blob: 1b82bc7c3ccaac9946581e14e81379415c97c4a9 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21#include "irq.h"
22#include "mmu.h"
23#include "x86.h"
24#include "kvm_cache_regs.h"
25#include "cpuid.h"
26
27#include <linux/kvm_host.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/mm.h>
31#include <linux/highmem.h>
32#include <linux/moduleparam.h>
33#include <linux/export.h>
34#include <linux/swap.h>
35#include <linux/hugetlb.h>
36#include <linux/compiler.h>
37#include <linux/srcu.h>
38#include <linux/slab.h>
39#include <linux/sched/signal.h>
40#include <linux/uaccess.h>
41#include <linux/hash.h>
42#include <linux/kern_levels.h>
43
44#include <asm/page.h>
45#include <asm/pat.h>
46#include <asm/cmpxchg.h>
47#include <asm/io.h>
48#include <asm/vmx.h>
49#include <asm/kvm_page_track.h>
50#include "trace.h"
51
52/*
53 * When setting this variable to true it enables Two-Dimensional-Paging
54 * where the hardware walks 2 page tables:
55 * 1. the guest-virtual to guest-physical
56 * 2. while doing 1. it walks guest-physical to host-physical
57 * If the hardware supports that we don't need to do shadow paging.
58 */
59bool tdp_enabled = false;
60
61enum {
62 AUDIT_PRE_PAGE_FAULT,
63 AUDIT_POST_PAGE_FAULT,
64 AUDIT_PRE_PTE_WRITE,
65 AUDIT_POST_PTE_WRITE,
66 AUDIT_PRE_SYNC,
67 AUDIT_POST_SYNC
68};
69
70#undef MMU_DEBUG
71
72#ifdef MMU_DEBUG
73static bool dbg = 0;
74module_param(dbg, bool, 0644);
75
76#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
78#define MMU_WARN_ON(x) WARN_ON(x)
79#else
80#define pgprintk(x...) do { } while (0)
81#define rmap_printk(x...) do { } while (0)
82#define MMU_WARN_ON(x) do { } while (0)
83#endif
84
85#define PTE_PREFETCH_NUM 8
86
87#define PT_FIRST_AVAIL_BITS_SHIFT 10
88#define PT64_SECOND_AVAIL_BITS_SHIFT 52
89
90#define PT64_LEVEL_BITS 9
91
92#define PT64_LEVEL_SHIFT(level) \
93 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
94
95#define PT64_INDEX(address, level)\
96 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
97
98
99#define PT32_LEVEL_BITS 10
100
101#define PT32_LEVEL_SHIFT(level) \
102 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
103
104#define PT32_LVL_OFFSET_MASK(level) \
105 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
106 * PT32_LEVEL_BITS))) - 1))
107
108#define PT32_INDEX(address, level)\
109 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
110
111
112#define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
113#define PT64_DIR_BASE_ADDR_MASK \
114 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
115#define PT64_LVL_ADDR_MASK(level) \
116 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
117 * PT64_LEVEL_BITS))) - 1))
118#define PT64_LVL_OFFSET_MASK(level) \
119 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT64_LEVEL_BITS))) - 1))
121
122#define PT32_BASE_ADDR_MASK PAGE_MASK
123#define PT32_DIR_BASE_ADDR_MASK \
124 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
125#define PT32_LVL_ADDR_MASK(level) \
126 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
127 * PT32_LEVEL_BITS))) - 1))
128
129#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
130 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
131
132#define ACC_EXEC_MASK 1
133#define ACC_WRITE_MASK PT_WRITABLE_MASK
134#define ACC_USER_MASK PT_USER_MASK
135#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
136
137/* The mask for the R/X bits in EPT PTEs */
138#define PT64_EPT_READABLE_MASK 0x1ull
139#define PT64_EPT_EXECUTABLE_MASK 0x4ull
140
141#include <trace/events/kvm.h>
142
143#define CREATE_TRACE_POINTS
144#include "mmutrace.h"
145
146#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
147#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
148
149#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
150
151/* make pte_list_desc fit well in cache line */
152#define PTE_LIST_EXT 3
153
154/*
155 * Return values of handle_mmio_page_fault and mmu.page_fault:
156 * RET_PF_RETRY: let CPU fault again on the address.
157 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
158 *
159 * For handle_mmio_page_fault only:
160 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
161 */
162enum {
163 RET_PF_RETRY = 0,
164 RET_PF_EMULATE = 1,
165 RET_PF_INVALID = 2,
166};
167
168struct pte_list_desc {
169 u64 *sptes[PTE_LIST_EXT];
170 struct pte_list_desc *more;
171};
172
173struct kvm_shadow_walk_iterator {
174 u64 addr;
175 hpa_t shadow_addr;
176 u64 *sptep;
177 int level;
178 unsigned index;
179};
180
181static const union kvm_mmu_page_role mmu_base_role_mask = {
182 .cr0_wp = 1,
183 .cr4_pae = 1,
184 .nxe = 1,
185 .smep_andnot_wp = 1,
186 .smap_andnot_wp = 1,
187 .smm = 1,
188 .guest_mode = 1,
189 .ad_disabled = 1,
190};
191
192#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
193 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
194 (_root), (_addr)); \
195 shadow_walk_okay(&(_walker)); \
196 shadow_walk_next(&(_walker)))
197
198#define for_each_shadow_entry(_vcpu, _addr, _walker) \
199 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
200 shadow_walk_okay(&(_walker)); \
201 shadow_walk_next(&(_walker)))
202
203#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
204 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
205 shadow_walk_okay(&(_walker)) && \
206 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
207 __shadow_walk_next(&(_walker), spte))
208
209static struct kmem_cache *pte_list_desc_cache;
210static struct kmem_cache *mmu_page_header_cache;
211static struct percpu_counter kvm_total_used_mmu_pages;
212
213static u64 __read_mostly shadow_nx_mask;
214static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
215static u64 __read_mostly shadow_user_mask;
216static u64 __read_mostly shadow_accessed_mask;
217static u64 __read_mostly shadow_dirty_mask;
218static u64 __read_mostly shadow_mmio_mask;
219static u64 __read_mostly shadow_mmio_value;
220static u64 __read_mostly shadow_present_mask;
221static u64 __read_mostly shadow_me_mask;
222
223/*
224 * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
225 * Non-present SPTEs with shadow_acc_track_value set are in place for access
226 * tracking.
227 */
228static u64 __read_mostly shadow_acc_track_mask;
229static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
230
231/*
232 * The mask/shift to use for saving the original R/X bits when marking the PTE
233 * as not-present for access tracking purposes. We do not save the W bit as the
234 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
235 * restored only when a write is attempted to the page.
236 */
237static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
238 PT64_EPT_EXECUTABLE_MASK;
239static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
240
241/*
242 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
243 * to guard against L1TF attacks.
244 */
245static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
246
247/*
248 * The number of high-order 1 bits to use in the mask above.
249 */
250static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
251
252/*
253 * In some cases, we need to preserve the GFN of a non-present or reserved
254 * SPTE when we usurp the upper five bits of the physical address space to
255 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
256 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
257 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
258 * high and low parts. This mask covers the lower bits of the GFN.
259 */
260static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
261
262
263static void mmu_spte_set(u64 *sptep, u64 spte);
264static union kvm_mmu_page_role
265kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
266
267void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
268{
269 BUG_ON((mmio_mask & mmio_value) != mmio_value);
270 shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
271 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
272}
273EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
274
275static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
276{
277 return sp->role.ad_disabled;
278}
279
280static inline bool spte_ad_enabled(u64 spte)
281{
282 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
283 return !(spte & shadow_acc_track_value);
284}
285
286static inline u64 spte_shadow_accessed_mask(u64 spte)
287{
288 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
289 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
290}
291
292static inline u64 spte_shadow_dirty_mask(u64 spte)
293{
294 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
295 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
296}
297
298static inline bool is_access_track_spte(u64 spte)
299{
300 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
301}
302
303/*
304 * the low bit of the generation number is always presumed to be zero.
305 * This disables mmio caching during memslot updates. The concept is
306 * similar to a seqcount but instead of retrying the access we just punt
307 * and ignore the cache.
308 *
309 * spte bits 3-11 are used as bits 1-9 of the generation number,
310 * the bits 52-61 are used as bits 10-19 of the generation number.
311 */
312#define MMIO_SPTE_GEN_LOW_SHIFT 2
313#define MMIO_SPTE_GEN_HIGH_SHIFT 52
314
315#define MMIO_GEN_SHIFT 20
316#define MMIO_GEN_LOW_SHIFT 10
317#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
318#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
319
320static u64 generation_mmio_spte_mask(unsigned int gen)
321{
322 u64 mask;
323
324 WARN_ON(gen & ~MMIO_GEN_MASK);
325
326 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
327 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
328 return mask;
329}
330
331static unsigned int get_mmio_spte_generation(u64 spte)
332{
333 unsigned int gen;
334
335 spte &= ~shadow_mmio_mask;
336
337 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
338 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
339 return gen;
340}
341
342static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
343{
344 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
345}
346
347static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
348 unsigned access)
349{
350 unsigned int gen = kvm_current_mmio_generation(vcpu);
351 u64 mask = generation_mmio_spte_mask(gen);
352 u64 gpa = gfn << PAGE_SHIFT;
353
354 access &= ACC_WRITE_MASK | ACC_USER_MASK;
355 mask |= shadow_mmio_value | access;
356 mask |= gpa | shadow_nonpresent_or_rsvd_mask;
357 mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
358 << shadow_nonpresent_or_rsvd_mask_len;
359
360 trace_mark_mmio_spte(sptep, gfn, access, gen);
361 mmu_spte_set(sptep, mask);
362}
363
364static bool is_mmio_spte(u64 spte)
365{
366 return (spte & shadow_mmio_mask) == shadow_mmio_value;
367}
368
369static gfn_t get_mmio_spte_gfn(u64 spte)
370{
371 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
372
373 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
374 & shadow_nonpresent_or_rsvd_mask;
375
376 return gpa >> PAGE_SHIFT;
377}
378
379static unsigned get_mmio_spte_access(u64 spte)
380{
381 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
382 return (spte & ~mask) & ~PAGE_MASK;
383}
384
385static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
386 kvm_pfn_t pfn, unsigned access)
387{
388 if (unlikely(is_noslot_pfn(pfn))) {
389 mark_mmio_spte(vcpu, sptep, gfn, access);
390 return true;
391 }
392
393 return false;
394}
395
396static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
397{
398 unsigned int kvm_gen, spte_gen;
399
400 kvm_gen = kvm_current_mmio_generation(vcpu);
401 spte_gen = get_mmio_spte_generation(spte);
402
403 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
404 return likely(kvm_gen == spte_gen);
405}
406
407/*
408 * Sets the shadow PTE masks used by the MMU.
409 *
410 * Assumptions:
411 * - Setting either @accessed_mask or @dirty_mask requires setting both
412 * - At least one of @accessed_mask or @acc_track_mask must be set
413 */
414void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
415 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
416 u64 acc_track_mask, u64 me_mask)
417{
418 BUG_ON(!dirty_mask != !accessed_mask);
419 BUG_ON(!accessed_mask && !acc_track_mask);
420 BUG_ON(acc_track_mask & shadow_acc_track_value);
421
422 shadow_user_mask = user_mask;
423 shadow_accessed_mask = accessed_mask;
424 shadow_dirty_mask = dirty_mask;
425 shadow_nx_mask = nx_mask;
426 shadow_x_mask = x_mask;
427 shadow_present_mask = p_mask;
428 shadow_acc_track_mask = acc_track_mask;
429 shadow_me_mask = me_mask;
430}
431EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
432
433static void kvm_mmu_reset_all_pte_masks(void)
434{
435 u8 low_phys_bits;
436
437 shadow_user_mask = 0;
438 shadow_accessed_mask = 0;
439 shadow_dirty_mask = 0;
440 shadow_nx_mask = 0;
441 shadow_x_mask = 0;
442 shadow_mmio_mask = 0;
443 shadow_present_mask = 0;
444 shadow_acc_track_mask = 0;
445
446 /*
447 * If the CPU has 46 or less physical address bits, then set an
448 * appropriate mask to guard against L1TF attacks. Otherwise, it is
449 * assumed that the CPU is not vulnerable to L1TF.
450 */
451 low_phys_bits = boot_cpu_data.x86_phys_bits;
452 if (boot_cpu_data.x86_phys_bits <
453 52 - shadow_nonpresent_or_rsvd_mask_len) {
454 shadow_nonpresent_or_rsvd_mask =
455 rsvd_bits(boot_cpu_data.x86_phys_bits -
456 shadow_nonpresent_or_rsvd_mask_len,
457 boot_cpu_data.x86_phys_bits - 1);
458 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
459 }
460 shadow_nonpresent_or_rsvd_lower_gfn_mask =
461 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
462}
463
464static int is_cpuid_PSE36(void)
465{
466 return 1;
467}
468
469static int is_nx(struct kvm_vcpu *vcpu)
470{
471 return vcpu->arch.efer & EFER_NX;
472}
473
474static int is_shadow_present_pte(u64 pte)
475{
476 return (pte != 0) && !is_mmio_spte(pte);
477}
478
479static int is_large_pte(u64 pte)
480{
481 return pte & PT_PAGE_SIZE_MASK;
482}
483
484static int is_last_spte(u64 pte, int level)
485{
486 if (level == PT_PAGE_TABLE_LEVEL)
487 return 1;
488 if (is_large_pte(pte))
489 return 1;
490 return 0;
491}
492
493static bool is_executable_pte(u64 spte)
494{
495 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
496}
497
498static kvm_pfn_t spte_to_pfn(u64 pte)
499{
500 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
501}
502
503static gfn_t pse36_gfn_delta(u32 gpte)
504{
505 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
506
507 return (gpte & PT32_DIR_PSE36_MASK) << shift;
508}
509
510#ifdef CONFIG_X86_64
511static void __set_spte(u64 *sptep, u64 spte)
512{
513 WRITE_ONCE(*sptep, spte);
514}
515
516static void __update_clear_spte_fast(u64 *sptep, u64 spte)
517{
518 WRITE_ONCE(*sptep, spte);
519}
520
521static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
522{
523 return xchg(sptep, spte);
524}
525
526static u64 __get_spte_lockless(u64 *sptep)
527{
528 return READ_ONCE(*sptep);
529}
530#else
531union split_spte {
532 struct {
533 u32 spte_low;
534 u32 spte_high;
535 };
536 u64 spte;
537};
538
539static void count_spte_clear(u64 *sptep, u64 spte)
540{
541 struct kvm_mmu_page *sp = page_header(__pa(sptep));
542
543 if (is_shadow_present_pte(spte))
544 return;
545
546 /* Ensure the spte is completely set before we increase the count */
547 smp_wmb();
548 sp->clear_spte_count++;
549}
550
551static void __set_spte(u64 *sptep, u64 spte)
552{
553 union split_spte *ssptep, sspte;
554
555 ssptep = (union split_spte *)sptep;
556 sspte = (union split_spte)spte;
557
558 ssptep->spte_high = sspte.spte_high;
559
560 /*
561 * If we map the spte from nonpresent to present, We should store
562 * the high bits firstly, then set present bit, so cpu can not
563 * fetch this spte while we are setting the spte.
564 */
565 smp_wmb();
566
567 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
568}
569
570static void __update_clear_spte_fast(u64 *sptep, u64 spte)
571{
572 union split_spte *ssptep, sspte;
573
574 ssptep = (union split_spte *)sptep;
575 sspte = (union split_spte)spte;
576
577 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
578
579 /*
580 * If we map the spte from present to nonpresent, we should clear
581 * present bit firstly to avoid vcpu fetch the old high bits.
582 */
583 smp_wmb();
584
585 ssptep->spte_high = sspte.spte_high;
586 count_spte_clear(sptep, spte);
587}
588
589static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
590{
591 union split_spte *ssptep, sspte, orig;
592
593 ssptep = (union split_spte *)sptep;
594 sspte = (union split_spte)spte;
595
596 /* xchg acts as a barrier before the setting of the high bits */
597 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
598 orig.spte_high = ssptep->spte_high;
599 ssptep->spte_high = sspte.spte_high;
600 count_spte_clear(sptep, spte);
601
602 return orig.spte;
603}
604
605/*
606 * The idea using the light way get the spte on x86_32 guest is from
607 * gup_get_pte(arch/x86/mm/gup.c).
608 *
609 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
610 * coalesces them and we are running out of the MMU lock. Therefore
611 * we need to protect against in-progress updates of the spte.
612 *
613 * Reading the spte while an update is in progress may get the old value
614 * for the high part of the spte. The race is fine for a present->non-present
615 * change (because the high part of the spte is ignored for non-present spte),
616 * but for a present->present change we must reread the spte.
617 *
618 * All such changes are done in two steps (present->non-present and
619 * non-present->present), hence it is enough to count the number of
620 * present->non-present updates: if it changed while reading the spte,
621 * we might have hit the race. This is done using clear_spte_count.
622 */
623static u64 __get_spte_lockless(u64 *sptep)
624{
625 struct kvm_mmu_page *sp = page_header(__pa(sptep));
626 union split_spte spte, *orig = (union split_spte *)sptep;
627 int count;
628
629retry:
630 count = sp->clear_spte_count;
631 smp_rmb();
632
633 spte.spte_low = orig->spte_low;
634 smp_rmb();
635
636 spte.spte_high = orig->spte_high;
637 smp_rmb();
638
639 if (unlikely(spte.spte_low != orig->spte_low ||
640 count != sp->clear_spte_count))
641 goto retry;
642
643 return spte.spte;
644}
645#endif
646
647static bool spte_can_locklessly_be_made_writable(u64 spte)
648{
649 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
650 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
651}
652
653static bool spte_has_volatile_bits(u64 spte)
654{
655 if (!is_shadow_present_pte(spte))
656 return false;
657
658 /*
659 * Always atomically update spte if it can be updated
660 * out of mmu-lock, it can ensure dirty bit is not lost,
661 * also, it can help us to get a stable is_writable_pte()
662 * to ensure tlb flush is not missed.
663 */
664 if (spte_can_locklessly_be_made_writable(spte) ||
665 is_access_track_spte(spte))
666 return true;
667
668 if (spte_ad_enabled(spte)) {
669 if ((spte & shadow_accessed_mask) == 0 ||
670 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
671 return true;
672 }
673
674 return false;
675}
676
677static bool is_accessed_spte(u64 spte)
678{
679 u64 accessed_mask = spte_shadow_accessed_mask(spte);
680
681 return accessed_mask ? spte & accessed_mask
682 : !is_access_track_spte(spte);
683}
684
685static bool is_dirty_spte(u64 spte)
686{
687 u64 dirty_mask = spte_shadow_dirty_mask(spte);
688
689 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
690}
691
692/* Rules for using mmu_spte_set:
693 * Set the sptep from nonpresent to present.
694 * Note: the sptep being assigned *must* be either not present
695 * or in a state where the hardware will not attempt to update
696 * the spte.
697 */
698static void mmu_spte_set(u64 *sptep, u64 new_spte)
699{
700 WARN_ON(is_shadow_present_pte(*sptep));
701 __set_spte(sptep, new_spte);
702}
703
704/*
705 * Update the SPTE (excluding the PFN), but do not track changes in its
706 * accessed/dirty status.
707 */
708static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
709{
710 u64 old_spte = *sptep;
711
712 WARN_ON(!is_shadow_present_pte(new_spte));
713
714 if (!is_shadow_present_pte(old_spte)) {
715 mmu_spte_set(sptep, new_spte);
716 return old_spte;
717 }
718
719 if (!spte_has_volatile_bits(old_spte))
720 __update_clear_spte_fast(sptep, new_spte);
721 else
722 old_spte = __update_clear_spte_slow(sptep, new_spte);
723
724 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
725
726 return old_spte;
727}
728
729/* Rules for using mmu_spte_update:
730 * Update the state bits, it means the mapped pfn is not changed.
731 *
732 * Whenever we overwrite a writable spte with a read-only one we
733 * should flush remote TLBs. Otherwise rmap_write_protect
734 * will find a read-only spte, even though the writable spte
735 * might be cached on a CPU's TLB, the return value indicates this
736 * case.
737 *
738 * Returns true if the TLB needs to be flushed
739 */
740static bool mmu_spte_update(u64 *sptep, u64 new_spte)
741{
742 bool flush = false;
743 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
744
745 if (!is_shadow_present_pte(old_spte))
746 return false;
747
748 /*
749 * For the spte updated out of mmu-lock is safe, since
750 * we always atomically update it, see the comments in
751 * spte_has_volatile_bits().
752 */
753 if (spte_can_locklessly_be_made_writable(old_spte) &&
754 !is_writable_pte(new_spte))
755 flush = true;
756
757 /*
758 * Flush TLB when accessed/dirty states are changed in the page tables,
759 * to guarantee consistency between TLB and page tables.
760 */
761
762 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
763 flush = true;
764 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
765 }
766
767 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
768 flush = true;
769 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
770 }
771
772 return flush;
773}
774
775/*
776 * Rules for using mmu_spte_clear_track_bits:
777 * It sets the sptep from present to nonpresent, and track the
778 * state bits, it is used to clear the last level sptep.
779 * Returns non-zero if the PTE was previously valid.
780 */
781static int mmu_spte_clear_track_bits(u64 *sptep)
782{
783 kvm_pfn_t pfn;
784 u64 old_spte = *sptep;
785
786 if (!spte_has_volatile_bits(old_spte))
787 __update_clear_spte_fast(sptep, 0ull);
788 else
789 old_spte = __update_clear_spte_slow(sptep, 0ull);
790
791 if (!is_shadow_present_pte(old_spte))
792 return 0;
793
794 pfn = spte_to_pfn(old_spte);
795
796 /*
797 * KVM does not hold the refcount of the page used by
798 * kvm mmu, before reclaiming the page, we should
799 * unmap it from mmu first.
800 */
801 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
802
803 if (is_accessed_spte(old_spte))
804 kvm_set_pfn_accessed(pfn);
805
806 if (is_dirty_spte(old_spte))
807 kvm_set_pfn_dirty(pfn);
808
809 return 1;
810}
811
812/*
813 * Rules for using mmu_spte_clear_no_track:
814 * Directly clear spte without caring the state bits of sptep,
815 * it is used to set the upper level spte.
816 */
817static void mmu_spte_clear_no_track(u64 *sptep)
818{
819 __update_clear_spte_fast(sptep, 0ull);
820}
821
822static u64 mmu_spte_get_lockless(u64 *sptep)
823{
824 return __get_spte_lockless(sptep);
825}
826
827static u64 mark_spte_for_access_track(u64 spte)
828{
829 if (spte_ad_enabled(spte))
830 return spte & ~shadow_accessed_mask;
831
832 if (is_access_track_spte(spte))
833 return spte;
834
835 /*
836 * Making an Access Tracking PTE will result in removal of write access
837 * from the PTE. So, verify that we will be able to restore the write
838 * access in the fast page fault path later on.
839 */
840 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
841 !spte_can_locklessly_be_made_writable(spte),
842 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
843
844 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
845 shadow_acc_track_saved_bits_shift),
846 "kvm: Access Tracking saved bit locations are not zero\n");
847
848 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
849 shadow_acc_track_saved_bits_shift;
850 spte &= ~shadow_acc_track_mask;
851
852 return spte;
853}
854
855/* Restore an acc-track PTE back to a regular PTE */
856static u64 restore_acc_track_spte(u64 spte)
857{
858 u64 new_spte = spte;
859 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
860 & shadow_acc_track_saved_bits_mask;
861
862 WARN_ON_ONCE(spte_ad_enabled(spte));
863 WARN_ON_ONCE(!is_access_track_spte(spte));
864
865 new_spte &= ~shadow_acc_track_mask;
866 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
867 shadow_acc_track_saved_bits_shift);
868 new_spte |= saved_bits;
869
870 return new_spte;
871}
872
873/* Returns the Accessed status of the PTE and resets it at the same time. */
874static bool mmu_spte_age(u64 *sptep)
875{
876 u64 spte = mmu_spte_get_lockless(sptep);
877
878 if (!is_accessed_spte(spte))
879 return false;
880
881 if (spte_ad_enabled(spte)) {
882 clear_bit((ffs(shadow_accessed_mask) - 1),
883 (unsigned long *)sptep);
884 } else {
885 /*
886 * Capture the dirty status of the page, so that it doesn't get
887 * lost when the SPTE is marked for access tracking.
888 */
889 if (is_writable_pte(spte))
890 kvm_set_pfn_dirty(spte_to_pfn(spte));
891
892 spte = mark_spte_for_access_track(spte);
893 mmu_spte_update_no_track(sptep, spte);
894 }
895
896 return true;
897}
898
899static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
900{
901 /*
902 * Prevent page table teardown by making any free-er wait during
903 * kvm_flush_remote_tlbs() IPI to all active vcpus.
904 */
905 local_irq_disable();
906
907 /*
908 * Make sure a following spte read is not reordered ahead of the write
909 * to vcpu->mode.
910 */
911 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
912}
913
914static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
915{
916 /*
917 * Make sure the write to vcpu->mode is not reordered in front of
918 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
919 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
920 */
921 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
922 local_irq_enable();
923}
924
925static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
926 struct kmem_cache *base_cache, int min)
927{
928 void *obj;
929
930 if (cache->nobjs >= min)
931 return 0;
932 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
933 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
934 if (!obj)
935 return -ENOMEM;
936 cache->objects[cache->nobjs++] = obj;
937 }
938 return 0;
939}
940
941static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
942{
943 return cache->nobjs;
944}
945
946static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
947 struct kmem_cache *cache)
948{
949 while (mc->nobjs)
950 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
951}
952
953static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
954 int min)
955{
956 void *page;
957
958 if (cache->nobjs >= min)
959 return 0;
960 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
961 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
962 if (!page)
963 return -ENOMEM;
964 cache->objects[cache->nobjs++] = page;
965 }
966 return 0;
967}
968
969static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
970{
971 while (mc->nobjs)
972 free_page((unsigned long)mc->objects[--mc->nobjs]);
973}
974
975static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
976{
977 int r;
978
979 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
980 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
981 if (r)
982 goto out;
983 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
984 if (r)
985 goto out;
986 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
987 mmu_page_header_cache, 4);
988out:
989 return r;
990}
991
992static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
993{
994 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
995 pte_list_desc_cache);
996 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
997 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
998 mmu_page_header_cache);
999}
1000
1001static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1002{
1003 void *p;
1004
1005 BUG_ON(!mc->nobjs);
1006 p = mc->objects[--mc->nobjs];
1007 return p;
1008}
1009
1010static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1011{
1012 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1013}
1014
1015static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1016{
1017 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1018}
1019
1020static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1021{
1022 if (!sp->role.direct)
1023 return sp->gfns[index];
1024
1025 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1026}
1027
1028static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1029{
1030 if (sp->role.direct)
1031 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
1032 else
1033 sp->gfns[index] = gfn;
1034}
1035
1036/*
1037 * Return the pointer to the large page information for a given gfn,
1038 * handling slots that are not large page aligned.
1039 */
1040static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1041 struct kvm_memory_slot *slot,
1042 int level)
1043{
1044 unsigned long idx;
1045
1046 idx = gfn_to_index(gfn, slot->base_gfn, level);
1047 return &slot->arch.lpage_info[level - 2][idx];
1048}
1049
1050static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1051 gfn_t gfn, int count)
1052{
1053 struct kvm_lpage_info *linfo;
1054 int i;
1055
1056 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1057 linfo = lpage_info_slot(gfn, slot, i);
1058 linfo->disallow_lpage += count;
1059 WARN_ON(linfo->disallow_lpage < 0);
1060 }
1061}
1062
1063void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1064{
1065 update_gfn_disallow_lpage_count(slot, gfn, 1);
1066}
1067
1068void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1069{
1070 update_gfn_disallow_lpage_count(slot, gfn, -1);
1071}
1072
1073static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1074{
1075 struct kvm_memslots *slots;
1076 struct kvm_memory_slot *slot;
1077 gfn_t gfn;
1078
1079 kvm->arch.indirect_shadow_pages++;
1080 gfn = sp->gfn;
1081 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1082 slot = __gfn_to_memslot(slots, gfn);
1083
1084 /* the non-leaf shadow pages are keeping readonly. */
1085 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1086 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1087 KVM_PAGE_TRACK_WRITE);
1088
1089 kvm_mmu_gfn_disallow_lpage(slot, gfn);
1090}
1091
1092static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1093{
1094 struct kvm_memslots *slots;
1095 struct kvm_memory_slot *slot;
1096 gfn_t gfn;
1097
1098 kvm->arch.indirect_shadow_pages--;
1099 gfn = sp->gfn;
1100 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1101 slot = __gfn_to_memslot(slots, gfn);
1102 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1103 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1104 KVM_PAGE_TRACK_WRITE);
1105
1106 kvm_mmu_gfn_allow_lpage(slot, gfn);
1107}
1108
1109static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1110 struct kvm_memory_slot *slot)
1111{
1112 struct kvm_lpage_info *linfo;
1113
1114 if (slot) {
1115 linfo = lpage_info_slot(gfn, slot, level);
1116 return !!linfo->disallow_lpage;
1117 }
1118
1119 return true;
1120}
1121
1122static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1123 int level)
1124{
1125 struct kvm_memory_slot *slot;
1126
1127 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1128 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1129}
1130
1131static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1132{
1133 unsigned long page_size;
1134 int i, ret = 0;
1135
1136 page_size = kvm_host_page_size(kvm, gfn);
1137
1138 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1139 if (page_size >= KVM_HPAGE_SIZE(i))
1140 ret = i;
1141 else
1142 break;
1143 }
1144
1145 return ret;
1146}
1147
1148static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1149 bool no_dirty_log)
1150{
1151 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1152 return false;
1153 if (no_dirty_log && slot->dirty_bitmap)
1154 return false;
1155
1156 return true;
1157}
1158
1159static struct kvm_memory_slot *
1160gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1161 bool no_dirty_log)
1162{
1163 struct kvm_memory_slot *slot;
1164
1165 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1166 if (!memslot_valid_for_gpte(slot, no_dirty_log))
1167 slot = NULL;
1168
1169 return slot;
1170}
1171
1172static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1173 bool *force_pt_level)
1174{
1175 int host_level, level, max_level;
1176 struct kvm_memory_slot *slot;
1177
1178 if (unlikely(*force_pt_level))
1179 return PT_PAGE_TABLE_LEVEL;
1180
1181 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1182 *force_pt_level = !memslot_valid_for_gpte(slot, true);
1183 if (unlikely(*force_pt_level))
1184 return PT_PAGE_TABLE_LEVEL;
1185
1186 host_level = host_mapping_level(vcpu->kvm, large_gfn);
1187
1188 if (host_level == PT_PAGE_TABLE_LEVEL)
1189 return host_level;
1190
1191 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1192
1193 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1194 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1195 break;
1196
1197 return level - 1;
1198}
1199
1200/*
1201 * About rmap_head encoding:
1202 *
1203 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1204 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1205 * pte_list_desc containing more mappings.
1206 */
1207
1208/*
1209 * Returns the number of pointers in the rmap chain, not counting the new one.
1210 */
1211static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1212 struct kvm_rmap_head *rmap_head)
1213{
1214 struct pte_list_desc *desc;
1215 int i, count = 0;
1216
1217 if (!rmap_head->val) {
1218 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1219 rmap_head->val = (unsigned long)spte;
1220 } else if (!(rmap_head->val & 1)) {
1221 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1222 desc = mmu_alloc_pte_list_desc(vcpu);
1223 desc->sptes[0] = (u64 *)rmap_head->val;
1224 desc->sptes[1] = spte;
1225 rmap_head->val = (unsigned long)desc | 1;
1226 ++count;
1227 } else {
1228 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1229 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1230 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1231 desc = desc->more;
1232 count += PTE_LIST_EXT;
1233 }
1234 if (desc->sptes[PTE_LIST_EXT-1]) {
1235 desc->more = mmu_alloc_pte_list_desc(vcpu);
1236 desc = desc->more;
1237 }
1238 for (i = 0; desc->sptes[i]; ++i)
1239 ++count;
1240 desc->sptes[i] = spte;
1241 }
1242 return count;
1243}
1244
1245static void
1246pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1247 struct pte_list_desc *desc, int i,
1248 struct pte_list_desc *prev_desc)
1249{
1250 int j;
1251
1252 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1253 ;
1254 desc->sptes[i] = desc->sptes[j];
1255 desc->sptes[j] = NULL;
1256 if (j != 0)
1257 return;
1258 if (!prev_desc && !desc->more)
1259 rmap_head->val = (unsigned long)desc->sptes[0];
1260 else
1261 if (prev_desc)
1262 prev_desc->more = desc->more;
1263 else
1264 rmap_head->val = (unsigned long)desc->more | 1;
1265 mmu_free_pte_list_desc(desc);
1266}
1267
1268static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1269{
1270 struct pte_list_desc *desc;
1271 struct pte_list_desc *prev_desc;
1272 int i;
1273
1274 if (!rmap_head->val) {
1275 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1276 BUG();
1277 } else if (!(rmap_head->val & 1)) {
1278 rmap_printk("pte_list_remove: %p 1->0\n", spte);
1279 if ((u64 *)rmap_head->val != spte) {
1280 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
1281 BUG();
1282 }
1283 rmap_head->val = 0;
1284 } else {
1285 rmap_printk("pte_list_remove: %p many->many\n", spte);
1286 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1287 prev_desc = NULL;
1288 while (desc) {
1289 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1290 if (desc->sptes[i] == spte) {
1291 pte_list_desc_remove_entry(rmap_head,
1292 desc, i, prev_desc);
1293 return;
1294 }
1295 }
1296 prev_desc = desc;
1297 desc = desc->more;
1298 }
1299 pr_err("pte_list_remove: %p many->many\n", spte);
1300 BUG();
1301 }
1302}
1303
1304static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1305 struct kvm_memory_slot *slot)
1306{
1307 unsigned long idx;
1308
1309 idx = gfn_to_index(gfn, slot->base_gfn, level);
1310 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1311}
1312
1313static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1314 struct kvm_mmu_page *sp)
1315{
1316 struct kvm_memslots *slots;
1317 struct kvm_memory_slot *slot;
1318
1319 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1320 slot = __gfn_to_memslot(slots, gfn);
1321 return __gfn_to_rmap(gfn, sp->role.level, slot);
1322}
1323
1324static bool rmap_can_add(struct kvm_vcpu *vcpu)
1325{
1326 struct kvm_mmu_memory_cache *cache;
1327
1328 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1329 return mmu_memory_cache_free_objects(cache);
1330}
1331
1332static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1333{
1334 struct kvm_mmu_page *sp;
1335 struct kvm_rmap_head *rmap_head;
1336
1337 sp = page_header(__pa(spte));
1338 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1339 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1340 return pte_list_add(vcpu, spte, rmap_head);
1341}
1342
1343static void rmap_remove(struct kvm *kvm, u64 *spte)
1344{
1345 struct kvm_mmu_page *sp;
1346 gfn_t gfn;
1347 struct kvm_rmap_head *rmap_head;
1348
1349 sp = page_header(__pa(spte));
1350 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1351 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1352 pte_list_remove(spte, rmap_head);
1353}
1354
1355/*
1356 * Used by the following functions to iterate through the sptes linked by a
1357 * rmap. All fields are private and not assumed to be used outside.
1358 */
1359struct rmap_iterator {
1360 /* private fields */
1361 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1362 int pos; /* index of the sptep */
1363};
1364
1365/*
1366 * Iteration must be started by this function. This should also be used after
1367 * removing/dropping sptes from the rmap link because in such cases the
1368 * information in the itererator may not be valid.
1369 *
1370 * Returns sptep if found, NULL otherwise.
1371 */
1372static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1373 struct rmap_iterator *iter)
1374{
1375 u64 *sptep;
1376
1377 if (!rmap_head->val)
1378 return NULL;
1379
1380 if (!(rmap_head->val & 1)) {
1381 iter->desc = NULL;
1382 sptep = (u64 *)rmap_head->val;
1383 goto out;
1384 }
1385
1386 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1387 iter->pos = 0;
1388 sptep = iter->desc->sptes[iter->pos];
1389out:
1390 BUG_ON(!is_shadow_present_pte(*sptep));
1391 return sptep;
1392}
1393
1394/*
1395 * Must be used with a valid iterator: e.g. after rmap_get_first().
1396 *
1397 * Returns sptep if found, NULL otherwise.
1398 */
1399static u64 *rmap_get_next(struct rmap_iterator *iter)
1400{
1401 u64 *sptep;
1402
1403 if (iter->desc) {
1404 if (iter->pos < PTE_LIST_EXT - 1) {
1405 ++iter->pos;
1406 sptep = iter->desc->sptes[iter->pos];
1407 if (sptep)
1408 goto out;
1409 }
1410
1411 iter->desc = iter->desc->more;
1412
1413 if (iter->desc) {
1414 iter->pos = 0;
1415 /* desc->sptes[0] cannot be NULL */
1416 sptep = iter->desc->sptes[iter->pos];
1417 goto out;
1418 }
1419 }
1420
1421 return NULL;
1422out:
1423 BUG_ON(!is_shadow_present_pte(*sptep));
1424 return sptep;
1425}
1426
1427#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1428 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1429 _spte_; _spte_ = rmap_get_next(_iter_))
1430
1431static void drop_spte(struct kvm *kvm, u64 *sptep)
1432{
1433 if (mmu_spte_clear_track_bits(sptep))
1434 rmap_remove(kvm, sptep);
1435}
1436
1437
1438static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1439{
1440 if (is_large_pte(*sptep)) {
1441 WARN_ON(page_header(__pa(sptep))->role.level ==
1442 PT_PAGE_TABLE_LEVEL);
1443 drop_spte(kvm, sptep);
1444 --kvm->stat.lpages;
1445 return true;
1446 }
1447
1448 return false;
1449}
1450
1451static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1452{
1453 if (__drop_large_spte(vcpu->kvm, sptep))
1454 kvm_flush_remote_tlbs(vcpu->kvm);
1455}
1456
1457/*
1458 * Write-protect on the specified @sptep, @pt_protect indicates whether
1459 * spte write-protection is caused by protecting shadow page table.
1460 *
1461 * Note: write protection is difference between dirty logging and spte
1462 * protection:
1463 * - for dirty logging, the spte can be set to writable at anytime if
1464 * its dirty bitmap is properly set.
1465 * - for spte protection, the spte can be writable only after unsync-ing
1466 * shadow page.
1467 *
1468 * Return true if tlb need be flushed.
1469 */
1470static bool spte_write_protect(u64 *sptep, bool pt_protect)
1471{
1472 u64 spte = *sptep;
1473
1474 if (!is_writable_pte(spte) &&
1475 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1476 return false;
1477
1478 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1479
1480 if (pt_protect)
1481 spte &= ~SPTE_MMU_WRITEABLE;
1482 spte = spte & ~PT_WRITABLE_MASK;
1483
1484 return mmu_spte_update(sptep, spte);
1485}
1486
1487static bool __rmap_write_protect(struct kvm *kvm,
1488 struct kvm_rmap_head *rmap_head,
1489 bool pt_protect)
1490{
1491 u64 *sptep;
1492 struct rmap_iterator iter;
1493 bool flush = false;
1494
1495 for_each_rmap_spte(rmap_head, &iter, sptep)
1496 flush |= spte_write_protect(sptep, pt_protect);
1497
1498 return flush;
1499}
1500
1501static bool spte_clear_dirty(u64 *sptep)
1502{
1503 u64 spte = *sptep;
1504
1505 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1506
1507 spte &= ~shadow_dirty_mask;
1508
1509 return mmu_spte_update(sptep, spte);
1510}
1511
1512static bool wrprot_ad_disabled_spte(u64 *sptep)
1513{
1514 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1515 (unsigned long *)sptep);
1516 if (was_writable)
1517 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1518
1519 return was_writable;
1520}
1521
1522/*
1523 * Gets the GFN ready for another round of dirty logging by clearing the
1524 * - D bit on ad-enabled SPTEs, and
1525 * - W bit on ad-disabled SPTEs.
1526 * Returns true iff any D or W bits were cleared.
1527 */
1528static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1529{
1530 u64 *sptep;
1531 struct rmap_iterator iter;
1532 bool flush = false;
1533
1534 for_each_rmap_spte(rmap_head, &iter, sptep)
1535 if (spte_ad_enabled(*sptep))
1536 flush |= spte_clear_dirty(sptep);
1537 else
1538 flush |= wrprot_ad_disabled_spte(sptep);
1539
1540 return flush;
1541}
1542
1543static bool spte_set_dirty(u64 *sptep)
1544{
1545 u64 spte = *sptep;
1546
1547 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1548
1549 spte |= shadow_dirty_mask;
1550
1551 return mmu_spte_update(sptep, spte);
1552}
1553
1554static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1555{
1556 u64 *sptep;
1557 struct rmap_iterator iter;
1558 bool flush = false;
1559
1560 for_each_rmap_spte(rmap_head, &iter, sptep)
1561 if (spte_ad_enabled(*sptep))
1562 flush |= spte_set_dirty(sptep);
1563
1564 return flush;
1565}
1566
1567/**
1568 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1569 * @kvm: kvm instance
1570 * @slot: slot to protect
1571 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1572 * @mask: indicates which pages we should protect
1573 *
1574 * Used when we do not need to care about huge page mappings: e.g. during dirty
1575 * logging we do not have any such mappings.
1576 */
1577static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1578 struct kvm_memory_slot *slot,
1579 gfn_t gfn_offset, unsigned long mask)
1580{
1581 struct kvm_rmap_head *rmap_head;
1582
1583 while (mask) {
1584 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1585 PT_PAGE_TABLE_LEVEL, slot);
1586 __rmap_write_protect(kvm, rmap_head, false);
1587
1588 /* clear the first set bit */
1589 mask &= mask - 1;
1590 }
1591}
1592
1593/**
1594 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1595 * protect the page if the D-bit isn't supported.
1596 * @kvm: kvm instance
1597 * @slot: slot to clear D-bit
1598 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1599 * @mask: indicates which pages we should clear D-bit
1600 *
1601 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1602 */
1603void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1604 struct kvm_memory_slot *slot,
1605 gfn_t gfn_offset, unsigned long mask)
1606{
1607 struct kvm_rmap_head *rmap_head;
1608
1609 while (mask) {
1610 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1611 PT_PAGE_TABLE_LEVEL, slot);
1612 __rmap_clear_dirty(kvm, rmap_head);
1613
1614 /* clear the first set bit */
1615 mask &= mask - 1;
1616 }
1617}
1618EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1619
1620/**
1621 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1622 * PT level pages.
1623 *
1624 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1625 * enable dirty logging for them.
1626 *
1627 * Used when we do not need to care about huge page mappings: e.g. during dirty
1628 * logging we do not have any such mappings.
1629 */
1630void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1631 struct kvm_memory_slot *slot,
1632 gfn_t gfn_offset, unsigned long mask)
1633{
1634 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1635 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1636 mask);
1637 else
1638 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1639}
1640
1641/**
1642 * kvm_arch_write_log_dirty - emulate dirty page logging
1643 * @vcpu: Guest mode vcpu
1644 *
1645 * Emulate arch specific page modification logging for the
1646 * nested hypervisor
1647 */
1648int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1649{
1650 if (kvm_x86_ops->write_log_dirty)
1651 return kvm_x86_ops->write_log_dirty(vcpu);
1652
1653 return 0;
1654}
1655
1656bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1657 struct kvm_memory_slot *slot, u64 gfn)
1658{
1659 struct kvm_rmap_head *rmap_head;
1660 int i;
1661 bool write_protected = false;
1662
1663 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1664 rmap_head = __gfn_to_rmap(gfn, i, slot);
1665 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1666 }
1667
1668 return write_protected;
1669}
1670
1671static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1672{
1673 struct kvm_memory_slot *slot;
1674
1675 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1676 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1677}
1678
1679static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1680{
1681 u64 *sptep;
1682 struct rmap_iterator iter;
1683 bool flush = false;
1684
1685 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1686 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1687
1688 drop_spte(kvm, sptep);
1689 flush = true;
1690 }
1691
1692 return flush;
1693}
1694
1695static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1696 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1697 unsigned long data)
1698{
1699 return kvm_zap_rmapp(kvm, rmap_head);
1700}
1701
1702static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1703 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1704 unsigned long data)
1705{
1706 u64 *sptep;
1707 struct rmap_iterator iter;
1708 int need_flush = 0;
1709 u64 new_spte;
1710 pte_t *ptep = (pte_t *)data;
1711 kvm_pfn_t new_pfn;
1712
1713 WARN_ON(pte_huge(*ptep));
1714 new_pfn = pte_pfn(*ptep);
1715
1716restart:
1717 for_each_rmap_spte(rmap_head, &iter, sptep) {
1718 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1719 sptep, *sptep, gfn, level);
1720
1721 need_flush = 1;
1722
1723 if (pte_write(*ptep)) {
1724 drop_spte(kvm, sptep);
1725 goto restart;
1726 } else {
1727 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1728 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1729
1730 new_spte &= ~PT_WRITABLE_MASK;
1731 new_spte &= ~SPTE_HOST_WRITEABLE;
1732
1733 new_spte = mark_spte_for_access_track(new_spte);
1734
1735 mmu_spte_clear_track_bits(sptep);
1736 mmu_spte_set(sptep, new_spte);
1737 }
1738 }
1739
1740 if (need_flush)
1741 kvm_flush_remote_tlbs(kvm);
1742
1743 return 0;
1744}
1745
1746struct slot_rmap_walk_iterator {
1747 /* input fields. */
1748 struct kvm_memory_slot *slot;
1749 gfn_t start_gfn;
1750 gfn_t end_gfn;
1751 int start_level;
1752 int end_level;
1753
1754 /* output fields. */
1755 gfn_t gfn;
1756 struct kvm_rmap_head *rmap;
1757 int level;
1758
1759 /* private field. */
1760 struct kvm_rmap_head *end_rmap;
1761};
1762
1763static void
1764rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1765{
1766 iterator->level = level;
1767 iterator->gfn = iterator->start_gfn;
1768 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1769 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1770 iterator->slot);
1771}
1772
1773static void
1774slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1775 struct kvm_memory_slot *slot, int start_level,
1776 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1777{
1778 iterator->slot = slot;
1779 iterator->start_level = start_level;
1780 iterator->end_level = end_level;
1781 iterator->start_gfn = start_gfn;
1782 iterator->end_gfn = end_gfn;
1783
1784 rmap_walk_init_level(iterator, iterator->start_level);
1785}
1786
1787static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1788{
1789 return !!iterator->rmap;
1790}
1791
1792static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1793{
1794 if (++iterator->rmap <= iterator->end_rmap) {
1795 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1796 return;
1797 }
1798
1799 if (++iterator->level > iterator->end_level) {
1800 iterator->rmap = NULL;
1801 return;
1802 }
1803
1804 rmap_walk_init_level(iterator, iterator->level);
1805}
1806
1807#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1808 _start_gfn, _end_gfn, _iter_) \
1809 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1810 _end_level_, _start_gfn, _end_gfn); \
1811 slot_rmap_walk_okay(_iter_); \
1812 slot_rmap_walk_next(_iter_))
1813
1814static int kvm_handle_hva_range(struct kvm *kvm,
1815 unsigned long start,
1816 unsigned long end,
1817 unsigned long data,
1818 int (*handler)(struct kvm *kvm,
1819 struct kvm_rmap_head *rmap_head,
1820 struct kvm_memory_slot *slot,
1821 gfn_t gfn,
1822 int level,
1823 unsigned long data))
1824{
1825 struct kvm_memslots *slots;
1826 struct kvm_memory_slot *memslot;
1827 struct slot_rmap_walk_iterator iterator;
1828 int ret = 0;
1829 int i;
1830
1831 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1832 slots = __kvm_memslots(kvm, i);
1833 kvm_for_each_memslot(memslot, slots) {
1834 unsigned long hva_start, hva_end;
1835 gfn_t gfn_start, gfn_end;
1836
1837 hva_start = max(start, memslot->userspace_addr);
1838 hva_end = min(end, memslot->userspace_addr +
1839 (memslot->npages << PAGE_SHIFT));
1840 if (hva_start >= hva_end)
1841 continue;
1842 /*
1843 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1844 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1845 */
1846 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1847 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1848
1849 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1850 PT_MAX_HUGEPAGE_LEVEL,
1851 gfn_start, gfn_end - 1,
1852 &iterator)
1853 ret |= handler(kvm, iterator.rmap, memslot,
1854 iterator.gfn, iterator.level, data);
1855 }
1856 }
1857
1858 return ret;
1859}
1860
1861static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1862 unsigned long data,
1863 int (*handler)(struct kvm *kvm,
1864 struct kvm_rmap_head *rmap_head,
1865 struct kvm_memory_slot *slot,
1866 gfn_t gfn, int level,
1867 unsigned long data))
1868{
1869 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1870}
1871
1872int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1873{
1874 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1875}
1876
1877void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1878{
1879 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1880}
1881
1882static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1883 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1884 unsigned long data)
1885{
1886 u64 *sptep;
1887 struct rmap_iterator uninitialized_var(iter);
1888 int young = 0;
1889
1890 for_each_rmap_spte(rmap_head, &iter, sptep)
1891 young |= mmu_spte_age(sptep);
1892
1893 trace_kvm_age_page(gfn, level, slot, young);
1894 return young;
1895}
1896
1897static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1898 struct kvm_memory_slot *slot, gfn_t gfn,
1899 int level, unsigned long data)
1900{
1901 u64 *sptep;
1902 struct rmap_iterator iter;
1903
1904 for_each_rmap_spte(rmap_head, &iter, sptep)
1905 if (is_accessed_spte(*sptep))
1906 return 1;
1907 return 0;
1908}
1909
1910#define RMAP_RECYCLE_THRESHOLD 1000
1911
1912static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1913{
1914 struct kvm_rmap_head *rmap_head;
1915 struct kvm_mmu_page *sp;
1916
1917 sp = page_header(__pa(spte));
1918
1919 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1920
1921 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1922 kvm_flush_remote_tlbs(vcpu->kvm);
1923}
1924
1925int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1926{
1927 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1928}
1929
1930int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1931{
1932 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1933}
1934
1935#ifdef MMU_DEBUG
1936static int is_empty_shadow_page(u64 *spt)
1937{
1938 u64 *pos;
1939 u64 *end;
1940
1941 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1942 if (is_shadow_present_pte(*pos)) {
1943 printk(KERN_ERR "%s: %p %llx\n", __func__,
1944 pos, *pos);
1945 return 0;
1946 }
1947 return 1;
1948}
1949#endif
1950
1951/*
1952 * This value is the sum of all of the kvm instances's
1953 * kvm->arch.n_used_mmu_pages values. We need a global,
1954 * aggregate version in order to make the slab shrinker
1955 * faster
1956 */
1957static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1958{
1959 kvm->arch.n_used_mmu_pages += nr;
1960 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1961}
1962
1963static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1964{
1965 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1966 hlist_del(&sp->hash_link);
1967 list_del(&sp->link);
1968 free_page((unsigned long)sp->spt);
1969 if (!sp->role.direct)
1970 free_page((unsigned long)sp->gfns);
1971 kmem_cache_free(mmu_page_header_cache, sp);
1972}
1973
1974static unsigned kvm_page_table_hashfn(gfn_t gfn)
1975{
1976 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1977}
1978
1979static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1980 struct kvm_mmu_page *sp, u64 *parent_pte)
1981{
1982 if (!parent_pte)
1983 return;
1984
1985 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1986}
1987
1988static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1989 u64 *parent_pte)
1990{
1991 pte_list_remove(parent_pte, &sp->parent_ptes);
1992}
1993
1994static void drop_parent_pte(struct kvm_mmu_page *sp,
1995 u64 *parent_pte)
1996{
1997 mmu_page_remove_parent_pte(sp, parent_pte);
1998 mmu_spte_clear_no_track(parent_pte);
1999}
2000
2001static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2002{
2003 struct kvm_mmu_page *sp;
2004
2005 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2006 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2007 if (!direct)
2008 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2009 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2010
2011 /*
2012 * The active_mmu_pages list is the FIFO list, do not move the
2013 * page until it is zapped. kvm_zap_obsolete_pages depends on
2014 * this feature. See the comments in kvm_zap_obsolete_pages().
2015 */
2016 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2017 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2018 return sp;
2019}
2020
2021static void mark_unsync(u64 *spte);
2022static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2023{
2024 u64 *sptep;
2025 struct rmap_iterator iter;
2026
2027 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2028 mark_unsync(sptep);
2029 }
2030}
2031
2032static void mark_unsync(u64 *spte)
2033{
2034 struct kvm_mmu_page *sp;
2035 unsigned int index;
2036
2037 sp = page_header(__pa(spte));
2038 index = spte - sp->spt;
2039 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2040 return;
2041 if (sp->unsync_children++)
2042 return;
2043 kvm_mmu_mark_parents_unsync(sp);
2044}
2045
2046static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2047 struct kvm_mmu_page *sp)
2048{
2049 return 0;
2050}
2051
2052static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
2053{
2054}
2055
2056static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2057 struct kvm_mmu_page *sp, u64 *spte,
2058 const void *pte)
2059{
2060 WARN_ON(1);
2061}
2062
2063#define KVM_PAGE_ARRAY_NR 16
2064
2065struct kvm_mmu_pages {
2066 struct mmu_page_and_offset {
2067 struct kvm_mmu_page *sp;
2068 unsigned int idx;
2069 } page[KVM_PAGE_ARRAY_NR];
2070 unsigned int nr;
2071};
2072
2073static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2074 int idx)
2075{
2076 int i;
2077
2078 if (sp->unsync)
2079 for (i=0; i < pvec->nr; i++)
2080 if (pvec->page[i].sp == sp)
2081 return 0;
2082
2083 pvec->page[pvec->nr].sp = sp;
2084 pvec->page[pvec->nr].idx = idx;
2085 pvec->nr++;
2086 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2087}
2088
2089static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2090{
2091 --sp->unsync_children;
2092 WARN_ON((int)sp->unsync_children < 0);
2093 __clear_bit(idx, sp->unsync_child_bitmap);
2094}
2095
2096static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2097 struct kvm_mmu_pages *pvec)
2098{
2099 int i, ret, nr_unsync_leaf = 0;
2100
2101 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2102 struct kvm_mmu_page *child;
2103 u64 ent = sp->spt[i];
2104
2105 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2106 clear_unsync_child_bit(sp, i);
2107 continue;
2108 }
2109
2110 child = page_header(ent & PT64_BASE_ADDR_MASK);
2111
2112 if (child->unsync_children) {
2113 if (mmu_pages_add(pvec, child, i))
2114 return -ENOSPC;
2115
2116 ret = __mmu_unsync_walk(child, pvec);
2117 if (!ret) {
2118 clear_unsync_child_bit(sp, i);
2119 continue;
2120 } else if (ret > 0) {
2121 nr_unsync_leaf += ret;
2122 } else
2123 return ret;
2124 } else if (child->unsync) {
2125 nr_unsync_leaf++;
2126 if (mmu_pages_add(pvec, child, i))
2127 return -ENOSPC;
2128 } else
2129 clear_unsync_child_bit(sp, i);
2130 }
2131
2132 return nr_unsync_leaf;
2133}
2134
2135#define INVALID_INDEX (-1)
2136
2137static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2138 struct kvm_mmu_pages *pvec)
2139{
2140 pvec->nr = 0;
2141 if (!sp->unsync_children)
2142 return 0;
2143
2144 mmu_pages_add(pvec, sp, INVALID_INDEX);
2145 return __mmu_unsync_walk(sp, pvec);
2146}
2147
2148static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2149{
2150 WARN_ON(!sp->unsync);
2151 trace_kvm_mmu_sync_page(sp);
2152 sp->unsync = 0;
2153 --kvm->stat.mmu_unsync;
2154}
2155
2156static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2157 struct list_head *invalid_list);
2158static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2159 struct list_head *invalid_list);
2160
2161/*
2162 * NOTE: we should pay more attention on the zapped-obsolete page
2163 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2164 * since it has been deleted from active_mmu_pages but still can be found
2165 * at hast list.
2166 *
2167 * for_each_valid_sp() has skipped that kind of pages.
2168 */
2169#define for_each_valid_sp(_kvm, _sp, _gfn) \
2170 hlist_for_each_entry(_sp, \
2171 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2172 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) { \
2173 } else
2174
2175#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
2176 for_each_valid_sp(_kvm, _sp, _gfn) \
2177 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2178
2179/* @sp->gfn should be write-protected at the call site */
2180static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2181 struct list_head *invalid_list)
2182{
2183 if (sp->role.cr4_pae != !!is_pae(vcpu)
2184 || vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
2185 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2186 return false;
2187 }
2188
2189 return true;
2190}
2191
2192static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2193 struct list_head *invalid_list,
2194 bool remote_flush, bool local_flush)
2195{
2196 if (!list_empty(invalid_list)) {
2197 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2198 return;
2199 }
2200
2201 if (remote_flush)
2202 kvm_flush_remote_tlbs(vcpu->kvm);
2203 else if (local_flush)
2204 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2205}
2206
2207#ifdef CONFIG_KVM_MMU_AUDIT
2208#include "mmu_audit.c"
2209#else
2210static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2211static void mmu_audit_disable(void) { }
2212#endif
2213
2214static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2215{
2216 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2217}
2218
2219static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2220 struct list_head *invalid_list)
2221{
2222 kvm_unlink_unsync_page(vcpu->kvm, sp);
2223 return __kvm_sync_page(vcpu, sp, invalid_list);
2224}
2225
2226/* @gfn should be write-protected at the call site */
2227static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2228 struct list_head *invalid_list)
2229{
2230 struct kvm_mmu_page *s;
2231 bool ret = false;
2232
2233 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2234 if (!s->unsync)
2235 continue;
2236
2237 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2238 ret |= kvm_sync_page(vcpu, s, invalid_list);
2239 }
2240
2241 return ret;
2242}
2243
2244struct mmu_page_path {
2245 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2246 unsigned int idx[PT64_ROOT_MAX_LEVEL];
2247};
2248
2249#define for_each_sp(pvec, sp, parents, i) \
2250 for (i = mmu_pages_first(&pvec, &parents); \
2251 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2252 i = mmu_pages_next(&pvec, &parents, i))
2253
2254static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2255 struct mmu_page_path *parents,
2256 int i)
2257{
2258 int n;
2259
2260 for (n = i+1; n < pvec->nr; n++) {
2261 struct kvm_mmu_page *sp = pvec->page[n].sp;
2262 unsigned idx = pvec->page[n].idx;
2263 int level = sp->role.level;
2264
2265 parents->idx[level-1] = idx;
2266 if (level == PT_PAGE_TABLE_LEVEL)
2267 break;
2268
2269 parents->parent[level-2] = sp;
2270 }
2271
2272 return n;
2273}
2274
2275static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2276 struct mmu_page_path *parents)
2277{
2278 struct kvm_mmu_page *sp;
2279 int level;
2280
2281 if (pvec->nr == 0)
2282 return 0;
2283
2284 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2285
2286 sp = pvec->page[0].sp;
2287 level = sp->role.level;
2288 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2289
2290 parents->parent[level-2] = sp;
2291
2292 /* Also set up a sentinel. Further entries in pvec are all
2293 * children of sp, so this element is never overwritten.
2294 */
2295 parents->parent[level-1] = NULL;
2296 return mmu_pages_next(pvec, parents, 0);
2297}
2298
2299static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2300{
2301 struct kvm_mmu_page *sp;
2302 unsigned int level = 0;
2303
2304 do {
2305 unsigned int idx = parents->idx[level];
2306 sp = parents->parent[level];
2307 if (!sp)
2308 return;
2309
2310 WARN_ON(idx == INVALID_INDEX);
2311 clear_unsync_child_bit(sp, idx);
2312 level++;
2313 } while (!sp->unsync_children);
2314}
2315
2316static void mmu_sync_children(struct kvm_vcpu *vcpu,
2317 struct kvm_mmu_page *parent)
2318{
2319 int i;
2320 struct kvm_mmu_page *sp;
2321 struct mmu_page_path parents;
2322 struct kvm_mmu_pages pages;
2323 LIST_HEAD(invalid_list);
2324 bool flush = false;
2325
2326 while (mmu_unsync_walk(parent, &pages)) {
2327 bool protected = false;
2328
2329 for_each_sp(pages, sp, parents, i)
2330 protected |= rmap_write_protect(vcpu, sp->gfn);
2331
2332 if (protected) {
2333 kvm_flush_remote_tlbs(vcpu->kvm);
2334 flush = false;
2335 }
2336
2337 for_each_sp(pages, sp, parents, i) {
2338 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2339 mmu_pages_clear_parents(&parents);
2340 }
2341 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2342 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2343 cond_resched_lock(&vcpu->kvm->mmu_lock);
2344 flush = false;
2345 }
2346 }
2347
2348 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2349}
2350
2351static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2352{
2353 atomic_set(&sp->write_flooding_count, 0);
2354}
2355
2356static void clear_sp_write_flooding_count(u64 *spte)
2357{
2358 struct kvm_mmu_page *sp = page_header(__pa(spte));
2359
2360 __clear_sp_write_flooding_count(sp);
2361}
2362
2363static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2364 gfn_t gfn,
2365 gva_t gaddr,
2366 unsigned level,
2367 int direct,
2368 unsigned access)
2369{
2370 union kvm_mmu_page_role role;
2371 unsigned quadrant;
2372 struct kvm_mmu_page *sp;
2373 bool need_sync = false;
2374 bool flush = false;
2375 int collisions = 0;
2376 LIST_HEAD(invalid_list);
2377
2378 role = vcpu->arch.mmu.base_role;
2379 role.level = level;
2380 role.direct = direct;
2381 if (role.direct)
2382 role.cr4_pae = 0;
2383 role.access = access;
2384 if (!vcpu->arch.mmu.direct_map
2385 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2386 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2387 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2388 role.quadrant = quadrant;
2389 }
2390 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2391 if (sp->gfn != gfn) {
2392 collisions++;
2393 continue;
2394 }
2395
2396 if (!need_sync && sp->unsync)
2397 need_sync = true;
2398
2399 if (sp->role.word != role.word)
2400 continue;
2401
2402 if (sp->unsync) {
2403 /* The page is good, but __kvm_sync_page might still end
2404 * up zapping it. If so, break in order to rebuild it.
2405 */
2406 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2407 break;
2408
2409 WARN_ON(!list_empty(&invalid_list));
2410 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2411 }
2412
2413 if (sp->unsync_children)
2414 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2415
2416 __clear_sp_write_flooding_count(sp);
2417 trace_kvm_mmu_get_page(sp, false);
2418 goto out;
2419 }
2420
2421 ++vcpu->kvm->stat.mmu_cache_miss;
2422
2423 sp = kvm_mmu_alloc_page(vcpu, direct);
2424
2425 sp->gfn = gfn;
2426 sp->role = role;
2427 hlist_add_head(&sp->hash_link,
2428 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2429 if (!direct) {
2430 /*
2431 * we should do write protection before syncing pages
2432 * otherwise the content of the synced shadow page may
2433 * be inconsistent with guest page table.
2434 */
2435 account_shadowed(vcpu->kvm, sp);
2436 if (level == PT_PAGE_TABLE_LEVEL &&
2437 rmap_write_protect(vcpu, gfn))
2438 kvm_flush_remote_tlbs(vcpu->kvm);
2439
2440 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2441 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2442 }
2443 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2444 clear_page(sp->spt);
2445 trace_kvm_mmu_get_page(sp, true);
2446
2447 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2448out:
2449 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2450 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2451 return sp;
2452}
2453
2454static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2455 struct kvm_vcpu *vcpu, hpa_t root,
2456 u64 addr)
2457{
2458 iterator->addr = addr;
2459 iterator->shadow_addr = root;
2460 iterator->level = vcpu->arch.mmu.shadow_root_level;
2461
2462 if (iterator->level == PT64_ROOT_4LEVEL &&
2463 vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL &&
2464 !vcpu->arch.mmu.direct_map)
2465 --iterator->level;
2466
2467 if (iterator->level == PT32E_ROOT_LEVEL) {
2468 /*
2469 * prev_root is currently only used for 64-bit hosts. So only
2470 * the active root_hpa is valid here.
2471 */
2472 BUG_ON(root != vcpu->arch.mmu.root_hpa);
2473
2474 iterator->shadow_addr
2475 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2476 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2477 --iterator->level;
2478 if (!iterator->shadow_addr)
2479 iterator->level = 0;
2480 }
2481}
2482
2483static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2484 struct kvm_vcpu *vcpu, u64 addr)
2485{
2486 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu.root_hpa,
2487 addr);
2488}
2489
2490static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2491{
2492 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2493 return false;
2494
2495 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2496 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2497 return true;
2498}
2499
2500static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2501 u64 spte)
2502{
2503 if (is_last_spte(spte, iterator->level)) {
2504 iterator->level = 0;
2505 return;
2506 }
2507
2508 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2509 --iterator->level;
2510}
2511
2512static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2513{
2514 __shadow_walk_next(iterator, *iterator->sptep);
2515}
2516
2517static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2518 struct kvm_mmu_page *sp)
2519{
2520 u64 spte;
2521
2522 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2523
2524 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2525 shadow_user_mask | shadow_x_mask | shadow_me_mask;
2526
2527 if (sp_ad_disabled(sp))
2528 spte |= shadow_acc_track_value;
2529 else
2530 spte |= shadow_accessed_mask;
2531
2532 mmu_spte_set(sptep, spte);
2533
2534 mmu_page_add_parent_pte(vcpu, sp, sptep);
2535
2536 if (sp->unsync_children || sp->unsync)
2537 mark_unsync(sptep);
2538}
2539
2540static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2541 unsigned direct_access)
2542{
2543 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2544 struct kvm_mmu_page *child;
2545
2546 /*
2547 * For the direct sp, if the guest pte's dirty bit
2548 * changed form clean to dirty, it will corrupt the
2549 * sp's access: allow writable in the read-only sp,
2550 * so we should update the spte at this point to get
2551 * a new sp with the correct access.
2552 */
2553 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2554 if (child->role.access == direct_access)
2555 return;
2556
2557 drop_parent_pte(child, sptep);
2558 kvm_flush_remote_tlbs(vcpu->kvm);
2559 }
2560}
2561
2562static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2563 u64 *spte)
2564{
2565 u64 pte;
2566 struct kvm_mmu_page *child;
2567
2568 pte = *spte;
2569 if (is_shadow_present_pte(pte)) {
2570 if (is_last_spte(pte, sp->role.level)) {
2571 drop_spte(kvm, spte);
2572 if (is_large_pte(pte))
2573 --kvm->stat.lpages;
2574 } else {
2575 child = page_header(pte & PT64_BASE_ADDR_MASK);
2576 drop_parent_pte(child, spte);
2577 }
2578 return true;
2579 }
2580
2581 if (is_mmio_spte(pte))
2582 mmu_spte_clear_no_track(spte);
2583
2584 return false;
2585}
2586
2587static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2588 struct kvm_mmu_page *sp)
2589{
2590 unsigned i;
2591
2592 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2593 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2594}
2595
2596static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2597{
2598 u64 *sptep;
2599 struct rmap_iterator iter;
2600
2601 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2602 drop_parent_pte(sp, sptep);
2603}
2604
2605static int mmu_zap_unsync_children(struct kvm *kvm,
2606 struct kvm_mmu_page *parent,
2607 struct list_head *invalid_list)
2608{
2609 int i, zapped = 0;
2610 struct mmu_page_path parents;
2611 struct kvm_mmu_pages pages;
2612
2613 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2614 return 0;
2615
2616 while (mmu_unsync_walk(parent, &pages)) {
2617 struct kvm_mmu_page *sp;
2618
2619 for_each_sp(pages, sp, parents, i) {
2620 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2621 mmu_pages_clear_parents(&parents);
2622 zapped++;
2623 }
2624 }
2625
2626 return zapped;
2627}
2628
2629static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2630 struct list_head *invalid_list)
2631{
2632 int ret;
2633
2634 trace_kvm_mmu_prepare_zap_page(sp);
2635 ++kvm->stat.mmu_shadow_zapped;
2636 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2637 kvm_mmu_page_unlink_children(kvm, sp);
2638 kvm_mmu_unlink_parents(kvm, sp);
2639
2640 if (!sp->role.invalid && !sp->role.direct)
2641 unaccount_shadowed(kvm, sp);
2642
2643 if (sp->unsync)
2644 kvm_unlink_unsync_page(kvm, sp);
2645 if (!sp->root_count) {
2646 /* Count self */
2647 ret++;
2648 list_move(&sp->link, invalid_list);
2649 kvm_mod_used_mmu_pages(kvm, -1);
2650 } else {
2651 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2652
2653 /*
2654 * The obsolete pages can not be used on any vcpus.
2655 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2656 */
2657 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2658 kvm_reload_remote_mmus(kvm);
2659 }
2660
2661 sp->role.invalid = 1;
2662 return ret;
2663}
2664
2665static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2666 struct list_head *invalid_list)
2667{
2668 struct kvm_mmu_page *sp, *nsp;
2669
2670 if (list_empty(invalid_list))
2671 return;
2672
2673 /*
2674 * We need to make sure everyone sees our modifications to
2675 * the page tables and see changes to vcpu->mode here. The barrier
2676 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2677 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2678 *
2679 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2680 * guest mode and/or lockless shadow page table walks.
2681 */
2682 kvm_flush_remote_tlbs(kvm);
2683
2684 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2685 WARN_ON(!sp->role.invalid || sp->root_count);
2686 kvm_mmu_free_page(sp);
2687 }
2688}
2689
2690static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2691 struct list_head *invalid_list)
2692{
2693 struct kvm_mmu_page *sp;
2694
2695 if (list_empty(&kvm->arch.active_mmu_pages))
2696 return false;
2697
2698 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2699 struct kvm_mmu_page, link);
2700 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2701}
2702
2703/*
2704 * Changing the number of mmu pages allocated to the vm
2705 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2706 */
2707void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2708{
2709 LIST_HEAD(invalid_list);
2710
2711 spin_lock(&kvm->mmu_lock);
2712
2713 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2714 /* Need to free some mmu pages to achieve the goal. */
2715 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2716 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2717 break;
2718
2719 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2720 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2721 }
2722
2723 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2724
2725 spin_unlock(&kvm->mmu_lock);
2726}
2727
2728int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2729{
2730 struct kvm_mmu_page *sp;
2731 LIST_HEAD(invalid_list);
2732 int r;
2733
2734 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2735 r = 0;
2736 spin_lock(&kvm->mmu_lock);
2737 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2738 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2739 sp->role.word);
2740 r = 1;
2741 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2742 }
2743 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2744 spin_unlock(&kvm->mmu_lock);
2745
2746 return r;
2747}
2748EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2749
2750static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2751{
2752 trace_kvm_mmu_unsync_page(sp);
2753 ++vcpu->kvm->stat.mmu_unsync;
2754 sp->unsync = 1;
2755
2756 kvm_mmu_mark_parents_unsync(sp);
2757}
2758
2759static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2760 bool can_unsync)
2761{
2762 struct kvm_mmu_page *sp;
2763
2764 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2765 return true;
2766
2767 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2768 if (!can_unsync)
2769 return true;
2770
2771 if (sp->unsync)
2772 continue;
2773
2774 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2775 kvm_unsync_page(vcpu, sp);
2776 }
2777
2778 /*
2779 * We need to ensure that the marking of unsync pages is visible
2780 * before the SPTE is updated to allow writes because
2781 * kvm_mmu_sync_roots() checks the unsync flags without holding
2782 * the MMU lock and so can race with this. If the SPTE was updated
2783 * before the page had been marked as unsync-ed, something like the
2784 * following could happen:
2785 *
2786 * CPU 1 CPU 2
2787 * ---------------------------------------------------------------------
2788 * 1.2 Host updates SPTE
2789 * to be writable
2790 * 2.1 Guest writes a GPTE for GVA X.
2791 * (GPTE being in the guest page table shadowed
2792 * by the SP from CPU 1.)
2793 * This reads SPTE during the page table walk.
2794 * Since SPTE.W is read as 1, there is no
2795 * fault.
2796 *
2797 * 2.2 Guest issues TLB flush.
2798 * That causes a VM Exit.
2799 *
2800 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2801 * Since it is false, so it just returns.
2802 *
2803 * 2.4 Guest accesses GVA X.
2804 * Since the mapping in the SP was not updated,
2805 * so the old mapping for GVA X incorrectly
2806 * gets used.
2807 * 1.1 Host marks SP
2808 * as unsync
2809 * (sp->unsync = true)
2810 *
2811 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2812 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2813 * pairs with this write barrier.
2814 */
2815 smp_wmb();
2816
2817 return false;
2818}
2819
2820static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2821{
2822 if (pfn_valid(pfn))
2823 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2824 /*
2825 * Some reserved pages, such as those from NVDIMM
2826 * DAX devices, are not for MMIO, and can be mapped
2827 * with cached memory type for better performance.
2828 * However, the above check misconceives those pages
2829 * as MMIO, and results in KVM mapping them with UC
2830 * memory type, which would hurt the performance.
2831 * Therefore, we check the host memory type in addition
2832 * and only treat UC/UC-/WC pages as MMIO.
2833 */
2834 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2835
2836 return true;
2837}
2838
2839/* Bits which may be returned by set_spte() */
2840#define SET_SPTE_WRITE_PROTECTED_PT BIT(0)
2841#define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1)
2842
2843static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2844 unsigned pte_access, int level,
2845 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2846 bool can_unsync, bool host_writable)
2847{
2848 u64 spte = 0;
2849 int ret = 0;
2850 struct kvm_mmu_page *sp;
2851
2852 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2853 return 0;
2854
2855 sp = page_header(__pa(sptep));
2856 if (sp_ad_disabled(sp))
2857 spte |= shadow_acc_track_value;
2858
2859 /*
2860 * For the EPT case, shadow_present_mask is 0 if hardware
2861 * supports exec-only page table entries. In that case,
2862 * ACC_USER_MASK and shadow_user_mask are used to represent
2863 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2864 */
2865 spte |= shadow_present_mask;
2866 if (!speculative)
2867 spte |= spte_shadow_accessed_mask(spte);
2868
2869 if (pte_access & ACC_EXEC_MASK)
2870 spte |= shadow_x_mask;
2871 else
2872 spte |= shadow_nx_mask;
2873
2874 if (pte_access & ACC_USER_MASK)
2875 spte |= shadow_user_mask;
2876
2877 if (level > PT_PAGE_TABLE_LEVEL)
2878 spte |= PT_PAGE_SIZE_MASK;
2879 if (tdp_enabled)
2880 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2881 kvm_is_mmio_pfn(pfn));
2882
2883 if (host_writable)
2884 spte |= SPTE_HOST_WRITEABLE;
2885 else
2886 pte_access &= ~ACC_WRITE_MASK;
2887
2888 if (!kvm_is_mmio_pfn(pfn))
2889 spte |= shadow_me_mask;
2890
2891 spte |= (u64)pfn << PAGE_SHIFT;
2892
2893 if (pte_access & ACC_WRITE_MASK) {
2894
2895 /*
2896 * Other vcpu creates new sp in the window between
2897 * mapping_level() and acquiring mmu-lock. We can
2898 * allow guest to retry the access, the mapping can
2899 * be fixed if guest refault.
2900 */
2901 if (level > PT_PAGE_TABLE_LEVEL &&
2902 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2903 goto done;
2904
2905 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2906
2907 /*
2908 * Optimization: for pte sync, if spte was writable the hash
2909 * lookup is unnecessary (and expensive). Write protection
2910 * is responsibility of mmu_get_page / kvm_sync_page.
2911 * Same reasoning can be applied to dirty page accounting.
2912 */
2913 if (!can_unsync && is_writable_pte(*sptep))
2914 goto set_pte;
2915
2916 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2917 pgprintk("%s: found shadow page for %llx, marking ro\n",
2918 __func__, gfn);
2919 ret |= SET_SPTE_WRITE_PROTECTED_PT;
2920 pte_access &= ~ACC_WRITE_MASK;
2921 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2922 }
2923 }
2924
2925 if (pte_access & ACC_WRITE_MASK) {
2926 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2927 spte |= spte_shadow_dirty_mask(spte);
2928 }
2929
2930 if (speculative)
2931 spte = mark_spte_for_access_track(spte);
2932
2933set_pte:
2934 if (mmu_spte_update(sptep, spte))
2935 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2936done:
2937 return ret;
2938}
2939
2940static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2941 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2942 bool speculative, bool host_writable)
2943{
2944 int was_rmapped = 0;
2945 int rmap_count;
2946 int set_spte_ret;
2947 int ret = RET_PF_RETRY;
2948 bool flush = false;
2949
2950 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2951 *sptep, write_fault, gfn);
2952
2953 if (is_shadow_present_pte(*sptep)) {
2954 /*
2955 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2956 * the parent of the now unreachable PTE.
2957 */
2958 if (level > PT_PAGE_TABLE_LEVEL &&
2959 !is_large_pte(*sptep)) {
2960 struct kvm_mmu_page *child;
2961 u64 pte = *sptep;
2962
2963 child = page_header(pte & PT64_BASE_ADDR_MASK);
2964 drop_parent_pte(child, sptep);
2965 flush = true;
2966 } else if (pfn != spte_to_pfn(*sptep)) {
2967 pgprintk("hfn old %llx new %llx\n",
2968 spte_to_pfn(*sptep), pfn);
2969 drop_spte(vcpu->kvm, sptep);
2970 flush = true;
2971 } else
2972 was_rmapped = 1;
2973 }
2974
2975 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2976 speculative, true, host_writable);
2977 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2978 if (write_fault)
2979 ret = RET_PF_EMULATE;
2980 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2981 }
2982 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2983 kvm_flush_remote_tlbs(vcpu->kvm);
2984
2985 if (unlikely(is_mmio_spte(*sptep)))
2986 ret = RET_PF_EMULATE;
2987
2988 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2989 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2990 is_large_pte(*sptep)? "2MB" : "4kB",
2991 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
2992 *sptep, sptep);
2993 if (!was_rmapped && is_large_pte(*sptep))
2994 ++vcpu->kvm->stat.lpages;
2995
2996 if (is_shadow_present_pte(*sptep)) {
2997 if (!was_rmapped) {
2998 rmap_count = rmap_add(vcpu, sptep, gfn);
2999 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3000 rmap_recycle(vcpu, sptep, gfn);
3001 }
3002 }
3003
3004 kvm_release_pfn_clean(pfn);
3005
3006 return ret;
3007}
3008
3009static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3010 bool no_dirty_log)
3011{
3012 struct kvm_memory_slot *slot;
3013
3014 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3015 if (!slot)
3016 return KVM_PFN_ERR_FAULT;
3017
3018 return gfn_to_pfn_memslot_atomic(slot, gfn);
3019}
3020
3021static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3022 struct kvm_mmu_page *sp,
3023 u64 *start, u64 *end)
3024{
3025 struct page *pages[PTE_PREFETCH_NUM];
3026 struct kvm_memory_slot *slot;
3027 unsigned access = sp->role.access;
3028 int i, ret;
3029 gfn_t gfn;
3030
3031 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3032 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3033 if (!slot)
3034 return -1;
3035
3036 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3037 if (ret <= 0)
3038 return -1;
3039
3040 for (i = 0; i < ret; i++, gfn++, start++)
3041 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3042 page_to_pfn(pages[i]), true, true);
3043
3044 return 0;
3045}
3046
3047static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3048 struct kvm_mmu_page *sp, u64 *sptep)
3049{
3050 u64 *spte, *start = NULL;
3051 int i;
3052
3053 WARN_ON(!sp->role.direct);
3054
3055 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3056 spte = sp->spt + i;
3057
3058 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3059 if (is_shadow_present_pte(*spte) || spte == sptep) {
3060 if (!start)
3061 continue;
3062 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3063 break;
3064 start = NULL;
3065 } else if (!start)
3066 start = spte;
3067 }
3068}
3069
3070static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3071{
3072 struct kvm_mmu_page *sp;
3073
3074 sp = page_header(__pa(sptep));
3075
3076 /*
3077 * Without accessed bits, there's no way to distinguish between
3078 * actually accessed translations and prefetched, so disable pte
3079 * prefetch if accessed bits aren't available.
3080 */
3081 if (sp_ad_disabled(sp))
3082 return;
3083
3084 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3085 return;
3086
3087 __direct_pte_prefetch(vcpu, sp, sptep);
3088}
3089
3090static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
3091 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
3092{
3093 struct kvm_shadow_walk_iterator iterator;
3094 struct kvm_mmu_page *sp;
3095 int emulate = 0;
3096 gfn_t pseudo_gfn;
3097
3098 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3099 return 0;
3100
3101 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
3102 if (iterator.level == level) {
3103 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
3104 write, level, gfn, pfn, prefault,
3105 map_writable);
3106 direct_pte_prefetch(vcpu, iterator.sptep);
3107 ++vcpu->stat.pf_fixed;
3108 break;
3109 }
3110
3111 drop_large_spte(vcpu, iterator.sptep);
3112 if (!is_shadow_present_pte(*iterator.sptep)) {
3113 u64 base_addr = iterator.addr;
3114
3115 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
3116 pseudo_gfn = base_addr >> PAGE_SHIFT;
3117 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
3118 iterator.level - 1, 1, ACC_ALL);
3119
3120 link_shadow_page(vcpu, iterator.sptep, sp);
3121 }
3122 }
3123 return emulate;
3124}
3125
3126static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3127{
3128 siginfo_t info;
3129
3130 clear_siginfo(&info);
3131 info.si_signo = SIGBUS;
3132 info.si_errno = 0;
3133 info.si_code = BUS_MCEERR_AR;
3134 info.si_addr = (void __user *)address;
3135 info.si_addr_lsb = PAGE_SHIFT;
3136
3137 send_sig_info(SIGBUS, &info, tsk);
3138}
3139
3140static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3141{
3142 /*
3143 * Do not cache the mmio info caused by writing the readonly gfn
3144 * into the spte otherwise read access on readonly gfn also can
3145 * caused mmio page fault and treat it as mmio access.
3146 */
3147 if (pfn == KVM_PFN_ERR_RO_FAULT)
3148 return RET_PF_EMULATE;
3149
3150 if (pfn == KVM_PFN_ERR_HWPOISON) {
3151 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3152 return RET_PF_RETRY;
3153 }
3154
3155 return -EFAULT;
3156}
3157
3158static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3159 gfn_t *gfnp, kvm_pfn_t *pfnp,
3160 int *levelp)
3161{
3162 kvm_pfn_t pfn = *pfnp;
3163 gfn_t gfn = *gfnp;
3164 int level = *levelp;
3165
3166 /*
3167 * Check if it's a transparent hugepage. If this would be an
3168 * hugetlbfs page, level wouldn't be set to
3169 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3170 * here.
3171 */
3172 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3173 level == PT_PAGE_TABLE_LEVEL &&
3174 PageTransCompoundMap(pfn_to_page(pfn)) &&
3175 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3176 unsigned long mask;
3177 /*
3178 * mmu_notifier_retry was successful and we hold the
3179 * mmu_lock here, so the pmd can't become splitting
3180 * from under us, and in turn
3181 * __split_huge_page_refcount() can't run from under
3182 * us and we can safely transfer the refcount from
3183 * PG_tail to PG_head as we switch the pfn to tail to
3184 * head.
3185 */
3186 *levelp = level = PT_DIRECTORY_LEVEL;
3187 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3188 VM_BUG_ON((gfn & mask) != (pfn & mask));
3189 if (pfn & mask) {
3190 gfn &= ~mask;
3191 *gfnp = gfn;
3192 kvm_release_pfn_clean(pfn);
3193 pfn &= ~mask;
3194 kvm_get_pfn(pfn);
3195 *pfnp = pfn;
3196 }
3197 }
3198}
3199
3200static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3201 kvm_pfn_t pfn, unsigned access, int *ret_val)
3202{
3203 /* The pfn is invalid, report the error! */
3204 if (unlikely(is_error_pfn(pfn))) {
3205 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3206 return true;
3207 }
3208
3209 if (unlikely(is_noslot_pfn(pfn)))
3210 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3211
3212 return false;
3213}
3214
3215static bool page_fault_can_be_fast(u32 error_code)
3216{
3217 /*
3218 * Do not fix the mmio spte with invalid generation number which
3219 * need to be updated by slow page fault path.
3220 */
3221 if (unlikely(error_code & PFERR_RSVD_MASK))
3222 return false;
3223
3224 /* See if the page fault is due to an NX violation */
3225 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3226 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3227 return false;
3228
3229 /*
3230 * #PF can be fast if:
3231 * 1. The shadow page table entry is not present, which could mean that
3232 * the fault is potentially caused by access tracking (if enabled).
3233 * 2. The shadow page table entry is present and the fault
3234 * is caused by write-protect, that means we just need change the W
3235 * bit of the spte which can be done out of mmu-lock.
3236 *
3237 * However, if access tracking is disabled we know that a non-present
3238 * page must be a genuine page fault where we have to create a new SPTE.
3239 * So, if access tracking is disabled, we return true only for write
3240 * accesses to a present page.
3241 */
3242
3243 return shadow_acc_track_mask != 0 ||
3244 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3245 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3246}
3247
3248/*
3249 * Returns true if the SPTE was fixed successfully. Otherwise,
3250 * someone else modified the SPTE from its original value.
3251 */
3252static bool
3253fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3254 u64 *sptep, u64 old_spte, u64 new_spte)
3255{
3256 gfn_t gfn;
3257
3258 WARN_ON(!sp->role.direct);
3259
3260 /*
3261 * Theoretically we could also set dirty bit (and flush TLB) here in
3262 * order to eliminate unnecessary PML logging. See comments in
3263 * set_spte. But fast_page_fault is very unlikely to happen with PML
3264 * enabled, so we do not do this. This might result in the same GPA
3265 * to be logged in PML buffer again when the write really happens, and
3266 * eventually to be called by mark_page_dirty twice. But it's also no
3267 * harm. This also avoids the TLB flush needed after setting dirty bit
3268 * so non-PML cases won't be impacted.
3269 *
3270 * Compare with set_spte where instead shadow_dirty_mask is set.
3271 */
3272 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3273 return false;
3274
3275 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3276 /*
3277 * The gfn of direct spte is stable since it is
3278 * calculated by sp->gfn.
3279 */
3280 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3281 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3282 }
3283
3284 return true;
3285}
3286
3287static bool is_access_allowed(u32 fault_err_code, u64 spte)
3288{
3289 if (fault_err_code & PFERR_FETCH_MASK)
3290 return is_executable_pte(spte);
3291
3292 if (fault_err_code & PFERR_WRITE_MASK)
3293 return is_writable_pte(spte);
3294
3295 /* Fault was on Read access */
3296 return spte & PT_PRESENT_MASK;
3297}
3298
3299/*
3300 * Return value:
3301 * - true: let the vcpu to access on the same address again.
3302 * - false: let the real page fault path to fix it.
3303 */
3304static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3305 u32 error_code)
3306{
3307 struct kvm_shadow_walk_iterator iterator;
3308 struct kvm_mmu_page *sp;
3309 bool fault_handled = false;
3310 u64 spte = 0ull;
3311 uint retry_count = 0;
3312
3313 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3314 return false;
3315
3316 if (!page_fault_can_be_fast(error_code))
3317 return false;
3318
3319 walk_shadow_page_lockless_begin(vcpu);
3320
3321 do {
3322 u64 new_spte;
3323
3324 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3325 if (!is_shadow_present_pte(spte) ||
3326 iterator.level < level)
3327 break;
3328
3329 sp = page_header(__pa(iterator.sptep));
3330 if (!is_last_spte(spte, sp->role.level))
3331 break;
3332
3333 /*
3334 * Check whether the memory access that caused the fault would
3335 * still cause it if it were to be performed right now. If not,
3336 * then this is a spurious fault caused by TLB lazily flushed,
3337 * or some other CPU has already fixed the PTE after the
3338 * current CPU took the fault.
3339 *
3340 * Need not check the access of upper level table entries since
3341 * they are always ACC_ALL.
3342 */
3343 if (is_access_allowed(error_code, spte)) {
3344 fault_handled = true;
3345 break;
3346 }
3347
3348 new_spte = spte;
3349
3350 if (is_access_track_spte(spte))
3351 new_spte = restore_acc_track_spte(new_spte);
3352
3353 /*
3354 * Currently, to simplify the code, write-protection can
3355 * be removed in the fast path only if the SPTE was
3356 * write-protected for dirty-logging or access tracking.
3357 */
3358 if ((error_code & PFERR_WRITE_MASK) &&
3359 spte_can_locklessly_be_made_writable(spte))
3360 {
3361 new_spte |= PT_WRITABLE_MASK;
3362
3363 /*
3364 * Do not fix write-permission on the large spte. Since
3365 * we only dirty the first page into the dirty-bitmap in
3366 * fast_pf_fix_direct_spte(), other pages are missed
3367 * if its slot has dirty logging enabled.
3368 *
3369 * Instead, we let the slow page fault path create a
3370 * normal spte to fix the access.
3371 *
3372 * See the comments in kvm_arch_commit_memory_region().
3373 */
3374 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3375 break;
3376 }
3377
3378 /* Verify that the fault can be handled in the fast path */
3379 if (new_spte == spte ||
3380 !is_access_allowed(error_code, new_spte))
3381 break;
3382
3383 /*
3384 * Currently, fast page fault only works for direct mapping
3385 * since the gfn is not stable for indirect shadow page. See
3386 * Documentation/virtual/kvm/locking.txt to get more detail.
3387 */
3388 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3389 iterator.sptep, spte,
3390 new_spte);
3391 if (fault_handled)
3392 break;
3393
3394 if (++retry_count > 4) {
3395 printk_once(KERN_WARNING
3396 "kvm: Fast #PF retrying more than 4 times.\n");
3397 break;
3398 }
3399
3400 } while (true);
3401
3402 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3403 spte, fault_handled);
3404 walk_shadow_page_lockless_end(vcpu);
3405
3406 return fault_handled;
3407}
3408
3409static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3410 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3411static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3412
3413static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3414 gfn_t gfn, bool prefault)
3415{
3416 int r;
3417 int level;
3418 bool force_pt_level = false;
3419 kvm_pfn_t pfn;
3420 unsigned long mmu_seq;
3421 bool map_writable, write = error_code & PFERR_WRITE_MASK;
3422
3423 level = mapping_level(vcpu, gfn, &force_pt_level);
3424 if (likely(!force_pt_level)) {
3425 /*
3426 * This path builds a PAE pagetable - so we can map
3427 * 2mb pages at maximum. Therefore check if the level
3428 * is larger than that.
3429 */
3430 if (level > PT_DIRECTORY_LEVEL)
3431 level = PT_DIRECTORY_LEVEL;
3432
3433 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3434 }
3435
3436 if (fast_page_fault(vcpu, v, level, error_code))
3437 return RET_PF_RETRY;
3438
3439 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3440 smp_rmb();
3441
3442 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3443 return RET_PF_RETRY;
3444
3445 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3446 return r;
3447
3448 spin_lock(&vcpu->kvm->mmu_lock);
3449 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3450 goto out_unlock;
3451 if (make_mmu_pages_available(vcpu) < 0)
3452 goto out_unlock;
3453 if (likely(!force_pt_level))
3454 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3455 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3456 spin_unlock(&vcpu->kvm->mmu_lock);
3457
3458 return r;
3459
3460out_unlock:
3461 spin_unlock(&vcpu->kvm->mmu_lock);
3462 kvm_release_pfn_clean(pfn);
3463 return RET_PF_RETRY;
3464}
3465
3466static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3467 struct list_head *invalid_list)
3468{
3469 struct kvm_mmu_page *sp;
3470
3471 if (!VALID_PAGE(*root_hpa))
3472 return;
3473
3474 sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3475 --sp->root_count;
3476 if (!sp->root_count && sp->role.invalid)
3477 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3478
3479 *root_hpa = INVALID_PAGE;
3480}
3481
3482/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3483void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, ulong roots_to_free)
3484{
3485 int i;
3486 LIST_HEAD(invalid_list);
3487 struct kvm_mmu *mmu = &vcpu->arch.mmu;
3488 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3489
3490 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3491
3492 /* Before acquiring the MMU lock, see if we need to do any real work. */
3493 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3494 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3495 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3496 VALID_PAGE(mmu->prev_roots[i].hpa))
3497 break;
3498
3499 if (i == KVM_MMU_NUM_PREV_ROOTS)
3500 return;
3501 }
3502
3503 spin_lock(&vcpu->kvm->mmu_lock);
3504
3505 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3506 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3507 mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3508 &invalid_list);
3509
3510 if (free_active_root) {
3511 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3512 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3513 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3514 &invalid_list);
3515 } else {
3516 for (i = 0; i < 4; ++i)
3517 if (mmu->pae_root[i] != 0)
3518 mmu_free_root_page(vcpu->kvm,
3519 &mmu->pae_root[i],
3520 &invalid_list);
3521 mmu->root_hpa = INVALID_PAGE;
3522 }
3523 }
3524
3525 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3526 spin_unlock(&vcpu->kvm->mmu_lock);
3527}
3528EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3529
3530static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3531{
3532 int ret = 0;
3533
3534 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3535 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3536 ret = 1;
3537 }
3538
3539 return ret;
3540}
3541
3542static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3543{
3544 struct kvm_mmu_page *sp;
3545 unsigned i;
3546
3547 if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) {
3548 spin_lock(&vcpu->kvm->mmu_lock);
3549 if(make_mmu_pages_available(vcpu) < 0) {
3550 spin_unlock(&vcpu->kvm->mmu_lock);
3551 return -ENOSPC;
3552 }
3553 sp = kvm_mmu_get_page(vcpu, 0, 0,
3554 vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL);
3555 ++sp->root_count;
3556 spin_unlock(&vcpu->kvm->mmu_lock);
3557 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3558 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3559 for (i = 0; i < 4; ++i) {
3560 hpa_t root = vcpu->arch.mmu.pae_root[i];
3561
3562 MMU_WARN_ON(VALID_PAGE(root));
3563 spin_lock(&vcpu->kvm->mmu_lock);
3564 if (make_mmu_pages_available(vcpu) < 0) {
3565 spin_unlock(&vcpu->kvm->mmu_lock);
3566 return -ENOSPC;
3567 }
3568 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3569 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3570 root = __pa(sp->spt);
3571 ++sp->root_count;
3572 spin_unlock(&vcpu->kvm->mmu_lock);
3573 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3574 }
3575 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3576 } else
3577 BUG();
3578
3579 return 0;
3580}
3581
3582static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3583{
3584 struct kvm_mmu_page *sp;
3585 u64 pdptr, pm_mask;
3586 gfn_t root_gfn;
3587 int i;
3588
3589 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3590
3591 if (mmu_check_root(vcpu, root_gfn))
3592 return 1;
3593
3594 /*
3595 * Do we shadow a long mode page table? If so we need to
3596 * write-protect the guests page table root.
3597 */
3598 if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3599 hpa_t root = vcpu->arch.mmu.root_hpa;
3600
3601 MMU_WARN_ON(VALID_PAGE(root));
3602
3603 spin_lock(&vcpu->kvm->mmu_lock);
3604 if (make_mmu_pages_available(vcpu) < 0) {
3605 spin_unlock(&vcpu->kvm->mmu_lock);
3606 return -ENOSPC;
3607 }
3608 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3609 vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL);
3610 root = __pa(sp->spt);
3611 ++sp->root_count;
3612 spin_unlock(&vcpu->kvm->mmu_lock);
3613 vcpu->arch.mmu.root_hpa = root;
3614 return 0;
3615 }
3616
3617 /*
3618 * We shadow a 32 bit page table. This may be a legacy 2-level
3619 * or a PAE 3-level page table. In either case we need to be aware that
3620 * the shadow page table may be a PAE or a long mode page table.
3621 */
3622 pm_mask = PT_PRESENT_MASK;
3623 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL)
3624 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3625
3626 for (i = 0; i < 4; ++i) {
3627 hpa_t root = vcpu->arch.mmu.pae_root[i];
3628
3629 MMU_WARN_ON(VALID_PAGE(root));
3630 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3631 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3632 if (!(pdptr & PT_PRESENT_MASK)) {
3633 vcpu->arch.mmu.pae_root[i] = 0;
3634 continue;
3635 }
3636 root_gfn = pdptr >> PAGE_SHIFT;
3637 if (mmu_check_root(vcpu, root_gfn))
3638 return 1;
3639 }
3640 spin_lock(&vcpu->kvm->mmu_lock);
3641 if (make_mmu_pages_available(vcpu) < 0) {
3642 spin_unlock(&vcpu->kvm->mmu_lock);
3643 return -ENOSPC;
3644 }
3645 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3646 0, ACC_ALL);
3647 root = __pa(sp->spt);
3648 ++sp->root_count;
3649 spin_unlock(&vcpu->kvm->mmu_lock);
3650
3651 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3652 }
3653 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3654
3655 /*
3656 * If we shadow a 32 bit page table with a long mode page
3657 * table we enter this path.
3658 */
3659 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) {
3660 if (vcpu->arch.mmu.lm_root == NULL) {
3661 /*
3662 * The additional page necessary for this is only
3663 * allocated on demand.
3664 */
3665
3666 u64 *lm_root;
3667
3668 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3669 if (lm_root == NULL)
3670 return 1;
3671
3672 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3673
3674 vcpu->arch.mmu.lm_root = lm_root;
3675 }
3676
3677 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3678 }
3679
3680 return 0;
3681}
3682
3683static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3684{
3685 if (vcpu->arch.mmu.direct_map)
3686 return mmu_alloc_direct_roots(vcpu);
3687 else
3688 return mmu_alloc_shadow_roots(vcpu);
3689}
3690
3691void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3692{
3693 int i;
3694 struct kvm_mmu_page *sp;
3695
3696 if (vcpu->arch.mmu.direct_map)
3697 return;
3698
3699 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3700 return;
3701
3702 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3703
3704 if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3705 hpa_t root = vcpu->arch.mmu.root_hpa;
3706
3707 sp = page_header(root);
3708
3709 /*
3710 * Even if another CPU was marking the SP as unsync-ed
3711 * simultaneously, any guest page table changes are not
3712 * guaranteed to be visible anyway until this VCPU issues a TLB
3713 * flush strictly after those changes are made. We only need to
3714 * ensure that the other CPU sets these flags before any actual
3715 * changes to the page tables are made. The comments in
3716 * mmu_need_write_protect() describe what could go wrong if this
3717 * requirement isn't satisfied.
3718 */
3719 if (!smp_load_acquire(&sp->unsync) &&
3720 !smp_load_acquire(&sp->unsync_children))
3721 return;
3722
3723 spin_lock(&vcpu->kvm->mmu_lock);
3724 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3725
3726 mmu_sync_children(vcpu, sp);
3727
3728 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3729 spin_unlock(&vcpu->kvm->mmu_lock);
3730 return;
3731 }
3732
3733 spin_lock(&vcpu->kvm->mmu_lock);
3734 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3735
3736 for (i = 0; i < 4; ++i) {
3737 hpa_t root = vcpu->arch.mmu.pae_root[i];
3738
3739 if (root && VALID_PAGE(root)) {
3740 root &= PT64_BASE_ADDR_MASK;
3741 sp = page_header(root);
3742 mmu_sync_children(vcpu, sp);
3743 }
3744 }
3745
3746 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3747 spin_unlock(&vcpu->kvm->mmu_lock);
3748}
3749EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3750
3751static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3752 u32 access, struct x86_exception *exception)
3753{
3754 if (exception)
3755 exception->error_code = 0;
3756 return vaddr;
3757}
3758
3759static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3760 u32 access,
3761 struct x86_exception *exception)
3762{
3763 if (exception)
3764 exception->error_code = 0;
3765 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3766}
3767
3768static bool
3769__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3770{
3771 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3772
3773 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3774 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3775}
3776
3777static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3778{
3779 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3780}
3781
3782static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3783{
3784 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3785}
3786
3787static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3788{
3789 /*
3790 * A nested guest cannot use the MMIO cache if it is using nested
3791 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3792 */
3793 if (mmu_is_nested(vcpu))
3794 return false;
3795
3796 if (direct)
3797 return vcpu_match_mmio_gpa(vcpu, addr);
3798
3799 return vcpu_match_mmio_gva(vcpu, addr);
3800}
3801
3802/* return true if reserved bit is detected on spte. */
3803static bool
3804walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3805{
3806 struct kvm_shadow_walk_iterator iterator;
3807 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3808 int root, leaf;
3809 bool reserved = false;
3810
3811 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3812 goto exit;
3813
3814 walk_shadow_page_lockless_begin(vcpu);
3815
3816 for (shadow_walk_init(&iterator, vcpu, addr),
3817 leaf = root = iterator.level;
3818 shadow_walk_okay(&iterator);
3819 __shadow_walk_next(&iterator, spte)) {
3820 spte = mmu_spte_get_lockless(iterator.sptep);
3821
3822 sptes[leaf - 1] = spte;
3823 leaf--;
3824
3825 if (!is_shadow_present_pte(spte))
3826 break;
3827
3828 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3829 iterator.level);
3830 }
3831
3832 walk_shadow_page_lockless_end(vcpu);
3833
3834 if (reserved) {
3835 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3836 __func__, addr);
3837 while (root > leaf) {
3838 pr_err("------ spte 0x%llx level %d.\n",
3839 sptes[root - 1], root);
3840 root--;
3841 }
3842 }
3843exit:
3844 *sptep = spte;
3845 return reserved;
3846}
3847
3848static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3849{
3850 u64 spte;
3851 bool reserved;
3852
3853 if (mmio_info_in_cache(vcpu, addr, direct))
3854 return RET_PF_EMULATE;
3855
3856 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3857 if (WARN_ON(reserved))
3858 return -EINVAL;
3859
3860 if (is_mmio_spte(spte)) {
3861 gfn_t gfn = get_mmio_spte_gfn(spte);
3862 unsigned access = get_mmio_spte_access(spte);
3863
3864 if (!check_mmio_spte(vcpu, spte))
3865 return RET_PF_INVALID;
3866
3867 if (direct)
3868 addr = 0;
3869
3870 trace_handle_mmio_page_fault(addr, gfn, access);
3871 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3872 return RET_PF_EMULATE;
3873 }
3874
3875 /*
3876 * If the page table is zapped by other cpus, let CPU fault again on
3877 * the address.
3878 */
3879 return RET_PF_RETRY;
3880}
3881
3882static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3883 u32 error_code, gfn_t gfn)
3884{
3885 if (unlikely(error_code & PFERR_RSVD_MASK))
3886 return false;
3887
3888 if (!(error_code & PFERR_PRESENT_MASK) ||
3889 !(error_code & PFERR_WRITE_MASK))
3890 return false;
3891
3892 /*
3893 * guest is writing the page which is write tracked which can
3894 * not be fixed by page fault handler.
3895 */
3896 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3897 return true;
3898
3899 return false;
3900}
3901
3902static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3903{
3904 struct kvm_shadow_walk_iterator iterator;
3905 u64 spte;
3906
3907 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3908 return;
3909
3910 walk_shadow_page_lockless_begin(vcpu);
3911 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3912 clear_sp_write_flooding_count(iterator.sptep);
3913 if (!is_shadow_present_pte(spte))
3914 break;
3915 }
3916 walk_shadow_page_lockless_end(vcpu);
3917}
3918
3919static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3920 u32 error_code, bool prefault)
3921{
3922 gfn_t gfn = gva >> PAGE_SHIFT;
3923 int r;
3924
3925 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3926
3927 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3928 return RET_PF_EMULATE;
3929
3930 r = mmu_topup_memory_caches(vcpu);
3931 if (r)
3932 return r;
3933
3934 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3935
3936
3937 return nonpaging_map(vcpu, gva & PAGE_MASK,
3938 error_code, gfn, prefault);
3939}
3940
3941static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3942{
3943 struct kvm_arch_async_pf arch;
3944
3945 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3946 arch.gfn = gfn;
3947 arch.direct_map = vcpu->arch.mmu.direct_map;
3948 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3949
3950 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3951}
3952
3953bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3954{
3955 if (unlikely(!lapic_in_kernel(vcpu) ||
3956 kvm_event_needs_reinjection(vcpu) ||
3957 vcpu->arch.exception.pending))
3958 return false;
3959
3960 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
3961 return false;
3962
3963 return kvm_x86_ops->interrupt_allowed(vcpu);
3964}
3965
3966static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3967 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3968{
3969 struct kvm_memory_slot *slot;
3970 bool async;
3971
3972 /*
3973 * Don't expose private memslots to L2.
3974 */
3975 if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
3976 *pfn = KVM_PFN_NOSLOT;
3977 return false;
3978 }
3979
3980 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3981 async = false;
3982 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3983 if (!async)
3984 return false; /* *pfn has correct page already */
3985
3986 if (!prefault && kvm_can_do_async_pf(vcpu)) {
3987 trace_kvm_try_async_get_page(gva, gfn);
3988 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3989 trace_kvm_async_pf_doublefault(gva, gfn);
3990 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3991 return true;
3992 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3993 return true;
3994 }
3995
3996 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3997 return false;
3998}
3999
4000int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4001 u64 fault_address, char *insn, int insn_len)
4002{
4003 int r = 1;
4004
4005 vcpu->arch.l1tf_flush_l1d = true;
4006 switch (vcpu->arch.apf.host_apf_reason) {
4007 default:
4008 trace_kvm_page_fault(fault_address, error_code);
4009
4010 if (kvm_event_needs_reinjection(vcpu))
4011 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4012 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4013 insn_len);
4014 break;
4015 case KVM_PV_REASON_PAGE_NOT_PRESENT:
4016 vcpu->arch.apf.host_apf_reason = 0;
4017 local_irq_disable();
4018 kvm_async_pf_task_wait(fault_address, 0);
4019 local_irq_enable();
4020 break;
4021 case KVM_PV_REASON_PAGE_READY:
4022 vcpu->arch.apf.host_apf_reason = 0;
4023 local_irq_disable();
4024 kvm_async_pf_task_wake(fault_address);
4025 local_irq_enable();
4026 break;
4027 }
4028 return r;
4029}
4030EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4031
4032static bool
4033check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
4034{
4035 int page_num = KVM_PAGES_PER_HPAGE(level);
4036
4037 gfn &= ~(page_num - 1);
4038
4039 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
4040}
4041
4042static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
4043 bool prefault)
4044{
4045 kvm_pfn_t pfn;
4046 int r;
4047 int level;
4048 bool force_pt_level;
4049 gfn_t gfn = gpa >> PAGE_SHIFT;
4050 unsigned long mmu_seq;
4051 int write = error_code & PFERR_WRITE_MASK;
4052 bool map_writable;
4053
4054 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4055
4056 if (page_fault_handle_page_track(vcpu, error_code, gfn))
4057 return RET_PF_EMULATE;
4058
4059 r = mmu_topup_memory_caches(vcpu);
4060 if (r)
4061 return r;
4062
4063 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
4064 PT_DIRECTORY_LEVEL);
4065 level = mapping_level(vcpu, gfn, &force_pt_level);
4066 if (likely(!force_pt_level)) {
4067 if (level > PT_DIRECTORY_LEVEL &&
4068 !check_hugepage_cache_consistency(vcpu, gfn, level))
4069 level = PT_DIRECTORY_LEVEL;
4070 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
4071 }
4072
4073 if (fast_page_fault(vcpu, gpa, level, error_code))
4074 return RET_PF_RETRY;
4075
4076 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4077 smp_rmb();
4078
4079 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4080 return RET_PF_RETRY;
4081
4082 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4083 return r;
4084
4085 spin_lock(&vcpu->kvm->mmu_lock);
4086 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4087 goto out_unlock;
4088 if (make_mmu_pages_available(vcpu) < 0)
4089 goto out_unlock;
4090 if (likely(!force_pt_level))
4091 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
4092 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
4093 spin_unlock(&vcpu->kvm->mmu_lock);
4094
4095 return r;
4096
4097out_unlock:
4098 spin_unlock(&vcpu->kvm->mmu_lock);
4099 kvm_release_pfn_clean(pfn);
4100 return RET_PF_RETRY;
4101}
4102
4103static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4104 struct kvm_mmu *context)
4105{
4106 context->page_fault = nonpaging_page_fault;
4107 context->gva_to_gpa = nonpaging_gva_to_gpa;
4108 context->sync_page = nonpaging_sync_page;
4109 context->invlpg = nonpaging_invlpg;
4110 context->update_pte = nonpaging_update_pte;
4111 context->root_level = 0;
4112 context->shadow_root_level = PT32E_ROOT_LEVEL;
4113 context->direct_map = true;
4114 context->nx = false;
4115}
4116
4117/*
4118 * Find out if a previously cached root matching the new CR3/role is available.
4119 * The current root is also inserted into the cache.
4120 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4121 * returned.
4122 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4123 * false is returned. This root should now be freed by the caller.
4124 */
4125static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4126 union kvm_mmu_page_role new_role)
4127{
4128 uint i;
4129 struct kvm_mmu_root_info root;
4130 struct kvm_mmu *mmu = &vcpu->arch.mmu;
4131
4132 root.cr3 = mmu->get_cr3(vcpu);
4133 root.hpa = mmu->root_hpa;
4134
4135 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4136 swap(root, mmu->prev_roots[i]);
4137
4138 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4139 page_header(root.hpa) != NULL &&
4140 new_role.word == page_header(root.hpa)->role.word)
4141 break;
4142 }
4143
4144 mmu->root_hpa = root.hpa;
4145
4146 return i < KVM_MMU_NUM_PREV_ROOTS;
4147}
4148
4149static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4150 union kvm_mmu_page_role new_role,
4151 bool skip_tlb_flush)
4152{
4153 struct kvm_mmu *mmu = &vcpu->arch.mmu;
4154
4155 /*
4156 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4157 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4158 * later if necessary.
4159 */
4160 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4161 mmu->root_level >= PT64_ROOT_4LEVEL) {
4162 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4163 return false;
4164
4165 if (cached_root_available(vcpu, new_cr3, new_role)) {
4166 /*
4167 * It is possible that the cached previous root page is
4168 * obsolete because of a change in the MMU
4169 * generation number. However, that is accompanied by
4170 * KVM_REQ_MMU_RELOAD, which will free the root that we
4171 * have set here and allocate a new one.
4172 */
4173
4174 kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
4175 if (!skip_tlb_flush) {
4176 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4177 kvm_x86_ops->tlb_flush(vcpu, true);
4178 }
4179
4180 /*
4181 * The last MMIO access's GVA and GPA are cached in the
4182 * VCPU. When switching to a new CR3, that GVA->GPA
4183 * mapping may no longer be valid. So clear any cached
4184 * MMIO info even when we don't need to sync the shadow
4185 * page tables.
4186 */
4187 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4188
4189 __clear_sp_write_flooding_count(
4190 page_header(mmu->root_hpa));
4191
4192 return true;
4193 }
4194 }
4195
4196 return false;
4197}
4198
4199static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4200 union kvm_mmu_page_role new_role,
4201 bool skip_tlb_flush)
4202{
4203 if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
4204 kvm_mmu_free_roots(vcpu, KVM_MMU_ROOT_CURRENT);
4205}
4206
4207void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
4208{
4209 __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4210 skip_tlb_flush);
4211}
4212EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4213
4214static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4215{
4216 return kvm_read_cr3(vcpu);
4217}
4218
4219static void inject_page_fault(struct kvm_vcpu *vcpu,
4220 struct x86_exception *fault)
4221{
4222 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
4223}
4224
4225static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4226 unsigned access, int *nr_present)
4227{
4228 if (unlikely(is_mmio_spte(*sptep))) {
4229 if (gfn != get_mmio_spte_gfn(*sptep)) {
4230 mmu_spte_clear_no_track(sptep);
4231 return true;
4232 }
4233
4234 (*nr_present)++;
4235 mark_mmio_spte(vcpu, sptep, gfn, access);
4236 return true;
4237 }
4238
4239 return false;
4240}
4241
4242static inline bool is_last_gpte(struct kvm_mmu *mmu,
4243 unsigned level, unsigned gpte)
4244{
4245 /*
4246 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4247 * If it is clear, there are no large pages at this level, so clear
4248 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4249 */
4250 gpte &= level - mmu->last_nonleaf_level;
4251
4252 /*
4253 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
4254 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4255 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4256 */
4257 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4258
4259 return gpte & PT_PAGE_SIZE_MASK;
4260}
4261
4262#define PTTYPE_EPT 18 /* arbitrary */
4263#define PTTYPE PTTYPE_EPT
4264#include "paging_tmpl.h"
4265#undef PTTYPE
4266
4267#define PTTYPE 64
4268#include "paging_tmpl.h"
4269#undef PTTYPE
4270
4271#define PTTYPE 32
4272#include "paging_tmpl.h"
4273#undef PTTYPE
4274
4275static void
4276__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4277 struct rsvd_bits_validate *rsvd_check,
4278 int maxphyaddr, int level, bool nx, bool gbpages,
4279 bool pse, bool amd)
4280{
4281 u64 exb_bit_rsvd = 0;
4282 u64 gbpages_bit_rsvd = 0;
4283 u64 nonleaf_bit8_rsvd = 0;
4284
4285 rsvd_check->bad_mt_xwr = 0;
4286
4287 if (!nx)
4288 exb_bit_rsvd = rsvd_bits(63, 63);
4289 if (!gbpages)
4290 gbpages_bit_rsvd = rsvd_bits(7, 7);
4291
4292 /*
4293 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4294 * leaf entries) on AMD CPUs only.
4295 */
4296 if (amd)
4297 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4298
4299 switch (level) {
4300 case PT32_ROOT_LEVEL:
4301 /* no rsvd bits for 2 level 4K page table entries */
4302 rsvd_check->rsvd_bits_mask[0][1] = 0;
4303 rsvd_check->rsvd_bits_mask[0][0] = 0;
4304 rsvd_check->rsvd_bits_mask[1][0] =
4305 rsvd_check->rsvd_bits_mask[0][0];
4306
4307 if (!pse) {
4308 rsvd_check->rsvd_bits_mask[1][1] = 0;
4309 break;
4310 }
4311
4312 if (is_cpuid_PSE36())
4313 /* 36bits PSE 4MB page */
4314 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4315 else
4316 /* 32 bits PSE 4MB page */
4317 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4318 break;
4319 case PT32E_ROOT_LEVEL:
4320 rsvd_check->rsvd_bits_mask[0][2] =
4321 rsvd_bits(maxphyaddr, 63) |
4322 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
4323 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4324 rsvd_bits(maxphyaddr, 62); /* PDE */
4325 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4326 rsvd_bits(maxphyaddr, 62); /* PTE */
4327 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4328 rsvd_bits(maxphyaddr, 62) |
4329 rsvd_bits(13, 20); /* large page */
4330 rsvd_check->rsvd_bits_mask[1][0] =
4331 rsvd_check->rsvd_bits_mask[0][0];
4332 break;
4333 case PT64_ROOT_5LEVEL:
4334 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4335 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4336 rsvd_bits(maxphyaddr, 51);
4337 rsvd_check->rsvd_bits_mask[1][4] =
4338 rsvd_check->rsvd_bits_mask[0][4];
4339 case PT64_ROOT_4LEVEL:
4340 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4341 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4342 rsvd_bits(maxphyaddr, 51);
4343 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4344 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4345 rsvd_bits(maxphyaddr, 51);
4346 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4347 rsvd_bits(maxphyaddr, 51);
4348 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4349 rsvd_bits(maxphyaddr, 51);
4350 rsvd_check->rsvd_bits_mask[1][3] =
4351 rsvd_check->rsvd_bits_mask[0][3];
4352 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4353 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4354 rsvd_bits(13, 29);
4355 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4356 rsvd_bits(maxphyaddr, 51) |
4357 rsvd_bits(13, 20); /* large page */
4358 rsvd_check->rsvd_bits_mask[1][0] =
4359 rsvd_check->rsvd_bits_mask[0][0];
4360 break;
4361 }
4362}
4363
4364static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4365 struct kvm_mmu *context)
4366{
4367 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4368 cpuid_maxphyaddr(vcpu), context->root_level,
4369 context->nx,
4370 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4371 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4372}
4373
4374static void
4375__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4376 int maxphyaddr, bool execonly)
4377{
4378 u64 bad_mt_xwr;
4379
4380 rsvd_check->rsvd_bits_mask[0][4] =
4381 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4382 rsvd_check->rsvd_bits_mask[0][3] =
4383 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4384 rsvd_check->rsvd_bits_mask[0][2] =
4385 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4386 rsvd_check->rsvd_bits_mask[0][1] =
4387 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4388 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4389
4390 /* large page */
4391 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4392 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4393 rsvd_check->rsvd_bits_mask[1][2] =
4394 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4395 rsvd_check->rsvd_bits_mask[1][1] =
4396 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4397 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4398
4399 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4400 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4401 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4402 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4403 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4404 if (!execonly) {
4405 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4406 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4407 }
4408 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4409}
4410
4411static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4412 struct kvm_mmu *context, bool execonly)
4413{
4414 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4415 cpuid_maxphyaddr(vcpu), execonly);
4416}
4417
4418/*
4419 * the page table on host is the shadow page table for the page
4420 * table in guest or amd nested guest, its mmu features completely
4421 * follow the features in guest.
4422 */
4423void
4424reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4425{
4426 bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4427 struct rsvd_bits_validate *shadow_zero_check;
4428 int i;
4429
4430 /*
4431 * Passing "true" to the last argument is okay; it adds a check
4432 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4433 */
4434 shadow_zero_check = &context->shadow_zero_check;
4435 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4436 boot_cpu_data.x86_phys_bits,
4437 context->shadow_root_level, uses_nx,
4438 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4439 is_pse(vcpu), true);
4440
4441 if (!shadow_me_mask)
4442 return;
4443
4444 for (i = context->shadow_root_level; --i >= 0;) {
4445 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4446 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4447 }
4448
4449}
4450EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4451
4452static inline bool boot_cpu_is_amd(void)
4453{
4454 WARN_ON_ONCE(!tdp_enabled);
4455 return shadow_x_mask == 0;
4456}
4457
4458/*
4459 * the direct page table on host, use as much mmu features as
4460 * possible, however, kvm currently does not do execution-protection.
4461 */
4462static void
4463reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4464 struct kvm_mmu *context)
4465{
4466 struct rsvd_bits_validate *shadow_zero_check;
4467 int i;
4468
4469 shadow_zero_check = &context->shadow_zero_check;
4470
4471 if (boot_cpu_is_amd())
4472 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4473 boot_cpu_data.x86_phys_bits,
4474 context->shadow_root_level, false,
4475 boot_cpu_has(X86_FEATURE_GBPAGES),
4476 true, true);
4477 else
4478 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4479 boot_cpu_data.x86_phys_bits,
4480 false);
4481
4482 if (!shadow_me_mask)
4483 return;
4484
4485 for (i = context->shadow_root_level; --i >= 0;) {
4486 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4487 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4488 }
4489}
4490
4491/*
4492 * as the comments in reset_shadow_zero_bits_mask() except it
4493 * is the shadow page table for intel nested guest.
4494 */
4495static void
4496reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4497 struct kvm_mmu *context, bool execonly)
4498{
4499 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4500 boot_cpu_data.x86_phys_bits, execonly);
4501}
4502
4503#define BYTE_MASK(access) \
4504 ((1 & (access) ? 2 : 0) | \
4505 (2 & (access) ? 4 : 0) | \
4506 (3 & (access) ? 8 : 0) | \
4507 (4 & (access) ? 16 : 0) | \
4508 (5 & (access) ? 32 : 0) | \
4509 (6 & (access) ? 64 : 0) | \
4510 (7 & (access) ? 128 : 0))
4511
4512
4513static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4514 struct kvm_mmu *mmu, bool ept)
4515{
4516 unsigned byte;
4517
4518 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4519 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4520 const u8 u = BYTE_MASK(ACC_USER_MASK);
4521
4522 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4523 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4524 bool cr0_wp = is_write_protection(vcpu);
4525
4526 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4527 unsigned pfec = byte << 1;
4528
4529 /*
4530 * Each "*f" variable has a 1 bit for each UWX value
4531 * that causes a fault with the given PFEC.
4532 */
4533
4534 /* Faults from writes to non-writable pages */
4535 u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4536 /* Faults from user mode accesses to supervisor pages */
4537 u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4538 /* Faults from fetches of non-executable pages*/
4539 u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4540 /* Faults from kernel mode fetches of user pages */
4541 u8 smepf = 0;
4542 /* Faults from kernel mode accesses of user pages */
4543 u8 smapf = 0;
4544
4545 if (!ept) {
4546 /* Faults from kernel mode accesses to user pages */
4547 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4548
4549 /* Not really needed: !nx will cause pte.nx to fault */
4550 if (!mmu->nx)
4551 ff = 0;
4552
4553 /* Allow supervisor writes if !cr0.wp */
4554 if (!cr0_wp)
4555 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4556
4557 /* Disallow supervisor fetches of user code if cr4.smep */
4558 if (cr4_smep)
4559 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4560
4561 /*
4562 * SMAP:kernel-mode data accesses from user-mode
4563 * mappings should fault. A fault is considered
4564 * as a SMAP violation if all of the following
4565 * conditions are ture:
4566 * - X86_CR4_SMAP is set in CR4
4567 * - A user page is accessed
4568 * - The access is not a fetch
4569 * - Page fault in kernel mode
4570 * - if CPL = 3 or X86_EFLAGS_AC is clear
4571 *
4572 * Here, we cover the first three conditions.
4573 * The fourth is computed dynamically in permission_fault();
4574 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4575 * *not* subject to SMAP restrictions.
4576 */
4577 if (cr4_smap)
4578 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4579 }
4580
4581 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4582 }
4583}
4584
4585/*
4586* PKU is an additional mechanism by which the paging controls access to
4587* user-mode addresses based on the value in the PKRU register. Protection
4588* key violations are reported through a bit in the page fault error code.
4589* Unlike other bits of the error code, the PK bit is not known at the
4590* call site of e.g. gva_to_gpa; it must be computed directly in
4591* permission_fault based on two bits of PKRU, on some machine state (CR4,
4592* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4593*
4594* In particular the following conditions come from the error code, the
4595* page tables and the machine state:
4596* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4597* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4598* - PK is always zero if U=0 in the page tables
4599* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4600*
4601* The PKRU bitmask caches the result of these four conditions. The error
4602* code (minus the P bit) and the page table's U bit form an index into the
4603* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4604* with the two bits of the PKRU register corresponding to the protection key.
4605* For the first three conditions above the bits will be 00, thus masking
4606* away both AD and WD. For all reads or if the last condition holds, WD
4607* only will be masked away.
4608*/
4609static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4610 bool ept)
4611{
4612 unsigned bit;
4613 bool wp;
4614
4615 if (ept) {
4616 mmu->pkru_mask = 0;
4617 return;
4618 }
4619
4620 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4621 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4622 mmu->pkru_mask = 0;
4623 return;
4624 }
4625
4626 wp = is_write_protection(vcpu);
4627
4628 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4629 unsigned pfec, pkey_bits;
4630 bool check_pkey, check_write, ff, uf, wf, pte_user;
4631
4632 pfec = bit << 1;
4633 ff = pfec & PFERR_FETCH_MASK;
4634 uf = pfec & PFERR_USER_MASK;
4635 wf = pfec & PFERR_WRITE_MASK;
4636
4637 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4638 pte_user = pfec & PFERR_RSVD_MASK;
4639
4640 /*
4641 * Only need to check the access which is not an
4642 * instruction fetch and is to a user page.
4643 */
4644 check_pkey = (!ff && pte_user);
4645 /*
4646 * write access is controlled by PKRU if it is a
4647 * user access or CR0.WP = 1.
4648 */
4649 check_write = check_pkey && wf && (uf || wp);
4650
4651 /* PKRU.AD stops both read and write access. */
4652 pkey_bits = !!check_pkey;
4653 /* PKRU.WD stops write access. */
4654 pkey_bits |= (!!check_write) << 1;
4655
4656 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4657 }
4658}
4659
4660static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4661{
4662 unsigned root_level = mmu->root_level;
4663
4664 mmu->last_nonleaf_level = root_level;
4665 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4666 mmu->last_nonleaf_level++;
4667}
4668
4669static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4670 struct kvm_mmu *context,
4671 int level)
4672{
4673 context->nx = is_nx(vcpu);
4674 context->root_level = level;
4675
4676 reset_rsvds_bits_mask(vcpu, context);
4677 update_permission_bitmask(vcpu, context, false);
4678 update_pkru_bitmask(vcpu, context, false);
4679 update_last_nonleaf_level(vcpu, context);
4680
4681 MMU_WARN_ON(!is_pae(vcpu));
4682 context->page_fault = paging64_page_fault;
4683 context->gva_to_gpa = paging64_gva_to_gpa;
4684 context->sync_page = paging64_sync_page;
4685 context->invlpg = paging64_invlpg;
4686 context->update_pte = paging64_update_pte;
4687 context->shadow_root_level = level;
4688 context->direct_map = false;
4689}
4690
4691static void paging64_init_context(struct kvm_vcpu *vcpu,
4692 struct kvm_mmu *context)
4693{
4694 int root_level = is_la57_mode(vcpu) ?
4695 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4696
4697 paging64_init_context_common(vcpu, context, root_level);
4698}
4699
4700static void paging32_init_context(struct kvm_vcpu *vcpu,
4701 struct kvm_mmu *context)
4702{
4703 context->nx = false;
4704 context->root_level = PT32_ROOT_LEVEL;
4705
4706 reset_rsvds_bits_mask(vcpu, context);
4707 update_permission_bitmask(vcpu, context, false);
4708 update_pkru_bitmask(vcpu, context, false);
4709 update_last_nonleaf_level(vcpu, context);
4710
4711 context->page_fault = paging32_page_fault;
4712 context->gva_to_gpa = paging32_gva_to_gpa;
4713 context->sync_page = paging32_sync_page;
4714 context->invlpg = paging32_invlpg;
4715 context->update_pte = paging32_update_pte;
4716 context->shadow_root_level = PT32E_ROOT_LEVEL;
4717 context->direct_map = false;
4718}
4719
4720static void paging32E_init_context(struct kvm_vcpu *vcpu,
4721 struct kvm_mmu *context)
4722{
4723 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4724}
4725
4726static union kvm_mmu_page_role
4727kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu)
4728{
4729 union kvm_mmu_page_role role = {0};
4730
4731 role.guest_mode = is_guest_mode(vcpu);
4732 role.smm = is_smm(vcpu);
4733 role.ad_disabled = (shadow_accessed_mask == 0);
4734 role.level = kvm_x86_ops->get_tdp_level(vcpu);
4735 role.direct = true;
4736 role.access = ACC_ALL;
4737
4738 return role;
4739}
4740
4741static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4742{
4743 struct kvm_mmu *context = &vcpu->arch.mmu;
4744
4745 context->base_role.word = mmu_base_role_mask.word &
4746 kvm_calc_tdp_mmu_root_page_role(vcpu).word;
4747 context->page_fault = tdp_page_fault;
4748 context->sync_page = nonpaging_sync_page;
4749 context->invlpg = nonpaging_invlpg;
4750 context->update_pte = nonpaging_update_pte;
4751 context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4752 context->direct_map = true;
4753 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4754 context->get_cr3 = get_cr3;
4755 context->get_pdptr = kvm_pdptr_read;
4756 context->inject_page_fault = kvm_inject_page_fault;
4757
4758 if (!is_paging(vcpu)) {
4759 context->nx = false;
4760 context->gva_to_gpa = nonpaging_gva_to_gpa;
4761 context->root_level = 0;
4762 } else if (is_long_mode(vcpu)) {
4763 context->nx = is_nx(vcpu);
4764 context->root_level = is_la57_mode(vcpu) ?
4765 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4766 reset_rsvds_bits_mask(vcpu, context);
4767 context->gva_to_gpa = paging64_gva_to_gpa;
4768 } else if (is_pae(vcpu)) {
4769 context->nx = is_nx(vcpu);
4770 context->root_level = PT32E_ROOT_LEVEL;
4771 reset_rsvds_bits_mask(vcpu, context);
4772 context->gva_to_gpa = paging64_gva_to_gpa;
4773 } else {
4774 context->nx = false;
4775 context->root_level = PT32_ROOT_LEVEL;
4776 reset_rsvds_bits_mask(vcpu, context);
4777 context->gva_to_gpa = paging32_gva_to_gpa;
4778 }
4779
4780 update_permission_bitmask(vcpu, context, false);
4781 update_pkru_bitmask(vcpu, context, false);
4782 update_last_nonleaf_level(vcpu, context);
4783 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4784}
4785
4786static union kvm_mmu_page_role
4787kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu)
4788{
4789 union kvm_mmu_page_role role = {0};
4790 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4791 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4792
4793 role.nxe = is_nx(vcpu);
4794 role.cr4_pae = !!is_pae(vcpu);
4795 role.cr0_wp = is_write_protection(vcpu);
4796 role.smep_andnot_wp = smep && !is_write_protection(vcpu);
4797 role.smap_andnot_wp = smap && !is_write_protection(vcpu);
4798 role.guest_mode = is_guest_mode(vcpu);
4799 role.smm = is_smm(vcpu);
4800 role.direct = !is_paging(vcpu);
4801 role.access = ACC_ALL;
4802
4803 if (!is_long_mode(vcpu))
4804 role.level = PT32E_ROOT_LEVEL;
4805 else if (is_la57_mode(vcpu))
4806 role.level = PT64_ROOT_5LEVEL;
4807 else
4808 role.level = PT64_ROOT_4LEVEL;
4809
4810 return role;
4811}
4812
4813void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4814{
4815 struct kvm_mmu *context = &vcpu->arch.mmu;
4816
4817 if (!is_paging(vcpu))
4818 nonpaging_init_context(vcpu, context);
4819 else if (is_long_mode(vcpu))
4820 paging64_init_context(vcpu, context);
4821 else if (is_pae(vcpu))
4822 paging32E_init_context(vcpu, context);
4823 else
4824 paging32_init_context(vcpu, context);
4825
4826 context->base_role.word = mmu_base_role_mask.word &
4827 kvm_calc_shadow_mmu_root_page_role(vcpu).word;
4828 reset_shadow_zero_bits_mask(vcpu, context);
4829}
4830EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4831
4832static union kvm_mmu_page_role
4833kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty)
4834{
4835 union kvm_mmu_page_role role = vcpu->arch.mmu.base_role;
4836
4837 role.level = PT64_ROOT_4LEVEL;
4838 role.direct = false;
4839 role.ad_disabled = !accessed_dirty;
4840 role.guest_mode = true;
4841 role.access = ACC_ALL;
4842
4843 return role;
4844}
4845
4846void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4847 bool accessed_dirty, gpa_t new_eptp)
4848{
4849 struct kvm_mmu *context = &vcpu->arch.mmu;
4850 union kvm_mmu_page_role root_page_role =
4851 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty);
4852
4853 __kvm_mmu_new_cr3(vcpu, new_eptp, root_page_role, false);
4854 context->shadow_root_level = PT64_ROOT_4LEVEL;
4855
4856 context->nx = true;
4857 context->ept_ad = accessed_dirty;
4858 context->page_fault = ept_page_fault;
4859 context->gva_to_gpa = ept_gva_to_gpa;
4860 context->sync_page = ept_sync_page;
4861 context->invlpg = ept_invlpg;
4862 context->update_pte = ept_update_pte;
4863 context->root_level = PT64_ROOT_4LEVEL;
4864 context->direct_map = false;
4865 context->base_role.word = root_page_role.word & mmu_base_role_mask.word;
4866 update_permission_bitmask(vcpu, context, true);
4867 update_pkru_bitmask(vcpu, context, true);
4868 update_last_nonleaf_level(vcpu, context);
4869 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4870 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4871}
4872EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4873
4874static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4875{
4876 struct kvm_mmu *context = &vcpu->arch.mmu;
4877
4878 kvm_init_shadow_mmu(vcpu);
4879 context->set_cr3 = kvm_x86_ops->set_cr3;
4880 context->get_cr3 = get_cr3;
4881 context->get_pdptr = kvm_pdptr_read;
4882 context->inject_page_fault = kvm_inject_page_fault;
4883}
4884
4885static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4886{
4887 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4888
4889 g_context->get_cr3 = get_cr3;
4890 g_context->get_pdptr = kvm_pdptr_read;
4891 g_context->inject_page_fault = kvm_inject_page_fault;
4892
4893 /*
4894 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4895 * L1's nested page tables (e.g. EPT12). The nested translation
4896 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4897 * L2's page tables as the first level of translation and L1's
4898 * nested page tables as the second level of translation. Basically
4899 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4900 */
4901 if (!is_paging(vcpu)) {
4902 g_context->nx = false;
4903 g_context->root_level = 0;
4904 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4905 } else if (is_long_mode(vcpu)) {
4906 g_context->nx = is_nx(vcpu);
4907 g_context->root_level = is_la57_mode(vcpu) ?
4908 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4909 reset_rsvds_bits_mask(vcpu, g_context);
4910 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4911 } else if (is_pae(vcpu)) {
4912 g_context->nx = is_nx(vcpu);
4913 g_context->root_level = PT32E_ROOT_LEVEL;
4914 reset_rsvds_bits_mask(vcpu, g_context);
4915 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4916 } else {
4917 g_context->nx = false;
4918 g_context->root_level = PT32_ROOT_LEVEL;
4919 reset_rsvds_bits_mask(vcpu, g_context);
4920 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4921 }
4922
4923 update_permission_bitmask(vcpu, g_context, false);
4924 update_pkru_bitmask(vcpu, g_context, false);
4925 update_last_nonleaf_level(vcpu, g_context);
4926}
4927
4928void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4929{
4930 if (reset_roots) {
4931 uint i;
4932
4933 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4934
4935 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4936 vcpu->arch.mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4937 }
4938
4939 if (mmu_is_nested(vcpu))
4940 init_kvm_nested_mmu(vcpu);
4941 else if (tdp_enabled)
4942 init_kvm_tdp_mmu(vcpu);
4943 else
4944 init_kvm_softmmu(vcpu);
4945}
4946EXPORT_SYMBOL_GPL(kvm_init_mmu);
4947
4948static union kvm_mmu_page_role
4949kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4950{
4951 if (tdp_enabled)
4952 return kvm_calc_tdp_mmu_root_page_role(vcpu);
4953 else
4954 return kvm_calc_shadow_mmu_root_page_role(vcpu);
4955}
4956
4957void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4958{
4959 kvm_mmu_unload(vcpu);
4960 kvm_init_mmu(vcpu, true);
4961}
4962EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4963
4964int kvm_mmu_load(struct kvm_vcpu *vcpu)
4965{
4966 int r;
4967
4968 r = mmu_topup_memory_caches(vcpu);
4969 if (r)
4970 goto out;
4971 r = mmu_alloc_roots(vcpu);
4972 kvm_mmu_sync_roots(vcpu);
4973 if (r)
4974 goto out;
4975 kvm_mmu_load_cr3(vcpu);
4976 kvm_x86_ops->tlb_flush(vcpu, true);
4977out:
4978 return r;
4979}
4980EXPORT_SYMBOL_GPL(kvm_mmu_load);
4981
4982void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4983{
4984 kvm_mmu_free_roots(vcpu, KVM_MMU_ROOTS_ALL);
4985 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4986}
4987EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4988
4989static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4990 struct kvm_mmu_page *sp, u64 *spte,
4991 const void *new)
4992{
4993 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4994 ++vcpu->kvm->stat.mmu_pde_zapped;
4995 return;
4996 }
4997
4998 ++vcpu->kvm->stat.mmu_pte_updated;
4999 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
5000}
5001
5002static bool need_remote_flush(u64 old, u64 new)
5003{
5004 if (!is_shadow_present_pte(old))
5005 return false;
5006 if (!is_shadow_present_pte(new))
5007 return true;
5008 if ((old ^ new) & PT64_BASE_ADDR_MASK)
5009 return true;
5010 old ^= shadow_nx_mask;
5011 new ^= shadow_nx_mask;
5012 return (old & ~new & PT64_PERM_MASK) != 0;
5013}
5014
5015static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5016 int *bytes)
5017{
5018 u64 gentry = 0;
5019 int r;
5020
5021 /*
5022 * Assume that the pte write on a page table of the same type
5023 * as the current vcpu paging mode since we update the sptes only
5024 * when they have the same mode.
5025 */
5026 if (is_pae(vcpu) && *bytes == 4) {
5027 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5028 *gpa &= ~(gpa_t)7;
5029 *bytes = 8;
5030 }
5031
5032 if (*bytes == 4 || *bytes == 8) {
5033 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5034 if (r)
5035 gentry = 0;
5036 }
5037
5038 return gentry;
5039}
5040
5041/*
5042 * If we're seeing too many writes to a page, it may no longer be a page table,
5043 * or we may be forking, in which case it is better to unmap the page.
5044 */
5045static bool detect_write_flooding(struct kvm_mmu_page *sp)
5046{
5047 /*
5048 * Skip write-flooding detected for the sp whose level is 1, because
5049 * it can become unsync, then the guest page is not write-protected.
5050 */
5051 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5052 return false;
5053
5054 atomic_inc(&sp->write_flooding_count);
5055 return atomic_read(&sp->write_flooding_count) >= 3;
5056}
5057
5058/*
5059 * Misaligned accesses are too much trouble to fix up; also, they usually
5060 * indicate a page is not used as a page table.
5061 */
5062static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5063 int bytes)
5064{
5065 unsigned offset, pte_size, misaligned;
5066
5067 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5068 gpa, bytes, sp->role.word);
5069
5070 offset = offset_in_page(gpa);
5071 pte_size = sp->role.cr4_pae ? 8 : 4;
5072
5073 /*
5074 * Sometimes, the OS only writes the last one bytes to update status
5075 * bits, for example, in linux, andb instruction is used in clear_bit().
5076 */
5077 if (!(offset & (pte_size - 1)) && bytes == 1)
5078 return false;
5079
5080 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5081 misaligned |= bytes < 4;
5082
5083 return misaligned;
5084}
5085
5086static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5087{
5088 unsigned page_offset, quadrant;
5089 u64 *spte;
5090 int level;
5091
5092 page_offset = offset_in_page(gpa);
5093 level = sp->role.level;
5094 *nspte = 1;
5095 if (!sp->role.cr4_pae) {
5096 page_offset <<= 1; /* 32->64 */
5097 /*
5098 * A 32-bit pde maps 4MB while the shadow pdes map
5099 * only 2MB. So we need to double the offset again
5100 * and zap two pdes instead of one.
5101 */
5102 if (level == PT32_ROOT_LEVEL) {
5103 page_offset &= ~7; /* kill rounding error */
5104 page_offset <<= 1;
5105 *nspte = 2;
5106 }
5107 quadrant = page_offset >> PAGE_SHIFT;
5108 page_offset &= ~PAGE_MASK;
5109 if (quadrant != sp->role.quadrant)
5110 return NULL;
5111 }
5112
5113 spte = &sp->spt[page_offset / sizeof(*spte)];
5114 return spte;
5115}
5116
5117static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5118 const u8 *new, int bytes,
5119 struct kvm_page_track_notifier_node *node)
5120{
5121 gfn_t gfn = gpa >> PAGE_SHIFT;
5122 struct kvm_mmu_page *sp;
5123 LIST_HEAD(invalid_list);
5124 u64 entry, gentry, *spte;
5125 int npte;
5126 bool remote_flush, local_flush;
5127
5128 /*
5129 * If we don't have indirect shadow pages, it means no page is
5130 * write-protected, so we can exit simply.
5131 */
5132 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5133 return;
5134
5135 remote_flush = local_flush = false;
5136
5137 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5138
5139 /*
5140 * No need to care whether allocation memory is successful
5141 * or not since pte prefetch is skiped if it does not have
5142 * enough objects in the cache.
5143 */
5144 mmu_topup_memory_caches(vcpu);
5145
5146 spin_lock(&vcpu->kvm->mmu_lock);
5147
5148 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5149
5150 ++vcpu->kvm->stat.mmu_pte_write;
5151 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5152
5153 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5154 if (detect_write_misaligned(sp, gpa, bytes) ||
5155 detect_write_flooding(sp)) {
5156 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5157 ++vcpu->kvm->stat.mmu_flooded;
5158 continue;
5159 }
5160
5161 spte = get_written_sptes(sp, gpa, &npte);
5162 if (!spte)
5163 continue;
5164
5165 local_flush = true;
5166 while (npte--) {
5167 entry = *spte;
5168 mmu_page_zap_pte(vcpu->kvm, sp, spte);
5169 if (gentry &&
5170 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
5171 & mmu_base_role_mask.word) && rmap_can_add(vcpu))
5172 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5173 if (need_remote_flush(entry, *spte))
5174 remote_flush = true;
5175 ++spte;
5176 }
5177 }
5178 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5179 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5180 spin_unlock(&vcpu->kvm->mmu_lock);
5181}
5182
5183int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5184{
5185 gpa_t gpa;
5186 int r;
5187
5188 if (vcpu->arch.mmu.direct_map)
5189 return 0;
5190
5191 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5192
5193 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5194
5195 return r;
5196}
5197EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5198
5199static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
5200{
5201 LIST_HEAD(invalid_list);
5202
5203 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
5204 return 0;
5205
5206 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
5207 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
5208 break;
5209
5210 ++vcpu->kvm->stat.mmu_recycled;
5211 }
5212 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
5213
5214 if (!kvm_mmu_available_pages(vcpu->kvm))
5215 return -ENOSPC;
5216 return 0;
5217}
5218
5219int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
5220 void *insn, int insn_len)
5221{
5222 int r, emulation_type = 0;
5223 enum emulation_result er;
5224 bool direct = vcpu->arch.mmu.direct_map;
5225
5226 /* With shadow page tables, fault_address contains a GVA or nGPA. */
5227 if (vcpu->arch.mmu.direct_map) {
5228 vcpu->arch.gpa_available = true;
5229 vcpu->arch.gpa_val = cr2;
5230 }
5231
5232 r = RET_PF_INVALID;
5233 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5234 r = handle_mmio_page_fault(vcpu, cr2, direct);
5235 if (r == RET_PF_EMULATE)
5236 goto emulate;
5237 }
5238
5239 if (r == RET_PF_INVALID) {
5240 r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
5241 false);
5242 WARN_ON(r == RET_PF_INVALID);
5243 }
5244
5245 if (r == RET_PF_RETRY)
5246 return 1;
5247 if (r < 0)
5248 return r;
5249
5250 /*
5251 * Before emulating the instruction, check if the error code
5252 * was due to a RO violation while translating the guest page.
5253 * This can occur when using nested virtualization with nested
5254 * paging in both guests. If true, we simply unprotect the page
5255 * and resume the guest.
5256 */
5257 if (vcpu->arch.mmu.direct_map &&
5258 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5259 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
5260 return 1;
5261 }
5262
5263 /*
5264 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5265 * optimistically try to just unprotect the page and let the processor
5266 * re-execute the instruction that caused the page fault. Do not allow
5267 * retrying MMIO emulation, as it's not only pointless but could also
5268 * cause us to enter an infinite loop because the processor will keep
5269 * faulting on the non-existent MMIO address. Retrying an instruction
5270 * from a nested guest is also pointless and dangerous as we are only
5271 * explicitly shadowing L1's page tables, i.e. unprotecting something
5272 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5273 */
5274 if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu))
5275 emulation_type = EMULTYPE_ALLOW_RETRY;
5276emulate:
5277 /*
5278 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5279 * This can happen if a guest gets a page-fault on data access but the HW
5280 * table walker is not able to read the instruction page (e.g instruction
5281 * page is not present in memory). In those cases we simply restart the
5282 * guest.
5283 */
5284 if (unlikely(insn && !insn_len))
5285 return 1;
5286
5287 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
5288
5289 switch (er) {
5290 case EMULATE_DONE:
5291 return 1;
5292 case EMULATE_USER_EXIT:
5293 ++vcpu->stat.mmio_exits;
5294 /* fall through */
5295 case EMULATE_FAIL:
5296 return 0;
5297 default:
5298 BUG();
5299 }
5300}
5301EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5302
5303void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5304{
5305 struct kvm_mmu *mmu = &vcpu->arch.mmu;
5306 int i;
5307
5308 /* INVLPG on a * non-canonical address is a NOP according to the SDM. */
5309 if (is_noncanonical_address(gva, vcpu))
5310 return;
5311
5312 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5313
5314 /*
5315 * INVLPG is required to invalidate any global mappings for the VA,
5316 * irrespective of PCID. Since it would take us roughly similar amount
5317 * of work to determine whether any of the prev_root mappings of the VA
5318 * is marked global, or to just sync it blindly, so we might as well
5319 * just always sync it.
5320 *
5321 * Mappings not reachable via the current cr3 or the prev_roots will be
5322 * synced when switching to that cr3, so nothing needs to be done here
5323 * for them.
5324 */
5325 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5326 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5327 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5328
5329 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5330 ++vcpu->stat.invlpg;
5331}
5332EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5333
5334void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5335{
5336 struct kvm_mmu *mmu = &vcpu->arch.mmu;
5337 bool tlb_flush = false;
5338 uint i;
5339
5340 if (pcid == kvm_get_active_pcid(vcpu)) {
5341 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5342 tlb_flush = true;
5343 }
5344
5345 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5346 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5347 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5348 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5349 tlb_flush = true;
5350 }
5351 }
5352
5353 if (tlb_flush)
5354 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5355
5356 ++vcpu->stat.invlpg;
5357
5358 /*
5359 * Mappings not reachable via the current cr3 or the prev_roots will be
5360 * synced when switching to that cr3, so nothing needs to be done here
5361 * for them.
5362 */
5363}
5364EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5365
5366void kvm_enable_tdp(void)
5367{
5368 tdp_enabled = true;
5369}
5370EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5371
5372void kvm_disable_tdp(void)
5373{
5374 tdp_enabled = false;
5375}
5376EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5377
5378static void free_mmu_pages(struct kvm_vcpu *vcpu)
5379{
5380 free_page((unsigned long)vcpu->arch.mmu.pae_root);
5381 free_page((unsigned long)vcpu->arch.mmu.lm_root);
5382}
5383
5384static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5385{
5386 struct page *page;
5387 int i;
5388
5389 if (tdp_enabled)
5390 return 0;
5391
5392 /*
5393 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5394 * Therefore we need to allocate shadow page tables in the first
5395 * 4GB of memory, which happens to fit the DMA32 zone.
5396 */
5397 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
5398 if (!page)
5399 return -ENOMEM;
5400
5401 vcpu->arch.mmu.pae_root = page_address(page);
5402 for (i = 0; i < 4; ++i)
5403 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
5404
5405 return 0;
5406}
5407
5408int kvm_mmu_create(struct kvm_vcpu *vcpu)
5409{
5410 uint i;
5411
5412 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5413 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5414 vcpu->arch.mmu.translate_gpa = translate_gpa;
5415 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5416
5417 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5418 vcpu->arch.mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5419
5420 return alloc_mmu_pages(vcpu);
5421}
5422
5423void kvm_mmu_setup(struct kvm_vcpu *vcpu)
5424{
5425 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
5426
5427 /*
5428 * kvm_mmu_setup() is called only on vCPU initialization.
5429 * Therefore, no need to reset mmu roots as they are not yet
5430 * initialized.
5431 */
5432 kvm_init_mmu(vcpu, false);
5433}
5434
5435static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5436 struct kvm_memory_slot *slot,
5437 struct kvm_page_track_notifier_node *node)
5438{
5439 kvm_mmu_invalidate_zap_all_pages(kvm);
5440}
5441
5442void kvm_mmu_init_vm(struct kvm *kvm)
5443{
5444 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5445
5446 node->track_write = kvm_mmu_pte_write;
5447 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5448 kvm_page_track_register_notifier(kvm, node);
5449}
5450
5451void kvm_mmu_uninit_vm(struct kvm *kvm)
5452{
5453 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5454
5455 kvm_page_track_unregister_notifier(kvm, node);
5456}
5457
5458/* The return value indicates if tlb flush on all vcpus is needed. */
5459typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5460
5461/* The caller should hold mmu-lock before calling this function. */
5462static __always_inline bool
5463slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5464 slot_level_handler fn, int start_level, int end_level,
5465 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5466{
5467 struct slot_rmap_walk_iterator iterator;
5468 bool flush = false;
5469
5470 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5471 end_gfn, &iterator) {
5472 if (iterator.rmap)
5473 flush |= fn(kvm, iterator.rmap);
5474
5475 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5476 if (flush && lock_flush_tlb) {
5477 kvm_flush_remote_tlbs(kvm);
5478 flush = false;
5479 }
5480 cond_resched_lock(&kvm->mmu_lock);
5481 }
5482 }
5483
5484 if (flush && lock_flush_tlb) {
5485 kvm_flush_remote_tlbs(kvm);
5486 flush = false;
5487 }
5488
5489 return flush;
5490}
5491
5492static __always_inline bool
5493slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5494 slot_level_handler fn, int start_level, int end_level,
5495 bool lock_flush_tlb)
5496{
5497 return slot_handle_level_range(kvm, memslot, fn, start_level,
5498 end_level, memslot->base_gfn,
5499 memslot->base_gfn + memslot->npages - 1,
5500 lock_flush_tlb);
5501}
5502
5503static __always_inline bool
5504slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5505 slot_level_handler fn, bool lock_flush_tlb)
5506{
5507 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5508 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5509}
5510
5511static __always_inline bool
5512slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5513 slot_level_handler fn, bool lock_flush_tlb)
5514{
5515 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5516 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5517}
5518
5519static __always_inline bool
5520slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5521 slot_level_handler fn, bool lock_flush_tlb)
5522{
5523 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5524 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5525}
5526
5527void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5528{
5529 struct kvm_memslots *slots;
5530 struct kvm_memory_slot *memslot;
5531 int i;
5532
5533 spin_lock(&kvm->mmu_lock);
5534 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5535 slots = __kvm_memslots(kvm, i);
5536 kvm_for_each_memslot(memslot, slots) {
5537 gfn_t start, end;
5538
5539 start = max(gfn_start, memslot->base_gfn);
5540 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5541 if (start >= end)
5542 continue;
5543
5544 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5545 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5546 start, end - 1, true);
5547 }
5548 }
5549
5550 spin_unlock(&kvm->mmu_lock);
5551}
5552
5553static bool slot_rmap_write_protect(struct kvm *kvm,
5554 struct kvm_rmap_head *rmap_head)
5555{
5556 return __rmap_write_protect(kvm, rmap_head, false);
5557}
5558
5559void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5560 struct kvm_memory_slot *memslot)
5561{
5562 bool flush;
5563
5564 spin_lock(&kvm->mmu_lock);
5565 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5566 false);
5567 spin_unlock(&kvm->mmu_lock);
5568
5569 /*
5570 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5571 * which do tlb flush out of mmu-lock should be serialized by
5572 * kvm->slots_lock otherwise tlb flush would be missed.
5573 */
5574 lockdep_assert_held(&kvm->slots_lock);
5575
5576 /*
5577 * We can flush all the TLBs out of the mmu lock without TLB
5578 * corruption since we just change the spte from writable to
5579 * readonly so that we only need to care the case of changing
5580 * spte from present to present (changing the spte from present
5581 * to nonpresent will flush all the TLBs immediately), in other
5582 * words, the only case we care is mmu_spte_update() where we
5583 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5584 * instead of PT_WRITABLE_MASK, that means it does not depend
5585 * on PT_WRITABLE_MASK anymore.
5586 */
5587 if (flush)
5588 kvm_flush_remote_tlbs(kvm);
5589}
5590
5591static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5592 struct kvm_rmap_head *rmap_head)
5593{
5594 u64 *sptep;
5595 struct rmap_iterator iter;
5596 int need_tlb_flush = 0;
5597 kvm_pfn_t pfn;
5598 struct kvm_mmu_page *sp;
5599
5600restart:
5601 for_each_rmap_spte(rmap_head, &iter, sptep) {
5602 sp = page_header(__pa(sptep));
5603 pfn = spte_to_pfn(*sptep);
5604
5605 /*
5606 * We cannot do huge page mapping for indirect shadow pages,
5607 * which are found on the last rmap (level = 1) when not using
5608 * tdp; such shadow pages are synced with the page table in
5609 * the guest, and the guest page table is using 4K page size
5610 * mapping if the indirect sp has level = 1.
5611 */
5612 if (sp->role.direct &&
5613 !kvm_is_reserved_pfn(pfn) &&
5614 PageTransCompoundMap(pfn_to_page(pfn))) {
5615 drop_spte(kvm, sptep);
5616 need_tlb_flush = 1;
5617 goto restart;
5618 }
5619 }
5620
5621 return need_tlb_flush;
5622}
5623
5624void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5625 const struct kvm_memory_slot *memslot)
5626{
5627 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
5628 spin_lock(&kvm->mmu_lock);
5629 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5630 kvm_mmu_zap_collapsible_spte, true);
5631 spin_unlock(&kvm->mmu_lock);
5632}
5633
5634void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5635 struct kvm_memory_slot *memslot)
5636{
5637 bool flush;
5638
5639 spin_lock(&kvm->mmu_lock);
5640 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5641 spin_unlock(&kvm->mmu_lock);
5642
5643 lockdep_assert_held(&kvm->slots_lock);
5644
5645 /*
5646 * It's also safe to flush TLBs out of mmu lock here as currently this
5647 * function is only used for dirty logging, in which case flushing TLB
5648 * out of mmu lock also guarantees no dirty pages will be lost in
5649 * dirty_bitmap.
5650 */
5651 if (flush)
5652 kvm_flush_remote_tlbs(kvm);
5653}
5654EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5655
5656void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5657 struct kvm_memory_slot *memslot)
5658{
5659 bool flush;
5660
5661 spin_lock(&kvm->mmu_lock);
5662 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5663 false);
5664 spin_unlock(&kvm->mmu_lock);
5665
5666 /* see kvm_mmu_slot_remove_write_access */
5667 lockdep_assert_held(&kvm->slots_lock);
5668
5669 if (flush)
5670 kvm_flush_remote_tlbs(kvm);
5671}
5672EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5673
5674void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5675 struct kvm_memory_slot *memslot)
5676{
5677 bool flush;
5678
5679 spin_lock(&kvm->mmu_lock);
5680 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5681 spin_unlock(&kvm->mmu_lock);
5682
5683 lockdep_assert_held(&kvm->slots_lock);
5684
5685 /* see kvm_mmu_slot_leaf_clear_dirty */
5686 if (flush)
5687 kvm_flush_remote_tlbs(kvm);
5688}
5689EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5690
5691#define BATCH_ZAP_PAGES 10
5692static void kvm_zap_obsolete_pages(struct kvm *kvm)
5693{
5694 struct kvm_mmu_page *sp, *node;
5695 int batch = 0;
5696
5697restart:
5698 list_for_each_entry_safe_reverse(sp, node,
5699 &kvm->arch.active_mmu_pages, link) {
5700 int ret;
5701
5702 /*
5703 * No obsolete page exists before new created page since
5704 * active_mmu_pages is the FIFO list.
5705 */
5706 if (!is_obsolete_sp(kvm, sp))
5707 break;
5708
5709 /*
5710 * Since we are reversely walking the list and the invalid
5711 * list will be moved to the head, skip the invalid page
5712 * can help us to avoid the infinity list walking.
5713 */
5714 if (sp->role.invalid)
5715 continue;
5716
5717 /*
5718 * Need not flush tlb since we only zap the sp with invalid
5719 * generation number.
5720 */
5721 if (batch >= BATCH_ZAP_PAGES &&
5722 cond_resched_lock(&kvm->mmu_lock)) {
5723 batch = 0;
5724 goto restart;
5725 }
5726
5727 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5728 &kvm->arch.zapped_obsolete_pages);
5729 batch += ret;
5730
5731 if (ret)
5732 goto restart;
5733 }
5734
5735 /*
5736 * Should flush tlb before free page tables since lockless-walking
5737 * may use the pages.
5738 */
5739 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5740}
5741
5742/*
5743 * Fast invalidate all shadow pages and use lock-break technique
5744 * to zap obsolete pages.
5745 *
5746 * It's required when memslot is being deleted or VM is being
5747 * destroyed, in these cases, we should ensure that KVM MMU does
5748 * not use any resource of the being-deleted slot or all slots
5749 * after calling the function.
5750 */
5751void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5752{
5753 spin_lock(&kvm->mmu_lock);
5754 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5755 kvm->arch.mmu_valid_gen++;
5756
5757 /*
5758 * Notify all vcpus to reload its shadow page table
5759 * and flush TLB. Then all vcpus will switch to new
5760 * shadow page table with the new mmu_valid_gen.
5761 *
5762 * Note: we should do this under the protection of
5763 * mmu-lock, otherwise, vcpu would purge shadow page
5764 * but miss tlb flush.
5765 */
5766 kvm_reload_remote_mmus(kvm);
5767
5768 kvm_zap_obsolete_pages(kvm);
5769 spin_unlock(&kvm->mmu_lock);
5770}
5771
5772static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5773{
5774 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5775}
5776
5777void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
5778{
5779 /*
5780 * The very rare case: if the generation-number is round,
5781 * zap all shadow pages.
5782 */
5783 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
5784 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5785 kvm_mmu_invalidate_zap_all_pages(kvm);
5786 }
5787}
5788
5789static unsigned long
5790mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5791{
5792 struct kvm *kvm;
5793 int nr_to_scan = sc->nr_to_scan;
5794 unsigned long freed = 0;
5795
5796 spin_lock(&kvm_lock);
5797
5798 list_for_each_entry(kvm, &vm_list, vm_list) {
5799 int idx;
5800 LIST_HEAD(invalid_list);
5801
5802 /*
5803 * Never scan more than sc->nr_to_scan VM instances.
5804 * Will not hit this condition practically since we do not try
5805 * to shrink more than one VM and it is very unlikely to see
5806 * !n_used_mmu_pages so many times.
5807 */
5808 if (!nr_to_scan--)
5809 break;
5810 /*
5811 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5812 * here. We may skip a VM instance errorneosly, but we do not
5813 * want to shrink a VM that only started to populate its MMU
5814 * anyway.
5815 */
5816 if (!kvm->arch.n_used_mmu_pages &&
5817 !kvm_has_zapped_obsolete_pages(kvm))
5818 continue;
5819
5820 idx = srcu_read_lock(&kvm->srcu);
5821 spin_lock(&kvm->mmu_lock);
5822
5823 if (kvm_has_zapped_obsolete_pages(kvm)) {
5824 kvm_mmu_commit_zap_page(kvm,
5825 &kvm->arch.zapped_obsolete_pages);
5826 goto unlock;
5827 }
5828
5829 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5830 freed++;
5831 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5832
5833unlock:
5834 spin_unlock(&kvm->mmu_lock);
5835 srcu_read_unlock(&kvm->srcu, idx);
5836
5837 /*
5838 * unfair on small ones
5839 * per-vm shrinkers cry out
5840 * sadness comes quickly
5841 */
5842 list_move_tail(&kvm->vm_list, &vm_list);
5843 break;
5844 }
5845
5846 spin_unlock(&kvm_lock);
5847 return freed;
5848}
5849
5850static unsigned long
5851mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5852{
5853 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5854}
5855
5856static struct shrinker mmu_shrinker = {
5857 .count_objects = mmu_shrink_count,
5858 .scan_objects = mmu_shrink_scan,
5859 .seeks = DEFAULT_SEEKS * 10,
5860};
5861
5862static void mmu_destroy_caches(void)
5863{
5864 kmem_cache_destroy(pte_list_desc_cache);
5865 kmem_cache_destroy(mmu_page_header_cache);
5866}
5867
5868int kvm_mmu_module_init(void)
5869{
5870 int ret = -ENOMEM;
5871
5872 kvm_mmu_reset_all_pte_masks();
5873
5874 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5875 sizeof(struct pte_list_desc),
5876 0, SLAB_ACCOUNT, NULL);
5877 if (!pte_list_desc_cache)
5878 goto out;
5879
5880 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5881 sizeof(struct kvm_mmu_page),
5882 0, SLAB_ACCOUNT, NULL);
5883 if (!mmu_page_header_cache)
5884 goto out;
5885
5886 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5887 goto out;
5888
5889 ret = register_shrinker(&mmu_shrinker);
5890 if (ret)
5891 goto out;
5892
5893 return 0;
5894
5895out:
5896 mmu_destroy_caches();
5897 return ret;
5898}
5899
5900/*
5901 * Caculate mmu pages needed for kvm.
5902 */
5903unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5904{
5905 unsigned int nr_mmu_pages;
5906 unsigned int nr_pages = 0;
5907 struct kvm_memslots *slots;
5908 struct kvm_memory_slot *memslot;
5909 int i;
5910
5911 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5912 slots = __kvm_memslots(kvm, i);
5913
5914 kvm_for_each_memslot(memslot, slots)
5915 nr_pages += memslot->npages;
5916 }
5917
5918 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5919 nr_mmu_pages = max(nr_mmu_pages,
5920 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5921
5922 return nr_mmu_pages;
5923}
5924
5925void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5926{
5927 kvm_mmu_unload(vcpu);
5928 free_mmu_pages(vcpu);
5929 mmu_free_memory_caches(vcpu);
5930}
5931
5932void kvm_mmu_module_exit(void)
5933{
5934 mmu_destroy_caches();
5935 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5936 unregister_shrinker(&mmu_shrinker);
5937 mmu_audit_disable();
5938}