPF_PROG_TYPE_TRACING:
12183 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
12184 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
12185 */
12186 if (!check_non_sleepable_error_inject(btf_id) &&
12187 within_error_injection_list(addr))
12188 ret = 0;
12189 break;
12190 case BPF_PROG_TYPE_LSM:
12191 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
12192 * Only some of them are sleepable.
12193 */
12194 if (check_sleepable_lsm_hook(btf_id))
12195 ret = 0;
12196 break;
12197 default:
12198 break;
12199 }
12200 if (ret) {
12201 bpf_log(log, "%s is not sleepable\n", tname);
12202 return ret;
12203 }
12204 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
12205 if (tgt_prog) {
12206 bpf_log(log, "can't modify return codes of BPF programs\n");
12207 return -EINVAL;
12208 }
12209 ret = check_attach_modify_return(addr, tname);
12210 if (ret) {
12211 bpf_log(log, "%s() is not modifiable\n", tname);
12212 return ret;
12213 }
12214 }
12215
12216 break;
12217 }
12218 tgt_info->tgt_addr = addr;
12219 tgt_info->tgt_name = tname;
12220 tgt_info->tgt_type = t;
12221 return 0;
12222}
12223
12224static int check_attach_btf_id(struct bpf_verifier_env *env)
12225{
12226 struct bpf_prog *prog = env->prog;
12227 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
12228 struct bpf_attach_target_info tgt_info = {};
12229 u32 btf_id = prog->aux->attach_btf_id;
12230 struct bpf_trampoline *tr;
12231 int ret;
12232 u64 key;
12233
12234 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
12235 prog->type != BPF_PROG_TYPE_LSM) {
12236 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
12237 return -EINVAL;
12238 }
12239
12240 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
12241 return check_struct_ops_btf_id(env);
12242
12243 if (prog->type != BPF_PROG_TYPE_TRACING &&
12244 prog->type != BPF_PROG_TYPE_LSM &&
12245 prog->type != BPF_PROG_TYPE_EXT)
12246 return 0;
12247
12248 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
12249 if (ret)
12250 return ret;
12251
12252 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
12253 /* to make freplace equivalent to their targets, they need to
12254 * inherit env->ops and expected_attach_type for the rest of the
12255 * verification
12256 */
12257 env->ops = bpf_verifier_ops[tgt_prog->type];
12258 prog->expected_attach_type = tgt_prog->expected_attach_type;
12259 }
12260
12261 /* store info about the attachment target that will be used later */
12262 prog->aux->attach_func_proto = tgt_info.tgt_type;
12263 prog->aux->attach_func_name = tgt_info.tgt_name;
12264
12265 if (tgt_prog) {
12266 prog->aux->saved_dst_prog_type = tgt_prog->type;
12267 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
12268 }
12269
12270 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
12271 prog->aux->attach_btf_trace = true;
12272 return 0;
12273 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
12274 if (!bpf_iter_prog_supported(prog))
12275 return -EINVAL;
12276 return 0;
12277 }
12278
12279 if (prog->type == BPF_PROG_TYPE_LSM) {
12280 ret = bpf_lsm_verify_prog(&env->log, prog);
12281 if (ret < 0)
12282 return ret;
12283 }
12284
12285 key = bpf_trampoline_compute_key(tgt_prog, btf_id);
12286 tr = bpf_trampoline_get(key, &tgt_info);
12287 if (!tr)
12288 return -ENOMEM;
12289
12290 prog->aux->dst_trampoline = tr;
12291 return 0;
12292}
12293
12294struct btf *bpf_get_btf_vmlinux(void)
12295{
12296 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
12297 mutex_lock(&bpf_verifier_lock);
12298 if (!btf_vmlinux)
12299 btf_vmlinux = btf_parse_vmlinux();
12300 mutex_unlock(&bpf_verifier_lock);
12301 }
12302 return btf_vmlinux;
12303}
12304
David Brazdil0f672f62019-12-10 10:32:29 +000012305int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
12306 union bpf_attr __user *uattr)
12307{
12308 u64 start_time = ktime_get_ns();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012309 struct bpf_verifier_env *env;
12310 struct bpf_verifier_log *log;
David Brazdil0f672f62019-12-10 10:32:29 +000012311 int i, len, ret = -EINVAL;
12312 bool is_priv;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012313
12314 /* no program is valid */
12315 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
12316 return -EINVAL;
12317
12318 /* 'struct bpf_verifier_env' can be global, but since it's not small,
12319 * allocate/free it every time bpf_check() is called
12320 */
12321 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
12322 if (!env)
12323 return -ENOMEM;
12324 log = &env->log;
12325
David Brazdil0f672f62019-12-10 10:32:29 +000012326 len = (*prog)->len;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012327 env->insn_aux_data =
David Brazdil0f672f62019-12-10 10:32:29 +000012328 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012329 ret = -ENOMEM;
12330 if (!env->insn_aux_data)
12331 goto err_free_env;
David Brazdil0f672f62019-12-10 10:32:29 +000012332 for (i = 0; i < len; i++)
12333 env->insn_aux_data[i].orig_idx = i;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012334 env->prog = *prog;
12335 env->ops = bpf_verifier_ops[env->prog->type];
Olivier Deprez157378f2022-04-04 15:47:50 +020012336 is_priv = bpf_capable();
12337
12338 bpf_get_btf_vmlinux();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012339
12340 /* grab the mutex to protect few globals used by verifier */
David Brazdil0f672f62019-12-10 10:32:29 +000012341 if (!is_priv)
12342 mutex_lock(&bpf_verifier_lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012343
12344 if (attr->log_level || attr->log_buf || attr->log_size) {
12345 /* user requested verbose verifier output
12346 * and supplied buffer to store the verification trace
12347 */
12348 log->level = attr->log_level;
12349 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
12350 log->len_total = attr->log_size;
12351
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012352 /* log attributes have to be sane */
Olivier Deprez157378f2022-04-04 15:47:50 +020012353 if (!bpf_verifier_log_attr_valid(log)) {
12354 ret = -EINVAL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012355 goto err_unlock;
Olivier Deprez157378f2022-04-04 15:47:50 +020012356 }
12357 }
12358
12359 if (IS_ERR(btf_vmlinux)) {
12360 /* Either gcc or pahole or kernel are broken. */
12361 verbose(env, "in-kernel BTF is malformed\n");
12362 ret = PTR_ERR(btf_vmlinux);
12363 goto skip_full_check;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012364 }
12365
12366 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
12367 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
12368 env->strict_alignment = true;
David Brazdil0f672f62019-12-10 10:32:29 +000012369 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
12370 env->strict_alignment = false;
12371
Olivier Deprez157378f2022-04-04 15:47:50 +020012372 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
12373 env->allow_uninit_stack = bpf_allow_uninit_stack();
12374 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
12375 env->bypass_spec_v1 = bpf_bypass_spec_v1();
12376 env->bypass_spec_v4 = bpf_bypass_spec_v4();
12377 env->bpf_capable = bpf_capable();
David Brazdil0f672f62019-12-10 10:32:29 +000012378
12379 if (is_priv)
12380 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012381
David Brazdil0f672f62019-12-10 10:32:29 +000012382 env->explored_states = kvcalloc(state_htab_size(env),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012383 sizeof(struct bpf_verifier_state_list *),
12384 GFP_USER);
12385 ret = -ENOMEM;
12386 if (!env->explored_states)
12387 goto skip_full_check;
12388
David Brazdil0f672f62019-12-10 10:32:29 +000012389 ret = check_subprogs(env);
12390 if (ret < 0)
12391 goto skip_full_check;
12392
12393 ret = check_btf_info(env, attr, uattr);
12394 if (ret < 0)
12395 goto skip_full_check;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012396
Olivier Deprez157378f2022-04-04 15:47:50 +020012397 ret = check_attach_btf_id(env);
12398 if (ret)
12399 goto skip_full_check;
12400
12401 ret = resolve_pseudo_ldimm64(env);
12402 if (ret < 0)
12403 goto skip_full_check;
12404
12405 if (bpf_prog_is_dev_bound(env->prog->aux)) {
12406 ret = bpf_prog_offload_verifier_prep(env->prog);
12407 if (ret)
12408 goto skip_full_check;
12409 }
12410
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012411 ret = check_cfg(env);
12412 if (ret < 0)
12413 goto skip_full_check;
12414
Olivier Deprez157378f2022-04-04 15:47:50 +020012415 ret = do_check_subprogs(env);
12416 ret = ret ?: do_check_main(env);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012417
David Brazdil0f672f62019-12-10 10:32:29 +000012418 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
12419 ret = bpf_prog_offload_finalize(env);
12420
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012421skip_full_check:
Olivier Deprez157378f2022-04-04 15:47:50 +020012422 kvfree(env->explored_states);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012423
12424 if (ret == 0)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012425 ret = check_max_stack_depth(env);
12426
David Brazdil0f672f62019-12-10 10:32:29 +000012427 /* instruction rewrites happen after this point */
12428 if (is_priv) {
12429 if (ret == 0)
12430 opt_hard_wire_dead_code_branches(env);
12431 if (ret == 0)
12432 ret = opt_remove_dead_code(env);
12433 if (ret == 0)
12434 ret = opt_remove_nops(env);
12435 } else {
12436 if (ret == 0)
12437 sanitize_dead_code(env);
12438 }
12439
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012440 if (ret == 0)
12441 /* program is valid, convert *(u32*)(ctx + off) accesses */
12442 ret = convert_ctx_accesses(env);
12443
12444 if (ret == 0)
12445 ret = fixup_bpf_calls(env);
12446
David Brazdil0f672f62019-12-10 10:32:29 +000012447 /* do 32-bit optimization after insn patching has done so those patched
12448 * insns could be handled correctly.
12449 */
12450 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
12451 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
12452 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
12453 : false;
12454 }
12455
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012456 if (ret == 0)
12457 ret = fixup_call_args(env);
12458
David Brazdil0f672f62019-12-10 10:32:29 +000012459 env->verification_time = ktime_get_ns() - start_time;
12460 print_verification_stats(env);
12461
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012462 if (log->level && bpf_verifier_log_full(log))
12463 ret = -ENOSPC;
12464 if (log->level && !log->ubuf) {
12465 ret = -EFAULT;
12466 goto err_release_maps;
12467 }
12468
12469 if (ret == 0 && env->used_map_cnt) {
12470 /* if program passed verifier, update used_maps in bpf_prog_info */
12471 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
12472 sizeof(env->used_maps[0]),
12473 GFP_KERNEL);
12474
12475 if (!env->prog->aux->used_maps) {
12476 ret = -ENOMEM;
12477 goto err_release_maps;
12478 }
12479
12480 memcpy(env->prog->aux->used_maps, env->used_maps,
12481 sizeof(env->used_maps[0]) * env->used_map_cnt);
12482 env->prog->aux->used_map_cnt = env->used_map_cnt;
12483
12484 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
12485 * bpf_ld_imm64 instructions
12486 */
12487 convert_pseudo_ld_imm64(env);
12488 }
12489
David Brazdil0f672f62019-12-10 10:32:29 +000012490 if (ret == 0)
12491 adjust_btf_func(env);
12492
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012493err_release_maps:
12494 if (!env->prog->aux->used_maps)
12495 /* if we didn't copy map pointers into bpf_prog_info, release
12496 * them now. Otherwise free_used_maps() will release them.
12497 */
12498 release_maps(env);
Olivier Deprez157378f2022-04-04 15:47:50 +020012499
12500 /* extension progs temporarily inherit the attach_type of their targets
12501 for verification purposes, so set it back to zero before returning
12502 */
12503 if (env->prog->type == BPF_PROG_TYPE_EXT)
12504 env->prog->expected_attach_type = 0;
12505
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012506 *prog = env->prog;
12507err_unlock:
David Brazdil0f672f62019-12-10 10:32:29 +000012508 if (!is_priv)
12509 mutex_unlock(&bpf_verifier_lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012510 vfree(env->insn_aux_data);
12511err_free_env:
12512 kfree(env);
12513 return ret;
12514}