blob: 60383b28549beaf5eaf8847e9b80ca54d848b76a [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0-only
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
David Brazdil0f672f62019-12-10 10:32:29 +00004 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005 */
David Brazdil0f672f62019-12-10 10:32:29 +00006#include <uapi/linux/btf.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007#include <linux/kernel.h>
8#include <linux/types.h>
9#include <linux/slab.h>
10#include <linux/bpf.h>
David Brazdil0f672f62019-12-10 10:32:29 +000011#include <linux/btf.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012#include <linux/bpf_verifier.h>
13#include <linux/filter.h>
14#include <net/netlink.h>
15#include <linux/file.h>
16#include <linux/vmalloc.h>
17#include <linux/stringify.h>
18#include <linux/bsearch.h>
19#include <linux/sort.h>
20#include <linux/perf_event.h>
David Brazdil0f672f62019-12-10 10:32:29 +000021#include <linux/ctype.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000022
23#include "disasm.h"
24
25static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
26#define BPF_PROG_TYPE(_id, _name) \
27 [_id] = & _name ## _verifier_ops,
28#define BPF_MAP_TYPE(_id, _ops)
29#include <linux/bpf_types.h>
30#undef BPF_PROG_TYPE
31#undef BPF_MAP_TYPE
32};
33
34/* bpf_check() is a static code analyzer that walks eBPF program
35 * instruction by instruction and updates register/stack state.
36 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
37 *
38 * The first pass is depth-first-search to check that the program is a DAG.
39 * It rejects the following programs:
40 * - larger than BPF_MAXINSNS insns
41 * - if loop is present (detected via back-edge)
42 * - unreachable insns exist (shouldn't be a forest. program = one function)
43 * - out of bounds or malformed jumps
44 * The second pass is all possible path descent from the 1st insn.
45 * Since it's analyzing all pathes through the program, the length of the
46 * analysis is limited to 64k insn, which may be hit even if total number of
47 * insn is less then 4K, but there are too many branches that change stack/regs.
48 * Number of 'branches to be analyzed' is limited to 1k
49 *
50 * On entry to each instruction, each register has a type, and the instruction
51 * changes the types of the registers depending on instruction semantics.
52 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
53 * copied to R1.
54 *
55 * All registers are 64-bit.
56 * R0 - return register
57 * R1-R5 argument passing registers
58 * R6-R9 callee saved registers
59 * R10 - frame pointer read-only
60 *
61 * At the start of BPF program the register R1 contains a pointer to bpf_context
62 * and has type PTR_TO_CTX.
63 *
64 * Verifier tracks arithmetic operations on pointers in case:
65 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
66 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
67 * 1st insn copies R10 (which has FRAME_PTR) type into R1
68 * and 2nd arithmetic instruction is pattern matched to recognize
69 * that it wants to construct a pointer to some element within stack.
70 * So after 2nd insn, the register R1 has type PTR_TO_STACK
71 * (and -20 constant is saved for further stack bounds checking).
72 * Meaning that this reg is a pointer to stack plus known immediate constant.
73 *
74 * Most of the time the registers have SCALAR_VALUE type, which
75 * means the register has some value, but it's not a valid pointer.
76 * (like pointer plus pointer becomes SCALAR_VALUE type)
77 *
78 * When verifier sees load or store instructions the type of base register
David Brazdil0f672f62019-12-10 10:32:29 +000079 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
80 * four pointer types recognized by check_mem_access() function.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000081 *
82 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
83 * and the range of [ptr, ptr + map's value_size) is accessible.
84 *
85 * registers used to pass values to function calls are checked against
86 * function argument constraints.
87 *
88 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
89 * It means that the register type passed to this function must be
90 * PTR_TO_STACK and it will be used inside the function as
91 * 'pointer to map element key'
92 *
93 * For example the argument constraints for bpf_map_lookup_elem():
94 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
95 * .arg1_type = ARG_CONST_MAP_PTR,
96 * .arg2_type = ARG_PTR_TO_MAP_KEY,
97 *
98 * ret_type says that this function returns 'pointer to map elem value or null'
99 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
100 * 2nd argument should be a pointer to stack, which will be used inside
101 * the helper function as a pointer to map element key.
102 *
103 * On the kernel side the helper function looks like:
104 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
105 * {
106 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
107 * void *key = (void *) (unsigned long) r2;
108 * void *value;
109 *
110 * here kernel can access 'key' and 'map' pointers safely, knowing that
111 * [key, key + map->key_size) bytes are valid and were initialized on
112 * the stack of eBPF program.
113 * }
114 *
115 * Corresponding eBPF program may look like:
116 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
117 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
118 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
119 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
120 * here verifier looks at prototype of map_lookup_elem() and sees:
121 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
122 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
123 *
124 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
125 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
126 * and were initialized prior to this call.
127 * If it's ok, then verifier allows this BPF_CALL insn and looks at
128 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
129 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
130 * returns ether pointer to map value or NULL.
131 *
132 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
133 * insn, the register holding that pointer in the true branch changes state to
134 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
135 * branch. See check_cond_jmp_op().
136 *
137 * After the call R0 is set to return type of the function and registers R1-R5
138 * are set to NOT_INIT to indicate that they are no longer readable.
David Brazdil0f672f62019-12-10 10:32:29 +0000139 *
140 * The following reference types represent a potential reference to a kernel
141 * resource which, after first being allocated, must be checked and freed by
142 * the BPF program:
143 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
144 *
145 * When the verifier sees a helper call return a reference type, it allocates a
146 * pointer id for the reference and stores it in the current function state.
147 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
148 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
149 * passes through a NULL-check conditional. For the branch wherein the state is
150 * changed to CONST_IMM, the verifier releases the reference.
151 *
152 * For each helper function that allocates a reference, such as
153 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
154 * bpf_sk_release(). When a reference type passes into the release function,
155 * the verifier also releases the reference. If any unchecked or unreleased
156 * reference remains at the end of the program, the verifier rejects it.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000157 */
158
159/* verifier_state + insn_idx are pushed to stack when branch is encountered */
160struct bpf_verifier_stack_elem {
161 /* verifer state is 'st'
162 * before processing instruction 'insn_idx'
163 * and after processing instruction 'prev_insn_idx'
164 */
165 struct bpf_verifier_state st;
166 int insn_idx;
167 int prev_insn_idx;
168 struct bpf_verifier_stack_elem *next;
169};
170
David Brazdil0f672f62019-12-10 10:32:29 +0000171#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
172#define BPF_COMPLEXITY_LIMIT_STATES 64
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000173
174#define BPF_MAP_PTR_UNPRIV 1UL
175#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
176 POISON_POINTER_DELTA))
177#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
178
179static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
180{
181 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
182}
183
184static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
185{
186 return aux->map_state & BPF_MAP_PTR_UNPRIV;
187}
188
189static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
190 const struct bpf_map *map, bool unpriv)
191{
192 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
193 unpriv |= bpf_map_ptr_unpriv(aux);
194 aux->map_state = (unsigned long)map |
195 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
196}
197
198struct bpf_call_arg_meta {
199 struct bpf_map *map_ptr;
200 bool raw_mode;
201 bool pkt_access;
202 int regno;
203 int access_size;
Olivier Deprez0e641232021-09-23 10:07:05 +0200204 u64 msize_max_value;
David Brazdil0f672f62019-12-10 10:32:29 +0000205 int ref_obj_id;
206 int func_id;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000207};
208
209static DEFINE_MUTEX(bpf_verifier_lock);
210
David Brazdil0f672f62019-12-10 10:32:29 +0000211static const struct bpf_line_info *
212find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
213{
214 const struct bpf_line_info *linfo;
215 const struct bpf_prog *prog;
216 u32 i, nr_linfo;
217
218 prog = env->prog;
219 nr_linfo = prog->aux->nr_linfo;
220
221 if (!nr_linfo || insn_off >= prog->len)
222 return NULL;
223
224 linfo = prog->aux->linfo;
225 for (i = 1; i < nr_linfo; i++)
226 if (insn_off < linfo[i].insn_off)
227 break;
228
229 return &linfo[i - 1];
230}
231
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000232void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
233 va_list args)
234{
235 unsigned int n;
236
237 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
238
239 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
240 "verifier log line truncated - local buffer too short\n");
241
242 n = min(log->len_total - log->len_used - 1, n);
243 log->kbuf[n] = '\0';
244
245 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
246 log->len_used += n;
247 else
248 log->ubuf = NULL;
249}
250
251/* log_level controls verbosity level of eBPF verifier.
252 * bpf_verifier_log_write() is used to dump the verification trace to the log,
253 * so the user can figure out what's wrong with the program
254 */
255__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
256 const char *fmt, ...)
257{
258 va_list args;
259
260 if (!bpf_verifier_log_needed(&env->log))
261 return;
262
263 va_start(args, fmt);
264 bpf_verifier_vlog(&env->log, fmt, args);
265 va_end(args);
266}
267EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
268
269__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
270{
271 struct bpf_verifier_env *env = private_data;
272 va_list args;
273
274 if (!bpf_verifier_log_needed(&env->log))
275 return;
276
277 va_start(args, fmt);
278 bpf_verifier_vlog(&env->log, fmt, args);
279 va_end(args);
280}
281
David Brazdil0f672f62019-12-10 10:32:29 +0000282static const char *ltrim(const char *s)
283{
284 while (isspace(*s))
285 s++;
286
287 return s;
288}
289
290__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
291 u32 insn_off,
292 const char *prefix_fmt, ...)
293{
294 const struct bpf_line_info *linfo;
295
296 if (!bpf_verifier_log_needed(&env->log))
297 return;
298
299 linfo = find_linfo(env, insn_off);
300 if (!linfo || linfo == env->prev_linfo)
301 return;
302
303 if (prefix_fmt) {
304 va_list args;
305
306 va_start(args, prefix_fmt);
307 bpf_verifier_vlog(&env->log, prefix_fmt, args);
308 va_end(args);
309 }
310
311 verbose(env, "%s\n",
312 ltrim(btf_name_by_offset(env->prog->aux->btf,
313 linfo->line_off)));
314
315 env->prev_linfo = linfo;
316}
317
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000318static bool type_is_pkt_pointer(enum bpf_reg_type type)
319{
320 return type == PTR_TO_PACKET ||
321 type == PTR_TO_PACKET_META;
322}
323
David Brazdil0f672f62019-12-10 10:32:29 +0000324static bool type_is_sk_pointer(enum bpf_reg_type type)
325{
326 return type == PTR_TO_SOCKET ||
327 type == PTR_TO_SOCK_COMMON ||
328 type == PTR_TO_TCP_SOCK ||
329 type == PTR_TO_XDP_SOCK;
330}
331
332static bool reg_type_may_be_null(enum bpf_reg_type type)
333{
334 return type == PTR_TO_MAP_VALUE_OR_NULL ||
335 type == PTR_TO_SOCKET_OR_NULL ||
336 type == PTR_TO_SOCK_COMMON_OR_NULL ||
337 type == PTR_TO_TCP_SOCK_OR_NULL;
338}
339
340static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
341{
342 return reg->type == PTR_TO_MAP_VALUE &&
343 map_value_has_spin_lock(reg->map_ptr);
344}
345
346static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
347{
348 return type == PTR_TO_SOCKET ||
349 type == PTR_TO_SOCKET_OR_NULL ||
350 type == PTR_TO_TCP_SOCK ||
351 type == PTR_TO_TCP_SOCK_OR_NULL;
352}
353
354static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
355{
356 return type == ARG_PTR_TO_SOCK_COMMON;
357}
358
359/* Determine whether the function releases some resources allocated by another
360 * function call. The first reference type argument will be assumed to be
361 * released by release_reference().
362 */
363static bool is_release_function(enum bpf_func_id func_id)
364{
365 return func_id == BPF_FUNC_sk_release;
366}
367
368static bool is_acquire_function(enum bpf_func_id func_id)
369{
370 return func_id == BPF_FUNC_sk_lookup_tcp ||
371 func_id == BPF_FUNC_sk_lookup_udp ||
372 func_id == BPF_FUNC_skc_lookup_tcp;
373}
374
375static bool is_ptr_cast_function(enum bpf_func_id func_id)
376{
377 return func_id == BPF_FUNC_tcp_sock ||
378 func_id == BPF_FUNC_sk_fullsock;
379}
380
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000381/* string representation of 'enum bpf_reg_type' */
382static const char * const reg_type_str[] = {
383 [NOT_INIT] = "?",
384 [SCALAR_VALUE] = "inv",
385 [PTR_TO_CTX] = "ctx",
386 [CONST_PTR_TO_MAP] = "map_ptr",
387 [PTR_TO_MAP_VALUE] = "map_value",
388 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
389 [PTR_TO_STACK] = "fp",
390 [PTR_TO_PACKET] = "pkt",
391 [PTR_TO_PACKET_META] = "pkt_meta",
392 [PTR_TO_PACKET_END] = "pkt_end",
David Brazdil0f672f62019-12-10 10:32:29 +0000393 [PTR_TO_FLOW_KEYS] = "flow_keys",
394 [PTR_TO_SOCKET] = "sock",
395 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
396 [PTR_TO_SOCK_COMMON] = "sock_common",
397 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
398 [PTR_TO_TCP_SOCK] = "tcp_sock",
399 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
400 [PTR_TO_TP_BUFFER] = "tp_buffer",
401 [PTR_TO_XDP_SOCK] = "xdp_sock",
402};
403
404static char slot_type_char[] = {
405 [STACK_INVALID] = '?',
406 [STACK_SPILL] = 'r',
407 [STACK_MISC] = 'm',
408 [STACK_ZERO] = '0',
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000409};
410
411static void print_liveness(struct bpf_verifier_env *env,
412 enum bpf_reg_liveness live)
413{
David Brazdil0f672f62019-12-10 10:32:29 +0000414 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000415 verbose(env, "_");
416 if (live & REG_LIVE_READ)
417 verbose(env, "r");
418 if (live & REG_LIVE_WRITTEN)
419 verbose(env, "w");
David Brazdil0f672f62019-12-10 10:32:29 +0000420 if (live & REG_LIVE_DONE)
421 verbose(env, "D");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000422}
423
424static struct bpf_func_state *func(struct bpf_verifier_env *env,
425 const struct bpf_reg_state *reg)
426{
427 struct bpf_verifier_state *cur = env->cur_state;
428
429 return cur->frame[reg->frameno];
430}
431
432static void print_verifier_state(struct bpf_verifier_env *env,
433 const struct bpf_func_state *state)
434{
435 const struct bpf_reg_state *reg;
436 enum bpf_reg_type t;
437 int i;
438
439 if (state->frameno)
440 verbose(env, " frame%d:", state->frameno);
441 for (i = 0; i < MAX_BPF_REG; i++) {
442 reg = &state->regs[i];
443 t = reg->type;
444 if (t == NOT_INIT)
445 continue;
446 verbose(env, " R%d", i);
447 print_liveness(env, reg->live);
448 verbose(env, "=%s", reg_type_str[t]);
David Brazdil0f672f62019-12-10 10:32:29 +0000449 if (t == SCALAR_VALUE && reg->precise)
450 verbose(env, "P");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000451 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
452 tnum_is_const(reg->var_off)) {
453 /* reg->off should be 0 for SCALAR_VALUE */
454 verbose(env, "%lld", reg->var_off.value + reg->off);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000455 } else {
456 verbose(env, "(id=%d", reg->id);
David Brazdil0f672f62019-12-10 10:32:29 +0000457 if (reg_type_may_be_refcounted_or_null(t))
458 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000459 if (t != SCALAR_VALUE)
460 verbose(env, ",off=%d", reg->off);
461 if (type_is_pkt_pointer(t))
462 verbose(env, ",r=%d", reg->range);
463 else if (t == CONST_PTR_TO_MAP ||
464 t == PTR_TO_MAP_VALUE ||
465 t == PTR_TO_MAP_VALUE_OR_NULL)
466 verbose(env, ",ks=%d,vs=%d",
467 reg->map_ptr->key_size,
468 reg->map_ptr->value_size);
469 if (tnum_is_const(reg->var_off)) {
470 /* Typically an immediate SCALAR_VALUE, but
471 * could be a pointer whose offset is too big
472 * for reg->off
473 */
474 verbose(env, ",imm=%llx", reg->var_off.value);
475 } else {
476 if (reg->smin_value != reg->umin_value &&
477 reg->smin_value != S64_MIN)
478 verbose(env, ",smin_value=%lld",
479 (long long)reg->smin_value);
480 if (reg->smax_value != reg->umax_value &&
481 reg->smax_value != S64_MAX)
482 verbose(env, ",smax_value=%lld",
483 (long long)reg->smax_value);
484 if (reg->umin_value != 0)
485 verbose(env, ",umin_value=%llu",
486 (unsigned long long)reg->umin_value);
487 if (reg->umax_value != U64_MAX)
488 verbose(env, ",umax_value=%llu",
489 (unsigned long long)reg->umax_value);
490 if (!tnum_is_unknown(reg->var_off)) {
491 char tn_buf[48];
492
493 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
494 verbose(env, ",var_off=%s", tn_buf);
495 }
496 }
497 verbose(env, ")");
498 }
499 }
500 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
David Brazdil0f672f62019-12-10 10:32:29 +0000501 char types_buf[BPF_REG_SIZE + 1];
502 bool valid = false;
503 int j;
504
505 for (j = 0; j < BPF_REG_SIZE; j++) {
506 if (state->stack[i].slot_type[j] != STACK_INVALID)
507 valid = true;
508 types_buf[j] = slot_type_char[
509 state->stack[i].slot_type[j]];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000510 }
David Brazdil0f672f62019-12-10 10:32:29 +0000511 types_buf[BPF_REG_SIZE] = 0;
512 if (!valid)
513 continue;
514 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
515 print_liveness(env, state->stack[i].spilled_ptr.live);
516 if (state->stack[i].slot_type[0] == STACK_SPILL) {
517 reg = &state->stack[i].spilled_ptr;
518 t = reg->type;
519 verbose(env, "=%s", reg_type_str[t]);
520 if (t == SCALAR_VALUE && reg->precise)
521 verbose(env, "P");
522 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
523 verbose(env, "%lld", reg->var_off.value + reg->off);
524 } else {
525 verbose(env, "=%s", types_buf);
526 }
527 }
528 if (state->acquired_refs && state->refs[0].id) {
529 verbose(env, " refs=%d", state->refs[0].id);
530 for (i = 1; i < state->acquired_refs; i++)
531 if (state->refs[i].id)
532 verbose(env, ",%d", state->refs[i].id);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000533 }
534 verbose(env, "\n");
535}
536
David Brazdil0f672f62019-12-10 10:32:29 +0000537#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
538static int copy_##NAME##_state(struct bpf_func_state *dst, \
539 const struct bpf_func_state *src) \
540{ \
541 if (!src->FIELD) \
542 return 0; \
543 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
544 /* internal bug, make state invalid to reject the program */ \
545 memset(dst, 0, sizeof(*dst)); \
546 return -EFAULT; \
547 } \
548 memcpy(dst->FIELD, src->FIELD, \
549 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
550 return 0; \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000551}
David Brazdil0f672f62019-12-10 10:32:29 +0000552/* copy_reference_state() */
553COPY_STATE_FN(reference, acquired_refs, refs, 1)
554/* copy_stack_state() */
555COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
556#undef COPY_STATE_FN
557
558#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
559static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
560 bool copy_old) \
561{ \
562 u32 old_size = state->COUNT; \
563 struct bpf_##NAME##_state *new_##FIELD; \
564 int slot = size / SIZE; \
565 \
566 if (size <= old_size || !size) { \
567 if (copy_old) \
568 return 0; \
569 state->COUNT = slot * SIZE; \
570 if (!size && old_size) { \
571 kfree(state->FIELD); \
572 state->FIELD = NULL; \
573 } \
574 return 0; \
575 } \
576 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
577 GFP_KERNEL); \
578 if (!new_##FIELD) \
579 return -ENOMEM; \
580 if (copy_old) { \
581 if (state->FIELD) \
582 memcpy(new_##FIELD, state->FIELD, \
583 sizeof(*new_##FIELD) * (old_size / SIZE)); \
584 memset(new_##FIELD + old_size / SIZE, 0, \
585 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
586 } \
587 state->COUNT = slot * SIZE; \
588 kfree(state->FIELD); \
589 state->FIELD = new_##FIELD; \
590 return 0; \
591}
592/* realloc_reference_state() */
593REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
594/* realloc_stack_state() */
595REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
596#undef REALLOC_STATE_FN
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000597
598/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
599 * make it consume minimal amount of memory. check_stack_write() access from
600 * the program calls into realloc_func_state() to grow the stack size.
601 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
David Brazdil0f672f62019-12-10 10:32:29 +0000602 * which realloc_stack_state() copies over. It points to previous
603 * bpf_verifier_state which is never reallocated.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000604 */
David Brazdil0f672f62019-12-10 10:32:29 +0000605static int realloc_func_state(struct bpf_func_state *state, int stack_size,
606 int refs_size, bool copy_old)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000607{
David Brazdil0f672f62019-12-10 10:32:29 +0000608 int err = realloc_reference_state(state, refs_size, copy_old);
609 if (err)
610 return err;
611 return realloc_stack_state(state, stack_size, copy_old);
612}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000613
David Brazdil0f672f62019-12-10 10:32:29 +0000614/* Acquire a pointer id from the env and update the state->refs to include
615 * this new pointer reference.
616 * On success, returns a valid pointer id to associate with the register
617 * On failure, returns a negative errno.
618 */
619static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
620{
621 struct bpf_func_state *state = cur_func(env);
622 int new_ofs = state->acquired_refs;
623 int id, err;
624
625 err = realloc_reference_state(state, state->acquired_refs + 1, true);
626 if (err)
627 return err;
628 id = ++env->id_gen;
629 state->refs[new_ofs].id = id;
630 state->refs[new_ofs].insn_idx = insn_idx;
631
632 return id;
633}
634
635/* release function corresponding to acquire_reference_state(). Idempotent. */
636static int release_reference_state(struct bpf_func_state *state, int ptr_id)
637{
638 int i, last_idx;
639
640 last_idx = state->acquired_refs - 1;
641 for (i = 0; i < state->acquired_refs; i++) {
642 if (state->refs[i].id == ptr_id) {
643 if (last_idx && i != last_idx)
644 memcpy(&state->refs[i], &state->refs[last_idx],
645 sizeof(*state->refs));
646 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
647 state->acquired_refs--;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000648 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000649 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000650 }
David Brazdil0f672f62019-12-10 10:32:29 +0000651 return -EINVAL;
652}
653
654static int transfer_reference_state(struct bpf_func_state *dst,
655 struct bpf_func_state *src)
656{
657 int err = realloc_reference_state(dst, src->acquired_refs, false);
658 if (err)
659 return err;
660 err = copy_reference_state(dst, src);
661 if (err)
662 return err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000663 return 0;
664}
665
666static void free_func_state(struct bpf_func_state *state)
667{
668 if (!state)
669 return;
David Brazdil0f672f62019-12-10 10:32:29 +0000670 kfree(state->refs);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000671 kfree(state->stack);
672 kfree(state);
673}
674
David Brazdil0f672f62019-12-10 10:32:29 +0000675static void clear_jmp_history(struct bpf_verifier_state *state)
676{
677 kfree(state->jmp_history);
678 state->jmp_history = NULL;
679 state->jmp_history_cnt = 0;
680}
681
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000682static void free_verifier_state(struct bpf_verifier_state *state,
683 bool free_self)
684{
685 int i;
686
687 for (i = 0; i <= state->curframe; i++) {
688 free_func_state(state->frame[i]);
689 state->frame[i] = NULL;
690 }
David Brazdil0f672f62019-12-10 10:32:29 +0000691 clear_jmp_history(state);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000692 if (free_self)
693 kfree(state);
694}
695
696/* copy verifier state from src to dst growing dst stack space
697 * when necessary to accommodate larger src stack
698 */
699static int copy_func_state(struct bpf_func_state *dst,
700 const struct bpf_func_state *src)
701{
702 int err;
703
David Brazdil0f672f62019-12-10 10:32:29 +0000704 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
705 false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000706 if (err)
707 return err;
David Brazdil0f672f62019-12-10 10:32:29 +0000708 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
709 err = copy_reference_state(dst, src);
710 if (err)
711 return err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000712 return copy_stack_state(dst, src);
713}
714
715static int copy_verifier_state(struct bpf_verifier_state *dst_state,
716 const struct bpf_verifier_state *src)
717{
718 struct bpf_func_state *dst;
David Brazdil0f672f62019-12-10 10:32:29 +0000719 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000720 int i, err;
721
David Brazdil0f672f62019-12-10 10:32:29 +0000722 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
723 kfree(dst_state->jmp_history);
724 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
725 if (!dst_state->jmp_history)
726 return -ENOMEM;
727 }
728 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
729 dst_state->jmp_history_cnt = src->jmp_history_cnt;
730
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000731 /* if dst has more stack frames then src frame, free them */
732 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
733 free_func_state(dst_state->frame[i]);
734 dst_state->frame[i] = NULL;
735 }
David Brazdil0f672f62019-12-10 10:32:29 +0000736 dst_state->speculative = src->speculative;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000737 dst_state->curframe = src->curframe;
David Brazdil0f672f62019-12-10 10:32:29 +0000738 dst_state->active_spin_lock = src->active_spin_lock;
739 dst_state->branches = src->branches;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000740 dst_state->parent = src->parent;
David Brazdil0f672f62019-12-10 10:32:29 +0000741 dst_state->first_insn_idx = src->first_insn_idx;
742 dst_state->last_insn_idx = src->last_insn_idx;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000743 for (i = 0; i <= src->curframe; i++) {
744 dst = dst_state->frame[i];
745 if (!dst) {
746 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
747 if (!dst)
748 return -ENOMEM;
749 dst_state->frame[i] = dst;
750 }
751 err = copy_func_state(dst, src->frame[i]);
752 if (err)
753 return err;
754 }
755 return 0;
756}
757
David Brazdil0f672f62019-12-10 10:32:29 +0000758static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
759{
760 while (st) {
761 u32 br = --st->branches;
762
763 /* WARN_ON(br > 1) technically makes sense here,
764 * but see comment in push_stack(), hence:
765 */
766 WARN_ONCE((int)br < 0,
767 "BUG update_branch_counts:branches_to_explore=%d\n",
768 br);
769 if (br)
770 break;
771 st = st->parent;
772 }
773}
774
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000775static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
776 int *insn_idx)
777{
778 struct bpf_verifier_state *cur = env->cur_state;
779 struct bpf_verifier_stack_elem *elem, *head = env->head;
780 int err;
781
782 if (env->head == NULL)
783 return -ENOENT;
784
785 if (cur) {
786 err = copy_verifier_state(cur, &head->st);
787 if (err)
788 return err;
789 }
790 if (insn_idx)
791 *insn_idx = head->insn_idx;
792 if (prev_insn_idx)
793 *prev_insn_idx = head->prev_insn_idx;
794 elem = head->next;
795 free_verifier_state(&head->st, false);
796 kfree(head);
797 env->head = elem;
798 env->stack_size--;
799 return 0;
800}
801
802static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
David Brazdil0f672f62019-12-10 10:32:29 +0000803 int insn_idx, int prev_insn_idx,
804 bool speculative)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000805{
806 struct bpf_verifier_state *cur = env->cur_state;
807 struct bpf_verifier_stack_elem *elem;
808 int err;
809
810 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
811 if (!elem)
812 goto err;
813
814 elem->insn_idx = insn_idx;
815 elem->prev_insn_idx = prev_insn_idx;
816 elem->next = env->head;
817 env->head = elem;
818 env->stack_size++;
819 err = copy_verifier_state(&elem->st, cur);
820 if (err)
821 goto err;
David Brazdil0f672f62019-12-10 10:32:29 +0000822 elem->st.speculative |= speculative;
823 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
824 verbose(env, "The sequence of %d jumps is too complex.\n",
825 env->stack_size);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000826 goto err;
827 }
David Brazdil0f672f62019-12-10 10:32:29 +0000828 if (elem->st.parent) {
829 ++elem->st.parent->branches;
830 /* WARN_ON(branches > 2) technically makes sense here,
831 * but
832 * 1. speculative states will bump 'branches' for non-branch
833 * instructions
834 * 2. is_state_visited() heuristics may decide not to create
835 * a new state for a sequence of branches and all such current
836 * and cloned states will be pointing to a single parent state
837 * which might have large 'branches' count.
838 */
839 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000840 return &elem->st;
841err:
842 free_verifier_state(env->cur_state, true);
843 env->cur_state = NULL;
844 /* pop all elements and return */
845 while (!pop_stack(env, NULL, NULL));
846 return NULL;
847}
848
849#define CALLER_SAVED_REGS 6
850static const int caller_saved[CALLER_SAVED_REGS] = {
851 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
852};
853
Olivier Deprez0e641232021-09-23 10:07:05 +0200854static void __mark_reg_not_init(const struct bpf_verifier_env *env,
855 struct bpf_reg_state *reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000856
857/* Mark the unknown part of a register (variable offset or scalar value) as
858 * known to have the value @imm.
859 */
860static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
861{
862 /* Clear id, off, and union(map_ptr, range) */
863 memset(((u8 *)reg) + sizeof(reg->type), 0,
864 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
865 reg->var_off = tnum_const(imm);
866 reg->smin_value = (s64)imm;
867 reg->smax_value = (s64)imm;
868 reg->umin_value = imm;
869 reg->umax_value = imm;
870}
871
872/* Mark the 'variable offset' part of a register as zero. This should be
873 * used only on registers holding a pointer type.
874 */
875static void __mark_reg_known_zero(struct bpf_reg_state *reg)
876{
877 __mark_reg_known(reg, 0);
878}
879
880static void __mark_reg_const_zero(struct bpf_reg_state *reg)
881{
882 __mark_reg_known(reg, 0);
883 reg->type = SCALAR_VALUE;
884}
885
886static void mark_reg_known_zero(struct bpf_verifier_env *env,
887 struct bpf_reg_state *regs, u32 regno)
888{
889 if (WARN_ON(regno >= MAX_BPF_REG)) {
890 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
891 /* Something bad happened, let's kill all regs */
892 for (regno = 0; regno < MAX_BPF_REG; regno++)
Olivier Deprez0e641232021-09-23 10:07:05 +0200893 __mark_reg_not_init(env, regs + regno);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000894 return;
895 }
896 __mark_reg_known_zero(regs + regno);
897}
898
899static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
900{
901 return type_is_pkt_pointer(reg->type);
902}
903
904static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
905{
906 return reg_is_pkt_pointer(reg) ||
907 reg->type == PTR_TO_PACKET_END;
908}
909
910/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
911static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
912 enum bpf_reg_type which)
913{
914 /* The register can already have a range from prior markings.
915 * This is fine as long as it hasn't been advanced from its
916 * origin.
917 */
918 return reg->type == which &&
919 reg->id == 0 &&
920 reg->off == 0 &&
921 tnum_equals_const(reg->var_off, 0);
922}
923
924/* Attempts to improve min/max values based on var_off information */
925static void __update_reg_bounds(struct bpf_reg_state *reg)
926{
927 /* min signed is max(sign bit) | min(other bits) */
928 reg->smin_value = max_t(s64, reg->smin_value,
929 reg->var_off.value | (reg->var_off.mask & S64_MIN));
930 /* max signed is min(sign bit) | max(other bits) */
931 reg->smax_value = min_t(s64, reg->smax_value,
932 reg->var_off.value | (reg->var_off.mask & S64_MAX));
933 reg->umin_value = max(reg->umin_value, reg->var_off.value);
934 reg->umax_value = min(reg->umax_value,
935 reg->var_off.value | reg->var_off.mask);
936}
937
938/* Uses signed min/max values to inform unsigned, and vice-versa */
939static void __reg_deduce_bounds(struct bpf_reg_state *reg)
940{
941 /* Learn sign from signed bounds.
942 * If we cannot cross the sign boundary, then signed and unsigned bounds
943 * are the same, so combine. This works even in the negative case, e.g.
944 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
945 */
946 if (reg->smin_value >= 0 || reg->smax_value < 0) {
947 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
948 reg->umin_value);
949 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
950 reg->umax_value);
951 return;
952 }
953 /* Learn sign from unsigned bounds. Signed bounds cross the sign
954 * boundary, so we must be careful.
955 */
956 if ((s64)reg->umax_value >= 0) {
957 /* Positive. We can't learn anything from the smin, but smax
958 * is positive, hence safe.
959 */
960 reg->smin_value = reg->umin_value;
961 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
962 reg->umax_value);
963 } else if ((s64)reg->umin_value < 0) {
964 /* Negative. We can't learn anything from the smax, but smin
965 * is negative, hence safe.
966 */
967 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
968 reg->umin_value);
969 reg->smax_value = reg->umax_value;
970 }
971}
972
973/* Attempts to improve var_off based on unsigned min/max information */
974static void __reg_bound_offset(struct bpf_reg_state *reg)
975{
976 reg->var_off = tnum_intersect(reg->var_off,
977 tnum_range(reg->umin_value,
978 reg->umax_value));
979}
980
981/* Reset the min/max bounds of a register */
982static void __mark_reg_unbounded(struct bpf_reg_state *reg)
983{
984 reg->smin_value = S64_MIN;
985 reg->smax_value = S64_MAX;
986 reg->umin_value = 0;
987 reg->umax_value = U64_MAX;
988}
989
990/* Mark a register as having a completely unknown (scalar) value. */
Olivier Deprez0e641232021-09-23 10:07:05 +0200991static void __mark_reg_unknown(const struct bpf_verifier_env *env,
992 struct bpf_reg_state *reg)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000993{
994 /*
995 * Clear type, id, off, and union(map_ptr, range) and
996 * padding between 'type' and union
997 */
998 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
999 reg->type = SCALAR_VALUE;
1000 reg->var_off = tnum_unknown;
1001 reg->frameno = 0;
Olivier Deprez0e641232021-09-23 10:07:05 +02001002 reg->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks ?
1003 true : false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001004 __mark_reg_unbounded(reg);
1005}
1006
1007static void mark_reg_unknown(struct bpf_verifier_env *env,
1008 struct bpf_reg_state *regs, u32 regno)
1009{
1010 if (WARN_ON(regno >= MAX_BPF_REG)) {
1011 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1012 /* Something bad happened, let's kill all regs except FP */
1013 for (regno = 0; regno < BPF_REG_FP; regno++)
Olivier Deprez0e641232021-09-23 10:07:05 +02001014 __mark_reg_not_init(env, regs + regno);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001015 return;
1016 }
Olivier Deprez0e641232021-09-23 10:07:05 +02001017 __mark_reg_unknown(env, regs + regno);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001018}
1019
Olivier Deprez0e641232021-09-23 10:07:05 +02001020static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1021 struct bpf_reg_state *reg)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001022{
Olivier Deprez0e641232021-09-23 10:07:05 +02001023 __mark_reg_unknown(env, reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001024 reg->type = NOT_INIT;
1025}
1026
1027static void mark_reg_not_init(struct bpf_verifier_env *env,
1028 struct bpf_reg_state *regs, u32 regno)
1029{
1030 if (WARN_ON(regno >= MAX_BPF_REG)) {
1031 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1032 /* Something bad happened, let's kill all regs except FP */
1033 for (regno = 0; regno < BPF_REG_FP; regno++)
Olivier Deprez0e641232021-09-23 10:07:05 +02001034 __mark_reg_not_init(env, regs + regno);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001035 return;
1036 }
Olivier Deprez0e641232021-09-23 10:07:05 +02001037 __mark_reg_not_init(env, regs + regno);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001038}
1039
David Brazdil0f672f62019-12-10 10:32:29 +00001040#define DEF_NOT_SUBREG (0)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001041static void init_reg_state(struct bpf_verifier_env *env,
1042 struct bpf_func_state *state)
1043{
1044 struct bpf_reg_state *regs = state->regs;
1045 int i;
1046
1047 for (i = 0; i < MAX_BPF_REG; i++) {
1048 mark_reg_not_init(env, regs, i);
1049 regs[i].live = REG_LIVE_NONE;
David Brazdil0f672f62019-12-10 10:32:29 +00001050 regs[i].parent = NULL;
1051 regs[i].subreg_def = DEF_NOT_SUBREG;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001052 }
1053
1054 /* frame pointer */
1055 regs[BPF_REG_FP].type = PTR_TO_STACK;
1056 mark_reg_known_zero(env, regs, BPF_REG_FP);
1057 regs[BPF_REG_FP].frameno = state->frameno;
1058
1059 /* 1st arg to a function */
1060 regs[BPF_REG_1].type = PTR_TO_CTX;
1061 mark_reg_known_zero(env, regs, BPF_REG_1);
1062}
1063
1064#define BPF_MAIN_FUNC (-1)
1065static void init_func_state(struct bpf_verifier_env *env,
1066 struct bpf_func_state *state,
1067 int callsite, int frameno, int subprogno)
1068{
1069 state->callsite = callsite;
1070 state->frameno = frameno;
1071 state->subprogno = subprogno;
1072 init_reg_state(env, state);
1073}
1074
1075enum reg_arg_type {
1076 SRC_OP, /* register is used as source operand */
1077 DST_OP, /* register is used as destination operand */
1078 DST_OP_NO_MARK /* same as above, check only, don't mark */
1079};
1080
1081static int cmp_subprogs(const void *a, const void *b)
1082{
1083 return ((struct bpf_subprog_info *)a)->start -
1084 ((struct bpf_subprog_info *)b)->start;
1085}
1086
1087static int find_subprog(struct bpf_verifier_env *env, int off)
1088{
1089 struct bpf_subprog_info *p;
1090
1091 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1092 sizeof(env->subprog_info[0]), cmp_subprogs);
1093 if (!p)
1094 return -ENOENT;
1095 return p - env->subprog_info;
1096
1097}
1098
1099static int add_subprog(struct bpf_verifier_env *env, int off)
1100{
1101 int insn_cnt = env->prog->len;
1102 int ret;
1103
1104 if (off >= insn_cnt || off < 0) {
1105 verbose(env, "call to invalid destination\n");
1106 return -EINVAL;
1107 }
1108 ret = find_subprog(env, off);
1109 if (ret >= 0)
1110 return 0;
1111 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1112 verbose(env, "too many subprograms\n");
1113 return -E2BIG;
1114 }
1115 env->subprog_info[env->subprog_cnt++].start = off;
1116 sort(env->subprog_info, env->subprog_cnt,
1117 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1118 return 0;
1119}
1120
1121static int check_subprogs(struct bpf_verifier_env *env)
1122{
1123 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1124 struct bpf_subprog_info *subprog = env->subprog_info;
1125 struct bpf_insn *insn = env->prog->insnsi;
1126 int insn_cnt = env->prog->len;
1127
1128 /* Add entry function. */
1129 ret = add_subprog(env, 0);
1130 if (ret < 0)
1131 return ret;
1132
1133 /* determine subprog starts. The end is one before the next starts */
1134 for (i = 0; i < insn_cnt; i++) {
1135 if (insn[i].code != (BPF_JMP | BPF_CALL))
1136 continue;
1137 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1138 continue;
1139 if (!env->allow_ptr_leaks) {
1140 verbose(env, "function calls to other bpf functions are allowed for root only\n");
1141 return -EPERM;
1142 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001143 ret = add_subprog(env, i + insn[i].imm + 1);
1144 if (ret < 0)
1145 return ret;
1146 }
1147
1148 /* Add a fake 'exit' subprog which could simplify subprog iteration
1149 * logic. 'subprog_cnt' should not be increased.
1150 */
1151 subprog[env->subprog_cnt].start = insn_cnt;
1152
David Brazdil0f672f62019-12-10 10:32:29 +00001153 if (env->log.level & BPF_LOG_LEVEL2)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001154 for (i = 0; i < env->subprog_cnt; i++)
1155 verbose(env, "func#%d @%d\n", i, subprog[i].start);
1156
1157 /* now check that all jumps are within the same subprog */
1158 subprog_start = subprog[cur_subprog].start;
1159 subprog_end = subprog[cur_subprog + 1].start;
1160 for (i = 0; i < insn_cnt; i++) {
1161 u8 code = insn[i].code;
1162
Olivier Deprez0e641232021-09-23 10:07:05 +02001163 if (code == (BPF_JMP | BPF_CALL) &&
1164 insn[i].imm == BPF_FUNC_tail_call &&
1165 insn[i].src_reg != BPF_PSEUDO_CALL)
1166 subprog[cur_subprog].has_tail_call = true;
David Brazdil0f672f62019-12-10 10:32:29 +00001167 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001168 goto next;
1169 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1170 goto next;
1171 off = i + insn[i].off + 1;
1172 if (off < subprog_start || off >= subprog_end) {
1173 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1174 return -EINVAL;
1175 }
1176next:
1177 if (i == subprog_end - 1) {
1178 /* to avoid fall-through from one subprog into another
1179 * the last insn of the subprog should be either exit
1180 * or unconditional jump back
1181 */
1182 if (code != (BPF_JMP | BPF_EXIT) &&
1183 code != (BPF_JMP | BPF_JA)) {
1184 verbose(env, "last insn is not an exit or jmp\n");
1185 return -EINVAL;
1186 }
1187 subprog_start = subprog_end;
1188 cur_subprog++;
1189 if (cur_subprog < env->subprog_cnt)
1190 subprog_end = subprog[cur_subprog + 1].start;
1191 }
1192 }
1193 return 0;
1194}
1195
David Brazdil0f672f62019-12-10 10:32:29 +00001196/* Parentage chain of this register (or stack slot) should take care of all
1197 * issues like callee-saved registers, stack slot allocation time, etc.
1198 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001199static int mark_reg_read(struct bpf_verifier_env *env,
David Brazdil0f672f62019-12-10 10:32:29 +00001200 const struct bpf_reg_state *state,
1201 struct bpf_reg_state *parent, u8 flag)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001202{
1203 bool writes = parent == state->parent; /* Observe write marks */
David Brazdil0f672f62019-12-10 10:32:29 +00001204 int cnt = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001205
1206 while (parent) {
1207 /* if read wasn't screened by an earlier write ... */
David Brazdil0f672f62019-12-10 10:32:29 +00001208 if (writes && state->live & REG_LIVE_WRITTEN)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001209 break;
David Brazdil0f672f62019-12-10 10:32:29 +00001210 if (parent->live & REG_LIVE_DONE) {
1211 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1212 reg_type_str[parent->type],
1213 parent->var_off.value, parent->off);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001214 return -EFAULT;
David Brazdil0f672f62019-12-10 10:32:29 +00001215 }
1216 /* The first condition is more likely to be true than the
1217 * second, checked it first.
1218 */
1219 if ((parent->live & REG_LIVE_READ) == flag ||
1220 parent->live & REG_LIVE_READ64)
1221 /* The parentage chain never changes and
1222 * this parent was already marked as LIVE_READ.
1223 * There is no need to keep walking the chain again and
1224 * keep re-marking all parents as LIVE_READ.
1225 * This case happens when the same register is read
1226 * multiple times without writes into it in-between.
1227 * Also, if parent has the stronger REG_LIVE_READ64 set,
1228 * then no need to set the weak REG_LIVE_READ32.
1229 */
1230 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001231 /* ... then we depend on parent's value */
David Brazdil0f672f62019-12-10 10:32:29 +00001232 parent->live |= flag;
1233 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1234 if (flag == REG_LIVE_READ64)
1235 parent->live &= ~REG_LIVE_READ32;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001236 state = parent;
1237 parent = state->parent;
1238 writes = true;
David Brazdil0f672f62019-12-10 10:32:29 +00001239 cnt++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001240 }
David Brazdil0f672f62019-12-10 10:32:29 +00001241
1242 if (env->longest_mark_read_walk < cnt)
1243 env->longest_mark_read_walk = cnt;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001244 return 0;
1245}
1246
David Brazdil0f672f62019-12-10 10:32:29 +00001247/* This function is supposed to be used by the following 32-bit optimization
1248 * code only. It returns TRUE if the source or destination register operates
1249 * on 64-bit, otherwise return FALSE.
1250 */
1251static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1252 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1253{
1254 u8 code, class, op;
1255
1256 code = insn->code;
1257 class = BPF_CLASS(code);
1258 op = BPF_OP(code);
1259 if (class == BPF_JMP) {
1260 /* BPF_EXIT for "main" will reach here. Return TRUE
1261 * conservatively.
1262 */
1263 if (op == BPF_EXIT)
1264 return true;
1265 if (op == BPF_CALL) {
1266 /* BPF to BPF call will reach here because of marking
1267 * caller saved clobber with DST_OP_NO_MARK for which we
1268 * don't care the register def because they are anyway
1269 * marked as NOT_INIT already.
1270 */
1271 if (insn->src_reg == BPF_PSEUDO_CALL)
1272 return false;
1273 /* Helper call will reach here because of arg type
1274 * check, conservatively return TRUE.
1275 */
1276 if (t == SRC_OP)
1277 return true;
1278
1279 return false;
1280 }
1281 }
1282
1283 if (class == BPF_ALU64 || class == BPF_JMP ||
1284 /* BPF_END always use BPF_ALU class. */
1285 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1286 return true;
1287
1288 if (class == BPF_ALU || class == BPF_JMP32)
1289 return false;
1290
1291 if (class == BPF_LDX) {
1292 if (t != SRC_OP)
1293 return BPF_SIZE(code) == BPF_DW;
1294 /* LDX source must be ptr. */
1295 return true;
1296 }
1297
1298 if (class == BPF_STX) {
1299 if (reg->type != SCALAR_VALUE)
1300 return true;
1301 return BPF_SIZE(code) == BPF_DW;
1302 }
1303
1304 if (class == BPF_LD) {
1305 u8 mode = BPF_MODE(code);
1306
1307 /* LD_IMM64 */
1308 if (mode == BPF_IMM)
1309 return true;
1310
1311 /* Both LD_IND and LD_ABS return 32-bit data. */
1312 if (t != SRC_OP)
1313 return false;
1314
1315 /* Implicit ctx ptr. */
1316 if (regno == BPF_REG_6)
1317 return true;
1318
1319 /* Explicit source could be any width. */
1320 return true;
1321 }
1322
1323 if (class == BPF_ST)
1324 /* The only source register for BPF_ST is a ptr. */
1325 return true;
1326
1327 /* Conservatively return true at default. */
1328 return true;
1329}
1330
1331/* Return TRUE if INSN doesn't have explicit value define. */
1332static bool insn_no_def(struct bpf_insn *insn)
1333{
1334 u8 class = BPF_CLASS(insn->code);
1335
1336 return (class == BPF_JMP || class == BPF_JMP32 ||
1337 class == BPF_STX || class == BPF_ST);
1338}
1339
1340/* Return TRUE if INSN has defined any 32-bit value explicitly. */
1341static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1342{
1343 if (insn_no_def(insn))
1344 return false;
1345
1346 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1347}
1348
1349static void mark_insn_zext(struct bpf_verifier_env *env,
1350 struct bpf_reg_state *reg)
1351{
1352 s32 def_idx = reg->subreg_def;
1353
1354 if (def_idx == DEF_NOT_SUBREG)
1355 return;
1356
1357 env->insn_aux_data[def_idx - 1].zext_dst = true;
1358 /* The dst will be zero extended, so won't be sub-register anymore. */
1359 reg->subreg_def = DEF_NOT_SUBREG;
1360}
1361
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001362static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1363 enum reg_arg_type t)
1364{
1365 struct bpf_verifier_state *vstate = env->cur_state;
1366 struct bpf_func_state *state = vstate->frame[vstate->curframe];
David Brazdil0f672f62019-12-10 10:32:29 +00001367 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1368 struct bpf_reg_state *reg, *regs = state->regs;
1369 bool rw64;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001370
1371 if (regno >= MAX_BPF_REG) {
1372 verbose(env, "R%d is invalid\n", regno);
1373 return -EINVAL;
1374 }
1375
David Brazdil0f672f62019-12-10 10:32:29 +00001376 reg = &regs[regno];
1377 rw64 = is_reg64(env, insn, regno, reg, t);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001378 if (t == SRC_OP) {
1379 /* check whether register used as source operand can be read */
David Brazdil0f672f62019-12-10 10:32:29 +00001380 if (reg->type == NOT_INIT) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001381 verbose(env, "R%d !read_ok\n", regno);
1382 return -EACCES;
1383 }
David Brazdil0f672f62019-12-10 10:32:29 +00001384 /* We don't need to worry about FP liveness because it's read-only */
1385 if (regno == BPF_REG_FP)
1386 return 0;
1387
1388 if (rw64)
1389 mark_insn_zext(env, reg);
1390
1391 return mark_reg_read(env, reg, reg->parent,
1392 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001393 } else {
1394 /* check whether register used as dest operand can be written to */
1395 if (regno == BPF_REG_FP) {
1396 verbose(env, "frame pointer is read only\n");
1397 return -EACCES;
1398 }
David Brazdil0f672f62019-12-10 10:32:29 +00001399 reg->live |= REG_LIVE_WRITTEN;
1400 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001401 if (t == DST_OP)
1402 mark_reg_unknown(env, regs, regno);
1403 }
1404 return 0;
1405}
1406
David Brazdil0f672f62019-12-10 10:32:29 +00001407/* for any branch, call, exit record the history of jmps in the given state */
1408static int push_jmp_history(struct bpf_verifier_env *env,
1409 struct bpf_verifier_state *cur)
1410{
1411 u32 cnt = cur->jmp_history_cnt;
1412 struct bpf_idx_pair *p;
1413
1414 cnt++;
1415 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1416 if (!p)
1417 return -ENOMEM;
1418 p[cnt - 1].idx = env->insn_idx;
1419 p[cnt - 1].prev_idx = env->prev_insn_idx;
1420 cur->jmp_history = p;
1421 cur->jmp_history_cnt = cnt;
1422 return 0;
1423}
1424
1425/* Backtrack one insn at a time. If idx is not at the top of recorded
1426 * history then previous instruction came from straight line execution.
1427 */
1428static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1429 u32 *history)
1430{
1431 u32 cnt = *history;
1432
1433 if (cnt && st->jmp_history[cnt - 1].idx == i) {
1434 i = st->jmp_history[cnt - 1].prev_idx;
1435 (*history)--;
1436 } else {
1437 i--;
1438 }
1439 return i;
1440}
1441
1442/* For given verifier state backtrack_insn() is called from the last insn to
1443 * the first insn. Its purpose is to compute a bitmask of registers and
1444 * stack slots that needs precision in the parent verifier state.
1445 */
1446static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1447 u32 *reg_mask, u64 *stack_mask)
1448{
1449 const struct bpf_insn_cbs cbs = {
1450 .cb_print = verbose,
1451 .private_data = env,
1452 };
1453 struct bpf_insn *insn = env->prog->insnsi + idx;
1454 u8 class = BPF_CLASS(insn->code);
1455 u8 opcode = BPF_OP(insn->code);
1456 u8 mode = BPF_MODE(insn->code);
1457 u32 dreg = 1u << insn->dst_reg;
1458 u32 sreg = 1u << insn->src_reg;
1459 u32 spi;
1460
1461 if (insn->code == 0)
1462 return 0;
1463 if (env->log.level & BPF_LOG_LEVEL) {
1464 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1465 verbose(env, "%d: ", idx);
1466 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1467 }
1468
1469 if (class == BPF_ALU || class == BPF_ALU64) {
1470 if (!(*reg_mask & dreg))
1471 return 0;
1472 if (opcode == BPF_MOV) {
1473 if (BPF_SRC(insn->code) == BPF_X) {
1474 /* dreg = sreg
1475 * dreg needs precision after this insn
1476 * sreg needs precision before this insn
1477 */
1478 *reg_mask &= ~dreg;
1479 *reg_mask |= sreg;
1480 } else {
1481 /* dreg = K
1482 * dreg needs precision after this insn.
1483 * Corresponding register is already marked
1484 * as precise=true in this verifier state.
1485 * No further markings in parent are necessary
1486 */
1487 *reg_mask &= ~dreg;
1488 }
1489 } else {
1490 if (BPF_SRC(insn->code) == BPF_X) {
1491 /* dreg += sreg
1492 * both dreg and sreg need precision
1493 * before this insn
1494 */
1495 *reg_mask |= sreg;
1496 } /* else dreg += K
1497 * dreg still needs precision before this insn
1498 */
1499 }
1500 } else if (class == BPF_LDX) {
1501 if (!(*reg_mask & dreg))
1502 return 0;
1503 *reg_mask &= ~dreg;
1504
1505 /* scalars can only be spilled into stack w/o losing precision.
1506 * Load from any other memory can be zero extended.
1507 * The desire to keep that precision is already indicated
1508 * by 'precise' mark in corresponding register of this state.
1509 * No further tracking necessary.
1510 */
1511 if (insn->src_reg != BPF_REG_FP)
1512 return 0;
1513 if (BPF_SIZE(insn->code) != BPF_DW)
1514 return 0;
1515
1516 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1517 * that [fp - off] slot contains scalar that needs to be
1518 * tracked with precision
1519 */
1520 spi = (-insn->off - 1) / BPF_REG_SIZE;
1521 if (spi >= 64) {
1522 verbose(env, "BUG spi %d\n", spi);
1523 WARN_ONCE(1, "verifier backtracking bug");
1524 return -EFAULT;
1525 }
1526 *stack_mask |= 1ull << spi;
1527 } else if (class == BPF_STX || class == BPF_ST) {
1528 if (*reg_mask & dreg)
1529 /* stx & st shouldn't be using _scalar_ dst_reg
1530 * to access memory. It means backtracking
1531 * encountered a case of pointer subtraction.
1532 */
1533 return -ENOTSUPP;
1534 /* scalars can only be spilled into stack */
1535 if (insn->dst_reg != BPF_REG_FP)
1536 return 0;
1537 if (BPF_SIZE(insn->code) != BPF_DW)
1538 return 0;
1539 spi = (-insn->off - 1) / BPF_REG_SIZE;
1540 if (spi >= 64) {
1541 verbose(env, "BUG spi %d\n", spi);
1542 WARN_ONCE(1, "verifier backtracking bug");
1543 return -EFAULT;
1544 }
1545 if (!(*stack_mask & (1ull << spi)))
1546 return 0;
1547 *stack_mask &= ~(1ull << spi);
1548 if (class == BPF_STX)
1549 *reg_mask |= sreg;
1550 } else if (class == BPF_JMP || class == BPF_JMP32) {
1551 if (opcode == BPF_CALL) {
1552 if (insn->src_reg == BPF_PSEUDO_CALL)
1553 return -ENOTSUPP;
1554 /* regular helper call sets R0 */
1555 *reg_mask &= ~1;
1556 if (*reg_mask & 0x3f) {
1557 /* if backtracing was looking for registers R1-R5
1558 * they should have been found already.
1559 */
1560 verbose(env, "BUG regs %x\n", *reg_mask);
1561 WARN_ONCE(1, "verifier backtracking bug");
1562 return -EFAULT;
1563 }
1564 } else if (opcode == BPF_EXIT) {
1565 return -ENOTSUPP;
1566 }
1567 } else if (class == BPF_LD) {
1568 if (!(*reg_mask & dreg))
1569 return 0;
1570 *reg_mask &= ~dreg;
1571 /* It's ld_imm64 or ld_abs or ld_ind.
1572 * For ld_imm64 no further tracking of precision
1573 * into parent is necessary
1574 */
1575 if (mode == BPF_IND || mode == BPF_ABS)
1576 /* to be analyzed */
1577 return -ENOTSUPP;
1578 }
1579 return 0;
1580}
1581
1582/* the scalar precision tracking algorithm:
1583 * . at the start all registers have precise=false.
1584 * . scalar ranges are tracked as normal through alu and jmp insns.
1585 * . once precise value of the scalar register is used in:
1586 * . ptr + scalar alu
1587 * . if (scalar cond K|scalar)
1588 * . helper_call(.., scalar, ...) where ARG_CONST is expected
1589 * backtrack through the verifier states and mark all registers and
1590 * stack slots with spilled constants that these scalar regisers
1591 * should be precise.
1592 * . during state pruning two registers (or spilled stack slots)
1593 * are equivalent if both are not precise.
1594 *
1595 * Note the verifier cannot simply walk register parentage chain,
1596 * since many different registers and stack slots could have been
1597 * used to compute single precise scalar.
1598 *
1599 * The approach of starting with precise=true for all registers and then
1600 * backtrack to mark a register as not precise when the verifier detects
1601 * that program doesn't care about specific value (e.g., when helper
1602 * takes register as ARG_ANYTHING parameter) is not safe.
1603 *
1604 * It's ok to walk single parentage chain of the verifier states.
1605 * It's possible that this backtracking will go all the way till 1st insn.
1606 * All other branches will be explored for needing precision later.
1607 *
1608 * The backtracking needs to deal with cases like:
1609 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1610 * r9 -= r8
1611 * r5 = r9
1612 * if r5 > 0x79f goto pc+7
1613 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1614 * r5 += 1
1615 * ...
1616 * call bpf_perf_event_output#25
1617 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1618 *
1619 * and this case:
1620 * r6 = 1
1621 * call foo // uses callee's r6 inside to compute r0
1622 * r0 += r6
1623 * if r0 == 0 goto
1624 *
1625 * to track above reg_mask/stack_mask needs to be independent for each frame.
1626 *
1627 * Also if parent's curframe > frame where backtracking started,
1628 * the verifier need to mark registers in both frames, otherwise callees
1629 * may incorrectly prune callers. This is similar to
1630 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1631 *
1632 * For now backtracking falls back into conservative marking.
1633 */
1634static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1635 struct bpf_verifier_state *st)
1636{
1637 struct bpf_func_state *func;
1638 struct bpf_reg_state *reg;
1639 int i, j;
1640
1641 /* big hammer: mark all scalars precise in this path.
1642 * pop_stack may still get !precise scalars.
1643 */
1644 for (; st; st = st->parent)
1645 for (i = 0; i <= st->curframe; i++) {
1646 func = st->frame[i];
1647 for (j = 0; j < BPF_REG_FP; j++) {
1648 reg = &func->regs[j];
1649 if (reg->type != SCALAR_VALUE)
1650 continue;
1651 reg->precise = true;
1652 }
1653 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1654 if (func->stack[j].slot_type[0] != STACK_SPILL)
1655 continue;
1656 reg = &func->stack[j].spilled_ptr;
1657 if (reg->type != SCALAR_VALUE)
1658 continue;
1659 reg->precise = true;
1660 }
1661 }
1662}
1663
1664static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
1665 int spi)
1666{
1667 struct bpf_verifier_state *st = env->cur_state;
1668 int first_idx = st->first_insn_idx;
1669 int last_idx = env->insn_idx;
1670 struct bpf_func_state *func;
1671 struct bpf_reg_state *reg;
1672 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
1673 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
1674 bool skip_first = true;
1675 bool new_marks = false;
1676 int i, err;
1677
1678 if (!env->allow_ptr_leaks)
1679 /* backtracking is root only for now */
1680 return 0;
1681
1682 func = st->frame[st->curframe];
1683 if (regno >= 0) {
1684 reg = &func->regs[regno];
1685 if (reg->type != SCALAR_VALUE) {
1686 WARN_ONCE(1, "backtracing misuse");
1687 return -EFAULT;
1688 }
1689 if (!reg->precise)
1690 new_marks = true;
1691 else
1692 reg_mask = 0;
1693 reg->precise = true;
1694 }
1695
1696 while (spi >= 0) {
1697 if (func->stack[spi].slot_type[0] != STACK_SPILL) {
1698 stack_mask = 0;
1699 break;
1700 }
1701 reg = &func->stack[spi].spilled_ptr;
1702 if (reg->type != SCALAR_VALUE) {
1703 stack_mask = 0;
1704 break;
1705 }
1706 if (!reg->precise)
1707 new_marks = true;
1708 else
1709 stack_mask = 0;
1710 reg->precise = true;
1711 break;
1712 }
1713
1714 if (!new_marks)
1715 return 0;
1716 if (!reg_mask && !stack_mask)
1717 return 0;
1718 for (;;) {
1719 DECLARE_BITMAP(mask, 64);
1720 u32 history = st->jmp_history_cnt;
1721
1722 if (env->log.level & BPF_LOG_LEVEL)
1723 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
1724 for (i = last_idx;;) {
1725 if (skip_first) {
1726 err = 0;
1727 skip_first = false;
1728 } else {
1729 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
1730 }
1731 if (err == -ENOTSUPP) {
1732 mark_all_scalars_precise(env, st);
1733 return 0;
1734 } else if (err) {
1735 return err;
1736 }
1737 if (!reg_mask && !stack_mask)
1738 /* Found assignment(s) into tracked register in this state.
1739 * Since this state is already marked, just return.
1740 * Nothing to be tracked further in the parent state.
1741 */
1742 return 0;
1743 if (i == first_idx)
1744 break;
1745 i = get_prev_insn_idx(st, i, &history);
1746 if (i >= env->prog->len) {
1747 /* This can happen if backtracking reached insn 0
1748 * and there are still reg_mask or stack_mask
1749 * to backtrack.
1750 * It means the backtracking missed the spot where
1751 * particular register was initialized with a constant.
1752 */
1753 verbose(env, "BUG backtracking idx %d\n", i);
1754 WARN_ONCE(1, "verifier backtracking bug");
1755 return -EFAULT;
1756 }
1757 }
1758 st = st->parent;
1759 if (!st)
1760 break;
1761
1762 new_marks = false;
1763 func = st->frame[st->curframe];
1764 bitmap_from_u64(mask, reg_mask);
1765 for_each_set_bit(i, mask, 32) {
1766 reg = &func->regs[i];
1767 if (reg->type != SCALAR_VALUE) {
1768 reg_mask &= ~(1u << i);
1769 continue;
1770 }
1771 if (!reg->precise)
1772 new_marks = true;
1773 reg->precise = true;
1774 }
1775
1776 bitmap_from_u64(mask, stack_mask);
1777 for_each_set_bit(i, mask, 64) {
1778 if (i >= func->allocated_stack / BPF_REG_SIZE) {
1779 /* the sequence of instructions:
1780 * 2: (bf) r3 = r10
1781 * 3: (7b) *(u64 *)(r3 -8) = r0
1782 * 4: (79) r4 = *(u64 *)(r10 -8)
1783 * doesn't contain jmps. It's backtracked
1784 * as a single block.
1785 * During backtracking insn 3 is not recognized as
1786 * stack access, so at the end of backtracking
1787 * stack slot fp-8 is still marked in stack_mask.
1788 * However the parent state may not have accessed
1789 * fp-8 and it's "unallocated" stack space.
1790 * In such case fallback to conservative.
1791 */
1792 mark_all_scalars_precise(env, st);
1793 return 0;
1794 }
1795
1796 if (func->stack[i].slot_type[0] != STACK_SPILL) {
1797 stack_mask &= ~(1ull << i);
1798 continue;
1799 }
1800 reg = &func->stack[i].spilled_ptr;
1801 if (reg->type != SCALAR_VALUE) {
1802 stack_mask &= ~(1ull << i);
1803 continue;
1804 }
1805 if (!reg->precise)
1806 new_marks = true;
1807 reg->precise = true;
1808 }
1809 if (env->log.level & BPF_LOG_LEVEL) {
1810 print_verifier_state(env, func);
1811 verbose(env, "parent %s regs=%x stack=%llx marks\n",
1812 new_marks ? "didn't have" : "already had",
1813 reg_mask, stack_mask);
1814 }
1815
1816 if (!reg_mask && !stack_mask)
1817 break;
1818 if (!new_marks)
1819 break;
1820
1821 last_idx = st->last_insn_idx;
1822 first_idx = st->first_insn_idx;
1823 }
1824 return 0;
1825}
1826
1827static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
1828{
1829 return __mark_chain_precision(env, regno, -1);
1830}
1831
1832static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
1833{
1834 return __mark_chain_precision(env, -1, spi);
1835}
1836
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001837static bool is_spillable_regtype(enum bpf_reg_type type)
1838{
1839 switch (type) {
1840 case PTR_TO_MAP_VALUE:
1841 case PTR_TO_MAP_VALUE_OR_NULL:
1842 case PTR_TO_STACK:
1843 case PTR_TO_CTX:
1844 case PTR_TO_PACKET:
1845 case PTR_TO_PACKET_META:
1846 case PTR_TO_PACKET_END:
David Brazdil0f672f62019-12-10 10:32:29 +00001847 case PTR_TO_FLOW_KEYS:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001848 case CONST_PTR_TO_MAP:
David Brazdil0f672f62019-12-10 10:32:29 +00001849 case PTR_TO_SOCKET:
1850 case PTR_TO_SOCKET_OR_NULL:
1851 case PTR_TO_SOCK_COMMON:
1852 case PTR_TO_SOCK_COMMON_OR_NULL:
1853 case PTR_TO_TCP_SOCK:
1854 case PTR_TO_TCP_SOCK_OR_NULL:
1855 case PTR_TO_XDP_SOCK:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001856 return true;
1857 default:
1858 return false;
1859 }
1860}
1861
1862/* Does this register contain a constant zero? */
1863static bool register_is_null(struct bpf_reg_state *reg)
1864{
1865 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1866}
1867
David Brazdil0f672f62019-12-10 10:32:29 +00001868static bool register_is_const(struct bpf_reg_state *reg)
1869{
1870 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
1871}
1872
Olivier Deprez0e641232021-09-23 10:07:05 +02001873static bool __is_pointer_value(bool allow_ptr_leaks,
1874 const struct bpf_reg_state *reg)
1875{
1876 if (allow_ptr_leaks)
1877 return false;
1878
1879 return reg->type != SCALAR_VALUE;
1880}
1881
David Brazdil0f672f62019-12-10 10:32:29 +00001882static void save_register_state(struct bpf_func_state *state,
1883 int spi, struct bpf_reg_state *reg)
1884{
1885 int i;
1886
1887 state->stack[spi].spilled_ptr = *reg;
1888 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1889
1890 for (i = 0; i < BPF_REG_SIZE; i++)
1891 state->stack[spi].slot_type[i] = STACK_SPILL;
1892}
1893
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001894/* check_stack_read/write functions track spill/fill of registers,
1895 * stack boundary and alignment are checked in check_mem_access()
1896 */
1897static int check_stack_write(struct bpf_verifier_env *env,
1898 struct bpf_func_state *state, /* func where register points to */
1899 int off, int size, int value_regno, int insn_idx)
1900{
1901 struct bpf_func_state *cur; /* state of the current function */
1902 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
David Brazdil0f672f62019-12-10 10:32:29 +00001903 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
1904 struct bpf_reg_state *reg = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001905
1906 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
David Brazdil0f672f62019-12-10 10:32:29 +00001907 state->acquired_refs, true);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001908 if (err)
1909 return err;
1910 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1911 * so it's aligned access and [off, off + size) are within stack limits
1912 */
1913 if (!env->allow_ptr_leaks &&
1914 state->stack[spi].slot_type[0] == STACK_SPILL &&
1915 size != BPF_REG_SIZE) {
1916 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1917 return -EACCES;
1918 }
1919
1920 cur = env->cur_state->frame[env->cur_state->curframe];
David Brazdil0f672f62019-12-10 10:32:29 +00001921 if (value_regno >= 0)
1922 reg = &cur->regs[value_regno];
Olivier Deprez0e641232021-09-23 10:07:05 +02001923 if (!env->allow_ptr_leaks) {
1924 bool sanitize = reg && is_spillable_regtype(reg->type);
1925
1926 for (i = 0; i < size; i++) {
1927 if (state->stack[spi].slot_type[i] == STACK_INVALID) {
1928 sanitize = true;
1929 break;
1930 }
1931 }
1932
1933 if (sanitize)
1934 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
1935 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001936
David Brazdil0f672f62019-12-10 10:32:29 +00001937 if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
1938 !register_is_null(reg) && env->allow_ptr_leaks) {
1939 if (dst_reg != BPF_REG_FP) {
1940 /* The backtracking logic can only recognize explicit
1941 * stack slot address like [fp - 8]. Other spill of
1942 * scalar via different register has to be conervative.
1943 * Backtrack from here and mark all registers as precise
1944 * that contributed into 'reg' being a constant.
1945 */
1946 err = mark_chain_precision(env, value_regno);
1947 if (err)
1948 return err;
1949 }
1950 save_register_state(state, spi, reg);
1951 } else if (reg && is_spillable_regtype(reg->type)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001952 /* register containing pointer is being spilled into stack */
1953 if (size != BPF_REG_SIZE) {
David Brazdil0f672f62019-12-10 10:32:29 +00001954 verbose_linfo(env, insn_idx, "; ");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001955 verbose(env, "invalid size of register spill\n");
1956 return -EACCES;
1957 }
David Brazdil0f672f62019-12-10 10:32:29 +00001958 if (state != cur && reg->type == PTR_TO_STACK) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001959 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1960 return -EINVAL;
1961 }
David Brazdil0f672f62019-12-10 10:32:29 +00001962 save_register_state(state, spi, reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001963 } else {
1964 u8 type = STACK_MISC;
1965
David Brazdil0f672f62019-12-10 10:32:29 +00001966 /* regular write of data into stack destroys any spilled ptr */
1967 state->stack[spi].spilled_ptr.type = NOT_INIT;
1968 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1969 if (state->stack[spi].slot_type[0] == STACK_SPILL)
1970 for (i = 0; i < BPF_REG_SIZE; i++)
1971 state->stack[spi].slot_type[i] = STACK_MISC;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001972
1973 /* only mark the slot as written if all 8 bytes were written
1974 * otherwise read propagation may incorrectly stop too soon
1975 * when stack slots are partially written.
1976 * This heuristic means that read propagation will be
1977 * conservative, since it will add reg_live_read marks
1978 * to stack slots all the way to first state when programs
1979 * writes+reads less than 8 bytes
1980 */
1981 if (size == BPF_REG_SIZE)
1982 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1983
1984 /* when we zero initialize stack slots mark them as such */
David Brazdil0f672f62019-12-10 10:32:29 +00001985 if (reg && register_is_null(reg)) {
1986 /* backtracking doesn't work for STACK_ZERO yet. */
1987 err = mark_chain_precision(env, value_regno);
1988 if (err)
1989 return err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001990 type = STACK_ZERO;
David Brazdil0f672f62019-12-10 10:32:29 +00001991 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001992
David Brazdil0f672f62019-12-10 10:32:29 +00001993 /* Mark slots affected by this stack write. */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001994 for (i = 0; i < size; i++)
1995 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1996 type;
1997 }
1998 return 0;
1999}
2000
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002001static int check_stack_read(struct bpf_verifier_env *env,
2002 struct bpf_func_state *reg_state /* func where register points to */,
2003 int off, int size, int value_regno)
2004{
2005 struct bpf_verifier_state *vstate = env->cur_state;
2006 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2007 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
David Brazdil0f672f62019-12-10 10:32:29 +00002008 struct bpf_reg_state *reg;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002009 u8 *stype;
2010
2011 if (reg_state->allocated_stack <= slot) {
2012 verbose(env, "invalid read from stack off %d+0 size %d\n",
2013 off, size);
2014 return -EACCES;
2015 }
2016 stype = reg_state->stack[spi].slot_type;
David Brazdil0f672f62019-12-10 10:32:29 +00002017 reg = &reg_state->stack[spi].spilled_ptr;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002018
2019 if (stype[0] == STACK_SPILL) {
2020 if (size != BPF_REG_SIZE) {
David Brazdil0f672f62019-12-10 10:32:29 +00002021 if (reg->type != SCALAR_VALUE) {
2022 verbose_linfo(env, env->insn_idx, "; ");
2023 verbose(env, "invalid size of register fill\n");
2024 return -EACCES;
2025 }
2026 if (value_regno >= 0) {
2027 mark_reg_unknown(env, state->regs, value_regno);
2028 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2029 }
2030 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2031 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002032 }
2033 for (i = 1; i < BPF_REG_SIZE; i++) {
2034 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2035 verbose(env, "corrupted spill memory\n");
2036 return -EACCES;
2037 }
2038 }
2039
2040 if (value_regno >= 0) {
2041 /* restore register state from stack */
David Brazdil0f672f62019-12-10 10:32:29 +00002042 state->regs[value_regno] = *reg;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002043 /* mark reg as written since spilled pointer state likely
2044 * has its liveness marks cleared by is_state_visited()
2045 * which resets stack/reg liveness for state transitions
2046 */
2047 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
Olivier Deprez0e641232021-09-23 10:07:05 +02002048 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2049 /* If value_regno==-1, the caller is asking us whether
2050 * it is acceptable to use this value as a SCALAR_VALUE
2051 * (e.g. for XADD).
2052 * We must not allow unprivileged callers to do that
2053 * with spilled pointers.
2054 */
2055 verbose(env, "leaking pointer from stack off %d\n",
2056 off);
2057 return -EACCES;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002058 }
David Brazdil0f672f62019-12-10 10:32:29 +00002059 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002060 } else {
2061 int zeros = 0;
2062
2063 for (i = 0; i < size; i++) {
2064 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2065 continue;
2066 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2067 zeros++;
2068 continue;
2069 }
2070 verbose(env, "invalid read from stack off %d+%d size %d\n",
2071 off, i, size);
2072 return -EACCES;
2073 }
David Brazdil0f672f62019-12-10 10:32:29 +00002074 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002075 if (value_regno >= 0) {
2076 if (zeros == size) {
2077 /* any size read into register is zero extended,
2078 * so the whole register == const_zero
2079 */
2080 __mark_reg_const_zero(&state->regs[value_regno]);
David Brazdil0f672f62019-12-10 10:32:29 +00002081 /* backtracking doesn't support STACK_ZERO yet,
2082 * so mark it precise here, so that later
2083 * backtracking can stop here.
2084 * Backtracking may not need this if this register
2085 * doesn't participate in pointer adjustment.
2086 * Forward propagation of precise flag is not
2087 * necessary either. This mark is only to stop
2088 * backtracking. Any register that contributed
2089 * to const 0 was marked precise before spill.
2090 */
2091 state->regs[value_regno].precise = true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002092 } else {
2093 /* have read misc data from the stack */
2094 mark_reg_unknown(env, state->regs, value_regno);
2095 }
2096 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2097 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002098 }
David Brazdil0f672f62019-12-10 10:32:29 +00002099 return 0;
2100}
2101
2102static int check_stack_access(struct bpf_verifier_env *env,
2103 const struct bpf_reg_state *reg,
2104 int off, int size)
2105{
2106 /* Stack accesses must be at a fixed offset, so that we
2107 * can determine what type of data were returned. See
2108 * check_stack_read().
2109 */
2110 if (!tnum_is_const(reg->var_off)) {
2111 char tn_buf[48];
2112
2113 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2114 verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
2115 tn_buf, off, size);
2116 return -EACCES;
2117 }
2118
2119 if (off >= 0 || off < -MAX_BPF_STACK) {
2120 verbose(env, "invalid stack off=%d size=%d\n", off, size);
2121 return -EACCES;
2122 }
2123
2124 return 0;
2125}
2126
2127static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2128 int off, int size, enum bpf_access_type type)
2129{
2130 struct bpf_reg_state *regs = cur_regs(env);
2131 struct bpf_map *map = regs[regno].map_ptr;
2132 u32 cap = bpf_map_flags_to_cap(map);
2133
2134 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2135 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2136 map->value_size, off, size);
2137 return -EACCES;
2138 }
2139
2140 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2141 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2142 map->value_size, off, size);
2143 return -EACCES;
2144 }
2145
2146 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002147}
2148
2149/* check read/write into map element returned by bpf_map_lookup_elem() */
2150static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
2151 int size, bool zero_size_allowed)
2152{
2153 struct bpf_reg_state *regs = cur_regs(env);
2154 struct bpf_map *map = regs[regno].map_ptr;
2155
2156 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2157 off + size > map->value_size) {
2158 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2159 map->value_size, off, size);
2160 return -EACCES;
2161 }
2162 return 0;
2163}
2164
2165/* check read/write into a map element with possible variable offset */
2166static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2167 int off, int size, bool zero_size_allowed)
2168{
2169 struct bpf_verifier_state *vstate = env->cur_state;
2170 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2171 struct bpf_reg_state *reg = &state->regs[regno];
2172 int err;
2173
2174 /* We may have adjusted the register to this map value, so we
2175 * need to try adding each of min_value and max_value to off
2176 * to make sure our theoretical access will be safe.
2177 */
David Brazdil0f672f62019-12-10 10:32:29 +00002178 if (env->log.level & BPF_LOG_LEVEL)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002179 print_verifier_state(env, state);
David Brazdil0f672f62019-12-10 10:32:29 +00002180
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002181 /* The minimum value is only important with signed
2182 * comparisons where we can't assume the floor of a
2183 * value is 0. If we are using signed variables for our
2184 * index'es we need to make sure that whatever we use
2185 * will have a set floor within our range.
2186 */
David Brazdil0f672f62019-12-10 10:32:29 +00002187 if (reg->smin_value < 0 &&
2188 (reg->smin_value == S64_MIN ||
2189 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2190 reg->smin_value + off < 0)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002191 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2192 regno);
2193 return -EACCES;
2194 }
2195 err = __check_map_access(env, regno, reg->smin_value + off, size,
2196 zero_size_allowed);
2197 if (err) {
2198 verbose(env, "R%d min value is outside of the array range\n",
2199 regno);
2200 return err;
2201 }
2202
2203 /* If we haven't set a max value then we need to bail since we can't be
2204 * sure we won't do bad things.
2205 * If reg->umax_value + off could overflow, treat that as unbounded too.
2206 */
2207 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2208 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
2209 regno);
2210 return -EACCES;
2211 }
2212 err = __check_map_access(env, regno, reg->umax_value + off, size,
2213 zero_size_allowed);
2214 if (err)
2215 verbose(env, "R%d max value is outside of the array range\n",
2216 regno);
David Brazdil0f672f62019-12-10 10:32:29 +00002217
2218 if (map_value_has_spin_lock(reg->map_ptr)) {
2219 u32 lock = reg->map_ptr->spin_lock_off;
2220
2221 /* if any part of struct bpf_spin_lock can be touched by
2222 * load/store reject this program.
2223 * To check that [x1, x2) overlaps with [y1, y2)
2224 * it is sufficient to check x1 < y2 && y1 < x2.
2225 */
2226 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2227 lock < reg->umax_value + off + size) {
2228 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2229 return -EACCES;
2230 }
2231 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002232 return err;
2233}
2234
2235#define MAX_PACKET_OFF 0xffff
2236
2237static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2238 const struct bpf_call_arg_meta *meta,
2239 enum bpf_access_type t)
2240{
2241 switch (env->prog->type) {
David Brazdil0f672f62019-12-10 10:32:29 +00002242 /* Program types only with direct read access go here! */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002243 case BPF_PROG_TYPE_LWT_IN:
2244 case BPF_PROG_TYPE_LWT_OUT:
2245 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2246 case BPF_PROG_TYPE_SK_REUSEPORT:
David Brazdil0f672f62019-12-10 10:32:29 +00002247 case BPF_PROG_TYPE_FLOW_DISSECTOR:
2248 case BPF_PROG_TYPE_CGROUP_SKB:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002249 if (t == BPF_WRITE)
2250 return false;
2251 /* fallthrough */
David Brazdil0f672f62019-12-10 10:32:29 +00002252
2253 /* Program types with direct read + write access go here! */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002254 case BPF_PROG_TYPE_SCHED_CLS:
2255 case BPF_PROG_TYPE_SCHED_ACT:
2256 case BPF_PROG_TYPE_XDP:
2257 case BPF_PROG_TYPE_LWT_XMIT:
2258 case BPF_PROG_TYPE_SK_SKB:
2259 case BPF_PROG_TYPE_SK_MSG:
2260 if (meta)
2261 return meta->pkt_access;
2262
2263 env->seen_direct_write = true;
2264 return true;
David Brazdil0f672f62019-12-10 10:32:29 +00002265
2266 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2267 if (t == BPF_WRITE)
2268 env->seen_direct_write = true;
2269
2270 return true;
2271
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002272 default:
2273 return false;
2274 }
2275}
2276
2277static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
2278 int off, int size, bool zero_size_allowed)
2279{
2280 struct bpf_reg_state *regs = cur_regs(env);
2281 struct bpf_reg_state *reg = &regs[regno];
2282
2283 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2284 (u64)off + size > reg->range) {
2285 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2286 off, size, regno, reg->id, reg->off, reg->range);
2287 return -EACCES;
2288 }
2289 return 0;
2290}
2291
2292static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2293 int size, bool zero_size_allowed)
2294{
2295 struct bpf_reg_state *regs = cur_regs(env);
2296 struct bpf_reg_state *reg = &regs[regno];
2297 int err;
2298
2299 /* We may have added a variable offset to the packet pointer; but any
2300 * reg->range we have comes after that. We are only checking the fixed
2301 * offset.
2302 */
2303
2304 /* We don't allow negative numbers, because we aren't tracking enough
2305 * detail to prove they're safe.
2306 */
2307 if (reg->smin_value < 0) {
2308 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2309 regno);
2310 return -EACCES;
2311 }
2312 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
2313 if (err) {
2314 verbose(env, "R%d offset is outside of the packet\n", regno);
2315 return err;
2316 }
David Brazdil0f672f62019-12-10 10:32:29 +00002317
2318 /* __check_packet_access has made sure "off + size - 1" is within u16.
2319 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2320 * otherwise find_good_pkt_pointers would have refused to set range info
2321 * that __check_packet_access would have rejected this pkt access.
2322 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2323 */
2324 env->prog->aux->max_pkt_offset =
2325 max_t(u32, env->prog->aux->max_pkt_offset,
2326 off + reg->umax_value + size - 1);
2327
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002328 return err;
2329}
2330
2331/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
2332static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
2333 enum bpf_access_type t, enum bpf_reg_type *reg_type)
2334{
2335 struct bpf_insn_access_aux info = {
2336 .reg_type = *reg_type,
2337 };
2338
2339 if (env->ops->is_valid_access &&
2340 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
2341 /* A non zero info.ctx_field_size indicates that this field is a
2342 * candidate for later verifier transformation to load the whole
2343 * field and then apply a mask when accessed with a narrower
2344 * access than actual ctx access size. A zero info.ctx_field_size
2345 * will only allow for whole field access and rejects any other
2346 * type of narrower access.
2347 */
2348 *reg_type = info.reg_type;
2349
2350 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
2351 /* remember the offset of last byte accessed in ctx */
2352 if (env->prog->aux->max_ctx_offset < off + size)
2353 env->prog->aux->max_ctx_offset = off + size;
2354 return 0;
2355 }
2356
2357 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
2358 return -EACCES;
2359}
2360
David Brazdil0f672f62019-12-10 10:32:29 +00002361static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2362 int size)
2363{
2364 if (size < 0 || off < 0 ||
2365 (u64)off + size > sizeof(struct bpf_flow_keys)) {
2366 verbose(env, "invalid access to flow keys off=%d size=%d\n",
2367 off, size);
2368 return -EACCES;
2369 }
2370 return 0;
2371}
2372
2373static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2374 u32 regno, int off, int size,
2375 enum bpf_access_type t)
2376{
2377 struct bpf_reg_state *regs = cur_regs(env);
2378 struct bpf_reg_state *reg = &regs[regno];
2379 struct bpf_insn_access_aux info = {};
2380 bool valid;
2381
2382 if (reg->smin_value < 0) {
2383 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2384 regno);
2385 return -EACCES;
2386 }
2387
2388 switch (reg->type) {
2389 case PTR_TO_SOCK_COMMON:
2390 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2391 break;
2392 case PTR_TO_SOCKET:
2393 valid = bpf_sock_is_valid_access(off, size, t, &info);
2394 break;
2395 case PTR_TO_TCP_SOCK:
2396 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2397 break;
2398 case PTR_TO_XDP_SOCK:
2399 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2400 break;
2401 default:
2402 valid = false;
2403 }
2404
2405
2406 if (valid) {
2407 env->insn_aux_data[insn_idx].ctx_field_size =
2408 info.ctx_field_size;
2409 return 0;
2410 }
2411
2412 verbose(env, "R%d invalid %s access off=%d size=%d\n",
2413 regno, reg_type_str[reg->type], off, size);
2414
2415 return -EACCES;
2416}
2417
David Brazdil0f672f62019-12-10 10:32:29 +00002418static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2419{
2420 return cur_regs(env) + regno;
2421}
2422
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002423static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2424{
David Brazdil0f672f62019-12-10 10:32:29 +00002425 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002426}
2427
2428static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2429{
David Brazdil0f672f62019-12-10 10:32:29 +00002430 const struct bpf_reg_state *reg = reg_state(env, regno);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002431
2432 return reg->type == PTR_TO_CTX;
2433}
2434
David Brazdil0f672f62019-12-10 10:32:29 +00002435static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2436{
2437 const struct bpf_reg_state *reg = reg_state(env, regno);
2438
2439 return type_is_sk_pointer(reg->type);
2440}
2441
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002442static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2443{
David Brazdil0f672f62019-12-10 10:32:29 +00002444 const struct bpf_reg_state *reg = reg_state(env, regno);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002445
2446 return type_is_pkt_pointer(reg->type);
2447}
2448
David Brazdil0f672f62019-12-10 10:32:29 +00002449static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2450{
2451 const struct bpf_reg_state *reg = reg_state(env, regno);
2452
2453 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2454 return reg->type == PTR_TO_FLOW_KEYS;
2455}
2456
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002457static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2458 const struct bpf_reg_state *reg,
2459 int off, int size, bool strict)
2460{
2461 struct tnum reg_off;
2462 int ip_align;
2463
2464 /* Byte size accesses are always allowed. */
2465 if (!strict || size == 1)
2466 return 0;
2467
2468 /* For platforms that do not have a Kconfig enabling
2469 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2470 * NET_IP_ALIGN is universally set to '2'. And on platforms
2471 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2472 * to this code only in strict mode where we want to emulate
2473 * the NET_IP_ALIGN==2 checking. Therefore use an
2474 * unconditional IP align value of '2'.
2475 */
2476 ip_align = 2;
2477
2478 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2479 if (!tnum_is_aligned(reg_off, size)) {
2480 char tn_buf[48];
2481
2482 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2483 verbose(env,
2484 "misaligned packet access off %d+%s+%d+%d size %d\n",
2485 ip_align, tn_buf, reg->off, off, size);
2486 return -EACCES;
2487 }
2488
2489 return 0;
2490}
2491
2492static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2493 const struct bpf_reg_state *reg,
2494 const char *pointer_desc,
2495 int off, int size, bool strict)
2496{
2497 struct tnum reg_off;
2498
2499 /* Byte size accesses are always allowed. */
2500 if (!strict || size == 1)
2501 return 0;
2502
2503 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2504 if (!tnum_is_aligned(reg_off, size)) {
2505 char tn_buf[48];
2506
2507 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2508 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
2509 pointer_desc, tn_buf, reg->off, off, size);
2510 return -EACCES;
2511 }
2512
2513 return 0;
2514}
2515
2516static int check_ptr_alignment(struct bpf_verifier_env *env,
2517 const struct bpf_reg_state *reg, int off,
2518 int size, bool strict_alignment_once)
2519{
2520 bool strict = env->strict_alignment || strict_alignment_once;
2521 const char *pointer_desc = "";
2522
2523 switch (reg->type) {
2524 case PTR_TO_PACKET:
2525 case PTR_TO_PACKET_META:
2526 /* Special case, because of NET_IP_ALIGN. Given metadata sits
2527 * right in front, treat it the very same way.
2528 */
2529 return check_pkt_ptr_alignment(env, reg, off, size, strict);
David Brazdil0f672f62019-12-10 10:32:29 +00002530 case PTR_TO_FLOW_KEYS:
2531 pointer_desc = "flow keys ";
2532 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002533 case PTR_TO_MAP_VALUE:
2534 pointer_desc = "value ";
2535 break;
2536 case PTR_TO_CTX:
2537 pointer_desc = "context ";
2538 break;
2539 case PTR_TO_STACK:
2540 pointer_desc = "stack ";
2541 /* The stack spill tracking logic in check_stack_write()
2542 * and check_stack_read() relies on stack accesses being
2543 * aligned.
2544 */
2545 strict = true;
2546 break;
David Brazdil0f672f62019-12-10 10:32:29 +00002547 case PTR_TO_SOCKET:
2548 pointer_desc = "sock ";
2549 break;
2550 case PTR_TO_SOCK_COMMON:
2551 pointer_desc = "sock_common ";
2552 break;
2553 case PTR_TO_TCP_SOCK:
2554 pointer_desc = "tcp_sock ";
2555 break;
2556 case PTR_TO_XDP_SOCK:
2557 pointer_desc = "xdp_sock ";
2558 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002559 default:
2560 break;
2561 }
2562 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2563 strict);
2564}
2565
2566static int update_stack_depth(struct bpf_verifier_env *env,
2567 const struct bpf_func_state *func,
2568 int off)
2569{
2570 u16 stack = env->subprog_info[func->subprogno].stack_depth;
2571
2572 if (stack >= -off)
2573 return 0;
2574
2575 /* update known max for given subprogram */
2576 env->subprog_info[func->subprogno].stack_depth = -off;
2577 return 0;
2578}
2579
2580/* starting from main bpf function walk all instructions of the function
2581 * and recursively walk all callees that given function can call.
2582 * Ignore jump and exit insns.
2583 * Since recursion is prevented by check_cfg() this algorithm
2584 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2585 */
2586static int check_max_stack_depth(struct bpf_verifier_env *env)
2587{
2588 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2589 struct bpf_subprog_info *subprog = env->subprog_info;
2590 struct bpf_insn *insn = env->prog->insnsi;
2591 int ret_insn[MAX_CALL_FRAMES];
2592 int ret_prog[MAX_CALL_FRAMES];
2593
2594process_func:
Olivier Deprez0e641232021-09-23 10:07:05 +02002595 /* protect against potential stack overflow that might happen when
2596 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
2597 * depth for such case down to 256 so that the worst case scenario
2598 * would result in 8k stack size (32 which is tailcall limit * 256 =
2599 * 8k).
2600 *
2601 * To get the idea what might happen, see an example:
2602 * func1 -> sub rsp, 128
2603 * subfunc1 -> sub rsp, 256
2604 * tailcall1 -> add rsp, 256
2605 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
2606 * subfunc2 -> sub rsp, 64
2607 * subfunc22 -> sub rsp, 128
2608 * tailcall2 -> add rsp, 128
2609 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
2610 *
2611 * tailcall will unwind the current stack frame but it will not get rid
2612 * of caller's stack as shown on the example above.
2613 */
2614 if (idx && subprog[idx].has_tail_call && depth >= 256) {
2615 verbose(env,
2616 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
2617 depth);
2618 return -EACCES;
2619 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002620 /* round up to 32-bytes, since this is granularity
2621 * of interpreter stack size
2622 */
2623 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2624 if (depth > MAX_BPF_STACK) {
2625 verbose(env, "combined stack size of %d calls is %d. Too large\n",
2626 frame + 1, depth);
2627 return -EACCES;
2628 }
2629continue_func:
2630 subprog_end = subprog[idx + 1].start;
2631 for (; i < subprog_end; i++) {
2632 if (insn[i].code != (BPF_JMP | BPF_CALL))
2633 continue;
2634 if (insn[i].src_reg != BPF_PSEUDO_CALL)
2635 continue;
2636 /* remember insn and function to return to */
2637 ret_insn[frame] = i + 1;
2638 ret_prog[frame] = idx;
2639
2640 /* find the callee */
2641 i = i + insn[i].imm + 1;
2642 idx = find_subprog(env, i);
2643 if (idx < 0) {
2644 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2645 i);
2646 return -EFAULT;
2647 }
2648 frame++;
2649 if (frame >= MAX_CALL_FRAMES) {
David Brazdil0f672f62019-12-10 10:32:29 +00002650 verbose(env, "the call stack of %d frames is too deep !\n",
2651 frame);
2652 return -E2BIG;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002653 }
2654 goto process_func;
2655 }
2656 /* end of for() loop means the last insn of the 'subprog'
2657 * was reached. Doesn't matter whether it was JA or EXIT
2658 */
2659 if (frame == 0)
2660 return 0;
2661 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2662 frame--;
2663 i = ret_insn[frame];
2664 idx = ret_prog[frame];
2665 goto continue_func;
2666}
2667
2668#ifndef CONFIG_BPF_JIT_ALWAYS_ON
2669static int get_callee_stack_depth(struct bpf_verifier_env *env,
2670 const struct bpf_insn *insn, int idx)
2671{
2672 int start = idx + insn->imm + 1, subprog;
2673
2674 subprog = find_subprog(env, start);
2675 if (subprog < 0) {
2676 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2677 start);
2678 return -EFAULT;
2679 }
2680 return env->subprog_info[subprog].stack_depth;
2681}
2682#endif
2683
2684static int check_ctx_reg(struct bpf_verifier_env *env,
2685 const struct bpf_reg_state *reg, int regno)
2686{
2687 /* Access to ctx or passing it to a helper is only allowed in
2688 * its original, unmodified form.
2689 */
2690
2691 if (reg->off) {
2692 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
2693 regno, reg->off);
2694 return -EACCES;
2695 }
2696
2697 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2698 char tn_buf[48];
2699
2700 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2701 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
2702 return -EACCES;
2703 }
2704
2705 return 0;
2706}
2707
David Brazdil0f672f62019-12-10 10:32:29 +00002708static int check_tp_buffer_access(struct bpf_verifier_env *env,
2709 const struct bpf_reg_state *reg,
2710 int regno, int off, int size)
2711{
2712 if (off < 0) {
2713 verbose(env,
2714 "R%d invalid tracepoint buffer access: off=%d, size=%d",
2715 regno, off, size);
2716 return -EACCES;
2717 }
2718 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2719 char tn_buf[48];
2720
2721 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2722 verbose(env,
2723 "R%d invalid variable buffer offset: off=%d, var_off=%s",
2724 regno, off, tn_buf);
2725 return -EACCES;
2726 }
2727 if (off + size > env->prog->aux->max_tp_access)
2728 env->prog->aux->max_tp_access = off + size;
2729
2730 return 0;
2731}
2732
2733
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002734/* truncate register to smaller size (in bytes)
2735 * must be called with size < BPF_REG_SIZE
2736 */
2737static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2738{
2739 u64 mask;
2740
2741 /* clear high bits in bit representation */
2742 reg->var_off = tnum_cast(reg->var_off, size);
2743
2744 /* fix arithmetic bounds */
2745 mask = ((u64)1 << (size * 8)) - 1;
2746 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2747 reg->umin_value &= mask;
2748 reg->umax_value &= mask;
2749 } else {
2750 reg->umin_value = 0;
2751 reg->umax_value = mask;
2752 }
2753 reg->smin_value = reg->umin_value;
2754 reg->smax_value = reg->umax_value;
2755}
2756
Olivier Deprez0e641232021-09-23 10:07:05 +02002757static bool bpf_map_is_rdonly(const struct bpf_map *map)
2758{
2759 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
2760}
2761
2762static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
2763{
2764 void *ptr;
2765 u64 addr;
2766 int err;
2767
2768 err = map->ops->map_direct_value_addr(map, &addr, off);
2769 if (err)
2770 return err;
2771 ptr = (void *)(long)addr + off;
2772
2773 switch (size) {
2774 case sizeof(u8):
2775 *val = (u64)*(u8 *)ptr;
2776 break;
2777 case sizeof(u16):
2778 *val = (u64)*(u16 *)ptr;
2779 break;
2780 case sizeof(u32):
2781 *val = (u64)*(u32 *)ptr;
2782 break;
2783 case sizeof(u64):
2784 *val = *(u64 *)ptr;
2785 break;
2786 default:
2787 return -EINVAL;
2788 }
2789 return 0;
2790}
2791
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002792/* check whether memory at (regno + off) is accessible for t = (read | write)
2793 * if t==write, value_regno is a register which value is stored into memory
2794 * if t==read, value_regno is a register which will receive the value from memory
2795 * if t==write && value_regno==-1, some unknown value is stored into memory
2796 * if t==read && value_regno==-1, don't care what we read from memory
2797 */
2798static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
2799 int off, int bpf_size, enum bpf_access_type t,
2800 int value_regno, bool strict_alignment_once)
2801{
2802 struct bpf_reg_state *regs = cur_regs(env);
2803 struct bpf_reg_state *reg = regs + regno;
2804 struct bpf_func_state *state;
2805 int size, err = 0;
2806
2807 size = bpf_size_to_bytes(bpf_size);
2808 if (size < 0)
2809 return size;
2810
2811 /* alignment checks will add in reg->off themselves */
2812 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
2813 if (err)
2814 return err;
2815
2816 /* for access checks, reg->off is just part of off */
2817 off += reg->off;
2818
2819 if (reg->type == PTR_TO_MAP_VALUE) {
2820 if (t == BPF_WRITE && value_regno >= 0 &&
2821 is_pointer_value(env, value_regno)) {
2822 verbose(env, "R%d leaks addr into map\n", value_regno);
2823 return -EACCES;
2824 }
David Brazdil0f672f62019-12-10 10:32:29 +00002825 err = check_map_access_type(env, regno, off, size, t);
2826 if (err)
2827 return err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002828 err = check_map_access(env, regno, off, size, false);
Olivier Deprez0e641232021-09-23 10:07:05 +02002829 if (!err && t == BPF_READ && value_regno >= 0) {
2830 struct bpf_map *map = reg->map_ptr;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002831
Olivier Deprez0e641232021-09-23 10:07:05 +02002832 /* if map is read-only, track its contents as scalars */
2833 if (tnum_is_const(reg->var_off) &&
2834 bpf_map_is_rdonly(map) &&
2835 map->ops->map_direct_value_addr) {
2836 int map_off = off + reg->var_off.value;
2837 u64 val = 0;
2838
2839 err = bpf_map_direct_read(map, map_off, size,
2840 &val);
2841 if (err)
2842 return err;
2843
2844 regs[value_regno].type = SCALAR_VALUE;
2845 __mark_reg_known(&regs[value_regno], val);
2846 } else {
2847 mark_reg_unknown(env, regs, value_regno);
2848 }
2849 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002850 } else if (reg->type == PTR_TO_CTX) {
2851 enum bpf_reg_type reg_type = SCALAR_VALUE;
2852
2853 if (t == BPF_WRITE && value_regno >= 0 &&
2854 is_pointer_value(env, value_regno)) {
2855 verbose(env, "R%d leaks addr into ctx\n", value_regno);
2856 return -EACCES;
2857 }
2858
2859 err = check_ctx_reg(env, reg, regno);
2860 if (err < 0)
2861 return err;
2862
2863 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
2864 if (!err && t == BPF_READ && value_regno >= 0) {
2865 /* ctx access returns either a scalar, or a
2866 * PTR_TO_PACKET[_META,_END]. In the latter
2867 * case, we know the offset is zero.
2868 */
David Brazdil0f672f62019-12-10 10:32:29 +00002869 if (reg_type == SCALAR_VALUE) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002870 mark_reg_unknown(env, regs, value_regno);
David Brazdil0f672f62019-12-10 10:32:29 +00002871 } else {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002872 mark_reg_known_zero(env, regs,
2873 value_regno);
David Brazdil0f672f62019-12-10 10:32:29 +00002874 if (reg_type_may_be_null(reg_type))
2875 regs[value_regno].id = ++env->id_gen;
2876 /* A load of ctx field could have different
2877 * actual load size with the one encoded in the
2878 * insn. When the dst is PTR, it is for sure not
2879 * a sub-register.
2880 */
2881 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
2882 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002883 regs[value_regno].type = reg_type;
2884 }
2885
2886 } else if (reg->type == PTR_TO_STACK) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002887 off += reg->var_off.value;
David Brazdil0f672f62019-12-10 10:32:29 +00002888 err = check_stack_access(env, reg, off, size);
2889 if (err)
2890 return err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002891
2892 state = func(env, reg);
2893 err = update_stack_depth(env, state, off);
2894 if (err)
2895 return err;
2896
2897 if (t == BPF_WRITE)
2898 err = check_stack_write(env, state, off, size,
2899 value_regno, insn_idx);
2900 else
2901 err = check_stack_read(env, state, off, size,
2902 value_regno);
2903 } else if (reg_is_pkt_pointer(reg)) {
2904 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
2905 verbose(env, "cannot write into packet\n");
2906 return -EACCES;
2907 }
2908 if (t == BPF_WRITE && value_regno >= 0 &&
2909 is_pointer_value(env, value_regno)) {
2910 verbose(env, "R%d leaks addr into packet\n",
2911 value_regno);
2912 return -EACCES;
2913 }
2914 err = check_packet_access(env, regno, off, size, false);
2915 if (!err && t == BPF_READ && value_regno >= 0)
2916 mark_reg_unknown(env, regs, value_regno);
David Brazdil0f672f62019-12-10 10:32:29 +00002917 } else if (reg->type == PTR_TO_FLOW_KEYS) {
2918 if (t == BPF_WRITE && value_regno >= 0 &&
2919 is_pointer_value(env, value_regno)) {
2920 verbose(env, "R%d leaks addr into flow keys\n",
2921 value_regno);
2922 return -EACCES;
2923 }
2924
2925 err = check_flow_keys_access(env, off, size);
2926 if (!err && t == BPF_READ && value_regno >= 0)
2927 mark_reg_unknown(env, regs, value_regno);
2928 } else if (type_is_sk_pointer(reg->type)) {
2929 if (t == BPF_WRITE) {
2930 verbose(env, "R%d cannot write into %s\n",
2931 regno, reg_type_str[reg->type]);
2932 return -EACCES;
2933 }
2934 err = check_sock_access(env, insn_idx, regno, off, size, t);
2935 if (!err && value_regno >= 0)
2936 mark_reg_unknown(env, regs, value_regno);
2937 } else if (reg->type == PTR_TO_TP_BUFFER) {
2938 err = check_tp_buffer_access(env, reg, regno, off, size);
2939 if (!err && t == BPF_READ && value_regno >= 0)
2940 mark_reg_unknown(env, regs, value_regno);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002941 } else {
2942 verbose(env, "R%d invalid mem access '%s'\n", regno,
2943 reg_type_str[reg->type]);
2944 return -EACCES;
2945 }
2946
2947 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
2948 regs[value_regno].type == SCALAR_VALUE) {
2949 /* b/h/w load zero-extends, mark upper bits as known 0 */
2950 coerce_reg_to_size(&regs[value_regno], size);
2951 }
2952 return err;
2953}
2954
2955static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
2956{
2957 int err;
2958
2959 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2960 insn->imm != 0) {
2961 verbose(env, "BPF_XADD uses reserved fields\n");
2962 return -EINVAL;
2963 }
2964
2965 /* check src1 operand */
2966 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2967 if (err)
2968 return err;
2969
2970 /* check src2 operand */
2971 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2972 if (err)
2973 return err;
2974
2975 if (is_pointer_value(env, insn->src_reg)) {
2976 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
2977 return -EACCES;
2978 }
2979
2980 if (is_ctx_reg(env, insn->dst_reg) ||
David Brazdil0f672f62019-12-10 10:32:29 +00002981 is_pkt_reg(env, insn->dst_reg) ||
2982 is_flow_key_reg(env, insn->dst_reg) ||
2983 is_sk_reg(env, insn->dst_reg)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002984 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
David Brazdil0f672f62019-12-10 10:32:29 +00002985 insn->dst_reg,
2986 reg_type_str[reg_state(env, insn->dst_reg)->type]);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002987 return -EACCES;
2988 }
2989
2990 /* check whether atomic_add can read the memory */
2991 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2992 BPF_SIZE(insn->code), BPF_READ, -1, true);
2993 if (err)
2994 return err;
2995
2996 /* check whether atomic_add can write into the same memory */
2997 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2998 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
2999}
3000
David Brazdil0f672f62019-12-10 10:32:29 +00003001static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3002 int off, int access_size,
3003 bool zero_size_allowed)
3004{
3005 struct bpf_reg_state *reg = reg_state(env, regno);
3006
3007 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3008 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3009 if (tnum_is_const(reg->var_off)) {
3010 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3011 regno, off, access_size);
3012 } else {
3013 char tn_buf[48];
3014
3015 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3016 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3017 regno, tn_buf, access_size);
3018 }
3019 return -EACCES;
3020 }
3021 return 0;
3022}
3023
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003024/* when register 'regno' is passed into function that will read 'access_size'
3025 * bytes from that pointer, make sure that it's within stack boundary
3026 * and all elements of stack are initialized.
3027 * Unlike most pointer bounds-checking functions, this one doesn't take an
3028 * 'off' argument, so it has to add in reg->off itself.
3029 */
3030static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
3031 int access_size, bool zero_size_allowed,
3032 struct bpf_call_arg_meta *meta)
3033{
David Brazdil0f672f62019-12-10 10:32:29 +00003034 struct bpf_reg_state *reg = reg_state(env, regno);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003035 struct bpf_func_state *state = func(env, reg);
David Brazdil0f672f62019-12-10 10:32:29 +00003036 int err, min_off, max_off, i, j, slot, spi;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003037
3038 if (reg->type != PTR_TO_STACK) {
3039 /* Allow zero-byte read from NULL, regardless of pointer type */
3040 if (zero_size_allowed && access_size == 0 &&
3041 register_is_null(reg))
3042 return 0;
3043
3044 verbose(env, "R%d type=%s expected=%s\n", regno,
3045 reg_type_str[reg->type],
3046 reg_type_str[PTR_TO_STACK]);
3047 return -EACCES;
3048 }
3049
David Brazdil0f672f62019-12-10 10:32:29 +00003050 if (tnum_is_const(reg->var_off)) {
3051 min_off = max_off = reg->var_off.value + reg->off;
3052 err = __check_stack_boundary(env, regno, min_off, access_size,
3053 zero_size_allowed);
3054 if (err)
3055 return err;
3056 } else {
3057 /* Variable offset is prohibited for unprivileged mode for
3058 * simplicity since it requires corresponding support in
3059 * Spectre masking for stack ALU.
3060 * See also retrieve_ptr_limit().
3061 */
3062 if (!env->allow_ptr_leaks) {
3063 char tn_buf[48];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003064
David Brazdil0f672f62019-12-10 10:32:29 +00003065 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3066 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3067 regno, tn_buf);
3068 return -EACCES;
3069 }
3070 /* Only initialized buffer on stack is allowed to be accessed
3071 * with variable offset. With uninitialized buffer it's hard to
3072 * guarantee that whole memory is marked as initialized on
3073 * helper return since specific bounds are unknown what may
3074 * cause uninitialized stack leaking.
3075 */
3076 if (meta && meta->raw_mode)
3077 meta = NULL;
3078
3079 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3080 reg->smax_value <= -BPF_MAX_VAR_OFF) {
3081 verbose(env, "R%d unbounded indirect variable offset stack access\n",
3082 regno);
3083 return -EACCES;
3084 }
3085 min_off = reg->smin_value + reg->off;
3086 max_off = reg->smax_value + reg->off;
3087 err = __check_stack_boundary(env, regno, min_off, access_size,
3088 zero_size_allowed);
3089 if (err) {
3090 verbose(env, "R%d min value is outside of stack bound\n",
3091 regno);
3092 return err;
3093 }
3094 err = __check_stack_boundary(env, regno, max_off, access_size,
3095 zero_size_allowed);
3096 if (err) {
3097 verbose(env, "R%d max value is outside of stack bound\n",
3098 regno);
3099 return err;
3100 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003101 }
3102
3103 if (meta && meta->raw_mode) {
3104 meta->access_size = access_size;
3105 meta->regno = regno;
3106 return 0;
3107 }
3108
David Brazdil0f672f62019-12-10 10:32:29 +00003109 for (i = min_off; i < max_off + access_size; i++) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003110 u8 *stype;
3111
David Brazdil0f672f62019-12-10 10:32:29 +00003112 slot = -i - 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003113 spi = slot / BPF_REG_SIZE;
3114 if (state->allocated_stack <= slot)
3115 goto err;
3116 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3117 if (*stype == STACK_MISC)
3118 goto mark;
3119 if (*stype == STACK_ZERO) {
3120 /* helper can write anything into the stack */
3121 *stype = STACK_MISC;
3122 goto mark;
3123 }
David Brazdil0f672f62019-12-10 10:32:29 +00003124 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3125 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
Olivier Deprez0e641232021-09-23 10:07:05 +02003126 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
David Brazdil0f672f62019-12-10 10:32:29 +00003127 for (j = 0; j < BPF_REG_SIZE; j++)
3128 state->stack[spi].slot_type[j] = STACK_MISC;
3129 goto mark;
3130 }
3131
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003132err:
David Brazdil0f672f62019-12-10 10:32:29 +00003133 if (tnum_is_const(reg->var_off)) {
3134 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3135 min_off, i - min_off, access_size);
3136 } else {
3137 char tn_buf[48];
3138
3139 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3140 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3141 tn_buf, i - min_off, access_size);
3142 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003143 return -EACCES;
3144mark:
3145 /* reading any byte out of 8-byte 'spill_slot' will cause
3146 * the whole slot to be marked as 'read'
3147 */
David Brazdil0f672f62019-12-10 10:32:29 +00003148 mark_reg_read(env, &state->stack[spi].spilled_ptr,
3149 state->stack[spi].spilled_ptr.parent,
3150 REG_LIVE_READ64);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003151 }
David Brazdil0f672f62019-12-10 10:32:29 +00003152 return update_stack_depth(env, state, min_off);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003153}
3154
3155static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3156 int access_size, bool zero_size_allowed,
3157 struct bpf_call_arg_meta *meta)
3158{
3159 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3160
3161 switch (reg->type) {
3162 case PTR_TO_PACKET:
3163 case PTR_TO_PACKET_META:
3164 return check_packet_access(env, regno, reg->off, access_size,
3165 zero_size_allowed);
3166 case PTR_TO_MAP_VALUE:
David Brazdil0f672f62019-12-10 10:32:29 +00003167 if (check_map_access_type(env, regno, reg->off, access_size,
3168 meta && meta->raw_mode ? BPF_WRITE :
3169 BPF_READ))
3170 return -EACCES;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003171 return check_map_access(env, regno, reg->off, access_size,
3172 zero_size_allowed);
3173 default: /* scalar_value|ptr_to_stack or invalid ptr */
3174 return check_stack_boundary(env, regno, access_size,
3175 zero_size_allowed, meta);
3176 }
3177}
3178
David Brazdil0f672f62019-12-10 10:32:29 +00003179/* Implementation details:
3180 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3181 * Two bpf_map_lookups (even with the same key) will have different reg->id.
3182 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3183 * value_or_null->value transition, since the verifier only cares about
3184 * the range of access to valid map value pointer and doesn't care about actual
3185 * address of the map element.
3186 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3187 * reg->id > 0 after value_or_null->value transition. By doing so
3188 * two bpf_map_lookups will be considered two different pointers that
3189 * point to different bpf_spin_locks.
3190 * The verifier allows taking only one bpf_spin_lock at a time to avoid
3191 * dead-locks.
3192 * Since only one bpf_spin_lock is allowed the checks are simpler than
3193 * reg_is_refcounted() logic. The verifier needs to remember only
3194 * one spin_lock instead of array of acquired_refs.
3195 * cur_state->active_spin_lock remembers which map value element got locked
3196 * and clears it after bpf_spin_unlock.
3197 */
3198static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3199 bool is_lock)
3200{
3201 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3202 struct bpf_verifier_state *cur = env->cur_state;
3203 bool is_const = tnum_is_const(reg->var_off);
3204 struct bpf_map *map = reg->map_ptr;
3205 u64 val = reg->var_off.value;
3206
3207 if (reg->type != PTR_TO_MAP_VALUE) {
3208 verbose(env, "R%d is not a pointer to map_value\n", regno);
3209 return -EINVAL;
3210 }
3211 if (!is_const) {
3212 verbose(env,
3213 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3214 regno);
3215 return -EINVAL;
3216 }
3217 if (!map->btf) {
3218 verbose(env,
3219 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
3220 map->name);
3221 return -EINVAL;
3222 }
3223 if (!map_value_has_spin_lock(map)) {
3224 if (map->spin_lock_off == -E2BIG)
3225 verbose(env,
3226 "map '%s' has more than one 'struct bpf_spin_lock'\n",
3227 map->name);
3228 else if (map->spin_lock_off == -ENOENT)
3229 verbose(env,
3230 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
3231 map->name);
3232 else
3233 verbose(env,
3234 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3235 map->name);
3236 return -EINVAL;
3237 }
3238 if (map->spin_lock_off != val + reg->off) {
3239 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3240 val + reg->off);
3241 return -EINVAL;
3242 }
3243 if (is_lock) {
3244 if (cur->active_spin_lock) {
3245 verbose(env,
3246 "Locking two bpf_spin_locks are not allowed\n");
3247 return -EINVAL;
3248 }
3249 cur->active_spin_lock = reg->id;
3250 } else {
3251 if (!cur->active_spin_lock) {
3252 verbose(env, "bpf_spin_unlock without taking a lock\n");
3253 return -EINVAL;
3254 }
3255 if (cur->active_spin_lock != reg->id) {
3256 verbose(env, "bpf_spin_unlock of different lock\n");
3257 return -EINVAL;
3258 }
3259 cur->active_spin_lock = 0;
3260 }
3261 return 0;
3262}
3263
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003264static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3265{
3266 return type == ARG_PTR_TO_MEM ||
3267 type == ARG_PTR_TO_MEM_OR_NULL ||
3268 type == ARG_PTR_TO_UNINIT_MEM;
3269}
3270
3271static bool arg_type_is_mem_size(enum bpf_arg_type type)
3272{
3273 return type == ARG_CONST_SIZE ||
3274 type == ARG_CONST_SIZE_OR_ZERO;
3275}
3276
David Brazdil0f672f62019-12-10 10:32:29 +00003277static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3278{
3279 return type == ARG_PTR_TO_INT ||
3280 type == ARG_PTR_TO_LONG;
3281}
3282
3283static int int_ptr_type_to_size(enum bpf_arg_type type)
3284{
3285 if (type == ARG_PTR_TO_INT)
3286 return sizeof(u32);
3287 else if (type == ARG_PTR_TO_LONG)
3288 return sizeof(u64);
3289
3290 return -EINVAL;
3291}
3292
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003293static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
3294 enum bpf_arg_type arg_type,
3295 struct bpf_call_arg_meta *meta)
3296{
3297 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3298 enum bpf_reg_type expected_type, type = reg->type;
3299 int err = 0;
3300
3301 if (arg_type == ARG_DONTCARE)
3302 return 0;
3303
3304 err = check_reg_arg(env, regno, SRC_OP);
3305 if (err)
3306 return err;
3307
3308 if (arg_type == ARG_ANYTHING) {
3309 if (is_pointer_value(env, regno)) {
3310 verbose(env, "R%d leaks addr into helper function\n",
3311 regno);
3312 return -EACCES;
3313 }
3314 return 0;
3315 }
3316
3317 if (type_is_pkt_pointer(type) &&
3318 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
3319 verbose(env, "helper access to the packet is not allowed\n");
3320 return -EACCES;
3321 }
3322
3323 if (arg_type == ARG_PTR_TO_MAP_KEY ||
David Brazdil0f672f62019-12-10 10:32:29 +00003324 arg_type == ARG_PTR_TO_MAP_VALUE ||
3325 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3326 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003327 expected_type = PTR_TO_STACK;
David Brazdil0f672f62019-12-10 10:32:29 +00003328 if (register_is_null(reg) &&
3329 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
3330 /* final test in check_stack_boundary() */;
3331 else if (!type_is_pkt_pointer(type) &&
3332 type != PTR_TO_MAP_VALUE &&
3333 type != expected_type)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003334 goto err_type;
3335 } else if (arg_type == ARG_CONST_SIZE ||
3336 arg_type == ARG_CONST_SIZE_OR_ZERO) {
3337 expected_type = SCALAR_VALUE;
3338 if (type != expected_type)
3339 goto err_type;
3340 } else if (arg_type == ARG_CONST_MAP_PTR) {
3341 expected_type = CONST_PTR_TO_MAP;
3342 if (type != expected_type)
3343 goto err_type;
3344 } else if (arg_type == ARG_PTR_TO_CTX) {
3345 expected_type = PTR_TO_CTX;
3346 if (type != expected_type)
3347 goto err_type;
3348 err = check_ctx_reg(env, reg, regno);
3349 if (err < 0)
3350 return err;
David Brazdil0f672f62019-12-10 10:32:29 +00003351 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
3352 expected_type = PTR_TO_SOCK_COMMON;
3353 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
3354 if (!type_is_sk_pointer(type))
3355 goto err_type;
3356 if (reg->ref_obj_id) {
3357 if (meta->ref_obj_id) {
3358 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3359 regno, reg->ref_obj_id,
3360 meta->ref_obj_id);
3361 return -EFAULT;
3362 }
3363 meta->ref_obj_id = reg->ref_obj_id;
3364 }
3365 } else if (arg_type == ARG_PTR_TO_SOCKET) {
3366 expected_type = PTR_TO_SOCKET;
3367 if (type != expected_type)
3368 goto err_type;
3369 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
3370 if (meta->func_id == BPF_FUNC_spin_lock) {
3371 if (process_spin_lock(env, regno, true))
3372 return -EACCES;
3373 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
3374 if (process_spin_lock(env, regno, false))
3375 return -EACCES;
3376 } else {
3377 verbose(env, "verifier internal error\n");
3378 return -EFAULT;
3379 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003380 } else if (arg_type_is_mem_ptr(arg_type)) {
3381 expected_type = PTR_TO_STACK;
3382 /* One exception here. In case function allows for NULL to be
3383 * passed in as argument, it's a SCALAR_VALUE type. Final test
3384 * happens during stack boundary checking.
3385 */
3386 if (register_is_null(reg) &&
3387 arg_type == ARG_PTR_TO_MEM_OR_NULL)
3388 /* final test in check_stack_boundary() */;
3389 else if (!type_is_pkt_pointer(type) &&
3390 type != PTR_TO_MAP_VALUE &&
3391 type != expected_type)
3392 goto err_type;
3393 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
David Brazdil0f672f62019-12-10 10:32:29 +00003394 } else if (arg_type_is_int_ptr(arg_type)) {
3395 expected_type = PTR_TO_STACK;
3396 if (!type_is_pkt_pointer(type) &&
3397 type != PTR_TO_MAP_VALUE &&
3398 type != expected_type)
3399 goto err_type;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003400 } else {
3401 verbose(env, "unsupported arg_type %d\n", arg_type);
3402 return -EFAULT;
3403 }
3404
3405 if (arg_type == ARG_CONST_MAP_PTR) {
3406 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3407 meta->map_ptr = reg->map_ptr;
3408 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
3409 /* bpf_map_xxx(..., map_ptr, ..., key) call:
3410 * check that [key, key + map->key_size) are within
3411 * stack limits and initialized
3412 */
3413 if (!meta->map_ptr) {
3414 /* in function declaration map_ptr must come before
3415 * map_key, so that it's verified and known before
3416 * we have to check map_key here. Otherwise it means
3417 * that kernel subsystem misconfigured verifier
3418 */
3419 verbose(env, "invalid map_ptr to access map->key\n");
3420 return -EACCES;
3421 }
3422 err = check_helper_mem_access(env, regno,
3423 meta->map_ptr->key_size, false,
3424 NULL);
David Brazdil0f672f62019-12-10 10:32:29 +00003425 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
3426 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
3427 !register_is_null(reg)) ||
3428 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003429 /* bpf_map_xxx(..., map_ptr, ..., value) call:
3430 * check [value, value + map->value_size) validity
3431 */
3432 if (!meta->map_ptr) {
3433 /* kernel subsystem misconfigured verifier */
3434 verbose(env, "invalid map_ptr to access map->value\n");
3435 return -EACCES;
3436 }
David Brazdil0f672f62019-12-10 10:32:29 +00003437 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003438 err = check_helper_mem_access(env, regno,
3439 meta->map_ptr->value_size, false,
David Brazdil0f672f62019-12-10 10:32:29 +00003440 meta);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003441 } else if (arg_type_is_mem_size(arg_type)) {
3442 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
3443
3444 /* remember the mem_size which may be used later
3445 * to refine return values.
3446 */
Olivier Deprez0e641232021-09-23 10:07:05 +02003447 meta->msize_max_value = reg->umax_value;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003448
3449 /* The register is SCALAR_VALUE; the access check
3450 * happens using its boundaries.
3451 */
3452 if (!tnum_is_const(reg->var_off))
3453 /* For unprivileged variable accesses, disable raw
3454 * mode so that the program is required to
3455 * initialize all the memory that the helper could
3456 * just partially fill up.
3457 */
3458 meta = NULL;
3459
3460 if (reg->smin_value < 0) {
3461 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
3462 regno);
3463 return -EACCES;
3464 }
3465
3466 if (reg->umin_value == 0) {
3467 err = check_helper_mem_access(env, regno - 1, 0,
3468 zero_size_allowed,
3469 meta);
3470 if (err)
3471 return err;
3472 }
3473
3474 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
3475 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
3476 regno);
3477 return -EACCES;
3478 }
3479 err = check_helper_mem_access(env, regno - 1,
3480 reg->umax_value,
3481 zero_size_allowed, meta);
David Brazdil0f672f62019-12-10 10:32:29 +00003482 if (!err)
3483 err = mark_chain_precision(env, regno);
3484 } else if (arg_type_is_int_ptr(arg_type)) {
3485 int size = int_ptr_type_to_size(arg_type);
3486
3487 err = check_helper_mem_access(env, regno, size, false, meta);
3488 if (err)
3489 return err;
3490 err = check_ptr_alignment(env, reg, 0, size, true);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003491 }
3492
3493 return err;
3494err_type:
3495 verbose(env, "R%d type=%s expected=%s\n", regno,
3496 reg_type_str[type], reg_type_str[expected_type]);
3497 return -EACCES;
3498}
3499
3500static int check_map_func_compatibility(struct bpf_verifier_env *env,
3501 struct bpf_map *map, int func_id)
3502{
3503 if (!map)
3504 return 0;
3505
3506 /* We need a two way check, first is from map perspective ... */
3507 switch (map->map_type) {
3508 case BPF_MAP_TYPE_PROG_ARRAY:
3509 if (func_id != BPF_FUNC_tail_call)
3510 goto error;
3511 break;
3512 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
3513 if (func_id != BPF_FUNC_perf_event_read &&
3514 func_id != BPF_FUNC_perf_event_output &&
3515 func_id != BPF_FUNC_perf_event_read_value)
3516 goto error;
3517 break;
3518 case BPF_MAP_TYPE_STACK_TRACE:
3519 if (func_id != BPF_FUNC_get_stackid)
3520 goto error;
3521 break;
3522 case BPF_MAP_TYPE_CGROUP_ARRAY:
3523 if (func_id != BPF_FUNC_skb_under_cgroup &&
3524 func_id != BPF_FUNC_current_task_under_cgroup)
3525 goto error;
3526 break;
3527 case BPF_MAP_TYPE_CGROUP_STORAGE:
David Brazdil0f672f62019-12-10 10:32:29 +00003528 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003529 if (func_id != BPF_FUNC_get_local_storage)
3530 goto error;
3531 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003532 case BPF_MAP_TYPE_DEVMAP:
David Brazdil0f672f62019-12-10 10:32:29 +00003533 case BPF_MAP_TYPE_DEVMAP_HASH:
3534 if (func_id != BPF_FUNC_redirect_map &&
3535 func_id != BPF_FUNC_map_lookup_elem)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003536 goto error;
3537 break;
3538 /* Restrict bpf side of cpumap and xskmap, open when use-cases
3539 * appear.
3540 */
3541 case BPF_MAP_TYPE_CPUMAP:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003542 if (func_id != BPF_FUNC_redirect_map)
3543 goto error;
3544 break;
David Brazdil0f672f62019-12-10 10:32:29 +00003545 case BPF_MAP_TYPE_XSKMAP:
3546 if (func_id != BPF_FUNC_redirect_map &&
3547 func_id != BPF_FUNC_map_lookup_elem)
3548 goto error;
3549 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003550 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
3551 case BPF_MAP_TYPE_HASH_OF_MAPS:
3552 if (func_id != BPF_FUNC_map_lookup_elem)
3553 goto error;
3554 break;
3555 case BPF_MAP_TYPE_SOCKMAP:
3556 if (func_id != BPF_FUNC_sk_redirect_map &&
3557 func_id != BPF_FUNC_sock_map_update &&
3558 func_id != BPF_FUNC_map_delete_elem &&
3559 func_id != BPF_FUNC_msg_redirect_map)
3560 goto error;
3561 break;
3562 case BPF_MAP_TYPE_SOCKHASH:
3563 if (func_id != BPF_FUNC_sk_redirect_hash &&
3564 func_id != BPF_FUNC_sock_hash_update &&
3565 func_id != BPF_FUNC_map_delete_elem &&
3566 func_id != BPF_FUNC_msg_redirect_hash)
3567 goto error;
3568 break;
3569 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
3570 if (func_id != BPF_FUNC_sk_select_reuseport)
3571 goto error;
3572 break;
David Brazdil0f672f62019-12-10 10:32:29 +00003573 case BPF_MAP_TYPE_QUEUE:
3574 case BPF_MAP_TYPE_STACK:
3575 if (func_id != BPF_FUNC_map_peek_elem &&
3576 func_id != BPF_FUNC_map_pop_elem &&
3577 func_id != BPF_FUNC_map_push_elem)
3578 goto error;
3579 break;
3580 case BPF_MAP_TYPE_SK_STORAGE:
3581 if (func_id != BPF_FUNC_sk_storage_get &&
3582 func_id != BPF_FUNC_sk_storage_delete)
3583 goto error;
3584 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003585 default:
3586 break;
3587 }
3588
3589 /* ... and second from the function itself. */
3590 switch (func_id) {
3591 case BPF_FUNC_tail_call:
3592 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
3593 goto error;
3594 if (env->subprog_cnt > 1) {
3595 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
3596 return -EINVAL;
3597 }
3598 break;
3599 case BPF_FUNC_perf_event_read:
3600 case BPF_FUNC_perf_event_output:
3601 case BPF_FUNC_perf_event_read_value:
3602 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
3603 goto error;
3604 break;
3605 case BPF_FUNC_get_stackid:
3606 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
3607 goto error;
3608 break;
3609 case BPF_FUNC_current_task_under_cgroup:
3610 case BPF_FUNC_skb_under_cgroup:
3611 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
3612 goto error;
3613 break;
3614 case BPF_FUNC_redirect_map:
3615 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
David Brazdil0f672f62019-12-10 10:32:29 +00003616 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003617 map->map_type != BPF_MAP_TYPE_CPUMAP &&
3618 map->map_type != BPF_MAP_TYPE_XSKMAP)
3619 goto error;
3620 break;
3621 case BPF_FUNC_sk_redirect_map:
3622 case BPF_FUNC_msg_redirect_map:
3623 case BPF_FUNC_sock_map_update:
3624 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
3625 goto error;
3626 break;
3627 case BPF_FUNC_sk_redirect_hash:
3628 case BPF_FUNC_msg_redirect_hash:
3629 case BPF_FUNC_sock_hash_update:
3630 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
3631 goto error;
3632 break;
3633 case BPF_FUNC_get_local_storage:
David Brazdil0f672f62019-12-10 10:32:29 +00003634 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
3635 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003636 goto error;
3637 break;
3638 case BPF_FUNC_sk_select_reuseport:
3639 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
3640 goto error;
3641 break;
David Brazdil0f672f62019-12-10 10:32:29 +00003642 case BPF_FUNC_map_peek_elem:
3643 case BPF_FUNC_map_pop_elem:
3644 case BPF_FUNC_map_push_elem:
3645 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
3646 map->map_type != BPF_MAP_TYPE_STACK)
3647 goto error;
3648 break;
3649 case BPF_FUNC_sk_storage_get:
3650 case BPF_FUNC_sk_storage_delete:
3651 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
3652 goto error;
3653 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003654 default:
3655 break;
3656 }
3657
3658 return 0;
3659error:
3660 verbose(env, "cannot pass map_type %d into func %s#%d\n",
3661 map->map_type, func_id_name(func_id), func_id);
3662 return -EINVAL;
3663}
3664
3665static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
3666{
3667 int count = 0;
3668
3669 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
3670 count++;
3671 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
3672 count++;
3673 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
3674 count++;
3675 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
3676 count++;
3677 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
3678 count++;
3679
3680 /* We only support one arg being in raw mode at the moment,
3681 * which is sufficient for the helper functions we have
3682 * right now.
3683 */
3684 return count <= 1;
3685}
3686
3687static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
3688 enum bpf_arg_type arg_next)
3689{
3690 return (arg_type_is_mem_ptr(arg_curr) &&
3691 !arg_type_is_mem_size(arg_next)) ||
3692 (!arg_type_is_mem_ptr(arg_curr) &&
3693 arg_type_is_mem_size(arg_next));
3694}
3695
3696static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
3697{
3698 /* bpf_xxx(..., buf, len) call will access 'len'
3699 * bytes from memory 'buf'. Both arg types need
3700 * to be paired, so make sure there's no buggy
3701 * helper function specification.
3702 */
3703 if (arg_type_is_mem_size(fn->arg1_type) ||
3704 arg_type_is_mem_ptr(fn->arg5_type) ||
3705 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
3706 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
3707 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
3708 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
3709 return false;
3710
3711 return true;
3712}
3713
David Brazdil0f672f62019-12-10 10:32:29 +00003714static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
3715{
3716 int count = 0;
3717
3718 if (arg_type_may_be_refcounted(fn->arg1_type))
3719 count++;
3720 if (arg_type_may_be_refcounted(fn->arg2_type))
3721 count++;
3722 if (arg_type_may_be_refcounted(fn->arg3_type))
3723 count++;
3724 if (arg_type_may_be_refcounted(fn->arg4_type))
3725 count++;
3726 if (arg_type_may_be_refcounted(fn->arg5_type))
3727 count++;
3728
3729 /* A reference acquiring function cannot acquire
3730 * another refcounted ptr.
3731 */
3732 if (is_acquire_function(func_id) && count)
3733 return false;
3734
3735 /* We only support one arg being unreferenced at the moment,
3736 * which is sufficient for the helper functions we have right now.
3737 */
3738 return count <= 1;
3739}
3740
3741static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003742{
3743 return check_raw_mode_ok(fn) &&
David Brazdil0f672f62019-12-10 10:32:29 +00003744 check_arg_pair_ok(fn) &&
3745 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003746}
3747
3748/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
3749 * are now invalid, so turn them into unknown SCALAR_VALUE.
3750 */
3751static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
3752 struct bpf_func_state *state)
3753{
3754 struct bpf_reg_state *regs = state->regs, *reg;
3755 int i;
3756
3757 for (i = 0; i < MAX_BPF_REG; i++)
3758 if (reg_is_pkt_pointer_any(&regs[i]))
3759 mark_reg_unknown(env, regs, i);
3760
David Brazdil0f672f62019-12-10 10:32:29 +00003761 bpf_for_each_spilled_reg(i, state, reg) {
3762 if (!reg)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003763 continue;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003764 if (reg_is_pkt_pointer_any(reg))
Olivier Deprez0e641232021-09-23 10:07:05 +02003765 __mark_reg_unknown(env, reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003766 }
3767}
3768
3769static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
3770{
3771 struct bpf_verifier_state *vstate = env->cur_state;
3772 int i;
3773
3774 for (i = 0; i <= vstate->curframe; i++)
3775 __clear_all_pkt_pointers(env, vstate->frame[i]);
3776}
3777
David Brazdil0f672f62019-12-10 10:32:29 +00003778static void release_reg_references(struct bpf_verifier_env *env,
3779 struct bpf_func_state *state,
3780 int ref_obj_id)
3781{
3782 struct bpf_reg_state *regs = state->regs, *reg;
3783 int i;
3784
3785 for (i = 0; i < MAX_BPF_REG; i++)
3786 if (regs[i].ref_obj_id == ref_obj_id)
3787 mark_reg_unknown(env, regs, i);
3788
3789 bpf_for_each_spilled_reg(i, state, reg) {
3790 if (!reg)
3791 continue;
3792 if (reg->ref_obj_id == ref_obj_id)
Olivier Deprez0e641232021-09-23 10:07:05 +02003793 __mark_reg_unknown(env, reg);
David Brazdil0f672f62019-12-10 10:32:29 +00003794 }
3795}
3796
3797/* The pointer with the specified id has released its reference to kernel
3798 * resources. Identify all copies of the same pointer and clear the reference.
3799 */
3800static int release_reference(struct bpf_verifier_env *env,
3801 int ref_obj_id)
3802{
3803 struct bpf_verifier_state *vstate = env->cur_state;
3804 int err;
3805 int i;
3806
3807 err = release_reference_state(cur_func(env), ref_obj_id);
3808 if (err)
3809 return err;
3810
3811 for (i = 0; i <= vstate->curframe; i++)
3812 release_reg_references(env, vstate->frame[i], ref_obj_id);
3813
3814 return 0;
3815}
3816
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003817static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
3818 int *insn_idx)
3819{
3820 struct bpf_verifier_state *state = env->cur_state;
3821 struct bpf_func_state *caller, *callee;
David Brazdil0f672f62019-12-10 10:32:29 +00003822 int i, err, subprog, target_insn;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003823
3824 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
3825 verbose(env, "the call stack of %d frames is too deep\n",
3826 state->curframe + 2);
3827 return -E2BIG;
3828 }
3829
3830 target_insn = *insn_idx + insn->imm;
3831 subprog = find_subprog(env, target_insn + 1);
3832 if (subprog < 0) {
3833 verbose(env, "verifier bug. No program starts at insn %d\n",
3834 target_insn + 1);
3835 return -EFAULT;
3836 }
3837
3838 caller = state->frame[state->curframe];
3839 if (state->frame[state->curframe + 1]) {
3840 verbose(env, "verifier bug. Frame %d already allocated\n",
3841 state->curframe + 1);
3842 return -EFAULT;
3843 }
3844
3845 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
3846 if (!callee)
3847 return -ENOMEM;
3848 state->frame[state->curframe + 1] = callee;
3849
3850 /* callee cannot access r0, r6 - r9 for reading and has to write
3851 * into its own stack before reading from it.
3852 * callee can read/write into caller's stack
3853 */
3854 init_func_state(env, callee,
3855 /* remember the callsite, it will be used by bpf_exit */
3856 *insn_idx /* callsite */,
3857 state->curframe + 1 /* frameno within this callchain */,
3858 subprog /* subprog number within this prog */);
3859
David Brazdil0f672f62019-12-10 10:32:29 +00003860 /* Transfer references to the callee */
3861 err = transfer_reference_state(callee, caller);
3862 if (err)
3863 return err;
3864
3865 /* copy r1 - r5 args that callee can access. The copy includes parent
3866 * pointers, which connects us up to the liveness chain
3867 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003868 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3869 callee->regs[i] = caller->regs[i];
3870
David Brazdil0f672f62019-12-10 10:32:29 +00003871 /* after the call registers r0 - r5 were scratched */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003872 for (i = 0; i < CALLER_SAVED_REGS; i++) {
3873 mark_reg_not_init(env, caller->regs, caller_saved[i]);
3874 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3875 }
3876
3877 /* only increment it after check_reg_arg() finished */
3878 state->curframe++;
3879
3880 /* and go analyze first insn of the callee */
3881 *insn_idx = target_insn;
3882
David Brazdil0f672f62019-12-10 10:32:29 +00003883 if (env->log.level & BPF_LOG_LEVEL) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003884 verbose(env, "caller:\n");
3885 print_verifier_state(env, caller);
3886 verbose(env, "callee:\n");
3887 print_verifier_state(env, callee);
3888 }
3889 return 0;
3890}
3891
3892static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
3893{
3894 struct bpf_verifier_state *state = env->cur_state;
3895 struct bpf_func_state *caller, *callee;
3896 struct bpf_reg_state *r0;
David Brazdil0f672f62019-12-10 10:32:29 +00003897 int err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003898
3899 callee = state->frame[state->curframe];
3900 r0 = &callee->regs[BPF_REG_0];
3901 if (r0->type == PTR_TO_STACK) {
3902 /* technically it's ok to return caller's stack pointer
3903 * (or caller's caller's pointer) back to the caller,
3904 * since these pointers are valid. Only current stack
3905 * pointer will be invalid as soon as function exits,
3906 * but let's be conservative
3907 */
3908 verbose(env, "cannot return stack pointer to the caller\n");
3909 return -EINVAL;
3910 }
3911
3912 state->curframe--;
3913 caller = state->frame[state->curframe];
3914 /* return to the caller whatever r0 had in the callee */
3915 caller->regs[BPF_REG_0] = *r0;
3916
David Brazdil0f672f62019-12-10 10:32:29 +00003917 /* Transfer references to the caller */
3918 err = transfer_reference_state(caller, callee);
3919 if (err)
3920 return err;
3921
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003922 *insn_idx = callee->callsite + 1;
David Brazdil0f672f62019-12-10 10:32:29 +00003923 if (env->log.level & BPF_LOG_LEVEL) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003924 verbose(env, "returning from callee:\n");
3925 print_verifier_state(env, callee);
3926 verbose(env, "to caller at %d:\n", *insn_idx);
3927 print_verifier_state(env, caller);
3928 }
3929 /* clear everything in the callee */
3930 free_func_state(callee);
3931 state->frame[state->curframe + 1] = NULL;
3932 return 0;
3933}
3934
Olivier Deprez0e641232021-09-23 10:07:05 +02003935static int do_refine_retval_range(struct bpf_verifier_env *env,
3936 struct bpf_reg_state *regs, int ret_type,
3937 int func_id, struct bpf_call_arg_meta *meta)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003938{
3939 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
Olivier Deprez0e641232021-09-23 10:07:05 +02003940 struct bpf_reg_state tmp_reg = *ret_reg;
3941 bool ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003942
3943 if (ret_type != RET_INTEGER ||
3944 (func_id != BPF_FUNC_get_stack &&
3945 func_id != BPF_FUNC_probe_read_str))
Olivier Deprez0e641232021-09-23 10:07:05 +02003946 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003947
Olivier Deprez0e641232021-09-23 10:07:05 +02003948 /* Error case where ret is in interval [S32MIN, -1]. */
3949 ret_reg->smin_value = S32_MIN;
3950 ret_reg->smax_value = -1;
3951
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003952 __reg_deduce_bounds(ret_reg);
3953 __reg_bound_offset(ret_reg);
Olivier Deprez0e641232021-09-23 10:07:05 +02003954 __update_reg_bounds(ret_reg);
3955
3956 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, false);
3957 if (!ret)
3958 return -EFAULT;
3959
3960 *ret_reg = tmp_reg;
3961
3962 /* Success case where ret is in range [0, msize_max_value]. */
3963 ret_reg->smin_value = 0;
3964 ret_reg->smax_value = meta->msize_max_value;
3965 ret_reg->umin_value = ret_reg->smin_value;
3966 ret_reg->umax_value = ret_reg->smax_value;
3967
3968 __reg_deduce_bounds(ret_reg);
3969 __reg_bound_offset(ret_reg);
3970 __update_reg_bounds(ret_reg);
3971
3972 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003973}
3974
3975static int
3976record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
3977 int func_id, int insn_idx)
3978{
3979 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
David Brazdil0f672f62019-12-10 10:32:29 +00003980 struct bpf_map *map = meta->map_ptr;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003981
3982 if (func_id != BPF_FUNC_tail_call &&
3983 func_id != BPF_FUNC_map_lookup_elem &&
3984 func_id != BPF_FUNC_map_update_elem &&
David Brazdil0f672f62019-12-10 10:32:29 +00003985 func_id != BPF_FUNC_map_delete_elem &&
3986 func_id != BPF_FUNC_map_push_elem &&
3987 func_id != BPF_FUNC_map_pop_elem &&
3988 func_id != BPF_FUNC_map_peek_elem)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003989 return 0;
3990
David Brazdil0f672f62019-12-10 10:32:29 +00003991 if (map == NULL) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003992 verbose(env, "kernel subsystem misconfigured verifier\n");
3993 return -EINVAL;
3994 }
3995
David Brazdil0f672f62019-12-10 10:32:29 +00003996 /* In case of read-only, some additional restrictions
3997 * need to be applied in order to prevent altering the
3998 * state of the map from program side.
3999 */
4000 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4001 (func_id == BPF_FUNC_map_delete_elem ||
4002 func_id == BPF_FUNC_map_update_elem ||
4003 func_id == BPF_FUNC_map_push_elem ||
4004 func_id == BPF_FUNC_map_pop_elem)) {
4005 verbose(env, "write into map forbidden\n");
4006 return -EACCES;
4007 }
4008
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004009 if (!BPF_MAP_PTR(aux->map_state))
4010 bpf_map_ptr_store(aux, meta->map_ptr,
4011 meta->map_ptr->unpriv_array);
4012 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
4013 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
4014 meta->map_ptr->unpriv_array);
4015 return 0;
4016}
4017
David Brazdil0f672f62019-12-10 10:32:29 +00004018static int check_reference_leak(struct bpf_verifier_env *env)
4019{
4020 struct bpf_func_state *state = cur_func(env);
4021 int i;
4022
4023 for (i = 0; i < state->acquired_refs; i++) {
4024 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
4025 state->refs[i].id, state->refs[i].insn_idx);
4026 }
4027 return state->acquired_refs ? -EINVAL : 0;
4028}
4029
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004030static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
4031{
4032 const struct bpf_func_proto *fn = NULL;
4033 struct bpf_reg_state *regs;
4034 struct bpf_call_arg_meta meta;
4035 bool changes_data;
4036 int i, err;
4037
4038 /* find function prototype */
4039 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
4040 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
4041 func_id);
4042 return -EINVAL;
4043 }
4044
4045 if (env->ops->get_func_proto)
4046 fn = env->ops->get_func_proto(func_id, env->prog);
4047 if (!fn) {
4048 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
4049 func_id);
4050 return -EINVAL;
4051 }
4052
4053 /* eBPF programs must be GPL compatible to use GPL-ed functions */
4054 if (!env->prog->gpl_compatible && fn->gpl_only) {
4055 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
4056 return -EINVAL;
4057 }
4058
4059 /* With LD_ABS/IND some JITs save/restore skb from r1. */
4060 changes_data = bpf_helper_changes_pkt_data(fn->func);
4061 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
4062 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
4063 func_id_name(func_id), func_id);
4064 return -EINVAL;
4065 }
4066
4067 memset(&meta, 0, sizeof(meta));
4068 meta.pkt_access = fn->pkt_access;
4069
David Brazdil0f672f62019-12-10 10:32:29 +00004070 err = check_func_proto(fn, func_id);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004071 if (err) {
4072 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
4073 func_id_name(func_id), func_id);
4074 return err;
4075 }
4076
David Brazdil0f672f62019-12-10 10:32:29 +00004077 meta.func_id = func_id;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004078 /* check args */
4079 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
4080 if (err)
4081 return err;
4082 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
4083 if (err)
4084 return err;
4085 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
4086 if (err)
4087 return err;
4088 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
4089 if (err)
4090 return err;
4091 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
4092 if (err)
4093 return err;
4094
4095 err = record_func_map(env, &meta, func_id, insn_idx);
4096 if (err)
4097 return err;
4098
4099 /* Mark slots with STACK_MISC in case of raw mode, stack offset
4100 * is inferred from register state.
4101 */
4102 for (i = 0; i < meta.access_size; i++) {
4103 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
4104 BPF_WRITE, -1, false);
4105 if (err)
4106 return err;
4107 }
4108
David Brazdil0f672f62019-12-10 10:32:29 +00004109 if (func_id == BPF_FUNC_tail_call) {
4110 err = check_reference_leak(env);
4111 if (err) {
4112 verbose(env, "tail_call would lead to reference leak\n");
4113 return err;
4114 }
4115 } else if (is_release_function(func_id)) {
4116 err = release_reference(env, meta.ref_obj_id);
4117 if (err) {
4118 verbose(env, "func %s#%d reference has not been acquired before\n",
4119 func_id_name(func_id), func_id);
4120 return err;
4121 }
4122 }
4123
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004124 regs = cur_regs(env);
4125
4126 /* check that flags argument in get_local_storage(map, flags) is 0,
4127 * this is required because get_local_storage() can't return an error.
4128 */
4129 if (func_id == BPF_FUNC_get_local_storage &&
4130 !register_is_null(&regs[BPF_REG_2])) {
4131 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
4132 return -EINVAL;
4133 }
4134
4135 /* reset caller saved regs */
4136 for (i = 0; i < CALLER_SAVED_REGS; i++) {
4137 mark_reg_not_init(env, regs, caller_saved[i]);
4138 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4139 }
4140
David Brazdil0f672f62019-12-10 10:32:29 +00004141 /* helper call returns 64-bit value. */
4142 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
4143
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004144 /* update return register (already marked as written above) */
4145 if (fn->ret_type == RET_INTEGER) {
4146 /* sets type to SCALAR_VALUE */
4147 mark_reg_unknown(env, regs, BPF_REG_0);
4148 } else if (fn->ret_type == RET_VOID) {
4149 regs[BPF_REG_0].type = NOT_INIT;
4150 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
4151 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004152 /* There is no offset yet applied, variable or fixed */
4153 mark_reg_known_zero(env, regs, BPF_REG_0);
4154 /* remember map_ptr, so that check_map_access()
4155 * can check 'value_size' boundary of memory access
4156 * to map element returned from bpf_map_lookup_elem()
4157 */
4158 if (meta.map_ptr == NULL) {
4159 verbose(env,
4160 "kernel subsystem misconfigured verifier\n");
4161 return -EINVAL;
4162 }
4163 regs[BPF_REG_0].map_ptr = meta.map_ptr;
David Brazdil0f672f62019-12-10 10:32:29 +00004164 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4165 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
4166 if (map_value_has_spin_lock(meta.map_ptr))
4167 regs[BPF_REG_0].id = ++env->id_gen;
4168 } else {
4169 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4170 regs[BPF_REG_0].id = ++env->id_gen;
4171 }
4172 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
4173 mark_reg_known_zero(env, regs, BPF_REG_0);
4174 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
4175 regs[BPF_REG_0].id = ++env->id_gen;
4176 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
4177 mark_reg_known_zero(env, regs, BPF_REG_0);
4178 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
4179 regs[BPF_REG_0].id = ++env->id_gen;
4180 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
4181 mark_reg_known_zero(env, regs, BPF_REG_0);
4182 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004183 regs[BPF_REG_0].id = ++env->id_gen;
4184 } else {
4185 verbose(env, "unknown return type %d of func %s#%d\n",
4186 fn->ret_type, func_id_name(func_id), func_id);
4187 return -EINVAL;
4188 }
4189
David Brazdil0f672f62019-12-10 10:32:29 +00004190 if (is_ptr_cast_function(func_id)) {
4191 /* For release_reference() */
4192 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
4193 } else if (is_acquire_function(func_id)) {
4194 int id = acquire_reference_state(env, insn_idx);
4195
4196 if (id < 0)
4197 return id;
4198 /* For mark_ptr_or_null_reg() */
4199 regs[BPF_REG_0].id = id;
4200 /* For release_reference() */
4201 regs[BPF_REG_0].ref_obj_id = id;
4202 }
4203
Olivier Deprez0e641232021-09-23 10:07:05 +02004204 err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta);
4205 if (err)
4206 return err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004207
4208 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
4209 if (err)
4210 return err;
4211
4212 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
4213 const char *err_str;
4214
4215#ifdef CONFIG_PERF_EVENTS
4216 err = get_callchain_buffers(sysctl_perf_event_max_stack);
4217 err_str = "cannot get callchain buffer for func %s#%d\n";
4218#else
4219 err = -ENOTSUPP;
4220 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
4221#endif
4222 if (err) {
4223 verbose(env, err_str, func_id_name(func_id), func_id);
4224 return err;
4225 }
4226
4227 env->prog->has_callchain_buf = true;
4228 }
4229
4230 if (changes_data)
4231 clear_all_pkt_pointers(env);
4232 return 0;
4233}
4234
4235static bool signed_add_overflows(s64 a, s64 b)
4236{
4237 /* Do the add in u64, where overflow is well-defined */
4238 s64 res = (s64)((u64)a + (u64)b);
4239
4240 if (b < 0)
4241 return res > a;
4242 return res < a;
4243}
4244
4245static bool signed_sub_overflows(s64 a, s64 b)
4246{
4247 /* Do the sub in u64, where overflow is well-defined */
4248 s64 res = (s64)((u64)a - (u64)b);
4249
4250 if (b < 0)
4251 return res < a;
4252 return res > a;
4253}
4254
4255static bool check_reg_sane_offset(struct bpf_verifier_env *env,
4256 const struct bpf_reg_state *reg,
4257 enum bpf_reg_type type)
4258{
4259 bool known = tnum_is_const(reg->var_off);
4260 s64 val = reg->var_off.value;
4261 s64 smin = reg->smin_value;
4262
4263 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
4264 verbose(env, "math between %s pointer and %lld is not allowed\n",
4265 reg_type_str[type], val);
4266 return false;
4267 }
4268
4269 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
4270 verbose(env, "%s pointer offset %d is not allowed\n",
4271 reg_type_str[type], reg->off);
4272 return false;
4273 }
4274
4275 if (smin == S64_MIN) {
4276 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
4277 reg_type_str[type]);
4278 return false;
4279 }
4280
4281 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
4282 verbose(env, "value %lld makes %s pointer be out of bounds\n",
4283 smin, reg_type_str[type]);
4284 return false;
4285 }
4286
4287 return true;
4288}
4289
David Brazdil0f672f62019-12-10 10:32:29 +00004290static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
4291{
4292 return &env->insn_aux_data[env->insn_idx];
4293}
4294
Olivier Deprez0e641232021-09-23 10:07:05 +02004295enum {
4296 REASON_BOUNDS = -1,
4297 REASON_TYPE = -2,
4298 REASON_PATHS = -3,
4299 REASON_LIMIT = -4,
4300 REASON_STACK = -5,
4301};
4302
David Brazdil0f672f62019-12-10 10:32:29 +00004303static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
Olivier Deprez0e641232021-09-23 10:07:05 +02004304 u32 *alu_limit, bool mask_to_left)
David Brazdil0f672f62019-12-10 10:32:29 +00004305{
Olivier Deprez0e641232021-09-23 10:07:05 +02004306 u32 max = 0, ptr_limit = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00004307
4308 switch (ptr_reg->type) {
4309 case PTR_TO_STACK:
Olivier Deprez0e641232021-09-23 10:07:05 +02004310 /* Offset 0 is out-of-bounds, but acceptable start for the
4311 * left direction, see BPF_REG_FP. Also, unknown scalar
4312 * offset where we would need to deal with min/max bounds is
4313 * currently prohibited for unprivileged.
David Brazdil0f672f62019-12-10 10:32:29 +00004314 */
Olivier Deprez0e641232021-09-23 10:07:05 +02004315 max = MAX_BPF_STACK + mask_to_left;
4316 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
4317 break;
David Brazdil0f672f62019-12-10 10:32:29 +00004318 case PTR_TO_MAP_VALUE:
Olivier Deprez0e641232021-09-23 10:07:05 +02004319 max = ptr_reg->map_ptr->value_size;
4320 ptr_limit = (mask_to_left ?
4321 ptr_reg->smin_value :
4322 ptr_reg->umax_value) + ptr_reg->off;
4323 break;
David Brazdil0f672f62019-12-10 10:32:29 +00004324 default:
Olivier Deprez0e641232021-09-23 10:07:05 +02004325 return REASON_TYPE;
David Brazdil0f672f62019-12-10 10:32:29 +00004326 }
Olivier Deprez0e641232021-09-23 10:07:05 +02004327
4328 if (ptr_limit >= max)
4329 return REASON_LIMIT;
4330 *alu_limit = ptr_limit;
4331 return 0;
David Brazdil0f672f62019-12-10 10:32:29 +00004332}
4333
4334static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
4335 const struct bpf_insn *insn)
4336{
4337 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
4338}
4339
4340static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
4341 u32 alu_state, u32 alu_limit)
4342{
4343 /* If we arrived here from different branches with different
4344 * state or limits to sanitize, then this won't work.
4345 */
4346 if (aux->alu_state &&
4347 (aux->alu_state != alu_state ||
4348 aux->alu_limit != alu_limit))
Olivier Deprez0e641232021-09-23 10:07:05 +02004349 return REASON_PATHS;
David Brazdil0f672f62019-12-10 10:32:29 +00004350
4351 /* Corresponding fixup done in fixup_bpf_calls(). */
4352 aux->alu_state = alu_state;
4353 aux->alu_limit = alu_limit;
4354 return 0;
4355}
4356
4357static int sanitize_val_alu(struct bpf_verifier_env *env,
4358 struct bpf_insn *insn)
4359{
4360 struct bpf_insn_aux_data *aux = cur_aux(env);
4361
4362 if (can_skip_alu_sanitation(env, insn))
4363 return 0;
4364
4365 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
4366}
4367
Olivier Deprez0e641232021-09-23 10:07:05 +02004368static bool sanitize_needed(u8 opcode)
4369{
4370 return opcode == BPF_ADD || opcode == BPF_SUB;
4371}
4372
4373struct bpf_sanitize_info {
4374 struct bpf_insn_aux_data aux;
4375 bool mask_to_left;
4376};
4377
4378static struct bpf_verifier_state *
4379sanitize_speculative_path(struct bpf_verifier_env *env,
4380 const struct bpf_insn *insn,
4381 u32 next_idx, u32 curr_idx)
4382{
4383 struct bpf_verifier_state *branch;
4384 struct bpf_reg_state *regs;
4385
4386 branch = push_stack(env, next_idx, curr_idx, true);
4387 if (branch && insn) {
4388 regs = branch->frame[branch->curframe]->regs;
4389 if (BPF_SRC(insn->code) == BPF_K) {
4390 mark_reg_unknown(env, regs, insn->dst_reg);
4391 } else if (BPF_SRC(insn->code) == BPF_X) {
4392 mark_reg_unknown(env, regs, insn->dst_reg);
4393 mark_reg_unknown(env, regs, insn->src_reg);
4394 }
4395 }
4396 return branch;
4397}
4398
David Brazdil0f672f62019-12-10 10:32:29 +00004399static int sanitize_ptr_alu(struct bpf_verifier_env *env,
4400 struct bpf_insn *insn,
4401 const struct bpf_reg_state *ptr_reg,
Olivier Deprez0e641232021-09-23 10:07:05 +02004402 const struct bpf_reg_state *off_reg,
David Brazdil0f672f62019-12-10 10:32:29 +00004403 struct bpf_reg_state *dst_reg,
Olivier Deprez0e641232021-09-23 10:07:05 +02004404 struct bpf_sanitize_info *info,
4405 const bool commit_window)
David Brazdil0f672f62019-12-10 10:32:29 +00004406{
Olivier Deprez0e641232021-09-23 10:07:05 +02004407 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
David Brazdil0f672f62019-12-10 10:32:29 +00004408 struct bpf_verifier_state *vstate = env->cur_state;
Olivier Deprez0e641232021-09-23 10:07:05 +02004409 bool off_is_imm = tnum_is_const(off_reg->var_off);
4410 bool off_is_neg = off_reg->smin_value < 0;
David Brazdil0f672f62019-12-10 10:32:29 +00004411 bool ptr_is_dst_reg = ptr_reg == dst_reg;
4412 u8 opcode = BPF_OP(insn->code);
4413 u32 alu_state, alu_limit;
4414 struct bpf_reg_state tmp;
4415 bool ret;
Olivier Deprez0e641232021-09-23 10:07:05 +02004416 int err;
David Brazdil0f672f62019-12-10 10:32:29 +00004417
4418 if (can_skip_alu_sanitation(env, insn))
4419 return 0;
4420
4421 /* We already marked aux for masking from non-speculative
4422 * paths, thus we got here in the first place. We only care
4423 * to explore bad access from here.
4424 */
4425 if (vstate->speculative)
4426 goto do_sim;
4427
Olivier Deprez0e641232021-09-23 10:07:05 +02004428 if (!commit_window) {
4429 if (!tnum_is_const(off_reg->var_off) &&
4430 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
4431 return REASON_BOUNDS;
David Brazdil0f672f62019-12-10 10:32:29 +00004432
Olivier Deprez0e641232021-09-23 10:07:05 +02004433 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
4434 (opcode == BPF_SUB && !off_is_neg);
4435 }
4436
4437 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
4438 if (err < 0)
4439 return err;
4440
4441 if (commit_window) {
4442 /* In commit phase we narrow the masking window based on
4443 * the observed pointer move after the simulated operation.
4444 */
4445 alu_state = info->aux.alu_state;
4446 alu_limit = abs(info->aux.alu_limit - alu_limit);
4447 } else {
4448 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
4449 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
4450 alu_state |= ptr_is_dst_reg ?
4451 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
4452
4453 /* Limit pruning on unknown scalars to enable deep search for
4454 * potential masking differences from other program paths.
4455 */
4456 if (!off_is_imm)
4457 env->explore_alu_limits = true;
4458 }
4459
4460 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
4461 if (err < 0)
4462 return err;
David Brazdil0f672f62019-12-10 10:32:29 +00004463do_sim:
Olivier Deprez0e641232021-09-23 10:07:05 +02004464 /* If we're in commit phase, we're done here given we already
4465 * pushed the truncated dst_reg into the speculative verification
4466 * stack.
4467 *
4468 * Also, when register is a known constant, we rewrite register-based
4469 * operation to immediate-based, and thus do not need masking (and as
4470 * a consequence, do not need to simulate the zero-truncation either).
4471 */
4472 if (commit_window || off_is_imm)
4473 return 0;
4474
David Brazdil0f672f62019-12-10 10:32:29 +00004475 /* Simulate and find potential out-of-bounds access under
4476 * speculative execution from truncation as a result of
4477 * masking when off was not within expected range. If off
4478 * sits in dst, then we temporarily need to move ptr there
4479 * to simulate dst (== 0) +/-= ptr. Needed, for example,
4480 * for cases where we use K-based arithmetic in one direction
4481 * and truncated reg-based in the other in order to explore
4482 * bad access.
4483 */
4484 if (!ptr_is_dst_reg) {
4485 tmp = *dst_reg;
4486 *dst_reg = *ptr_reg;
4487 }
Olivier Deprez0e641232021-09-23 10:07:05 +02004488 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
4489 env->insn_idx);
David Brazdil0f672f62019-12-10 10:32:29 +00004490 if (!ptr_is_dst_reg && ret)
4491 *dst_reg = tmp;
Olivier Deprez0e641232021-09-23 10:07:05 +02004492 return !ret ? REASON_STACK : 0;
4493}
4494
4495static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
4496{
4497 struct bpf_verifier_state *vstate = env->cur_state;
4498
4499 /* If we simulate paths under speculation, we don't update the
4500 * insn as 'seen' such that when we verify unreachable paths in
4501 * the non-speculative domain, sanitize_dead_code() can still
4502 * rewrite/sanitize them.
4503 */
4504 if (!vstate->speculative)
4505 env->insn_aux_data[env->insn_idx].seen = true;
4506}
4507
4508static int sanitize_err(struct bpf_verifier_env *env,
4509 const struct bpf_insn *insn, int reason,
4510 const struct bpf_reg_state *off_reg,
4511 const struct bpf_reg_state *dst_reg)
4512{
4513 static const char *err = "pointer arithmetic with it prohibited for !root";
4514 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
4515 u32 dst = insn->dst_reg, src = insn->src_reg;
4516
4517 switch (reason) {
4518 case REASON_BOUNDS:
4519 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
4520 off_reg == dst_reg ? dst : src, err);
4521 break;
4522 case REASON_TYPE:
4523 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
4524 off_reg == dst_reg ? src : dst, err);
4525 break;
4526 case REASON_PATHS:
4527 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
4528 dst, op, err);
4529 break;
4530 case REASON_LIMIT:
4531 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
4532 dst, op, err);
4533 break;
4534 case REASON_STACK:
4535 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
4536 dst, err);
4537 break;
4538 default:
4539 verbose(env, "verifier internal error: unknown reason (%d)\n",
4540 reason);
4541 break;
4542 }
4543
4544 return -EACCES;
4545}
4546
4547static int sanitize_check_bounds(struct bpf_verifier_env *env,
4548 const struct bpf_insn *insn,
4549 const struct bpf_reg_state *dst_reg)
4550{
4551 u32 dst = insn->dst_reg;
4552
4553 /* For unprivileged we require that resulting offset must be in bounds
4554 * in order to be able to sanitize access later on.
4555 */
4556 if (env->allow_ptr_leaks)
4557 return 0;
4558
4559 switch (dst_reg->type) {
4560 case PTR_TO_STACK:
4561 if (check_stack_access(env, dst_reg, dst_reg->off +
4562 dst_reg->var_off.value, 1)) {
4563 verbose(env, "R%d stack pointer arithmetic goes out of range, "
4564 "prohibited for !root\n", dst);
4565 return -EACCES;
4566 }
4567 break;
4568 case PTR_TO_MAP_VALUE:
4569 if (check_map_access(env, dst, dst_reg->off, 1, false)) {
4570 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
4571 "prohibited for !root\n", dst);
4572 return -EACCES;
4573 }
4574 break;
4575 default:
4576 break;
4577 }
4578
4579 return 0;
David Brazdil0f672f62019-12-10 10:32:29 +00004580}
4581
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004582/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
4583 * Caller should also handle BPF_MOV case separately.
4584 * If we return -EACCES, caller may want to try again treating pointer as a
4585 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
4586 */
4587static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
4588 struct bpf_insn *insn,
4589 const struct bpf_reg_state *ptr_reg,
4590 const struct bpf_reg_state *off_reg)
4591{
4592 struct bpf_verifier_state *vstate = env->cur_state;
4593 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4594 struct bpf_reg_state *regs = state->regs, *dst_reg;
4595 bool known = tnum_is_const(off_reg->var_off);
4596 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
4597 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
4598 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
4599 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
Olivier Deprez0e641232021-09-23 10:07:05 +02004600 struct bpf_sanitize_info info = {};
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004601 u8 opcode = BPF_OP(insn->code);
Olivier Deprez0e641232021-09-23 10:07:05 +02004602 u32 dst = insn->dst_reg;
David Brazdil0f672f62019-12-10 10:32:29 +00004603 int ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004604
4605 dst_reg = &regs[dst];
4606
4607 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
4608 smin_val > smax_val || umin_val > umax_val) {
4609 /* Taint dst register if offset had invalid bounds derived from
4610 * e.g. dead branches.
4611 */
Olivier Deprez0e641232021-09-23 10:07:05 +02004612 __mark_reg_unknown(env, dst_reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004613 return 0;
4614 }
4615
4616 if (BPF_CLASS(insn->code) != BPF_ALU64) {
4617 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
4618 verbose(env,
4619 "R%d 32-bit pointer arithmetic prohibited\n",
4620 dst);
4621 return -EACCES;
4622 }
4623
David Brazdil0f672f62019-12-10 10:32:29 +00004624 switch (ptr_reg->type) {
4625 case PTR_TO_MAP_VALUE_OR_NULL:
4626 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
4627 dst, reg_type_str[ptr_reg->type]);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004628 return -EACCES;
David Brazdil0f672f62019-12-10 10:32:29 +00004629 case CONST_PTR_TO_MAP:
Olivier Deprez0e641232021-09-23 10:07:05 +02004630 /* smin_val represents the known value */
4631 if (known && smin_val == 0 && opcode == BPF_ADD)
4632 break;
4633 /* fall-through */
David Brazdil0f672f62019-12-10 10:32:29 +00004634 case PTR_TO_PACKET_END:
4635 case PTR_TO_SOCKET:
4636 case PTR_TO_SOCKET_OR_NULL:
4637 case PTR_TO_SOCK_COMMON:
4638 case PTR_TO_SOCK_COMMON_OR_NULL:
4639 case PTR_TO_TCP_SOCK:
4640 case PTR_TO_TCP_SOCK_OR_NULL:
4641 case PTR_TO_XDP_SOCK:
4642 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
4643 dst, reg_type_str[ptr_reg->type]);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004644 return -EACCES;
David Brazdil0f672f62019-12-10 10:32:29 +00004645 default:
4646 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004647 }
4648
4649 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
4650 * The id may be overwritten later if we create a new variable offset.
4651 */
4652 dst_reg->type = ptr_reg->type;
4653 dst_reg->id = ptr_reg->id;
4654
4655 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
4656 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
4657 return -EINVAL;
4658
Olivier Deprez0e641232021-09-23 10:07:05 +02004659 if (sanitize_needed(opcode)) {
4660 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
4661 &info, false);
4662 if (ret < 0)
4663 return sanitize_err(env, insn, ret, off_reg, dst_reg);
4664 }
4665
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004666 switch (opcode) {
4667 case BPF_ADD:
4668 /* We can take a fixed offset as long as it doesn't overflow
4669 * the s32 'off' field
4670 */
4671 if (known && (ptr_reg->off + smin_val ==
4672 (s64)(s32)(ptr_reg->off + smin_val))) {
4673 /* pointer += K. Accumulate it into fixed offset */
4674 dst_reg->smin_value = smin_ptr;
4675 dst_reg->smax_value = smax_ptr;
4676 dst_reg->umin_value = umin_ptr;
4677 dst_reg->umax_value = umax_ptr;
4678 dst_reg->var_off = ptr_reg->var_off;
4679 dst_reg->off = ptr_reg->off + smin_val;
4680 dst_reg->raw = ptr_reg->raw;
4681 break;
4682 }
4683 /* A new variable offset is created. Note that off_reg->off
4684 * == 0, since it's a scalar.
4685 * dst_reg gets the pointer type and since some positive
4686 * integer value was added to the pointer, give it a new 'id'
4687 * if it's a PTR_TO_PACKET.
4688 * this creates a new 'base' pointer, off_reg (variable) gets
4689 * added into the variable offset, and we copy the fixed offset
4690 * from ptr_reg.
4691 */
4692 if (signed_add_overflows(smin_ptr, smin_val) ||
4693 signed_add_overflows(smax_ptr, smax_val)) {
4694 dst_reg->smin_value = S64_MIN;
4695 dst_reg->smax_value = S64_MAX;
4696 } else {
4697 dst_reg->smin_value = smin_ptr + smin_val;
4698 dst_reg->smax_value = smax_ptr + smax_val;
4699 }
4700 if (umin_ptr + umin_val < umin_ptr ||
4701 umax_ptr + umax_val < umax_ptr) {
4702 dst_reg->umin_value = 0;
4703 dst_reg->umax_value = U64_MAX;
4704 } else {
4705 dst_reg->umin_value = umin_ptr + umin_val;
4706 dst_reg->umax_value = umax_ptr + umax_val;
4707 }
4708 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
4709 dst_reg->off = ptr_reg->off;
4710 dst_reg->raw = ptr_reg->raw;
4711 if (reg_is_pkt_pointer(ptr_reg)) {
4712 dst_reg->id = ++env->id_gen;
4713 /* something was added to pkt_ptr, set range to zero */
4714 dst_reg->raw = 0;
4715 }
4716 break;
4717 case BPF_SUB:
4718 if (dst_reg == off_reg) {
4719 /* scalar -= pointer. Creates an unknown scalar */
4720 verbose(env, "R%d tried to subtract pointer from scalar\n",
4721 dst);
4722 return -EACCES;
4723 }
4724 /* We don't allow subtraction from FP, because (according to
4725 * test_verifier.c test "invalid fp arithmetic", JITs might not
4726 * be able to deal with it.
4727 */
4728 if (ptr_reg->type == PTR_TO_STACK) {
4729 verbose(env, "R%d subtraction from stack pointer prohibited\n",
4730 dst);
4731 return -EACCES;
4732 }
4733 if (known && (ptr_reg->off - smin_val ==
4734 (s64)(s32)(ptr_reg->off - smin_val))) {
4735 /* pointer -= K. Subtract it from fixed offset */
4736 dst_reg->smin_value = smin_ptr;
4737 dst_reg->smax_value = smax_ptr;
4738 dst_reg->umin_value = umin_ptr;
4739 dst_reg->umax_value = umax_ptr;
4740 dst_reg->var_off = ptr_reg->var_off;
4741 dst_reg->id = ptr_reg->id;
4742 dst_reg->off = ptr_reg->off - smin_val;
4743 dst_reg->raw = ptr_reg->raw;
4744 break;
4745 }
4746 /* A new variable offset is created. If the subtrahend is known
4747 * nonnegative, then any reg->range we had before is still good.
4748 */
4749 if (signed_sub_overflows(smin_ptr, smax_val) ||
4750 signed_sub_overflows(smax_ptr, smin_val)) {
4751 /* Overflow possible, we know nothing */
4752 dst_reg->smin_value = S64_MIN;
4753 dst_reg->smax_value = S64_MAX;
4754 } else {
4755 dst_reg->smin_value = smin_ptr - smax_val;
4756 dst_reg->smax_value = smax_ptr - smin_val;
4757 }
4758 if (umin_ptr < umax_val) {
4759 /* Overflow possible, we know nothing */
4760 dst_reg->umin_value = 0;
4761 dst_reg->umax_value = U64_MAX;
4762 } else {
4763 /* Cannot overflow (as long as bounds are consistent) */
4764 dst_reg->umin_value = umin_ptr - umax_val;
4765 dst_reg->umax_value = umax_ptr - umin_val;
4766 }
4767 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
4768 dst_reg->off = ptr_reg->off;
4769 dst_reg->raw = ptr_reg->raw;
4770 if (reg_is_pkt_pointer(ptr_reg)) {
4771 dst_reg->id = ++env->id_gen;
4772 /* something was added to pkt_ptr, set range to zero */
4773 if (smin_val < 0)
4774 dst_reg->raw = 0;
4775 }
4776 break;
4777 case BPF_AND:
4778 case BPF_OR:
4779 case BPF_XOR:
4780 /* bitwise ops on pointers are troublesome, prohibit. */
4781 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
4782 dst, bpf_alu_string[opcode >> 4]);
4783 return -EACCES;
4784 default:
4785 /* other operators (e.g. MUL,LSH) produce non-pointer results */
4786 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
4787 dst, bpf_alu_string[opcode >> 4]);
4788 return -EACCES;
4789 }
4790
4791 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
4792 return -EINVAL;
4793
4794 __update_reg_bounds(dst_reg);
4795 __reg_deduce_bounds(dst_reg);
4796 __reg_bound_offset(dst_reg);
David Brazdil0f672f62019-12-10 10:32:29 +00004797
Olivier Deprez0e641232021-09-23 10:07:05 +02004798 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
4799 return -EACCES;
4800 if (sanitize_needed(opcode)) {
4801 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
4802 &info, true);
4803 if (ret < 0)
4804 return sanitize_err(env, insn, ret, off_reg, dst_reg);
David Brazdil0f672f62019-12-10 10:32:29 +00004805 }
4806
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004807 return 0;
4808}
4809
4810/* WARNING: This function does calculations on 64-bit values, but the actual
4811 * execution may occur on 32-bit values. Therefore, things like bitshifts
4812 * need extra checks in the 32-bit case.
4813 */
4814static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
4815 struct bpf_insn *insn,
4816 struct bpf_reg_state *dst_reg,
4817 struct bpf_reg_state src_reg)
4818{
4819 struct bpf_reg_state *regs = cur_regs(env);
4820 u8 opcode = BPF_OP(insn->code);
4821 bool src_known, dst_known;
4822 s64 smin_val, smax_val;
4823 u64 umin_val, umax_val;
4824 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
David Brazdil0f672f62019-12-10 10:32:29 +00004825 int ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004826
4827 if (insn_bitness == 32) {
4828 /* Relevant for 32-bit RSH: Information can propagate towards
4829 * LSB, so it isn't sufficient to only truncate the output to
4830 * 32 bits.
4831 */
4832 coerce_reg_to_size(dst_reg, 4);
4833 coerce_reg_to_size(&src_reg, 4);
4834 }
4835
4836 smin_val = src_reg.smin_value;
4837 smax_val = src_reg.smax_value;
4838 umin_val = src_reg.umin_value;
4839 umax_val = src_reg.umax_value;
4840 src_known = tnum_is_const(src_reg.var_off);
4841 dst_known = tnum_is_const(dst_reg->var_off);
4842
4843 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
4844 smin_val > smax_val || umin_val > umax_val) {
4845 /* Taint dst register if offset had invalid bounds derived from
4846 * e.g. dead branches.
4847 */
Olivier Deprez0e641232021-09-23 10:07:05 +02004848 __mark_reg_unknown(env, dst_reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004849 return 0;
4850 }
4851
4852 if (!src_known &&
4853 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
Olivier Deprez0e641232021-09-23 10:07:05 +02004854 __mark_reg_unknown(env, dst_reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004855 return 0;
4856 }
4857
Olivier Deprez0e641232021-09-23 10:07:05 +02004858 if (sanitize_needed(opcode)) {
4859 ret = sanitize_val_alu(env, insn);
4860 if (ret < 0)
4861 return sanitize_err(env, insn, ret, NULL, NULL);
4862 }
4863
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004864 switch (opcode) {
4865 case BPF_ADD:
4866 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
4867 signed_add_overflows(dst_reg->smax_value, smax_val)) {
4868 dst_reg->smin_value = S64_MIN;
4869 dst_reg->smax_value = S64_MAX;
4870 } else {
4871 dst_reg->smin_value += smin_val;
4872 dst_reg->smax_value += smax_val;
4873 }
4874 if (dst_reg->umin_value + umin_val < umin_val ||
4875 dst_reg->umax_value + umax_val < umax_val) {
4876 dst_reg->umin_value = 0;
4877 dst_reg->umax_value = U64_MAX;
4878 } else {
4879 dst_reg->umin_value += umin_val;
4880 dst_reg->umax_value += umax_val;
4881 }
4882 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
4883 break;
4884 case BPF_SUB:
4885 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
4886 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
4887 /* Overflow possible, we know nothing */
4888 dst_reg->smin_value = S64_MIN;
4889 dst_reg->smax_value = S64_MAX;
4890 } else {
4891 dst_reg->smin_value -= smax_val;
4892 dst_reg->smax_value -= smin_val;
4893 }
4894 if (dst_reg->umin_value < umax_val) {
4895 /* Overflow possible, we know nothing */
4896 dst_reg->umin_value = 0;
4897 dst_reg->umax_value = U64_MAX;
4898 } else {
4899 /* Cannot overflow (as long as bounds are consistent) */
4900 dst_reg->umin_value -= umax_val;
4901 dst_reg->umax_value -= umin_val;
4902 }
4903 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
4904 break;
4905 case BPF_MUL:
4906 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
4907 if (smin_val < 0 || dst_reg->smin_value < 0) {
4908 /* Ain't nobody got time to multiply that sign */
4909 __mark_reg_unbounded(dst_reg);
4910 __update_reg_bounds(dst_reg);
4911 break;
4912 }
4913 /* Both values are positive, so we can work with unsigned and
4914 * copy the result to signed (unless it exceeds S64_MAX).
4915 */
4916 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
4917 /* Potential overflow, we know nothing */
4918 __mark_reg_unbounded(dst_reg);
4919 /* (except what we can learn from the var_off) */
4920 __update_reg_bounds(dst_reg);
4921 break;
4922 }
4923 dst_reg->umin_value *= umin_val;
4924 dst_reg->umax_value *= umax_val;
4925 if (dst_reg->umax_value > S64_MAX) {
4926 /* Overflow possible, we know nothing */
4927 dst_reg->smin_value = S64_MIN;
4928 dst_reg->smax_value = S64_MAX;
4929 } else {
4930 dst_reg->smin_value = dst_reg->umin_value;
4931 dst_reg->smax_value = dst_reg->umax_value;
4932 }
4933 break;
4934 case BPF_AND:
4935 if (src_known && dst_known) {
4936 __mark_reg_known(dst_reg, dst_reg->var_off.value &
4937 src_reg.var_off.value);
4938 break;
4939 }
4940 /* We get our minimum from the var_off, since that's inherently
4941 * bitwise. Our maximum is the minimum of the operands' maxima.
4942 */
4943 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
4944 dst_reg->umin_value = dst_reg->var_off.value;
4945 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
4946 if (dst_reg->smin_value < 0 || smin_val < 0) {
4947 /* Lose signed bounds when ANDing negative numbers,
4948 * ain't nobody got time for that.
4949 */
4950 dst_reg->smin_value = S64_MIN;
4951 dst_reg->smax_value = S64_MAX;
4952 } else {
4953 /* ANDing two positives gives a positive, so safe to
4954 * cast result into s64.
4955 */
4956 dst_reg->smin_value = dst_reg->umin_value;
4957 dst_reg->smax_value = dst_reg->umax_value;
4958 }
4959 /* We may learn something more from the var_off */
4960 __update_reg_bounds(dst_reg);
4961 break;
4962 case BPF_OR:
4963 if (src_known && dst_known) {
4964 __mark_reg_known(dst_reg, dst_reg->var_off.value |
4965 src_reg.var_off.value);
4966 break;
4967 }
4968 /* We get our maximum from the var_off, and our minimum is the
4969 * maximum of the operands' minima
4970 */
4971 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
4972 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
4973 dst_reg->umax_value = dst_reg->var_off.value |
4974 dst_reg->var_off.mask;
4975 if (dst_reg->smin_value < 0 || smin_val < 0) {
4976 /* Lose signed bounds when ORing negative numbers,
4977 * ain't nobody got time for that.
4978 */
4979 dst_reg->smin_value = S64_MIN;
4980 dst_reg->smax_value = S64_MAX;
4981 } else {
4982 /* ORing two positives gives a positive, so safe to
4983 * cast result into s64.
4984 */
4985 dst_reg->smin_value = dst_reg->umin_value;
4986 dst_reg->smax_value = dst_reg->umax_value;
4987 }
4988 /* We may learn something more from the var_off */
4989 __update_reg_bounds(dst_reg);
4990 break;
4991 case BPF_LSH:
4992 if (umax_val >= insn_bitness) {
4993 /* Shifts greater than 31 or 63 are undefined.
4994 * This includes shifts by a negative number.
4995 */
4996 mark_reg_unknown(env, regs, insn->dst_reg);
4997 break;
4998 }
4999 /* We lose all sign bit information (except what we can pick
5000 * up from var_off)
5001 */
5002 dst_reg->smin_value = S64_MIN;
5003 dst_reg->smax_value = S64_MAX;
5004 /* If we might shift our top bit out, then we know nothing */
5005 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
5006 dst_reg->umin_value = 0;
5007 dst_reg->umax_value = U64_MAX;
5008 } else {
5009 dst_reg->umin_value <<= umin_val;
5010 dst_reg->umax_value <<= umax_val;
5011 }
5012 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
5013 /* We may learn something more from the var_off */
5014 __update_reg_bounds(dst_reg);
5015 break;
5016 case BPF_RSH:
5017 if (umax_val >= insn_bitness) {
5018 /* Shifts greater than 31 or 63 are undefined.
5019 * This includes shifts by a negative number.
5020 */
5021 mark_reg_unknown(env, regs, insn->dst_reg);
5022 break;
5023 }
5024 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
5025 * be negative, then either:
5026 * 1) src_reg might be zero, so the sign bit of the result is
5027 * unknown, so we lose our signed bounds
5028 * 2) it's known negative, thus the unsigned bounds capture the
5029 * signed bounds
5030 * 3) the signed bounds cross zero, so they tell us nothing
5031 * about the result
5032 * If the value in dst_reg is known nonnegative, then again the
5033 * unsigned bounts capture the signed bounds.
5034 * Thus, in all cases it suffices to blow away our signed bounds
5035 * and rely on inferring new ones from the unsigned bounds and
5036 * var_off of the result.
5037 */
5038 dst_reg->smin_value = S64_MIN;
5039 dst_reg->smax_value = S64_MAX;
5040 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
5041 dst_reg->umin_value >>= umax_val;
5042 dst_reg->umax_value >>= umin_val;
5043 /* We may learn something more from the var_off */
5044 __update_reg_bounds(dst_reg);
5045 break;
5046 case BPF_ARSH:
5047 if (umax_val >= insn_bitness) {
5048 /* Shifts greater than 31 or 63 are undefined.
5049 * This includes shifts by a negative number.
5050 */
5051 mark_reg_unknown(env, regs, insn->dst_reg);
5052 break;
5053 }
5054
5055 /* Upon reaching here, src_known is true and
5056 * umax_val is equal to umin_val.
5057 */
Olivier Deprez0e641232021-09-23 10:07:05 +02005058 if (insn_bitness == 32) {
5059 dst_reg->smin_value = (u32)(((s32)dst_reg->smin_value) >> umin_val);
5060 dst_reg->smax_value = (u32)(((s32)dst_reg->smax_value) >> umin_val);
5061 } else {
5062 dst_reg->smin_value >>= umin_val;
5063 dst_reg->smax_value >>= umin_val;
5064 }
5065
5066 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val,
5067 insn_bitness);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005068
5069 /* blow away the dst_reg umin_value/umax_value and rely on
5070 * dst_reg var_off to refine the result.
5071 */
5072 dst_reg->umin_value = 0;
5073 dst_reg->umax_value = U64_MAX;
5074 __update_reg_bounds(dst_reg);
5075 break;
5076 default:
5077 mark_reg_unknown(env, regs, insn->dst_reg);
5078 break;
5079 }
5080
5081 if (BPF_CLASS(insn->code) != BPF_ALU64) {
5082 /* 32-bit ALU ops are (32,32)->32 */
5083 coerce_reg_to_size(dst_reg, 4);
5084 }
5085
5086 __reg_deduce_bounds(dst_reg);
5087 __reg_bound_offset(dst_reg);
5088 return 0;
5089}
5090
5091/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
5092 * and var_off.
5093 */
5094static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
5095 struct bpf_insn *insn)
5096{
5097 struct bpf_verifier_state *vstate = env->cur_state;
5098 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5099 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
5100 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
5101 u8 opcode = BPF_OP(insn->code);
David Brazdil0f672f62019-12-10 10:32:29 +00005102 int err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005103
5104 dst_reg = &regs[insn->dst_reg];
5105 src_reg = NULL;
5106 if (dst_reg->type != SCALAR_VALUE)
5107 ptr_reg = dst_reg;
5108 if (BPF_SRC(insn->code) == BPF_X) {
5109 src_reg = &regs[insn->src_reg];
5110 if (src_reg->type != SCALAR_VALUE) {
5111 if (dst_reg->type != SCALAR_VALUE) {
5112 /* Combining two pointers by any ALU op yields
5113 * an arbitrary scalar. Disallow all math except
5114 * pointer subtraction
5115 */
5116 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
5117 mark_reg_unknown(env, regs, insn->dst_reg);
5118 return 0;
5119 }
5120 verbose(env, "R%d pointer %s pointer prohibited\n",
5121 insn->dst_reg,
5122 bpf_alu_string[opcode >> 4]);
5123 return -EACCES;
5124 } else {
5125 /* scalar += pointer
5126 * This is legal, but we have to reverse our
5127 * src/dest handling in computing the range
5128 */
David Brazdil0f672f62019-12-10 10:32:29 +00005129 err = mark_chain_precision(env, insn->dst_reg);
5130 if (err)
5131 return err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005132 return adjust_ptr_min_max_vals(env, insn,
5133 src_reg, dst_reg);
5134 }
5135 } else if (ptr_reg) {
5136 /* pointer += scalar */
David Brazdil0f672f62019-12-10 10:32:29 +00005137 err = mark_chain_precision(env, insn->src_reg);
5138 if (err)
5139 return err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005140 return adjust_ptr_min_max_vals(env, insn,
5141 dst_reg, src_reg);
5142 }
5143 } else {
5144 /* Pretend the src is a reg with a known value, since we only
5145 * need to be able to read from this state.
5146 */
5147 off_reg.type = SCALAR_VALUE;
5148 __mark_reg_known(&off_reg, insn->imm);
5149 src_reg = &off_reg;
5150 if (ptr_reg) /* pointer += K */
5151 return adjust_ptr_min_max_vals(env, insn,
5152 ptr_reg, src_reg);
5153 }
5154
5155 /* Got here implies adding two SCALAR_VALUEs */
5156 if (WARN_ON_ONCE(ptr_reg)) {
5157 print_verifier_state(env, state);
5158 verbose(env, "verifier internal error: unexpected ptr_reg\n");
5159 return -EINVAL;
5160 }
5161 if (WARN_ON(!src_reg)) {
5162 print_verifier_state(env, state);
5163 verbose(env, "verifier internal error: no src_reg\n");
5164 return -EINVAL;
5165 }
5166 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
5167}
5168
5169/* check validity of 32-bit and 64-bit arithmetic operations */
5170static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
5171{
5172 struct bpf_reg_state *regs = cur_regs(env);
5173 u8 opcode = BPF_OP(insn->code);
5174 int err;
5175
5176 if (opcode == BPF_END || opcode == BPF_NEG) {
5177 if (opcode == BPF_NEG) {
5178 if (BPF_SRC(insn->code) != 0 ||
5179 insn->src_reg != BPF_REG_0 ||
5180 insn->off != 0 || insn->imm != 0) {
5181 verbose(env, "BPF_NEG uses reserved fields\n");
5182 return -EINVAL;
5183 }
5184 } else {
5185 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
5186 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
5187 BPF_CLASS(insn->code) == BPF_ALU64) {
5188 verbose(env, "BPF_END uses reserved fields\n");
5189 return -EINVAL;
5190 }
5191 }
5192
5193 /* check src operand */
5194 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5195 if (err)
5196 return err;
5197
5198 if (is_pointer_value(env, insn->dst_reg)) {
5199 verbose(env, "R%d pointer arithmetic prohibited\n",
5200 insn->dst_reg);
5201 return -EACCES;
5202 }
5203
5204 /* check dest operand */
5205 err = check_reg_arg(env, insn->dst_reg, DST_OP);
5206 if (err)
5207 return err;
5208
5209 } else if (opcode == BPF_MOV) {
5210
5211 if (BPF_SRC(insn->code) == BPF_X) {
5212 if (insn->imm != 0 || insn->off != 0) {
5213 verbose(env, "BPF_MOV uses reserved fields\n");
5214 return -EINVAL;
5215 }
5216
5217 /* check src operand */
5218 err = check_reg_arg(env, insn->src_reg, SRC_OP);
5219 if (err)
5220 return err;
5221 } else {
5222 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
5223 verbose(env, "BPF_MOV uses reserved fields\n");
5224 return -EINVAL;
5225 }
5226 }
5227
5228 /* check dest operand, mark as required later */
5229 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
5230 if (err)
5231 return err;
5232
5233 if (BPF_SRC(insn->code) == BPF_X) {
David Brazdil0f672f62019-12-10 10:32:29 +00005234 struct bpf_reg_state *src_reg = regs + insn->src_reg;
5235 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
5236
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005237 if (BPF_CLASS(insn->code) == BPF_ALU64) {
5238 /* case: R1 = R2
5239 * copy register state to dest reg
5240 */
David Brazdil0f672f62019-12-10 10:32:29 +00005241 *dst_reg = *src_reg;
5242 dst_reg->live |= REG_LIVE_WRITTEN;
5243 dst_reg->subreg_def = DEF_NOT_SUBREG;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005244 } else {
5245 /* R1 = (u32) R2 */
5246 if (is_pointer_value(env, insn->src_reg)) {
5247 verbose(env,
5248 "R%d partial copy of pointer\n",
5249 insn->src_reg);
5250 return -EACCES;
David Brazdil0f672f62019-12-10 10:32:29 +00005251 } else if (src_reg->type == SCALAR_VALUE) {
5252 *dst_reg = *src_reg;
5253 dst_reg->live |= REG_LIVE_WRITTEN;
5254 dst_reg->subreg_def = env->insn_idx + 1;
5255 } else {
5256 mark_reg_unknown(env, regs,
5257 insn->dst_reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005258 }
David Brazdil0f672f62019-12-10 10:32:29 +00005259 coerce_reg_to_size(dst_reg, 4);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005260 }
5261 } else {
5262 /* case: R = imm
5263 * remember the value we stored into this reg
5264 */
5265 /* clear any state __mark_reg_known doesn't set */
5266 mark_reg_unknown(env, regs, insn->dst_reg);
5267 regs[insn->dst_reg].type = SCALAR_VALUE;
5268 if (BPF_CLASS(insn->code) == BPF_ALU64) {
5269 __mark_reg_known(regs + insn->dst_reg,
5270 insn->imm);
5271 } else {
5272 __mark_reg_known(regs + insn->dst_reg,
5273 (u32)insn->imm);
5274 }
5275 }
5276
5277 } else if (opcode > BPF_END) {
5278 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
5279 return -EINVAL;
5280
5281 } else { /* all other ALU ops: and, sub, xor, add, ... */
5282
5283 if (BPF_SRC(insn->code) == BPF_X) {
5284 if (insn->imm != 0 || insn->off != 0) {
5285 verbose(env, "BPF_ALU uses reserved fields\n");
5286 return -EINVAL;
5287 }
5288 /* check src1 operand */
5289 err = check_reg_arg(env, insn->src_reg, SRC_OP);
5290 if (err)
5291 return err;
5292 } else {
5293 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
5294 verbose(env, "BPF_ALU uses reserved fields\n");
5295 return -EINVAL;
5296 }
5297 }
5298
5299 /* check src2 operand */
5300 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5301 if (err)
5302 return err;
5303
5304 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
5305 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
5306 verbose(env, "div by zero\n");
5307 return -EINVAL;
5308 }
5309
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005310 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
5311 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
5312 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
5313
5314 if (insn->imm < 0 || insn->imm >= size) {
5315 verbose(env, "invalid shift %d\n", insn->imm);
5316 return -EINVAL;
5317 }
5318 }
5319
5320 /* check dest operand */
5321 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
5322 if (err)
5323 return err;
5324
5325 return adjust_reg_min_max_vals(env, insn);
5326 }
5327
5328 return 0;
5329}
5330
David Brazdil0f672f62019-12-10 10:32:29 +00005331static void __find_good_pkt_pointers(struct bpf_func_state *state,
5332 struct bpf_reg_state *dst_reg,
5333 enum bpf_reg_type type, u16 new_range)
5334{
5335 struct bpf_reg_state *reg;
5336 int i;
5337
5338 for (i = 0; i < MAX_BPF_REG; i++) {
5339 reg = &state->regs[i];
5340 if (reg->type == type && reg->id == dst_reg->id)
5341 /* keep the maximum range already checked */
5342 reg->range = max(reg->range, new_range);
5343 }
5344
5345 bpf_for_each_spilled_reg(i, state, reg) {
5346 if (!reg)
5347 continue;
5348 if (reg->type == type && reg->id == dst_reg->id)
5349 reg->range = max(reg->range, new_range);
5350 }
5351}
5352
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005353static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
5354 struct bpf_reg_state *dst_reg,
5355 enum bpf_reg_type type,
5356 bool range_right_open)
5357{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005358 u16 new_range;
David Brazdil0f672f62019-12-10 10:32:29 +00005359 int i;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005360
5361 if (dst_reg->off < 0 ||
5362 (dst_reg->off == 0 && range_right_open))
5363 /* This doesn't give us any range */
5364 return;
5365
5366 if (dst_reg->umax_value > MAX_PACKET_OFF ||
5367 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
5368 /* Risk of overflow. For instance, ptr + (1<<63) may be less
5369 * than pkt_end, but that's because it's also less than pkt.
5370 */
5371 return;
5372
5373 new_range = dst_reg->off;
5374 if (range_right_open)
5375 new_range--;
5376
5377 /* Examples for register markings:
5378 *
5379 * pkt_data in dst register:
5380 *
5381 * r2 = r3;
5382 * r2 += 8;
5383 * if (r2 > pkt_end) goto <handle exception>
5384 * <access okay>
5385 *
5386 * r2 = r3;
5387 * r2 += 8;
5388 * if (r2 < pkt_end) goto <access okay>
5389 * <handle exception>
5390 *
5391 * Where:
5392 * r2 == dst_reg, pkt_end == src_reg
5393 * r2=pkt(id=n,off=8,r=0)
5394 * r3=pkt(id=n,off=0,r=0)
5395 *
5396 * pkt_data in src register:
5397 *
5398 * r2 = r3;
5399 * r2 += 8;
5400 * if (pkt_end >= r2) goto <access okay>
5401 * <handle exception>
5402 *
5403 * r2 = r3;
5404 * r2 += 8;
5405 * if (pkt_end <= r2) goto <handle exception>
5406 * <access okay>
5407 *
5408 * Where:
5409 * pkt_end == dst_reg, r2 == src_reg
5410 * r2=pkt(id=n,off=8,r=0)
5411 * r3=pkt(id=n,off=0,r=0)
5412 *
5413 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
5414 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
5415 * and [r3, r3 + 8-1) respectively is safe to access depending on
5416 * the check.
5417 */
5418
5419 /* If our ids match, then we must have the same max_value. And we
5420 * don't care about the other reg's fixed offset, since if it's too big
5421 * the range won't allow anything.
5422 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
5423 */
David Brazdil0f672f62019-12-10 10:32:29 +00005424 for (i = 0; i <= vstate->curframe; i++)
5425 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
5426 new_range);
5427}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005428
David Brazdil0f672f62019-12-10 10:32:29 +00005429/* compute branch direction of the expression "if (reg opcode val) goto target;"
5430 * and return:
5431 * 1 - branch will be taken and "goto target" will be executed
5432 * 0 - branch will not be taken and fall-through to next insn
5433 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
5434 */
5435static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
5436 bool is_jmp32)
5437{
5438 struct bpf_reg_state reg_lo;
5439 s64 sval;
5440
5441 if (__is_pointer_value(false, reg))
5442 return -1;
5443
5444 if (is_jmp32) {
5445 reg_lo = *reg;
5446 reg = &reg_lo;
5447 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size
5448 * could truncate high bits and update umin/umax according to
5449 * information of low bits.
5450 */
5451 coerce_reg_to_size(reg, 4);
5452 /* smin/smax need special handling. For example, after coerce,
5453 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
5454 * used as operand to JMP32. It is a negative number from s32's
5455 * point of view, while it is a positive number when seen as
5456 * s64. The smin/smax are kept as s64, therefore, when used with
5457 * JMP32, they need to be transformed into s32, then sign
5458 * extended back to s64.
5459 *
5460 * Also, smin/smax were copied from umin/umax. If umin/umax has
5461 * different sign bit, then min/max relationship doesn't
5462 * maintain after casting into s32, for this case, set smin/smax
5463 * to safest range.
5464 */
5465 if ((reg->umax_value ^ reg->umin_value) &
5466 (1ULL << 31)) {
5467 reg->smin_value = S32_MIN;
5468 reg->smax_value = S32_MAX;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005469 }
David Brazdil0f672f62019-12-10 10:32:29 +00005470 reg->smin_value = (s64)(s32)reg->smin_value;
5471 reg->smax_value = (s64)(s32)reg->smax_value;
5472
5473 val = (u32)val;
5474 sval = (s64)(s32)val;
5475 } else {
5476 sval = (s64)val;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005477 }
David Brazdil0f672f62019-12-10 10:32:29 +00005478
5479 switch (opcode) {
5480 case BPF_JEQ:
5481 if (tnum_is_const(reg->var_off))
5482 return !!tnum_equals_const(reg->var_off, val);
5483 break;
5484 case BPF_JNE:
5485 if (tnum_is_const(reg->var_off))
5486 return !tnum_equals_const(reg->var_off, val);
5487 break;
5488 case BPF_JSET:
5489 if ((~reg->var_off.mask & reg->var_off.value) & val)
5490 return 1;
5491 if (!((reg->var_off.mask | reg->var_off.value) & val))
5492 return 0;
5493 break;
5494 case BPF_JGT:
5495 if (reg->umin_value > val)
5496 return 1;
5497 else if (reg->umax_value <= val)
5498 return 0;
5499 break;
5500 case BPF_JSGT:
5501 if (reg->smin_value > sval)
5502 return 1;
5503 else if (reg->smax_value < sval)
5504 return 0;
5505 break;
5506 case BPF_JLT:
5507 if (reg->umax_value < val)
5508 return 1;
5509 else if (reg->umin_value >= val)
5510 return 0;
5511 break;
5512 case BPF_JSLT:
5513 if (reg->smax_value < sval)
5514 return 1;
5515 else if (reg->smin_value >= sval)
5516 return 0;
5517 break;
5518 case BPF_JGE:
5519 if (reg->umin_value >= val)
5520 return 1;
5521 else if (reg->umax_value < val)
5522 return 0;
5523 break;
5524 case BPF_JSGE:
5525 if (reg->smin_value >= sval)
5526 return 1;
5527 else if (reg->smax_value < sval)
5528 return 0;
5529 break;
5530 case BPF_JLE:
5531 if (reg->umax_value <= val)
5532 return 1;
5533 else if (reg->umin_value > val)
5534 return 0;
5535 break;
5536 case BPF_JSLE:
5537 if (reg->smax_value <= sval)
5538 return 1;
5539 else if (reg->smin_value > sval)
5540 return 0;
5541 break;
5542 }
5543
5544 return -1;
5545}
5546
5547/* Generate min value of the high 32-bit from TNUM info. */
5548static u64 gen_hi_min(struct tnum var)
5549{
5550 return var.value & ~0xffffffffULL;
5551}
5552
5553/* Generate max value of the high 32-bit from TNUM info. */
5554static u64 gen_hi_max(struct tnum var)
5555{
5556 return (var.value | var.mask) & ~0xffffffffULL;
5557}
5558
5559/* Return true if VAL is compared with a s64 sign extended from s32, and they
5560 * are with the same signedness.
5561 */
5562static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
5563{
5564 return ((s32)sval >= 0 &&
5565 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
5566 ((s32)sval < 0 &&
5567 reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005568}
5569
Olivier Deprez0e641232021-09-23 10:07:05 +02005570/* Constrain the possible values of @reg with unsigned upper bound @bound.
5571 * If @is_exclusive, @bound is an exclusive limit, otherwise it is inclusive.
5572 * If @is_jmp32, @bound is a 32-bit value that only constrains the low 32 bits
5573 * of @reg.
5574 */
5575static void set_upper_bound(struct bpf_reg_state *reg, u64 bound, bool is_jmp32,
5576 bool is_exclusive)
5577{
5578 if (is_exclusive) {
5579 /* There are no values for `reg` that make `reg<0` true. */
5580 if (bound == 0)
5581 return;
5582 bound--;
5583 }
5584 if (is_jmp32) {
5585 /* Constrain the register's value in the tnum representation.
5586 * For 64-bit comparisons this happens later in
5587 * __reg_bound_offset(), but for 32-bit comparisons, we can be
5588 * more precise than what can be derived from the updated
5589 * numeric bounds.
5590 */
5591 struct tnum t = tnum_range(0, bound);
5592
5593 t.mask |= ~0xffffffffULL; /* upper half is unknown */
5594 reg->var_off = tnum_intersect(reg->var_off, t);
5595
5596 /* Compute the 64-bit bound from the 32-bit bound. */
5597 bound += gen_hi_max(reg->var_off);
5598 }
5599 reg->umax_value = min(reg->umax_value, bound);
5600}
5601
5602/* Constrain the possible values of @reg with unsigned lower bound @bound.
5603 * If @is_exclusive, @bound is an exclusive limit, otherwise it is inclusive.
5604 * If @is_jmp32, @bound is a 32-bit value that only constrains the low 32 bits
5605 * of @reg.
5606 */
5607static void set_lower_bound(struct bpf_reg_state *reg, u64 bound, bool is_jmp32,
5608 bool is_exclusive)
5609{
5610 if (is_exclusive) {
5611 /* There are no values for `reg` that make `reg>MAX` true. */
5612 if (bound == (is_jmp32 ? U32_MAX : U64_MAX))
5613 return;
5614 bound++;
5615 }
5616 if (is_jmp32) {
5617 /* Constrain the register's value in the tnum representation.
5618 * For 64-bit comparisons this happens later in
5619 * __reg_bound_offset(), but for 32-bit comparisons, we can be
5620 * more precise than what can be derived from the updated
5621 * numeric bounds.
5622 */
5623 struct tnum t = tnum_range(bound, U32_MAX);
5624
5625 t.mask |= ~0xffffffffULL; /* upper half is unknown */
5626 reg->var_off = tnum_intersect(reg->var_off, t);
5627
5628 /* Compute the 64-bit bound from the 32-bit bound. */
5629 bound += gen_hi_min(reg->var_off);
5630 }
5631 reg->umin_value = max(reg->umin_value, bound);
5632}
5633
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005634/* Adjusts the register min/max values in the case that the dst_reg is the
5635 * variable register that we are working on, and src_reg is a constant or we're
5636 * simply doing a BPF_K check.
5637 * In JEQ/JNE cases we also adjust the var_off values.
5638 */
5639static void reg_set_min_max(struct bpf_reg_state *true_reg,
5640 struct bpf_reg_state *false_reg, u64 val,
David Brazdil0f672f62019-12-10 10:32:29 +00005641 u8 opcode, bool is_jmp32)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005642{
David Brazdil0f672f62019-12-10 10:32:29 +00005643 s64 sval;
5644
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005645 /* If the dst_reg is a pointer, we can't learn anything about its
5646 * variable offset from the compare (unless src_reg were a pointer into
5647 * the same object, but we don't bother with that.
5648 * Since false_reg and true_reg have the same type by construction, we
5649 * only need to check one of them for pointerness.
5650 */
5651 if (__is_pointer_value(false, false_reg))
5652 return;
5653
David Brazdil0f672f62019-12-10 10:32:29 +00005654 val = is_jmp32 ? (u32)val : val;
5655 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
5656
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005657 switch (opcode) {
5658 case BPF_JEQ:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005659 case BPF_JNE:
David Brazdil0f672f62019-12-10 10:32:29 +00005660 {
5661 struct bpf_reg_state *reg =
5662 opcode == BPF_JEQ ? true_reg : false_reg;
5663
5664 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but
5665 * if it is true we know the value for sure. Likewise for
5666 * BPF_JNE.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005667 */
David Brazdil0f672f62019-12-10 10:32:29 +00005668 if (is_jmp32) {
5669 u64 old_v = reg->var_off.value;
5670 u64 hi_mask = ~0xffffffffULL;
5671
5672 reg->var_off.value = (old_v & hi_mask) | val;
5673 reg->var_off.mask &= hi_mask;
5674 } else {
5675 __mark_reg_known(reg, val);
5676 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005677 break;
David Brazdil0f672f62019-12-10 10:32:29 +00005678 }
5679 case BPF_JSET:
5680 false_reg->var_off = tnum_and(false_reg->var_off,
5681 tnum_const(~val));
5682 if (is_power_of_2(val))
5683 true_reg->var_off = tnum_or(true_reg->var_off,
5684 tnum_const(val));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005685 break;
5686 case BPF_JGE:
David Brazdil0f672f62019-12-10 10:32:29 +00005687 case BPF_JGT:
5688 {
Olivier Deprez0e641232021-09-23 10:07:05 +02005689 set_upper_bound(false_reg, val, is_jmp32, opcode == BPF_JGE);
5690 set_lower_bound(true_reg, val, is_jmp32, opcode == BPF_JGT);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005691 break;
David Brazdil0f672f62019-12-10 10:32:29 +00005692 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005693 case BPF_JSGE:
David Brazdil0f672f62019-12-10 10:32:29 +00005694 case BPF_JSGT:
5695 {
5696 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
5697 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
5698
5699 /* If the full s64 was not sign-extended from s32 then don't
5700 * deduct further info.
5701 */
5702 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5703 break;
5704 false_reg->smax_value = min(false_reg->smax_value, false_smax);
5705 true_reg->smin_value = max(true_reg->smin_value, true_smin);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005706 break;
David Brazdil0f672f62019-12-10 10:32:29 +00005707 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005708 case BPF_JLE:
David Brazdil0f672f62019-12-10 10:32:29 +00005709 case BPF_JLT:
5710 {
Olivier Deprez0e641232021-09-23 10:07:05 +02005711 set_lower_bound(false_reg, val, is_jmp32, opcode == BPF_JLE);
5712 set_upper_bound(true_reg, val, is_jmp32, opcode == BPF_JLT);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005713 break;
David Brazdil0f672f62019-12-10 10:32:29 +00005714 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005715 case BPF_JSLE:
David Brazdil0f672f62019-12-10 10:32:29 +00005716 case BPF_JSLT:
5717 {
5718 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
5719 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
5720
5721 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5722 break;
5723 false_reg->smin_value = max(false_reg->smin_value, false_smin);
5724 true_reg->smax_value = min(true_reg->smax_value, true_smax);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005725 break;
David Brazdil0f672f62019-12-10 10:32:29 +00005726 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005727 default:
5728 break;
5729 }
5730
5731 __reg_deduce_bounds(false_reg);
5732 __reg_deduce_bounds(true_reg);
5733 /* We might have learned some bits from the bounds. */
5734 __reg_bound_offset(false_reg);
5735 __reg_bound_offset(true_reg);
5736 /* Intersecting with the old var_off might have improved our bounds
5737 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5738 * then new var_off is (0; 0x7f...fc) which improves our umax.
5739 */
5740 __update_reg_bounds(false_reg);
5741 __update_reg_bounds(true_reg);
5742}
5743
5744/* Same as above, but for the case that dst_reg holds a constant and src_reg is
5745 * the variable reg.
5746 */
5747static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
5748 struct bpf_reg_state *false_reg, u64 val,
David Brazdil0f672f62019-12-10 10:32:29 +00005749 u8 opcode, bool is_jmp32)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005750{
David Brazdil0f672f62019-12-10 10:32:29 +00005751 s64 sval;
5752
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005753 if (__is_pointer_value(false, false_reg))
5754 return;
5755
David Brazdil0f672f62019-12-10 10:32:29 +00005756 val = is_jmp32 ? (u32)val : val;
5757 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
5758
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005759 switch (opcode) {
5760 case BPF_JEQ:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005761 case BPF_JNE:
David Brazdil0f672f62019-12-10 10:32:29 +00005762 {
5763 struct bpf_reg_state *reg =
5764 opcode == BPF_JEQ ? true_reg : false_reg;
5765
5766 if (is_jmp32) {
5767 u64 old_v = reg->var_off.value;
5768 u64 hi_mask = ~0xffffffffULL;
5769
5770 reg->var_off.value = (old_v & hi_mask) | val;
5771 reg->var_off.mask &= hi_mask;
5772 } else {
5773 __mark_reg_known(reg, val);
5774 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005775 break;
David Brazdil0f672f62019-12-10 10:32:29 +00005776 }
5777 case BPF_JSET:
5778 false_reg->var_off = tnum_and(false_reg->var_off,
5779 tnum_const(~val));
5780 if (is_power_of_2(val))
5781 true_reg->var_off = tnum_or(true_reg->var_off,
5782 tnum_const(val));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005783 break;
5784 case BPF_JGE:
David Brazdil0f672f62019-12-10 10:32:29 +00005785 case BPF_JGT:
5786 {
Olivier Deprez0e641232021-09-23 10:07:05 +02005787 set_lower_bound(false_reg, val, is_jmp32, opcode == BPF_JGE);
5788 set_upper_bound(true_reg, val, is_jmp32, opcode == BPF_JGT);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005789 break;
David Brazdil0f672f62019-12-10 10:32:29 +00005790 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005791 case BPF_JSGE:
David Brazdil0f672f62019-12-10 10:32:29 +00005792 case BPF_JSGT:
5793 {
5794 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1;
5795 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
5796
5797 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5798 break;
5799 false_reg->smin_value = max(false_reg->smin_value, false_smin);
5800 true_reg->smax_value = min(true_reg->smax_value, true_smax);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005801 break;
David Brazdil0f672f62019-12-10 10:32:29 +00005802 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005803 case BPF_JLE:
David Brazdil0f672f62019-12-10 10:32:29 +00005804 case BPF_JLT:
5805 {
Olivier Deprez0e641232021-09-23 10:07:05 +02005806 set_upper_bound(false_reg, val, is_jmp32, opcode == BPF_JLE);
5807 set_lower_bound(true_reg, val, is_jmp32, opcode == BPF_JLT);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005808 break;
David Brazdil0f672f62019-12-10 10:32:29 +00005809 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005810 case BPF_JSLE:
David Brazdil0f672f62019-12-10 10:32:29 +00005811 case BPF_JSLT:
5812 {
5813 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1;
5814 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
5815
5816 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5817 break;
5818 false_reg->smax_value = min(false_reg->smax_value, false_smax);
5819 true_reg->smin_value = max(true_reg->smin_value, true_smin);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005820 break;
David Brazdil0f672f62019-12-10 10:32:29 +00005821 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005822 default:
5823 break;
5824 }
5825
5826 __reg_deduce_bounds(false_reg);
5827 __reg_deduce_bounds(true_reg);
5828 /* We might have learned some bits from the bounds. */
5829 __reg_bound_offset(false_reg);
5830 __reg_bound_offset(true_reg);
5831 /* Intersecting with the old var_off might have improved our bounds
5832 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5833 * then new var_off is (0; 0x7f...fc) which improves our umax.
5834 */
5835 __update_reg_bounds(false_reg);
5836 __update_reg_bounds(true_reg);
5837}
5838
5839/* Regs are known to be equal, so intersect their min/max/var_off */
5840static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
5841 struct bpf_reg_state *dst_reg)
5842{
5843 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
5844 dst_reg->umin_value);
5845 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
5846 dst_reg->umax_value);
5847 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
5848 dst_reg->smin_value);
5849 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
5850 dst_reg->smax_value);
5851 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
5852 dst_reg->var_off);
5853 /* We might have learned new bounds from the var_off. */
5854 __update_reg_bounds(src_reg);
5855 __update_reg_bounds(dst_reg);
5856 /* We might have learned something about the sign bit. */
5857 __reg_deduce_bounds(src_reg);
5858 __reg_deduce_bounds(dst_reg);
5859 /* We might have learned some bits from the bounds. */
5860 __reg_bound_offset(src_reg);
5861 __reg_bound_offset(dst_reg);
5862 /* Intersecting with the old var_off might have improved our bounds
5863 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5864 * then new var_off is (0; 0x7f...fc) which improves our umax.
5865 */
5866 __update_reg_bounds(src_reg);
5867 __update_reg_bounds(dst_reg);
5868}
5869
5870static void reg_combine_min_max(struct bpf_reg_state *true_src,
5871 struct bpf_reg_state *true_dst,
5872 struct bpf_reg_state *false_src,
5873 struct bpf_reg_state *false_dst,
5874 u8 opcode)
5875{
5876 switch (opcode) {
5877 case BPF_JEQ:
5878 __reg_combine_min_max(true_src, true_dst);
5879 break;
5880 case BPF_JNE:
5881 __reg_combine_min_max(false_src, false_dst);
5882 break;
5883 }
5884}
5885
David Brazdil0f672f62019-12-10 10:32:29 +00005886static void mark_ptr_or_null_reg(struct bpf_func_state *state,
5887 struct bpf_reg_state *reg, u32 id,
5888 bool is_null)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005889{
David Brazdil0f672f62019-12-10 10:32:29 +00005890 if (reg_type_may_be_null(reg->type) && reg->id == id) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005891 /* Old offset (both fixed and variable parts) should
5892 * have been known-zero, because we don't allow pointer
5893 * arithmetic on pointers that might be NULL.
5894 */
5895 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
5896 !tnum_equals_const(reg->var_off, 0) ||
5897 reg->off)) {
5898 __mark_reg_known_zero(reg);
5899 reg->off = 0;
5900 }
5901 if (is_null) {
5902 reg->type = SCALAR_VALUE;
David Brazdil0f672f62019-12-10 10:32:29 +00005903 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
5904 if (reg->map_ptr->inner_map_meta) {
5905 reg->type = CONST_PTR_TO_MAP;
5906 reg->map_ptr = reg->map_ptr->inner_map_meta;
5907 } else if (reg->map_ptr->map_type ==
5908 BPF_MAP_TYPE_XSKMAP) {
5909 reg->type = PTR_TO_XDP_SOCK;
5910 } else {
5911 reg->type = PTR_TO_MAP_VALUE;
5912 }
5913 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
5914 reg->type = PTR_TO_SOCKET;
5915 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
5916 reg->type = PTR_TO_SOCK_COMMON;
5917 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
5918 reg->type = PTR_TO_TCP_SOCK;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005919 }
David Brazdil0f672f62019-12-10 10:32:29 +00005920 if (is_null) {
5921 /* We don't need id and ref_obj_id from this point
5922 * onwards anymore, thus we should better reset it,
5923 * so that state pruning has chances to take effect.
5924 */
5925 reg->id = 0;
5926 reg->ref_obj_id = 0;
5927 } else if (!reg_may_point_to_spin_lock(reg)) {
5928 /* For not-NULL ptr, reg->ref_obj_id will be reset
5929 * in release_reg_references().
5930 *
5931 * reg->id is still used by spin_lock ptr. Other
5932 * than spin_lock ptr type, reg->id can be reset.
5933 */
5934 reg->id = 0;
5935 }
5936 }
5937}
5938
5939static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
5940 bool is_null)
5941{
5942 struct bpf_reg_state *reg;
5943 int i;
5944
5945 for (i = 0; i < MAX_BPF_REG; i++)
5946 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
5947
5948 bpf_for_each_spilled_reg(i, state, reg) {
5949 if (!reg)
5950 continue;
5951 mark_ptr_or_null_reg(state, reg, id, is_null);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005952 }
5953}
5954
5955/* The logic is similar to find_good_pkt_pointers(), both could eventually
5956 * be folded together at some point.
5957 */
David Brazdil0f672f62019-12-10 10:32:29 +00005958static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
5959 bool is_null)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005960{
5961 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5962 struct bpf_reg_state *regs = state->regs;
David Brazdil0f672f62019-12-10 10:32:29 +00005963 u32 ref_obj_id = regs[regno].ref_obj_id;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005964 u32 id = regs[regno].id;
David Brazdil0f672f62019-12-10 10:32:29 +00005965 int i;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005966
David Brazdil0f672f62019-12-10 10:32:29 +00005967 if (ref_obj_id && ref_obj_id == id && is_null)
5968 /* regs[regno] is in the " == NULL" branch.
5969 * No one could have freed the reference state before
5970 * doing the NULL check.
5971 */
5972 WARN_ON_ONCE(release_reference_state(state, id));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005973
David Brazdil0f672f62019-12-10 10:32:29 +00005974 for (i = 0; i <= vstate->curframe; i++)
5975 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005976}
5977
5978static bool try_match_pkt_pointers(const struct bpf_insn *insn,
5979 struct bpf_reg_state *dst_reg,
5980 struct bpf_reg_state *src_reg,
5981 struct bpf_verifier_state *this_branch,
5982 struct bpf_verifier_state *other_branch)
5983{
5984 if (BPF_SRC(insn->code) != BPF_X)
5985 return false;
5986
David Brazdil0f672f62019-12-10 10:32:29 +00005987 /* Pointers are always 64-bit. */
5988 if (BPF_CLASS(insn->code) == BPF_JMP32)
5989 return false;
5990
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005991 switch (BPF_OP(insn->code)) {
5992 case BPF_JGT:
5993 if ((dst_reg->type == PTR_TO_PACKET &&
5994 src_reg->type == PTR_TO_PACKET_END) ||
5995 (dst_reg->type == PTR_TO_PACKET_META &&
5996 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5997 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
5998 find_good_pkt_pointers(this_branch, dst_reg,
5999 dst_reg->type, false);
6000 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
6001 src_reg->type == PTR_TO_PACKET) ||
6002 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6003 src_reg->type == PTR_TO_PACKET_META)) {
6004 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
6005 find_good_pkt_pointers(other_branch, src_reg,
6006 src_reg->type, true);
6007 } else {
6008 return false;
6009 }
6010 break;
6011 case BPF_JLT:
6012 if ((dst_reg->type == PTR_TO_PACKET &&
6013 src_reg->type == PTR_TO_PACKET_END) ||
6014 (dst_reg->type == PTR_TO_PACKET_META &&
6015 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6016 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
6017 find_good_pkt_pointers(other_branch, dst_reg,
6018 dst_reg->type, true);
6019 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
6020 src_reg->type == PTR_TO_PACKET) ||
6021 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6022 src_reg->type == PTR_TO_PACKET_META)) {
6023 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
6024 find_good_pkt_pointers(this_branch, src_reg,
6025 src_reg->type, false);
6026 } else {
6027 return false;
6028 }
6029 break;
6030 case BPF_JGE:
6031 if ((dst_reg->type == PTR_TO_PACKET &&
6032 src_reg->type == PTR_TO_PACKET_END) ||
6033 (dst_reg->type == PTR_TO_PACKET_META &&
6034 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6035 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
6036 find_good_pkt_pointers(this_branch, dst_reg,
6037 dst_reg->type, true);
6038 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
6039 src_reg->type == PTR_TO_PACKET) ||
6040 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6041 src_reg->type == PTR_TO_PACKET_META)) {
6042 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
6043 find_good_pkt_pointers(other_branch, src_reg,
6044 src_reg->type, false);
6045 } else {
6046 return false;
6047 }
6048 break;
6049 case BPF_JLE:
6050 if ((dst_reg->type == PTR_TO_PACKET &&
6051 src_reg->type == PTR_TO_PACKET_END) ||
6052 (dst_reg->type == PTR_TO_PACKET_META &&
6053 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6054 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
6055 find_good_pkt_pointers(other_branch, dst_reg,
6056 dst_reg->type, false);
6057 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
6058 src_reg->type == PTR_TO_PACKET) ||
6059 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6060 src_reg->type == PTR_TO_PACKET_META)) {
6061 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
6062 find_good_pkt_pointers(this_branch, src_reg,
6063 src_reg->type, true);
6064 } else {
6065 return false;
6066 }
6067 break;
6068 default:
6069 return false;
6070 }
6071
6072 return true;
6073}
6074
6075static int check_cond_jmp_op(struct bpf_verifier_env *env,
6076 struct bpf_insn *insn, int *insn_idx)
6077{
6078 struct bpf_verifier_state *this_branch = env->cur_state;
6079 struct bpf_verifier_state *other_branch;
6080 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
David Brazdil0f672f62019-12-10 10:32:29 +00006081 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006082 u8 opcode = BPF_OP(insn->code);
David Brazdil0f672f62019-12-10 10:32:29 +00006083 bool is_jmp32;
6084 int pred = -1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006085 int err;
6086
David Brazdil0f672f62019-12-10 10:32:29 +00006087 /* Only conditional jumps are expected to reach here. */
6088 if (opcode == BPF_JA || opcode > BPF_JSLE) {
6089 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006090 return -EINVAL;
6091 }
6092
6093 if (BPF_SRC(insn->code) == BPF_X) {
6094 if (insn->imm != 0) {
David Brazdil0f672f62019-12-10 10:32:29 +00006095 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006096 return -EINVAL;
6097 }
6098
6099 /* check src1 operand */
6100 err = check_reg_arg(env, insn->src_reg, SRC_OP);
6101 if (err)
6102 return err;
6103
6104 if (is_pointer_value(env, insn->src_reg)) {
6105 verbose(env, "R%d pointer comparison prohibited\n",
6106 insn->src_reg);
6107 return -EACCES;
6108 }
David Brazdil0f672f62019-12-10 10:32:29 +00006109 src_reg = &regs[insn->src_reg];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006110 } else {
6111 if (insn->src_reg != BPF_REG_0) {
David Brazdil0f672f62019-12-10 10:32:29 +00006112 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006113 return -EINVAL;
6114 }
6115 }
6116
6117 /* check src2 operand */
6118 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6119 if (err)
6120 return err;
6121
6122 dst_reg = &regs[insn->dst_reg];
David Brazdil0f672f62019-12-10 10:32:29 +00006123 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006124
David Brazdil0f672f62019-12-10 10:32:29 +00006125 if (BPF_SRC(insn->code) == BPF_K)
6126 pred = is_branch_taken(dst_reg, insn->imm,
6127 opcode, is_jmp32);
6128 else if (src_reg->type == SCALAR_VALUE &&
6129 tnum_is_const(src_reg->var_off))
6130 pred = is_branch_taken(dst_reg, src_reg->var_off.value,
6131 opcode, is_jmp32);
6132 if (pred >= 0) {
6133 err = mark_chain_precision(env, insn->dst_reg);
6134 if (BPF_SRC(insn->code) == BPF_X && !err)
6135 err = mark_chain_precision(env, insn->src_reg);
6136 if (err)
6137 return err;
6138 }
Olivier Deprez0e641232021-09-23 10:07:05 +02006139
David Brazdil0f672f62019-12-10 10:32:29 +00006140 if (pred == 1) {
Olivier Deprez0e641232021-09-23 10:07:05 +02006141 /* Only follow the goto, ignore fall-through. If needed, push
6142 * the fall-through branch for simulation under speculative
6143 * execution.
6144 */
6145 if (!env->allow_ptr_leaks &&
6146 !sanitize_speculative_path(env, insn, *insn_idx + 1,
6147 *insn_idx))
6148 return -EFAULT;
David Brazdil0f672f62019-12-10 10:32:29 +00006149 *insn_idx += insn->off;
6150 return 0;
6151 } else if (pred == 0) {
Olivier Deprez0e641232021-09-23 10:07:05 +02006152 /* Only follow the fall-through branch, since that's where the
6153 * program will go. If needed, push the goto branch for
6154 * simulation under speculative execution.
David Brazdil0f672f62019-12-10 10:32:29 +00006155 */
Olivier Deprez0e641232021-09-23 10:07:05 +02006156 if (!env->allow_ptr_leaks &&
6157 !sanitize_speculative_path(env, insn,
6158 *insn_idx + insn->off + 1,
6159 *insn_idx))
6160 return -EFAULT;
David Brazdil0f672f62019-12-10 10:32:29 +00006161 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006162 }
6163
David Brazdil0f672f62019-12-10 10:32:29 +00006164 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
6165 false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006166 if (!other_branch)
6167 return -EFAULT;
6168 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
6169
6170 /* detect if we are comparing against a constant value so we can adjust
6171 * our min/max values for our dst register.
6172 * this is only legit if both are scalars (or pointers to the same
6173 * object, I suppose, but we don't support that right now), because
6174 * otherwise the different base pointers mean the offsets aren't
6175 * comparable.
6176 */
6177 if (BPF_SRC(insn->code) == BPF_X) {
David Brazdil0f672f62019-12-10 10:32:29 +00006178 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
6179 struct bpf_reg_state lo_reg0 = *dst_reg;
6180 struct bpf_reg_state lo_reg1 = *src_reg;
6181 struct bpf_reg_state *src_lo, *dst_lo;
6182
6183 dst_lo = &lo_reg0;
6184 src_lo = &lo_reg1;
6185 coerce_reg_to_size(dst_lo, 4);
6186 coerce_reg_to_size(src_lo, 4);
6187
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006188 if (dst_reg->type == SCALAR_VALUE &&
David Brazdil0f672f62019-12-10 10:32:29 +00006189 src_reg->type == SCALAR_VALUE) {
6190 if (tnum_is_const(src_reg->var_off) ||
6191 (is_jmp32 && tnum_is_const(src_lo->var_off)))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006192 reg_set_min_max(&other_branch_regs[insn->dst_reg],
David Brazdil0f672f62019-12-10 10:32:29 +00006193 dst_reg,
6194 is_jmp32
6195 ? src_lo->var_off.value
6196 : src_reg->var_off.value,
6197 opcode, is_jmp32);
6198 else if (tnum_is_const(dst_reg->var_off) ||
6199 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006200 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
David Brazdil0f672f62019-12-10 10:32:29 +00006201 src_reg,
6202 is_jmp32
6203 ? dst_lo->var_off.value
6204 : dst_reg->var_off.value,
6205 opcode, is_jmp32);
6206 else if (!is_jmp32 &&
6207 (opcode == BPF_JEQ || opcode == BPF_JNE))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006208 /* Comparing for equality, we can combine knowledge */
6209 reg_combine_min_max(&other_branch_regs[insn->src_reg],
6210 &other_branch_regs[insn->dst_reg],
David Brazdil0f672f62019-12-10 10:32:29 +00006211 src_reg, dst_reg, opcode);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006212 }
6213 } else if (dst_reg->type == SCALAR_VALUE) {
6214 reg_set_min_max(&other_branch_regs[insn->dst_reg],
David Brazdil0f672f62019-12-10 10:32:29 +00006215 dst_reg, insn->imm, opcode, is_jmp32);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006216 }
6217
David Brazdil0f672f62019-12-10 10:32:29 +00006218 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
6219 * NOTE: these optimizations below are related with pointer comparison
6220 * which will never be JMP32.
6221 */
6222 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006223 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
David Brazdil0f672f62019-12-10 10:32:29 +00006224 reg_type_may_be_null(dst_reg->type)) {
6225 /* Mark all identical registers in each branch as either
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006226 * safe or unknown depending R == 0 or R != 0 conditional.
6227 */
David Brazdil0f672f62019-12-10 10:32:29 +00006228 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
6229 opcode == BPF_JNE);
6230 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
6231 opcode == BPF_JEQ);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006232 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
6233 this_branch, other_branch) &&
6234 is_pointer_value(env, insn->dst_reg)) {
6235 verbose(env, "R%d pointer comparison prohibited\n",
6236 insn->dst_reg);
6237 return -EACCES;
6238 }
David Brazdil0f672f62019-12-10 10:32:29 +00006239 if (env->log.level & BPF_LOG_LEVEL)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006240 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
6241 return 0;
6242}
6243
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006244/* verify BPF_LD_IMM64 instruction */
6245static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
6246{
David Brazdil0f672f62019-12-10 10:32:29 +00006247 struct bpf_insn_aux_data *aux = cur_aux(env);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006248 struct bpf_reg_state *regs = cur_regs(env);
David Brazdil0f672f62019-12-10 10:32:29 +00006249 struct bpf_map *map;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006250 int err;
6251
6252 if (BPF_SIZE(insn->code) != BPF_DW) {
6253 verbose(env, "invalid BPF_LD_IMM insn\n");
6254 return -EINVAL;
6255 }
6256 if (insn->off != 0) {
6257 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
6258 return -EINVAL;
6259 }
6260
6261 err = check_reg_arg(env, insn->dst_reg, DST_OP);
6262 if (err)
6263 return err;
6264
6265 if (insn->src_reg == 0) {
6266 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
6267
6268 regs[insn->dst_reg].type = SCALAR_VALUE;
6269 __mark_reg_known(&regs[insn->dst_reg], imm);
6270 return 0;
6271 }
6272
David Brazdil0f672f62019-12-10 10:32:29 +00006273 map = env->used_maps[aux->map_index];
6274 mark_reg_known_zero(env, regs, insn->dst_reg);
6275 regs[insn->dst_reg].map_ptr = map;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006276
David Brazdil0f672f62019-12-10 10:32:29 +00006277 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
6278 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
6279 regs[insn->dst_reg].off = aux->map_off;
6280 if (map_value_has_spin_lock(map))
6281 regs[insn->dst_reg].id = ++env->id_gen;
6282 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
6283 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
6284 } else {
6285 verbose(env, "bpf verifier is misconfigured\n");
6286 return -EINVAL;
6287 }
6288
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006289 return 0;
6290}
6291
6292static bool may_access_skb(enum bpf_prog_type type)
6293{
6294 switch (type) {
6295 case BPF_PROG_TYPE_SOCKET_FILTER:
6296 case BPF_PROG_TYPE_SCHED_CLS:
6297 case BPF_PROG_TYPE_SCHED_ACT:
6298 return true;
6299 default:
6300 return false;
6301 }
6302}
6303
6304/* verify safety of LD_ABS|LD_IND instructions:
6305 * - they can only appear in the programs where ctx == skb
6306 * - since they are wrappers of function calls, they scratch R1-R5 registers,
6307 * preserve R6-R9, and store return value into R0
6308 *
6309 * Implicit input:
6310 * ctx == skb == R6 == CTX
6311 *
6312 * Explicit input:
6313 * SRC == any register
6314 * IMM == 32-bit immediate
6315 *
6316 * Output:
6317 * R0 - 8/16/32-bit skb data converted to cpu endianness
6318 */
6319static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
6320{
6321 struct bpf_reg_state *regs = cur_regs(env);
Olivier Deprez0e641232021-09-23 10:07:05 +02006322 static const int ctx_reg = BPF_REG_6;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006323 u8 mode = BPF_MODE(insn->code);
6324 int i, err;
6325
6326 if (!may_access_skb(env->prog->type)) {
6327 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
6328 return -EINVAL;
6329 }
6330
6331 if (!env->ops->gen_ld_abs) {
6332 verbose(env, "bpf verifier is misconfigured\n");
6333 return -EINVAL;
6334 }
6335
6336 if (env->subprog_cnt > 1) {
6337 /* when program has LD_ABS insn JITs and interpreter assume
6338 * that r1 == ctx == skb which is not the case for callees
6339 * that can have arbitrary arguments. It's problematic
6340 * for main prog as well since JITs would need to analyze
6341 * all functions in order to make proper register save/restore
6342 * decisions in the main prog. Hence disallow LD_ABS with calls
6343 */
6344 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
6345 return -EINVAL;
6346 }
6347
6348 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
6349 BPF_SIZE(insn->code) == BPF_DW ||
6350 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
6351 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
6352 return -EINVAL;
6353 }
6354
6355 /* check whether implicit source operand (register R6) is readable */
Olivier Deprez0e641232021-09-23 10:07:05 +02006356 err = check_reg_arg(env, ctx_reg, SRC_OP);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006357 if (err)
6358 return err;
6359
David Brazdil0f672f62019-12-10 10:32:29 +00006360 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
6361 * gen_ld_abs() may terminate the program at runtime, leading to
6362 * reference leak.
6363 */
6364 err = check_reference_leak(env);
6365 if (err) {
6366 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
6367 return err;
6368 }
6369
6370 if (env->cur_state->active_spin_lock) {
6371 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
6372 return -EINVAL;
6373 }
6374
Olivier Deprez0e641232021-09-23 10:07:05 +02006375 if (regs[ctx_reg].type != PTR_TO_CTX) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006376 verbose(env,
6377 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
6378 return -EINVAL;
6379 }
6380
6381 if (mode == BPF_IND) {
6382 /* check explicit source operand */
6383 err = check_reg_arg(env, insn->src_reg, SRC_OP);
6384 if (err)
6385 return err;
6386 }
6387
Olivier Deprez0e641232021-09-23 10:07:05 +02006388 err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
6389 if (err < 0)
6390 return err;
6391
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006392 /* reset caller saved regs to unreadable */
6393 for (i = 0; i < CALLER_SAVED_REGS; i++) {
6394 mark_reg_not_init(env, regs, caller_saved[i]);
6395 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6396 }
6397
6398 /* mark destination R0 register as readable, since it contains
6399 * the value fetched from the packet.
6400 * Already marked as written above.
6401 */
6402 mark_reg_unknown(env, regs, BPF_REG_0);
David Brazdil0f672f62019-12-10 10:32:29 +00006403 /* ld_abs load up to 32-bit skb data. */
6404 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006405 return 0;
6406}
6407
6408static int check_return_code(struct bpf_verifier_env *env)
6409{
David Brazdil0f672f62019-12-10 10:32:29 +00006410 struct tnum enforce_attach_type_range = tnum_unknown;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006411 struct bpf_reg_state *reg;
6412 struct tnum range = tnum_range(0, 1);
6413
6414 switch (env->prog->type) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006415 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
David Brazdil0f672f62019-12-10 10:32:29 +00006416 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
6417 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG)
6418 range = tnum_range(1, 1);
6419 break;
6420 case BPF_PROG_TYPE_CGROUP_SKB:
6421 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
6422 range = tnum_range(0, 3);
6423 enforce_attach_type_range = tnum_range(2, 3);
6424 }
6425 break;
6426 case BPF_PROG_TYPE_CGROUP_SOCK:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006427 case BPF_PROG_TYPE_SOCK_OPS:
6428 case BPF_PROG_TYPE_CGROUP_DEVICE:
David Brazdil0f672f62019-12-10 10:32:29 +00006429 case BPF_PROG_TYPE_CGROUP_SYSCTL:
6430 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006431 break;
6432 default:
6433 return 0;
6434 }
6435
6436 reg = cur_regs(env) + BPF_REG_0;
6437 if (reg->type != SCALAR_VALUE) {
6438 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
6439 reg_type_str[reg->type]);
6440 return -EINVAL;
6441 }
6442
6443 if (!tnum_in(range, reg->var_off)) {
David Brazdil0f672f62019-12-10 10:32:29 +00006444 char tn_buf[48];
6445
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006446 verbose(env, "At program exit the register R0 ");
6447 if (!tnum_is_unknown(reg->var_off)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006448 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6449 verbose(env, "has value %s", tn_buf);
6450 } else {
6451 verbose(env, "has unknown scalar value");
6452 }
David Brazdil0f672f62019-12-10 10:32:29 +00006453 tnum_strn(tn_buf, sizeof(tn_buf), range);
6454 verbose(env, " should have been in %s\n", tn_buf);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006455 return -EINVAL;
6456 }
David Brazdil0f672f62019-12-10 10:32:29 +00006457
6458 if (!tnum_is_unknown(enforce_attach_type_range) &&
6459 tnum_in(enforce_attach_type_range, reg->var_off))
6460 env->prog->enforce_expected_attach_type = 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006461 return 0;
6462}
6463
6464/* non-recursive DFS pseudo code
6465 * 1 procedure DFS-iterative(G,v):
6466 * 2 label v as discovered
6467 * 3 let S be a stack
6468 * 4 S.push(v)
6469 * 5 while S is not empty
6470 * 6 t <- S.pop()
6471 * 7 if t is what we're looking for:
6472 * 8 return t
6473 * 9 for all edges e in G.adjacentEdges(t) do
6474 * 10 if edge e is already labelled
6475 * 11 continue with the next edge
6476 * 12 w <- G.adjacentVertex(t,e)
6477 * 13 if vertex w is not discovered and not explored
6478 * 14 label e as tree-edge
6479 * 15 label w as discovered
6480 * 16 S.push(w)
6481 * 17 continue at 5
6482 * 18 else if vertex w is discovered
6483 * 19 label e as back-edge
6484 * 20 else
6485 * 21 // vertex w is explored
6486 * 22 label e as forward- or cross-edge
6487 * 23 label t as explored
6488 * 24 S.pop()
6489 *
6490 * convention:
6491 * 0x10 - discovered
6492 * 0x11 - discovered and fall-through edge labelled
6493 * 0x12 - discovered and fall-through and branch edges labelled
6494 * 0x20 - explored
6495 */
6496
6497enum {
6498 DISCOVERED = 0x10,
6499 EXPLORED = 0x20,
6500 FALLTHROUGH = 1,
6501 BRANCH = 2,
6502};
6503
David Brazdil0f672f62019-12-10 10:32:29 +00006504static u32 state_htab_size(struct bpf_verifier_env *env)
6505{
6506 return env->prog->len;
6507}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006508
David Brazdil0f672f62019-12-10 10:32:29 +00006509static struct bpf_verifier_state_list **explored_state(
6510 struct bpf_verifier_env *env,
6511 int idx)
6512{
6513 struct bpf_verifier_state *cur = env->cur_state;
6514 struct bpf_func_state *state = cur->frame[cur->curframe];
6515
6516 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
6517}
6518
6519static void init_explored_state(struct bpf_verifier_env *env, int idx)
6520{
6521 env->insn_aux_data[idx].prune_point = true;
6522}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006523
6524/* t, w, e - match pseudo-code above:
6525 * t - index of current instruction
6526 * w - next instruction
6527 * e - edge
6528 */
David Brazdil0f672f62019-12-10 10:32:29 +00006529static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
6530 bool loop_ok)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006531{
David Brazdil0f672f62019-12-10 10:32:29 +00006532 int *insn_stack = env->cfg.insn_stack;
6533 int *insn_state = env->cfg.insn_state;
6534
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006535 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
6536 return 0;
6537
6538 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
6539 return 0;
6540
6541 if (w < 0 || w >= env->prog->len) {
David Brazdil0f672f62019-12-10 10:32:29 +00006542 verbose_linfo(env, t, "%d: ", t);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006543 verbose(env, "jump out of range from insn %d to %d\n", t, w);
6544 return -EINVAL;
6545 }
6546
6547 if (e == BRANCH)
6548 /* mark branch target for state pruning */
David Brazdil0f672f62019-12-10 10:32:29 +00006549 init_explored_state(env, w);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006550
6551 if (insn_state[w] == 0) {
6552 /* tree-edge */
6553 insn_state[t] = DISCOVERED | e;
6554 insn_state[w] = DISCOVERED;
David Brazdil0f672f62019-12-10 10:32:29 +00006555 if (env->cfg.cur_stack >= env->prog->len)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006556 return -E2BIG;
David Brazdil0f672f62019-12-10 10:32:29 +00006557 insn_stack[env->cfg.cur_stack++] = w;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006558 return 1;
6559 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
David Brazdil0f672f62019-12-10 10:32:29 +00006560 if (loop_ok && env->allow_ptr_leaks)
6561 return 0;
6562 verbose_linfo(env, t, "%d: ", t);
6563 verbose_linfo(env, w, "%d: ", w);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006564 verbose(env, "back-edge from insn %d to %d\n", t, w);
6565 return -EINVAL;
6566 } else if (insn_state[w] == EXPLORED) {
6567 /* forward- or cross-edge */
6568 insn_state[t] = DISCOVERED | e;
6569 } else {
6570 verbose(env, "insn state internal bug\n");
6571 return -EFAULT;
6572 }
6573 return 0;
6574}
6575
6576/* non-recursive depth-first-search to detect loops in BPF program
6577 * loop == back-edge in directed graph
6578 */
6579static int check_cfg(struct bpf_verifier_env *env)
6580{
6581 struct bpf_insn *insns = env->prog->insnsi;
6582 int insn_cnt = env->prog->len;
David Brazdil0f672f62019-12-10 10:32:29 +00006583 int *insn_stack, *insn_state;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006584 int ret = 0;
6585 int i, t;
6586
David Brazdil0f672f62019-12-10 10:32:29 +00006587 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006588 if (!insn_state)
6589 return -ENOMEM;
6590
David Brazdil0f672f62019-12-10 10:32:29 +00006591 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006592 if (!insn_stack) {
David Brazdil0f672f62019-12-10 10:32:29 +00006593 kvfree(insn_state);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006594 return -ENOMEM;
6595 }
6596
6597 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
6598 insn_stack[0] = 0; /* 0 is the first instruction */
David Brazdil0f672f62019-12-10 10:32:29 +00006599 env->cfg.cur_stack = 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006600
6601peek_stack:
David Brazdil0f672f62019-12-10 10:32:29 +00006602 if (env->cfg.cur_stack == 0)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006603 goto check_state;
David Brazdil0f672f62019-12-10 10:32:29 +00006604 t = insn_stack[env->cfg.cur_stack - 1];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006605
David Brazdil0f672f62019-12-10 10:32:29 +00006606 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
6607 BPF_CLASS(insns[t].code) == BPF_JMP32) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006608 u8 opcode = BPF_OP(insns[t].code);
6609
6610 if (opcode == BPF_EXIT) {
6611 goto mark_explored;
6612 } else if (opcode == BPF_CALL) {
David Brazdil0f672f62019-12-10 10:32:29 +00006613 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006614 if (ret == 1)
6615 goto peek_stack;
6616 else if (ret < 0)
6617 goto err_free;
6618 if (t + 1 < insn_cnt)
David Brazdil0f672f62019-12-10 10:32:29 +00006619 init_explored_state(env, t + 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006620 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
David Brazdil0f672f62019-12-10 10:32:29 +00006621 init_explored_state(env, t);
6622 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
6623 env, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006624 if (ret == 1)
6625 goto peek_stack;
6626 else if (ret < 0)
6627 goto err_free;
6628 }
6629 } else if (opcode == BPF_JA) {
6630 if (BPF_SRC(insns[t].code) != BPF_K) {
6631 ret = -EINVAL;
6632 goto err_free;
6633 }
6634 /* unconditional jump with single edge */
6635 ret = push_insn(t, t + insns[t].off + 1,
David Brazdil0f672f62019-12-10 10:32:29 +00006636 FALLTHROUGH, env, true);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006637 if (ret == 1)
6638 goto peek_stack;
6639 else if (ret < 0)
6640 goto err_free;
David Brazdil0f672f62019-12-10 10:32:29 +00006641 /* unconditional jmp is not a good pruning point,
6642 * but it's marked, since backtracking needs
6643 * to record jmp history in is_state_visited().
6644 */
6645 init_explored_state(env, t + insns[t].off + 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006646 /* tell verifier to check for equivalent states
6647 * after every call and jump
6648 */
6649 if (t + 1 < insn_cnt)
David Brazdil0f672f62019-12-10 10:32:29 +00006650 init_explored_state(env, t + 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006651 } else {
6652 /* conditional jump with two edges */
David Brazdil0f672f62019-12-10 10:32:29 +00006653 init_explored_state(env, t);
6654 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006655 if (ret == 1)
6656 goto peek_stack;
6657 else if (ret < 0)
6658 goto err_free;
6659
David Brazdil0f672f62019-12-10 10:32:29 +00006660 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006661 if (ret == 1)
6662 goto peek_stack;
6663 else if (ret < 0)
6664 goto err_free;
6665 }
6666 } else {
6667 /* all other non-branch instructions with single
6668 * fall-through edge
6669 */
David Brazdil0f672f62019-12-10 10:32:29 +00006670 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006671 if (ret == 1)
6672 goto peek_stack;
6673 else if (ret < 0)
6674 goto err_free;
6675 }
6676
6677mark_explored:
6678 insn_state[t] = EXPLORED;
David Brazdil0f672f62019-12-10 10:32:29 +00006679 if (env->cfg.cur_stack-- <= 0) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006680 verbose(env, "pop stack internal bug\n");
6681 ret = -EFAULT;
6682 goto err_free;
6683 }
6684 goto peek_stack;
6685
6686check_state:
6687 for (i = 0; i < insn_cnt; i++) {
6688 if (insn_state[i] != EXPLORED) {
6689 verbose(env, "unreachable insn %d\n", i);
6690 ret = -EINVAL;
6691 goto err_free;
6692 }
6693 }
6694 ret = 0; /* cfg looks good */
6695
6696err_free:
David Brazdil0f672f62019-12-10 10:32:29 +00006697 kvfree(insn_state);
6698 kvfree(insn_stack);
6699 env->cfg.insn_state = env->cfg.insn_stack = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006700 return ret;
6701}
6702
David Brazdil0f672f62019-12-10 10:32:29 +00006703/* The minimum supported BTF func info size */
6704#define MIN_BPF_FUNCINFO_SIZE 8
6705#define MAX_FUNCINFO_REC_SIZE 252
6706
6707static int check_btf_func(struct bpf_verifier_env *env,
6708 const union bpf_attr *attr,
6709 union bpf_attr __user *uattr)
6710{
6711 u32 i, nfuncs, urec_size, min_size;
6712 u32 krec_size = sizeof(struct bpf_func_info);
6713 struct bpf_func_info *krecord;
6714 const struct btf_type *type;
6715 struct bpf_prog *prog;
6716 const struct btf *btf;
6717 void __user *urecord;
6718 u32 prev_offset = 0;
6719 int ret = 0;
6720
6721 nfuncs = attr->func_info_cnt;
6722 if (!nfuncs)
6723 return 0;
6724
6725 if (nfuncs != env->subprog_cnt) {
6726 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
6727 return -EINVAL;
6728 }
6729
6730 urec_size = attr->func_info_rec_size;
6731 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
6732 urec_size > MAX_FUNCINFO_REC_SIZE ||
6733 urec_size % sizeof(u32)) {
6734 verbose(env, "invalid func info rec size %u\n", urec_size);
6735 return -EINVAL;
6736 }
6737
6738 prog = env->prog;
6739 btf = prog->aux->btf;
6740
6741 urecord = u64_to_user_ptr(attr->func_info);
6742 min_size = min_t(u32, krec_size, urec_size);
6743
6744 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
6745 if (!krecord)
6746 return -ENOMEM;
6747
6748 for (i = 0; i < nfuncs; i++) {
6749 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
6750 if (ret) {
6751 if (ret == -E2BIG) {
6752 verbose(env, "nonzero tailing record in func info");
6753 /* set the size kernel expects so loader can zero
6754 * out the rest of the record.
6755 */
6756 if (put_user(min_size, &uattr->func_info_rec_size))
6757 ret = -EFAULT;
6758 }
6759 goto err_free;
6760 }
6761
6762 if (copy_from_user(&krecord[i], urecord, min_size)) {
6763 ret = -EFAULT;
6764 goto err_free;
6765 }
6766
6767 /* check insn_off */
6768 if (i == 0) {
6769 if (krecord[i].insn_off) {
6770 verbose(env,
6771 "nonzero insn_off %u for the first func info record",
6772 krecord[i].insn_off);
6773 ret = -EINVAL;
6774 goto err_free;
6775 }
6776 } else if (krecord[i].insn_off <= prev_offset) {
6777 verbose(env,
6778 "same or smaller insn offset (%u) than previous func info record (%u)",
6779 krecord[i].insn_off, prev_offset);
6780 ret = -EINVAL;
6781 goto err_free;
6782 }
6783
6784 if (env->subprog_info[i].start != krecord[i].insn_off) {
6785 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
6786 ret = -EINVAL;
6787 goto err_free;
6788 }
6789
6790 /* check type_id */
6791 type = btf_type_by_id(btf, krecord[i].type_id);
6792 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
6793 verbose(env, "invalid type id %d in func info",
6794 krecord[i].type_id);
6795 ret = -EINVAL;
6796 goto err_free;
6797 }
6798
6799 prev_offset = krecord[i].insn_off;
6800 urecord += urec_size;
6801 }
6802
6803 prog->aux->func_info = krecord;
6804 prog->aux->func_info_cnt = nfuncs;
6805 return 0;
6806
6807err_free:
6808 kvfree(krecord);
6809 return ret;
6810}
6811
6812static void adjust_btf_func(struct bpf_verifier_env *env)
6813{
6814 int i;
6815
6816 if (!env->prog->aux->func_info)
6817 return;
6818
6819 for (i = 0; i < env->subprog_cnt; i++)
6820 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
6821}
6822
6823#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
6824 sizeof(((struct bpf_line_info *)(0))->line_col))
6825#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
6826
6827static int check_btf_line(struct bpf_verifier_env *env,
6828 const union bpf_attr *attr,
6829 union bpf_attr __user *uattr)
6830{
6831 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
6832 struct bpf_subprog_info *sub;
6833 struct bpf_line_info *linfo;
6834 struct bpf_prog *prog;
6835 const struct btf *btf;
6836 void __user *ulinfo;
6837 int err;
6838
6839 nr_linfo = attr->line_info_cnt;
6840 if (!nr_linfo)
6841 return 0;
6842
6843 rec_size = attr->line_info_rec_size;
6844 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
6845 rec_size > MAX_LINEINFO_REC_SIZE ||
6846 rec_size & (sizeof(u32) - 1))
6847 return -EINVAL;
6848
6849 /* Need to zero it in case the userspace may
6850 * pass in a smaller bpf_line_info object.
6851 */
6852 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
6853 GFP_KERNEL | __GFP_NOWARN);
6854 if (!linfo)
6855 return -ENOMEM;
6856
6857 prog = env->prog;
6858 btf = prog->aux->btf;
6859
6860 s = 0;
6861 sub = env->subprog_info;
6862 ulinfo = u64_to_user_ptr(attr->line_info);
6863 expected_size = sizeof(struct bpf_line_info);
6864 ncopy = min_t(u32, expected_size, rec_size);
6865 for (i = 0; i < nr_linfo; i++) {
6866 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
6867 if (err) {
6868 if (err == -E2BIG) {
6869 verbose(env, "nonzero tailing record in line_info");
6870 if (put_user(expected_size,
6871 &uattr->line_info_rec_size))
6872 err = -EFAULT;
6873 }
6874 goto err_free;
6875 }
6876
6877 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
6878 err = -EFAULT;
6879 goto err_free;
6880 }
6881
6882 /*
6883 * Check insn_off to ensure
6884 * 1) strictly increasing AND
6885 * 2) bounded by prog->len
6886 *
6887 * The linfo[0].insn_off == 0 check logically falls into
6888 * the later "missing bpf_line_info for func..." case
6889 * because the first linfo[0].insn_off must be the
6890 * first sub also and the first sub must have
6891 * subprog_info[0].start == 0.
6892 */
6893 if ((i && linfo[i].insn_off <= prev_offset) ||
6894 linfo[i].insn_off >= prog->len) {
6895 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
6896 i, linfo[i].insn_off, prev_offset,
6897 prog->len);
6898 err = -EINVAL;
6899 goto err_free;
6900 }
6901
6902 if (!prog->insnsi[linfo[i].insn_off].code) {
6903 verbose(env,
6904 "Invalid insn code at line_info[%u].insn_off\n",
6905 i);
6906 err = -EINVAL;
6907 goto err_free;
6908 }
6909
6910 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
6911 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
6912 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
6913 err = -EINVAL;
6914 goto err_free;
6915 }
6916
6917 if (s != env->subprog_cnt) {
6918 if (linfo[i].insn_off == sub[s].start) {
6919 sub[s].linfo_idx = i;
6920 s++;
6921 } else if (sub[s].start < linfo[i].insn_off) {
6922 verbose(env, "missing bpf_line_info for func#%u\n", s);
6923 err = -EINVAL;
6924 goto err_free;
6925 }
6926 }
6927
6928 prev_offset = linfo[i].insn_off;
6929 ulinfo += rec_size;
6930 }
6931
6932 if (s != env->subprog_cnt) {
6933 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
6934 env->subprog_cnt - s, s);
6935 err = -EINVAL;
6936 goto err_free;
6937 }
6938
6939 prog->aux->linfo = linfo;
6940 prog->aux->nr_linfo = nr_linfo;
6941
6942 return 0;
6943
6944err_free:
6945 kvfree(linfo);
6946 return err;
6947}
6948
6949static int check_btf_info(struct bpf_verifier_env *env,
6950 const union bpf_attr *attr,
6951 union bpf_attr __user *uattr)
6952{
6953 struct btf *btf;
6954 int err;
6955
6956 if (!attr->func_info_cnt && !attr->line_info_cnt)
6957 return 0;
6958
6959 btf = btf_get_by_fd(attr->prog_btf_fd);
6960 if (IS_ERR(btf))
6961 return PTR_ERR(btf);
6962 env->prog->aux->btf = btf;
6963
6964 err = check_btf_func(env, attr, uattr);
6965 if (err)
6966 return err;
6967
6968 err = check_btf_line(env, attr, uattr);
6969 if (err)
6970 return err;
6971
6972 return 0;
6973}
6974
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006975/* check %cur's range satisfies %old's */
6976static bool range_within(struct bpf_reg_state *old,
6977 struct bpf_reg_state *cur)
6978{
6979 return old->umin_value <= cur->umin_value &&
6980 old->umax_value >= cur->umax_value &&
6981 old->smin_value <= cur->smin_value &&
6982 old->smax_value >= cur->smax_value;
6983}
6984
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006985/* If in the old state two registers had the same id, then they need to have
6986 * the same id in the new state as well. But that id could be different from
6987 * the old state, so we need to track the mapping from old to new ids.
6988 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
6989 * regs with old id 5 must also have new id 9 for the new state to be safe. But
6990 * regs with a different old id could still have new id 9, we don't care about
6991 * that.
6992 * So we look through our idmap to see if this old id has been seen before. If
6993 * so, we require the new id to match; otherwise, we add the id pair to the map.
6994 */
Olivier Deprez0e641232021-09-23 10:07:05 +02006995static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006996{
6997 unsigned int i;
6998
Olivier Deprez0e641232021-09-23 10:07:05 +02006999 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007000 if (!idmap[i].old) {
7001 /* Reached an empty slot; haven't seen this id before */
7002 idmap[i].old = old_id;
7003 idmap[i].cur = cur_id;
7004 return true;
7005 }
7006 if (idmap[i].old == old_id)
7007 return idmap[i].cur == cur_id;
7008 }
7009 /* We ran out of idmap slots, which should be impossible */
7010 WARN_ON_ONCE(1);
7011 return false;
7012}
7013
David Brazdil0f672f62019-12-10 10:32:29 +00007014static void clean_func_state(struct bpf_verifier_env *env,
7015 struct bpf_func_state *st)
7016{
7017 enum bpf_reg_liveness live;
7018 int i, j;
7019
7020 for (i = 0; i < BPF_REG_FP; i++) {
7021 live = st->regs[i].live;
7022 /* liveness must not touch this register anymore */
7023 st->regs[i].live |= REG_LIVE_DONE;
7024 if (!(live & REG_LIVE_READ))
7025 /* since the register is unused, clear its state
7026 * to make further comparison simpler
7027 */
Olivier Deprez0e641232021-09-23 10:07:05 +02007028 __mark_reg_not_init(env, &st->regs[i]);
David Brazdil0f672f62019-12-10 10:32:29 +00007029 }
7030
7031 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
7032 live = st->stack[i].spilled_ptr.live;
7033 /* liveness must not touch this stack slot anymore */
7034 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
7035 if (!(live & REG_LIVE_READ)) {
Olivier Deprez0e641232021-09-23 10:07:05 +02007036 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
David Brazdil0f672f62019-12-10 10:32:29 +00007037 for (j = 0; j < BPF_REG_SIZE; j++)
7038 st->stack[i].slot_type[j] = STACK_INVALID;
7039 }
7040 }
7041}
7042
7043static void clean_verifier_state(struct bpf_verifier_env *env,
7044 struct bpf_verifier_state *st)
7045{
7046 int i;
7047
7048 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
7049 /* all regs in this state in all frames were already marked */
7050 return;
7051
7052 for (i = 0; i <= st->curframe; i++)
7053 clean_func_state(env, st->frame[i]);
7054}
7055
7056/* the parentage chains form a tree.
7057 * the verifier states are added to state lists at given insn and
7058 * pushed into state stack for future exploration.
7059 * when the verifier reaches bpf_exit insn some of the verifer states
7060 * stored in the state lists have their final liveness state already,
7061 * but a lot of states will get revised from liveness point of view when
7062 * the verifier explores other branches.
7063 * Example:
7064 * 1: r0 = 1
7065 * 2: if r1 == 100 goto pc+1
7066 * 3: r0 = 2
7067 * 4: exit
7068 * when the verifier reaches exit insn the register r0 in the state list of
7069 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
7070 * of insn 2 and goes exploring further. At the insn 4 it will walk the
7071 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
7072 *
7073 * Since the verifier pushes the branch states as it sees them while exploring
7074 * the program the condition of walking the branch instruction for the second
7075 * time means that all states below this branch were already explored and
7076 * their final liveness markes are already propagated.
7077 * Hence when the verifier completes the search of state list in is_state_visited()
7078 * we can call this clean_live_states() function to mark all liveness states
7079 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
7080 * will not be used.
7081 * This function also clears the registers and stack for states that !READ
7082 * to simplify state merging.
7083 *
7084 * Important note here that walking the same branch instruction in the callee
7085 * doesn't meant that the states are DONE. The verifier has to compare
7086 * the callsites
7087 */
7088static void clean_live_states(struct bpf_verifier_env *env, int insn,
7089 struct bpf_verifier_state *cur)
7090{
7091 struct bpf_verifier_state_list *sl;
7092 int i;
7093
7094 sl = *explored_state(env, insn);
7095 while (sl) {
7096 if (sl->state.branches)
7097 goto next;
7098 if (sl->state.insn_idx != insn ||
7099 sl->state.curframe != cur->curframe)
7100 goto next;
7101 for (i = 0; i <= cur->curframe; i++)
7102 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
7103 goto next;
7104 clean_verifier_state(env, &sl->state);
7105next:
7106 sl = sl->next;
7107 }
7108}
7109
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007110/* Returns true if (rold safe implies rcur safe) */
Olivier Deprez0e641232021-09-23 10:07:05 +02007111static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
7112 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007113{
7114 bool equal;
7115
7116 if (!(rold->live & REG_LIVE_READ))
7117 /* explored state didn't use this */
7118 return true;
7119
David Brazdil0f672f62019-12-10 10:32:29 +00007120 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007121
7122 if (rold->type == PTR_TO_STACK)
7123 /* two stack pointers are equal only if they're pointing to
7124 * the same stack frame, since fp-8 in foo != fp-8 in bar
7125 */
7126 return equal && rold->frameno == rcur->frameno;
7127
7128 if (equal)
7129 return true;
7130
7131 if (rold->type == NOT_INIT)
7132 /* explored state can't have used this */
7133 return true;
7134 if (rcur->type == NOT_INIT)
7135 return false;
7136 switch (rold->type) {
7137 case SCALAR_VALUE:
Olivier Deprez0e641232021-09-23 10:07:05 +02007138 if (env->explore_alu_limits)
7139 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007140 if (rcur->type == SCALAR_VALUE) {
David Brazdil0f672f62019-12-10 10:32:29 +00007141 if (!rold->precise && !rcur->precise)
7142 return true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007143 /* new val must satisfy old val knowledge */
7144 return range_within(rold, rcur) &&
7145 tnum_in(rold->var_off, rcur->var_off);
7146 } else {
7147 /* We're trying to use a pointer in place of a scalar.
7148 * Even if the scalar was unbounded, this could lead to
7149 * pointer leaks because scalars are allowed to leak
7150 * while pointers are not. We could make this safe in
7151 * special cases if root is calling us, but it's
7152 * probably not worth the hassle.
7153 */
7154 return false;
7155 }
7156 case PTR_TO_MAP_VALUE:
7157 /* If the new min/max/var_off satisfy the old ones and
7158 * everything else matches, we are OK.
David Brazdil0f672f62019-12-10 10:32:29 +00007159 * 'id' is not compared, since it's only used for maps with
7160 * bpf_spin_lock inside map element and in such cases if
7161 * the rest of the prog is valid for one map element then
7162 * it's valid for all map elements regardless of the key
7163 * used in bpf_map_lookup()
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007164 */
7165 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
7166 range_within(rold, rcur) &&
7167 tnum_in(rold->var_off, rcur->var_off);
7168 case PTR_TO_MAP_VALUE_OR_NULL:
7169 /* a PTR_TO_MAP_VALUE could be safe to use as a
7170 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
7171 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
7172 * checked, doing so could have affected others with the same
7173 * id, and we can't check for that because we lost the id when
7174 * we converted to a PTR_TO_MAP_VALUE.
7175 */
7176 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
7177 return false;
7178 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
7179 return false;
7180 /* Check our ids match any regs they're supposed to */
7181 return check_ids(rold->id, rcur->id, idmap);
7182 case PTR_TO_PACKET_META:
7183 case PTR_TO_PACKET:
7184 if (rcur->type != rold->type)
7185 return false;
7186 /* We must have at least as much range as the old ptr
7187 * did, so that any accesses which were safe before are
7188 * still safe. This is true even if old range < old off,
7189 * since someone could have accessed through (ptr - k), or
7190 * even done ptr -= k in a register, to get a safe access.
7191 */
7192 if (rold->range > rcur->range)
7193 return false;
7194 /* If the offsets don't match, we can't trust our alignment;
7195 * nor can we be sure that we won't fall out of range.
7196 */
7197 if (rold->off != rcur->off)
7198 return false;
7199 /* id relations must be preserved */
7200 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
7201 return false;
7202 /* new val must satisfy old val knowledge */
7203 return range_within(rold, rcur) &&
7204 tnum_in(rold->var_off, rcur->var_off);
7205 case PTR_TO_CTX:
7206 case CONST_PTR_TO_MAP:
7207 case PTR_TO_PACKET_END:
David Brazdil0f672f62019-12-10 10:32:29 +00007208 case PTR_TO_FLOW_KEYS:
7209 case PTR_TO_SOCKET:
7210 case PTR_TO_SOCKET_OR_NULL:
7211 case PTR_TO_SOCK_COMMON:
7212 case PTR_TO_SOCK_COMMON_OR_NULL:
7213 case PTR_TO_TCP_SOCK:
7214 case PTR_TO_TCP_SOCK_OR_NULL:
7215 case PTR_TO_XDP_SOCK:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007216 /* Only valid matches are exact, which memcmp() above
7217 * would have accepted
7218 */
7219 default:
7220 /* Don't know what's going on, just say it's not safe */
7221 return false;
7222 }
7223
7224 /* Shouldn't get here; if we do, say it's not safe */
7225 WARN_ON_ONCE(1);
7226 return false;
7227}
7228
Olivier Deprez0e641232021-09-23 10:07:05 +02007229static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
7230 struct bpf_func_state *cur, struct bpf_id_pair *idmap)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007231{
7232 int i, spi;
7233
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007234 /* walk slots of the explored stack and ignore any additional
7235 * slots in the current stack, since explored(safe) state
7236 * didn't use them
7237 */
7238 for (i = 0; i < old->allocated_stack; i++) {
7239 spi = i / BPF_REG_SIZE;
7240
David Brazdil0f672f62019-12-10 10:32:29 +00007241 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
7242 i += BPF_REG_SIZE - 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007243 /* explored state didn't use this */
7244 continue;
David Brazdil0f672f62019-12-10 10:32:29 +00007245 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007246
7247 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
7248 continue;
David Brazdil0f672f62019-12-10 10:32:29 +00007249
7250 /* explored stack has more populated slots than current stack
7251 * and these slots were used
7252 */
7253 if (i >= cur->allocated_stack)
7254 return false;
7255
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007256 /* if old state was safe with misc data in the stack
7257 * it will be safe with zero-initialized stack.
7258 * The opposite is not true
7259 */
7260 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
7261 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
7262 continue;
7263 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
7264 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
7265 /* Ex: old explored (safe) state has STACK_SPILL in
7266 * this stack slot, but current has has STACK_MISC ->
7267 * this verifier states are not equivalent,
7268 * return false to continue verification of this path
7269 */
7270 return false;
7271 if (i % BPF_REG_SIZE)
7272 continue;
7273 if (old->stack[spi].slot_type[0] != STACK_SPILL)
7274 continue;
Olivier Deprez0e641232021-09-23 10:07:05 +02007275 if (!regsafe(env, &old->stack[spi].spilled_ptr,
7276 &cur->stack[spi].spilled_ptr, idmap))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007277 /* when explored and current stack slot are both storing
7278 * spilled registers, check that stored pointers types
7279 * are the same as well.
7280 * Ex: explored safe path could have stored
7281 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
7282 * but current path has stored:
7283 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
7284 * such verifier states are not equivalent.
7285 * return false to continue verification of this path
7286 */
7287 return false;
7288 }
7289 return true;
7290}
7291
David Brazdil0f672f62019-12-10 10:32:29 +00007292static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
7293{
7294 if (old->acquired_refs != cur->acquired_refs)
7295 return false;
7296 return !memcmp(old->refs, cur->refs,
7297 sizeof(*old->refs) * old->acquired_refs);
7298}
7299
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007300/* compare two verifier states
7301 *
7302 * all states stored in state_list are known to be valid, since
7303 * verifier reached 'bpf_exit' instruction through them
7304 *
7305 * this function is called when verifier exploring different branches of
7306 * execution popped from the state stack. If it sees an old state that has
7307 * more strict register state and more strict stack state then this execution
7308 * branch doesn't need to be explored further, since verifier already
7309 * concluded that more strict state leads to valid finish.
7310 *
7311 * Therefore two states are equivalent if register state is more conservative
7312 * and explored stack state is more conservative than the current one.
7313 * Example:
7314 * explored current
7315 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
7316 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
7317 *
7318 * In other words if current stack state (one being explored) has more
7319 * valid slots than old one that already passed validation, it means
7320 * the verifier can stop exploring and conclude that current state is valid too
7321 *
7322 * Similarly with registers. If explored state has register type as invalid
7323 * whereas register type in current state is meaningful, it means that
7324 * the current state will reach 'bpf_exit' instruction safely
7325 */
Olivier Deprez0e641232021-09-23 10:07:05 +02007326static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007327 struct bpf_func_state *cur)
7328{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007329 int i;
7330
Olivier Deprez0e641232021-09-23 10:07:05 +02007331 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
7332 for (i = 0; i < MAX_BPF_REG; i++)
7333 if (!regsafe(env, &old->regs[i], &cur->regs[i],
7334 env->idmap_scratch))
7335 return false;
7336
7337 if (!stacksafe(env, old, cur, env->idmap_scratch))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007338 return false;
7339
David Brazdil0f672f62019-12-10 10:32:29 +00007340 if (!refsafe(old, cur))
Olivier Deprez0e641232021-09-23 10:07:05 +02007341 return false;
7342
7343 return true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007344}
7345
7346static bool states_equal(struct bpf_verifier_env *env,
7347 struct bpf_verifier_state *old,
7348 struct bpf_verifier_state *cur)
7349{
7350 int i;
7351
7352 if (old->curframe != cur->curframe)
7353 return false;
7354
David Brazdil0f672f62019-12-10 10:32:29 +00007355 /* Verification state from speculative execution simulation
7356 * must never prune a non-speculative execution one.
7357 */
7358 if (old->speculative && !cur->speculative)
7359 return false;
7360
7361 if (old->active_spin_lock != cur->active_spin_lock)
7362 return false;
7363
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007364 /* for states to be equal callsites have to be the same
7365 * and all frame states need to be equivalent
7366 */
7367 for (i = 0; i <= old->curframe; i++) {
7368 if (old->frame[i]->callsite != cur->frame[i]->callsite)
7369 return false;
Olivier Deprez0e641232021-09-23 10:07:05 +02007370 if (!func_states_equal(env, old->frame[i], cur->frame[i]))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007371 return false;
7372 }
7373 return true;
7374}
7375
David Brazdil0f672f62019-12-10 10:32:29 +00007376/* Return 0 if no propagation happened. Return negative error code if error
7377 * happened. Otherwise, return the propagated bit.
7378 */
7379static int propagate_liveness_reg(struct bpf_verifier_env *env,
7380 struct bpf_reg_state *reg,
7381 struct bpf_reg_state *parent_reg)
7382{
7383 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
7384 u8 flag = reg->live & REG_LIVE_READ;
7385 int err;
7386
7387 /* When comes here, read flags of PARENT_REG or REG could be any of
7388 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
7389 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
7390 */
7391 if (parent_flag == REG_LIVE_READ64 ||
7392 /* Or if there is no read flag from REG. */
7393 !flag ||
7394 /* Or if the read flag from REG is the same as PARENT_REG. */
7395 parent_flag == flag)
7396 return 0;
7397
7398 err = mark_reg_read(env, reg, parent_reg, flag);
7399 if (err)
7400 return err;
7401
7402 return flag;
7403}
7404
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007405/* A write screens off any subsequent reads; but write marks come from the
7406 * straight-line code between a state and its parent. When we arrive at an
7407 * equivalent state (jump target or such) we didn't arrive by the straight-line
7408 * code, so read marks in the state must propagate to the parent regardless
7409 * of the state's write marks. That's what 'parent == state->parent' comparison
David Brazdil0f672f62019-12-10 10:32:29 +00007410 * in mark_reg_read() is for.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007411 */
7412static int propagate_liveness(struct bpf_verifier_env *env,
7413 const struct bpf_verifier_state *vstate,
7414 struct bpf_verifier_state *vparent)
7415{
David Brazdil0f672f62019-12-10 10:32:29 +00007416 struct bpf_reg_state *state_reg, *parent_reg;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007417 struct bpf_func_state *state, *parent;
David Brazdil0f672f62019-12-10 10:32:29 +00007418 int i, frame, err = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007419
7420 if (vparent->curframe != vstate->curframe) {
7421 WARN(1, "propagate_live: parent frame %d current frame %d\n",
7422 vparent->curframe, vstate->curframe);
7423 return -EFAULT;
7424 }
7425 /* Propagate read liveness of registers... */
7426 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
David Brazdil0f672f62019-12-10 10:32:29 +00007427 for (frame = 0; frame <= vstate->curframe; frame++) {
7428 parent = vparent->frame[frame];
7429 state = vstate->frame[frame];
7430 parent_reg = parent->regs;
7431 state_reg = state->regs;
7432 /* We don't need to worry about FP liveness, it's read-only */
7433 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
7434 err = propagate_liveness_reg(env, &state_reg[i],
7435 &parent_reg[i]);
7436 if (err < 0)
7437 return err;
7438 if (err == REG_LIVE_READ64)
7439 mark_insn_zext(env, &parent_reg[i]);
7440 }
7441
7442 /* Propagate stack slots. */
7443 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
7444 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
7445 parent_reg = &parent->stack[i].spilled_ptr;
7446 state_reg = &state->stack[i].spilled_ptr;
7447 err = propagate_liveness_reg(env, state_reg,
7448 parent_reg);
7449 if (err < 0)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007450 return err;
7451 }
7452 }
David Brazdil0f672f62019-12-10 10:32:29 +00007453 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007454}
7455
David Brazdil0f672f62019-12-10 10:32:29 +00007456/* find precise scalars in the previous equivalent state and
7457 * propagate them into the current state
7458 */
7459static int propagate_precision(struct bpf_verifier_env *env,
7460 const struct bpf_verifier_state *old)
7461{
7462 struct bpf_reg_state *state_reg;
7463 struct bpf_func_state *state;
7464 int i, err = 0;
7465
7466 state = old->frame[old->curframe];
7467 state_reg = state->regs;
7468 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
7469 if (state_reg->type != SCALAR_VALUE ||
7470 !state_reg->precise)
7471 continue;
7472 if (env->log.level & BPF_LOG_LEVEL2)
7473 verbose(env, "propagating r%d\n", i);
7474 err = mark_chain_precision(env, i);
7475 if (err < 0)
7476 return err;
7477 }
7478
7479 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
7480 if (state->stack[i].slot_type[0] != STACK_SPILL)
7481 continue;
7482 state_reg = &state->stack[i].spilled_ptr;
7483 if (state_reg->type != SCALAR_VALUE ||
7484 !state_reg->precise)
7485 continue;
7486 if (env->log.level & BPF_LOG_LEVEL2)
7487 verbose(env, "propagating fp%d\n",
7488 (-i - 1) * BPF_REG_SIZE);
7489 err = mark_chain_precision_stack(env, i);
7490 if (err < 0)
7491 return err;
7492 }
7493 return 0;
7494}
7495
7496static bool states_maybe_looping(struct bpf_verifier_state *old,
7497 struct bpf_verifier_state *cur)
7498{
7499 struct bpf_func_state *fold, *fcur;
7500 int i, fr = cur->curframe;
7501
7502 if (old->curframe != fr)
7503 return false;
7504
7505 fold = old->frame[fr];
7506 fcur = cur->frame[fr];
7507 for (i = 0; i < MAX_BPF_REG; i++)
7508 if (memcmp(&fold->regs[i], &fcur->regs[i],
7509 offsetof(struct bpf_reg_state, parent)))
7510 return false;
7511 return true;
7512}
7513
7514
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007515static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
7516{
7517 struct bpf_verifier_state_list *new_sl;
David Brazdil0f672f62019-12-10 10:32:29 +00007518 struct bpf_verifier_state_list *sl, **pprev;
7519 struct bpf_verifier_state *cur = env->cur_state, *new;
7520 int i, j, err, states_cnt = 0;
7521 bool add_new_state = env->test_state_freq ? true : false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007522
David Brazdil0f672f62019-12-10 10:32:29 +00007523 cur->last_insn_idx = env->prev_insn_idx;
7524 if (!env->insn_aux_data[insn_idx].prune_point)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007525 /* this 'insn_idx' instruction wasn't marked, so we will not
7526 * be doing state search here
7527 */
7528 return 0;
7529
David Brazdil0f672f62019-12-10 10:32:29 +00007530 /* bpf progs typically have pruning point every 4 instructions
7531 * http://vger.kernel.org/bpfconf2019.html#session-1
7532 * Do not add new state for future pruning if the verifier hasn't seen
7533 * at least 2 jumps and at least 8 instructions.
7534 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
7535 * In tests that amounts to up to 50% reduction into total verifier
7536 * memory consumption and 20% verifier time speedup.
7537 */
7538 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
7539 env->insn_processed - env->prev_insn_processed >= 8)
7540 add_new_state = true;
7541
7542 pprev = explored_state(env, insn_idx);
7543 sl = *pprev;
7544
7545 clean_live_states(env, insn_idx, cur);
7546
7547 while (sl) {
7548 states_cnt++;
7549 if (sl->state.insn_idx != insn_idx)
7550 goto next;
7551 if (sl->state.branches) {
7552 if (states_maybe_looping(&sl->state, cur) &&
7553 states_equal(env, &sl->state, cur)) {
7554 verbose_linfo(env, insn_idx, "; ");
7555 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
7556 return -EINVAL;
7557 }
7558 /* if the verifier is processing a loop, avoid adding new state
7559 * too often, since different loop iterations have distinct
7560 * states and may not help future pruning.
7561 * This threshold shouldn't be too low to make sure that
7562 * a loop with large bound will be rejected quickly.
7563 * The most abusive loop will be:
7564 * r1 += 1
7565 * if r1 < 1000000 goto pc-2
7566 * 1M insn_procssed limit / 100 == 10k peak states.
7567 * This threshold shouldn't be too high either, since states
7568 * at the end of the loop are likely to be useful in pruning.
7569 */
7570 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
7571 env->insn_processed - env->prev_insn_processed < 100)
7572 add_new_state = false;
7573 goto miss;
7574 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007575 if (states_equal(env, &sl->state, cur)) {
David Brazdil0f672f62019-12-10 10:32:29 +00007576 sl->hit_cnt++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007577 /* reached equivalent register/stack state,
7578 * prune the search.
7579 * Registers read by the continuation are read by us.
7580 * If we have any write marks in env->cur_state, they
7581 * will prevent corresponding reads in the continuation
7582 * from reaching our parent (an explored_state). Our
7583 * own state will get the read marks recorded, but
7584 * they'll be immediately forgotten as we're pruning
7585 * this state and will pop a new one.
7586 */
7587 err = propagate_liveness(env, &sl->state, cur);
David Brazdil0f672f62019-12-10 10:32:29 +00007588
7589 /* if previous state reached the exit with precision and
7590 * current state is equivalent to it (except precsion marks)
7591 * the precision needs to be propagated back in
7592 * the current state.
7593 */
7594 err = err ? : push_jmp_history(env, cur);
7595 err = err ? : propagate_precision(env, &sl->state);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007596 if (err)
7597 return err;
7598 return 1;
7599 }
David Brazdil0f672f62019-12-10 10:32:29 +00007600miss:
7601 /* when new state is not going to be added do not increase miss count.
7602 * Otherwise several loop iterations will remove the state
7603 * recorded earlier. The goal of these heuristics is to have
7604 * states from some iterations of the loop (some in the beginning
7605 * and some at the end) to help pruning.
7606 */
7607 if (add_new_state)
7608 sl->miss_cnt++;
7609 /* heuristic to determine whether this state is beneficial
7610 * to keep checking from state equivalence point of view.
7611 * Higher numbers increase max_states_per_insn and verification time,
7612 * but do not meaningfully decrease insn_processed.
7613 */
7614 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
7615 /* the state is unlikely to be useful. Remove it to
7616 * speed up verification
7617 */
7618 *pprev = sl->next;
7619 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
7620 u32 br = sl->state.branches;
7621
7622 WARN_ONCE(br,
7623 "BUG live_done but branches_to_explore %d\n",
7624 br);
7625 free_verifier_state(&sl->state, false);
7626 kfree(sl);
7627 env->peak_states--;
7628 } else {
7629 /* cannot free this state, since parentage chain may
7630 * walk it later. Add it for free_list instead to
7631 * be freed at the end of verification
7632 */
7633 sl->next = env->free_list;
7634 env->free_list = sl;
7635 }
7636 sl = *pprev;
7637 continue;
7638 }
7639next:
7640 pprev = &sl->next;
7641 sl = *pprev;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007642 }
7643
David Brazdil0f672f62019-12-10 10:32:29 +00007644 if (env->max_states_per_insn < states_cnt)
7645 env->max_states_per_insn = states_cnt;
7646
7647 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
7648 return push_jmp_history(env, cur);
7649
7650 if (!add_new_state)
7651 return push_jmp_history(env, cur);
7652
7653 /* There were no equivalent states, remember the current one.
7654 * Technically the current state is not proven to be safe yet,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007655 * but it will either reach outer most bpf_exit (which means it's safe)
David Brazdil0f672f62019-12-10 10:32:29 +00007656 * or it will be rejected. When there are no loops the verifier won't be
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007657 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
David Brazdil0f672f62019-12-10 10:32:29 +00007658 * again on the way to bpf_exit.
7659 * When looping the sl->state.branches will be > 0 and this state
7660 * will not be considered for equivalence until branches == 0.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007661 */
7662 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
7663 if (!new_sl)
7664 return -ENOMEM;
David Brazdil0f672f62019-12-10 10:32:29 +00007665 env->total_states++;
7666 env->peak_states++;
7667 env->prev_jmps_processed = env->jmps_processed;
7668 env->prev_insn_processed = env->insn_processed;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007669
7670 /* add new state to the head of linked list */
David Brazdil0f672f62019-12-10 10:32:29 +00007671 new = &new_sl->state;
7672 err = copy_verifier_state(new, cur);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007673 if (err) {
David Brazdil0f672f62019-12-10 10:32:29 +00007674 free_verifier_state(new, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007675 kfree(new_sl);
7676 return err;
7677 }
David Brazdil0f672f62019-12-10 10:32:29 +00007678 new->insn_idx = insn_idx;
7679 WARN_ONCE(new->branches != 1,
7680 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
7681
7682 cur->parent = new;
7683 cur->first_insn_idx = insn_idx;
7684 clear_jmp_history(cur);
7685 new_sl->next = *explored_state(env, insn_idx);
7686 *explored_state(env, insn_idx) = new_sl;
7687 /* connect new state to parentage chain. Current frame needs all
7688 * registers connected. Only r6 - r9 of the callers are alive (pushed
7689 * to the stack implicitly by JITs) so in callers' frames connect just
7690 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
7691 * the state of the call instruction (with WRITTEN set), and r0 comes
7692 * from callee with its full parentage chain, anyway.
7693 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007694 /* clear write marks in current state: the writes we did are not writes
7695 * our child did, so they don't screen off its reads from us.
7696 * (There are no read marks in current state, because reads always mark
7697 * their parent and current state never has children yet. Only
7698 * explored_states can get read marks.)
7699 */
David Brazdil0f672f62019-12-10 10:32:29 +00007700 for (j = 0; j <= cur->curframe; j++) {
7701 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
7702 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
7703 for (i = 0; i < BPF_REG_FP; i++)
7704 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
7705 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007706
7707 /* all stack frames are accessible from callee, clear them all */
7708 for (j = 0; j <= cur->curframe; j++) {
7709 struct bpf_func_state *frame = cur->frame[j];
David Brazdil0f672f62019-12-10 10:32:29 +00007710 struct bpf_func_state *newframe = new->frame[j];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007711
David Brazdil0f672f62019-12-10 10:32:29 +00007712 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007713 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
David Brazdil0f672f62019-12-10 10:32:29 +00007714 frame->stack[i].spilled_ptr.parent =
7715 &newframe->stack[i].spilled_ptr;
7716 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007717 }
7718 return 0;
7719}
7720
David Brazdil0f672f62019-12-10 10:32:29 +00007721/* Return true if it's OK to have the same insn return a different type. */
7722static bool reg_type_mismatch_ok(enum bpf_reg_type type)
7723{
7724 switch (type) {
7725 case PTR_TO_CTX:
7726 case PTR_TO_SOCKET:
7727 case PTR_TO_SOCKET_OR_NULL:
7728 case PTR_TO_SOCK_COMMON:
7729 case PTR_TO_SOCK_COMMON_OR_NULL:
7730 case PTR_TO_TCP_SOCK:
7731 case PTR_TO_TCP_SOCK_OR_NULL:
7732 case PTR_TO_XDP_SOCK:
7733 return false;
7734 default:
7735 return true;
7736 }
7737}
7738
7739/* If an instruction was previously used with particular pointer types, then we
7740 * need to be careful to avoid cases such as the below, where it may be ok
7741 * for one branch accessing the pointer, but not ok for the other branch:
7742 *
7743 * R1 = sock_ptr
7744 * goto X;
7745 * ...
7746 * R1 = some_other_valid_ptr;
7747 * goto X;
7748 * ...
7749 * R2 = *(u32 *)(R1 + 0);
7750 */
7751static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
7752{
7753 return src != prev && (!reg_type_mismatch_ok(src) ||
7754 !reg_type_mismatch_ok(prev));
7755}
7756
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007757static int do_check(struct bpf_verifier_env *env)
7758{
7759 struct bpf_verifier_state *state;
7760 struct bpf_insn *insns = env->prog->insnsi;
7761 struct bpf_reg_state *regs;
David Brazdil0f672f62019-12-10 10:32:29 +00007762 int insn_cnt = env->prog->len;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007763 bool do_print_state = false;
David Brazdil0f672f62019-12-10 10:32:29 +00007764 int prev_insn_idx = -1;
7765
7766 env->prev_linfo = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007767
7768 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
7769 if (!state)
7770 return -ENOMEM;
7771 state->curframe = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00007772 state->speculative = false;
7773 state->branches = 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007774 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
7775 if (!state->frame[0]) {
7776 kfree(state);
7777 return -ENOMEM;
7778 }
7779 env->cur_state = state;
7780 init_func_state(env, state->frame[0],
7781 BPF_MAIN_FUNC /* callsite */,
7782 0 /* frameno */,
7783 0 /* subprogno, zero == main subprog */);
David Brazdil0f672f62019-12-10 10:32:29 +00007784
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007785 for (;;) {
7786 struct bpf_insn *insn;
7787 u8 class;
7788 int err;
7789
David Brazdil0f672f62019-12-10 10:32:29 +00007790 env->prev_insn_idx = prev_insn_idx;
7791 if (env->insn_idx >= insn_cnt) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007792 verbose(env, "invalid insn idx %d insn_cnt %d\n",
David Brazdil0f672f62019-12-10 10:32:29 +00007793 env->insn_idx, insn_cnt);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007794 return -EFAULT;
7795 }
7796
David Brazdil0f672f62019-12-10 10:32:29 +00007797 insn = &insns[env->insn_idx];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007798 class = BPF_CLASS(insn->code);
7799
David Brazdil0f672f62019-12-10 10:32:29 +00007800 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007801 verbose(env,
7802 "BPF program is too large. Processed %d insn\n",
David Brazdil0f672f62019-12-10 10:32:29 +00007803 env->insn_processed);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007804 return -E2BIG;
7805 }
7806
David Brazdil0f672f62019-12-10 10:32:29 +00007807 err = is_state_visited(env, env->insn_idx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007808 if (err < 0)
7809 return err;
7810 if (err == 1) {
7811 /* found equivalent state, can prune the search */
David Brazdil0f672f62019-12-10 10:32:29 +00007812 if (env->log.level & BPF_LOG_LEVEL) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007813 if (do_print_state)
David Brazdil0f672f62019-12-10 10:32:29 +00007814 verbose(env, "\nfrom %d to %d%s: safe\n",
7815 env->prev_insn_idx, env->insn_idx,
7816 env->cur_state->speculative ?
7817 " (speculative execution)" : "");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007818 else
David Brazdil0f672f62019-12-10 10:32:29 +00007819 verbose(env, "%d: safe\n", env->insn_idx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007820 }
7821 goto process_bpf_exit;
7822 }
7823
7824 if (signal_pending(current))
7825 return -EAGAIN;
7826
7827 if (need_resched())
7828 cond_resched();
7829
David Brazdil0f672f62019-12-10 10:32:29 +00007830 if (env->log.level & BPF_LOG_LEVEL2 ||
7831 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
7832 if (env->log.level & BPF_LOG_LEVEL2)
7833 verbose(env, "%d:", env->insn_idx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007834 else
David Brazdil0f672f62019-12-10 10:32:29 +00007835 verbose(env, "\nfrom %d to %d%s:",
7836 env->prev_insn_idx, env->insn_idx,
7837 env->cur_state->speculative ?
7838 " (speculative execution)" : "");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007839 print_verifier_state(env, state->frame[state->curframe]);
7840 do_print_state = false;
7841 }
7842
David Brazdil0f672f62019-12-10 10:32:29 +00007843 if (env->log.level & BPF_LOG_LEVEL) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007844 const struct bpf_insn_cbs cbs = {
7845 .cb_print = verbose,
7846 .private_data = env,
7847 };
7848
David Brazdil0f672f62019-12-10 10:32:29 +00007849 verbose_linfo(env, env->insn_idx, "; ");
7850 verbose(env, "%d: ", env->insn_idx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007851 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
7852 }
7853
7854 if (bpf_prog_is_dev_bound(env->prog->aux)) {
David Brazdil0f672f62019-12-10 10:32:29 +00007855 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
7856 env->prev_insn_idx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007857 if (err)
7858 return err;
7859 }
7860
7861 regs = cur_regs(env);
Olivier Deprez0e641232021-09-23 10:07:05 +02007862 sanitize_mark_insn_seen(env);
David Brazdil0f672f62019-12-10 10:32:29 +00007863 prev_insn_idx = env->insn_idx;
7864
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007865 if (class == BPF_ALU || class == BPF_ALU64) {
7866 err = check_alu_op(env, insn);
7867 if (err)
7868 return err;
7869
7870 } else if (class == BPF_LDX) {
7871 enum bpf_reg_type *prev_src_type, src_reg_type;
7872
7873 /* check for reserved fields is already done */
7874
7875 /* check src operand */
7876 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7877 if (err)
7878 return err;
7879
7880 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7881 if (err)
7882 return err;
7883
7884 src_reg_type = regs[insn->src_reg].type;
7885
7886 /* check that memory (src_reg + off) is readable,
7887 * the state of dst_reg will be updated by this func
7888 */
David Brazdil0f672f62019-12-10 10:32:29 +00007889 err = check_mem_access(env, env->insn_idx, insn->src_reg,
7890 insn->off, BPF_SIZE(insn->code),
7891 BPF_READ, insn->dst_reg, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007892 if (err)
7893 return err;
7894
David Brazdil0f672f62019-12-10 10:32:29 +00007895 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007896
7897 if (*prev_src_type == NOT_INIT) {
7898 /* saw a valid insn
7899 * dst_reg = *(u32 *)(src_reg + off)
7900 * save type to validate intersecting paths
7901 */
7902 *prev_src_type = src_reg_type;
7903
David Brazdil0f672f62019-12-10 10:32:29 +00007904 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007905 /* ABuser program is trying to use the same insn
7906 * dst_reg = *(u32*) (src_reg + off)
7907 * with different pointer types:
7908 * src_reg == ctx in one branch and
7909 * src_reg == stack|map in some other branch.
7910 * Reject it.
7911 */
7912 verbose(env, "same insn cannot be used with different pointers\n");
7913 return -EINVAL;
7914 }
7915
7916 } else if (class == BPF_STX) {
7917 enum bpf_reg_type *prev_dst_type, dst_reg_type;
7918
7919 if (BPF_MODE(insn->code) == BPF_XADD) {
David Brazdil0f672f62019-12-10 10:32:29 +00007920 err = check_xadd(env, env->insn_idx, insn);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007921 if (err)
7922 return err;
David Brazdil0f672f62019-12-10 10:32:29 +00007923 env->insn_idx++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007924 continue;
7925 }
7926
7927 /* check src1 operand */
7928 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7929 if (err)
7930 return err;
7931 /* check src2 operand */
7932 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7933 if (err)
7934 return err;
7935
7936 dst_reg_type = regs[insn->dst_reg].type;
7937
7938 /* check that memory (dst_reg + off) is writeable */
David Brazdil0f672f62019-12-10 10:32:29 +00007939 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7940 insn->off, BPF_SIZE(insn->code),
7941 BPF_WRITE, insn->src_reg, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007942 if (err)
7943 return err;
7944
David Brazdil0f672f62019-12-10 10:32:29 +00007945 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007946
7947 if (*prev_dst_type == NOT_INIT) {
7948 *prev_dst_type = dst_reg_type;
David Brazdil0f672f62019-12-10 10:32:29 +00007949 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007950 verbose(env, "same insn cannot be used with different pointers\n");
7951 return -EINVAL;
7952 }
7953
7954 } else if (class == BPF_ST) {
7955 if (BPF_MODE(insn->code) != BPF_MEM ||
7956 insn->src_reg != BPF_REG_0) {
7957 verbose(env, "BPF_ST uses reserved fields\n");
7958 return -EINVAL;
7959 }
7960 /* check src operand */
7961 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7962 if (err)
7963 return err;
7964
7965 if (is_ctx_reg(env, insn->dst_reg)) {
David Brazdil0f672f62019-12-10 10:32:29 +00007966 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
7967 insn->dst_reg,
7968 reg_type_str[reg_state(env, insn->dst_reg)->type]);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007969 return -EACCES;
7970 }
7971
7972 /* check that memory (dst_reg + off) is writeable */
David Brazdil0f672f62019-12-10 10:32:29 +00007973 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7974 insn->off, BPF_SIZE(insn->code),
7975 BPF_WRITE, -1, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007976 if (err)
7977 return err;
7978
David Brazdil0f672f62019-12-10 10:32:29 +00007979 } else if (class == BPF_JMP || class == BPF_JMP32) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007980 u8 opcode = BPF_OP(insn->code);
7981
David Brazdil0f672f62019-12-10 10:32:29 +00007982 env->jmps_processed++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007983 if (opcode == BPF_CALL) {
7984 if (BPF_SRC(insn->code) != BPF_K ||
7985 insn->off != 0 ||
7986 (insn->src_reg != BPF_REG_0 &&
7987 insn->src_reg != BPF_PSEUDO_CALL) ||
David Brazdil0f672f62019-12-10 10:32:29 +00007988 insn->dst_reg != BPF_REG_0 ||
7989 class == BPF_JMP32) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007990 verbose(env, "BPF_CALL uses reserved fields\n");
7991 return -EINVAL;
7992 }
7993
David Brazdil0f672f62019-12-10 10:32:29 +00007994 if (env->cur_state->active_spin_lock &&
7995 (insn->src_reg == BPF_PSEUDO_CALL ||
7996 insn->imm != BPF_FUNC_spin_unlock)) {
7997 verbose(env, "function calls are not allowed while holding a lock\n");
7998 return -EINVAL;
7999 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008000 if (insn->src_reg == BPF_PSEUDO_CALL)
David Brazdil0f672f62019-12-10 10:32:29 +00008001 err = check_func_call(env, insn, &env->insn_idx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008002 else
David Brazdil0f672f62019-12-10 10:32:29 +00008003 err = check_helper_call(env, insn->imm, env->insn_idx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008004 if (err)
8005 return err;
8006
8007 } else if (opcode == BPF_JA) {
8008 if (BPF_SRC(insn->code) != BPF_K ||
8009 insn->imm != 0 ||
8010 insn->src_reg != BPF_REG_0 ||
David Brazdil0f672f62019-12-10 10:32:29 +00008011 insn->dst_reg != BPF_REG_0 ||
8012 class == BPF_JMP32) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008013 verbose(env, "BPF_JA uses reserved fields\n");
8014 return -EINVAL;
8015 }
8016
David Brazdil0f672f62019-12-10 10:32:29 +00008017 env->insn_idx += insn->off + 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008018 continue;
8019
8020 } else if (opcode == BPF_EXIT) {
8021 if (BPF_SRC(insn->code) != BPF_K ||
8022 insn->imm != 0 ||
8023 insn->src_reg != BPF_REG_0 ||
David Brazdil0f672f62019-12-10 10:32:29 +00008024 insn->dst_reg != BPF_REG_0 ||
8025 class == BPF_JMP32) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008026 verbose(env, "BPF_EXIT uses reserved fields\n");
8027 return -EINVAL;
8028 }
8029
David Brazdil0f672f62019-12-10 10:32:29 +00008030 if (env->cur_state->active_spin_lock) {
8031 verbose(env, "bpf_spin_unlock is missing\n");
8032 return -EINVAL;
8033 }
8034
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008035 if (state->curframe) {
8036 /* exit from nested function */
David Brazdil0f672f62019-12-10 10:32:29 +00008037 err = prepare_func_exit(env, &env->insn_idx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008038 if (err)
8039 return err;
8040 do_print_state = true;
8041 continue;
8042 }
8043
David Brazdil0f672f62019-12-10 10:32:29 +00008044 err = check_reference_leak(env);
8045 if (err)
8046 return err;
8047
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008048 /* eBPF calling convetion is such that R0 is used
8049 * to return the value from eBPF program.
8050 * Make sure that it's readable at this time
8051 * of bpf_exit, which means that program wrote
8052 * something into it earlier
8053 */
8054 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
8055 if (err)
8056 return err;
8057
8058 if (is_pointer_value(env, BPF_REG_0)) {
8059 verbose(env, "R0 leaks addr as return value\n");
8060 return -EACCES;
8061 }
8062
8063 err = check_return_code(env);
8064 if (err)
8065 return err;
8066process_bpf_exit:
David Brazdil0f672f62019-12-10 10:32:29 +00008067 update_branch_counts(env, env->cur_state);
8068 err = pop_stack(env, &prev_insn_idx,
8069 &env->insn_idx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008070 if (err < 0) {
8071 if (err != -ENOENT)
8072 return err;
8073 break;
8074 } else {
8075 do_print_state = true;
8076 continue;
8077 }
8078 } else {
David Brazdil0f672f62019-12-10 10:32:29 +00008079 err = check_cond_jmp_op(env, insn, &env->insn_idx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008080 if (err)
8081 return err;
8082 }
8083 } else if (class == BPF_LD) {
8084 u8 mode = BPF_MODE(insn->code);
8085
8086 if (mode == BPF_ABS || mode == BPF_IND) {
8087 err = check_ld_abs(env, insn);
8088 if (err)
8089 return err;
8090
8091 } else if (mode == BPF_IMM) {
8092 err = check_ld_imm(env, insn);
8093 if (err)
8094 return err;
8095
David Brazdil0f672f62019-12-10 10:32:29 +00008096 env->insn_idx++;
Olivier Deprez0e641232021-09-23 10:07:05 +02008097 sanitize_mark_insn_seen(env);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008098 } else {
8099 verbose(env, "invalid BPF_LD mode\n");
8100 return -EINVAL;
8101 }
8102 } else {
8103 verbose(env, "unknown insn class %d\n", class);
8104 return -EINVAL;
8105 }
8106
David Brazdil0f672f62019-12-10 10:32:29 +00008107 env->insn_idx++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008108 }
8109
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008110 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
8111 return 0;
8112}
8113
8114static int check_map_prealloc(struct bpf_map *map)
8115{
8116 return (map->map_type != BPF_MAP_TYPE_HASH &&
8117 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8118 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
8119 !(map->map_flags & BPF_F_NO_PREALLOC);
8120}
8121
David Brazdil0f672f62019-12-10 10:32:29 +00008122static bool is_tracing_prog_type(enum bpf_prog_type type)
8123{
8124 switch (type) {
8125 case BPF_PROG_TYPE_KPROBE:
8126 case BPF_PROG_TYPE_TRACEPOINT:
8127 case BPF_PROG_TYPE_PERF_EVENT:
8128 case BPF_PROG_TYPE_RAW_TRACEPOINT:
8129 return true;
8130 default:
8131 return false;
8132 }
8133}
8134
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008135static int check_map_prog_compatibility(struct bpf_verifier_env *env,
8136 struct bpf_map *map,
8137 struct bpf_prog *prog)
8138
8139{
8140 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
8141 * preallocated hash maps, since doing memory allocation
8142 * in overflow_handler can crash depending on where nmi got
8143 * triggered.
8144 */
8145 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
8146 if (!check_map_prealloc(map)) {
8147 verbose(env, "perf_event programs can only use preallocated hash map\n");
8148 return -EINVAL;
8149 }
8150 if (map->inner_map_meta &&
8151 !check_map_prealloc(map->inner_map_meta)) {
8152 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
8153 return -EINVAL;
8154 }
8155 }
8156
David Brazdil0f672f62019-12-10 10:32:29 +00008157 if ((is_tracing_prog_type(prog->type) ||
8158 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
8159 map_value_has_spin_lock(map)) {
8160 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
8161 return -EINVAL;
8162 }
8163
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008164 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
8165 !bpf_offload_prog_map_match(prog, map)) {
8166 verbose(env, "offload device mismatch between prog and map\n");
8167 return -EINVAL;
8168 }
8169
8170 return 0;
8171}
8172
David Brazdil0f672f62019-12-10 10:32:29 +00008173static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
8174{
8175 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
8176 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
8177}
8178
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008179/* look for pseudo eBPF instructions that access map FDs and
8180 * replace them with actual map pointers
8181 */
8182static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
8183{
8184 struct bpf_insn *insn = env->prog->insnsi;
8185 int insn_cnt = env->prog->len;
8186 int i, j, err;
8187
8188 err = bpf_prog_calc_tag(env->prog);
8189 if (err)
8190 return err;
8191
8192 for (i = 0; i < insn_cnt; i++, insn++) {
8193 if (BPF_CLASS(insn->code) == BPF_LDX &&
8194 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
8195 verbose(env, "BPF_LDX uses reserved fields\n");
8196 return -EINVAL;
8197 }
8198
8199 if (BPF_CLASS(insn->code) == BPF_STX &&
8200 ((BPF_MODE(insn->code) != BPF_MEM &&
8201 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
8202 verbose(env, "BPF_STX uses reserved fields\n");
8203 return -EINVAL;
8204 }
8205
8206 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
David Brazdil0f672f62019-12-10 10:32:29 +00008207 struct bpf_insn_aux_data *aux;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008208 struct bpf_map *map;
8209 struct fd f;
David Brazdil0f672f62019-12-10 10:32:29 +00008210 u64 addr;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008211
8212 if (i == insn_cnt - 1 || insn[1].code != 0 ||
8213 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
8214 insn[1].off != 0) {
8215 verbose(env, "invalid bpf_ld_imm64 insn\n");
8216 return -EINVAL;
8217 }
8218
David Brazdil0f672f62019-12-10 10:32:29 +00008219 if (insn[0].src_reg == 0)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008220 /* valid generic load 64-bit imm */
8221 goto next_insn;
8222
David Brazdil0f672f62019-12-10 10:32:29 +00008223 /* In final convert_pseudo_ld_imm64() step, this is
8224 * converted into regular 64-bit imm load insn.
8225 */
8226 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
8227 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
8228 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
8229 insn[1].imm != 0)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008230 verbose(env,
8231 "unrecognized bpf_ld_imm64 insn\n");
8232 return -EINVAL;
8233 }
8234
David Brazdil0f672f62019-12-10 10:32:29 +00008235 f = fdget(insn[0].imm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008236 map = __bpf_map_get(f);
8237 if (IS_ERR(map)) {
8238 verbose(env, "fd %d is not pointing to valid bpf_map\n",
David Brazdil0f672f62019-12-10 10:32:29 +00008239 insn[0].imm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008240 return PTR_ERR(map);
8241 }
8242
8243 err = check_map_prog_compatibility(env, map, env->prog);
8244 if (err) {
8245 fdput(f);
8246 return err;
8247 }
8248
David Brazdil0f672f62019-12-10 10:32:29 +00008249 aux = &env->insn_aux_data[i];
8250 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8251 addr = (unsigned long)map;
8252 } else {
8253 u32 off = insn[1].imm;
8254
8255 if (off >= BPF_MAX_VAR_OFF) {
8256 verbose(env, "direct value offset of %u is not allowed\n", off);
8257 fdput(f);
8258 return -EINVAL;
8259 }
8260
8261 if (!map->ops->map_direct_value_addr) {
8262 verbose(env, "no direct value access support for this map type\n");
8263 fdput(f);
8264 return -EINVAL;
8265 }
8266
8267 err = map->ops->map_direct_value_addr(map, &addr, off);
8268 if (err) {
8269 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
8270 map->value_size, off);
8271 fdput(f);
8272 return err;
8273 }
8274
8275 aux->map_off = off;
8276 addr += off;
8277 }
8278
8279 insn[0].imm = (u32)addr;
8280 insn[1].imm = addr >> 32;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008281
8282 /* check whether we recorded this map already */
David Brazdil0f672f62019-12-10 10:32:29 +00008283 for (j = 0; j < env->used_map_cnt; j++) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008284 if (env->used_maps[j] == map) {
David Brazdil0f672f62019-12-10 10:32:29 +00008285 aux->map_index = j;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008286 fdput(f);
8287 goto next_insn;
8288 }
David Brazdil0f672f62019-12-10 10:32:29 +00008289 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008290
8291 if (env->used_map_cnt >= MAX_USED_MAPS) {
8292 fdput(f);
8293 return -E2BIG;
8294 }
8295
8296 /* hold the map. If the program is rejected by verifier,
8297 * the map will be released by release_maps() or it
8298 * will be used by the valid program until it's unloaded
8299 * and all maps are released in free_used_maps()
8300 */
8301 map = bpf_map_inc(map, false);
8302 if (IS_ERR(map)) {
8303 fdput(f);
8304 return PTR_ERR(map);
8305 }
David Brazdil0f672f62019-12-10 10:32:29 +00008306
8307 aux->map_index = env->used_map_cnt;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008308 env->used_maps[env->used_map_cnt++] = map;
8309
David Brazdil0f672f62019-12-10 10:32:29 +00008310 if (bpf_map_is_cgroup_storage(map) &&
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008311 bpf_cgroup_storage_assign(env->prog, map)) {
David Brazdil0f672f62019-12-10 10:32:29 +00008312 verbose(env, "only one cgroup storage of each type is allowed\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008313 fdput(f);
8314 return -EBUSY;
8315 }
8316
8317 fdput(f);
8318next_insn:
8319 insn++;
8320 i++;
8321 continue;
8322 }
8323
8324 /* Basic sanity check before we invest more work here. */
8325 if (!bpf_opcode_in_insntable(insn->code)) {
8326 verbose(env, "unknown opcode %02x\n", insn->code);
8327 return -EINVAL;
8328 }
8329 }
8330
8331 /* now all pseudo BPF_LD_IMM64 instructions load valid
8332 * 'struct bpf_map *' into a register instead of user map_fd.
8333 * These pointers will be used later by verifier to validate map access.
8334 */
8335 return 0;
8336}
8337
8338/* drop refcnt of maps used by the rejected program */
8339static void release_maps(struct bpf_verifier_env *env)
8340{
David Brazdil0f672f62019-12-10 10:32:29 +00008341 enum bpf_cgroup_storage_type stype;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008342 int i;
8343
David Brazdil0f672f62019-12-10 10:32:29 +00008344 for_each_cgroup_storage_type(stype) {
8345 if (!env->prog->aux->cgroup_storage[stype])
8346 continue;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008347 bpf_cgroup_storage_release(env->prog,
David Brazdil0f672f62019-12-10 10:32:29 +00008348 env->prog->aux->cgroup_storage[stype]);
8349 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008350
8351 for (i = 0; i < env->used_map_cnt; i++)
8352 bpf_map_put(env->used_maps[i]);
8353}
8354
8355/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
8356static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
8357{
8358 struct bpf_insn *insn = env->prog->insnsi;
8359 int insn_cnt = env->prog->len;
8360 int i;
8361
8362 for (i = 0; i < insn_cnt; i++, insn++)
8363 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
8364 insn->src_reg = 0;
8365}
8366
8367/* single env->prog->insni[off] instruction was replaced with the range
8368 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
8369 * [0, off) and [off, end) to new locations, so the patched range stays zero
8370 */
Olivier Deprez0e641232021-09-23 10:07:05 +02008371static void adjust_insn_aux_data(struct bpf_verifier_env *env,
8372 struct bpf_insn_aux_data *new_data,
8373 struct bpf_prog *new_prog, u32 off, u32 cnt)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008374{
Olivier Deprez0e641232021-09-23 10:07:05 +02008375 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
David Brazdil0f672f62019-12-10 10:32:29 +00008376 struct bpf_insn *insn = new_prog->insnsi;
Olivier Deprez0e641232021-09-23 10:07:05 +02008377 bool old_seen = old_data[off].seen;
David Brazdil0f672f62019-12-10 10:32:29 +00008378 u32 prog_len;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008379 int i;
8380
David Brazdil0f672f62019-12-10 10:32:29 +00008381 /* aux info at OFF always needs adjustment, no matter fast path
8382 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
8383 * original insn at old prog.
8384 */
8385 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
8386
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008387 if (cnt == 1)
Olivier Deprez0e641232021-09-23 10:07:05 +02008388 return;
David Brazdil0f672f62019-12-10 10:32:29 +00008389 prog_len = new_prog->len;
Olivier Deprez0e641232021-09-23 10:07:05 +02008390
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008391 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
8392 memcpy(new_data + off + cnt - 1, old_data + off,
8393 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
David Brazdil0f672f62019-12-10 10:32:29 +00008394 for (i = off; i < off + cnt - 1; i++) {
Olivier Deprez0e641232021-09-23 10:07:05 +02008395 /* Expand insni[off]'s seen count to the patched range. */
8396 new_data[i].seen = old_seen;
David Brazdil0f672f62019-12-10 10:32:29 +00008397 new_data[i].zext_dst = insn_has_def32(env, insn + i);
8398 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008399 env->insn_aux_data = new_data;
8400 vfree(old_data);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008401}
8402
8403static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
8404{
8405 int i;
8406
8407 if (len == 1)
8408 return;
8409 /* NOTE: fake 'exit' subprog should be updated as well. */
8410 for (i = 0; i <= env->subprog_cnt; i++) {
8411 if (env->subprog_info[i].start <= off)
8412 continue;
8413 env->subprog_info[i].start += len - 1;
8414 }
8415}
8416
8417static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
8418 const struct bpf_insn *patch, u32 len)
8419{
8420 struct bpf_prog *new_prog;
Olivier Deprez0e641232021-09-23 10:07:05 +02008421 struct bpf_insn_aux_data *new_data = NULL;
8422
8423 if (len > 1) {
8424 new_data = vzalloc(array_size(env->prog->len + len - 1,
8425 sizeof(struct bpf_insn_aux_data)));
8426 if (!new_data)
8427 return NULL;
8428 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008429
8430 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
David Brazdil0f672f62019-12-10 10:32:29 +00008431 if (IS_ERR(new_prog)) {
8432 if (PTR_ERR(new_prog) == -ERANGE)
8433 verbose(env,
8434 "insn %d cannot be patched due to 16-bit range\n",
8435 env->insn_aux_data[off].orig_idx);
Olivier Deprez0e641232021-09-23 10:07:05 +02008436 vfree(new_data);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008437 return NULL;
David Brazdil0f672f62019-12-10 10:32:29 +00008438 }
Olivier Deprez0e641232021-09-23 10:07:05 +02008439 adjust_insn_aux_data(env, new_data, new_prog, off, len);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008440 adjust_subprog_starts(env, off, len);
8441 return new_prog;
8442}
8443
David Brazdil0f672f62019-12-10 10:32:29 +00008444static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
8445 u32 off, u32 cnt)
8446{
8447 int i, j;
8448
8449 /* find first prog starting at or after off (first to remove) */
8450 for (i = 0; i < env->subprog_cnt; i++)
8451 if (env->subprog_info[i].start >= off)
8452 break;
8453 /* find first prog starting at or after off + cnt (first to stay) */
8454 for (j = i; j < env->subprog_cnt; j++)
8455 if (env->subprog_info[j].start >= off + cnt)
8456 break;
8457 /* if j doesn't start exactly at off + cnt, we are just removing
8458 * the front of previous prog
8459 */
8460 if (env->subprog_info[j].start != off + cnt)
8461 j--;
8462
8463 if (j > i) {
8464 struct bpf_prog_aux *aux = env->prog->aux;
8465 int move;
8466
8467 /* move fake 'exit' subprog as well */
8468 move = env->subprog_cnt + 1 - j;
8469
8470 memmove(env->subprog_info + i,
8471 env->subprog_info + j,
8472 sizeof(*env->subprog_info) * move);
8473 env->subprog_cnt -= j - i;
8474
8475 /* remove func_info */
8476 if (aux->func_info) {
8477 move = aux->func_info_cnt - j;
8478
8479 memmove(aux->func_info + i,
8480 aux->func_info + j,
8481 sizeof(*aux->func_info) * move);
8482 aux->func_info_cnt -= j - i;
8483 /* func_info->insn_off is set after all code rewrites,
8484 * in adjust_btf_func() - no need to adjust
8485 */
8486 }
8487 } else {
8488 /* convert i from "first prog to remove" to "first to adjust" */
8489 if (env->subprog_info[i].start == off)
8490 i++;
8491 }
8492
8493 /* update fake 'exit' subprog as well */
8494 for (; i <= env->subprog_cnt; i++)
8495 env->subprog_info[i].start -= cnt;
8496
8497 return 0;
8498}
8499
8500static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
8501 u32 cnt)
8502{
8503 struct bpf_prog *prog = env->prog;
8504 u32 i, l_off, l_cnt, nr_linfo;
8505 struct bpf_line_info *linfo;
8506
8507 nr_linfo = prog->aux->nr_linfo;
8508 if (!nr_linfo)
8509 return 0;
8510
8511 linfo = prog->aux->linfo;
8512
8513 /* find first line info to remove, count lines to be removed */
8514 for (i = 0; i < nr_linfo; i++)
8515 if (linfo[i].insn_off >= off)
8516 break;
8517
8518 l_off = i;
8519 l_cnt = 0;
8520 for (; i < nr_linfo; i++)
8521 if (linfo[i].insn_off < off + cnt)
8522 l_cnt++;
8523 else
8524 break;
8525
8526 /* First live insn doesn't match first live linfo, it needs to "inherit"
8527 * last removed linfo. prog is already modified, so prog->len == off
8528 * means no live instructions after (tail of the program was removed).
8529 */
8530 if (prog->len != off && l_cnt &&
8531 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
8532 l_cnt--;
8533 linfo[--i].insn_off = off + cnt;
8534 }
8535
8536 /* remove the line info which refer to the removed instructions */
8537 if (l_cnt) {
8538 memmove(linfo + l_off, linfo + i,
8539 sizeof(*linfo) * (nr_linfo - i));
8540
8541 prog->aux->nr_linfo -= l_cnt;
8542 nr_linfo = prog->aux->nr_linfo;
8543 }
8544
8545 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
8546 for (i = l_off; i < nr_linfo; i++)
8547 linfo[i].insn_off -= cnt;
8548
8549 /* fix up all subprogs (incl. 'exit') which start >= off */
8550 for (i = 0; i <= env->subprog_cnt; i++)
8551 if (env->subprog_info[i].linfo_idx > l_off) {
8552 /* program may have started in the removed region but
8553 * may not be fully removed
8554 */
8555 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
8556 env->subprog_info[i].linfo_idx -= l_cnt;
8557 else
8558 env->subprog_info[i].linfo_idx = l_off;
8559 }
8560
8561 return 0;
8562}
8563
8564static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
8565{
8566 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8567 unsigned int orig_prog_len = env->prog->len;
8568 int err;
8569
8570 if (bpf_prog_is_dev_bound(env->prog->aux))
8571 bpf_prog_offload_remove_insns(env, off, cnt);
8572
8573 err = bpf_remove_insns(env->prog, off, cnt);
8574 if (err)
8575 return err;
8576
8577 err = adjust_subprog_starts_after_remove(env, off, cnt);
8578 if (err)
8579 return err;
8580
8581 err = bpf_adj_linfo_after_remove(env, off, cnt);
8582 if (err)
8583 return err;
8584
8585 memmove(aux_data + off, aux_data + off + cnt,
8586 sizeof(*aux_data) * (orig_prog_len - off - cnt));
8587
8588 return 0;
8589}
8590
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008591/* The verifier does more data flow analysis than llvm and will not
8592 * explore branches that are dead at run time. Malicious programs can
8593 * have dead code too. Therefore replace all dead at-run-time code
8594 * with 'ja -1'.
8595 *
8596 * Just nops are not optimal, e.g. if they would sit at the end of the
8597 * program and through another bug we would manage to jump there, then
8598 * we'd execute beyond program memory otherwise. Returning exception
8599 * code also wouldn't work since we can have subprogs where the dead
8600 * code could be located.
8601 */
8602static void sanitize_dead_code(struct bpf_verifier_env *env)
8603{
8604 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8605 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
8606 struct bpf_insn *insn = env->prog->insnsi;
8607 const int insn_cnt = env->prog->len;
8608 int i;
8609
8610 for (i = 0; i < insn_cnt; i++) {
8611 if (aux_data[i].seen)
8612 continue;
8613 memcpy(insn + i, &trap, sizeof(trap));
Olivier Deprez0e641232021-09-23 10:07:05 +02008614 aux_data[i].zext_dst = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008615 }
8616}
8617
David Brazdil0f672f62019-12-10 10:32:29 +00008618static bool insn_is_cond_jump(u8 code)
8619{
8620 u8 op;
8621
8622 if (BPF_CLASS(code) == BPF_JMP32)
8623 return true;
8624
8625 if (BPF_CLASS(code) != BPF_JMP)
8626 return false;
8627
8628 op = BPF_OP(code);
8629 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
8630}
8631
8632static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
8633{
8634 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8635 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8636 struct bpf_insn *insn = env->prog->insnsi;
8637 const int insn_cnt = env->prog->len;
8638 int i;
8639
8640 for (i = 0; i < insn_cnt; i++, insn++) {
8641 if (!insn_is_cond_jump(insn->code))
8642 continue;
8643
8644 if (!aux_data[i + 1].seen)
8645 ja.off = insn->off;
8646 else if (!aux_data[i + 1 + insn->off].seen)
8647 ja.off = 0;
8648 else
8649 continue;
8650
8651 if (bpf_prog_is_dev_bound(env->prog->aux))
8652 bpf_prog_offload_replace_insn(env, i, &ja);
8653
8654 memcpy(insn, &ja, sizeof(ja));
8655 }
8656}
8657
8658static int opt_remove_dead_code(struct bpf_verifier_env *env)
8659{
8660 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8661 int insn_cnt = env->prog->len;
8662 int i, err;
8663
8664 for (i = 0; i < insn_cnt; i++) {
8665 int j;
8666
8667 j = 0;
8668 while (i + j < insn_cnt && !aux_data[i + j].seen)
8669 j++;
8670 if (!j)
8671 continue;
8672
8673 err = verifier_remove_insns(env, i, j);
8674 if (err)
8675 return err;
8676 insn_cnt = env->prog->len;
8677 }
8678
8679 return 0;
8680}
8681
8682static int opt_remove_nops(struct bpf_verifier_env *env)
8683{
8684 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8685 struct bpf_insn *insn = env->prog->insnsi;
8686 int insn_cnt = env->prog->len;
8687 int i, err;
8688
8689 for (i = 0; i < insn_cnt; i++) {
8690 if (memcmp(&insn[i], &ja, sizeof(ja)))
8691 continue;
8692
8693 err = verifier_remove_insns(env, i, 1);
8694 if (err)
8695 return err;
8696 insn_cnt--;
8697 i--;
8698 }
8699
8700 return 0;
8701}
8702
8703static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
8704 const union bpf_attr *attr)
8705{
8706 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
8707 struct bpf_insn_aux_data *aux = env->insn_aux_data;
8708 int i, patch_len, delta = 0, len = env->prog->len;
8709 struct bpf_insn *insns = env->prog->insnsi;
8710 struct bpf_prog *new_prog;
8711 bool rnd_hi32;
8712
8713 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
8714 zext_patch[1] = BPF_ZEXT_REG(0);
8715 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
8716 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
8717 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
8718 for (i = 0; i < len; i++) {
8719 int adj_idx = i + delta;
8720 struct bpf_insn insn;
8721
8722 insn = insns[adj_idx];
8723 if (!aux[adj_idx].zext_dst) {
8724 u8 code, class;
8725 u32 imm_rnd;
8726
8727 if (!rnd_hi32)
8728 continue;
8729
8730 code = insn.code;
8731 class = BPF_CLASS(code);
8732 if (insn_no_def(&insn))
8733 continue;
8734
8735 /* NOTE: arg "reg" (the fourth one) is only used for
8736 * BPF_STX which has been ruled out in above
8737 * check, it is safe to pass NULL here.
8738 */
8739 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
8740 if (class == BPF_LD &&
8741 BPF_MODE(code) == BPF_IMM)
8742 i++;
8743 continue;
8744 }
8745
8746 /* ctx load could be transformed into wider load. */
8747 if (class == BPF_LDX &&
8748 aux[adj_idx].ptr_type == PTR_TO_CTX)
8749 continue;
8750
8751 imm_rnd = get_random_int();
8752 rnd_hi32_patch[0] = insn;
8753 rnd_hi32_patch[1].imm = imm_rnd;
8754 rnd_hi32_patch[3].dst_reg = insn.dst_reg;
8755 patch = rnd_hi32_patch;
8756 patch_len = 4;
8757 goto apply_patch_buffer;
8758 }
8759
8760 if (!bpf_jit_needs_zext())
8761 continue;
8762
8763 zext_patch[0] = insn;
8764 zext_patch[1].dst_reg = insn.dst_reg;
8765 zext_patch[1].src_reg = insn.dst_reg;
8766 patch = zext_patch;
8767 patch_len = 2;
8768apply_patch_buffer:
8769 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
8770 if (!new_prog)
8771 return -ENOMEM;
8772 env->prog = new_prog;
8773 insns = new_prog->insnsi;
8774 aux = env->insn_aux_data;
8775 delta += patch_len - 1;
8776 }
8777
8778 return 0;
8779}
8780
8781/* convert load instructions that access fields of a context type into a
8782 * sequence of instructions that access fields of the underlying structure:
8783 * struct __sk_buff -> struct sk_buff
8784 * struct bpf_sock_ops -> struct sock
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008785 */
8786static int convert_ctx_accesses(struct bpf_verifier_env *env)
8787{
8788 const struct bpf_verifier_ops *ops = env->ops;
8789 int i, cnt, size, ctx_field_size, delta = 0;
8790 const int insn_cnt = env->prog->len;
8791 struct bpf_insn insn_buf[16], *insn;
David Brazdil0f672f62019-12-10 10:32:29 +00008792 u32 target_size, size_default, off;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008793 struct bpf_prog *new_prog;
8794 enum bpf_access_type type;
8795 bool is_narrower_load;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008796
David Brazdil0f672f62019-12-10 10:32:29 +00008797 if (ops->gen_prologue || env->seen_direct_write) {
8798 if (!ops->gen_prologue) {
8799 verbose(env, "bpf verifier is misconfigured\n");
8800 return -EINVAL;
8801 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008802 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
8803 env->prog);
8804 if (cnt >= ARRAY_SIZE(insn_buf)) {
8805 verbose(env, "bpf verifier is misconfigured\n");
8806 return -EINVAL;
8807 } else if (cnt) {
8808 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
8809 if (!new_prog)
8810 return -ENOMEM;
8811
8812 env->prog = new_prog;
8813 delta += cnt - 1;
8814 }
8815 }
8816
David Brazdil0f672f62019-12-10 10:32:29 +00008817 if (bpf_prog_is_dev_bound(env->prog->aux))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008818 return 0;
8819
8820 insn = env->prog->insnsi + delta;
8821
8822 for (i = 0; i < insn_cnt; i++, insn++) {
David Brazdil0f672f62019-12-10 10:32:29 +00008823 bpf_convert_ctx_access_t convert_ctx_access;
Olivier Deprez0e641232021-09-23 10:07:05 +02008824 bool ctx_access;
David Brazdil0f672f62019-12-10 10:32:29 +00008825
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008826 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
8827 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
8828 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
Olivier Deprez0e641232021-09-23 10:07:05 +02008829 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008830 type = BPF_READ;
Olivier Deprez0e641232021-09-23 10:07:05 +02008831 ctx_access = true;
8832 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
8833 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
8834 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
8835 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
8836 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
8837 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
8838 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
8839 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008840 type = BPF_WRITE;
Olivier Deprez0e641232021-09-23 10:07:05 +02008841 ctx_access = BPF_CLASS(insn->code) == BPF_STX;
8842 } else {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008843 continue;
Olivier Deprez0e641232021-09-23 10:07:05 +02008844 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008845
8846 if (type == BPF_WRITE &&
Olivier Deprez0e641232021-09-23 10:07:05 +02008847 env->insn_aux_data[i + delta].sanitize_stack_spill) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008848 struct bpf_insn patch[] = {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008849 *insn,
Olivier Deprez0e641232021-09-23 10:07:05 +02008850 BPF_ST_NOSPEC(),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008851 };
8852
8853 cnt = ARRAY_SIZE(patch);
8854 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
8855 if (!new_prog)
8856 return -ENOMEM;
8857
8858 delta += cnt - 1;
8859 env->prog = new_prog;
8860 insn = new_prog->insnsi + i + delta;
8861 continue;
8862 }
8863
Olivier Deprez0e641232021-09-23 10:07:05 +02008864 if (!ctx_access)
8865 continue;
8866
David Brazdil0f672f62019-12-10 10:32:29 +00008867 switch (env->insn_aux_data[i + delta].ptr_type) {
8868 case PTR_TO_CTX:
8869 if (!ops->convert_ctx_access)
8870 continue;
8871 convert_ctx_access = ops->convert_ctx_access;
8872 break;
8873 case PTR_TO_SOCKET:
8874 case PTR_TO_SOCK_COMMON:
8875 convert_ctx_access = bpf_sock_convert_ctx_access;
8876 break;
8877 case PTR_TO_TCP_SOCK:
8878 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
8879 break;
8880 case PTR_TO_XDP_SOCK:
8881 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
8882 break;
8883 default:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008884 continue;
David Brazdil0f672f62019-12-10 10:32:29 +00008885 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008886
8887 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
8888 size = BPF_LDST_BYTES(insn);
8889
8890 /* If the read access is a narrower load of the field,
8891 * convert to a 4/8-byte load, to minimum program type specific
8892 * convert_ctx_access changes. If conversion is successful,
8893 * we will apply proper mask to the result.
8894 */
8895 is_narrower_load = size < ctx_field_size;
David Brazdil0f672f62019-12-10 10:32:29 +00008896 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
8897 off = insn->off;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008898 if (is_narrower_load) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008899 u8 size_code;
8900
8901 if (type == BPF_WRITE) {
8902 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
8903 return -EINVAL;
8904 }
8905
8906 size_code = BPF_H;
8907 if (ctx_field_size == 4)
8908 size_code = BPF_W;
8909 else if (ctx_field_size == 8)
8910 size_code = BPF_DW;
8911
8912 insn->off = off & ~(size_default - 1);
8913 insn->code = BPF_LDX | BPF_MEM | size_code;
8914 }
8915
8916 target_size = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00008917 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
8918 &target_size);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008919 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
8920 (ctx_field_size && !target_size)) {
8921 verbose(env, "bpf verifier is misconfigured\n");
8922 return -EINVAL;
8923 }
8924
8925 if (is_narrower_load && size < target_size) {
David Brazdil0f672f62019-12-10 10:32:29 +00008926 u8 shift = bpf_ctx_narrow_access_offset(
8927 off, size, size_default) * 8;
Olivier Deprez0e641232021-09-23 10:07:05 +02008928 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
8929 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
8930 return -EINVAL;
8931 }
David Brazdil0f672f62019-12-10 10:32:29 +00008932 if (ctx_field_size <= 4) {
8933 if (shift)
8934 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
8935 insn->dst_reg,
8936 shift);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008937 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
8938 (1 << size * 8) - 1);
David Brazdil0f672f62019-12-10 10:32:29 +00008939 } else {
8940 if (shift)
8941 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
8942 insn->dst_reg,
8943 shift);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008944 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
David Brazdil0f672f62019-12-10 10:32:29 +00008945 (1ULL << size * 8) - 1);
8946 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008947 }
8948
8949 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8950 if (!new_prog)
8951 return -ENOMEM;
8952
8953 delta += cnt - 1;
8954
8955 /* keep walking new program and skip insns we just inserted */
8956 env->prog = new_prog;
8957 insn = new_prog->insnsi + i + delta;
8958 }
8959
8960 return 0;
8961}
8962
8963static int jit_subprogs(struct bpf_verifier_env *env)
8964{
8965 struct bpf_prog *prog = env->prog, **func, *tmp;
8966 int i, j, subprog_start, subprog_end = 0, len, subprog;
8967 struct bpf_insn *insn;
8968 void *old_bpf_func;
David Brazdil0f672f62019-12-10 10:32:29 +00008969 int err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008970
8971 if (env->subprog_cnt <= 1)
8972 return 0;
8973
8974 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
8975 if (insn->code != (BPF_JMP | BPF_CALL) ||
8976 insn->src_reg != BPF_PSEUDO_CALL)
8977 continue;
8978 /* Upon error here we cannot fall back to interpreter but
8979 * need a hard reject of the program. Thus -EFAULT is
8980 * propagated in any case.
8981 */
8982 subprog = find_subprog(env, i + insn->imm + 1);
8983 if (subprog < 0) {
8984 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
8985 i + insn->imm + 1);
8986 return -EFAULT;
8987 }
8988 /* temporarily remember subprog id inside insn instead of
8989 * aux_data, since next loop will split up all insns into funcs
8990 */
8991 insn->off = subprog;
8992 /* remember original imm in case JIT fails and fallback
8993 * to interpreter will be needed
8994 */
8995 env->insn_aux_data[i].call_imm = insn->imm;
8996 /* point imm to __bpf_call_base+1 from JITs point of view */
8997 insn->imm = 1;
8998 }
8999
David Brazdil0f672f62019-12-10 10:32:29 +00009000 err = bpf_prog_alloc_jited_linfo(prog);
9001 if (err)
9002 goto out_undo_insn;
9003
9004 err = -ENOMEM;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009005 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
9006 if (!func)
9007 goto out_undo_insn;
9008
9009 for (i = 0; i < env->subprog_cnt; i++) {
9010 subprog_start = subprog_end;
9011 subprog_end = env->subprog_info[i + 1].start;
9012
9013 len = subprog_end - subprog_start;
David Brazdil0f672f62019-12-10 10:32:29 +00009014 /* BPF_PROG_RUN doesn't call subprogs directly,
9015 * hence main prog stats include the runtime of subprogs.
9016 * subprogs don't have IDs and not reachable via prog_get_next_id
9017 * func[i]->aux->stats will never be accessed and stays NULL
9018 */
9019 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009020 if (!func[i])
9021 goto out_free;
9022 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
9023 len * sizeof(struct bpf_insn));
9024 func[i]->type = prog->type;
9025 func[i]->len = len;
9026 if (bpf_prog_calc_tag(func[i]))
9027 goto out_free;
9028 func[i]->is_func = 1;
David Brazdil0f672f62019-12-10 10:32:29 +00009029 func[i]->aux->func_idx = i;
9030 /* the btf and func_info will be freed only at prog->aux */
9031 func[i]->aux->btf = prog->aux->btf;
9032 func[i]->aux->func_info = prog->aux->func_info;
9033
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009034 /* Use bpf_prog_F_tag to indicate functions in stack traces.
9035 * Long term would need debug info to populate names
9036 */
9037 func[i]->aux->name[0] = 'F';
9038 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
9039 func[i]->jit_requested = 1;
David Brazdil0f672f62019-12-10 10:32:29 +00009040 func[i]->aux->linfo = prog->aux->linfo;
9041 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
9042 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
9043 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009044 func[i] = bpf_int_jit_compile(func[i]);
9045 if (!func[i]->jited) {
9046 err = -ENOTSUPP;
9047 goto out_free;
9048 }
9049 cond_resched();
9050 }
9051 /* at this point all bpf functions were successfully JITed
9052 * now populate all bpf_calls with correct addresses and
9053 * run last pass of JIT
9054 */
9055 for (i = 0; i < env->subprog_cnt; i++) {
9056 insn = func[i]->insnsi;
9057 for (j = 0; j < func[i]->len; j++, insn++) {
9058 if (insn->code != (BPF_JMP | BPF_CALL) ||
9059 insn->src_reg != BPF_PSEUDO_CALL)
9060 continue;
9061 subprog = insn->off;
David Brazdil0f672f62019-12-10 10:32:29 +00009062 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
9063 __bpf_call_base;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009064 }
9065
9066 /* we use the aux data to keep a list of the start addresses
9067 * of the JITed images for each function in the program
9068 *
9069 * for some architectures, such as powerpc64, the imm field
9070 * might not be large enough to hold the offset of the start
9071 * address of the callee's JITed image from __bpf_call_base
9072 *
9073 * in such cases, we can lookup the start address of a callee
9074 * by using its subprog id, available from the off field of
9075 * the call instruction, as an index for this list
9076 */
9077 func[i]->aux->func = func;
9078 func[i]->aux->func_cnt = env->subprog_cnt;
9079 }
9080 for (i = 0; i < env->subprog_cnt; i++) {
9081 old_bpf_func = func[i]->bpf_func;
9082 tmp = bpf_int_jit_compile(func[i]);
9083 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
9084 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
9085 err = -ENOTSUPP;
9086 goto out_free;
9087 }
9088 cond_resched();
9089 }
9090
9091 /* finally lock prog and jit images for all functions and
9092 * populate kallsysm
9093 */
9094 for (i = 0; i < env->subprog_cnt; i++) {
9095 bpf_prog_lock_ro(func[i]);
9096 bpf_prog_kallsyms_add(func[i]);
9097 }
9098
9099 /* Last step: make now unused interpreter insns from main
9100 * prog consistent for later dump requests, so they can
9101 * later look the same as if they were interpreted only.
9102 */
9103 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9104 if (insn->code != (BPF_JMP | BPF_CALL) ||
9105 insn->src_reg != BPF_PSEUDO_CALL)
9106 continue;
9107 insn->off = env->insn_aux_data[i].call_imm;
9108 subprog = find_subprog(env, i + insn->off + 1);
9109 insn->imm = subprog;
9110 }
9111
9112 prog->jited = 1;
9113 prog->bpf_func = func[0]->bpf_func;
9114 prog->aux->func = func;
9115 prog->aux->func_cnt = env->subprog_cnt;
David Brazdil0f672f62019-12-10 10:32:29 +00009116 bpf_prog_free_unused_jited_linfo(prog);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009117 return 0;
9118out_free:
9119 for (i = 0; i < env->subprog_cnt; i++)
9120 if (func[i])
9121 bpf_jit_free(func[i]);
9122 kfree(func);
9123out_undo_insn:
9124 /* cleanup main prog to be interpreted */
9125 prog->jit_requested = 0;
9126 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9127 if (insn->code != (BPF_JMP | BPF_CALL) ||
9128 insn->src_reg != BPF_PSEUDO_CALL)
9129 continue;
9130 insn->off = 0;
9131 insn->imm = env->insn_aux_data[i].call_imm;
9132 }
David Brazdil0f672f62019-12-10 10:32:29 +00009133 bpf_prog_free_jited_linfo(prog);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009134 return err;
9135}
9136
9137static int fixup_call_args(struct bpf_verifier_env *env)
9138{
9139#ifndef CONFIG_BPF_JIT_ALWAYS_ON
9140 struct bpf_prog *prog = env->prog;
9141 struct bpf_insn *insn = prog->insnsi;
9142 int i, depth;
9143#endif
David Brazdil0f672f62019-12-10 10:32:29 +00009144 int err = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009145
David Brazdil0f672f62019-12-10 10:32:29 +00009146 if (env->prog->jit_requested &&
9147 !bpf_prog_is_dev_bound(env->prog->aux)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009148 err = jit_subprogs(env);
9149 if (err == 0)
9150 return 0;
9151 if (err == -EFAULT)
9152 return err;
9153 }
9154#ifndef CONFIG_BPF_JIT_ALWAYS_ON
9155 for (i = 0; i < prog->len; i++, insn++) {
9156 if (insn->code != (BPF_JMP | BPF_CALL) ||
9157 insn->src_reg != BPF_PSEUDO_CALL)
9158 continue;
9159 depth = get_callee_stack_depth(env, insn, i);
9160 if (depth < 0)
9161 return depth;
9162 bpf_patch_call_args(insn, depth);
9163 }
9164 err = 0;
9165#endif
9166 return err;
9167}
9168
9169/* fixup insn->imm field of bpf_call instructions
9170 * and inline eligible helpers as explicit sequence of BPF instructions
9171 *
9172 * this function is called after eBPF program passed verification
9173 */
9174static int fixup_bpf_calls(struct bpf_verifier_env *env)
9175{
9176 struct bpf_prog *prog = env->prog;
9177 struct bpf_insn *insn = prog->insnsi;
9178 const struct bpf_func_proto *fn;
9179 const int insn_cnt = prog->len;
9180 const struct bpf_map_ops *ops;
9181 struct bpf_insn_aux_data *aux;
9182 struct bpf_insn insn_buf[16];
9183 struct bpf_prog *new_prog;
9184 struct bpf_map *map_ptr;
9185 int i, cnt, delta = 0;
9186
9187 for (i = 0; i < insn_cnt; i++, insn++) {
9188 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
9189 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
9190 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
9191 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
9192 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
Olivier Deprez0e641232021-09-23 10:07:05 +02009193 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
9194 struct bpf_insn *patchlet;
9195 struct bpf_insn chk_and_div[] = {
9196 /* [R,W]x div 0 -> 0 */
9197 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
9198 BPF_JNE | BPF_K, insn->src_reg,
9199 0, 2, 0),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009200 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
9201 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
9202 *insn,
9203 };
Olivier Deprez0e641232021-09-23 10:07:05 +02009204 struct bpf_insn chk_and_mod[] = {
9205 /* [R,W]x mod 0 -> [R,W]x */
9206 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
9207 BPF_JEQ | BPF_K, insn->src_reg,
9208 0, 1 + (is64 ? 0 : 1), 0),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009209 *insn,
Olivier Deprez0e641232021-09-23 10:07:05 +02009210 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
9211 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009212 };
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009213
Olivier Deprez0e641232021-09-23 10:07:05 +02009214 patchlet = isdiv ? chk_and_div : chk_and_mod;
9215 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
9216 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009217
9218 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
9219 if (!new_prog)
9220 return -ENOMEM;
9221
9222 delta += cnt - 1;
9223 env->prog = prog = new_prog;
9224 insn = new_prog->insnsi + i + delta;
9225 continue;
9226 }
9227
9228 if (BPF_CLASS(insn->code) == BPF_LD &&
9229 (BPF_MODE(insn->code) == BPF_ABS ||
9230 BPF_MODE(insn->code) == BPF_IND)) {
9231 cnt = env->ops->gen_ld_abs(insn, insn_buf);
9232 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
9233 verbose(env, "bpf verifier is misconfigured\n");
9234 return -EINVAL;
9235 }
9236
9237 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9238 if (!new_prog)
9239 return -ENOMEM;
9240
9241 delta += cnt - 1;
9242 env->prog = prog = new_prog;
9243 insn = new_prog->insnsi + i + delta;
9244 continue;
9245 }
9246
David Brazdil0f672f62019-12-10 10:32:29 +00009247 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
9248 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
9249 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
9250 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
9251 struct bpf_insn insn_buf[16];
9252 struct bpf_insn *patch = &insn_buf[0];
Olivier Deprez0e641232021-09-23 10:07:05 +02009253 bool issrc, isneg, isimm;
David Brazdil0f672f62019-12-10 10:32:29 +00009254 u32 off_reg;
9255
9256 aux = &env->insn_aux_data[i + delta];
9257 if (!aux->alu_state ||
9258 aux->alu_state == BPF_ALU_NON_POINTER)
9259 continue;
9260
9261 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
9262 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
9263 BPF_ALU_SANITIZE_SRC;
Olivier Deprez0e641232021-09-23 10:07:05 +02009264 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
David Brazdil0f672f62019-12-10 10:32:29 +00009265
9266 off_reg = issrc ? insn->src_reg : insn->dst_reg;
Olivier Deprez0e641232021-09-23 10:07:05 +02009267 if (isimm) {
9268 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
David Brazdil0f672f62019-12-10 10:32:29 +00009269 } else {
Olivier Deprez0e641232021-09-23 10:07:05 +02009270 if (isneg)
9271 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
9272 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
9273 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
9274 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
9275 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
9276 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
9277 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
David Brazdil0f672f62019-12-10 10:32:29 +00009278 }
Olivier Deprez0e641232021-09-23 10:07:05 +02009279 if (!issrc)
9280 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
9281 insn->src_reg = BPF_REG_AX;
David Brazdil0f672f62019-12-10 10:32:29 +00009282 if (isneg)
9283 insn->code = insn->code == code_add ?
9284 code_sub : code_add;
9285 *patch++ = *insn;
Olivier Deprez0e641232021-09-23 10:07:05 +02009286 if (issrc && isneg && !isimm)
David Brazdil0f672f62019-12-10 10:32:29 +00009287 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
9288 cnt = patch - insn_buf;
9289
9290 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9291 if (!new_prog)
9292 return -ENOMEM;
9293
9294 delta += cnt - 1;
9295 env->prog = prog = new_prog;
9296 insn = new_prog->insnsi + i + delta;
9297 continue;
9298 }
9299
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009300 if (insn->code != (BPF_JMP | BPF_CALL))
9301 continue;
9302 if (insn->src_reg == BPF_PSEUDO_CALL)
9303 continue;
9304
9305 if (insn->imm == BPF_FUNC_get_route_realm)
9306 prog->dst_needed = 1;
9307 if (insn->imm == BPF_FUNC_get_prandom_u32)
9308 bpf_user_rnd_init_once();
9309 if (insn->imm == BPF_FUNC_override_return)
9310 prog->kprobe_override = 1;
9311 if (insn->imm == BPF_FUNC_tail_call) {
9312 /* If we tail call into other programs, we
9313 * cannot make any assumptions since they can
9314 * be replaced dynamically during runtime in
9315 * the program array.
9316 */
9317 prog->cb_access = 1;
9318 env->prog->aux->stack_depth = MAX_BPF_STACK;
David Brazdil0f672f62019-12-10 10:32:29 +00009319 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009320
9321 /* mark bpf_tail_call as different opcode to avoid
9322 * conditional branch in the interpeter for every normal
9323 * call and to prevent accidental JITing by JIT compiler
9324 * that doesn't support bpf_tail_call yet
9325 */
9326 insn->imm = 0;
9327 insn->code = BPF_JMP | BPF_TAIL_CALL;
9328
9329 aux = &env->insn_aux_data[i + delta];
9330 if (!bpf_map_ptr_unpriv(aux))
9331 continue;
9332
9333 /* instead of changing every JIT dealing with tail_call
9334 * emit two extra insns:
9335 * if (index >= max_entries) goto out;
9336 * index &= array->index_mask;
9337 * to avoid out-of-bounds cpu speculation
9338 */
9339 if (bpf_map_ptr_poisoned(aux)) {
9340 verbose(env, "tail_call abusing map_ptr\n");
9341 return -EINVAL;
9342 }
9343
9344 map_ptr = BPF_MAP_PTR(aux->map_state);
9345 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
9346 map_ptr->max_entries, 2);
9347 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
9348 container_of(map_ptr,
9349 struct bpf_array,
9350 map)->index_mask);
9351 insn_buf[2] = *insn;
9352 cnt = 3;
9353 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9354 if (!new_prog)
9355 return -ENOMEM;
9356
9357 delta += cnt - 1;
9358 env->prog = prog = new_prog;
9359 insn = new_prog->insnsi + i + delta;
9360 continue;
9361 }
9362
9363 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
9364 * and other inlining handlers are currently limited to 64 bit
9365 * only.
9366 */
9367 if (prog->jit_requested && BITS_PER_LONG == 64 &&
9368 (insn->imm == BPF_FUNC_map_lookup_elem ||
9369 insn->imm == BPF_FUNC_map_update_elem ||
David Brazdil0f672f62019-12-10 10:32:29 +00009370 insn->imm == BPF_FUNC_map_delete_elem ||
9371 insn->imm == BPF_FUNC_map_push_elem ||
9372 insn->imm == BPF_FUNC_map_pop_elem ||
9373 insn->imm == BPF_FUNC_map_peek_elem)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009374 aux = &env->insn_aux_data[i + delta];
9375 if (bpf_map_ptr_poisoned(aux))
9376 goto patch_call_imm;
9377
9378 map_ptr = BPF_MAP_PTR(aux->map_state);
9379 ops = map_ptr->ops;
9380 if (insn->imm == BPF_FUNC_map_lookup_elem &&
9381 ops->map_gen_lookup) {
9382 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
9383 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
9384 verbose(env, "bpf verifier is misconfigured\n");
9385 return -EINVAL;
9386 }
9387
9388 new_prog = bpf_patch_insn_data(env, i + delta,
9389 insn_buf, cnt);
9390 if (!new_prog)
9391 return -ENOMEM;
9392
9393 delta += cnt - 1;
9394 env->prog = prog = new_prog;
9395 insn = new_prog->insnsi + i + delta;
9396 continue;
9397 }
9398
9399 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
9400 (void *(*)(struct bpf_map *map, void *key))NULL));
9401 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
9402 (int (*)(struct bpf_map *map, void *key))NULL));
9403 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
9404 (int (*)(struct bpf_map *map, void *key, void *value,
9405 u64 flags))NULL));
David Brazdil0f672f62019-12-10 10:32:29 +00009406 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
9407 (int (*)(struct bpf_map *map, void *value,
9408 u64 flags))NULL));
9409 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
9410 (int (*)(struct bpf_map *map, void *value))NULL));
9411 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
9412 (int (*)(struct bpf_map *map, void *value))NULL));
9413
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009414 switch (insn->imm) {
9415 case BPF_FUNC_map_lookup_elem:
9416 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
9417 __bpf_call_base;
9418 continue;
9419 case BPF_FUNC_map_update_elem:
9420 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
9421 __bpf_call_base;
9422 continue;
9423 case BPF_FUNC_map_delete_elem:
9424 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
9425 __bpf_call_base;
9426 continue;
David Brazdil0f672f62019-12-10 10:32:29 +00009427 case BPF_FUNC_map_push_elem:
9428 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
9429 __bpf_call_base;
9430 continue;
9431 case BPF_FUNC_map_pop_elem:
9432 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
9433 __bpf_call_base;
9434 continue;
9435 case BPF_FUNC_map_peek_elem:
9436 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
9437 __bpf_call_base;
9438 continue;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009439 }
9440
9441 goto patch_call_imm;
9442 }
9443
9444patch_call_imm:
9445 fn = env->ops->get_func_proto(insn->imm, env->prog);
9446 /* all functions that have prototype and verifier allowed
9447 * programs to call them, must be real in-kernel functions
9448 */
9449 if (!fn->func) {
9450 verbose(env,
9451 "kernel subsystem misconfigured func %s#%d\n",
9452 func_id_name(insn->imm), insn->imm);
9453 return -EFAULT;
9454 }
9455 insn->imm = fn->func - __bpf_call_base;
9456 }
9457
9458 return 0;
9459}
9460
9461static void free_states(struct bpf_verifier_env *env)
9462{
9463 struct bpf_verifier_state_list *sl, *sln;
9464 int i;
9465
David Brazdil0f672f62019-12-10 10:32:29 +00009466 sl = env->free_list;
9467 while (sl) {
9468 sln = sl->next;
9469 free_verifier_state(&sl->state, false);
9470 kfree(sl);
9471 sl = sln;
9472 }
9473
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009474 if (!env->explored_states)
9475 return;
9476
David Brazdil0f672f62019-12-10 10:32:29 +00009477 for (i = 0; i < state_htab_size(env); i++) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009478 sl = env->explored_states[i];
9479
David Brazdil0f672f62019-12-10 10:32:29 +00009480 while (sl) {
9481 sln = sl->next;
9482 free_verifier_state(&sl->state, false);
9483 kfree(sl);
9484 sl = sln;
9485 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009486 }
9487
David Brazdil0f672f62019-12-10 10:32:29 +00009488 kvfree(env->explored_states);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009489}
9490
David Brazdil0f672f62019-12-10 10:32:29 +00009491static void print_verification_stats(struct bpf_verifier_env *env)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009492{
David Brazdil0f672f62019-12-10 10:32:29 +00009493 int i;
9494
9495 if (env->log.level & BPF_LOG_STATS) {
9496 verbose(env, "verification time %lld usec\n",
9497 div_u64(env->verification_time, 1000));
9498 verbose(env, "stack depth ");
9499 for (i = 0; i < env->subprog_cnt; i++) {
9500 u32 depth = env->subprog_info[i].stack_depth;
9501
9502 verbose(env, "%d", depth);
9503 if (i + 1 < env->subprog_cnt)
9504 verbose(env, "+");
9505 }
9506 verbose(env, "\n");
9507 }
9508 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
9509 "total_states %d peak_states %d mark_read %d\n",
9510 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
9511 env->max_states_per_insn, env->total_states,
9512 env->peak_states, env->longest_mark_read_walk);
9513}
9514
9515int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
9516 union bpf_attr __user *uattr)
9517{
9518 u64 start_time = ktime_get_ns();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009519 struct bpf_verifier_env *env;
9520 struct bpf_verifier_log *log;
David Brazdil0f672f62019-12-10 10:32:29 +00009521 int i, len, ret = -EINVAL;
9522 bool is_priv;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009523
9524 /* no program is valid */
9525 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
9526 return -EINVAL;
9527
9528 /* 'struct bpf_verifier_env' can be global, but since it's not small,
9529 * allocate/free it every time bpf_check() is called
9530 */
9531 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
9532 if (!env)
9533 return -ENOMEM;
9534 log = &env->log;
9535
David Brazdil0f672f62019-12-10 10:32:29 +00009536 len = (*prog)->len;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009537 env->insn_aux_data =
David Brazdil0f672f62019-12-10 10:32:29 +00009538 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009539 ret = -ENOMEM;
9540 if (!env->insn_aux_data)
9541 goto err_free_env;
David Brazdil0f672f62019-12-10 10:32:29 +00009542 for (i = 0; i < len; i++)
9543 env->insn_aux_data[i].orig_idx = i;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009544 env->prog = *prog;
9545 env->ops = bpf_verifier_ops[env->prog->type];
David Brazdil0f672f62019-12-10 10:32:29 +00009546 is_priv = capable(CAP_SYS_ADMIN);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009547
9548 /* grab the mutex to protect few globals used by verifier */
David Brazdil0f672f62019-12-10 10:32:29 +00009549 if (!is_priv)
9550 mutex_lock(&bpf_verifier_lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009551
9552 if (attr->log_level || attr->log_buf || attr->log_size) {
9553 /* user requested verbose verifier output
9554 * and supplied buffer to store the verification trace
9555 */
9556 log->level = attr->log_level;
9557 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
9558 log->len_total = attr->log_size;
9559
9560 ret = -EINVAL;
9561 /* log attributes have to be sane */
David Brazdil0f672f62019-12-10 10:32:29 +00009562 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
9563 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009564 goto err_unlock;
9565 }
9566
9567 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
9568 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
9569 env->strict_alignment = true;
David Brazdil0f672f62019-12-10 10:32:29 +00009570 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
9571 env->strict_alignment = false;
9572
9573 env->allow_ptr_leaks = is_priv;
9574
9575 if (is_priv)
9576 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009577
9578 ret = replace_map_fd_with_map_ptr(env);
9579 if (ret < 0)
9580 goto skip_full_check;
9581
9582 if (bpf_prog_is_dev_bound(env->prog->aux)) {
David Brazdil0f672f62019-12-10 10:32:29 +00009583 ret = bpf_prog_offload_verifier_prep(env->prog);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009584 if (ret)
9585 goto skip_full_check;
9586 }
9587
David Brazdil0f672f62019-12-10 10:32:29 +00009588 env->explored_states = kvcalloc(state_htab_size(env),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009589 sizeof(struct bpf_verifier_state_list *),
9590 GFP_USER);
9591 ret = -ENOMEM;
9592 if (!env->explored_states)
9593 goto skip_full_check;
9594
David Brazdil0f672f62019-12-10 10:32:29 +00009595 ret = check_subprogs(env);
9596 if (ret < 0)
9597 goto skip_full_check;
9598
9599 ret = check_btf_info(env, attr, uattr);
9600 if (ret < 0)
9601 goto skip_full_check;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009602
9603 ret = check_cfg(env);
9604 if (ret < 0)
9605 goto skip_full_check;
9606
9607 ret = do_check(env);
9608 if (env->cur_state) {
9609 free_verifier_state(env->cur_state, true);
9610 env->cur_state = NULL;
9611 }
9612
David Brazdil0f672f62019-12-10 10:32:29 +00009613 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
9614 ret = bpf_prog_offload_finalize(env);
9615
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009616skip_full_check:
9617 while (!pop_stack(env, NULL, NULL));
9618 free_states(env);
9619
9620 if (ret == 0)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009621 ret = check_max_stack_depth(env);
9622
David Brazdil0f672f62019-12-10 10:32:29 +00009623 /* instruction rewrites happen after this point */
9624 if (is_priv) {
9625 if (ret == 0)
9626 opt_hard_wire_dead_code_branches(env);
9627 if (ret == 0)
9628 ret = opt_remove_dead_code(env);
9629 if (ret == 0)
9630 ret = opt_remove_nops(env);
9631 } else {
9632 if (ret == 0)
9633 sanitize_dead_code(env);
9634 }
9635
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009636 if (ret == 0)
9637 /* program is valid, convert *(u32*)(ctx + off) accesses */
9638 ret = convert_ctx_accesses(env);
9639
9640 if (ret == 0)
9641 ret = fixup_bpf_calls(env);
9642
David Brazdil0f672f62019-12-10 10:32:29 +00009643 /* do 32-bit optimization after insn patching has done so those patched
9644 * insns could be handled correctly.
9645 */
9646 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
9647 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
9648 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
9649 : false;
9650 }
9651
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009652 if (ret == 0)
9653 ret = fixup_call_args(env);
9654
David Brazdil0f672f62019-12-10 10:32:29 +00009655 env->verification_time = ktime_get_ns() - start_time;
9656 print_verification_stats(env);
9657
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009658 if (log->level && bpf_verifier_log_full(log))
9659 ret = -ENOSPC;
9660 if (log->level && !log->ubuf) {
9661 ret = -EFAULT;
9662 goto err_release_maps;
9663 }
9664
9665 if (ret == 0 && env->used_map_cnt) {
9666 /* if program passed verifier, update used_maps in bpf_prog_info */
9667 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
9668 sizeof(env->used_maps[0]),
9669 GFP_KERNEL);
9670
9671 if (!env->prog->aux->used_maps) {
9672 ret = -ENOMEM;
9673 goto err_release_maps;
9674 }
9675
9676 memcpy(env->prog->aux->used_maps, env->used_maps,
9677 sizeof(env->used_maps[0]) * env->used_map_cnt);
9678 env->prog->aux->used_map_cnt = env->used_map_cnt;
9679
9680 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
9681 * bpf_ld_imm64 instructions
9682 */
9683 convert_pseudo_ld_imm64(env);
9684 }
9685
David Brazdil0f672f62019-12-10 10:32:29 +00009686 if (ret == 0)
9687 adjust_btf_func(env);
9688
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009689err_release_maps:
9690 if (!env->prog->aux->used_maps)
9691 /* if we didn't copy map pointers into bpf_prog_info, release
9692 * them now. Otherwise free_used_maps() will release them.
9693 */
9694 release_maps(env);
9695 *prog = env->prog;
9696err_unlock:
David Brazdil0f672f62019-12-10 10:32:29 +00009697 if (!is_priv)
9698 mutex_unlock(&bpf_verifier_lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009699 vfree(env->insn_aux_data);
9700err_free_env:
9701 kfree(env);
9702 return ret;
9703}