Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | /* |
| 3 | * Scheduler internal types and methods: |
| 4 | */ |
| 5 | #include <linux/sched.h> |
| 6 | |
| 7 | #include <linux/sched/autogroup.h> |
| 8 | #include <linux/sched/clock.h> |
| 9 | #include <linux/sched/coredump.h> |
| 10 | #include <linux/sched/cpufreq.h> |
| 11 | #include <linux/sched/cputime.h> |
| 12 | #include <linux/sched/deadline.h> |
| 13 | #include <linux/sched/debug.h> |
| 14 | #include <linux/sched/hotplug.h> |
| 15 | #include <linux/sched/idle.h> |
| 16 | #include <linux/sched/init.h> |
| 17 | #include <linux/sched/isolation.h> |
| 18 | #include <linux/sched/jobctl.h> |
| 19 | #include <linux/sched/loadavg.h> |
| 20 | #include <linux/sched/mm.h> |
| 21 | #include <linux/sched/nohz.h> |
| 22 | #include <linux/sched/numa_balancing.h> |
| 23 | #include <linux/sched/prio.h> |
| 24 | #include <linux/sched/rt.h> |
| 25 | #include <linux/sched/signal.h> |
| 26 | #include <linux/sched/smt.h> |
| 27 | #include <linux/sched/stat.h> |
| 28 | #include <linux/sched/sysctl.h> |
| 29 | #include <linux/sched/task.h> |
| 30 | #include <linux/sched/task_stack.h> |
| 31 | #include <linux/sched/topology.h> |
| 32 | #include <linux/sched/user.h> |
| 33 | #include <linux/sched/wake_q.h> |
| 34 | #include <linux/sched/xacct.h> |
| 35 | |
| 36 | #include <uapi/linux/sched/types.h> |
| 37 | |
| 38 | #include <linux/binfmts.h> |
| 39 | #include <linux/blkdev.h> |
| 40 | #include <linux/compat.h> |
| 41 | #include <linux/context_tracking.h> |
| 42 | #include <linux/cpufreq.h> |
| 43 | #include <linux/cpuidle.h> |
| 44 | #include <linux/cpuset.h> |
| 45 | #include <linux/ctype.h> |
| 46 | #include <linux/debugfs.h> |
| 47 | #include <linux/delayacct.h> |
| 48 | #include <linux/init_task.h> |
| 49 | #include <linux/kprobes.h> |
| 50 | #include <linux/kthread.h> |
| 51 | #include <linux/membarrier.h> |
| 52 | #include <linux/migrate.h> |
| 53 | #include <linux/mmu_context.h> |
| 54 | #include <linux/nmi.h> |
| 55 | #include <linux/proc_fs.h> |
| 56 | #include <linux/prefetch.h> |
| 57 | #include <linux/profile.h> |
| 58 | #include <linux/rcupdate_wait.h> |
| 59 | #include <linux/security.h> |
| 60 | #include <linux/stackprotector.h> |
| 61 | #include <linux/stop_machine.h> |
| 62 | #include <linux/suspend.h> |
| 63 | #include <linux/swait.h> |
| 64 | #include <linux/syscalls.h> |
| 65 | #include <linux/task_work.h> |
| 66 | #include <linux/tsacct_kern.h> |
| 67 | |
| 68 | #include <asm/tlb.h> |
| 69 | |
| 70 | #ifdef CONFIG_PARAVIRT |
| 71 | # include <asm/paravirt.h> |
| 72 | #endif |
| 73 | |
| 74 | #include "cpupri.h" |
| 75 | #include "cpudeadline.h" |
| 76 | |
| 77 | #ifdef CONFIG_SCHED_DEBUG |
| 78 | # define SCHED_WARN_ON(x) WARN_ONCE(x, #x) |
| 79 | #else |
| 80 | # define SCHED_WARN_ON(x) ({ (void)(x), 0; }) |
| 81 | #endif |
| 82 | |
| 83 | struct rq; |
| 84 | struct cpuidle_state; |
| 85 | |
| 86 | /* task_struct::on_rq states: */ |
| 87 | #define TASK_ON_RQ_QUEUED 1 |
| 88 | #define TASK_ON_RQ_MIGRATING 2 |
| 89 | |
| 90 | extern __read_mostly int scheduler_running; |
| 91 | |
| 92 | extern unsigned long calc_load_update; |
| 93 | extern atomic_long_t calc_load_tasks; |
| 94 | |
| 95 | extern void calc_global_load_tick(struct rq *this_rq); |
| 96 | extern long calc_load_fold_active(struct rq *this_rq, long adjust); |
| 97 | |
| 98 | #ifdef CONFIG_SMP |
| 99 | extern void cpu_load_update_active(struct rq *this_rq); |
| 100 | #else |
| 101 | static inline void cpu_load_update_active(struct rq *this_rq) { } |
| 102 | #endif |
| 103 | |
| 104 | /* |
| 105 | * Helpers for converting nanosecond timing to jiffy resolution |
| 106 | */ |
| 107 | #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) |
| 108 | |
| 109 | /* |
| 110 | * Increase resolution of nice-level calculations for 64-bit architectures. |
| 111 | * The extra resolution improves shares distribution and load balancing of |
| 112 | * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup |
| 113 | * hierarchies, especially on larger systems. This is not a user-visible change |
| 114 | * and does not change the user-interface for setting shares/weights. |
| 115 | * |
| 116 | * We increase resolution only if we have enough bits to allow this increased |
| 117 | * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit |
| 118 | * are pretty high and the returns do not justify the increased costs. |
| 119 | * |
| 120 | * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to |
| 121 | * increase coverage and consistency always enable it on 64-bit platforms. |
| 122 | */ |
| 123 | #ifdef CONFIG_64BIT |
| 124 | # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) |
| 125 | # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) |
| 126 | # define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT) |
| 127 | #else |
| 128 | # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) |
| 129 | # define scale_load(w) (w) |
| 130 | # define scale_load_down(w) (w) |
| 131 | #endif |
| 132 | |
| 133 | /* |
| 134 | * Task weight (visible to users) and its load (invisible to users) have |
| 135 | * independent resolution, but they should be well calibrated. We use |
| 136 | * scale_load() and scale_load_down(w) to convert between them. The |
| 137 | * following must be true: |
| 138 | * |
| 139 | * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD |
| 140 | * |
| 141 | */ |
| 142 | #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) |
| 143 | |
| 144 | /* |
| 145 | * Single value that decides SCHED_DEADLINE internal math precision. |
| 146 | * 10 -> just above 1us |
| 147 | * 9 -> just above 0.5us |
| 148 | */ |
| 149 | #define DL_SCALE 10 |
| 150 | |
| 151 | /* |
| 152 | * Single value that denotes runtime == period, ie unlimited time. |
| 153 | */ |
| 154 | #define RUNTIME_INF ((u64)~0ULL) |
| 155 | |
| 156 | static inline int idle_policy(int policy) |
| 157 | { |
| 158 | return policy == SCHED_IDLE; |
| 159 | } |
| 160 | static inline int fair_policy(int policy) |
| 161 | { |
| 162 | return policy == SCHED_NORMAL || policy == SCHED_BATCH; |
| 163 | } |
| 164 | |
| 165 | static inline int rt_policy(int policy) |
| 166 | { |
| 167 | return policy == SCHED_FIFO || policy == SCHED_RR; |
| 168 | } |
| 169 | |
| 170 | static inline int dl_policy(int policy) |
| 171 | { |
| 172 | return policy == SCHED_DEADLINE; |
| 173 | } |
| 174 | static inline bool valid_policy(int policy) |
| 175 | { |
| 176 | return idle_policy(policy) || fair_policy(policy) || |
| 177 | rt_policy(policy) || dl_policy(policy); |
| 178 | } |
| 179 | |
| 180 | static inline int task_has_rt_policy(struct task_struct *p) |
| 181 | { |
| 182 | return rt_policy(p->policy); |
| 183 | } |
| 184 | |
| 185 | static inline int task_has_dl_policy(struct task_struct *p) |
| 186 | { |
| 187 | return dl_policy(p->policy); |
| 188 | } |
| 189 | |
| 190 | #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) |
| 191 | |
| 192 | /* |
| 193 | * !! For sched_setattr_nocheck() (kernel) only !! |
| 194 | * |
| 195 | * This is actually gross. :( |
| 196 | * |
| 197 | * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE |
| 198 | * tasks, but still be able to sleep. We need this on platforms that cannot |
| 199 | * atomically change clock frequency. Remove once fast switching will be |
| 200 | * available on such platforms. |
| 201 | * |
| 202 | * SUGOV stands for SchedUtil GOVernor. |
| 203 | */ |
| 204 | #define SCHED_FLAG_SUGOV 0x10000000 |
| 205 | |
| 206 | static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se) |
| 207 | { |
| 208 | #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL |
| 209 | return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); |
| 210 | #else |
| 211 | return false; |
| 212 | #endif |
| 213 | } |
| 214 | |
| 215 | /* |
| 216 | * Tells if entity @a should preempt entity @b. |
| 217 | */ |
| 218 | static inline bool |
| 219 | dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) |
| 220 | { |
| 221 | return dl_entity_is_special(a) || |
| 222 | dl_time_before(a->deadline, b->deadline); |
| 223 | } |
| 224 | |
| 225 | /* |
| 226 | * This is the priority-queue data structure of the RT scheduling class: |
| 227 | */ |
| 228 | struct rt_prio_array { |
| 229 | DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ |
| 230 | struct list_head queue[MAX_RT_PRIO]; |
| 231 | }; |
| 232 | |
| 233 | struct rt_bandwidth { |
| 234 | /* nests inside the rq lock: */ |
| 235 | raw_spinlock_t rt_runtime_lock; |
| 236 | ktime_t rt_period; |
| 237 | u64 rt_runtime; |
| 238 | struct hrtimer rt_period_timer; |
| 239 | unsigned int rt_period_active; |
| 240 | }; |
| 241 | |
| 242 | void __dl_clear_params(struct task_struct *p); |
| 243 | |
| 244 | /* |
| 245 | * To keep the bandwidth of -deadline tasks and groups under control |
| 246 | * we need some place where: |
| 247 | * - store the maximum -deadline bandwidth of the system (the group); |
| 248 | * - cache the fraction of that bandwidth that is currently allocated. |
| 249 | * |
| 250 | * This is all done in the data structure below. It is similar to the |
| 251 | * one used for RT-throttling (rt_bandwidth), with the main difference |
| 252 | * that, since here we are only interested in admission control, we |
| 253 | * do not decrease any runtime while the group "executes", neither we |
| 254 | * need a timer to replenish it. |
| 255 | * |
| 256 | * With respect to SMP, the bandwidth is given on a per-CPU basis, |
| 257 | * meaning that: |
| 258 | * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU; |
| 259 | * - dl_total_bw array contains, in the i-eth element, the currently |
| 260 | * allocated bandwidth on the i-eth CPU. |
| 261 | * Moreover, groups consume bandwidth on each CPU, while tasks only |
| 262 | * consume bandwidth on the CPU they're running on. |
| 263 | * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw |
| 264 | * that will be shown the next time the proc or cgroup controls will |
| 265 | * be red. It on its turn can be changed by writing on its own |
| 266 | * control. |
| 267 | */ |
| 268 | struct dl_bandwidth { |
| 269 | raw_spinlock_t dl_runtime_lock; |
| 270 | u64 dl_runtime; |
| 271 | u64 dl_period; |
| 272 | }; |
| 273 | |
| 274 | static inline int dl_bandwidth_enabled(void) |
| 275 | { |
| 276 | return sysctl_sched_rt_runtime >= 0; |
| 277 | } |
| 278 | |
| 279 | struct dl_bw { |
| 280 | raw_spinlock_t lock; |
| 281 | u64 bw; |
| 282 | u64 total_bw; |
| 283 | }; |
| 284 | |
| 285 | static inline void __dl_update(struct dl_bw *dl_b, s64 bw); |
| 286 | |
| 287 | static inline |
| 288 | void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus) |
| 289 | { |
| 290 | dl_b->total_bw -= tsk_bw; |
| 291 | __dl_update(dl_b, (s32)tsk_bw / cpus); |
| 292 | } |
| 293 | |
| 294 | static inline |
| 295 | void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus) |
| 296 | { |
| 297 | dl_b->total_bw += tsk_bw; |
| 298 | __dl_update(dl_b, -((s32)tsk_bw / cpus)); |
| 299 | } |
| 300 | |
| 301 | static inline |
| 302 | bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw) |
| 303 | { |
| 304 | return dl_b->bw != -1 && |
| 305 | dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw; |
| 306 | } |
| 307 | |
| 308 | extern void dl_change_utilization(struct task_struct *p, u64 new_bw); |
| 309 | extern void init_dl_bw(struct dl_bw *dl_b); |
| 310 | extern int sched_dl_global_validate(void); |
| 311 | extern void sched_dl_do_global(void); |
| 312 | extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); |
| 313 | extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); |
| 314 | extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); |
| 315 | extern bool __checkparam_dl(const struct sched_attr *attr); |
| 316 | extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); |
| 317 | extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); |
| 318 | extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); |
| 319 | extern bool dl_cpu_busy(unsigned int cpu); |
| 320 | |
| 321 | #ifdef CONFIG_CGROUP_SCHED |
| 322 | |
| 323 | #include <linux/cgroup.h> |
| 324 | |
| 325 | struct cfs_rq; |
| 326 | struct rt_rq; |
| 327 | |
| 328 | extern struct list_head task_groups; |
| 329 | |
| 330 | struct cfs_bandwidth { |
| 331 | #ifdef CONFIG_CFS_BANDWIDTH |
| 332 | raw_spinlock_t lock; |
| 333 | ktime_t period; |
| 334 | u64 quota; |
| 335 | u64 runtime; |
| 336 | s64 hierarchical_quota; |
| 337 | u64 runtime_expires; |
| 338 | int expires_seq; |
| 339 | |
| 340 | short idle; |
| 341 | short period_active; |
| 342 | struct hrtimer period_timer; |
| 343 | struct hrtimer slack_timer; |
| 344 | struct list_head throttled_cfs_rq; |
| 345 | |
| 346 | /* Statistics: */ |
| 347 | int nr_periods; |
| 348 | int nr_throttled; |
| 349 | u64 throttled_time; |
| 350 | |
| 351 | bool distribute_running; |
| 352 | #endif |
| 353 | }; |
| 354 | |
| 355 | /* Task group related information */ |
| 356 | struct task_group { |
| 357 | struct cgroup_subsys_state css; |
| 358 | |
| 359 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 360 | /* schedulable entities of this group on each CPU */ |
| 361 | struct sched_entity **se; |
| 362 | /* runqueue "owned" by this group on each CPU */ |
| 363 | struct cfs_rq **cfs_rq; |
| 364 | unsigned long shares; |
| 365 | |
| 366 | #ifdef CONFIG_SMP |
| 367 | /* |
| 368 | * load_avg can be heavily contended at clock tick time, so put |
| 369 | * it in its own cacheline separated from the fields above which |
| 370 | * will also be accessed at each tick. |
| 371 | */ |
| 372 | atomic_long_t load_avg ____cacheline_aligned; |
| 373 | #endif |
| 374 | #endif |
| 375 | |
| 376 | #ifdef CONFIG_RT_GROUP_SCHED |
| 377 | struct sched_rt_entity **rt_se; |
| 378 | struct rt_rq **rt_rq; |
| 379 | |
| 380 | struct rt_bandwidth rt_bandwidth; |
| 381 | #endif |
| 382 | |
| 383 | struct rcu_head rcu; |
| 384 | struct list_head list; |
| 385 | |
| 386 | struct task_group *parent; |
| 387 | struct list_head siblings; |
| 388 | struct list_head children; |
| 389 | |
| 390 | #ifdef CONFIG_SCHED_AUTOGROUP |
| 391 | struct autogroup *autogroup; |
| 392 | #endif |
| 393 | |
| 394 | struct cfs_bandwidth cfs_bandwidth; |
| 395 | }; |
| 396 | |
| 397 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 398 | #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD |
| 399 | |
| 400 | /* |
| 401 | * A weight of 0 or 1 can cause arithmetics problems. |
| 402 | * A weight of a cfs_rq is the sum of weights of which entities |
| 403 | * are queued on this cfs_rq, so a weight of a entity should not be |
| 404 | * too large, so as the shares value of a task group. |
| 405 | * (The default weight is 1024 - so there's no practical |
| 406 | * limitation from this.) |
| 407 | */ |
| 408 | #define MIN_SHARES (1UL << 1) |
| 409 | #define MAX_SHARES (1UL << 18) |
| 410 | #endif |
| 411 | |
| 412 | typedef int (*tg_visitor)(struct task_group *, void *); |
| 413 | |
| 414 | extern int walk_tg_tree_from(struct task_group *from, |
| 415 | tg_visitor down, tg_visitor up, void *data); |
| 416 | |
| 417 | /* |
| 418 | * Iterate the full tree, calling @down when first entering a node and @up when |
| 419 | * leaving it for the final time. |
| 420 | * |
| 421 | * Caller must hold rcu_lock or sufficient equivalent. |
| 422 | */ |
| 423 | static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) |
| 424 | { |
| 425 | return walk_tg_tree_from(&root_task_group, down, up, data); |
| 426 | } |
| 427 | |
| 428 | extern int tg_nop(struct task_group *tg, void *data); |
| 429 | |
| 430 | extern void free_fair_sched_group(struct task_group *tg); |
| 431 | extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); |
| 432 | extern void online_fair_sched_group(struct task_group *tg); |
| 433 | extern void unregister_fair_sched_group(struct task_group *tg); |
| 434 | extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, |
| 435 | struct sched_entity *se, int cpu, |
| 436 | struct sched_entity *parent); |
| 437 | extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); |
| 438 | |
| 439 | extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); |
| 440 | extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); |
| 441 | extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); |
| 442 | |
| 443 | extern void free_rt_sched_group(struct task_group *tg); |
| 444 | extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); |
| 445 | extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, |
| 446 | struct sched_rt_entity *rt_se, int cpu, |
| 447 | struct sched_rt_entity *parent); |
| 448 | extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); |
| 449 | extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); |
| 450 | extern long sched_group_rt_runtime(struct task_group *tg); |
| 451 | extern long sched_group_rt_period(struct task_group *tg); |
| 452 | extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); |
| 453 | |
| 454 | extern struct task_group *sched_create_group(struct task_group *parent); |
| 455 | extern void sched_online_group(struct task_group *tg, |
| 456 | struct task_group *parent); |
| 457 | extern void sched_destroy_group(struct task_group *tg); |
| 458 | extern void sched_offline_group(struct task_group *tg); |
| 459 | |
| 460 | extern void sched_move_task(struct task_struct *tsk); |
| 461 | |
| 462 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 463 | extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); |
| 464 | |
| 465 | #ifdef CONFIG_SMP |
| 466 | extern void set_task_rq_fair(struct sched_entity *se, |
| 467 | struct cfs_rq *prev, struct cfs_rq *next); |
| 468 | #else /* !CONFIG_SMP */ |
| 469 | static inline void set_task_rq_fair(struct sched_entity *se, |
| 470 | struct cfs_rq *prev, struct cfs_rq *next) { } |
| 471 | #endif /* CONFIG_SMP */ |
| 472 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| 473 | |
| 474 | #else /* CONFIG_CGROUP_SCHED */ |
| 475 | |
| 476 | struct cfs_bandwidth { }; |
| 477 | |
| 478 | #endif /* CONFIG_CGROUP_SCHED */ |
| 479 | |
| 480 | /* CFS-related fields in a runqueue */ |
| 481 | struct cfs_rq { |
| 482 | struct load_weight load; |
| 483 | unsigned long runnable_weight; |
| 484 | unsigned int nr_running; |
| 485 | unsigned int h_nr_running; |
| 486 | |
| 487 | u64 exec_clock; |
| 488 | u64 min_vruntime; |
| 489 | #ifndef CONFIG_64BIT |
| 490 | u64 min_vruntime_copy; |
| 491 | #endif |
| 492 | |
| 493 | struct rb_root_cached tasks_timeline; |
| 494 | |
| 495 | /* |
| 496 | * 'curr' points to currently running entity on this cfs_rq. |
| 497 | * It is set to NULL otherwise (i.e when none are currently running). |
| 498 | */ |
| 499 | struct sched_entity *curr; |
| 500 | struct sched_entity *next; |
| 501 | struct sched_entity *last; |
| 502 | struct sched_entity *skip; |
| 503 | |
| 504 | #ifdef CONFIG_SCHED_DEBUG |
| 505 | unsigned int nr_spread_over; |
| 506 | #endif |
| 507 | |
| 508 | #ifdef CONFIG_SMP |
| 509 | /* |
| 510 | * CFS load tracking |
| 511 | */ |
| 512 | struct sched_avg avg; |
| 513 | #ifndef CONFIG_64BIT |
| 514 | u64 load_last_update_time_copy; |
| 515 | #endif |
| 516 | struct { |
| 517 | raw_spinlock_t lock ____cacheline_aligned; |
| 518 | int nr; |
| 519 | unsigned long load_avg; |
| 520 | unsigned long util_avg; |
| 521 | unsigned long runnable_sum; |
| 522 | } removed; |
| 523 | |
| 524 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 525 | unsigned long tg_load_avg_contrib; |
| 526 | long propagate; |
| 527 | long prop_runnable_sum; |
| 528 | |
| 529 | /* |
| 530 | * h_load = weight * f(tg) |
| 531 | * |
| 532 | * Where f(tg) is the recursive weight fraction assigned to |
| 533 | * this group. |
| 534 | */ |
| 535 | unsigned long h_load; |
| 536 | u64 last_h_load_update; |
| 537 | struct sched_entity *h_load_next; |
| 538 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| 539 | #endif /* CONFIG_SMP */ |
| 540 | |
| 541 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 542 | struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ |
| 543 | |
| 544 | /* |
| 545 | * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in |
| 546 | * a hierarchy). Non-leaf lrqs hold other higher schedulable entities |
| 547 | * (like users, containers etc.) |
| 548 | * |
| 549 | * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. |
| 550 | * This list is used during load balance. |
| 551 | */ |
| 552 | int on_list; |
| 553 | struct list_head leaf_cfs_rq_list; |
| 554 | struct task_group *tg; /* group that "owns" this runqueue */ |
| 555 | |
| 556 | #ifdef CONFIG_CFS_BANDWIDTH |
| 557 | int runtime_enabled; |
| 558 | int expires_seq; |
| 559 | u64 runtime_expires; |
| 560 | s64 runtime_remaining; |
| 561 | |
| 562 | u64 throttled_clock; |
| 563 | u64 throttled_clock_task; |
| 564 | u64 throttled_clock_task_time; |
| 565 | int throttled; |
| 566 | int throttle_count; |
| 567 | struct list_head throttled_list; |
| 568 | #endif /* CONFIG_CFS_BANDWIDTH */ |
| 569 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| 570 | }; |
| 571 | |
| 572 | static inline int rt_bandwidth_enabled(void) |
| 573 | { |
| 574 | return sysctl_sched_rt_runtime >= 0; |
| 575 | } |
| 576 | |
| 577 | /* RT IPI pull logic requires IRQ_WORK */ |
| 578 | #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) |
| 579 | # define HAVE_RT_PUSH_IPI |
| 580 | #endif |
| 581 | |
| 582 | /* Real-Time classes' related field in a runqueue: */ |
| 583 | struct rt_rq { |
| 584 | struct rt_prio_array active; |
| 585 | unsigned int rt_nr_running; |
| 586 | unsigned int rr_nr_running; |
| 587 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
| 588 | struct { |
| 589 | int curr; /* highest queued rt task prio */ |
| 590 | #ifdef CONFIG_SMP |
| 591 | int next; /* next highest */ |
| 592 | #endif |
| 593 | } highest_prio; |
| 594 | #endif |
| 595 | #ifdef CONFIG_SMP |
| 596 | unsigned long rt_nr_migratory; |
| 597 | unsigned long rt_nr_total; |
| 598 | int overloaded; |
| 599 | struct plist_head pushable_tasks; |
| 600 | |
| 601 | #endif /* CONFIG_SMP */ |
| 602 | int rt_queued; |
| 603 | |
| 604 | int rt_throttled; |
| 605 | u64 rt_time; |
| 606 | u64 rt_runtime; |
| 607 | /* Nests inside the rq lock: */ |
| 608 | raw_spinlock_t rt_runtime_lock; |
| 609 | |
| 610 | #ifdef CONFIG_RT_GROUP_SCHED |
| 611 | unsigned long rt_nr_boosted; |
| 612 | |
| 613 | struct rq *rq; |
| 614 | struct task_group *tg; |
| 615 | #endif |
| 616 | }; |
| 617 | |
| 618 | static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) |
| 619 | { |
| 620 | return rt_rq->rt_queued && rt_rq->rt_nr_running; |
| 621 | } |
| 622 | |
| 623 | /* Deadline class' related fields in a runqueue */ |
| 624 | struct dl_rq { |
| 625 | /* runqueue is an rbtree, ordered by deadline */ |
| 626 | struct rb_root_cached root; |
| 627 | |
| 628 | unsigned long dl_nr_running; |
| 629 | |
| 630 | #ifdef CONFIG_SMP |
| 631 | /* |
| 632 | * Deadline values of the currently executing and the |
| 633 | * earliest ready task on this rq. Caching these facilitates |
| 634 | * the decision wether or not a ready but not running task |
| 635 | * should migrate somewhere else. |
| 636 | */ |
| 637 | struct { |
| 638 | u64 curr; |
| 639 | u64 next; |
| 640 | } earliest_dl; |
| 641 | |
| 642 | unsigned long dl_nr_migratory; |
| 643 | int overloaded; |
| 644 | |
| 645 | /* |
| 646 | * Tasks on this rq that can be pushed away. They are kept in |
| 647 | * an rb-tree, ordered by tasks' deadlines, with caching |
| 648 | * of the leftmost (earliest deadline) element. |
| 649 | */ |
| 650 | struct rb_root_cached pushable_dl_tasks_root; |
| 651 | #else |
| 652 | struct dl_bw dl_bw; |
| 653 | #endif |
| 654 | /* |
| 655 | * "Active utilization" for this runqueue: increased when a |
| 656 | * task wakes up (becomes TASK_RUNNING) and decreased when a |
| 657 | * task blocks |
| 658 | */ |
| 659 | u64 running_bw; |
| 660 | |
| 661 | /* |
| 662 | * Utilization of the tasks "assigned" to this runqueue (including |
| 663 | * the tasks that are in runqueue and the tasks that executed on this |
| 664 | * CPU and blocked). Increased when a task moves to this runqueue, and |
| 665 | * decreased when the task moves away (migrates, changes scheduling |
| 666 | * policy, or terminates). |
| 667 | * This is needed to compute the "inactive utilization" for the |
| 668 | * runqueue (inactive utilization = this_bw - running_bw). |
| 669 | */ |
| 670 | u64 this_bw; |
| 671 | u64 extra_bw; |
| 672 | |
| 673 | /* |
| 674 | * Inverse of the fraction of CPU utilization that can be reclaimed |
| 675 | * by the GRUB algorithm. |
| 676 | */ |
| 677 | u64 bw_ratio; |
| 678 | }; |
| 679 | |
| 680 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 681 | /* An entity is a task if it doesn't "own" a runqueue */ |
| 682 | #define entity_is_task(se) (!se->my_q) |
| 683 | #else |
| 684 | #define entity_is_task(se) 1 |
| 685 | #endif |
| 686 | |
| 687 | #ifdef CONFIG_SMP |
| 688 | /* |
| 689 | * XXX we want to get rid of these helpers and use the full load resolution. |
| 690 | */ |
| 691 | static inline long se_weight(struct sched_entity *se) |
| 692 | { |
| 693 | return scale_load_down(se->load.weight); |
| 694 | } |
| 695 | |
| 696 | static inline long se_runnable(struct sched_entity *se) |
| 697 | { |
| 698 | return scale_load_down(se->runnable_weight); |
| 699 | } |
| 700 | |
| 701 | static inline bool sched_asym_prefer(int a, int b) |
| 702 | { |
| 703 | return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); |
| 704 | } |
| 705 | |
| 706 | /* |
| 707 | * We add the notion of a root-domain which will be used to define per-domain |
| 708 | * variables. Each exclusive cpuset essentially defines an island domain by |
| 709 | * fully partitioning the member CPUs from any other cpuset. Whenever a new |
| 710 | * exclusive cpuset is created, we also create and attach a new root-domain |
| 711 | * object. |
| 712 | * |
| 713 | */ |
| 714 | struct root_domain { |
| 715 | atomic_t refcount; |
| 716 | atomic_t rto_count; |
| 717 | struct rcu_head rcu; |
| 718 | cpumask_var_t span; |
| 719 | cpumask_var_t online; |
| 720 | |
| 721 | /* Indicate more than one runnable task for any CPU */ |
| 722 | bool overload; |
| 723 | |
| 724 | /* |
| 725 | * The bit corresponding to a CPU gets set here if such CPU has more |
| 726 | * than one runnable -deadline task (as it is below for RT tasks). |
| 727 | */ |
| 728 | cpumask_var_t dlo_mask; |
| 729 | atomic_t dlo_count; |
| 730 | struct dl_bw dl_bw; |
| 731 | struct cpudl cpudl; |
| 732 | |
| 733 | #ifdef HAVE_RT_PUSH_IPI |
| 734 | /* |
| 735 | * For IPI pull requests, loop across the rto_mask. |
| 736 | */ |
| 737 | struct irq_work rto_push_work; |
| 738 | raw_spinlock_t rto_lock; |
| 739 | /* These are only updated and read within rto_lock */ |
| 740 | int rto_loop; |
| 741 | int rto_cpu; |
| 742 | /* These atomics are updated outside of a lock */ |
| 743 | atomic_t rto_loop_next; |
| 744 | atomic_t rto_loop_start; |
| 745 | #endif |
| 746 | /* |
| 747 | * The "RT overload" flag: it gets set if a CPU has more than |
| 748 | * one runnable RT task. |
| 749 | */ |
| 750 | cpumask_var_t rto_mask; |
| 751 | struct cpupri cpupri; |
| 752 | |
| 753 | unsigned long max_cpu_capacity; |
| 754 | }; |
| 755 | |
| 756 | extern struct root_domain def_root_domain; |
| 757 | extern struct mutex sched_domains_mutex; |
| 758 | |
| 759 | extern void init_defrootdomain(void); |
| 760 | extern int sched_init_domains(const struct cpumask *cpu_map); |
| 761 | extern void rq_attach_root(struct rq *rq, struct root_domain *rd); |
| 762 | extern void sched_get_rd(struct root_domain *rd); |
| 763 | extern void sched_put_rd(struct root_domain *rd); |
| 764 | |
| 765 | #ifdef HAVE_RT_PUSH_IPI |
| 766 | extern void rto_push_irq_work_func(struct irq_work *work); |
| 767 | #endif |
| 768 | #endif /* CONFIG_SMP */ |
| 769 | |
| 770 | /* |
| 771 | * This is the main, per-CPU runqueue data structure. |
| 772 | * |
| 773 | * Locking rule: those places that want to lock multiple runqueues |
| 774 | * (such as the load balancing or the thread migration code), lock |
| 775 | * acquire operations must be ordered by ascending &runqueue. |
| 776 | */ |
| 777 | struct rq { |
| 778 | /* runqueue lock: */ |
| 779 | raw_spinlock_t lock; |
| 780 | |
| 781 | /* |
| 782 | * nr_running and cpu_load should be in the same cacheline because |
| 783 | * remote CPUs use both these fields when doing load calculation. |
| 784 | */ |
| 785 | unsigned int nr_running; |
| 786 | #ifdef CONFIG_NUMA_BALANCING |
| 787 | unsigned int nr_numa_running; |
| 788 | unsigned int nr_preferred_running; |
| 789 | unsigned int numa_migrate_on; |
| 790 | #endif |
| 791 | #define CPU_LOAD_IDX_MAX 5 |
| 792 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; |
| 793 | #ifdef CONFIG_NO_HZ_COMMON |
| 794 | #ifdef CONFIG_SMP |
| 795 | unsigned long last_load_update_tick; |
| 796 | unsigned long last_blocked_load_update_tick; |
| 797 | unsigned int has_blocked_load; |
| 798 | #endif /* CONFIG_SMP */ |
| 799 | unsigned int nohz_tick_stopped; |
| 800 | atomic_t nohz_flags; |
| 801 | #endif /* CONFIG_NO_HZ_COMMON */ |
| 802 | |
| 803 | /* capture load from *all* tasks on this CPU: */ |
| 804 | struct load_weight load; |
| 805 | unsigned long nr_load_updates; |
| 806 | u64 nr_switches; |
| 807 | |
| 808 | struct cfs_rq cfs; |
| 809 | struct rt_rq rt; |
| 810 | struct dl_rq dl; |
| 811 | |
| 812 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 813 | /* list of leaf cfs_rq on this CPU: */ |
| 814 | struct list_head leaf_cfs_rq_list; |
| 815 | struct list_head *tmp_alone_branch; |
| 816 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| 817 | |
| 818 | /* |
| 819 | * This is part of a global counter where only the total sum |
| 820 | * over all CPUs matters. A task can increase this counter on |
| 821 | * one CPU and if it got migrated afterwards it may decrease |
| 822 | * it on another CPU. Always updated under the runqueue lock: |
| 823 | */ |
| 824 | unsigned long nr_uninterruptible; |
| 825 | |
| 826 | struct task_struct *curr; |
| 827 | struct task_struct *idle; |
| 828 | struct task_struct *stop; |
| 829 | unsigned long next_balance; |
| 830 | struct mm_struct *prev_mm; |
| 831 | |
| 832 | unsigned int clock_update_flags; |
| 833 | u64 clock; |
| 834 | u64 clock_task; |
| 835 | |
| 836 | atomic_t nr_iowait; |
| 837 | |
| 838 | #ifdef CONFIG_SMP |
| 839 | struct root_domain *rd; |
| 840 | struct sched_domain *sd; |
| 841 | |
| 842 | unsigned long cpu_capacity; |
| 843 | unsigned long cpu_capacity_orig; |
| 844 | |
| 845 | struct callback_head *balance_callback; |
| 846 | |
| 847 | unsigned char idle_balance; |
| 848 | |
| 849 | /* For active balancing */ |
| 850 | int active_balance; |
| 851 | int push_cpu; |
| 852 | struct cpu_stop_work active_balance_work; |
| 853 | |
| 854 | /* CPU of this runqueue: */ |
| 855 | int cpu; |
| 856 | int online; |
| 857 | |
| 858 | struct list_head cfs_tasks; |
| 859 | |
| 860 | struct sched_avg avg_rt; |
| 861 | struct sched_avg avg_dl; |
| 862 | #ifdef CONFIG_HAVE_SCHED_AVG_IRQ |
| 863 | struct sched_avg avg_irq; |
| 864 | #endif |
| 865 | u64 idle_stamp; |
| 866 | u64 avg_idle; |
| 867 | |
| 868 | /* This is used to determine avg_idle's max value */ |
| 869 | u64 max_idle_balance_cost; |
| 870 | #endif |
| 871 | |
| 872 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING |
| 873 | u64 prev_irq_time; |
| 874 | #endif |
| 875 | #ifdef CONFIG_PARAVIRT |
| 876 | u64 prev_steal_time; |
| 877 | #endif |
| 878 | #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING |
| 879 | u64 prev_steal_time_rq; |
| 880 | #endif |
| 881 | |
| 882 | /* calc_load related fields */ |
| 883 | unsigned long calc_load_update; |
| 884 | long calc_load_active; |
| 885 | |
| 886 | #ifdef CONFIG_SCHED_HRTICK |
| 887 | #ifdef CONFIG_SMP |
| 888 | int hrtick_csd_pending; |
| 889 | call_single_data_t hrtick_csd; |
| 890 | #endif |
| 891 | struct hrtimer hrtick_timer; |
| 892 | #endif |
| 893 | |
| 894 | #ifdef CONFIG_SCHEDSTATS |
| 895 | /* latency stats */ |
| 896 | struct sched_info rq_sched_info; |
| 897 | unsigned long long rq_cpu_time; |
| 898 | /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ |
| 899 | |
| 900 | /* sys_sched_yield() stats */ |
| 901 | unsigned int yld_count; |
| 902 | |
| 903 | /* schedule() stats */ |
| 904 | unsigned int sched_count; |
| 905 | unsigned int sched_goidle; |
| 906 | |
| 907 | /* try_to_wake_up() stats */ |
| 908 | unsigned int ttwu_count; |
| 909 | unsigned int ttwu_local; |
| 910 | #endif |
| 911 | |
| 912 | #ifdef CONFIG_SMP |
| 913 | struct llist_head wake_list; |
| 914 | #endif |
| 915 | |
| 916 | #ifdef CONFIG_CPU_IDLE |
| 917 | /* Must be inspected within a rcu lock section */ |
| 918 | struct cpuidle_state *idle_state; |
| 919 | #endif |
| 920 | }; |
| 921 | |
| 922 | static inline int cpu_of(struct rq *rq) |
| 923 | { |
| 924 | #ifdef CONFIG_SMP |
| 925 | return rq->cpu; |
| 926 | #else |
| 927 | return 0; |
| 928 | #endif |
| 929 | } |
| 930 | |
| 931 | |
| 932 | #ifdef CONFIG_SCHED_SMT |
| 933 | extern void __update_idle_core(struct rq *rq); |
| 934 | |
| 935 | static inline void update_idle_core(struct rq *rq) |
| 936 | { |
| 937 | if (static_branch_unlikely(&sched_smt_present)) |
| 938 | __update_idle_core(rq); |
| 939 | } |
| 940 | |
| 941 | #else |
| 942 | static inline void update_idle_core(struct rq *rq) { } |
| 943 | #endif |
| 944 | |
| 945 | DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); |
| 946 | |
| 947 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) |
| 948 | #define this_rq() this_cpu_ptr(&runqueues) |
| 949 | #define task_rq(p) cpu_rq(task_cpu(p)) |
| 950 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) |
| 951 | #define raw_rq() raw_cpu_ptr(&runqueues) |
| 952 | |
| 953 | static inline u64 __rq_clock_broken(struct rq *rq) |
| 954 | { |
| 955 | return READ_ONCE(rq->clock); |
| 956 | } |
| 957 | |
| 958 | /* |
| 959 | * rq::clock_update_flags bits |
| 960 | * |
| 961 | * %RQCF_REQ_SKIP - will request skipping of clock update on the next |
| 962 | * call to __schedule(). This is an optimisation to avoid |
| 963 | * neighbouring rq clock updates. |
| 964 | * |
| 965 | * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is |
| 966 | * in effect and calls to update_rq_clock() are being ignored. |
| 967 | * |
| 968 | * %RQCF_UPDATED - is a debug flag that indicates whether a call has been |
| 969 | * made to update_rq_clock() since the last time rq::lock was pinned. |
| 970 | * |
| 971 | * If inside of __schedule(), clock_update_flags will have been |
| 972 | * shifted left (a left shift is a cheap operation for the fast path |
| 973 | * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, |
| 974 | * |
| 975 | * if (rq-clock_update_flags >= RQCF_UPDATED) |
| 976 | * |
| 977 | * to check if %RQCF_UPADTED is set. It'll never be shifted more than |
| 978 | * one position though, because the next rq_unpin_lock() will shift it |
| 979 | * back. |
| 980 | */ |
| 981 | #define RQCF_REQ_SKIP 0x01 |
| 982 | #define RQCF_ACT_SKIP 0x02 |
| 983 | #define RQCF_UPDATED 0x04 |
| 984 | |
| 985 | static inline void assert_clock_updated(struct rq *rq) |
| 986 | { |
| 987 | /* |
| 988 | * The only reason for not seeing a clock update since the |
| 989 | * last rq_pin_lock() is if we're currently skipping updates. |
| 990 | */ |
| 991 | SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP); |
| 992 | } |
| 993 | |
| 994 | static inline u64 rq_clock(struct rq *rq) |
| 995 | { |
| 996 | lockdep_assert_held(&rq->lock); |
| 997 | assert_clock_updated(rq); |
| 998 | |
| 999 | return rq->clock; |
| 1000 | } |
| 1001 | |
| 1002 | static inline u64 rq_clock_task(struct rq *rq) |
| 1003 | { |
| 1004 | lockdep_assert_held(&rq->lock); |
| 1005 | assert_clock_updated(rq); |
| 1006 | |
| 1007 | return rq->clock_task; |
| 1008 | } |
| 1009 | |
| 1010 | static inline void rq_clock_skip_update(struct rq *rq) |
| 1011 | { |
| 1012 | lockdep_assert_held(&rq->lock); |
| 1013 | rq->clock_update_flags |= RQCF_REQ_SKIP; |
| 1014 | } |
| 1015 | |
| 1016 | /* |
| 1017 | * See rt task throttling, which is the only time a skip |
| 1018 | * request is cancelled. |
| 1019 | */ |
| 1020 | static inline void rq_clock_cancel_skipupdate(struct rq *rq) |
| 1021 | { |
| 1022 | lockdep_assert_held(&rq->lock); |
| 1023 | rq->clock_update_flags &= ~RQCF_REQ_SKIP; |
| 1024 | } |
| 1025 | |
| 1026 | struct rq_flags { |
| 1027 | unsigned long flags; |
| 1028 | struct pin_cookie cookie; |
| 1029 | #ifdef CONFIG_SCHED_DEBUG |
| 1030 | /* |
| 1031 | * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the |
| 1032 | * current pin context is stashed here in case it needs to be |
| 1033 | * restored in rq_repin_lock(). |
| 1034 | */ |
| 1035 | unsigned int clock_update_flags; |
| 1036 | #endif |
| 1037 | }; |
| 1038 | |
| 1039 | static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) |
| 1040 | { |
| 1041 | rf->cookie = lockdep_pin_lock(&rq->lock); |
| 1042 | |
| 1043 | #ifdef CONFIG_SCHED_DEBUG |
| 1044 | rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); |
| 1045 | rf->clock_update_flags = 0; |
| 1046 | #endif |
| 1047 | } |
| 1048 | |
| 1049 | static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) |
| 1050 | { |
| 1051 | #ifdef CONFIG_SCHED_DEBUG |
| 1052 | if (rq->clock_update_flags > RQCF_ACT_SKIP) |
| 1053 | rf->clock_update_flags = RQCF_UPDATED; |
| 1054 | #endif |
| 1055 | |
| 1056 | lockdep_unpin_lock(&rq->lock, rf->cookie); |
| 1057 | } |
| 1058 | |
| 1059 | static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) |
| 1060 | { |
| 1061 | lockdep_repin_lock(&rq->lock, rf->cookie); |
| 1062 | |
| 1063 | #ifdef CONFIG_SCHED_DEBUG |
| 1064 | /* |
| 1065 | * Restore the value we stashed in @rf for this pin context. |
| 1066 | */ |
| 1067 | rq->clock_update_flags |= rf->clock_update_flags; |
| 1068 | #endif |
| 1069 | } |
| 1070 | |
| 1071 | #ifdef CONFIG_NUMA |
| 1072 | enum numa_topology_type { |
| 1073 | NUMA_DIRECT, |
| 1074 | NUMA_GLUELESS_MESH, |
| 1075 | NUMA_BACKPLANE, |
| 1076 | }; |
| 1077 | extern enum numa_topology_type sched_numa_topology_type; |
| 1078 | extern int sched_max_numa_distance; |
| 1079 | extern bool find_numa_distance(int distance); |
| 1080 | #endif |
| 1081 | |
| 1082 | #ifdef CONFIG_NUMA |
| 1083 | extern void sched_init_numa(void); |
| 1084 | extern void sched_domains_numa_masks_set(unsigned int cpu); |
| 1085 | extern void sched_domains_numa_masks_clear(unsigned int cpu); |
| 1086 | #else |
| 1087 | static inline void sched_init_numa(void) { } |
| 1088 | static inline void sched_domains_numa_masks_set(unsigned int cpu) { } |
| 1089 | static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } |
| 1090 | #endif |
| 1091 | |
| 1092 | #ifdef CONFIG_NUMA_BALANCING |
| 1093 | /* The regions in numa_faults array from task_struct */ |
| 1094 | enum numa_faults_stats { |
| 1095 | NUMA_MEM = 0, |
| 1096 | NUMA_CPU, |
| 1097 | NUMA_MEMBUF, |
| 1098 | NUMA_CPUBUF |
| 1099 | }; |
| 1100 | extern void sched_setnuma(struct task_struct *p, int node); |
| 1101 | extern int migrate_task_to(struct task_struct *p, int cpu); |
| 1102 | extern int migrate_swap(struct task_struct *p, struct task_struct *t, |
| 1103 | int cpu, int scpu); |
| 1104 | extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); |
| 1105 | #else |
| 1106 | static inline void |
| 1107 | init_numa_balancing(unsigned long clone_flags, struct task_struct *p) |
| 1108 | { |
| 1109 | } |
| 1110 | #endif /* CONFIG_NUMA_BALANCING */ |
| 1111 | |
| 1112 | #ifdef CONFIG_SMP |
| 1113 | |
| 1114 | static inline void |
| 1115 | queue_balance_callback(struct rq *rq, |
| 1116 | struct callback_head *head, |
| 1117 | void (*func)(struct rq *rq)) |
| 1118 | { |
| 1119 | lockdep_assert_held(&rq->lock); |
| 1120 | |
| 1121 | if (unlikely(head->next)) |
| 1122 | return; |
| 1123 | |
| 1124 | head->func = (void (*)(struct callback_head *))func; |
| 1125 | head->next = rq->balance_callback; |
| 1126 | rq->balance_callback = head; |
| 1127 | } |
| 1128 | |
| 1129 | extern void sched_ttwu_pending(void); |
| 1130 | |
| 1131 | #define rcu_dereference_check_sched_domain(p) \ |
| 1132 | rcu_dereference_check((p), \ |
| 1133 | lockdep_is_held(&sched_domains_mutex)) |
| 1134 | |
| 1135 | /* |
| 1136 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. |
| 1137 | * See detach_destroy_domains: synchronize_sched for details. |
| 1138 | * |
| 1139 | * The domain tree of any CPU may only be accessed from within |
| 1140 | * preempt-disabled sections. |
| 1141 | */ |
| 1142 | #define for_each_domain(cpu, __sd) \ |
| 1143 | for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ |
| 1144 | __sd; __sd = __sd->parent) |
| 1145 | |
| 1146 | #define for_each_lower_domain(sd) for (; sd; sd = sd->child) |
| 1147 | |
| 1148 | /** |
| 1149 | * highest_flag_domain - Return highest sched_domain containing flag. |
| 1150 | * @cpu: The CPU whose highest level of sched domain is to |
| 1151 | * be returned. |
| 1152 | * @flag: The flag to check for the highest sched_domain |
| 1153 | * for the given CPU. |
| 1154 | * |
| 1155 | * Returns the highest sched_domain of a CPU which contains the given flag. |
| 1156 | */ |
| 1157 | static inline struct sched_domain *highest_flag_domain(int cpu, int flag) |
| 1158 | { |
| 1159 | struct sched_domain *sd, *hsd = NULL; |
| 1160 | |
| 1161 | for_each_domain(cpu, sd) { |
| 1162 | if (!(sd->flags & flag)) |
| 1163 | break; |
| 1164 | hsd = sd; |
| 1165 | } |
| 1166 | |
| 1167 | return hsd; |
| 1168 | } |
| 1169 | |
| 1170 | static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) |
| 1171 | { |
| 1172 | struct sched_domain *sd; |
| 1173 | |
| 1174 | for_each_domain(cpu, sd) { |
| 1175 | if (sd->flags & flag) |
| 1176 | break; |
| 1177 | } |
| 1178 | |
| 1179 | return sd; |
| 1180 | } |
| 1181 | |
| 1182 | DECLARE_PER_CPU(struct sched_domain *, sd_llc); |
| 1183 | DECLARE_PER_CPU(int, sd_llc_size); |
| 1184 | DECLARE_PER_CPU(int, sd_llc_id); |
| 1185 | DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared); |
| 1186 | DECLARE_PER_CPU(struct sched_domain *, sd_numa); |
| 1187 | DECLARE_PER_CPU(struct sched_domain *, sd_asym); |
| 1188 | |
| 1189 | struct sched_group_capacity { |
| 1190 | atomic_t ref; |
| 1191 | /* |
| 1192 | * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity |
| 1193 | * for a single CPU. |
| 1194 | */ |
| 1195 | unsigned long capacity; |
| 1196 | unsigned long min_capacity; /* Min per-CPU capacity in group */ |
| 1197 | unsigned long next_update; |
| 1198 | int imbalance; /* XXX unrelated to capacity but shared group state */ |
| 1199 | |
| 1200 | #ifdef CONFIG_SCHED_DEBUG |
| 1201 | int id; |
| 1202 | #endif |
| 1203 | |
| 1204 | unsigned long cpumask[0]; /* Balance mask */ |
| 1205 | }; |
| 1206 | |
| 1207 | struct sched_group { |
| 1208 | struct sched_group *next; /* Must be a circular list */ |
| 1209 | atomic_t ref; |
| 1210 | |
| 1211 | unsigned int group_weight; |
| 1212 | struct sched_group_capacity *sgc; |
| 1213 | int asym_prefer_cpu; /* CPU of highest priority in group */ |
| 1214 | |
| 1215 | /* |
| 1216 | * The CPUs this group covers. |
| 1217 | * |
| 1218 | * NOTE: this field is variable length. (Allocated dynamically |
| 1219 | * by attaching extra space to the end of the structure, |
| 1220 | * depending on how many CPUs the kernel has booted up with) |
| 1221 | */ |
| 1222 | unsigned long cpumask[0]; |
| 1223 | }; |
| 1224 | |
| 1225 | static inline struct cpumask *sched_group_span(struct sched_group *sg) |
| 1226 | { |
| 1227 | return to_cpumask(sg->cpumask); |
| 1228 | } |
| 1229 | |
| 1230 | /* |
| 1231 | * See build_balance_mask(). |
| 1232 | */ |
| 1233 | static inline struct cpumask *group_balance_mask(struct sched_group *sg) |
| 1234 | { |
| 1235 | return to_cpumask(sg->sgc->cpumask); |
| 1236 | } |
| 1237 | |
| 1238 | /** |
| 1239 | * group_first_cpu - Returns the first CPU in the cpumask of a sched_group. |
| 1240 | * @group: The group whose first CPU is to be returned. |
| 1241 | */ |
| 1242 | static inline unsigned int group_first_cpu(struct sched_group *group) |
| 1243 | { |
| 1244 | return cpumask_first(sched_group_span(group)); |
| 1245 | } |
| 1246 | |
| 1247 | extern int group_balance_cpu(struct sched_group *sg); |
| 1248 | |
| 1249 | #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) |
| 1250 | void register_sched_domain_sysctl(void); |
| 1251 | void dirty_sched_domain_sysctl(int cpu); |
| 1252 | void unregister_sched_domain_sysctl(void); |
| 1253 | #else |
| 1254 | static inline void register_sched_domain_sysctl(void) |
| 1255 | { |
| 1256 | } |
| 1257 | static inline void dirty_sched_domain_sysctl(int cpu) |
| 1258 | { |
| 1259 | } |
| 1260 | static inline void unregister_sched_domain_sysctl(void) |
| 1261 | { |
| 1262 | } |
| 1263 | #endif |
| 1264 | |
| 1265 | #else |
| 1266 | |
| 1267 | static inline void sched_ttwu_pending(void) { } |
| 1268 | |
| 1269 | #endif /* CONFIG_SMP */ |
| 1270 | |
| 1271 | #include "stats.h" |
| 1272 | #include "autogroup.h" |
| 1273 | |
| 1274 | #ifdef CONFIG_CGROUP_SCHED |
| 1275 | |
| 1276 | /* |
| 1277 | * Return the group to which this tasks belongs. |
| 1278 | * |
| 1279 | * We cannot use task_css() and friends because the cgroup subsystem |
| 1280 | * changes that value before the cgroup_subsys::attach() method is called, |
| 1281 | * therefore we cannot pin it and might observe the wrong value. |
| 1282 | * |
| 1283 | * The same is true for autogroup's p->signal->autogroup->tg, the autogroup |
| 1284 | * core changes this before calling sched_move_task(). |
| 1285 | * |
| 1286 | * Instead we use a 'copy' which is updated from sched_move_task() while |
| 1287 | * holding both task_struct::pi_lock and rq::lock. |
| 1288 | */ |
| 1289 | static inline struct task_group *task_group(struct task_struct *p) |
| 1290 | { |
| 1291 | return p->sched_task_group; |
| 1292 | } |
| 1293 | |
| 1294 | /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ |
| 1295 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) |
| 1296 | { |
| 1297 | #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) |
| 1298 | struct task_group *tg = task_group(p); |
| 1299 | #endif |
| 1300 | |
| 1301 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 1302 | set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); |
| 1303 | p->se.cfs_rq = tg->cfs_rq[cpu]; |
| 1304 | p->se.parent = tg->se[cpu]; |
| 1305 | #endif |
| 1306 | |
| 1307 | #ifdef CONFIG_RT_GROUP_SCHED |
| 1308 | p->rt.rt_rq = tg->rt_rq[cpu]; |
| 1309 | p->rt.parent = tg->rt_se[cpu]; |
| 1310 | #endif |
| 1311 | } |
| 1312 | |
| 1313 | #else /* CONFIG_CGROUP_SCHED */ |
| 1314 | |
| 1315 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } |
| 1316 | static inline struct task_group *task_group(struct task_struct *p) |
| 1317 | { |
| 1318 | return NULL; |
| 1319 | } |
| 1320 | |
| 1321 | #endif /* CONFIG_CGROUP_SCHED */ |
| 1322 | |
| 1323 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) |
| 1324 | { |
| 1325 | set_task_rq(p, cpu); |
| 1326 | #ifdef CONFIG_SMP |
| 1327 | /* |
| 1328 | * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be |
| 1329 | * successfuly executed on another CPU. We must ensure that updates of |
| 1330 | * per-task data have been completed by this moment. |
| 1331 | */ |
| 1332 | smp_wmb(); |
| 1333 | #ifdef CONFIG_THREAD_INFO_IN_TASK |
| 1334 | p->cpu = cpu; |
| 1335 | #else |
| 1336 | task_thread_info(p)->cpu = cpu; |
| 1337 | #endif |
| 1338 | p->wake_cpu = cpu; |
| 1339 | #endif |
| 1340 | } |
| 1341 | |
| 1342 | /* |
| 1343 | * Tunables that become constants when CONFIG_SCHED_DEBUG is off: |
| 1344 | */ |
| 1345 | #ifdef CONFIG_SCHED_DEBUG |
| 1346 | # include <linux/static_key.h> |
| 1347 | # define const_debug __read_mostly |
| 1348 | #else |
| 1349 | # define const_debug const |
| 1350 | #endif |
| 1351 | |
| 1352 | #define SCHED_FEAT(name, enabled) \ |
| 1353 | __SCHED_FEAT_##name , |
| 1354 | |
| 1355 | enum { |
| 1356 | #include "features.h" |
| 1357 | __SCHED_FEAT_NR, |
| 1358 | }; |
| 1359 | |
| 1360 | #undef SCHED_FEAT |
| 1361 | |
| 1362 | #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) |
| 1363 | |
| 1364 | /* |
| 1365 | * To support run-time toggling of sched features, all the translation units |
| 1366 | * (but core.c) reference the sysctl_sched_features defined in core.c. |
| 1367 | */ |
| 1368 | extern const_debug unsigned int sysctl_sched_features; |
| 1369 | |
| 1370 | #define SCHED_FEAT(name, enabled) \ |
| 1371 | static __always_inline bool static_branch_##name(struct static_key *key) \ |
| 1372 | { \ |
| 1373 | return static_key_##enabled(key); \ |
| 1374 | } |
| 1375 | |
| 1376 | #include "features.h" |
| 1377 | #undef SCHED_FEAT |
| 1378 | |
| 1379 | extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; |
| 1380 | #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) |
| 1381 | |
| 1382 | #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */ |
| 1383 | |
| 1384 | /* |
| 1385 | * Each translation unit has its own copy of sysctl_sched_features to allow |
| 1386 | * constants propagation at compile time and compiler optimization based on |
| 1387 | * features default. |
| 1388 | */ |
| 1389 | #define SCHED_FEAT(name, enabled) \ |
| 1390 | (1UL << __SCHED_FEAT_##name) * enabled | |
| 1391 | static const_debug __maybe_unused unsigned int sysctl_sched_features = |
| 1392 | #include "features.h" |
| 1393 | 0; |
| 1394 | #undef SCHED_FEAT |
| 1395 | |
| 1396 | #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) |
| 1397 | |
| 1398 | #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */ |
| 1399 | |
| 1400 | extern struct static_key_false sched_numa_balancing; |
| 1401 | extern struct static_key_false sched_schedstats; |
| 1402 | |
| 1403 | static inline u64 global_rt_period(void) |
| 1404 | { |
| 1405 | return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; |
| 1406 | } |
| 1407 | |
| 1408 | static inline u64 global_rt_runtime(void) |
| 1409 | { |
| 1410 | if (sysctl_sched_rt_runtime < 0) |
| 1411 | return RUNTIME_INF; |
| 1412 | |
| 1413 | return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; |
| 1414 | } |
| 1415 | |
| 1416 | static inline int task_current(struct rq *rq, struct task_struct *p) |
| 1417 | { |
| 1418 | return rq->curr == p; |
| 1419 | } |
| 1420 | |
| 1421 | static inline int task_running(struct rq *rq, struct task_struct *p) |
| 1422 | { |
| 1423 | #ifdef CONFIG_SMP |
| 1424 | return p->on_cpu; |
| 1425 | #else |
| 1426 | return task_current(rq, p); |
| 1427 | #endif |
| 1428 | } |
| 1429 | |
| 1430 | static inline int task_on_rq_queued(struct task_struct *p) |
| 1431 | { |
| 1432 | return p->on_rq == TASK_ON_RQ_QUEUED; |
| 1433 | } |
| 1434 | |
| 1435 | static inline int task_on_rq_migrating(struct task_struct *p) |
| 1436 | { |
| 1437 | return p->on_rq == TASK_ON_RQ_MIGRATING; |
| 1438 | } |
| 1439 | |
| 1440 | /* |
| 1441 | * wake flags |
| 1442 | */ |
| 1443 | #define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */ |
| 1444 | #define WF_FORK 0x02 /* Child wakeup after fork */ |
| 1445 | #define WF_MIGRATED 0x4 /* Internal use, task got migrated */ |
| 1446 | |
| 1447 | /* |
| 1448 | * To aid in avoiding the subversion of "niceness" due to uneven distribution |
| 1449 | * of tasks with abnormal "nice" values across CPUs the contribution that |
| 1450 | * each task makes to its run queue's load is weighted according to its |
| 1451 | * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a |
| 1452 | * scaled version of the new time slice allocation that they receive on time |
| 1453 | * slice expiry etc. |
| 1454 | */ |
| 1455 | |
| 1456 | #define WEIGHT_IDLEPRIO 3 |
| 1457 | #define WMULT_IDLEPRIO 1431655765 |
| 1458 | |
| 1459 | extern const int sched_prio_to_weight[40]; |
| 1460 | extern const u32 sched_prio_to_wmult[40]; |
| 1461 | |
| 1462 | /* |
| 1463 | * {de,en}queue flags: |
| 1464 | * |
| 1465 | * DEQUEUE_SLEEP - task is no longer runnable |
| 1466 | * ENQUEUE_WAKEUP - task just became runnable |
| 1467 | * |
| 1468 | * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks |
| 1469 | * are in a known state which allows modification. Such pairs |
| 1470 | * should preserve as much state as possible. |
| 1471 | * |
| 1472 | * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location |
| 1473 | * in the runqueue. |
| 1474 | * |
| 1475 | * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) |
| 1476 | * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) |
| 1477 | * ENQUEUE_MIGRATED - the task was migrated during wakeup |
| 1478 | * |
| 1479 | */ |
| 1480 | |
| 1481 | #define DEQUEUE_SLEEP 0x01 |
| 1482 | #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ |
| 1483 | #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ |
| 1484 | #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ |
| 1485 | |
| 1486 | #define ENQUEUE_WAKEUP 0x01 |
| 1487 | #define ENQUEUE_RESTORE 0x02 |
| 1488 | #define ENQUEUE_MOVE 0x04 |
| 1489 | #define ENQUEUE_NOCLOCK 0x08 |
| 1490 | |
| 1491 | #define ENQUEUE_HEAD 0x10 |
| 1492 | #define ENQUEUE_REPLENISH 0x20 |
| 1493 | #ifdef CONFIG_SMP |
| 1494 | #define ENQUEUE_MIGRATED 0x40 |
| 1495 | #else |
| 1496 | #define ENQUEUE_MIGRATED 0x00 |
| 1497 | #endif |
| 1498 | |
| 1499 | #define RETRY_TASK ((void *)-1UL) |
| 1500 | |
| 1501 | struct sched_class { |
| 1502 | const struct sched_class *next; |
| 1503 | |
| 1504 | void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); |
| 1505 | void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); |
| 1506 | void (*yield_task) (struct rq *rq); |
| 1507 | bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt); |
| 1508 | |
| 1509 | void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags); |
| 1510 | |
| 1511 | /* |
| 1512 | * It is the responsibility of the pick_next_task() method that will |
| 1513 | * return the next task to call put_prev_task() on the @prev task or |
| 1514 | * something equivalent. |
| 1515 | * |
| 1516 | * May return RETRY_TASK when it finds a higher prio class has runnable |
| 1517 | * tasks. |
| 1518 | */ |
| 1519 | struct task_struct * (*pick_next_task)(struct rq *rq, |
| 1520 | struct task_struct *prev, |
| 1521 | struct rq_flags *rf); |
| 1522 | void (*put_prev_task)(struct rq *rq, struct task_struct *p); |
| 1523 | |
| 1524 | #ifdef CONFIG_SMP |
| 1525 | int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags); |
| 1526 | void (*migrate_task_rq)(struct task_struct *p, int new_cpu); |
| 1527 | |
| 1528 | void (*task_woken)(struct rq *this_rq, struct task_struct *task); |
| 1529 | |
| 1530 | void (*set_cpus_allowed)(struct task_struct *p, |
| 1531 | const struct cpumask *newmask); |
| 1532 | |
| 1533 | void (*rq_online)(struct rq *rq); |
| 1534 | void (*rq_offline)(struct rq *rq); |
| 1535 | #endif |
| 1536 | |
| 1537 | void (*set_curr_task)(struct rq *rq); |
| 1538 | void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); |
| 1539 | void (*task_fork)(struct task_struct *p); |
| 1540 | void (*task_dead)(struct task_struct *p); |
| 1541 | |
| 1542 | /* |
| 1543 | * The switched_from() call is allowed to drop rq->lock, therefore we |
| 1544 | * cannot assume the switched_from/switched_to pair is serliazed by |
| 1545 | * rq->lock. They are however serialized by p->pi_lock. |
| 1546 | */ |
| 1547 | void (*switched_from)(struct rq *this_rq, struct task_struct *task); |
| 1548 | void (*switched_to) (struct rq *this_rq, struct task_struct *task); |
| 1549 | void (*prio_changed) (struct rq *this_rq, struct task_struct *task, |
| 1550 | int oldprio); |
| 1551 | |
| 1552 | unsigned int (*get_rr_interval)(struct rq *rq, |
| 1553 | struct task_struct *task); |
| 1554 | |
| 1555 | void (*update_curr)(struct rq *rq); |
| 1556 | |
| 1557 | #define TASK_SET_GROUP 0 |
| 1558 | #define TASK_MOVE_GROUP 1 |
| 1559 | |
| 1560 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 1561 | void (*task_change_group)(struct task_struct *p, int type); |
| 1562 | #endif |
| 1563 | }; |
| 1564 | |
| 1565 | static inline void put_prev_task(struct rq *rq, struct task_struct *prev) |
| 1566 | { |
| 1567 | prev->sched_class->put_prev_task(rq, prev); |
| 1568 | } |
| 1569 | |
| 1570 | static inline void set_curr_task(struct rq *rq, struct task_struct *curr) |
| 1571 | { |
| 1572 | curr->sched_class->set_curr_task(rq); |
| 1573 | } |
| 1574 | |
| 1575 | #ifdef CONFIG_SMP |
| 1576 | #define sched_class_highest (&stop_sched_class) |
| 1577 | #else |
| 1578 | #define sched_class_highest (&dl_sched_class) |
| 1579 | #endif |
| 1580 | #define for_each_class(class) \ |
| 1581 | for (class = sched_class_highest; class; class = class->next) |
| 1582 | |
| 1583 | extern const struct sched_class stop_sched_class; |
| 1584 | extern const struct sched_class dl_sched_class; |
| 1585 | extern const struct sched_class rt_sched_class; |
| 1586 | extern const struct sched_class fair_sched_class; |
| 1587 | extern const struct sched_class idle_sched_class; |
| 1588 | |
| 1589 | |
| 1590 | #ifdef CONFIG_SMP |
| 1591 | |
| 1592 | extern void update_group_capacity(struct sched_domain *sd, int cpu); |
| 1593 | |
| 1594 | extern void trigger_load_balance(struct rq *rq); |
| 1595 | |
| 1596 | extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask); |
| 1597 | |
| 1598 | #endif |
| 1599 | |
| 1600 | #ifdef CONFIG_CPU_IDLE |
| 1601 | static inline void idle_set_state(struct rq *rq, |
| 1602 | struct cpuidle_state *idle_state) |
| 1603 | { |
| 1604 | rq->idle_state = idle_state; |
| 1605 | } |
| 1606 | |
| 1607 | static inline struct cpuidle_state *idle_get_state(struct rq *rq) |
| 1608 | { |
| 1609 | SCHED_WARN_ON(!rcu_read_lock_held()); |
| 1610 | |
| 1611 | return rq->idle_state; |
| 1612 | } |
| 1613 | #else |
| 1614 | static inline void idle_set_state(struct rq *rq, |
| 1615 | struct cpuidle_state *idle_state) |
| 1616 | { |
| 1617 | } |
| 1618 | |
| 1619 | static inline struct cpuidle_state *idle_get_state(struct rq *rq) |
| 1620 | { |
| 1621 | return NULL; |
| 1622 | } |
| 1623 | #endif |
| 1624 | |
| 1625 | extern void schedule_idle(void); |
| 1626 | |
| 1627 | extern void sysrq_sched_debug_show(void); |
| 1628 | extern void sched_init_granularity(void); |
| 1629 | extern void update_max_interval(void); |
| 1630 | |
| 1631 | extern void init_sched_dl_class(void); |
| 1632 | extern void init_sched_rt_class(void); |
| 1633 | extern void init_sched_fair_class(void); |
| 1634 | |
| 1635 | extern void reweight_task(struct task_struct *p, int prio); |
| 1636 | |
| 1637 | extern void resched_curr(struct rq *rq); |
| 1638 | extern void resched_cpu(int cpu); |
| 1639 | |
| 1640 | extern struct rt_bandwidth def_rt_bandwidth; |
| 1641 | extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); |
| 1642 | |
| 1643 | extern struct dl_bandwidth def_dl_bandwidth; |
| 1644 | extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); |
| 1645 | extern void init_dl_task_timer(struct sched_dl_entity *dl_se); |
| 1646 | extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se); |
| 1647 | extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq); |
| 1648 | |
| 1649 | #define BW_SHIFT 20 |
| 1650 | #define BW_UNIT (1 << BW_SHIFT) |
| 1651 | #define RATIO_SHIFT 8 |
| 1652 | unsigned long to_ratio(u64 period, u64 runtime); |
| 1653 | |
| 1654 | extern void init_entity_runnable_average(struct sched_entity *se); |
| 1655 | extern void post_init_entity_util_avg(struct sched_entity *se); |
| 1656 | |
| 1657 | #ifdef CONFIG_NO_HZ_FULL |
| 1658 | extern bool sched_can_stop_tick(struct rq *rq); |
| 1659 | extern int __init sched_tick_offload_init(void); |
| 1660 | |
| 1661 | /* |
| 1662 | * Tick may be needed by tasks in the runqueue depending on their policy and |
| 1663 | * requirements. If tick is needed, lets send the target an IPI to kick it out of |
| 1664 | * nohz mode if necessary. |
| 1665 | */ |
| 1666 | static inline void sched_update_tick_dependency(struct rq *rq) |
| 1667 | { |
| 1668 | int cpu; |
| 1669 | |
| 1670 | if (!tick_nohz_full_enabled()) |
| 1671 | return; |
| 1672 | |
| 1673 | cpu = cpu_of(rq); |
| 1674 | |
| 1675 | if (!tick_nohz_full_cpu(cpu)) |
| 1676 | return; |
| 1677 | |
| 1678 | if (sched_can_stop_tick(rq)) |
| 1679 | tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); |
| 1680 | else |
| 1681 | tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); |
| 1682 | } |
| 1683 | #else |
| 1684 | static inline int sched_tick_offload_init(void) { return 0; } |
| 1685 | static inline void sched_update_tick_dependency(struct rq *rq) { } |
| 1686 | #endif |
| 1687 | |
| 1688 | static inline void add_nr_running(struct rq *rq, unsigned count) |
| 1689 | { |
| 1690 | unsigned prev_nr = rq->nr_running; |
| 1691 | |
| 1692 | rq->nr_running = prev_nr + count; |
| 1693 | |
| 1694 | if (prev_nr < 2 && rq->nr_running >= 2) { |
| 1695 | #ifdef CONFIG_SMP |
| 1696 | if (!rq->rd->overload) |
| 1697 | rq->rd->overload = true; |
| 1698 | #endif |
| 1699 | } |
| 1700 | |
| 1701 | sched_update_tick_dependency(rq); |
| 1702 | } |
| 1703 | |
| 1704 | static inline void sub_nr_running(struct rq *rq, unsigned count) |
| 1705 | { |
| 1706 | rq->nr_running -= count; |
| 1707 | /* Check if we still need preemption */ |
| 1708 | sched_update_tick_dependency(rq); |
| 1709 | } |
| 1710 | |
| 1711 | extern void update_rq_clock(struct rq *rq); |
| 1712 | |
| 1713 | extern void activate_task(struct rq *rq, struct task_struct *p, int flags); |
| 1714 | extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); |
| 1715 | |
| 1716 | extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); |
| 1717 | |
| 1718 | extern const_debug unsigned int sysctl_sched_nr_migrate; |
| 1719 | extern const_debug unsigned int sysctl_sched_migration_cost; |
| 1720 | |
| 1721 | #ifdef CONFIG_SCHED_HRTICK |
| 1722 | |
| 1723 | /* |
| 1724 | * Use hrtick when: |
| 1725 | * - enabled by features |
| 1726 | * - hrtimer is actually high res |
| 1727 | */ |
| 1728 | static inline int hrtick_enabled(struct rq *rq) |
| 1729 | { |
| 1730 | if (!sched_feat(HRTICK)) |
| 1731 | return 0; |
| 1732 | if (!cpu_active(cpu_of(rq))) |
| 1733 | return 0; |
| 1734 | return hrtimer_is_hres_active(&rq->hrtick_timer); |
| 1735 | } |
| 1736 | |
| 1737 | void hrtick_start(struct rq *rq, u64 delay); |
| 1738 | |
| 1739 | #else |
| 1740 | |
| 1741 | static inline int hrtick_enabled(struct rq *rq) |
| 1742 | { |
| 1743 | return 0; |
| 1744 | } |
| 1745 | |
| 1746 | #endif /* CONFIG_SCHED_HRTICK */ |
| 1747 | |
| 1748 | #ifndef arch_scale_freq_capacity |
| 1749 | static __always_inline |
| 1750 | unsigned long arch_scale_freq_capacity(int cpu) |
| 1751 | { |
| 1752 | return SCHED_CAPACITY_SCALE; |
| 1753 | } |
| 1754 | #endif |
| 1755 | |
| 1756 | #ifdef CONFIG_SMP |
| 1757 | #ifndef arch_scale_cpu_capacity |
| 1758 | static __always_inline |
| 1759 | unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu) |
| 1760 | { |
| 1761 | if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1)) |
| 1762 | return sd->smt_gain / sd->span_weight; |
| 1763 | |
| 1764 | return SCHED_CAPACITY_SCALE; |
| 1765 | } |
| 1766 | #endif |
| 1767 | #else |
| 1768 | #ifndef arch_scale_cpu_capacity |
| 1769 | static __always_inline |
| 1770 | unsigned long arch_scale_cpu_capacity(void __always_unused *sd, int cpu) |
| 1771 | { |
| 1772 | return SCHED_CAPACITY_SCALE; |
| 1773 | } |
| 1774 | #endif |
| 1775 | #endif |
| 1776 | |
| 1777 | struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) |
| 1778 | __acquires(rq->lock); |
| 1779 | |
| 1780 | struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) |
| 1781 | __acquires(p->pi_lock) |
| 1782 | __acquires(rq->lock); |
| 1783 | |
| 1784 | static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) |
| 1785 | __releases(rq->lock) |
| 1786 | { |
| 1787 | rq_unpin_lock(rq, rf); |
| 1788 | raw_spin_unlock(&rq->lock); |
| 1789 | } |
| 1790 | |
| 1791 | static inline void |
| 1792 | task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) |
| 1793 | __releases(rq->lock) |
| 1794 | __releases(p->pi_lock) |
| 1795 | { |
| 1796 | rq_unpin_lock(rq, rf); |
| 1797 | raw_spin_unlock(&rq->lock); |
| 1798 | raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); |
| 1799 | } |
| 1800 | |
| 1801 | static inline void |
| 1802 | rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) |
| 1803 | __acquires(rq->lock) |
| 1804 | { |
| 1805 | raw_spin_lock_irqsave(&rq->lock, rf->flags); |
| 1806 | rq_pin_lock(rq, rf); |
| 1807 | } |
| 1808 | |
| 1809 | static inline void |
| 1810 | rq_lock_irq(struct rq *rq, struct rq_flags *rf) |
| 1811 | __acquires(rq->lock) |
| 1812 | { |
| 1813 | raw_spin_lock_irq(&rq->lock); |
| 1814 | rq_pin_lock(rq, rf); |
| 1815 | } |
| 1816 | |
| 1817 | static inline void |
| 1818 | rq_lock(struct rq *rq, struct rq_flags *rf) |
| 1819 | __acquires(rq->lock) |
| 1820 | { |
| 1821 | raw_spin_lock(&rq->lock); |
| 1822 | rq_pin_lock(rq, rf); |
| 1823 | } |
| 1824 | |
| 1825 | static inline void |
| 1826 | rq_relock(struct rq *rq, struct rq_flags *rf) |
| 1827 | __acquires(rq->lock) |
| 1828 | { |
| 1829 | raw_spin_lock(&rq->lock); |
| 1830 | rq_repin_lock(rq, rf); |
| 1831 | } |
| 1832 | |
| 1833 | static inline void |
| 1834 | rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) |
| 1835 | __releases(rq->lock) |
| 1836 | { |
| 1837 | rq_unpin_lock(rq, rf); |
| 1838 | raw_spin_unlock_irqrestore(&rq->lock, rf->flags); |
| 1839 | } |
| 1840 | |
| 1841 | static inline void |
| 1842 | rq_unlock_irq(struct rq *rq, struct rq_flags *rf) |
| 1843 | __releases(rq->lock) |
| 1844 | { |
| 1845 | rq_unpin_lock(rq, rf); |
| 1846 | raw_spin_unlock_irq(&rq->lock); |
| 1847 | } |
| 1848 | |
| 1849 | static inline void |
| 1850 | rq_unlock(struct rq *rq, struct rq_flags *rf) |
| 1851 | __releases(rq->lock) |
| 1852 | { |
| 1853 | rq_unpin_lock(rq, rf); |
| 1854 | raw_spin_unlock(&rq->lock); |
| 1855 | } |
| 1856 | |
| 1857 | #ifdef CONFIG_SMP |
| 1858 | #ifdef CONFIG_PREEMPT |
| 1859 | |
| 1860 | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); |
| 1861 | |
| 1862 | /* |
| 1863 | * fair double_lock_balance: Safely acquires both rq->locks in a fair |
| 1864 | * way at the expense of forcing extra atomic operations in all |
| 1865 | * invocations. This assures that the double_lock is acquired using the |
| 1866 | * same underlying policy as the spinlock_t on this architecture, which |
| 1867 | * reduces latency compared to the unfair variant below. However, it |
| 1868 | * also adds more overhead and therefore may reduce throughput. |
| 1869 | */ |
| 1870 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) |
| 1871 | __releases(this_rq->lock) |
| 1872 | __acquires(busiest->lock) |
| 1873 | __acquires(this_rq->lock) |
| 1874 | { |
| 1875 | raw_spin_unlock(&this_rq->lock); |
| 1876 | double_rq_lock(this_rq, busiest); |
| 1877 | |
| 1878 | return 1; |
| 1879 | } |
| 1880 | |
| 1881 | #else |
| 1882 | /* |
| 1883 | * Unfair double_lock_balance: Optimizes throughput at the expense of |
| 1884 | * latency by eliminating extra atomic operations when the locks are |
| 1885 | * already in proper order on entry. This favors lower CPU-ids and will |
| 1886 | * grant the double lock to lower CPUs over higher ids under contention, |
| 1887 | * regardless of entry order into the function. |
| 1888 | */ |
| 1889 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) |
| 1890 | __releases(this_rq->lock) |
| 1891 | __acquires(busiest->lock) |
| 1892 | __acquires(this_rq->lock) |
| 1893 | { |
| 1894 | int ret = 0; |
| 1895 | |
| 1896 | if (unlikely(!raw_spin_trylock(&busiest->lock))) { |
| 1897 | if (busiest < this_rq) { |
| 1898 | raw_spin_unlock(&this_rq->lock); |
| 1899 | raw_spin_lock(&busiest->lock); |
| 1900 | raw_spin_lock_nested(&this_rq->lock, |
| 1901 | SINGLE_DEPTH_NESTING); |
| 1902 | ret = 1; |
| 1903 | } else |
| 1904 | raw_spin_lock_nested(&busiest->lock, |
| 1905 | SINGLE_DEPTH_NESTING); |
| 1906 | } |
| 1907 | return ret; |
| 1908 | } |
| 1909 | |
| 1910 | #endif /* CONFIG_PREEMPT */ |
| 1911 | |
| 1912 | /* |
| 1913 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. |
| 1914 | */ |
| 1915 | static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) |
| 1916 | { |
| 1917 | if (unlikely(!irqs_disabled())) { |
| 1918 | /* printk() doesn't work well under rq->lock */ |
| 1919 | raw_spin_unlock(&this_rq->lock); |
| 1920 | BUG_ON(1); |
| 1921 | } |
| 1922 | |
| 1923 | return _double_lock_balance(this_rq, busiest); |
| 1924 | } |
| 1925 | |
| 1926 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) |
| 1927 | __releases(busiest->lock) |
| 1928 | { |
| 1929 | raw_spin_unlock(&busiest->lock); |
| 1930 | lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); |
| 1931 | } |
| 1932 | |
| 1933 | static inline void double_lock(spinlock_t *l1, spinlock_t *l2) |
| 1934 | { |
| 1935 | if (l1 > l2) |
| 1936 | swap(l1, l2); |
| 1937 | |
| 1938 | spin_lock(l1); |
| 1939 | spin_lock_nested(l2, SINGLE_DEPTH_NESTING); |
| 1940 | } |
| 1941 | |
| 1942 | static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) |
| 1943 | { |
| 1944 | if (l1 > l2) |
| 1945 | swap(l1, l2); |
| 1946 | |
| 1947 | spin_lock_irq(l1); |
| 1948 | spin_lock_nested(l2, SINGLE_DEPTH_NESTING); |
| 1949 | } |
| 1950 | |
| 1951 | static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) |
| 1952 | { |
| 1953 | if (l1 > l2) |
| 1954 | swap(l1, l2); |
| 1955 | |
| 1956 | raw_spin_lock(l1); |
| 1957 | raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); |
| 1958 | } |
| 1959 | |
| 1960 | /* |
| 1961 | * double_rq_lock - safely lock two runqueues |
| 1962 | * |
| 1963 | * Note this does not disable interrupts like task_rq_lock, |
| 1964 | * you need to do so manually before calling. |
| 1965 | */ |
| 1966 | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) |
| 1967 | __acquires(rq1->lock) |
| 1968 | __acquires(rq2->lock) |
| 1969 | { |
| 1970 | BUG_ON(!irqs_disabled()); |
| 1971 | if (rq1 == rq2) { |
| 1972 | raw_spin_lock(&rq1->lock); |
| 1973 | __acquire(rq2->lock); /* Fake it out ;) */ |
| 1974 | } else { |
| 1975 | if (rq1 < rq2) { |
| 1976 | raw_spin_lock(&rq1->lock); |
| 1977 | raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); |
| 1978 | } else { |
| 1979 | raw_spin_lock(&rq2->lock); |
| 1980 | raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); |
| 1981 | } |
| 1982 | } |
| 1983 | } |
| 1984 | |
| 1985 | /* |
| 1986 | * double_rq_unlock - safely unlock two runqueues |
| 1987 | * |
| 1988 | * Note this does not restore interrupts like task_rq_unlock, |
| 1989 | * you need to do so manually after calling. |
| 1990 | */ |
| 1991 | static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) |
| 1992 | __releases(rq1->lock) |
| 1993 | __releases(rq2->lock) |
| 1994 | { |
| 1995 | raw_spin_unlock(&rq1->lock); |
| 1996 | if (rq1 != rq2) |
| 1997 | raw_spin_unlock(&rq2->lock); |
| 1998 | else |
| 1999 | __release(rq2->lock); |
| 2000 | } |
| 2001 | |
| 2002 | extern void set_rq_online (struct rq *rq); |
| 2003 | extern void set_rq_offline(struct rq *rq); |
| 2004 | extern bool sched_smp_initialized; |
| 2005 | |
| 2006 | #else /* CONFIG_SMP */ |
| 2007 | |
| 2008 | /* |
| 2009 | * double_rq_lock - safely lock two runqueues |
| 2010 | * |
| 2011 | * Note this does not disable interrupts like task_rq_lock, |
| 2012 | * you need to do so manually before calling. |
| 2013 | */ |
| 2014 | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) |
| 2015 | __acquires(rq1->lock) |
| 2016 | __acquires(rq2->lock) |
| 2017 | { |
| 2018 | BUG_ON(!irqs_disabled()); |
| 2019 | BUG_ON(rq1 != rq2); |
| 2020 | raw_spin_lock(&rq1->lock); |
| 2021 | __acquire(rq2->lock); /* Fake it out ;) */ |
| 2022 | } |
| 2023 | |
| 2024 | /* |
| 2025 | * double_rq_unlock - safely unlock two runqueues |
| 2026 | * |
| 2027 | * Note this does not restore interrupts like task_rq_unlock, |
| 2028 | * you need to do so manually after calling. |
| 2029 | */ |
| 2030 | static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) |
| 2031 | __releases(rq1->lock) |
| 2032 | __releases(rq2->lock) |
| 2033 | { |
| 2034 | BUG_ON(rq1 != rq2); |
| 2035 | raw_spin_unlock(&rq1->lock); |
| 2036 | __release(rq2->lock); |
| 2037 | } |
| 2038 | |
| 2039 | #endif |
| 2040 | |
| 2041 | extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); |
| 2042 | extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); |
| 2043 | |
| 2044 | #ifdef CONFIG_SCHED_DEBUG |
| 2045 | extern bool sched_debug_enabled; |
| 2046 | |
| 2047 | extern void print_cfs_stats(struct seq_file *m, int cpu); |
| 2048 | extern void print_rt_stats(struct seq_file *m, int cpu); |
| 2049 | extern void print_dl_stats(struct seq_file *m, int cpu); |
| 2050 | extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); |
| 2051 | extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); |
| 2052 | extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); |
| 2053 | #ifdef CONFIG_NUMA_BALANCING |
| 2054 | extern void |
| 2055 | show_numa_stats(struct task_struct *p, struct seq_file *m); |
| 2056 | extern void |
| 2057 | print_numa_stats(struct seq_file *m, int node, unsigned long tsf, |
| 2058 | unsigned long tpf, unsigned long gsf, unsigned long gpf); |
| 2059 | #endif /* CONFIG_NUMA_BALANCING */ |
| 2060 | #endif /* CONFIG_SCHED_DEBUG */ |
| 2061 | |
| 2062 | extern void init_cfs_rq(struct cfs_rq *cfs_rq); |
| 2063 | extern void init_rt_rq(struct rt_rq *rt_rq); |
| 2064 | extern void init_dl_rq(struct dl_rq *dl_rq); |
| 2065 | |
| 2066 | extern void cfs_bandwidth_usage_inc(void); |
| 2067 | extern void cfs_bandwidth_usage_dec(void); |
| 2068 | |
| 2069 | #ifdef CONFIG_NO_HZ_COMMON |
| 2070 | #define NOHZ_BALANCE_KICK_BIT 0 |
| 2071 | #define NOHZ_STATS_KICK_BIT 1 |
| 2072 | |
| 2073 | #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) |
| 2074 | #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) |
| 2075 | |
| 2076 | #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK) |
| 2077 | |
| 2078 | #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) |
| 2079 | |
| 2080 | extern void nohz_balance_exit_idle(struct rq *rq); |
| 2081 | #else |
| 2082 | static inline void nohz_balance_exit_idle(struct rq *rq) { } |
| 2083 | #endif |
| 2084 | |
| 2085 | |
| 2086 | #ifdef CONFIG_SMP |
| 2087 | static inline |
| 2088 | void __dl_update(struct dl_bw *dl_b, s64 bw) |
| 2089 | { |
| 2090 | struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw); |
| 2091 | int i; |
| 2092 | |
| 2093 | RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), |
| 2094 | "sched RCU must be held"); |
| 2095 | for_each_cpu_and(i, rd->span, cpu_active_mask) { |
| 2096 | struct rq *rq = cpu_rq(i); |
| 2097 | |
| 2098 | rq->dl.extra_bw += bw; |
| 2099 | } |
| 2100 | } |
| 2101 | #else |
| 2102 | static inline |
| 2103 | void __dl_update(struct dl_bw *dl_b, s64 bw) |
| 2104 | { |
| 2105 | struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw); |
| 2106 | |
| 2107 | dl->extra_bw += bw; |
| 2108 | } |
| 2109 | #endif |
| 2110 | |
| 2111 | |
| 2112 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING |
| 2113 | struct irqtime { |
| 2114 | u64 total; |
| 2115 | u64 tick_delta; |
| 2116 | u64 irq_start_time; |
| 2117 | struct u64_stats_sync sync; |
| 2118 | }; |
| 2119 | |
| 2120 | DECLARE_PER_CPU(struct irqtime, cpu_irqtime); |
| 2121 | |
| 2122 | /* |
| 2123 | * Returns the irqtime minus the softirq time computed by ksoftirqd. |
| 2124 | * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime |
| 2125 | * and never move forward. |
| 2126 | */ |
| 2127 | static inline u64 irq_time_read(int cpu) |
| 2128 | { |
| 2129 | struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); |
| 2130 | unsigned int seq; |
| 2131 | u64 total; |
| 2132 | |
| 2133 | do { |
| 2134 | seq = __u64_stats_fetch_begin(&irqtime->sync); |
| 2135 | total = irqtime->total; |
| 2136 | } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); |
| 2137 | |
| 2138 | return total; |
| 2139 | } |
| 2140 | #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ |
| 2141 | |
| 2142 | #ifdef CONFIG_CPU_FREQ |
| 2143 | DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data); |
| 2144 | |
| 2145 | /** |
| 2146 | * cpufreq_update_util - Take a note about CPU utilization changes. |
| 2147 | * @rq: Runqueue to carry out the update for. |
| 2148 | * @flags: Update reason flags. |
| 2149 | * |
| 2150 | * This function is called by the scheduler on the CPU whose utilization is |
| 2151 | * being updated. |
| 2152 | * |
| 2153 | * It can only be called from RCU-sched read-side critical sections. |
| 2154 | * |
| 2155 | * The way cpufreq is currently arranged requires it to evaluate the CPU |
| 2156 | * performance state (frequency/voltage) on a regular basis to prevent it from |
| 2157 | * being stuck in a completely inadequate performance level for too long. |
| 2158 | * That is not guaranteed to happen if the updates are only triggered from CFS |
| 2159 | * and DL, though, because they may not be coming in if only RT tasks are |
| 2160 | * active all the time (or there are RT tasks only). |
| 2161 | * |
| 2162 | * As a workaround for that issue, this function is called periodically by the |
| 2163 | * RT sched class to trigger extra cpufreq updates to prevent it from stalling, |
| 2164 | * but that really is a band-aid. Going forward it should be replaced with |
| 2165 | * solutions targeted more specifically at RT tasks. |
| 2166 | */ |
| 2167 | static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) |
| 2168 | { |
| 2169 | struct update_util_data *data; |
| 2170 | |
| 2171 | data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, |
| 2172 | cpu_of(rq))); |
| 2173 | if (data) |
| 2174 | data->func(data, rq_clock(rq), flags); |
| 2175 | } |
| 2176 | #else |
| 2177 | static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {} |
| 2178 | #endif /* CONFIG_CPU_FREQ */ |
| 2179 | |
| 2180 | #ifdef arch_scale_freq_capacity |
| 2181 | # ifndef arch_scale_freq_invariant |
| 2182 | # define arch_scale_freq_invariant() true |
| 2183 | # endif |
| 2184 | #else |
| 2185 | # define arch_scale_freq_invariant() false |
| 2186 | #endif |
| 2187 | |
| 2188 | #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL |
| 2189 | static inline unsigned long cpu_bw_dl(struct rq *rq) |
| 2190 | { |
| 2191 | return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; |
| 2192 | } |
| 2193 | |
| 2194 | static inline unsigned long cpu_util_dl(struct rq *rq) |
| 2195 | { |
| 2196 | return READ_ONCE(rq->avg_dl.util_avg); |
| 2197 | } |
| 2198 | |
| 2199 | static inline unsigned long cpu_util_cfs(struct rq *rq) |
| 2200 | { |
| 2201 | unsigned long util = READ_ONCE(rq->cfs.avg.util_avg); |
| 2202 | |
| 2203 | if (sched_feat(UTIL_EST)) { |
| 2204 | util = max_t(unsigned long, util, |
| 2205 | READ_ONCE(rq->cfs.avg.util_est.enqueued)); |
| 2206 | } |
| 2207 | |
| 2208 | return util; |
| 2209 | } |
| 2210 | |
| 2211 | static inline unsigned long cpu_util_rt(struct rq *rq) |
| 2212 | { |
| 2213 | return READ_ONCE(rq->avg_rt.util_avg); |
| 2214 | } |
| 2215 | #endif |
| 2216 | |
| 2217 | #ifdef CONFIG_HAVE_SCHED_AVG_IRQ |
| 2218 | static inline unsigned long cpu_util_irq(struct rq *rq) |
| 2219 | { |
| 2220 | return rq->avg_irq.util_avg; |
| 2221 | } |
| 2222 | |
| 2223 | static inline |
| 2224 | unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) |
| 2225 | { |
| 2226 | util *= (max - irq); |
| 2227 | util /= max; |
| 2228 | |
| 2229 | return util; |
| 2230 | |
| 2231 | } |
| 2232 | #else |
| 2233 | static inline unsigned long cpu_util_irq(struct rq *rq) |
| 2234 | { |
| 2235 | return 0; |
| 2236 | } |
| 2237 | |
| 2238 | static inline |
| 2239 | unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) |
| 2240 | { |
| 2241 | return util; |
| 2242 | } |
| 2243 | #endif |