v4.19.13 snapshot.
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
new file mode 100644
index 0000000..b631722
--- /dev/null
+++ b/kernel/sched/sched.h
@@ -0,0 +1,2243 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Scheduler internal types and methods:
+ */
+#include <linux/sched.h>
+
+#include <linux/sched/autogroup.h>
+#include <linux/sched/clock.h>
+#include <linux/sched/coredump.h>
+#include <linux/sched/cpufreq.h>
+#include <linux/sched/cputime.h>
+#include <linux/sched/deadline.h>
+#include <linux/sched/debug.h>
+#include <linux/sched/hotplug.h>
+#include <linux/sched/idle.h>
+#include <linux/sched/init.h>
+#include <linux/sched/isolation.h>
+#include <linux/sched/jobctl.h>
+#include <linux/sched/loadavg.h>
+#include <linux/sched/mm.h>
+#include <linux/sched/nohz.h>
+#include <linux/sched/numa_balancing.h>
+#include <linux/sched/prio.h>
+#include <linux/sched/rt.h>
+#include <linux/sched/signal.h>
+#include <linux/sched/smt.h>
+#include <linux/sched/stat.h>
+#include <linux/sched/sysctl.h>
+#include <linux/sched/task.h>
+#include <linux/sched/task_stack.h>
+#include <linux/sched/topology.h>
+#include <linux/sched/user.h>
+#include <linux/sched/wake_q.h>
+#include <linux/sched/xacct.h>
+
+#include <uapi/linux/sched/types.h>
+
+#include <linux/binfmts.h>
+#include <linux/blkdev.h>
+#include <linux/compat.h>
+#include <linux/context_tracking.h>
+#include <linux/cpufreq.h>
+#include <linux/cpuidle.h>
+#include <linux/cpuset.h>
+#include <linux/ctype.h>
+#include <linux/debugfs.h>
+#include <linux/delayacct.h>
+#include <linux/init_task.h>
+#include <linux/kprobes.h>
+#include <linux/kthread.h>
+#include <linux/membarrier.h>
+#include <linux/migrate.h>
+#include <linux/mmu_context.h>
+#include <linux/nmi.h>
+#include <linux/proc_fs.h>
+#include <linux/prefetch.h>
+#include <linux/profile.h>
+#include <linux/rcupdate_wait.h>
+#include <linux/security.h>
+#include <linux/stackprotector.h>
+#include <linux/stop_machine.h>
+#include <linux/suspend.h>
+#include <linux/swait.h>
+#include <linux/syscalls.h>
+#include <linux/task_work.h>
+#include <linux/tsacct_kern.h>
+
+#include <asm/tlb.h>
+
+#ifdef CONFIG_PARAVIRT
+# include <asm/paravirt.h>
+#endif
+
+#include "cpupri.h"
+#include "cpudeadline.h"
+
+#ifdef CONFIG_SCHED_DEBUG
+# define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
+#else
+# define SCHED_WARN_ON(x)	({ (void)(x), 0; })
+#endif
+
+struct rq;
+struct cpuidle_state;
+
+/* task_struct::on_rq states: */
+#define TASK_ON_RQ_QUEUED	1
+#define TASK_ON_RQ_MIGRATING	2
+
+extern __read_mostly int scheduler_running;
+
+extern unsigned long calc_load_update;
+extern atomic_long_t calc_load_tasks;
+
+extern void calc_global_load_tick(struct rq *this_rq);
+extern long calc_load_fold_active(struct rq *this_rq, long adjust);
+
+#ifdef CONFIG_SMP
+extern void cpu_load_update_active(struct rq *this_rq);
+#else
+static inline void cpu_load_update_active(struct rq *this_rq) { }
+#endif
+
+/*
+ * Helpers for converting nanosecond timing to jiffy resolution
+ */
+#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
+
+/*
+ * Increase resolution of nice-level calculations for 64-bit architectures.
+ * The extra resolution improves shares distribution and load balancing of
+ * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
+ * hierarchies, especially on larger systems. This is not a user-visible change
+ * and does not change the user-interface for setting shares/weights.
+ *
+ * We increase resolution only if we have enough bits to allow this increased
+ * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
+ * are pretty high and the returns do not justify the increased costs.
+ *
+ * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
+ * increase coverage and consistency always enable it on 64-bit platforms.
+ */
+#ifdef CONFIG_64BIT
+# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
+# define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
+# define scale_load_down(w)	((w) >> SCHED_FIXEDPOINT_SHIFT)
+#else
+# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
+# define scale_load(w)		(w)
+# define scale_load_down(w)	(w)
+#endif
+
+/*
+ * Task weight (visible to users) and its load (invisible to users) have
+ * independent resolution, but they should be well calibrated. We use
+ * scale_load() and scale_load_down(w) to convert between them. The
+ * following must be true:
+ *
+ *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
+ *
+ */
+#define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
+
+/*
+ * Single value that decides SCHED_DEADLINE internal math precision.
+ * 10 -> just above 1us
+ * 9  -> just above 0.5us
+ */
+#define DL_SCALE		10
+
+/*
+ * Single value that denotes runtime == period, ie unlimited time.
+ */
+#define RUNTIME_INF		((u64)~0ULL)
+
+static inline int idle_policy(int policy)
+{
+	return policy == SCHED_IDLE;
+}
+static inline int fair_policy(int policy)
+{
+	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
+}
+
+static inline int rt_policy(int policy)
+{
+	return policy == SCHED_FIFO || policy == SCHED_RR;
+}
+
+static inline int dl_policy(int policy)
+{
+	return policy == SCHED_DEADLINE;
+}
+static inline bool valid_policy(int policy)
+{
+	return idle_policy(policy) || fair_policy(policy) ||
+		rt_policy(policy) || dl_policy(policy);
+}
+
+static inline int task_has_rt_policy(struct task_struct *p)
+{
+	return rt_policy(p->policy);
+}
+
+static inline int task_has_dl_policy(struct task_struct *p)
+{
+	return dl_policy(p->policy);
+}
+
+#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
+
+/*
+ * !! For sched_setattr_nocheck() (kernel) only !!
+ *
+ * This is actually gross. :(
+ *
+ * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
+ * tasks, but still be able to sleep. We need this on platforms that cannot
+ * atomically change clock frequency. Remove once fast switching will be
+ * available on such platforms.
+ *
+ * SUGOV stands for SchedUtil GOVernor.
+ */
+#define SCHED_FLAG_SUGOV	0x10000000
+
+static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
+{
+#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
+	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
+#else
+	return false;
+#endif
+}
+
+/*
+ * Tells if entity @a should preempt entity @b.
+ */
+static inline bool
+dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
+{
+	return dl_entity_is_special(a) ||
+	       dl_time_before(a->deadline, b->deadline);
+}
+
+/*
+ * This is the priority-queue data structure of the RT scheduling class:
+ */
+struct rt_prio_array {
+	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
+	struct list_head queue[MAX_RT_PRIO];
+};
+
+struct rt_bandwidth {
+	/* nests inside the rq lock: */
+	raw_spinlock_t		rt_runtime_lock;
+	ktime_t			rt_period;
+	u64			rt_runtime;
+	struct hrtimer		rt_period_timer;
+	unsigned int		rt_period_active;
+};
+
+void __dl_clear_params(struct task_struct *p);
+
+/*
+ * To keep the bandwidth of -deadline tasks and groups under control
+ * we need some place where:
+ *  - store the maximum -deadline bandwidth of the system (the group);
+ *  - cache the fraction of that bandwidth that is currently allocated.
+ *
+ * This is all done in the data structure below. It is similar to the
+ * one used for RT-throttling (rt_bandwidth), with the main difference
+ * that, since here we are only interested in admission control, we
+ * do not decrease any runtime while the group "executes", neither we
+ * need a timer to replenish it.
+ *
+ * With respect to SMP, the bandwidth is given on a per-CPU basis,
+ * meaning that:
+ *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
+ *  - dl_total_bw array contains, in the i-eth element, the currently
+ *    allocated bandwidth on the i-eth CPU.
+ * Moreover, groups consume bandwidth on each CPU, while tasks only
+ * consume bandwidth on the CPU they're running on.
+ * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
+ * that will be shown the next time the proc or cgroup controls will
+ * be red. It on its turn can be changed by writing on its own
+ * control.
+ */
+struct dl_bandwidth {
+	raw_spinlock_t		dl_runtime_lock;
+	u64			dl_runtime;
+	u64			dl_period;
+};
+
+static inline int dl_bandwidth_enabled(void)
+{
+	return sysctl_sched_rt_runtime >= 0;
+}
+
+struct dl_bw {
+	raw_spinlock_t		lock;
+	u64			bw;
+	u64			total_bw;
+};
+
+static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
+
+static inline
+void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
+{
+	dl_b->total_bw -= tsk_bw;
+	__dl_update(dl_b, (s32)tsk_bw / cpus);
+}
+
+static inline
+void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
+{
+	dl_b->total_bw += tsk_bw;
+	__dl_update(dl_b, -((s32)tsk_bw / cpus));
+}
+
+static inline
+bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
+{
+	return dl_b->bw != -1 &&
+	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
+}
+
+extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
+extern void init_dl_bw(struct dl_bw *dl_b);
+extern int  sched_dl_global_validate(void);
+extern void sched_dl_do_global(void);
+extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
+extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
+extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
+extern bool __checkparam_dl(const struct sched_attr *attr);
+extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
+extern int  dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
+extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
+extern bool dl_cpu_busy(unsigned int cpu);
+
+#ifdef CONFIG_CGROUP_SCHED
+
+#include <linux/cgroup.h>
+
+struct cfs_rq;
+struct rt_rq;
+
+extern struct list_head task_groups;
+
+struct cfs_bandwidth {
+#ifdef CONFIG_CFS_BANDWIDTH
+	raw_spinlock_t		lock;
+	ktime_t			period;
+	u64			quota;
+	u64			runtime;
+	s64			hierarchical_quota;
+	u64			runtime_expires;
+	int			expires_seq;
+
+	short			idle;
+	short			period_active;
+	struct hrtimer		period_timer;
+	struct hrtimer		slack_timer;
+	struct list_head	throttled_cfs_rq;
+
+	/* Statistics: */
+	int			nr_periods;
+	int			nr_throttled;
+	u64			throttled_time;
+
+	bool                    distribute_running;
+#endif
+};
+
+/* Task group related information */
+struct task_group {
+	struct cgroup_subsys_state css;
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+	/* schedulable entities of this group on each CPU */
+	struct sched_entity	**se;
+	/* runqueue "owned" by this group on each CPU */
+	struct cfs_rq		**cfs_rq;
+	unsigned long		shares;
+
+#ifdef	CONFIG_SMP
+	/*
+	 * load_avg can be heavily contended at clock tick time, so put
+	 * it in its own cacheline separated from the fields above which
+	 * will also be accessed at each tick.
+	 */
+	atomic_long_t		load_avg ____cacheline_aligned;
+#endif
+#endif
+
+#ifdef CONFIG_RT_GROUP_SCHED
+	struct sched_rt_entity	**rt_se;
+	struct rt_rq		**rt_rq;
+
+	struct rt_bandwidth	rt_bandwidth;
+#endif
+
+	struct rcu_head		rcu;
+	struct list_head	list;
+
+	struct task_group	*parent;
+	struct list_head	siblings;
+	struct list_head	children;
+
+#ifdef CONFIG_SCHED_AUTOGROUP
+	struct autogroup	*autogroup;
+#endif
+
+	struct cfs_bandwidth	cfs_bandwidth;
+};
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+#define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
+
+/*
+ * A weight of 0 or 1 can cause arithmetics problems.
+ * A weight of a cfs_rq is the sum of weights of which entities
+ * are queued on this cfs_rq, so a weight of a entity should not be
+ * too large, so as the shares value of a task group.
+ * (The default weight is 1024 - so there's no practical
+ *  limitation from this.)
+ */
+#define MIN_SHARES		(1UL <<  1)
+#define MAX_SHARES		(1UL << 18)
+#endif
+
+typedef int (*tg_visitor)(struct task_group *, void *);
+
+extern int walk_tg_tree_from(struct task_group *from,
+			     tg_visitor down, tg_visitor up, void *data);
+
+/*
+ * Iterate the full tree, calling @down when first entering a node and @up when
+ * leaving it for the final time.
+ *
+ * Caller must hold rcu_lock or sufficient equivalent.
+ */
+static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
+{
+	return walk_tg_tree_from(&root_task_group, down, up, data);
+}
+
+extern int tg_nop(struct task_group *tg, void *data);
+
+extern void free_fair_sched_group(struct task_group *tg);
+extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
+extern void online_fair_sched_group(struct task_group *tg);
+extern void unregister_fair_sched_group(struct task_group *tg);
+extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
+			struct sched_entity *se, int cpu,
+			struct sched_entity *parent);
+extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
+
+extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
+extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
+extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
+
+extern void free_rt_sched_group(struct task_group *tg);
+extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
+extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
+		struct sched_rt_entity *rt_se, int cpu,
+		struct sched_rt_entity *parent);
+extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
+extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
+extern long sched_group_rt_runtime(struct task_group *tg);
+extern long sched_group_rt_period(struct task_group *tg);
+extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
+
+extern struct task_group *sched_create_group(struct task_group *parent);
+extern void sched_online_group(struct task_group *tg,
+			       struct task_group *parent);
+extern void sched_destroy_group(struct task_group *tg);
+extern void sched_offline_group(struct task_group *tg);
+
+extern void sched_move_task(struct task_struct *tsk);
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
+
+#ifdef CONFIG_SMP
+extern void set_task_rq_fair(struct sched_entity *se,
+			     struct cfs_rq *prev, struct cfs_rq *next);
+#else /* !CONFIG_SMP */
+static inline void set_task_rq_fair(struct sched_entity *se,
+			     struct cfs_rq *prev, struct cfs_rq *next) { }
+#endif /* CONFIG_SMP */
+#endif /* CONFIG_FAIR_GROUP_SCHED */
+
+#else /* CONFIG_CGROUP_SCHED */
+
+struct cfs_bandwidth { };
+
+#endif	/* CONFIG_CGROUP_SCHED */
+
+/* CFS-related fields in a runqueue */
+struct cfs_rq {
+	struct load_weight	load;
+	unsigned long		runnable_weight;
+	unsigned int		nr_running;
+	unsigned int		h_nr_running;
+
+	u64			exec_clock;
+	u64			min_vruntime;
+#ifndef CONFIG_64BIT
+	u64			min_vruntime_copy;
+#endif
+
+	struct rb_root_cached	tasks_timeline;
+
+	/*
+	 * 'curr' points to currently running entity on this cfs_rq.
+	 * It is set to NULL otherwise (i.e when none are currently running).
+	 */
+	struct sched_entity	*curr;
+	struct sched_entity	*next;
+	struct sched_entity	*last;
+	struct sched_entity	*skip;
+
+#ifdef	CONFIG_SCHED_DEBUG
+	unsigned int		nr_spread_over;
+#endif
+
+#ifdef CONFIG_SMP
+	/*
+	 * CFS load tracking
+	 */
+	struct sched_avg	avg;
+#ifndef CONFIG_64BIT
+	u64			load_last_update_time_copy;
+#endif
+	struct {
+		raw_spinlock_t	lock ____cacheline_aligned;
+		int		nr;
+		unsigned long	load_avg;
+		unsigned long	util_avg;
+		unsigned long	runnable_sum;
+	} removed;
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+	unsigned long		tg_load_avg_contrib;
+	long			propagate;
+	long			prop_runnable_sum;
+
+	/*
+	 *   h_load = weight * f(tg)
+	 *
+	 * Where f(tg) is the recursive weight fraction assigned to
+	 * this group.
+	 */
+	unsigned long		h_load;
+	u64			last_h_load_update;
+	struct sched_entity	*h_load_next;
+#endif /* CONFIG_FAIR_GROUP_SCHED */
+#endif /* CONFIG_SMP */
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
+
+	/*
+	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
+	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
+	 * (like users, containers etc.)
+	 *
+	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
+	 * This list is used during load balance.
+	 */
+	int			on_list;
+	struct list_head	leaf_cfs_rq_list;
+	struct task_group	*tg;	/* group that "owns" this runqueue */
+
+#ifdef CONFIG_CFS_BANDWIDTH
+	int			runtime_enabled;
+	int			expires_seq;
+	u64			runtime_expires;
+	s64			runtime_remaining;
+
+	u64			throttled_clock;
+	u64			throttled_clock_task;
+	u64			throttled_clock_task_time;
+	int			throttled;
+	int			throttle_count;
+	struct list_head	throttled_list;
+#endif /* CONFIG_CFS_BANDWIDTH */
+#endif /* CONFIG_FAIR_GROUP_SCHED */
+};
+
+static inline int rt_bandwidth_enabled(void)
+{
+	return sysctl_sched_rt_runtime >= 0;
+}
+
+/* RT IPI pull logic requires IRQ_WORK */
+#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
+# define HAVE_RT_PUSH_IPI
+#endif
+
+/* Real-Time classes' related field in a runqueue: */
+struct rt_rq {
+	struct rt_prio_array	active;
+	unsigned int		rt_nr_running;
+	unsigned int		rr_nr_running;
+#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
+	struct {
+		int		curr; /* highest queued rt task prio */
+#ifdef CONFIG_SMP
+		int		next; /* next highest */
+#endif
+	} highest_prio;
+#endif
+#ifdef CONFIG_SMP
+	unsigned long		rt_nr_migratory;
+	unsigned long		rt_nr_total;
+	int			overloaded;
+	struct plist_head	pushable_tasks;
+
+#endif /* CONFIG_SMP */
+	int			rt_queued;
+
+	int			rt_throttled;
+	u64			rt_time;
+	u64			rt_runtime;
+	/* Nests inside the rq lock: */
+	raw_spinlock_t		rt_runtime_lock;
+
+#ifdef CONFIG_RT_GROUP_SCHED
+	unsigned long		rt_nr_boosted;
+
+	struct rq		*rq;
+	struct task_group	*tg;
+#endif
+};
+
+static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
+{
+	return rt_rq->rt_queued && rt_rq->rt_nr_running;
+}
+
+/* Deadline class' related fields in a runqueue */
+struct dl_rq {
+	/* runqueue is an rbtree, ordered by deadline */
+	struct rb_root_cached	root;
+
+	unsigned long		dl_nr_running;
+
+#ifdef CONFIG_SMP
+	/*
+	 * Deadline values of the currently executing and the
+	 * earliest ready task on this rq. Caching these facilitates
+	 * the decision wether or not a ready but not running task
+	 * should migrate somewhere else.
+	 */
+	struct {
+		u64		curr;
+		u64		next;
+	} earliest_dl;
+
+	unsigned long		dl_nr_migratory;
+	int			overloaded;
+
+	/*
+	 * Tasks on this rq that can be pushed away. They are kept in
+	 * an rb-tree, ordered by tasks' deadlines, with caching
+	 * of the leftmost (earliest deadline) element.
+	 */
+	struct rb_root_cached	pushable_dl_tasks_root;
+#else
+	struct dl_bw		dl_bw;
+#endif
+	/*
+	 * "Active utilization" for this runqueue: increased when a
+	 * task wakes up (becomes TASK_RUNNING) and decreased when a
+	 * task blocks
+	 */
+	u64			running_bw;
+
+	/*
+	 * Utilization of the tasks "assigned" to this runqueue (including
+	 * the tasks that are in runqueue and the tasks that executed on this
+	 * CPU and blocked). Increased when a task moves to this runqueue, and
+	 * decreased when the task moves away (migrates, changes scheduling
+	 * policy, or terminates).
+	 * This is needed to compute the "inactive utilization" for the
+	 * runqueue (inactive utilization = this_bw - running_bw).
+	 */
+	u64			this_bw;
+	u64			extra_bw;
+
+	/*
+	 * Inverse of the fraction of CPU utilization that can be reclaimed
+	 * by the GRUB algorithm.
+	 */
+	u64			bw_ratio;
+};
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+/* An entity is a task if it doesn't "own" a runqueue */
+#define entity_is_task(se)	(!se->my_q)
+#else
+#define entity_is_task(se)	1
+#endif
+
+#ifdef CONFIG_SMP
+/*
+ * XXX we want to get rid of these helpers and use the full load resolution.
+ */
+static inline long se_weight(struct sched_entity *se)
+{
+	return scale_load_down(se->load.weight);
+}
+
+static inline long se_runnable(struct sched_entity *se)
+{
+	return scale_load_down(se->runnable_weight);
+}
+
+static inline bool sched_asym_prefer(int a, int b)
+{
+	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
+}
+
+/*
+ * We add the notion of a root-domain which will be used to define per-domain
+ * variables. Each exclusive cpuset essentially defines an island domain by
+ * fully partitioning the member CPUs from any other cpuset. Whenever a new
+ * exclusive cpuset is created, we also create and attach a new root-domain
+ * object.
+ *
+ */
+struct root_domain {
+	atomic_t		refcount;
+	atomic_t		rto_count;
+	struct rcu_head		rcu;
+	cpumask_var_t		span;
+	cpumask_var_t		online;
+
+	/* Indicate more than one runnable task for any CPU */
+	bool			overload;
+
+	/*
+	 * The bit corresponding to a CPU gets set here if such CPU has more
+	 * than one runnable -deadline task (as it is below for RT tasks).
+	 */
+	cpumask_var_t		dlo_mask;
+	atomic_t		dlo_count;
+	struct dl_bw		dl_bw;
+	struct cpudl		cpudl;
+
+#ifdef HAVE_RT_PUSH_IPI
+	/*
+	 * For IPI pull requests, loop across the rto_mask.
+	 */
+	struct irq_work		rto_push_work;
+	raw_spinlock_t		rto_lock;
+	/* These are only updated and read within rto_lock */
+	int			rto_loop;
+	int			rto_cpu;
+	/* These atomics are updated outside of a lock */
+	atomic_t		rto_loop_next;
+	atomic_t		rto_loop_start;
+#endif
+	/*
+	 * The "RT overload" flag: it gets set if a CPU has more than
+	 * one runnable RT task.
+	 */
+	cpumask_var_t		rto_mask;
+	struct cpupri		cpupri;
+
+	unsigned long		max_cpu_capacity;
+};
+
+extern struct root_domain def_root_domain;
+extern struct mutex sched_domains_mutex;
+
+extern void init_defrootdomain(void);
+extern int sched_init_domains(const struct cpumask *cpu_map);
+extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
+extern void sched_get_rd(struct root_domain *rd);
+extern void sched_put_rd(struct root_domain *rd);
+
+#ifdef HAVE_RT_PUSH_IPI
+extern void rto_push_irq_work_func(struct irq_work *work);
+#endif
+#endif /* CONFIG_SMP */
+
+/*
+ * This is the main, per-CPU runqueue data structure.
+ *
+ * Locking rule: those places that want to lock multiple runqueues
+ * (such as the load balancing or the thread migration code), lock
+ * acquire operations must be ordered by ascending &runqueue.
+ */
+struct rq {
+	/* runqueue lock: */
+	raw_spinlock_t		lock;
+
+	/*
+	 * nr_running and cpu_load should be in the same cacheline because
+	 * remote CPUs use both these fields when doing load calculation.
+	 */
+	unsigned int		nr_running;
+#ifdef CONFIG_NUMA_BALANCING
+	unsigned int		nr_numa_running;
+	unsigned int		nr_preferred_running;
+	unsigned int		numa_migrate_on;
+#endif
+	#define CPU_LOAD_IDX_MAX 5
+	unsigned long		cpu_load[CPU_LOAD_IDX_MAX];
+#ifdef CONFIG_NO_HZ_COMMON
+#ifdef CONFIG_SMP
+	unsigned long		last_load_update_tick;
+	unsigned long		last_blocked_load_update_tick;
+	unsigned int		has_blocked_load;
+#endif /* CONFIG_SMP */
+	unsigned int		nohz_tick_stopped;
+	atomic_t nohz_flags;
+#endif /* CONFIG_NO_HZ_COMMON */
+
+	/* capture load from *all* tasks on this CPU: */
+	struct load_weight	load;
+	unsigned long		nr_load_updates;
+	u64			nr_switches;
+
+	struct cfs_rq		cfs;
+	struct rt_rq		rt;
+	struct dl_rq		dl;
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+	/* list of leaf cfs_rq on this CPU: */
+	struct list_head	leaf_cfs_rq_list;
+	struct list_head	*tmp_alone_branch;
+#endif /* CONFIG_FAIR_GROUP_SCHED */
+
+	/*
+	 * This is part of a global counter where only the total sum
+	 * over all CPUs matters. A task can increase this counter on
+	 * one CPU and if it got migrated afterwards it may decrease
+	 * it on another CPU. Always updated under the runqueue lock:
+	 */
+	unsigned long		nr_uninterruptible;
+
+	struct task_struct	*curr;
+	struct task_struct	*idle;
+	struct task_struct	*stop;
+	unsigned long		next_balance;
+	struct mm_struct	*prev_mm;
+
+	unsigned int		clock_update_flags;
+	u64			clock;
+	u64			clock_task;
+
+	atomic_t		nr_iowait;
+
+#ifdef CONFIG_SMP
+	struct root_domain	*rd;
+	struct sched_domain	*sd;
+
+	unsigned long		cpu_capacity;
+	unsigned long		cpu_capacity_orig;
+
+	struct callback_head	*balance_callback;
+
+	unsigned char		idle_balance;
+
+	/* For active balancing */
+	int			active_balance;
+	int			push_cpu;
+	struct cpu_stop_work	active_balance_work;
+
+	/* CPU of this runqueue: */
+	int			cpu;
+	int			online;
+
+	struct list_head cfs_tasks;
+
+	struct sched_avg	avg_rt;
+	struct sched_avg	avg_dl;
+#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
+	struct sched_avg	avg_irq;
+#endif
+	u64			idle_stamp;
+	u64			avg_idle;
+
+	/* This is used to determine avg_idle's max value */
+	u64			max_idle_balance_cost;
+#endif
+
+#ifdef CONFIG_IRQ_TIME_ACCOUNTING
+	u64			prev_irq_time;
+#endif
+#ifdef CONFIG_PARAVIRT
+	u64			prev_steal_time;
+#endif
+#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
+	u64			prev_steal_time_rq;
+#endif
+
+	/* calc_load related fields */
+	unsigned long		calc_load_update;
+	long			calc_load_active;
+
+#ifdef CONFIG_SCHED_HRTICK
+#ifdef CONFIG_SMP
+	int			hrtick_csd_pending;
+	call_single_data_t	hrtick_csd;
+#endif
+	struct hrtimer		hrtick_timer;
+#endif
+
+#ifdef CONFIG_SCHEDSTATS
+	/* latency stats */
+	struct sched_info	rq_sched_info;
+	unsigned long long	rq_cpu_time;
+	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
+
+	/* sys_sched_yield() stats */
+	unsigned int		yld_count;
+
+	/* schedule() stats */
+	unsigned int		sched_count;
+	unsigned int		sched_goidle;
+
+	/* try_to_wake_up() stats */
+	unsigned int		ttwu_count;
+	unsigned int		ttwu_local;
+#endif
+
+#ifdef CONFIG_SMP
+	struct llist_head	wake_list;
+#endif
+
+#ifdef CONFIG_CPU_IDLE
+	/* Must be inspected within a rcu lock section */
+	struct cpuidle_state	*idle_state;
+#endif
+};
+
+static inline int cpu_of(struct rq *rq)
+{
+#ifdef CONFIG_SMP
+	return rq->cpu;
+#else
+	return 0;
+#endif
+}
+
+
+#ifdef CONFIG_SCHED_SMT
+extern void __update_idle_core(struct rq *rq);
+
+static inline void update_idle_core(struct rq *rq)
+{
+	if (static_branch_unlikely(&sched_smt_present))
+		__update_idle_core(rq);
+}
+
+#else
+static inline void update_idle_core(struct rq *rq) { }
+#endif
+
+DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
+
+#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
+#define this_rq()		this_cpu_ptr(&runqueues)
+#define task_rq(p)		cpu_rq(task_cpu(p))
+#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
+#define raw_rq()		raw_cpu_ptr(&runqueues)
+
+static inline u64 __rq_clock_broken(struct rq *rq)
+{
+	return READ_ONCE(rq->clock);
+}
+
+/*
+ * rq::clock_update_flags bits
+ *
+ * %RQCF_REQ_SKIP - will request skipping of clock update on the next
+ *  call to __schedule(). This is an optimisation to avoid
+ *  neighbouring rq clock updates.
+ *
+ * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
+ *  in effect and calls to update_rq_clock() are being ignored.
+ *
+ * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
+ *  made to update_rq_clock() since the last time rq::lock was pinned.
+ *
+ * If inside of __schedule(), clock_update_flags will have been
+ * shifted left (a left shift is a cheap operation for the fast path
+ * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
+ *
+ *	if (rq-clock_update_flags >= RQCF_UPDATED)
+ *
+ * to check if %RQCF_UPADTED is set. It'll never be shifted more than
+ * one position though, because the next rq_unpin_lock() will shift it
+ * back.
+ */
+#define RQCF_REQ_SKIP		0x01
+#define RQCF_ACT_SKIP		0x02
+#define RQCF_UPDATED		0x04
+
+static inline void assert_clock_updated(struct rq *rq)
+{
+	/*
+	 * The only reason for not seeing a clock update since the
+	 * last rq_pin_lock() is if we're currently skipping updates.
+	 */
+	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
+}
+
+static inline u64 rq_clock(struct rq *rq)
+{
+	lockdep_assert_held(&rq->lock);
+	assert_clock_updated(rq);
+
+	return rq->clock;
+}
+
+static inline u64 rq_clock_task(struct rq *rq)
+{
+	lockdep_assert_held(&rq->lock);
+	assert_clock_updated(rq);
+
+	return rq->clock_task;
+}
+
+static inline void rq_clock_skip_update(struct rq *rq)
+{
+	lockdep_assert_held(&rq->lock);
+	rq->clock_update_flags |= RQCF_REQ_SKIP;
+}
+
+/*
+ * See rt task throttling, which is the only time a skip
+ * request is cancelled.
+ */
+static inline void rq_clock_cancel_skipupdate(struct rq *rq)
+{
+	lockdep_assert_held(&rq->lock);
+	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
+}
+
+struct rq_flags {
+	unsigned long flags;
+	struct pin_cookie cookie;
+#ifdef CONFIG_SCHED_DEBUG
+	/*
+	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
+	 * current pin context is stashed here in case it needs to be
+	 * restored in rq_repin_lock().
+	 */
+	unsigned int clock_update_flags;
+#endif
+};
+
+static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
+{
+	rf->cookie = lockdep_pin_lock(&rq->lock);
+
+#ifdef CONFIG_SCHED_DEBUG
+	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
+	rf->clock_update_flags = 0;
+#endif
+}
+
+static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
+{
+#ifdef CONFIG_SCHED_DEBUG
+	if (rq->clock_update_flags > RQCF_ACT_SKIP)
+		rf->clock_update_flags = RQCF_UPDATED;
+#endif
+
+	lockdep_unpin_lock(&rq->lock, rf->cookie);
+}
+
+static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
+{
+	lockdep_repin_lock(&rq->lock, rf->cookie);
+
+#ifdef CONFIG_SCHED_DEBUG
+	/*
+	 * Restore the value we stashed in @rf for this pin context.
+	 */
+	rq->clock_update_flags |= rf->clock_update_flags;
+#endif
+}
+
+#ifdef CONFIG_NUMA
+enum numa_topology_type {
+	NUMA_DIRECT,
+	NUMA_GLUELESS_MESH,
+	NUMA_BACKPLANE,
+};
+extern enum numa_topology_type sched_numa_topology_type;
+extern int sched_max_numa_distance;
+extern bool find_numa_distance(int distance);
+#endif
+
+#ifdef CONFIG_NUMA
+extern void sched_init_numa(void);
+extern void sched_domains_numa_masks_set(unsigned int cpu);
+extern void sched_domains_numa_masks_clear(unsigned int cpu);
+#else
+static inline void sched_init_numa(void) { }
+static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
+static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
+#endif
+
+#ifdef CONFIG_NUMA_BALANCING
+/* The regions in numa_faults array from task_struct */
+enum numa_faults_stats {
+	NUMA_MEM = 0,
+	NUMA_CPU,
+	NUMA_MEMBUF,
+	NUMA_CPUBUF
+};
+extern void sched_setnuma(struct task_struct *p, int node);
+extern int migrate_task_to(struct task_struct *p, int cpu);
+extern int migrate_swap(struct task_struct *p, struct task_struct *t,
+			int cpu, int scpu);
+extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
+#else
+static inline void
+init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
+{
+}
+#endif /* CONFIG_NUMA_BALANCING */
+
+#ifdef CONFIG_SMP
+
+static inline void
+queue_balance_callback(struct rq *rq,
+		       struct callback_head *head,
+		       void (*func)(struct rq *rq))
+{
+	lockdep_assert_held(&rq->lock);
+
+	if (unlikely(head->next))
+		return;
+
+	head->func = (void (*)(struct callback_head *))func;
+	head->next = rq->balance_callback;
+	rq->balance_callback = head;
+}
+
+extern void sched_ttwu_pending(void);
+
+#define rcu_dereference_check_sched_domain(p) \
+	rcu_dereference_check((p), \
+			      lockdep_is_held(&sched_domains_mutex))
+
+/*
+ * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
+ * See detach_destroy_domains: synchronize_sched for details.
+ *
+ * The domain tree of any CPU may only be accessed from within
+ * preempt-disabled sections.
+ */
+#define for_each_domain(cpu, __sd) \
+	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
+			__sd; __sd = __sd->parent)
+
+#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
+
+/**
+ * highest_flag_domain - Return highest sched_domain containing flag.
+ * @cpu:	The CPU whose highest level of sched domain is to
+ *		be returned.
+ * @flag:	The flag to check for the highest sched_domain
+ *		for the given CPU.
+ *
+ * Returns the highest sched_domain of a CPU which contains the given flag.
+ */
+static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
+{
+	struct sched_domain *sd, *hsd = NULL;
+
+	for_each_domain(cpu, sd) {
+		if (!(sd->flags & flag))
+			break;
+		hsd = sd;
+	}
+
+	return hsd;
+}
+
+static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
+{
+	struct sched_domain *sd;
+
+	for_each_domain(cpu, sd) {
+		if (sd->flags & flag)
+			break;
+	}
+
+	return sd;
+}
+
+DECLARE_PER_CPU(struct sched_domain *, sd_llc);
+DECLARE_PER_CPU(int, sd_llc_size);
+DECLARE_PER_CPU(int, sd_llc_id);
+DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
+DECLARE_PER_CPU(struct sched_domain *, sd_numa);
+DECLARE_PER_CPU(struct sched_domain *, sd_asym);
+
+struct sched_group_capacity {
+	atomic_t		ref;
+	/*
+	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
+	 * for a single CPU.
+	 */
+	unsigned long		capacity;
+	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
+	unsigned long		next_update;
+	int			imbalance;		/* XXX unrelated to capacity but shared group state */
+
+#ifdef CONFIG_SCHED_DEBUG
+	int			id;
+#endif
+
+	unsigned long		cpumask[0];		/* Balance mask */
+};
+
+struct sched_group {
+	struct sched_group	*next;			/* Must be a circular list */
+	atomic_t		ref;
+
+	unsigned int		group_weight;
+	struct sched_group_capacity *sgc;
+	int			asym_prefer_cpu;	/* CPU of highest priority in group */
+
+	/*
+	 * The CPUs this group covers.
+	 *
+	 * NOTE: this field is variable length. (Allocated dynamically
+	 * by attaching extra space to the end of the structure,
+	 * depending on how many CPUs the kernel has booted up with)
+	 */
+	unsigned long		cpumask[0];
+};
+
+static inline struct cpumask *sched_group_span(struct sched_group *sg)
+{
+	return to_cpumask(sg->cpumask);
+}
+
+/*
+ * See build_balance_mask().
+ */
+static inline struct cpumask *group_balance_mask(struct sched_group *sg)
+{
+	return to_cpumask(sg->sgc->cpumask);
+}
+
+/**
+ * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
+ * @group: The group whose first CPU is to be returned.
+ */
+static inline unsigned int group_first_cpu(struct sched_group *group)
+{
+	return cpumask_first(sched_group_span(group));
+}
+
+extern int group_balance_cpu(struct sched_group *sg);
+
+#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
+void register_sched_domain_sysctl(void);
+void dirty_sched_domain_sysctl(int cpu);
+void unregister_sched_domain_sysctl(void);
+#else
+static inline void register_sched_domain_sysctl(void)
+{
+}
+static inline void dirty_sched_domain_sysctl(int cpu)
+{
+}
+static inline void unregister_sched_domain_sysctl(void)
+{
+}
+#endif
+
+#else
+
+static inline void sched_ttwu_pending(void) { }
+
+#endif /* CONFIG_SMP */
+
+#include "stats.h"
+#include "autogroup.h"
+
+#ifdef CONFIG_CGROUP_SCHED
+
+/*
+ * Return the group to which this tasks belongs.
+ *
+ * We cannot use task_css() and friends because the cgroup subsystem
+ * changes that value before the cgroup_subsys::attach() method is called,
+ * therefore we cannot pin it and might observe the wrong value.
+ *
+ * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
+ * core changes this before calling sched_move_task().
+ *
+ * Instead we use a 'copy' which is updated from sched_move_task() while
+ * holding both task_struct::pi_lock and rq::lock.
+ */
+static inline struct task_group *task_group(struct task_struct *p)
+{
+	return p->sched_task_group;
+}
+
+/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
+static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
+{
+#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
+	struct task_group *tg = task_group(p);
+#endif
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
+	p->se.cfs_rq = tg->cfs_rq[cpu];
+	p->se.parent = tg->se[cpu];
+#endif
+
+#ifdef CONFIG_RT_GROUP_SCHED
+	p->rt.rt_rq  = tg->rt_rq[cpu];
+	p->rt.parent = tg->rt_se[cpu];
+#endif
+}
+
+#else /* CONFIG_CGROUP_SCHED */
+
+static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
+static inline struct task_group *task_group(struct task_struct *p)
+{
+	return NULL;
+}
+
+#endif /* CONFIG_CGROUP_SCHED */
+
+static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
+{
+	set_task_rq(p, cpu);
+#ifdef CONFIG_SMP
+	/*
+	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
+	 * successfuly executed on another CPU. We must ensure that updates of
+	 * per-task data have been completed by this moment.
+	 */
+	smp_wmb();
+#ifdef CONFIG_THREAD_INFO_IN_TASK
+	p->cpu = cpu;
+#else
+	task_thread_info(p)->cpu = cpu;
+#endif
+	p->wake_cpu = cpu;
+#endif
+}
+
+/*
+ * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
+ */
+#ifdef CONFIG_SCHED_DEBUG
+# include <linux/static_key.h>
+# define const_debug __read_mostly
+#else
+# define const_debug const
+#endif
+
+#define SCHED_FEAT(name, enabled)	\
+	__SCHED_FEAT_##name ,
+
+enum {
+#include "features.h"
+	__SCHED_FEAT_NR,
+};
+
+#undef SCHED_FEAT
+
+#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
+
+/*
+ * To support run-time toggling of sched features, all the translation units
+ * (but core.c) reference the sysctl_sched_features defined in core.c.
+ */
+extern const_debug unsigned int sysctl_sched_features;
+
+#define SCHED_FEAT(name, enabled)					\
+static __always_inline bool static_branch_##name(struct static_key *key) \
+{									\
+	return static_key_##enabled(key);				\
+}
+
+#include "features.h"
+#undef SCHED_FEAT
+
+extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
+#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
+
+#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
+
+/*
+ * Each translation unit has its own copy of sysctl_sched_features to allow
+ * constants propagation at compile time and compiler optimization based on
+ * features default.
+ */
+#define SCHED_FEAT(name, enabled)	\
+	(1UL << __SCHED_FEAT_##name) * enabled |
+static const_debug __maybe_unused unsigned int sysctl_sched_features =
+#include "features.h"
+	0;
+#undef SCHED_FEAT
+
+#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
+
+#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
+
+extern struct static_key_false sched_numa_balancing;
+extern struct static_key_false sched_schedstats;
+
+static inline u64 global_rt_period(void)
+{
+	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
+}
+
+static inline u64 global_rt_runtime(void)
+{
+	if (sysctl_sched_rt_runtime < 0)
+		return RUNTIME_INF;
+
+	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
+}
+
+static inline int task_current(struct rq *rq, struct task_struct *p)
+{
+	return rq->curr == p;
+}
+
+static inline int task_running(struct rq *rq, struct task_struct *p)
+{
+#ifdef CONFIG_SMP
+	return p->on_cpu;
+#else
+	return task_current(rq, p);
+#endif
+}
+
+static inline int task_on_rq_queued(struct task_struct *p)
+{
+	return p->on_rq == TASK_ON_RQ_QUEUED;
+}
+
+static inline int task_on_rq_migrating(struct task_struct *p)
+{
+	return p->on_rq == TASK_ON_RQ_MIGRATING;
+}
+
+/*
+ * wake flags
+ */
+#define WF_SYNC			0x01		/* Waker goes to sleep after wakeup */
+#define WF_FORK			0x02		/* Child wakeup after fork */
+#define WF_MIGRATED		0x4		/* Internal use, task got migrated */
+
+/*
+ * To aid in avoiding the subversion of "niceness" due to uneven distribution
+ * of tasks with abnormal "nice" values across CPUs the contribution that
+ * each task makes to its run queue's load is weighted according to its
+ * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
+ * scaled version of the new time slice allocation that they receive on time
+ * slice expiry etc.
+ */
+
+#define WEIGHT_IDLEPRIO		3
+#define WMULT_IDLEPRIO		1431655765
+
+extern const int		sched_prio_to_weight[40];
+extern const u32		sched_prio_to_wmult[40];
+
+/*
+ * {de,en}queue flags:
+ *
+ * DEQUEUE_SLEEP  - task is no longer runnable
+ * ENQUEUE_WAKEUP - task just became runnable
+ *
+ * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
+ *                are in a known state which allows modification. Such pairs
+ *                should preserve as much state as possible.
+ *
+ * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
+ *        in the runqueue.
+ *
+ * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
+ * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
+ * ENQUEUE_MIGRATED  - the task was migrated during wakeup
+ *
+ */
+
+#define DEQUEUE_SLEEP		0x01
+#define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
+#define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
+#define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
+
+#define ENQUEUE_WAKEUP		0x01
+#define ENQUEUE_RESTORE		0x02
+#define ENQUEUE_MOVE		0x04
+#define ENQUEUE_NOCLOCK		0x08
+
+#define ENQUEUE_HEAD		0x10
+#define ENQUEUE_REPLENISH	0x20
+#ifdef CONFIG_SMP
+#define ENQUEUE_MIGRATED	0x40
+#else
+#define ENQUEUE_MIGRATED	0x00
+#endif
+
+#define RETRY_TASK		((void *)-1UL)
+
+struct sched_class {
+	const struct sched_class *next;
+
+	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
+	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
+	void (*yield_task)   (struct rq *rq);
+	bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
+
+	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
+
+	/*
+	 * It is the responsibility of the pick_next_task() method that will
+	 * return the next task to call put_prev_task() on the @prev task or
+	 * something equivalent.
+	 *
+	 * May return RETRY_TASK when it finds a higher prio class has runnable
+	 * tasks.
+	 */
+	struct task_struct * (*pick_next_task)(struct rq *rq,
+					       struct task_struct *prev,
+					       struct rq_flags *rf);
+	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
+
+#ifdef CONFIG_SMP
+	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
+	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
+
+	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
+
+	void (*set_cpus_allowed)(struct task_struct *p,
+				 const struct cpumask *newmask);
+
+	void (*rq_online)(struct rq *rq);
+	void (*rq_offline)(struct rq *rq);
+#endif
+
+	void (*set_curr_task)(struct rq *rq);
+	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
+	void (*task_fork)(struct task_struct *p);
+	void (*task_dead)(struct task_struct *p);
+
+	/*
+	 * The switched_from() call is allowed to drop rq->lock, therefore we
+	 * cannot assume the switched_from/switched_to pair is serliazed by
+	 * rq->lock. They are however serialized by p->pi_lock.
+	 */
+	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
+	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
+	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
+			      int oldprio);
+
+	unsigned int (*get_rr_interval)(struct rq *rq,
+					struct task_struct *task);
+
+	void (*update_curr)(struct rq *rq);
+
+#define TASK_SET_GROUP		0
+#define TASK_MOVE_GROUP		1
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+	void (*task_change_group)(struct task_struct *p, int type);
+#endif
+};
+
+static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
+{
+	prev->sched_class->put_prev_task(rq, prev);
+}
+
+static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
+{
+	curr->sched_class->set_curr_task(rq);
+}
+
+#ifdef CONFIG_SMP
+#define sched_class_highest (&stop_sched_class)
+#else
+#define sched_class_highest (&dl_sched_class)
+#endif
+#define for_each_class(class) \
+   for (class = sched_class_highest; class; class = class->next)
+
+extern const struct sched_class stop_sched_class;
+extern const struct sched_class dl_sched_class;
+extern const struct sched_class rt_sched_class;
+extern const struct sched_class fair_sched_class;
+extern const struct sched_class idle_sched_class;
+
+
+#ifdef CONFIG_SMP
+
+extern void update_group_capacity(struct sched_domain *sd, int cpu);
+
+extern void trigger_load_balance(struct rq *rq);
+
+extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
+
+#endif
+
+#ifdef CONFIG_CPU_IDLE
+static inline void idle_set_state(struct rq *rq,
+				  struct cpuidle_state *idle_state)
+{
+	rq->idle_state = idle_state;
+}
+
+static inline struct cpuidle_state *idle_get_state(struct rq *rq)
+{
+	SCHED_WARN_ON(!rcu_read_lock_held());
+
+	return rq->idle_state;
+}
+#else
+static inline void idle_set_state(struct rq *rq,
+				  struct cpuidle_state *idle_state)
+{
+}
+
+static inline struct cpuidle_state *idle_get_state(struct rq *rq)
+{
+	return NULL;
+}
+#endif
+
+extern void schedule_idle(void);
+
+extern void sysrq_sched_debug_show(void);
+extern void sched_init_granularity(void);
+extern void update_max_interval(void);
+
+extern void init_sched_dl_class(void);
+extern void init_sched_rt_class(void);
+extern void init_sched_fair_class(void);
+
+extern void reweight_task(struct task_struct *p, int prio);
+
+extern void resched_curr(struct rq *rq);
+extern void resched_cpu(int cpu);
+
+extern struct rt_bandwidth def_rt_bandwidth;
+extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
+
+extern struct dl_bandwidth def_dl_bandwidth;
+extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
+extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
+extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
+extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
+
+#define BW_SHIFT		20
+#define BW_UNIT			(1 << BW_SHIFT)
+#define RATIO_SHIFT		8
+unsigned long to_ratio(u64 period, u64 runtime);
+
+extern void init_entity_runnable_average(struct sched_entity *se);
+extern void post_init_entity_util_avg(struct sched_entity *se);
+
+#ifdef CONFIG_NO_HZ_FULL
+extern bool sched_can_stop_tick(struct rq *rq);
+extern int __init sched_tick_offload_init(void);
+
+/*
+ * Tick may be needed by tasks in the runqueue depending on their policy and
+ * requirements. If tick is needed, lets send the target an IPI to kick it out of
+ * nohz mode if necessary.
+ */
+static inline void sched_update_tick_dependency(struct rq *rq)
+{
+	int cpu;
+
+	if (!tick_nohz_full_enabled())
+		return;
+
+	cpu = cpu_of(rq);
+
+	if (!tick_nohz_full_cpu(cpu))
+		return;
+
+	if (sched_can_stop_tick(rq))
+		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
+	else
+		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
+}
+#else
+static inline int sched_tick_offload_init(void) { return 0; }
+static inline void sched_update_tick_dependency(struct rq *rq) { }
+#endif
+
+static inline void add_nr_running(struct rq *rq, unsigned count)
+{
+	unsigned prev_nr = rq->nr_running;
+
+	rq->nr_running = prev_nr + count;
+
+	if (prev_nr < 2 && rq->nr_running >= 2) {
+#ifdef CONFIG_SMP
+		if (!rq->rd->overload)
+			rq->rd->overload = true;
+#endif
+	}
+
+	sched_update_tick_dependency(rq);
+}
+
+static inline void sub_nr_running(struct rq *rq, unsigned count)
+{
+	rq->nr_running -= count;
+	/* Check if we still need preemption */
+	sched_update_tick_dependency(rq);
+}
+
+extern void update_rq_clock(struct rq *rq);
+
+extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
+extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
+
+extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
+
+extern const_debug unsigned int sysctl_sched_nr_migrate;
+extern const_debug unsigned int sysctl_sched_migration_cost;
+
+#ifdef CONFIG_SCHED_HRTICK
+
+/*
+ * Use hrtick when:
+ *  - enabled by features
+ *  - hrtimer is actually high res
+ */
+static inline int hrtick_enabled(struct rq *rq)
+{
+	if (!sched_feat(HRTICK))
+		return 0;
+	if (!cpu_active(cpu_of(rq)))
+		return 0;
+	return hrtimer_is_hres_active(&rq->hrtick_timer);
+}
+
+void hrtick_start(struct rq *rq, u64 delay);
+
+#else
+
+static inline int hrtick_enabled(struct rq *rq)
+{
+	return 0;
+}
+
+#endif /* CONFIG_SCHED_HRTICK */
+
+#ifndef arch_scale_freq_capacity
+static __always_inline
+unsigned long arch_scale_freq_capacity(int cpu)
+{
+	return SCHED_CAPACITY_SCALE;
+}
+#endif
+
+#ifdef CONFIG_SMP
+#ifndef arch_scale_cpu_capacity
+static __always_inline
+unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
+{
+	if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
+		return sd->smt_gain / sd->span_weight;
+
+	return SCHED_CAPACITY_SCALE;
+}
+#endif
+#else
+#ifndef arch_scale_cpu_capacity
+static __always_inline
+unsigned long arch_scale_cpu_capacity(void __always_unused *sd, int cpu)
+{
+	return SCHED_CAPACITY_SCALE;
+}
+#endif
+#endif
+
+struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
+	__acquires(rq->lock);
+
+struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
+	__acquires(p->pi_lock)
+	__acquires(rq->lock);
+
+static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
+	__releases(rq->lock)
+{
+	rq_unpin_lock(rq, rf);
+	raw_spin_unlock(&rq->lock);
+}
+
+static inline void
+task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
+	__releases(rq->lock)
+	__releases(p->pi_lock)
+{
+	rq_unpin_lock(rq, rf);
+	raw_spin_unlock(&rq->lock);
+	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
+}
+
+static inline void
+rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
+	__acquires(rq->lock)
+{
+	raw_spin_lock_irqsave(&rq->lock, rf->flags);
+	rq_pin_lock(rq, rf);
+}
+
+static inline void
+rq_lock_irq(struct rq *rq, struct rq_flags *rf)
+	__acquires(rq->lock)
+{
+	raw_spin_lock_irq(&rq->lock);
+	rq_pin_lock(rq, rf);
+}
+
+static inline void
+rq_lock(struct rq *rq, struct rq_flags *rf)
+	__acquires(rq->lock)
+{
+	raw_spin_lock(&rq->lock);
+	rq_pin_lock(rq, rf);
+}
+
+static inline void
+rq_relock(struct rq *rq, struct rq_flags *rf)
+	__acquires(rq->lock)
+{
+	raw_spin_lock(&rq->lock);
+	rq_repin_lock(rq, rf);
+}
+
+static inline void
+rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
+	__releases(rq->lock)
+{
+	rq_unpin_lock(rq, rf);
+	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
+}
+
+static inline void
+rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
+	__releases(rq->lock)
+{
+	rq_unpin_lock(rq, rf);
+	raw_spin_unlock_irq(&rq->lock);
+}
+
+static inline void
+rq_unlock(struct rq *rq, struct rq_flags *rf)
+	__releases(rq->lock)
+{
+	rq_unpin_lock(rq, rf);
+	raw_spin_unlock(&rq->lock);
+}
+
+#ifdef CONFIG_SMP
+#ifdef CONFIG_PREEMPT
+
+static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
+
+/*
+ * fair double_lock_balance: Safely acquires both rq->locks in a fair
+ * way at the expense of forcing extra atomic operations in all
+ * invocations.  This assures that the double_lock is acquired using the
+ * same underlying policy as the spinlock_t on this architecture, which
+ * reduces latency compared to the unfair variant below.  However, it
+ * also adds more overhead and therefore may reduce throughput.
+ */
+static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
+	__releases(this_rq->lock)
+	__acquires(busiest->lock)
+	__acquires(this_rq->lock)
+{
+	raw_spin_unlock(&this_rq->lock);
+	double_rq_lock(this_rq, busiest);
+
+	return 1;
+}
+
+#else
+/*
+ * Unfair double_lock_balance: Optimizes throughput at the expense of
+ * latency by eliminating extra atomic operations when the locks are
+ * already in proper order on entry.  This favors lower CPU-ids and will
+ * grant the double lock to lower CPUs over higher ids under contention,
+ * regardless of entry order into the function.
+ */
+static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
+	__releases(this_rq->lock)
+	__acquires(busiest->lock)
+	__acquires(this_rq->lock)
+{
+	int ret = 0;
+
+	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
+		if (busiest < this_rq) {
+			raw_spin_unlock(&this_rq->lock);
+			raw_spin_lock(&busiest->lock);
+			raw_spin_lock_nested(&this_rq->lock,
+					      SINGLE_DEPTH_NESTING);
+			ret = 1;
+		} else
+			raw_spin_lock_nested(&busiest->lock,
+					      SINGLE_DEPTH_NESTING);
+	}
+	return ret;
+}
+
+#endif /* CONFIG_PREEMPT */
+
+/*
+ * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
+ */
+static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
+{
+	if (unlikely(!irqs_disabled())) {
+		/* printk() doesn't work well under rq->lock */
+		raw_spin_unlock(&this_rq->lock);
+		BUG_ON(1);
+	}
+
+	return _double_lock_balance(this_rq, busiest);
+}
+
+static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
+	__releases(busiest->lock)
+{
+	raw_spin_unlock(&busiest->lock);
+	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
+}
+
+static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
+{
+	if (l1 > l2)
+		swap(l1, l2);
+
+	spin_lock(l1);
+	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
+}
+
+static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
+{
+	if (l1 > l2)
+		swap(l1, l2);
+
+	spin_lock_irq(l1);
+	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
+}
+
+static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
+{
+	if (l1 > l2)
+		swap(l1, l2);
+
+	raw_spin_lock(l1);
+	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
+}
+
+/*
+ * double_rq_lock - safely lock two runqueues
+ *
+ * Note this does not disable interrupts like task_rq_lock,
+ * you need to do so manually before calling.
+ */
+static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
+	__acquires(rq1->lock)
+	__acquires(rq2->lock)
+{
+	BUG_ON(!irqs_disabled());
+	if (rq1 == rq2) {
+		raw_spin_lock(&rq1->lock);
+		__acquire(rq2->lock);	/* Fake it out ;) */
+	} else {
+		if (rq1 < rq2) {
+			raw_spin_lock(&rq1->lock);
+			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
+		} else {
+			raw_spin_lock(&rq2->lock);
+			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
+		}
+	}
+}
+
+/*
+ * double_rq_unlock - safely unlock two runqueues
+ *
+ * Note this does not restore interrupts like task_rq_unlock,
+ * you need to do so manually after calling.
+ */
+static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
+	__releases(rq1->lock)
+	__releases(rq2->lock)
+{
+	raw_spin_unlock(&rq1->lock);
+	if (rq1 != rq2)
+		raw_spin_unlock(&rq2->lock);
+	else
+		__release(rq2->lock);
+}
+
+extern void set_rq_online (struct rq *rq);
+extern void set_rq_offline(struct rq *rq);
+extern bool sched_smp_initialized;
+
+#else /* CONFIG_SMP */
+
+/*
+ * double_rq_lock - safely lock two runqueues
+ *
+ * Note this does not disable interrupts like task_rq_lock,
+ * you need to do so manually before calling.
+ */
+static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
+	__acquires(rq1->lock)
+	__acquires(rq2->lock)
+{
+	BUG_ON(!irqs_disabled());
+	BUG_ON(rq1 != rq2);
+	raw_spin_lock(&rq1->lock);
+	__acquire(rq2->lock);	/* Fake it out ;) */
+}
+
+/*
+ * double_rq_unlock - safely unlock two runqueues
+ *
+ * Note this does not restore interrupts like task_rq_unlock,
+ * you need to do so manually after calling.
+ */
+static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
+	__releases(rq1->lock)
+	__releases(rq2->lock)
+{
+	BUG_ON(rq1 != rq2);
+	raw_spin_unlock(&rq1->lock);
+	__release(rq2->lock);
+}
+
+#endif
+
+extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
+extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
+
+#ifdef	CONFIG_SCHED_DEBUG
+extern bool sched_debug_enabled;
+
+extern void print_cfs_stats(struct seq_file *m, int cpu);
+extern void print_rt_stats(struct seq_file *m, int cpu);
+extern void print_dl_stats(struct seq_file *m, int cpu);
+extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
+extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
+extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
+#ifdef CONFIG_NUMA_BALANCING
+extern void
+show_numa_stats(struct task_struct *p, struct seq_file *m);
+extern void
+print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
+	unsigned long tpf, unsigned long gsf, unsigned long gpf);
+#endif /* CONFIG_NUMA_BALANCING */
+#endif /* CONFIG_SCHED_DEBUG */
+
+extern void init_cfs_rq(struct cfs_rq *cfs_rq);
+extern void init_rt_rq(struct rt_rq *rt_rq);
+extern void init_dl_rq(struct dl_rq *dl_rq);
+
+extern void cfs_bandwidth_usage_inc(void);
+extern void cfs_bandwidth_usage_dec(void);
+
+#ifdef CONFIG_NO_HZ_COMMON
+#define NOHZ_BALANCE_KICK_BIT	0
+#define NOHZ_STATS_KICK_BIT	1
+
+#define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
+#define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
+
+#define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
+
+#define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
+
+extern void nohz_balance_exit_idle(struct rq *rq);
+#else
+static inline void nohz_balance_exit_idle(struct rq *rq) { }
+#endif
+
+
+#ifdef CONFIG_SMP
+static inline
+void __dl_update(struct dl_bw *dl_b, s64 bw)
+{
+	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
+	int i;
+
+	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
+			 "sched RCU must be held");
+	for_each_cpu_and(i, rd->span, cpu_active_mask) {
+		struct rq *rq = cpu_rq(i);
+
+		rq->dl.extra_bw += bw;
+	}
+}
+#else
+static inline
+void __dl_update(struct dl_bw *dl_b, s64 bw)
+{
+	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
+
+	dl->extra_bw += bw;
+}
+#endif
+
+
+#ifdef CONFIG_IRQ_TIME_ACCOUNTING
+struct irqtime {
+	u64			total;
+	u64			tick_delta;
+	u64			irq_start_time;
+	struct u64_stats_sync	sync;
+};
+
+DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
+
+/*
+ * Returns the irqtime minus the softirq time computed by ksoftirqd.
+ * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
+ * and never move forward.
+ */
+static inline u64 irq_time_read(int cpu)
+{
+	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
+	unsigned int seq;
+	u64 total;
+
+	do {
+		seq = __u64_stats_fetch_begin(&irqtime->sync);
+		total = irqtime->total;
+	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
+
+	return total;
+}
+#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
+
+#ifdef CONFIG_CPU_FREQ
+DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
+
+/**
+ * cpufreq_update_util - Take a note about CPU utilization changes.
+ * @rq: Runqueue to carry out the update for.
+ * @flags: Update reason flags.
+ *
+ * This function is called by the scheduler on the CPU whose utilization is
+ * being updated.
+ *
+ * It can only be called from RCU-sched read-side critical sections.
+ *
+ * The way cpufreq is currently arranged requires it to evaluate the CPU
+ * performance state (frequency/voltage) on a regular basis to prevent it from
+ * being stuck in a completely inadequate performance level for too long.
+ * That is not guaranteed to happen if the updates are only triggered from CFS
+ * and DL, though, because they may not be coming in if only RT tasks are
+ * active all the time (or there are RT tasks only).
+ *
+ * As a workaround for that issue, this function is called periodically by the
+ * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
+ * but that really is a band-aid.  Going forward it should be replaced with
+ * solutions targeted more specifically at RT tasks.
+ */
+static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
+{
+	struct update_util_data *data;
+
+	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
+						  cpu_of(rq)));
+	if (data)
+		data->func(data, rq_clock(rq), flags);
+}
+#else
+static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
+#endif /* CONFIG_CPU_FREQ */
+
+#ifdef arch_scale_freq_capacity
+# ifndef arch_scale_freq_invariant
+#  define arch_scale_freq_invariant()	true
+# endif
+#else
+# define arch_scale_freq_invariant()	false
+#endif
+
+#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
+static inline unsigned long cpu_bw_dl(struct rq *rq)
+{
+	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
+}
+
+static inline unsigned long cpu_util_dl(struct rq *rq)
+{
+	return READ_ONCE(rq->avg_dl.util_avg);
+}
+
+static inline unsigned long cpu_util_cfs(struct rq *rq)
+{
+	unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
+
+	if (sched_feat(UTIL_EST)) {
+		util = max_t(unsigned long, util,
+			     READ_ONCE(rq->cfs.avg.util_est.enqueued));
+	}
+
+	return util;
+}
+
+static inline unsigned long cpu_util_rt(struct rq *rq)
+{
+	return READ_ONCE(rq->avg_rt.util_avg);
+}
+#endif
+
+#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
+static inline unsigned long cpu_util_irq(struct rq *rq)
+{
+	return rq->avg_irq.util_avg;
+}
+
+static inline
+unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
+{
+	util *= (max - irq);
+	util /= max;
+
+	return util;
+
+}
+#else
+static inline unsigned long cpu_util_irq(struct rq *rq)
+{
+	return 0;
+}
+
+static inline
+unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
+{
+	return util;
+}
+#endif