blob: b63172288f7ba9022437a50def079aac2870d4bc [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Scheduler internal types and methods:
4 */
5#include <linux/sched.h>
6
7#include <linux/sched/autogroup.h>
8#include <linux/sched/clock.h>
9#include <linux/sched/coredump.h>
10#include <linux/sched/cpufreq.h>
11#include <linux/sched/cputime.h>
12#include <linux/sched/deadline.h>
13#include <linux/sched/debug.h>
14#include <linux/sched/hotplug.h>
15#include <linux/sched/idle.h>
16#include <linux/sched/init.h>
17#include <linux/sched/isolation.h>
18#include <linux/sched/jobctl.h>
19#include <linux/sched/loadavg.h>
20#include <linux/sched/mm.h>
21#include <linux/sched/nohz.h>
22#include <linux/sched/numa_balancing.h>
23#include <linux/sched/prio.h>
24#include <linux/sched/rt.h>
25#include <linux/sched/signal.h>
26#include <linux/sched/smt.h>
27#include <linux/sched/stat.h>
28#include <linux/sched/sysctl.h>
29#include <linux/sched/task.h>
30#include <linux/sched/task_stack.h>
31#include <linux/sched/topology.h>
32#include <linux/sched/user.h>
33#include <linux/sched/wake_q.h>
34#include <linux/sched/xacct.h>
35
36#include <uapi/linux/sched/types.h>
37
38#include <linux/binfmts.h>
39#include <linux/blkdev.h>
40#include <linux/compat.h>
41#include <linux/context_tracking.h>
42#include <linux/cpufreq.h>
43#include <linux/cpuidle.h>
44#include <linux/cpuset.h>
45#include <linux/ctype.h>
46#include <linux/debugfs.h>
47#include <linux/delayacct.h>
48#include <linux/init_task.h>
49#include <linux/kprobes.h>
50#include <linux/kthread.h>
51#include <linux/membarrier.h>
52#include <linux/migrate.h>
53#include <linux/mmu_context.h>
54#include <linux/nmi.h>
55#include <linux/proc_fs.h>
56#include <linux/prefetch.h>
57#include <linux/profile.h>
58#include <linux/rcupdate_wait.h>
59#include <linux/security.h>
60#include <linux/stackprotector.h>
61#include <linux/stop_machine.h>
62#include <linux/suspend.h>
63#include <linux/swait.h>
64#include <linux/syscalls.h>
65#include <linux/task_work.h>
66#include <linux/tsacct_kern.h>
67
68#include <asm/tlb.h>
69
70#ifdef CONFIG_PARAVIRT
71# include <asm/paravirt.h>
72#endif
73
74#include "cpupri.h"
75#include "cpudeadline.h"
76
77#ifdef CONFIG_SCHED_DEBUG
78# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
79#else
80# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
81#endif
82
83struct rq;
84struct cpuidle_state;
85
86/* task_struct::on_rq states: */
87#define TASK_ON_RQ_QUEUED 1
88#define TASK_ON_RQ_MIGRATING 2
89
90extern __read_mostly int scheduler_running;
91
92extern unsigned long calc_load_update;
93extern atomic_long_t calc_load_tasks;
94
95extern void calc_global_load_tick(struct rq *this_rq);
96extern long calc_load_fold_active(struct rq *this_rq, long adjust);
97
98#ifdef CONFIG_SMP
99extern void cpu_load_update_active(struct rq *this_rq);
100#else
101static inline void cpu_load_update_active(struct rq *this_rq) { }
102#endif
103
104/*
105 * Helpers for converting nanosecond timing to jiffy resolution
106 */
107#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108
109/*
110 * Increase resolution of nice-level calculations for 64-bit architectures.
111 * The extra resolution improves shares distribution and load balancing of
112 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
113 * hierarchies, especially on larger systems. This is not a user-visible change
114 * and does not change the user-interface for setting shares/weights.
115 *
116 * We increase resolution only if we have enough bits to allow this increased
117 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
118 * are pretty high and the returns do not justify the increased costs.
119 *
120 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
121 * increase coverage and consistency always enable it on 64-bit platforms.
122 */
123#ifdef CONFIG_64BIT
124# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
125# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
126# define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
127#else
128# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
129# define scale_load(w) (w)
130# define scale_load_down(w) (w)
131#endif
132
133/*
134 * Task weight (visible to users) and its load (invisible to users) have
135 * independent resolution, but they should be well calibrated. We use
136 * scale_load() and scale_load_down(w) to convert between them. The
137 * following must be true:
138 *
139 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
140 *
141 */
142#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
143
144/*
145 * Single value that decides SCHED_DEADLINE internal math precision.
146 * 10 -> just above 1us
147 * 9 -> just above 0.5us
148 */
149#define DL_SCALE 10
150
151/*
152 * Single value that denotes runtime == period, ie unlimited time.
153 */
154#define RUNTIME_INF ((u64)~0ULL)
155
156static inline int idle_policy(int policy)
157{
158 return policy == SCHED_IDLE;
159}
160static inline int fair_policy(int policy)
161{
162 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
163}
164
165static inline int rt_policy(int policy)
166{
167 return policy == SCHED_FIFO || policy == SCHED_RR;
168}
169
170static inline int dl_policy(int policy)
171{
172 return policy == SCHED_DEADLINE;
173}
174static inline bool valid_policy(int policy)
175{
176 return idle_policy(policy) || fair_policy(policy) ||
177 rt_policy(policy) || dl_policy(policy);
178}
179
180static inline int task_has_rt_policy(struct task_struct *p)
181{
182 return rt_policy(p->policy);
183}
184
185static inline int task_has_dl_policy(struct task_struct *p)
186{
187 return dl_policy(p->policy);
188}
189
190#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
191
192/*
193 * !! For sched_setattr_nocheck() (kernel) only !!
194 *
195 * This is actually gross. :(
196 *
197 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
198 * tasks, but still be able to sleep. We need this on platforms that cannot
199 * atomically change clock frequency. Remove once fast switching will be
200 * available on such platforms.
201 *
202 * SUGOV stands for SchedUtil GOVernor.
203 */
204#define SCHED_FLAG_SUGOV 0x10000000
205
206static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
207{
208#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
209 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
210#else
211 return false;
212#endif
213}
214
215/*
216 * Tells if entity @a should preempt entity @b.
217 */
218static inline bool
219dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
220{
221 return dl_entity_is_special(a) ||
222 dl_time_before(a->deadline, b->deadline);
223}
224
225/*
226 * This is the priority-queue data structure of the RT scheduling class:
227 */
228struct rt_prio_array {
229 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
230 struct list_head queue[MAX_RT_PRIO];
231};
232
233struct rt_bandwidth {
234 /* nests inside the rq lock: */
235 raw_spinlock_t rt_runtime_lock;
236 ktime_t rt_period;
237 u64 rt_runtime;
238 struct hrtimer rt_period_timer;
239 unsigned int rt_period_active;
240};
241
242void __dl_clear_params(struct task_struct *p);
243
244/*
245 * To keep the bandwidth of -deadline tasks and groups under control
246 * we need some place where:
247 * - store the maximum -deadline bandwidth of the system (the group);
248 * - cache the fraction of that bandwidth that is currently allocated.
249 *
250 * This is all done in the data structure below. It is similar to the
251 * one used for RT-throttling (rt_bandwidth), with the main difference
252 * that, since here we are only interested in admission control, we
253 * do not decrease any runtime while the group "executes", neither we
254 * need a timer to replenish it.
255 *
256 * With respect to SMP, the bandwidth is given on a per-CPU basis,
257 * meaning that:
258 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
259 * - dl_total_bw array contains, in the i-eth element, the currently
260 * allocated bandwidth on the i-eth CPU.
261 * Moreover, groups consume bandwidth on each CPU, while tasks only
262 * consume bandwidth on the CPU they're running on.
263 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
264 * that will be shown the next time the proc or cgroup controls will
265 * be red. It on its turn can be changed by writing on its own
266 * control.
267 */
268struct dl_bandwidth {
269 raw_spinlock_t dl_runtime_lock;
270 u64 dl_runtime;
271 u64 dl_period;
272};
273
274static inline int dl_bandwidth_enabled(void)
275{
276 return sysctl_sched_rt_runtime >= 0;
277}
278
279struct dl_bw {
280 raw_spinlock_t lock;
281 u64 bw;
282 u64 total_bw;
283};
284
285static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
286
287static inline
288void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
289{
290 dl_b->total_bw -= tsk_bw;
291 __dl_update(dl_b, (s32)tsk_bw / cpus);
292}
293
294static inline
295void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
296{
297 dl_b->total_bw += tsk_bw;
298 __dl_update(dl_b, -((s32)tsk_bw / cpus));
299}
300
301static inline
302bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
303{
304 return dl_b->bw != -1 &&
305 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
306}
307
308extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
309extern void init_dl_bw(struct dl_bw *dl_b);
310extern int sched_dl_global_validate(void);
311extern void sched_dl_do_global(void);
312extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
313extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
314extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
315extern bool __checkparam_dl(const struct sched_attr *attr);
316extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
317extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
318extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
319extern bool dl_cpu_busy(unsigned int cpu);
320
321#ifdef CONFIG_CGROUP_SCHED
322
323#include <linux/cgroup.h>
324
325struct cfs_rq;
326struct rt_rq;
327
328extern struct list_head task_groups;
329
330struct cfs_bandwidth {
331#ifdef CONFIG_CFS_BANDWIDTH
332 raw_spinlock_t lock;
333 ktime_t period;
334 u64 quota;
335 u64 runtime;
336 s64 hierarchical_quota;
337 u64 runtime_expires;
338 int expires_seq;
339
340 short idle;
341 short period_active;
342 struct hrtimer period_timer;
343 struct hrtimer slack_timer;
344 struct list_head throttled_cfs_rq;
345
346 /* Statistics: */
347 int nr_periods;
348 int nr_throttled;
349 u64 throttled_time;
350
351 bool distribute_running;
352#endif
353};
354
355/* Task group related information */
356struct task_group {
357 struct cgroup_subsys_state css;
358
359#ifdef CONFIG_FAIR_GROUP_SCHED
360 /* schedulable entities of this group on each CPU */
361 struct sched_entity **se;
362 /* runqueue "owned" by this group on each CPU */
363 struct cfs_rq **cfs_rq;
364 unsigned long shares;
365
366#ifdef CONFIG_SMP
367 /*
368 * load_avg can be heavily contended at clock tick time, so put
369 * it in its own cacheline separated from the fields above which
370 * will also be accessed at each tick.
371 */
372 atomic_long_t load_avg ____cacheline_aligned;
373#endif
374#endif
375
376#ifdef CONFIG_RT_GROUP_SCHED
377 struct sched_rt_entity **rt_se;
378 struct rt_rq **rt_rq;
379
380 struct rt_bandwidth rt_bandwidth;
381#endif
382
383 struct rcu_head rcu;
384 struct list_head list;
385
386 struct task_group *parent;
387 struct list_head siblings;
388 struct list_head children;
389
390#ifdef CONFIG_SCHED_AUTOGROUP
391 struct autogroup *autogroup;
392#endif
393
394 struct cfs_bandwidth cfs_bandwidth;
395};
396
397#ifdef CONFIG_FAIR_GROUP_SCHED
398#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
399
400/*
401 * A weight of 0 or 1 can cause arithmetics problems.
402 * A weight of a cfs_rq is the sum of weights of which entities
403 * are queued on this cfs_rq, so a weight of a entity should not be
404 * too large, so as the shares value of a task group.
405 * (The default weight is 1024 - so there's no practical
406 * limitation from this.)
407 */
408#define MIN_SHARES (1UL << 1)
409#define MAX_SHARES (1UL << 18)
410#endif
411
412typedef int (*tg_visitor)(struct task_group *, void *);
413
414extern int walk_tg_tree_from(struct task_group *from,
415 tg_visitor down, tg_visitor up, void *data);
416
417/*
418 * Iterate the full tree, calling @down when first entering a node and @up when
419 * leaving it for the final time.
420 *
421 * Caller must hold rcu_lock or sufficient equivalent.
422 */
423static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
424{
425 return walk_tg_tree_from(&root_task_group, down, up, data);
426}
427
428extern int tg_nop(struct task_group *tg, void *data);
429
430extern void free_fair_sched_group(struct task_group *tg);
431extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
432extern void online_fair_sched_group(struct task_group *tg);
433extern void unregister_fair_sched_group(struct task_group *tg);
434extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
435 struct sched_entity *se, int cpu,
436 struct sched_entity *parent);
437extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
438
439extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
440extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
441extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
442
443extern void free_rt_sched_group(struct task_group *tg);
444extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
445extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
446 struct sched_rt_entity *rt_se, int cpu,
447 struct sched_rt_entity *parent);
448extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
449extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
450extern long sched_group_rt_runtime(struct task_group *tg);
451extern long sched_group_rt_period(struct task_group *tg);
452extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
453
454extern struct task_group *sched_create_group(struct task_group *parent);
455extern void sched_online_group(struct task_group *tg,
456 struct task_group *parent);
457extern void sched_destroy_group(struct task_group *tg);
458extern void sched_offline_group(struct task_group *tg);
459
460extern void sched_move_task(struct task_struct *tsk);
461
462#ifdef CONFIG_FAIR_GROUP_SCHED
463extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
464
465#ifdef CONFIG_SMP
466extern void set_task_rq_fair(struct sched_entity *se,
467 struct cfs_rq *prev, struct cfs_rq *next);
468#else /* !CONFIG_SMP */
469static inline void set_task_rq_fair(struct sched_entity *se,
470 struct cfs_rq *prev, struct cfs_rq *next) { }
471#endif /* CONFIG_SMP */
472#endif /* CONFIG_FAIR_GROUP_SCHED */
473
474#else /* CONFIG_CGROUP_SCHED */
475
476struct cfs_bandwidth { };
477
478#endif /* CONFIG_CGROUP_SCHED */
479
480/* CFS-related fields in a runqueue */
481struct cfs_rq {
482 struct load_weight load;
483 unsigned long runnable_weight;
484 unsigned int nr_running;
485 unsigned int h_nr_running;
486
487 u64 exec_clock;
488 u64 min_vruntime;
489#ifndef CONFIG_64BIT
490 u64 min_vruntime_copy;
491#endif
492
493 struct rb_root_cached tasks_timeline;
494
495 /*
496 * 'curr' points to currently running entity on this cfs_rq.
497 * It is set to NULL otherwise (i.e when none are currently running).
498 */
499 struct sched_entity *curr;
500 struct sched_entity *next;
501 struct sched_entity *last;
502 struct sched_entity *skip;
503
504#ifdef CONFIG_SCHED_DEBUG
505 unsigned int nr_spread_over;
506#endif
507
508#ifdef CONFIG_SMP
509 /*
510 * CFS load tracking
511 */
512 struct sched_avg avg;
513#ifndef CONFIG_64BIT
514 u64 load_last_update_time_copy;
515#endif
516 struct {
517 raw_spinlock_t lock ____cacheline_aligned;
518 int nr;
519 unsigned long load_avg;
520 unsigned long util_avg;
521 unsigned long runnable_sum;
522 } removed;
523
524#ifdef CONFIG_FAIR_GROUP_SCHED
525 unsigned long tg_load_avg_contrib;
526 long propagate;
527 long prop_runnable_sum;
528
529 /*
530 * h_load = weight * f(tg)
531 *
532 * Where f(tg) is the recursive weight fraction assigned to
533 * this group.
534 */
535 unsigned long h_load;
536 u64 last_h_load_update;
537 struct sched_entity *h_load_next;
538#endif /* CONFIG_FAIR_GROUP_SCHED */
539#endif /* CONFIG_SMP */
540
541#ifdef CONFIG_FAIR_GROUP_SCHED
542 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
543
544 /*
545 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
546 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
547 * (like users, containers etc.)
548 *
549 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
550 * This list is used during load balance.
551 */
552 int on_list;
553 struct list_head leaf_cfs_rq_list;
554 struct task_group *tg; /* group that "owns" this runqueue */
555
556#ifdef CONFIG_CFS_BANDWIDTH
557 int runtime_enabled;
558 int expires_seq;
559 u64 runtime_expires;
560 s64 runtime_remaining;
561
562 u64 throttled_clock;
563 u64 throttled_clock_task;
564 u64 throttled_clock_task_time;
565 int throttled;
566 int throttle_count;
567 struct list_head throttled_list;
568#endif /* CONFIG_CFS_BANDWIDTH */
569#endif /* CONFIG_FAIR_GROUP_SCHED */
570};
571
572static inline int rt_bandwidth_enabled(void)
573{
574 return sysctl_sched_rt_runtime >= 0;
575}
576
577/* RT IPI pull logic requires IRQ_WORK */
578#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
579# define HAVE_RT_PUSH_IPI
580#endif
581
582/* Real-Time classes' related field in a runqueue: */
583struct rt_rq {
584 struct rt_prio_array active;
585 unsigned int rt_nr_running;
586 unsigned int rr_nr_running;
587#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
588 struct {
589 int curr; /* highest queued rt task prio */
590#ifdef CONFIG_SMP
591 int next; /* next highest */
592#endif
593 } highest_prio;
594#endif
595#ifdef CONFIG_SMP
596 unsigned long rt_nr_migratory;
597 unsigned long rt_nr_total;
598 int overloaded;
599 struct plist_head pushable_tasks;
600
601#endif /* CONFIG_SMP */
602 int rt_queued;
603
604 int rt_throttled;
605 u64 rt_time;
606 u64 rt_runtime;
607 /* Nests inside the rq lock: */
608 raw_spinlock_t rt_runtime_lock;
609
610#ifdef CONFIG_RT_GROUP_SCHED
611 unsigned long rt_nr_boosted;
612
613 struct rq *rq;
614 struct task_group *tg;
615#endif
616};
617
618static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
619{
620 return rt_rq->rt_queued && rt_rq->rt_nr_running;
621}
622
623/* Deadline class' related fields in a runqueue */
624struct dl_rq {
625 /* runqueue is an rbtree, ordered by deadline */
626 struct rb_root_cached root;
627
628 unsigned long dl_nr_running;
629
630#ifdef CONFIG_SMP
631 /*
632 * Deadline values of the currently executing and the
633 * earliest ready task on this rq. Caching these facilitates
634 * the decision wether or not a ready but not running task
635 * should migrate somewhere else.
636 */
637 struct {
638 u64 curr;
639 u64 next;
640 } earliest_dl;
641
642 unsigned long dl_nr_migratory;
643 int overloaded;
644
645 /*
646 * Tasks on this rq that can be pushed away. They are kept in
647 * an rb-tree, ordered by tasks' deadlines, with caching
648 * of the leftmost (earliest deadline) element.
649 */
650 struct rb_root_cached pushable_dl_tasks_root;
651#else
652 struct dl_bw dl_bw;
653#endif
654 /*
655 * "Active utilization" for this runqueue: increased when a
656 * task wakes up (becomes TASK_RUNNING) and decreased when a
657 * task blocks
658 */
659 u64 running_bw;
660
661 /*
662 * Utilization of the tasks "assigned" to this runqueue (including
663 * the tasks that are in runqueue and the tasks that executed on this
664 * CPU and blocked). Increased when a task moves to this runqueue, and
665 * decreased when the task moves away (migrates, changes scheduling
666 * policy, or terminates).
667 * This is needed to compute the "inactive utilization" for the
668 * runqueue (inactive utilization = this_bw - running_bw).
669 */
670 u64 this_bw;
671 u64 extra_bw;
672
673 /*
674 * Inverse of the fraction of CPU utilization that can be reclaimed
675 * by the GRUB algorithm.
676 */
677 u64 bw_ratio;
678};
679
680#ifdef CONFIG_FAIR_GROUP_SCHED
681/* An entity is a task if it doesn't "own" a runqueue */
682#define entity_is_task(se) (!se->my_q)
683#else
684#define entity_is_task(se) 1
685#endif
686
687#ifdef CONFIG_SMP
688/*
689 * XXX we want to get rid of these helpers and use the full load resolution.
690 */
691static inline long se_weight(struct sched_entity *se)
692{
693 return scale_load_down(se->load.weight);
694}
695
696static inline long se_runnable(struct sched_entity *se)
697{
698 return scale_load_down(se->runnable_weight);
699}
700
701static inline bool sched_asym_prefer(int a, int b)
702{
703 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
704}
705
706/*
707 * We add the notion of a root-domain which will be used to define per-domain
708 * variables. Each exclusive cpuset essentially defines an island domain by
709 * fully partitioning the member CPUs from any other cpuset. Whenever a new
710 * exclusive cpuset is created, we also create and attach a new root-domain
711 * object.
712 *
713 */
714struct root_domain {
715 atomic_t refcount;
716 atomic_t rto_count;
717 struct rcu_head rcu;
718 cpumask_var_t span;
719 cpumask_var_t online;
720
721 /* Indicate more than one runnable task for any CPU */
722 bool overload;
723
724 /*
725 * The bit corresponding to a CPU gets set here if such CPU has more
726 * than one runnable -deadline task (as it is below for RT tasks).
727 */
728 cpumask_var_t dlo_mask;
729 atomic_t dlo_count;
730 struct dl_bw dl_bw;
731 struct cpudl cpudl;
732
733#ifdef HAVE_RT_PUSH_IPI
734 /*
735 * For IPI pull requests, loop across the rto_mask.
736 */
737 struct irq_work rto_push_work;
738 raw_spinlock_t rto_lock;
739 /* These are only updated and read within rto_lock */
740 int rto_loop;
741 int rto_cpu;
742 /* These atomics are updated outside of a lock */
743 atomic_t rto_loop_next;
744 atomic_t rto_loop_start;
745#endif
746 /*
747 * The "RT overload" flag: it gets set if a CPU has more than
748 * one runnable RT task.
749 */
750 cpumask_var_t rto_mask;
751 struct cpupri cpupri;
752
753 unsigned long max_cpu_capacity;
754};
755
756extern struct root_domain def_root_domain;
757extern struct mutex sched_domains_mutex;
758
759extern void init_defrootdomain(void);
760extern int sched_init_domains(const struct cpumask *cpu_map);
761extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
762extern void sched_get_rd(struct root_domain *rd);
763extern void sched_put_rd(struct root_domain *rd);
764
765#ifdef HAVE_RT_PUSH_IPI
766extern void rto_push_irq_work_func(struct irq_work *work);
767#endif
768#endif /* CONFIG_SMP */
769
770/*
771 * This is the main, per-CPU runqueue data structure.
772 *
773 * Locking rule: those places that want to lock multiple runqueues
774 * (such as the load balancing or the thread migration code), lock
775 * acquire operations must be ordered by ascending &runqueue.
776 */
777struct rq {
778 /* runqueue lock: */
779 raw_spinlock_t lock;
780
781 /*
782 * nr_running and cpu_load should be in the same cacheline because
783 * remote CPUs use both these fields when doing load calculation.
784 */
785 unsigned int nr_running;
786#ifdef CONFIG_NUMA_BALANCING
787 unsigned int nr_numa_running;
788 unsigned int nr_preferred_running;
789 unsigned int numa_migrate_on;
790#endif
791 #define CPU_LOAD_IDX_MAX 5
792 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
793#ifdef CONFIG_NO_HZ_COMMON
794#ifdef CONFIG_SMP
795 unsigned long last_load_update_tick;
796 unsigned long last_blocked_load_update_tick;
797 unsigned int has_blocked_load;
798#endif /* CONFIG_SMP */
799 unsigned int nohz_tick_stopped;
800 atomic_t nohz_flags;
801#endif /* CONFIG_NO_HZ_COMMON */
802
803 /* capture load from *all* tasks on this CPU: */
804 struct load_weight load;
805 unsigned long nr_load_updates;
806 u64 nr_switches;
807
808 struct cfs_rq cfs;
809 struct rt_rq rt;
810 struct dl_rq dl;
811
812#ifdef CONFIG_FAIR_GROUP_SCHED
813 /* list of leaf cfs_rq on this CPU: */
814 struct list_head leaf_cfs_rq_list;
815 struct list_head *tmp_alone_branch;
816#endif /* CONFIG_FAIR_GROUP_SCHED */
817
818 /*
819 * This is part of a global counter where only the total sum
820 * over all CPUs matters. A task can increase this counter on
821 * one CPU and if it got migrated afterwards it may decrease
822 * it on another CPU. Always updated under the runqueue lock:
823 */
824 unsigned long nr_uninterruptible;
825
826 struct task_struct *curr;
827 struct task_struct *idle;
828 struct task_struct *stop;
829 unsigned long next_balance;
830 struct mm_struct *prev_mm;
831
832 unsigned int clock_update_flags;
833 u64 clock;
834 u64 clock_task;
835
836 atomic_t nr_iowait;
837
838#ifdef CONFIG_SMP
839 struct root_domain *rd;
840 struct sched_domain *sd;
841
842 unsigned long cpu_capacity;
843 unsigned long cpu_capacity_orig;
844
845 struct callback_head *balance_callback;
846
847 unsigned char idle_balance;
848
849 /* For active balancing */
850 int active_balance;
851 int push_cpu;
852 struct cpu_stop_work active_balance_work;
853
854 /* CPU of this runqueue: */
855 int cpu;
856 int online;
857
858 struct list_head cfs_tasks;
859
860 struct sched_avg avg_rt;
861 struct sched_avg avg_dl;
862#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
863 struct sched_avg avg_irq;
864#endif
865 u64 idle_stamp;
866 u64 avg_idle;
867
868 /* This is used to determine avg_idle's max value */
869 u64 max_idle_balance_cost;
870#endif
871
872#ifdef CONFIG_IRQ_TIME_ACCOUNTING
873 u64 prev_irq_time;
874#endif
875#ifdef CONFIG_PARAVIRT
876 u64 prev_steal_time;
877#endif
878#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
879 u64 prev_steal_time_rq;
880#endif
881
882 /* calc_load related fields */
883 unsigned long calc_load_update;
884 long calc_load_active;
885
886#ifdef CONFIG_SCHED_HRTICK
887#ifdef CONFIG_SMP
888 int hrtick_csd_pending;
889 call_single_data_t hrtick_csd;
890#endif
891 struct hrtimer hrtick_timer;
892#endif
893
894#ifdef CONFIG_SCHEDSTATS
895 /* latency stats */
896 struct sched_info rq_sched_info;
897 unsigned long long rq_cpu_time;
898 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
899
900 /* sys_sched_yield() stats */
901 unsigned int yld_count;
902
903 /* schedule() stats */
904 unsigned int sched_count;
905 unsigned int sched_goidle;
906
907 /* try_to_wake_up() stats */
908 unsigned int ttwu_count;
909 unsigned int ttwu_local;
910#endif
911
912#ifdef CONFIG_SMP
913 struct llist_head wake_list;
914#endif
915
916#ifdef CONFIG_CPU_IDLE
917 /* Must be inspected within a rcu lock section */
918 struct cpuidle_state *idle_state;
919#endif
920};
921
922static inline int cpu_of(struct rq *rq)
923{
924#ifdef CONFIG_SMP
925 return rq->cpu;
926#else
927 return 0;
928#endif
929}
930
931
932#ifdef CONFIG_SCHED_SMT
933extern void __update_idle_core(struct rq *rq);
934
935static inline void update_idle_core(struct rq *rq)
936{
937 if (static_branch_unlikely(&sched_smt_present))
938 __update_idle_core(rq);
939}
940
941#else
942static inline void update_idle_core(struct rq *rq) { }
943#endif
944
945DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
946
947#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
948#define this_rq() this_cpu_ptr(&runqueues)
949#define task_rq(p) cpu_rq(task_cpu(p))
950#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
951#define raw_rq() raw_cpu_ptr(&runqueues)
952
953static inline u64 __rq_clock_broken(struct rq *rq)
954{
955 return READ_ONCE(rq->clock);
956}
957
958/*
959 * rq::clock_update_flags bits
960 *
961 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
962 * call to __schedule(). This is an optimisation to avoid
963 * neighbouring rq clock updates.
964 *
965 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
966 * in effect and calls to update_rq_clock() are being ignored.
967 *
968 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
969 * made to update_rq_clock() since the last time rq::lock was pinned.
970 *
971 * If inside of __schedule(), clock_update_flags will have been
972 * shifted left (a left shift is a cheap operation for the fast path
973 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
974 *
975 * if (rq-clock_update_flags >= RQCF_UPDATED)
976 *
977 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
978 * one position though, because the next rq_unpin_lock() will shift it
979 * back.
980 */
981#define RQCF_REQ_SKIP 0x01
982#define RQCF_ACT_SKIP 0x02
983#define RQCF_UPDATED 0x04
984
985static inline void assert_clock_updated(struct rq *rq)
986{
987 /*
988 * The only reason for not seeing a clock update since the
989 * last rq_pin_lock() is if we're currently skipping updates.
990 */
991 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
992}
993
994static inline u64 rq_clock(struct rq *rq)
995{
996 lockdep_assert_held(&rq->lock);
997 assert_clock_updated(rq);
998
999 return rq->clock;
1000}
1001
1002static inline u64 rq_clock_task(struct rq *rq)
1003{
1004 lockdep_assert_held(&rq->lock);
1005 assert_clock_updated(rq);
1006
1007 return rq->clock_task;
1008}
1009
1010static inline void rq_clock_skip_update(struct rq *rq)
1011{
1012 lockdep_assert_held(&rq->lock);
1013 rq->clock_update_flags |= RQCF_REQ_SKIP;
1014}
1015
1016/*
1017 * See rt task throttling, which is the only time a skip
1018 * request is cancelled.
1019 */
1020static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1021{
1022 lockdep_assert_held(&rq->lock);
1023 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1024}
1025
1026struct rq_flags {
1027 unsigned long flags;
1028 struct pin_cookie cookie;
1029#ifdef CONFIG_SCHED_DEBUG
1030 /*
1031 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1032 * current pin context is stashed here in case it needs to be
1033 * restored in rq_repin_lock().
1034 */
1035 unsigned int clock_update_flags;
1036#endif
1037};
1038
1039static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1040{
1041 rf->cookie = lockdep_pin_lock(&rq->lock);
1042
1043#ifdef CONFIG_SCHED_DEBUG
1044 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1045 rf->clock_update_flags = 0;
1046#endif
1047}
1048
1049static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1050{
1051#ifdef CONFIG_SCHED_DEBUG
1052 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1053 rf->clock_update_flags = RQCF_UPDATED;
1054#endif
1055
1056 lockdep_unpin_lock(&rq->lock, rf->cookie);
1057}
1058
1059static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1060{
1061 lockdep_repin_lock(&rq->lock, rf->cookie);
1062
1063#ifdef CONFIG_SCHED_DEBUG
1064 /*
1065 * Restore the value we stashed in @rf for this pin context.
1066 */
1067 rq->clock_update_flags |= rf->clock_update_flags;
1068#endif
1069}
1070
1071#ifdef CONFIG_NUMA
1072enum numa_topology_type {
1073 NUMA_DIRECT,
1074 NUMA_GLUELESS_MESH,
1075 NUMA_BACKPLANE,
1076};
1077extern enum numa_topology_type sched_numa_topology_type;
1078extern int sched_max_numa_distance;
1079extern bool find_numa_distance(int distance);
1080#endif
1081
1082#ifdef CONFIG_NUMA
1083extern void sched_init_numa(void);
1084extern void sched_domains_numa_masks_set(unsigned int cpu);
1085extern void sched_domains_numa_masks_clear(unsigned int cpu);
1086#else
1087static inline void sched_init_numa(void) { }
1088static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1089static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1090#endif
1091
1092#ifdef CONFIG_NUMA_BALANCING
1093/* The regions in numa_faults array from task_struct */
1094enum numa_faults_stats {
1095 NUMA_MEM = 0,
1096 NUMA_CPU,
1097 NUMA_MEMBUF,
1098 NUMA_CPUBUF
1099};
1100extern void sched_setnuma(struct task_struct *p, int node);
1101extern int migrate_task_to(struct task_struct *p, int cpu);
1102extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1103 int cpu, int scpu);
1104extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1105#else
1106static inline void
1107init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1108{
1109}
1110#endif /* CONFIG_NUMA_BALANCING */
1111
1112#ifdef CONFIG_SMP
1113
1114static inline void
1115queue_balance_callback(struct rq *rq,
1116 struct callback_head *head,
1117 void (*func)(struct rq *rq))
1118{
1119 lockdep_assert_held(&rq->lock);
1120
1121 if (unlikely(head->next))
1122 return;
1123
1124 head->func = (void (*)(struct callback_head *))func;
1125 head->next = rq->balance_callback;
1126 rq->balance_callback = head;
1127}
1128
1129extern void sched_ttwu_pending(void);
1130
1131#define rcu_dereference_check_sched_domain(p) \
1132 rcu_dereference_check((p), \
1133 lockdep_is_held(&sched_domains_mutex))
1134
1135/*
1136 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1137 * See detach_destroy_domains: synchronize_sched for details.
1138 *
1139 * The domain tree of any CPU may only be accessed from within
1140 * preempt-disabled sections.
1141 */
1142#define for_each_domain(cpu, __sd) \
1143 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1144 __sd; __sd = __sd->parent)
1145
1146#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1147
1148/**
1149 * highest_flag_domain - Return highest sched_domain containing flag.
1150 * @cpu: The CPU whose highest level of sched domain is to
1151 * be returned.
1152 * @flag: The flag to check for the highest sched_domain
1153 * for the given CPU.
1154 *
1155 * Returns the highest sched_domain of a CPU which contains the given flag.
1156 */
1157static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1158{
1159 struct sched_domain *sd, *hsd = NULL;
1160
1161 for_each_domain(cpu, sd) {
1162 if (!(sd->flags & flag))
1163 break;
1164 hsd = sd;
1165 }
1166
1167 return hsd;
1168}
1169
1170static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1171{
1172 struct sched_domain *sd;
1173
1174 for_each_domain(cpu, sd) {
1175 if (sd->flags & flag)
1176 break;
1177 }
1178
1179 return sd;
1180}
1181
1182DECLARE_PER_CPU(struct sched_domain *, sd_llc);
1183DECLARE_PER_CPU(int, sd_llc_size);
1184DECLARE_PER_CPU(int, sd_llc_id);
1185DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
1186DECLARE_PER_CPU(struct sched_domain *, sd_numa);
1187DECLARE_PER_CPU(struct sched_domain *, sd_asym);
1188
1189struct sched_group_capacity {
1190 atomic_t ref;
1191 /*
1192 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1193 * for a single CPU.
1194 */
1195 unsigned long capacity;
1196 unsigned long min_capacity; /* Min per-CPU capacity in group */
1197 unsigned long next_update;
1198 int imbalance; /* XXX unrelated to capacity but shared group state */
1199
1200#ifdef CONFIG_SCHED_DEBUG
1201 int id;
1202#endif
1203
1204 unsigned long cpumask[0]; /* Balance mask */
1205};
1206
1207struct sched_group {
1208 struct sched_group *next; /* Must be a circular list */
1209 atomic_t ref;
1210
1211 unsigned int group_weight;
1212 struct sched_group_capacity *sgc;
1213 int asym_prefer_cpu; /* CPU of highest priority in group */
1214
1215 /*
1216 * The CPUs this group covers.
1217 *
1218 * NOTE: this field is variable length. (Allocated dynamically
1219 * by attaching extra space to the end of the structure,
1220 * depending on how many CPUs the kernel has booted up with)
1221 */
1222 unsigned long cpumask[0];
1223};
1224
1225static inline struct cpumask *sched_group_span(struct sched_group *sg)
1226{
1227 return to_cpumask(sg->cpumask);
1228}
1229
1230/*
1231 * See build_balance_mask().
1232 */
1233static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1234{
1235 return to_cpumask(sg->sgc->cpumask);
1236}
1237
1238/**
1239 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1240 * @group: The group whose first CPU is to be returned.
1241 */
1242static inline unsigned int group_first_cpu(struct sched_group *group)
1243{
1244 return cpumask_first(sched_group_span(group));
1245}
1246
1247extern int group_balance_cpu(struct sched_group *sg);
1248
1249#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1250void register_sched_domain_sysctl(void);
1251void dirty_sched_domain_sysctl(int cpu);
1252void unregister_sched_domain_sysctl(void);
1253#else
1254static inline void register_sched_domain_sysctl(void)
1255{
1256}
1257static inline void dirty_sched_domain_sysctl(int cpu)
1258{
1259}
1260static inline void unregister_sched_domain_sysctl(void)
1261{
1262}
1263#endif
1264
1265#else
1266
1267static inline void sched_ttwu_pending(void) { }
1268
1269#endif /* CONFIG_SMP */
1270
1271#include "stats.h"
1272#include "autogroup.h"
1273
1274#ifdef CONFIG_CGROUP_SCHED
1275
1276/*
1277 * Return the group to which this tasks belongs.
1278 *
1279 * We cannot use task_css() and friends because the cgroup subsystem
1280 * changes that value before the cgroup_subsys::attach() method is called,
1281 * therefore we cannot pin it and might observe the wrong value.
1282 *
1283 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1284 * core changes this before calling sched_move_task().
1285 *
1286 * Instead we use a 'copy' which is updated from sched_move_task() while
1287 * holding both task_struct::pi_lock and rq::lock.
1288 */
1289static inline struct task_group *task_group(struct task_struct *p)
1290{
1291 return p->sched_task_group;
1292}
1293
1294/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1295static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1296{
1297#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1298 struct task_group *tg = task_group(p);
1299#endif
1300
1301#ifdef CONFIG_FAIR_GROUP_SCHED
1302 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1303 p->se.cfs_rq = tg->cfs_rq[cpu];
1304 p->se.parent = tg->se[cpu];
1305#endif
1306
1307#ifdef CONFIG_RT_GROUP_SCHED
1308 p->rt.rt_rq = tg->rt_rq[cpu];
1309 p->rt.parent = tg->rt_se[cpu];
1310#endif
1311}
1312
1313#else /* CONFIG_CGROUP_SCHED */
1314
1315static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1316static inline struct task_group *task_group(struct task_struct *p)
1317{
1318 return NULL;
1319}
1320
1321#endif /* CONFIG_CGROUP_SCHED */
1322
1323static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1324{
1325 set_task_rq(p, cpu);
1326#ifdef CONFIG_SMP
1327 /*
1328 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1329 * successfuly executed on another CPU. We must ensure that updates of
1330 * per-task data have been completed by this moment.
1331 */
1332 smp_wmb();
1333#ifdef CONFIG_THREAD_INFO_IN_TASK
1334 p->cpu = cpu;
1335#else
1336 task_thread_info(p)->cpu = cpu;
1337#endif
1338 p->wake_cpu = cpu;
1339#endif
1340}
1341
1342/*
1343 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1344 */
1345#ifdef CONFIG_SCHED_DEBUG
1346# include <linux/static_key.h>
1347# define const_debug __read_mostly
1348#else
1349# define const_debug const
1350#endif
1351
1352#define SCHED_FEAT(name, enabled) \
1353 __SCHED_FEAT_##name ,
1354
1355enum {
1356#include "features.h"
1357 __SCHED_FEAT_NR,
1358};
1359
1360#undef SCHED_FEAT
1361
1362#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1363
1364/*
1365 * To support run-time toggling of sched features, all the translation units
1366 * (but core.c) reference the sysctl_sched_features defined in core.c.
1367 */
1368extern const_debug unsigned int sysctl_sched_features;
1369
1370#define SCHED_FEAT(name, enabled) \
1371static __always_inline bool static_branch_##name(struct static_key *key) \
1372{ \
1373 return static_key_##enabled(key); \
1374}
1375
1376#include "features.h"
1377#undef SCHED_FEAT
1378
1379extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1380#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1381
1382#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1383
1384/*
1385 * Each translation unit has its own copy of sysctl_sched_features to allow
1386 * constants propagation at compile time and compiler optimization based on
1387 * features default.
1388 */
1389#define SCHED_FEAT(name, enabled) \
1390 (1UL << __SCHED_FEAT_##name) * enabled |
1391static const_debug __maybe_unused unsigned int sysctl_sched_features =
1392#include "features.h"
1393 0;
1394#undef SCHED_FEAT
1395
1396#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1397
1398#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1399
1400extern struct static_key_false sched_numa_balancing;
1401extern struct static_key_false sched_schedstats;
1402
1403static inline u64 global_rt_period(void)
1404{
1405 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1406}
1407
1408static inline u64 global_rt_runtime(void)
1409{
1410 if (sysctl_sched_rt_runtime < 0)
1411 return RUNTIME_INF;
1412
1413 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1414}
1415
1416static inline int task_current(struct rq *rq, struct task_struct *p)
1417{
1418 return rq->curr == p;
1419}
1420
1421static inline int task_running(struct rq *rq, struct task_struct *p)
1422{
1423#ifdef CONFIG_SMP
1424 return p->on_cpu;
1425#else
1426 return task_current(rq, p);
1427#endif
1428}
1429
1430static inline int task_on_rq_queued(struct task_struct *p)
1431{
1432 return p->on_rq == TASK_ON_RQ_QUEUED;
1433}
1434
1435static inline int task_on_rq_migrating(struct task_struct *p)
1436{
1437 return p->on_rq == TASK_ON_RQ_MIGRATING;
1438}
1439
1440/*
1441 * wake flags
1442 */
1443#define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
1444#define WF_FORK 0x02 /* Child wakeup after fork */
1445#define WF_MIGRATED 0x4 /* Internal use, task got migrated */
1446
1447/*
1448 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1449 * of tasks with abnormal "nice" values across CPUs the contribution that
1450 * each task makes to its run queue's load is weighted according to its
1451 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1452 * scaled version of the new time slice allocation that they receive on time
1453 * slice expiry etc.
1454 */
1455
1456#define WEIGHT_IDLEPRIO 3
1457#define WMULT_IDLEPRIO 1431655765
1458
1459extern const int sched_prio_to_weight[40];
1460extern const u32 sched_prio_to_wmult[40];
1461
1462/*
1463 * {de,en}queue flags:
1464 *
1465 * DEQUEUE_SLEEP - task is no longer runnable
1466 * ENQUEUE_WAKEUP - task just became runnable
1467 *
1468 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1469 * are in a known state which allows modification. Such pairs
1470 * should preserve as much state as possible.
1471 *
1472 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1473 * in the runqueue.
1474 *
1475 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1476 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1477 * ENQUEUE_MIGRATED - the task was migrated during wakeup
1478 *
1479 */
1480
1481#define DEQUEUE_SLEEP 0x01
1482#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
1483#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
1484#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
1485
1486#define ENQUEUE_WAKEUP 0x01
1487#define ENQUEUE_RESTORE 0x02
1488#define ENQUEUE_MOVE 0x04
1489#define ENQUEUE_NOCLOCK 0x08
1490
1491#define ENQUEUE_HEAD 0x10
1492#define ENQUEUE_REPLENISH 0x20
1493#ifdef CONFIG_SMP
1494#define ENQUEUE_MIGRATED 0x40
1495#else
1496#define ENQUEUE_MIGRATED 0x00
1497#endif
1498
1499#define RETRY_TASK ((void *)-1UL)
1500
1501struct sched_class {
1502 const struct sched_class *next;
1503
1504 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1505 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1506 void (*yield_task) (struct rq *rq);
1507 bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
1508
1509 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1510
1511 /*
1512 * It is the responsibility of the pick_next_task() method that will
1513 * return the next task to call put_prev_task() on the @prev task or
1514 * something equivalent.
1515 *
1516 * May return RETRY_TASK when it finds a higher prio class has runnable
1517 * tasks.
1518 */
1519 struct task_struct * (*pick_next_task)(struct rq *rq,
1520 struct task_struct *prev,
1521 struct rq_flags *rf);
1522 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1523
1524#ifdef CONFIG_SMP
1525 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1526 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1527
1528 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1529
1530 void (*set_cpus_allowed)(struct task_struct *p,
1531 const struct cpumask *newmask);
1532
1533 void (*rq_online)(struct rq *rq);
1534 void (*rq_offline)(struct rq *rq);
1535#endif
1536
1537 void (*set_curr_task)(struct rq *rq);
1538 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1539 void (*task_fork)(struct task_struct *p);
1540 void (*task_dead)(struct task_struct *p);
1541
1542 /*
1543 * The switched_from() call is allowed to drop rq->lock, therefore we
1544 * cannot assume the switched_from/switched_to pair is serliazed by
1545 * rq->lock. They are however serialized by p->pi_lock.
1546 */
1547 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1548 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1549 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1550 int oldprio);
1551
1552 unsigned int (*get_rr_interval)(struct rq *rq,
1553 struct task_struct *task);
1554
1555 void (*update_curr)(struct rq *rq);
1556
1557#define TASK_SET_GROUP 0
1558#define TASK_MOVE_GROUP 1
1559
1560#ifdef CONFIG_FAIR_GROUP_SCHED
1561 void (*task_change_group)(struct task_struct *p, int type);
1562#endif
1563};
1564
1565static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1566{
1567 prev->sched_class->put_prev_task(rq, prev);
1568}
1569
1570static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1571{
1572 curr->sched_class->set_curr_task(rq);
1573}
1574
1575#ifdef CONFIG_SMP
1576#define sched_class_highest (&stop_sched_class)
1577#else
1578#define sched_class_highest (&dl_sched_class)
1579#endif
1580#define for_each_class(class) \
1581 for (class = sched_class_highest; class; class = class->next)
1582
1583extern const struct sched_class stop_sched_class;
1584extern const struct sched_class dl_sched_class;
1585extern const struct sched_class rt_sched_class;
1586extern const struct sched_class fair_sched_class;
1587extern const struct sched_class idle_sched_class;
1588
1589
1590#ifdef CONFIG_SMP
1591
1592extern void update_group_capacity(struct sched_domain *sd, int cpu);
1593
1594extern void trigger_load_balance(struct rq *rq);
1595
1596extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1597
1598#endif
1599
1600#ifdef CONFIG_CPU_IDLE
1601static inline void idle_set_state(struct rq *rq,
1602 struct cpuidle_state *idle_state)
1603{
1604 rq->idle_state = idle_state;
1605}
1606
1607static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1608{
1609 SCHED_WARN_ON(!rcu_read_lock_held());
1610
1611 return rq->idle_state;
1612}
1613#else
1614static inline void idle_set_state(struct rq *rq,
1615 struct cpuidle_state *idle_state)
1616{
1617}
1618
1619static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1620{
1621 return NULL;
1622}
1623#endif
1624
1625extern void schedule_idle(void);
1626
1627extern void sysrq_sched_debug_show(void);
1628extern void sched_init_granularity(void);
1629extern void update_max_interval(void);
1630
1631extern void init_sched_dl_class(void);
1632extern void init_sched_rt_class(void);
1633extern void init_sched_fair_class(void);
1634
1635extern void reweight_task(struct task_struct *p, int prio);
1636
1637extern void resched_curr(struct rq *rq);
1638extern void resched_cpu(int cpu);
1639
1640extern struct rt_bandwidth def_rt_bandwidth;
1641extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1642
1643extern struct dl_bandwidth def_dl_bandwidth;
1644extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1645extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1646extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1647extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
1648
1649#define BW_SHIFT 20
1650#define BW_UNIT (1 << BW_SHIFT)
1651#define RATIO_SHIFT 8
1652unsigned long to_ratio(u64 period, u64 runtime);
1653
1654extern void init_entity_runnable_average(struct sched_entity *se);
1655extern void post_init_entity_util_avg(struct sched_entity *se);
1656
1657#ifdef CONFIG_NO_HZ_FULL
1658extern bool sched_can_stop_tick(struct rq *rq);
1659extern int __init sched_tick_offload_init(void);
1660
1661/*
1662 * Tick may be needed by tasks in the runqueue depending on their policy and
1663 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1664 * nohz mode if necessary.
1665 */
1666static inline void sched_update_tick_dependency(struct rq *rq)
1667{
1668 int cpu;
1669
1670 if (!tick_nohz_full_enabled())
1671 return;
1672
1673 cpu = cpu_of(rq);
1674
1675 if (!tick_nohz_full_cpu(cpu))
1676 return;
1677
1678 if (sched_can_stop_tick(rq))
1679 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1680 else
1681 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1682}
1683#else
1684static inline int sched_tick_offload_init(void) { return 0; }
1685static inline void sched_update_tick_dependency(struct rq *rq) { }
1686#endif
1687
1688static inline void add_nr_running(struct rq *rq, unsigned count)
1689{
1690 unsigned prev_nr = rq->nr_running;
1691
1692 rq->nr_running = prev_nr + count;
1693
1694 if (prev_nr < 2 && rq->nr_running >= 2) {
1695#ifdef CONFIG_SMP
1696 if (!rq->rd->overload)
1697 rq->rd->overload = true;
1698#endif
1699 }
1700
1701 sched_update_tick_dependency(rq);
1702}
1703
1704static inline void sub_nr_running(struct rq *rq, unsigned count)
1705{
1706 rq->nr_running -= count;
1707 /* Check if we still need preemption */
1708 sched_update_tick_dependency(rq);
1709}
1710
1711extern void update_rq_clock(struct rq *rq);
1712
1713extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1714extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1715
1716extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1717
1718extern const_debug unsigned int sysctl_sched_nr_migrate;
1719extern const_debug unsigned int sysctl_sched_migration_cost;
1720
1721#ifdef CONFIG_SCHED_HRTICK
1722
1723/*
1724 * Use hrtick when:
1725 * - enabled by features
1726 * - hrtimer is actually high res
1727 */
1728static inline int hrtick_enabled(struct rq *rq)
1729{
1730 if (!sched_feat(HRTICK))
1731 return 0;
1732 if (!cpu_active(cpu_of(rq)))
1733 return 0;
1734 return hrtimer_is_hres_active(&rq->hrtick_timer);
1735}
1736
1737void hrtick_start(struct rq *rq, u64 delay);
1738
1739#else
1740
1741static inline int hrtick_enabled(struct rq *rq)
1742{
1743 return 0;
1744}
1745
1746#endif /* CONFIG_SCHED_HRTICK */
1747
1748#ifndef arch_scale_freq_capacity
1749static __always_inline
1750unsigned long arch_scale_freq_capacity(int cpu)
1751{
1752 return SCHED_CAPACITY_SCALE;
1753}
1754#endif
1755
1756#ifdef CONFIG_SMP
1757#ifndef arch_scale_cpu_capacity
1758static __always_inline
1759unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1760{
1761 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1762 return sd->smt_gain / sd->span_weight;
1763
1764 return SCHED_CAPACITY_SCALE;
1765}
1766#endif
1767#else
1768#ifndef arch_scale_cpu_capacity
1769static __always_inline
1770unsigned long arch_scale_cpu_capacity(void __always_unused *sd, int cpu)
1771{
1772 return SCHED_CAPACITY_SCALE;
1773}
1774#endif
1775#endif
1776
1777struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1778 __acquires(rq->lock);
1779
1780struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1781 __acquires(p->pi_lock)
1782 __acquires(rq->lock);
1783
1784static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1785 __releases(rq->lock)
1786{
1787 rq_unpin_lock(rq, rf);
1788 raw_spin_unlock(&rq->lock);
1789}
1790
1791static inline void
1792task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1793 __releases(rq->lock)
1794 __releases(p->pi_lock)
1795{
1796 rq_unpin_lock(rq, rf);
1797 raw_spin_unlock(&rq->lock);
1798 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1799}
1800
1801static inline void
1802rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1803 __acquires(rq->lock)
1804{
1805 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1806 rq_pin_lock(rq, rf);
1807}
1808
1809static inline void
1810rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1811 __acquires(rq->lock)
1812{
1813 raw_spin_lock_irq(&rq->lock);
1814 rq_pin_lock(rq, rf);
1815}
1816
1817static inline void
1818rq_lock(struct rq *rq, struct rq_flags *rf)
1819 __acquires(rq->lock)
1820{
1821 raw_spin_lock(&rq->lock);
1822 rq_pin_lock(rq, rf);
1823}
1824
1825static inline void
1826rq_relock(struct rq *rq, struct rq_flags *rf)
1827 __acquires(rq->lock)
1828{
1829 raw_spin_lock(&rq->lock);
1830 rq_repin_lock(rq, rf);
1831}
1832
1833static inline void
1834rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1835 __releases(rq->lock)
1836{
1837 rq_unpin_lock(rq, rf);
1838 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1839}
1840
1841static inline void
1842rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1843 __releases(rq->lock)
1844{
1845 rq_unpin_lock(rq, rf);
1846 raw_spin_unlock_irq(&rq->lock);
1847}
1848
1849static inline void
1850rq_unlock(struct rq *rq, struct rq_flags *rf)
1851 __releases(rq->lock)
1852{
1853 rq_unpin_lock(rq, rf);
1854 raw_spin_unlock(&rq->lock);
1855}
1856
1857#ifdef CONFIG_SMP
1858#ifdef CONFIG_PREEMPT
1859
1860static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1861
1862/*
1863 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1864 * way at the expense of forcing extra atomic operations in all
1865 * invocations. This assures that the double_lock is acquired using the
1866 * same underlying policy as the spinlock_t on this architecture, which
1867 * reduces latency compared to the unfair variant below. However, it
1868 * also adds more overhead and therefore may reduce throughput.
1869 */
1870static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1871 __releases(this_rq->lock)
1872 __acquires(busiest->lock)
1873 __acquires(this_rq->lock)
1874{
1875 raw_spin_unlock(&this_rq->lock);
1876 double_rq_lock(this_rq, busiest);
1877
1878 return 1;
1879}
1880
1881#else
1882/*
1883 * Unfair double_lock_balance: Optimizes throughput at the expense of
1884 * latency by eliminating extra atomic operations when the locks are
1885 * already in proper order on entry. This favors lower CPU-ids and will
1886 * grant the double lock to lower CPUs over higher ids under contention,
1887 * regardless of entry order into the function.
1888 */
1889static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1890 __releases(this_rq->lock)
1891 __acquires(busiest->lock)
1892 __acquires(this_rq->lock)
1893{
1894 int ret = 0;
1895
1896 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1897 if (busiest < this_rq) {
1898 raw_spin_unlock(&this_rq->lock);
1899 raw_spin_lock(&busiest->lock);
1900 raw_spin_lock_nested(&this_rq->lock,
1901 SINGLE_DEPTH_NESTING);
1902 ret = 1;
1903 } else
1904 raw_spin_lock_nested(&busiest->lock,
1905 SINGLE_DEPTH_NESTING);
1906 }
1907 return ret;
1908}
1909
1910#endif /* CONFIG_PREEMPT */
1911
1912/*
1913 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1914 */
1915static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1916{
1917 if (unlikely(!irqs_disabled())) {
1918 /* printk() doesn't work well under rq->lock */
1919 raw_spin_unlock(&this_rq->lock);
1920 BUG_ON(1);
1921 }
1922
1923 return _double_lock_balance(this_rq, busiest);
1924}
1925
1926static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1927 __releases(busiest->lock)
1928{
1929 raw_spin_unlock(&busiest->lock);
1930 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1931}
1932
1933static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1934{
1935 if (l1 > l2)
1936 swap(l1, l2);
1937
1938 spin_lock(l1);
1939 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1940}
1941
1942static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1943{
1944 if (l1 > l2)
1945 swap(l1, l2);
1946
1947 spin_lock_irq(l1);
1948 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1949}
1950
1951static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1952{
1953 if (l1 > l2)
1954 swap(l1, l2);
1955
1956 raw_spin_lock(l1);
1957 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1958}
1959
1960/*
1961 * double_rq_lock - safely lock two runqueues
1962 *
1963 * Note this does not disable interrupts like task_rq_lock,
1964 * you need to do so manually before calling.
1965 */
1966static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1967 __acquires(rq1->lock)
1968 __acquires(rq2->lock)
1969{
1970 BUG_ON(!irqs_disabled());
1971 if (rq1 == rq2) {
1972 raw_spin_lock(&rq1->lock);
1973 __acquire(rq2->lock); /* Fake it out ;) */
1974 } else {
1975 if (rq1 < rq2) {
1976 raw_spin_lock(&rq1->lock);
1977 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1978 } else {
1979 raw_spin_lock(&rq2->lock);
1980 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1981 }
1982 }
1983}
1984
1985/*
1986 * double_rq_unlock - safely unlock two runqueues
1987 *
1988 * Note this does not restore interrupts like task_rq_unlock,
1989 * you need to do so manually after calling.
1990 */
1991static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1992 __releases(rq1->lock)
1993 __releases(rq2->lock)
1994{
1995 raw_spin_unlock(&rq1->lock);
1996 if (rq1 != rq2)
1997 raw_spin_unlock(&rq2->lock);
1998 else
1999 __release(rq2->lock);
2000}
2001
2002extern void set_rq_online (struct rq *rq);
2003extern void set_rq_offline(struct rq *rq);
2004extern bool sched_smp_initialized;
2005
2006#else /* CONFIG_SMP */
2007
2008/*
2009 * double_rq_lock - safely lock two runqueues
2010 *
2011 * Note this does not disable interrupts like task_rq_lock,
2012 * you need to do so manually before calling.
2013 */
2014static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2015 __acquires(rq1->lock)
2016 __acquires(rq2->lock)
2017{
2018 BUG_ON(!irqs_disabled());
2019 BUG_ON(rq1 != rq2);
2020 raw_spin_lock(&rq1->lock);
2021 __acquire(rq2->lock); /* Fake it out ;) */
2022}
2023
2024/*
2025 * double_rq_unlock - safely unlock two runqueues
2026 *
2027 * Note this does not restore interrupts like task_rq_unlock,
2028 * you need to do so manually after calling.
2029 */
2030static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2031 __releases(rq1->lock)
2032 __releases(rq2->lock)
2033{
2034 BUG_ON(rq1 != rq2);
2035 raw_spin_unlock(&rq1->lock);
2036 __release(rq2->lock);
2037}
2038
2039#endif
2040
2041extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2042extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2043
2044#ifdef CONFIG_SCHED_DEBUG
2045extern bool sched_debug_enabled;
2046
2047extern void print_cfs_stats(struct seq_file *m, int cpu);
2048extern void print_rt_stats(struct seq_file *m, int cpu);
2049extern void print_dl_stats(struct seq_file *m, int cpu);
2050extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2051extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2052extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2053#ifdef CONFIG_NUMA_BALANCING
2054extern void
2055show_numa_stats(struct task_struct *p, struct seq_file *m);
2056extern void
2057print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2058 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2059#endif /* CONFIG_NUMA_BALANCING */
2060#endif /* CONFIG_SCHED_DEBUG */
2061
2062extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2063extern void init_rt_rq(struct rt_rq *rt_rq);
2064extern void init_dl_rq(struct dl_rq *dl_rq);
2065
2066extern void cfs_bandwidth_usage_inc(void);
2067extern void cfs_bandwidth_usage_dec(void);
2068
2069#ifdef CONFIG_NO_HZ_COMMON
2070#define NOHZ_BALANCE_KICK_BIT 0
2071#define NOHZ_STATS_KICK_BIT 1
2072
2073#define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
2074#define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2075
2076#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2077
2078#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2079
2080extern void nohz_balance_exit_idle(struct rq *rq);
2081#else
2082static inline void nohz_balance_exit_idle(struct rq *rq) { }
2083#endif
2084
2085
2086#ifdef CONFIG_SMP
2087static inline
2088void __dl_update(struct dl_bw *dl_b, s64 bw)
2089{
2090 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2091 int i;
2092
2093 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2094 "sched RCU must be held");
2095 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2096 struct rq *rq = cpu_rq(i);
2097
2098 rq->dl.extra_bw += bw;
2099 }
2100}
2101#else
2102static inline
2103void __dl_update(struct dl_bw *dl_b, s64 bw)
2104{
2105 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2106
2107 dl->extra_bw += bw;
2108}
2109#endif
2110
2111
2112#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2113struct irqtime {
2114 u64 total;
2115 u64 tick_delta;
2116 u64 irq_start_time;
2117 struct u64_stats_sync sync;
2118};
2119
2120DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2121
2122/*
2123 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2124 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2125 * and never move forward.
2126 */
2127static inline u64 irq_time_read(int cpu)
2128{
2129 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2130 unsigned int seq;
2131 u64 total;
2132
2133 do {
2134 seq = __u64_stats_fetch_begin(&irqtime->sync);
2135 total = irqtime->total;
2136 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2137
2138 return total;
2139}
2140#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2141
2142#ifdef CONFIG_CPU_FREQ
2143DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
2144
2145/**
2146 * cpufreq_update_util - Take a note about CPU utilization changes.
2147 * @rq: Runqueue to carry out the update for.
2148 * @flags: Update reason flags.
2149 *
2150 * This function is called by the scheduler on the CPU whose utilization is
2151 * being updated.
2152 *
2153 * It can only be called from RCU-sched read-side critical sections.
2154 *
2155 * The way cpufreq is currently arranged requires it to evaluate the CPU
2156 * performance state (frequency/voltage) on a regular basis to prevent it from
2157 * being stuck in a completely inadequate performance level for too long.
2158 * That is not guaranteed to happen if the updates are only triggered from CFS
2159 * and DL, though, because they may not be coming in if only RT tasks are
2160 * active all the time (or there are RT tasks only).
2161 *
2162 * As a workaround for that issue, this function is called periodically by the
2163 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2164 * but that really is a band-aid. Going forward it should be replaced with
2165 * solutions targeted more specifically at RT tasks.
2166 */
2167static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2168{
2169 struct update_util_data *data;
2170
2171 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2172 cpu_of(rq)));
2173 if (data)
2174 data->func(data, rq_clock(rq), flags);
2175}
2176#else
2177static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2178#endif /* CONFIG_CPU_FREQ */
2179
2180#ifdef arch_scale_freq_capacity
2181# ifndef arch_scale_freq_invariant
2182# define arch_scale_freq_invariant() true
2183# endif
2184#else
2185# define arch_scale_freq_invariant() false
2186#endif
2187
2188#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2189static inline unsigned long cpu_bw_dl(struct rq *rq)
2190{
2191 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2192}
2193
2194static inline unsigned long cpu_util_dl(struct rq *rq)
2195{
2196 return READ_ONCE(rq->avg_dl.util_avg);
2197}
2198
2199static inline unsigned long cpu_util_cfs(struct rq *rq)
2200{
2201 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2202
2203 if (sched_feat(UTIL_EST)) {
2204 util = max_t(unsigned long, util,
2205 READ_ONCE(rq->cfs.avg.util_est.enqueued));
2206 }
2207
2208 return util;
2209}
2210
2211static inline unsigned long cpu_util_rt(struct rq *rq)
2212{
2213 return READ_ONCE(rq->avg_rt.util_avg);
2214}
2215#endif
2216
2217#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
2218static inline unsigned long cpu_util_irq(struct rq *rq)
2219{
2220 return rq->avg_irq.util_avg;
2221}
2222
2223static inline
2224unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2225{
2226 util *= (max - irq);
2227 util /= max;
2228
2229 return util;
2230
2231}
2232#else
2233static inline unsigned long cpu_util_irq(struct rq *rq)
2234{
2235 return 0;
2236}
2237
2238static inline
2239unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2240{
2241 return util;
2242}
2243#endif