v4.19.13 snapshot.
diff --git a/arch/x86/kvm/mmu.c b/arch/x86/kvm/mmu.c
new file mode 100644
index 0000000..1b82bc7
--- /dev/null
+++ b/arch/x86/kvm/mmu.c
@@ -0,0 +1,5938 @@
+/*
+ * Kernel-based Virtual Machine driver for Linux
+ *
+ * This module enables machines with Intel VT-x extensions to run virtual
+ * machines without emulation or binary translation.
+ *
+ * MMU support
+ *
+ * Copyright (C) 2006 Qumranet, Inc.
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
+ *
+ * Authors:
+ *   Yaniv Kamay  <yaniv@qumranet.com>
+ *   Avi Kivity   <avi@qumranet.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2.  See
+ * the COPYING file in the top-level directory.
+ *
+ */
+
+#include "irq.h"
+#include "mmu.h"
+#include "x86.h"
+#include "kvm_cache_regs.h"
+#include "cpuid.h"
+
+#include <linux/kvm_host.h>
+#include <linux/types.h>
+#include <linux/string.h>
+#include <linux/mm.h>
+#include <linux/highmem.h>
+#include <linux/moduleparam.h>
+#include <linux/export.h>
+#include <linux/swap.h>
+#include <linux/hugetlb.h>
+#include <linux/compiler.h>
+#include <linux/srcu.h>
+#include <linux/slab.h>
+#include <linux/sched/signal.h>
+#include <linux/uaccess.h>
+#include <linux/hash.h>
+#include <linux/kern_levels.h>
+
+#include <asm/page.h>
+#include <asm/pat.h>
+#include <asm/cmpxchg.h>
+#include <asm/io.h>
+#include <asm/vmx.h>
+#include <asm/kvm_page_track.h>
+#include "trace.h"
+
+/*
+ * When setting this variable to true it enables Two-Dimensional-Paging
+ * where the hardware walks 2 page tables:
+ * 1. the guest-virtual to guest-physical
+ * 2. while doing 1. it walks guest-physical to host-physical
+ * If the hardware supports that we don't need to do shadow paging.
+ */
+bool tdp_enabled = false;
+
+enum {
+	AUDIT_PRE_PAGE_FAULT,
+	AUDIT_POST_PAGE_FAULT,
+	AUDIT_PRE_PTE_WRITE,
+	AUDIT_POST_PTE_WRITE,
+	AUDIT_PRE_SYNC,
+	AUDIT_POST_SYNC
+};
+
+#undef MMU_DEBUG
+
+#ifdef MMU_DEBUG
+static bool dbg = 0;
+module_param(dbg, bool, 0644);
+
+#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
+#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
+#define MMU_WARN_ON(x) WARN_ON(x)
+#else
+#define pgprintk(x...) do { } while (0)
+#define rmap_printk(x...) do { } while (0)
+#define MMU_WARN_ON(x) do { } while (0)
+#endif
+
+#define PTE_PREFETCH_NUM		8
+
+#define PT_FIRST_AVAIL_BITS_SHIFT 10
+#define PT64_SECOND_AVAIL_BITS_SHIFT 52
+
+#define PT64_LEVEL_BITS 9
+
+#define PT64_LEVEL_SHIFT(level) \
+		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
+
+#define PT64_INDEX(address, level)\
+	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
+
+
+#define PT32_LEVEL_BITS 10
+
+#define PT32_LEVEL_SHIFT(level) \
+		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
+
+#define PT32_LVL_OFFSET_MASK(level) \
+	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
+						* PT32_LEVEL_BITS))) - 1))
+
+#define PT32_INDEX(address, level)\
+	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
+
+
+#define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
+#define PT64_DIR_BASE_ADDR_MASK \
+	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
+#define PT64_LVL_ADDR_MASK(level) \
+	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
+						* PT64_LEVEL_BITS))) - 1))
+#define PT64_LVL_OFFSET_MASK(level) \
+	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
+						* PT64_LEVEL_BITS))) - 1))
+
+#define PT32_BASE_ADDR_MASK PAGE_MASK
+#define PT32_DIR_BASE_ADDR_MASK \
+	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
+#define PT32_LVL_ADDR_MASK(level) \
+	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
+					    * PT32_LEVEL_BITS))) - 1))
+
+#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
+			| shadow_x_mask | shadow_nx_mask | shadow_me_mask)
+
+#define ACC_EXEC_MASK    1
+#define ACC_WRITE_MASK   PT_WRITABLE_MASK
+#define ACC_USER_MASK    PT_USER_MASK
+#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
+
+/* The mask for the R/X bits in EPT PTEs */
+#define PT64_EPT_READABLE_MASK			0x1ull
+#define PT64_EPT_EXECUTABLE_MASK		0x4ull
+
+#include <trace/events/kvm.h>
+
+#define CREATE_TRACE_POINTS
+#include "mmutrace.h"
+
+#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
+#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
+
+#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
+
+/* make pte_list_desc fit well in cache line */
+#define PTE_LIST_EXT 3
+
+/*
+ * Return values of handle_mmio_page_fault and mmu.page_fault:
+ * RET_PF_RETRY: let CPU fault again on the address.
+ * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
+ *
+ * For handle_mmio_page_fault only:
+ * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
+ */
+enum {
+	RET_PF_RETRY = 0,
+	RET_PF_EMULATE = 1,
+	RET_PF_INVALID = 2,
+};
+
+struct pte_list_desc {
+	u64 *sptes[PTE_LIST_EXT];
+	struct pte_list_desc *more;
+};
+
+struct kvm_shadow_walk_iterator {
+	u64 addr;
+	hpa_t shadow_addr;
+	u64 *sptep;
+	int level;
+	unsigned index;
+};
+
+static const union kvm_mmu_page_role mmu_base_role_mask = {
+	.cr0_wp = 1,
+	.cr4_pae = 1,
+	.nxe = 1,
+	.smep_andnot_wp = 1,
+	.smap_andnot_wp = 1,
+	.smm = 1,
+	.guest_mode = 1,
+	.ad_disabled = 1,
+};
+
+#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
+	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
+					 (_root), (_addr));                \
+	     shadow_walk_okay(&(_walker));			           \
+	     shadow_walk_next(&(_walker)))
+
+#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
+	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
+	     shadow_walk_okay(&(_walker));			\
+	     shadow_walk_next(&(_walker)))
+
+#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
+	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
+	     shadow_walk_okay(&(_walker)) &&				\
+		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
+	     __shadow_walk_next(&(_walker), spte))
+
+static struct kmem_cache *pte_list_desc_cache;
+static struct kmem_cache *mmu_page_header_cache;
+static struct percpu_counter kvm_total_used_mmu_pages;
+
+static u64 __read_mostly shadow_nx_mask;
+static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
+static u64 __read_mostly shadow_user_mask;
+static u64 __read_mostly shadow_accessed_mask;
+static u64 __read_mostly shadow_dirty_mask;
+static u64 __read_mostly shadow_mmio_mask;
+static u64 __read_mostly shadow_mmio_value;
+static u64 __read_mostly shadow_present_mask;
+static u64 __read_mostly shadow_me_mask;
+
+/*
+ * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
+ * Non-present SPTEs with shadow_acc_track_value set are in place for access
+ * tracking.
+ */
+static u64 __read_mostly shadow_acc_track_mask;
+static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
+
+/*
+ * The mask/shift to use for saving the original R/X bits when marking the PTE
+ * as not-present for access tracking purposes. We do not save the W bit as the
+ * PTEs being access tracked also need to be dirty tracked, so the W bit will be
+ * restored only when a write is attempted to the page.
+ */
+static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
+						    PT64_EPT_EXECUTABLE_MASK;
+static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
+
+/*
+ * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
+ * to guard against L1TF attacks.
+ */
+static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
+
+/*
+ * The number of high-order 1 bits to use in the mask above.
+ */
+static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
+
+/*
+ * In some cases, we need to preserve the GFN of a non-present or reserved
+ * SPTE when we usurp the upper five bits of the physical address space to
+ * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
+ * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
+ * left into the reserved bits, i.e. the GFN in the SPTE will be split into
+ * high and low parts.  This mask covers the lower bits of the GFN.
+ */
+static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
+
+
+static void mmu_spte_set(u64 *sptep, u64 spte);
+static union kvm_mmu_page_role
+kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
+
+void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
+{
+	BUG_ON((mmio_mask & mmio_value) != mmio_value);
+	shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
+	shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
+
+static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
+{
+	return sp->role.ad_disabled;
+}
+
+static inline bool spte_ad_enabled(u64 spte)
+{
+	MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
+	return !(spte & shadow_acc_track_value);
+}
+
+static inline u64 spte_shadow_accessed_mask(u64 spte)
+{
+	MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
+	return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
+}
+
+static inline u64 spte_shadow_dirty_mask(u64 spte)
+{
+	MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
+	return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
+}
+
+static inline bool is_access_track_spte(u64 spte)
+{
+	return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
+}
+
+/*
+ * the low bit of the generation number is always presumed to be zero.
+ * This disables mmio caching during memslot updates.  The concept is
+ * similar to a seqcount but instead of retrying the access we just punt
+ * and ignore the cache.
+ *
+ * spte bits 3-11 are used as bits 1-9 of the generation number,
+ * the bits 52-61 are used as bits 10-19 of the generation number.
+ */
+#define MMIO_SPTE_GEN_LOW_SHIFT		2
+#define MMIO_SPTE_GEN_HIGH_SHIFT	52
+
+#define MMIO_GEN_SHIFT			20
+#define MMIO_GEN_LOW_SHIFT		10
+#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
+#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
+
+static u64 generation_mmio_spte_mask(unsigned int gen)
+{
+	u64 mask;
+
+	WARN_ON(gen & ~MMIO_GEN_MASK);
+
+	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
+	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
+	return mask;
+}
+
+static unsigned int get_mmio_spte_generation(u64 spte)
+{
+	unsigned int gen;
+
+	spte &= ~shadow_mmio_mask;
+
+	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
+	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
+	return gen;
+}
+
+static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
+{
+	return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
+}
+
+static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
+			   unsigned access)
+{
+	unsigned int gen = kvm_current_mmio_generation(vcpu);
+	u64 mask = generation_mmio_spte_mask(gen);
+	u64 gpa = gfn << PAGE_SHIFT;
+
+	access &= ACC_WRITE_MASK | ACC_USER_MASK;
+	mask |= shadow_mmio_value | access;
+	mask |= gpa | shadow_nonpresent_or_rsvd_mask;
+	mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
+		<< shadow_nonpresent_or_rsvd_mask_len;
+
+	trace_mark_mmio_spte(sptep, gfn, access, gen);
+	mmu_spte_set(sptep, mask);
+}
+
+static bool is_mmio_spte(u64 spte)
+{
+	return (spte & shadow_mmio_mask) == shadow_mmio_value;
+}
+
+static gfn_t get_mmio_spte_gfn(u64 spte)
+{
+	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
+
+	gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
+	       & shadow_nonpresent_or_rsvd_mask;
+
+	return gpa >> PAGE_SHIFT;
+}
+
+static unsigned get_mmio_spte_access(u64 spte)
+{
+	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
+	return (spte & ~mask) & ~PAGE_MASK;
+}
+
+static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
+			  kvm_pfn_t pfn, unsigned access)
+{
+	if (unlikely(is_noslot_pfn(pfn))) {
+		mark_mmio_spte(vcpu, sptep, gfn, access);
+		return true;
+	}
+
+	return false;
+}
+
+static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
+{
+	unsigned int kvm_gen, spte_gen;
+
+	kvm_gen = kvm_current_mmio_generation(vcpu);
+	spte_gen = get_mmio_spte_generation(spte);
+
+	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
+	return likely(kvm_gen == spte_gen);
+}
+
+/*
+ * Sets the shadow PTE masks used by the MMU.
+ *
+ * Assumptions:
+ *  - Setting either @accessed_mask or @dirty_mask requires setting both
+ *  - At least one of @accessed_mask or @acc_track_mask must be set
+ */
+void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
+		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
+		u64 acc_track_mask, u64 me_mask)
+{
+	BUG_ON(!dirty_mask != !accessed_mask);
+	BUG_ON(!accessed_mask && !acc_track_mask);
+	BUG_ON(acc_track_mask & shadow_acc_track_value);
+
+	shadow_user_mask = user_mask;
+	shadow_accessed_mask = accessed_mask;
+	shadow_dirty_mask = dirty_mask;
+	shadow_nx_mask = nx_mask;
+	shadow_x_mask = x_mask;
+	shadow_present_mask = p_mask;
+	shadow_acc_track_mask = acc_track_mask;
+	shadow_me_mask = me_mask;
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
+
+static void kvm_mmu_reset_all_pte_masks(void)
+{
+	u8 low_phys_bits;
+
+	shadow_user_mask = 0;
+	shadow_accessed_mask = 0;
+	shadow_dirty_mask = 0;
+	shadow_nx_mask = 0;
+	shadow_x_mask = 0;
+	shadow_mmio_mask = 0;
+	shadow_present_mask = 0;
+	shadow_acc_track_mask = 0;
+
+	/*
+	 * If the CPU has 46 or less physical address bits, then set an
+	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
+	 * assumed that the CPU is not vulnerable to L1TF.
+	 */
+	low_phys_bits = boot_cpu_data.x86_phys_bits;
+	if (boot_cpu_data.x86_phys_bits <
+	    52 - shadow_nonpresent_or_rsvd_mask_len) {
+		shadow_nonpresent_or_rsvd_mask =
+			rsvd_bits(boot_cpu_data.x86_phys_bits -
+				  shadow_nonpresent_or_rsvd_mask_len,
+				  boot_cpu_data.x86_phys_bits - 1);
+		low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
+	}
+	shadow_nonpresent_or_rsvd_lower_gfn_mask =
+		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
+}
+
+static int is_cpuid_PSE36(void)
+{
+	return 1;
+}
+
+static int is_nx(struct kvm_vcpu *vcpu)
+{
+	return vcpu->arch.efer & EFER_NX;
+}
+
+static int is_shadow_present_pte(u64 pte)
+{
+	return (pte != 0) && !is_mmio_spte(pte);
+}
+
+static int is_large_pte(u64 pte)
+{
+	return pte & PT_PAGE_SIZE_MASK;
+}
+
+static int is_last_spte(u64 pte, int level)
+{
+	if (level == PT_PAGE_TABLE_LEVEL)
+		return 1;
+	if (is_large_pte(pte))
+		return 1;
+	return 0;
+}
+
+static bool is_executable_pte(u64 spte)
+{
+	return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
+}
+
+static kvm_pfn_t spte_to_pfn(u64 pte)
+{
+	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
+}
+
+static gfn_t pse36_gfn_delta(u32 gpte)
+{
+	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
+
+	return (gpte & PT32_DIR_PSE36_MASK) << shift;
+}
+
+#ifdef CONFIG_X86_64
+static void __set_spte(u64 *sptep, u64 spte)
+{
+	WRITE_ONCE(*sptep, spte);
+}
+
+static void __update_clear_spte_fast(u64 *sptep, u64 spte)
+{
+	WRITE_ONCE(*sptep, spte);
+}
+
+static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
+{
+	return xchg(sptep, spte);
+}
+
+static u64 __get_spte_lockless(u64 *sptep)
+{
+	return READ_ONCE(*sptep);
+}
+#else
+union split_spte {
+	struct {
+		u32 spte_low;
+		u32 spte_high;
+	};
+	u64 spte;
+};
+
+static void count_spte_clear(u64 *sptep, u64 spte)
+{
+	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
+
+	if (is_shadow_present_pte(spte))
+		return;
+
+	/* Ensure the spte is completely set before we increase the count */
+	smp_wmb();
+	sp->clear_spte_count++;
+}
+
+static void __set_spte(u64 *sptep, u64 spte)
+{
+	union split_spte *ssptep, sspte;
+
+	ssptep = (union split_spte *)sptep;
+	sspte = (union split_spte)spte;
+
+	ssptep->spte_high = sspte.spte_high;
+
+	/*
+	 * If we map the spte from nonpresent to present, We should store
+	 * the high bits firstly, then set present bit, so cpu can not
+	 * fetch this spte while we are setting the spte.
+	 */
+	smp_wmb();
+
+	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
+}
+
+static void __update_clear_spte_fast(u64 *sptep, u64 spte)
+{
+	union split_spte *ssptep, sspte;
+
+	ssptep = (union split_spte *)sptep;
+	sspte = (union split_spte)spte;
+
+	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
+
+	/*
+	 * If we map the spte from present to nonpresent, we should clear
+	 * present bit firstly to avoid vcpu fetch the old high bits.
+	 */
+	smp_wmb();
+
+	ssptep->spte_high = sspte.spte_high;
+	count_spte_clear(sptep, spte);
+}
+
+static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
+{
+	union split_spte *ssptep, sspte, orig;
+
+	ssptep = (union split_spte *)sptep;
+	sspte = (union split_spte)spte;
+
+	/* xchg acts as a barrier before the setting of the high bits */
+	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
+	orig.spte_high = ssptep->spte_high;
+	ssptep->spte_high = sspte.spte_high;
+	count_spte_clear(sptep, spte);
+
+	return orig.spte;
+}
+
+/*
+ * The idea using the light way get the spte on x86_32 guest is from
+ * gup_get_pte(arch/x86/mm/gup.c).
+ *
+ * An spte tlb flush may be pending, because kvm_set_pte_rmapp
+ * coalesces them and we are running out of the MMU lock.  Therefore
+ * we need to protect against in-progress updates of the spte.
+ *
+ * Reading the spte while an update is in progress may get the old value
+ * for the high part of the spte.  The race is fine for a present->non-present
+ * change (because the high part of the spte is ignored for non-present spte),
+ * but for a present->present change we must reread the spte.
+ *
+ * All such changes are done in two steps (present->non-present and
+ * non-present->present), hence it is enough to count the number of
+ * present->non-present updates: if it changed while reading the spte,
+ * we might have hit the race.  This is done using clear_spte_count.
+ */
+static u64 __get_spte_lockless(u64 *sptep)
+{
+	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
+	union split_spte spte, *orig = (union split_spte *)sptep;
+	int count;
+
+retry:
+	count = sp->clear_spte_count;
+	smp_rmb();
+
+	spte.spte_low = orig->spte_low;
+	smp_rmb();
+
+	spte.spte_high = orig->spte_high;
+	smp_rmb();
+
+	if (unlikely(spte.spte_low != orig->spte_low ||
+	      count != sp->clear_spte_count))
+		goto retry;
+
+	return spte.spte;
+}
+#endif
+
+static bool spte_can_locklessly_be_made_writable(u64 spte)
+{
+	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
+		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
+}
+
+static bool spte_has_volatile_bits(u64 spte)
+{
+	if (!is_shadow_present_pte(spte))
+		return false;
+
+	/*
+	 * Always atomically update spte if it can be updated
+	 * out of mmu-lock, it can ensure dirty bit is not lost,
+	 * also, it can help us to get a stable is_writable_pte()
+	 * to ensure tlb flush is not missed.
+	 */
+	if (spte_can_locklessly_be_made_writable(spte) ||
+	    is_access_track_spte(spte))
+		return true;
+
+	if (spte_ad_enabled(spte)) {
+		if ((spte & shadow_accessed_mask) == 0 ||
+	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
+			return true;
+	}
+
+	return false;
+}
+
+static bool is_accessed_spte(u64 spte)
+{
+	u64 accessed_mask = spte_shadow_accessed_mask(spte);
+
+	return accessed_mask ? spte & accessed_mask
+			     : !is_access_track_spte(spte);
+}
+
+static bool is_dirty_spte(u64 spte)
+{
+	u64 dirty_mask = spte_shadow_dirty_mask(spte);
+
+	return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
+}
+
+/* Rules for using mmu_spte_set:
+ * Set the sptep from nonpresent to present.
+ * Note: the sptep being assigned *must* be either not present
+ * or in a state where the hardware will not attempt to update
+ * the spte.
+ */
+static void mmu_spte_set(u64 *sptep, u64 new_spte)
+{
+	WARN_ON(is_shadow_present_pte(*sptep));
+	__set_spte(sptep, new_spte);
+}
+
+/*
+ * Update the SPTE (excluding the PFN), but do not track changes in its
+ * accessed/dirty status.
+ */
+static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
+{
+	u64 old_spte = *sptep;
+
+	WARN_ON(!is_shadow_present_pte(new_spte));
+
+	if (!is_shadow_present_pte(old_spte)) {
+		mmu_spte_set(sptep, new_spte);
+		return old_spte;
+	}
+
+	if (!spte_has_volatile_bits(old_spte))
+		__update_clear_spte_fast(sptep, new_spte);
+	else
+		old_spte = __update_clear_spte_slow(sptep, new_spte);
+
+	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
+
+	return old_spte;
+}
+
+/* Rules for using mmu_spte_update:
+ * Update the state bits, it means the mapped pfn is not changed.
+ *
+ * Whenever we overwrite a writable spte with a read-only one we
+ * should flush remote TLBs. Otherwise rmap_write_protect
+ * will find a read-only spte, even though the writable spte
+ * might be cached on a CPU's TLB, the return value indicates this
+ * case.
+ *
+ * Returns true if the TLB needs to be flushed
+ */
+static bool mmu_spte_update(u64 *sptep, u64 new_spte)
+{
+	bool flush = false;
+	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
+
+	if (!is_shadow_present_pte(old_spte))
+		return false;
+
+	/*
+	 * For the spte updated out of mmu-lock is safe, since
+	 * we always atomically update it, see the comments in
+	 * spte_has_volatile_bits().
+	 */
+	if (spte_can_locklessly_be_made_writable(old_spte) &&
+	      !is_writable_pte(new_spte))
+		flush = true;
+
+	/*
+	 * Flush TLB when accessed/dirty states are changed in the page tables,
+	 * to guarantee consistency between TLB and page tables.
+	 */
+
+	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
+		flush = true;
+		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
+	}
+
+	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
+		flush = true;
+		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
+	}
+
+	return flush;
+}
+
+/*
+ * Rules for using mmu_spte_clear_track_bits:
+ * It sets the sptep from present to nonpresent, and track the
+ * state bits, it is used to clear the last level sptep.
+ * Returns non-zero if the PTE was previously valid.
+ */
+static int mmu_spte_clear_track_bits(u64 *sptep)
+{
+	kvm_pfn_t pfn;
+	u64 old_spte = *sptep;
+
+	if (!spte_has_volatile_bits(old_spte))
+		__update_clear_spte_fast(sptep, 0ull);
+	else
+		old_spte = __update_clear_spte_slow(sptep, 0ull);
+
+	if (!is_shadow_present_pte(old_spte))
+		return 0;
+
+	pfn = spte_to_pfn(old_spte);
+
+	/*
+	 * KVM does not hold the refcount of the page used by
+	 * kvm mmu, before reclaiming the page, we should
+	 * unmap it from mmu first.
+	 */
+	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
+
+	if (is_accessed_spte(old_spte))
+		kvm_set_pfn_accessed(pfn);
+
+	if (is_dirty_spte(old_spte))
+		kvm_set_pfn_dirty(pfn);
+
+	return 1;
+}
+
+/*
+ * Rules for using mmu_spte_clear_no_track:
+ * Directly clear spte without caring the state bits of sptep,
+ * it is used to set the upper level spte.
+ */
+static void mmu_spte_clear_no_track(u64 *sptep)
+{
+	__update_clear_spte_fast(sptep, 0ull);
+}
+
+static u64 mmu_spte_get_lockless(u64 *sptep)
+{
+	return __get_spte_lockless(sptep);
+}
+
+static u64 mark_spte_for_access_track(u64 spte)
+{
+	if (spte_ad_enabled(spte))
+		return spte & ~shadow_accessed_mask;
+
+	if (is_access_track_spte(spte))
+		return spte;
+
+	/*
+	 * Making an Access Tracking PTE will result in removal of write access
+	 * from the PTE. So, verify that we will be able to restore the write
+	 * access in the fast page fault path later on.
+	 */
+	WARN_ONCE((spte & PT_WRITABLE_MASK) &&
+		  !spte_can_locklessly_be_made_writable(spte),
+		  "kvm: Writable SPTE is not locklessly dirty-trackable\n");
+
+	WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
+			  shadow_acc_track_saved_bits_shift),
+		  "kvm: Access Tracking saved bit locations are not zero\n");
+
+	spte |= (spte & shadow_acc_track_saved_bits_mask) <<
+		shadow_acc_track_saved_bits_shift;
+	spte &= ~shadow_acc_track_mask;
+
+	return spte;
+}
+
+/* Restore an acc-track PTE back to a regular PTE */
+static u64 restore_acc_track_spte(u64 spte)
+{
+	u64 new_spte = spte;
+	u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
+			 & shadow_acc_track_saved_bits_mask;
+
+	WARN_ON_ONCE(spte_ad_enabled(spte));
+	WARN_ON_ONCE(!is_access_track_spte(spte));
+
+	new_spte &= ~shadow_acc_track_mask;
+	new_spte &= ~(shadow_acc_track_saved_bits_mask <<
+		      shadow_acc_track_saved_bits_shift);
+	new_spte |= saved_bits;
+
+	return new_spte;
+}
+
+/* Returns the Accessed status of the PTE and resets it at the same time. */
+static bool mmu_spte_age(u64 *sptep)
+{
+	u64 spte = mmu_spte_get_lockless(sptep);
+
+	if (!is_accessed_spte(spte))
+		return false;
+
+	if (spte_ad_enabled(spte)) {
+		clear_bit((ffs(shadow_accessed_mask) - 1),
+			  (unsigned long *)sptep);
+	} else {
+		/*
+		 * Capture the dirty status of the page, so that it doesn't get
+		 * lost when the SPTE is marked for access tracking.
+		 */
+		if (is_writable_pte(spte))
+			kvm_set_pfn_dirty(spte_to_pfn(spte));
+
+		spte = mark_spte_for_access_track(spte);
+		mmu_spte_update_no_track(sptep, spte);
+	}
+
+	return true;
+}
+
+static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
+{
+	/*
+	 * Prevent page table teardown by making any free-er wait during
+	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
+	 */
+	local_irq_disable();
+
+	/*
+	 * Make sure a following spte read is not reordered ahead of the write
+	 * to vcpu->mode.
+	 */
+	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
+}
+
+static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
+{
+	/*
+	 * Make sure the write to vcpu->mode is not reordered in front of
+	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
+	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
+	 */
+	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
+	local_irq_enable();
+}
+
+static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
+				  struct kmem_cache *base_cache, int min)
+{
+	void *obj;
+
+	if (cache->nobjs >= min)
+		return 0;
+	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
+		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
+		if (!obj)
+			return -ENOMEM;
+		cache->objects[cache->nobjs++] = obj;
+	}
+	return 0;
+}
+
+static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
+{
+	return cache->nobjs;
+}
+
+static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
+				  struct kmem_cache *cache)
+{
+	while (mc->nobjs)
+		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
+}
+
+static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
+				       int min)
+{
+	void *page;
+
+	if (cache->nobjs >= min)
+		return 0;
+	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
+		page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
+		if (!page)
+			return -ENOMEM;
+		cache->objects[cache->nobjs++] = page;
+	}
+	return 0;
+}
+
+static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
+{
+	while (mc->nobjs)
+		free_page((unsigned long)mc->objects[--mc->nobjs]);
+}
+
+static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
+{
+	int r;
+
+	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
+				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
+	if (r)
+		goto out;
+	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
+	if (r)
+		goto out;
+	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
+				   mmu_page_header_cache, 4);
+out:
+	return r;
+}
+
+static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
+{
+	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
+				pte_list_desc_cache);
+	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
+	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
+				mmu_page_header_cache);
+}
+
+static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
+{
+	void *p;
+
+	BUG_ON(!mc->nobjs);
+	p = mc->objects[--mc->nobjs];
+	return p;
+}
+
+static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
+{
+	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
+}
+
+static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
+{
+	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
+}
+
+static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
+{
+	if (!sp->role.direct)
+		return sp->gfns[index];
+
+	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
+}
+
+static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
+{
+	if (sp->role.direct)
+		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
+	else
+		sp->gfns[index] = gfn;
+}
+
+/*
+ * Return the pointer to the large page information for a given gfn,
+ * handling slots that are not large page aligned.
+ */
+static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
+					      struct kvm_memory_slot *slot,
+					      int level)
+{
+	unsigned long idx;
+
+	idx = gfn_to_index(gfn, slot->base_gfn, level);
+	return &slot->arch.lpage_info[level - 2][idx];
+}
+
+static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
+					    gfn_t gfn, int count)
+{
+	struct kvm_lpage_info *linfo;
+	int i;
+
+	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
+		linfo = lpage_info_slot(gfn, slot, i);
+		linfo->disallow_lpage += count;
+		WARN_ON(linfo->disallow_lpage < 0);
+	}
+}
+
+void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
+{
+	update_gfn_disallow_lpage_count(slot, gfn, 1);
+}
+
+void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
+{
+	update_gfn_disallow_lpage_count(slot, gfn, -1);
+}
+
+static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
+{
+	struct kvm_memslots *slots;
+	struct kvm_memory_slot *slot;
+	gfn_t gfn;
+
+	kvm->arch.indirect_shadow_pages++;
+	gfn = sp->gfn;
+	slots = kvm_memslots_for_spte_role(kvm, sp->role);
+	slot = __gfn_to_memslot(slots, gfn);
+
+	/* the non-leaf shadow pages are keeping readonly. */
+	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
+		return kvm_slot_page_track_add_page(kvm, slot, gfn,
+						    KVM_PAGE_TRACK_WRITE);
+
+	kvm_mmu_gfn_disallow_lpage(slot, gfn);
+}
+
+static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
+{
+	struct kvm_memslots *slots;
+	struct kvm_memory_slot *slot;
+	gfn_t gfn;
+
+	kvm->arch.indirect_shadow_pages--;
+	gfn = sp->gfn;
+	slots = kvm_memslots_for_spte_role(kvm, sp->role);
+	slot = __gfn_to_memslot(slots, gfn);
+	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
+		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
+						       KVM_PAGE_TRACK_WRITE);
+
+	kvm_mmu_gfn_allow_lpage(slot, gfn);
+}
+
+static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
+					  struct kvm_memory_slot *slot)
+{
+	struct kvm_lpage_info *linfo;
+
+	if (slot) {
+		linfo = lpage_info_slot(gfn, slot, level);
+		return !!linfo->disallow_lpage;
+	}
+
+	return true;
+}
+
+static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
+					int level)
+{
+	struct kvm_memory_slot *slot;
+
+	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
+	return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
+}
+
+static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
+{
+	unsigned long page_size;
+	int i, ret = 0;
+
+	page_size = kvm_host_page_size(kvm, gfn);
+
+	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
+		if (page_size >= KVM_HPAGE_SIZE(i))
+			ret = i;
+		else
+			break;
+	}
+
+	return ret;
+}
+
+static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
+					  bool no_dirty_log)
+{
+	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
+		return false;
+	if (no_dirty_log && slot->dirty_bitmap)
+		return false;
+
+	return true;
+}
+
+static struct kvm_memory_slot *
+gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
+			    bool no_dirty_log)
+{
+	struct kvm_memory_slot *slot;
+
+	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
+	if (!memslot_valid_for_gpte(slot, no_dirty_log))
+		slot = NULL;
+
+	return slot;
+}
+
+static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
+			 bool *force_pt_level)
+{
+	int host_level, level, max_level;
+	struct kvm_memory_slot *slot;
+
+	if (unlikely(*force_pt_level))
+		return PT_PAGE_TABLE_LEVEL;
+
+	slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
+	*force_pt_level = !memslot_valid_for_gpte(slot, true);
+	if (unlikely(*force_pt_level))
+		return PT_PAGE_TABLE_LEVEL;
+
+	host_level = host_mapping_level(vcpu->kvm, large_gfn);
+
+	if (host_level == PT_PAGE_TABLE_LEVEL)
+		return host_level;
+
+	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
+
+	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
+		if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
+			break;
+
+	return level - 1;
+}
+
+/*
+ * About rmap_head encoding:
+ *
+ * If the bit zero of rmap_head->val is clear, then it points to the only spte
+ * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
+ * pte_list_desc containing more mappings.
+ */
+
+/*
+ * Returns the number of pointers in the rmap chain, not counting the new one.
+ */
+static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
+			struct kvm_rmap_head *rmap_head)
+{
+	struct pte_list_desc *desc;
+	int i, count = 0;
+
+	if (!rmap_head->val) {
+		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
+		rmap_head->val = (unsigned long)spte;
+	} else if (!(rmap_head->val & 1)) {
+		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
+		desc = mmu_alloc_pte_list_desc(vcpu);
+		desc->sptes[0] = (u64 *)rmap_head->val;
+		desc->sptes[1] = spte;
+		rmap_head->val = (unsigned long)desc | 1;
+		++count;
+	} else {
+		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
+		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
+		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
+			desc = desc->more;
+			count += PTE_LIST_EXT;
+		}
+		if (desc->sptes[PTE_LIST_EXT-1]) {
+			desc->more = mmu_alloc_pte_list_desc(vcpu);
+			desc = desc->more;
+		}
+		for (i = 0; desc->sptes[i]; ++i)
+			++count;
+		desc->sptes[i] = spte;
+	}
+	return count;
+}
+
+static void
+pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
+			   struct pte_list_desc *desc, int i,
+			   struct pte_list_desc *prev_desc)
+{
+	int j;
+
+	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
+		;
+	desc->sptes[i] = desc->sptes[j];
+	desc->sptes[j] = NULL;
+	if (j != 0)
+		return;
+	if (!prev_desc && !desc->more)
+		rmap_head->val = (unsigned long)desc->sptes[0];
+	else
+		if (prev_desc)
+			prev_desc->more = desc->more;
+		else
+			rmap_head->val = (unsigned long)desc->more | 1;
+	mmu_free_pte_list_desc(desc);
+}
+
+static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
+{
+	struct pte_list_desc *desc;
+	struct pte_list_desc *prev_desc;
+	int i;
+
+	if (!rmap_head->val) {
+		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
+		BUG();
+	} else if (!(rmap_head->val & 1)) {
+		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
+		if ((u64 *)rmap_head->val != spte) {
+			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
+			BUG();
+		}
+		rmap_head->val = 0;
+	} else {
+		rmap_printk("pte_list_remove:  %p many->many\n", spte);
+		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
+		prev_desc = NULL;
+		while (desc) {
+			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
+				if (desc->sptes[i] == spte) {
+					pte_list_desc_remove_entry(rmap_head,
+							desc, i, prev_desc);
+					return;
+				}
+			}
+			prev_desc = desc;
+			desc = desc->more;
+		}
+		pr_err("pte_list_remove: %p many->many\n", spte);
+		BUG();
+	}
+}
+
+static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
+					   struct kvm_memory_slot *slot)
+{
+	unsigned long idx;
+
+	idx = gfn_to_index(gfn, slot->base_gfn, level);
+	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
+}
+
+static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
+					 struct kvm_mmu_page *sp)
+{
+	struct kvm_memslots *slots;
+	struct kvm_memory_slot *slot;
+
+	slots = kvm_memslots_for_spte_role(kvm, sp->role);
+	slot = __gfn_to_memslot(slots, gfn);
+	return __gfn_to_rmap(gfn, sp->role.level, slot);
+}
+
+static bool rmap_can_add(struct kvm_vcpu *vcpu)
+{
+	struct kvm_mmu_memory_cache *cache;
+
+	cache = &vcpu->arch.mmu_pte_list_desc_cache;
+	return mmu_memory_cache_free_objects(cache);
+}
+
+static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
+{
+	struct kvm_mmu_page *sp;
+	struct kvm_rmap_head *rmap_head;
+
+	sp = page_header(__pa(spte));
+	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
+	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
+	return pte_list_add(vcpu, spte, rmap_head);
+}
+
+static void rmap_remove(struct kvm *kvm, u64 *spte)
+{
+	struct kvm_mmu_page *sp;
+	gfn_t gfn;
+	struct kvm_rmap_head *rmap_head;
+
+	sp = page_header(__pa(spte));
+	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
+	rmap_head = gfn_to_rmap(kvm, gfn, sp);
+	pte_list_remove(spte, rmap_head);
+}
+
+/*
+ * Used by the following functions to iterate through the sptes linked by a
+ * rmap.  All fields are private and not assumed to be used outside.
+ */
+struct rmap_iterator {
+	/* private fields */
+	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
+	int pos;			/* index of the sptep */
+};
+
+/*
+ * Iteration must be started by this function.  This should also be used after
+ * removing/dropping sptes from the rmap link because in such cases the
+ * information in the itererator may not be valid.
+ *
+ * Returns sptep if found, NULL otherwise.
+ */
+static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
+			   struct rmap_iterator *iter)
+{
+	u64 *sptep;
+
+	if (!rmap_head->val)
+		return NULL;
+
+	if (!(rmap_head->val & 1)) {
+		iter->desc = NULL;
+		sptep = (u64 *)rmap_head->val;
+		goto out;
+	}
+
+	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
+	iter->pos = 0;
+	sptep = iter->desc->sptes[iter->pos];
+out:
+	BUG_ON(!is_shadow_present_pte(*sptep));
+	return sptep;
+}
+
+/*
+ * Must be used with a valid iterator: e.g. after rmap_get_first().
+ *
+ * Returns sptep if found, NULL otherwise.
+ */
+static u64 *rmap_get_next(struct rmap_iterator *iter)
+{
+	u64 *sptep;
+
+	if (iter->desc) {
+		if (iter->pos < PTE_LIST_EXT - 1) {
+			++iter->pos;
+			sptep = iter->desc->sptes[iter->pos];
+			if (sptep)
+				goto out;
+		}
+
+		iter->desc = iter->desc->more;
+
+		if (iter->desc) {
+			iter->pos = 0;
+			/* desc->sptes[0] cannot be NULL */
+			sptep = iter->desc->sptes[iter->pos];
+			goto out;
+		}
+	}
+
+	return NULL;
+out:
+	BUG_ON(!is_shadow_present_pte(*sptep));
+	return sptep;
+}
+
+#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
+	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
+	     _spte_; _spte_ = rmap_get_next(_iter_))
+
+static void drop_spte(struct kvm *kvm, u64 *sptep)
+{
+	if (mmu_spte_clear_track_bits(sptep))
+		rmap_remove(kvm, sptep);
+}
+
+
+static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
+{
+	if (is_large_pte(*sptep)) {
+		WARN_ON(page_header(__pa(sptep))->role.level ==
+			PT_PAGE_TABLE_LEVEL);
+		drop_spte(kvm, sptep);
+		--kvm->stat.lpages;
+		return true;
+	}
+
+	return false;
+}
+
+static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
+{
+	if (__drop_large_spte(vcpu->kvm, sptep))
+		kvm_flush_remote_tlbs(vcpu->kvm);
+}
+
+/*
+ * Write-protect on the specified @sptep, @pt_protect indicates whether
+ * spte write-protection is caused by protecting shadow page table.
+ *
+ * Note: write protection is difference between dirty logging and spte
+ * protection:
+ * - for dirty logging, the spte can be set to writable at anytime if
+ *   its dirty bitmap is properly set.
+ * - for spte protection, the spte can be writable only after unsync-ing
+ *   shadow page.
+ *
+ * Return true if tlb need be flushed.
+ */
+static bool spte_write_protect(u64 *sptep, bool pt_protect)
+{
+	u64 spte = *sptep;
+
+	if (!is_writable_pte(spte) &&
+	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
+		return false;
+
+	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
+
+	if (pt_protect)
+		spte &= ~SPTE_MMU_WRITEABLE;
+	spte = spte & ~PT_WRITABLE_MASK;
+
+	return mmu_spte_update(sptep, spte);
+}
+
+static bool __rmap_write_protect(struct kvm *kvm,
+				 struct kvm_rmap_head *rmap_head,
+				 bool pt_protect)
+{
+	u64 *sptep;
+	struct rmap_iterator iter;
+	bool flush = false;
+
+	for_each_rmap_spte(rmap_head, &iter, sptep)
+		flush |= spte_write_protect(sptep, pt_protect);
+
+	return flush;
+}
+
+static bool spte_clear_dirty(u64 *sptep)
+{
+	u64 spte = *sptep;
+
+	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
+
+	spte &= ~shadow_dirty_mask;
+
+	return mmu_spte_update(sptep, spte);
+}
+
+static bool wrprot_ad_disabled_spte(u64 *sptep)
+{
+	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
+					       (unsigned long *)sptep);
+	if (was_writable)
+		kvm_set_pfn_dirty(spte_to_pfn(*sptep));
+
+	return was_writable;
+}
+
+/*
+ * Gets the GFN ready for another round of dirty logging by clearing the
+ *	- D bit on ad-enabled SPTEs, and
+ *	- W bit on ad-disabled SPTEs.
+ * Returns true iff any D or W bits were cleared.
+ */
+static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
+{
+	u64 *sptep;
+	struct rmap_iterator iter;
+	bool flush = false;
+
+	for_each_rmap_spte(rmap_head, &iter, sptep)
+		if (spte_ad_enabled(*sptep))
+			flush |= spte_clear_dirty(sptep);
+		else
+			flush |= wrprot_ad_disabled_spte(sptep);
+
+	return flush;
+}
+
+static bool spte_set_dirty(u64 *sptep)
+{
+	u64 spte = *sptep;
+
+	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
+
+	spte |= shadow_dirty_mask;
+
+	return mmu_spte_update(sptep, spte);
+}
+
+static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
+{
+	u64 *sptep;
+	struct rmap_iterator iter;
+	bool flush = false;
+
+	for_each_rmap_spte(rmap_head, &iter, sptep)
+		if (spte_ad_enabled(*sptep))
+			flush |= spte_set_dirty(sptep);
+
+	return flush;
+}
+
+/**
+ * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
+ * @kvm: kvm instance
+ * @slot: slot to protect
+ * @gfn_offset: start of the BITS_PER_LONG pages we care about
+ * @mask: indicates which pages we should protect
+ *
+ * Used when we do not need to care about huge page mappings: e.g. during dirty
+ * logging we do not have any such mappings.
+ */
+static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
+				     struct kvm_memory_slot *slot,
+				     gfn_t gfn_offset, unsigned long mask)
+{
+	struct kvm_rmap_head *rmap_head;
+
+	while (mask) {
+		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
+					  PT_PAGE_TABLE_LEVEL, slot);
+		__rmap_write_protect(kvm, rmap_head, false);
+
+		/* clear the first set bit */
+		mask &= mask - 1;
+	}
+}
+
+/**
+ * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
+ * protect the page if the D-bit isn't supported.
+ * @kvm: kvm instance
+ * @slot: slot to clear D-bit
+ * @gfn_offset: start of the BITS_PER_LONG pages we care about
+ * @mask: indicates which pages we should clear D-bit
+ *
+ * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
+ */
+void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
+				     struct kvm_memory_slot *slot,
+				     gfn_t gfn_offset, unsigned long mask)
+{
+	struct kvm_rmap_head *rmap_head;
+
+	while (mask) {
+		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
+					  PT_PAGE_TABLE_LEVEL, slot);
+		__rmap_clear_dirty(kvm, rmap_head);
+
+		/* clear the first set bit */
+		mask &= mask - 1;
+	}
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
+
+/**
+ * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
+ * PT level pages.
+ *
+ * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
+ * enable dirty logging for them.
+ *
+ * Used when we do not need to care about huge page mappings: e.g. during dirty
+ * logging we do not have any such mappings.
+ */
+void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
+				struct kvm_memory_slot *slot,
+				gfn_t gfn_offset, unsigned long mask)
+{
+	if (kvm_x86_ops->enable_log_dirty_pt_masked)
+		kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
+				mask);
+	else
+		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
+}
+
+/**
+ * kvm_arch_write_log_dirty - emulate dirty page logging
+ * @vcpu: Guest mode vcpu
+ *
+ * Emulate arch specific page modification logging for the
+ * nested hypervisor
+ */
+int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
+{
+	if (kvm_x86_ops->write_log_dirty)
+		return kvm_x86_ops->write_log_dirty(vcpu);
+
+	return 0;
+}
+
+bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
+				    struct kvm_memory_slot *slot, u64 gfn)
+{
+	struct kvm_rmap_head *rmap_head;
+	int i;
+	bool write_protected = false;
+
+	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
+		rmap_head = __gfn_to_rmap(gfn, i, slot);
+		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
+	}
+
+	return write_protected;
+}
+
+static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
+{
+	struct kvm_memory_slot *slot;
+
+	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
+	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
+}
+
+static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
+{
+	u64 *sptep;
+	struct rmap_iterator iter;
+	bool flush = false;
+
+	while ((sptep = rmap_get_first(rmap_head, &iter))) {
+		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
+
+		drop_spte(kvm, sptep);
+		flush = true;
+	}
+
+	return flush;
+}
+
+static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
+			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
+			   unsigned long data)
+{
+	return kvm_zap_rmapp(kvm, rmap_head);
+}
+
+static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
+			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
+			     unsigned long data)
+{
+	u64 *sptep;
+	struct rmap_iterator iter;
+	int need_flush = 0;
+	u64 new_spte;
+	pte_t *ptep = (pte_t *)data;
+	kvm_pfn_t new_pfn;
+
+	WARN_ON(pte_huge(*ptep));
+	new_pfn = pte_pfn(*ptep);
+
+restart:
+	for_each_rmap_spte(rmap_head, &iter, sptep) {
+		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
+			    sptep, *sptep, gfn, level);
+
+		need_flush = 1;
+
+		if (pte_write(*ptep)) {
+			drop_spte(kvm, sptep);
+			goto restart;
+		} else {
+			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
+			new_spte |= (u64)new_pfn << PAGE_SHIFT;
+
+			new_spte &= ~PT_WRITABLE_MASK;
+			new_spte &= ~SPTE_HOST_WRITEABLE;
+
+			new_spte = mark_spte_for_access_track(new_spte);
+
+			mmu_spte_clear_track_bits(sptep);
+			mmu_spte_set(sptep, new_spte);
+		}
+	}
+
+	if (need_flush)
+		kvm_flush_remote_tlbs(kvm);
+
+	return 0;
+}
+
+struct slot_rmap_walk_iterator {
+	/* input fields. */
+	struct kvm_memory_slot *slot;
+	gfn_t start_gfn;
+	gfn_t end_gfn;
+	int start_level;
+	int end_level;
+
+	/* output fields. */
+	gfn_t gfn;
+	struct kvm_rmap_head *rmap;
+	int level;
+
+	/* private field. */
+	struct kvm_rmap_head *end_rmap;
+};
+
+static void
+rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
+{
+	iterator->level = level;
+	iterator->gfn = iterator->start_gfn;
+	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
+	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
+					   iterator->slot);
+}
+
+static void
+slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
+		    struct kvm_memory_slot *slot, int start_level,
+		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
+{
+	iterator->slot = slot;
+	iterator->start_level = start_level;
+	iterator->end_level = end_level;
+	iterator->start_gfn = start_gfn;
+	iterator->end_gfn = end_gfn;
+
+	rmap_walk_init_level(iterator, iterator->start_level);
+}
+
+static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
+{
+	return !!iterator->rmap;
+}
+
+static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
+{
+	if (++iterator->rmap <= iterator->end_rmap) {
+		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
+		return;
+	}
+
+	if (++iterator->level > iterator->end_level) {
+		iterator->rmap = NULL;
+		return;
+	}
+
+	rmap_walk_init_level(iterator, iterator->level);
+}
+
+#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
+	   _start_gfn, _end_gfn, _iter_)				\
+	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
+				 _end_level_, _start_gfn, _end_gfn);	\
+	     slot_rmap_walk_okay(_iter_);				\
+	     slot_rmap_walk_next(_iter_))
+
+static int kvm_handle_hva_range(struct kvm *kvm,
+				unsigned long start,
+				unsigned long end,
+				unsigned long data,
+				int (*handler)(struct kvm *kvm,
+					       struct kvm_rmap_head *rmap_head,
+					       struct kvm_memory_slot *slot,
+					       gfn_t gfn,
+					       int level,
+					       unsigned long data))
+{
+	struct kvm_memslots *slots;
+	struct kvm_memory_slot *memslot;
+	struct slot_rmap_walk_iterator iterator;
+	int ret = 0;
+	int i;
+
+	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
+		slots = __kvm_memslots(kvm, i);
+		kvm_for_each_memslot(memslot, slots) {
+			unsigned long hva_start, hva_end;
+			gfn_t gfn_start, gfn_end;
+
+			hva_start = max(start, memslot->userspace_addr);
+			hva_end = min(end, memslot->userspace_addr +
+				      (memslot->npages << PAGE_SHIFT));
+			if (hva_start >= hva_end)
+				continue;
+			/*
+			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
+			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
+			 */
+			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
+			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
+
+			for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
+						 PT_MAX_HUGEPAGE_LEVEL,
+						 gfn_start, gfn_end - 1,
+						 &iterator)
+				ret |= handler(kvm, iterator.rmap, memslot,
+					       iterator.gfn, iterator.level, data);
+		}
+	}
+
+	return ret;
+}
+
+static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
+			  unsigned long data,
+			  int (*handler)(struct kvm *kvm,
+					 struct kvm_rmap_head *rmap_head,
+					 struct kvm_memory_slot *slot,
+					 gfn_t gfn, int level,
+					 unsigned long data))
+{
+	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
+}
+
+int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
+{
+	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
+}
+
+void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
+{
+	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
+}
+
+static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
+			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
+			 unsigned long data)
+{
+	u64 *sptep;
+	struct rmap_iterator uninitialized_var(iter);
+	int young = 0;
+
+	for_each_rmap_spte(rmap_head, &iter, sptep)
+		young |= mmu_spte_age(sptep);
+
+	trace_kvm_age_page(gfn, level, slot, young);
+	return young;
+}
+
+static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
+			      struct kvm_memory_slot *slot, gfn_t gfn,
+			      int level, unsigned long data)
+{
+	u64 *sptep;
+	struct rmap_iterator iter;
+
+	for_each_rmap_spte(rmap_head, &iter, sptep)
+		if (is_accessed_spte(*sptep))
+			return 1;
+	return 0;
+}
+
+#define RMAP_RECYCLE_THRESHOLD 1000
+
+static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
+{
+	struct kvm_rmap_head *rmap_head;
+	struct kvm_mmu_page *sp;
+
+	sp = page_header(__pa(spte));
+
+	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
+
+	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
+	kvm_flush_remote_tlbs(vcpu->kvm);
+}
+
+int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
+{
+	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
+}
+
+int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
+{
+	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
+}
+
+#ifdef MMU_DEBUG
+static int is_empty_shadow_page(u64 *spt)
+{
+	u64 *pos;
+	u64 *end;
+
+	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
+		if (is_shadow_present_pte(*pos)) {
+			printk(KERN_ERR "%s: %p %llx\n", __func__,
+			       pos, *pos);
+			return 0;
+		}
+	return 1;
+}
+#endif
+
+/*
+ * This value is the sum of all of the kvm instances's
+ * kvm->arch.n_used_mmu_pages values.  We need a global,
+ * aggregate version in order to make the slab shrinker
+ * faster
+ */
+static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
+{
+	kvm->arch.n_used_mmu_pages += nr;
+	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
+}
+
+static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
+{
+	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
+	hlist_del(&sp->hash_link);
+	list_del(&sp->link);
+	free_page((unsigned long)sp->spt);
+	if (!sp->role.direct)
+		free_page((unsigned long)sp->gfns);
+	kmem_cache_free(mmu_page_header_cache, sp);
+}
+
+static unsigned kvm_page_table_hashfn(gfn_t gfn)
+{
+	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
+}
+
+static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
+				    struct kvm_mmu_page *sp, u64 *parent_pte)
+{
+	if (!parent_pte)
+		return;
+
+	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
+}
+
+static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
+				       u64 *parent_pte)
+{
+	pte_list_remove(parent_pte, &sp->parent_ptes);
+}
+
+static void drop_parent_pte(struct kvm_mmu_page *sp,
+			    u64 *parent_pte)
+{
+	mmu_page_remove_parent_pte(sp, parent_pte);
+	mmu_spte_clear_no_track(parent_pte);
+}
+
+static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
+{
+	struct kvm_mmu_page *sp;
+
+	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
+	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
+	if (!direct)
+		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
+	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
+
+	/*
+	 * The active_mmu_pages list is the FIFO list, do not move the
+	 * page until it is zapped. kvm_zap_obsolete_pages depends on
+	 * this feature. See the comments in kvm_zap_obsolete_pages().
+	 */
+	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
+	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
+	return sp;
+}
+
+static void mark_unsync(u64 *spte);
+static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
+{
+	u64 *sptep;
+	struct rmap_iterator iter;
+
+	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
+		mark_unsync(sptep);
+	}
+}
+
+static void mark_unsync(u64 *spte)
+{
+	struct kvm_mmu_page *sp;
+	unsigned int index;
+
+	sp = page_header(__pa(spte));
+	index = spte - sp->spt;
+	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
+		return;
+	if (sp->unsync_children++)
+		return;
+	kvm_mmu_mark_parents_unsync(sp);
+}
+
+static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
+			       struct kvm_mmu_page *sp)
+{
+	return 0;
+}
+
+static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
+{
+}
+
+static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
+				 struct kvm_mmu_page *sp, u64 *spte,
+				 const void *pte)
+{
+	WARN_ON(1);
+}
+
+#define KVM_PAGE_ARRAY_NR 16
+
+struct kvm_mmu_pages {
+	struct mmu_page_and_offset {
+		struct kvm_mmu_page *sp;
+		unsigned int idx;
+	} page[KVM_PAGE_ARRAY_NR];
+	unsigned int nr;
+};
+
+static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
+			 int idx)
+{
+	int i;
+
+	if (sp->unsync)
+		for (i=0; i < pvec->nr; i++)
+			if (pvec->page[i].sp == sp)
+				return 0;
+
+	pvec->page[pvec->nr].sp = sp;
+	pvec->page[pvec->nr].idx = idx;
+	pvec->nr++;
+	return (pvec->nr == KVM_PAGE_ARRAY_NR);
+}
+
+static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
+{
+	--sp->unsync_children;
+	WARN_ON((int)sp->unsync_children < 0);
+	__clear_bit(idx, sp->unsync_child_bitmap);
+}
+
+static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
+			   struct kvm_mmu_pages *pvec)
+{
+	int i, ret, nr_unsync_leaf = 0;
+
+	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
+		struct kvm_mmu_page *child;
+		u64 ent = sp->spt[i];
+
+		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
+			clear_unsync_child_bit(sp, i);
+			continue;
+		}
+
+		child = page_header(ent & PT64_BASE_ADDR_MASK);
+
+		if (child->unsync_children) {
+			if (mmu_pages_add(pvec, child, i))
+				return -ENOSPC;
+
+			ret = __mmu_unsync_walk(child, pvec);
+			if (!ret) {
+				clear_unsync_child_bit(sp, i);
+				continue;
+			} else if (ret > 0) {
+				nr_unsync_leaf += ret;
+			} else
+				return ret;
+		} else if (child->unsync) {
+			nr_unsync_leaf++;
+			if (mmu_pages_add(pvec, child, i))
+				return -ENOSPC;
+		} else
+			clear_unsync_child_bit(sp, i);
+	}
+
+	return nr_unsync_leaf;
+}
+
+#define INVALID_INDEX (-1)
+
+static int mmu_unsync_walk(struct kvm_mmu_page *sp,
+			   struct kvm_mmu_pages *pvec)
+{
+	pvec->nr = 0;
+	if (!sp->unsync_children)
+		return 0;
+
+	mmu_pages_add(pvec, sp, INVALID_INDEX);
+	return __mmu_unsync_walk(sp, pvec);
+}
+
+static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
+{
+	WARN_ON(!sp->unsync);
+	trace_kvm_mmu_sync_page(sp);
+	sp->unsync = 0;
+	--kvm->stat.mmu_unsync;
+}
+
+static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
+				    struct list_head *invalid_list);
+static void kvm_mmu_commit_zap_page(struct kvm *kvm,
+				    struct list_head *invalid_list);
+
+/*
+ * NOTE: we should pay more attention on the zapped-obsolete page
+ * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
+ * since it has been deleted from active_mmu_pages but still can be found
+ * at hast list.
+ *
+ * for_each_valid_sp() has skipped that kind of pages.
+ */
+#define for_each_valid_sp(_kvm, _sp, _gfn)				\
+	hlist_for_each_entry(_sp,					\
+	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
+		if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) {    \
+		} else
+
+#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
+	for_each_valid_sp(_kvm, _sp, _gfn)				\
+		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
+
+/* @sp->gfn should be write-protected at the call site */
+static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
+			    struct list_head *invalid_list)
+{
+	if (sp->role.cr4_pae != !!is_pae(vcpu)
+	    || vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
+		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
+		return false;
+	}
+
+	return true;
+}
+
+static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
+				 struct list_head *invalid_list,
+				 bool remote_flush, bool local_flush)
+{
+	if (!list_empty(invalid_list)) {
+		kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
+		return;
+	}
+
+	if (remote_flush)
+		kvm_flush_remote_tlbs(vcpu->kvm);
+	else if (local_flush)
+		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+}
+
+#ifdef CONFIG_KVM_MMU_AUDIT
+#include "mmu_audit.c"
+#else
+static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
+static void mmu_audit_disable(void) { }
+#endif
+
+static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
+{
+	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
+}
+
+static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
+			 struct list_head *invalid_list)
+{
+	kvm_unlink_unsync_page(vcpu->kvm, sp);
+	return __kvm_sync_page(vcpu, sp, invalid_list);
+}
+
+/* @gfn should be write-protected at the call site */
+static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
+			   struct list_head *invalid_list)
+{
+	struct kvm_mmu_page *s;
+	bool ret = false;
+
+	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
+		if (!s->unsync)
+			continue;
+
+		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
+		ret |= kvm_sync_page(vcpu, s, invalid_list);
+	}
+
+	return ret;
+}
+
+struct mmu_page_path {
+	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
+	unsigned int idx[PT64_ROOT_MAX_LEVEL];
+};
+
+#define for_each_sp(pvec, sp, parents, i)			\
+		for (i = mmu_pages_first(&pvec, &parents);	\
+			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
+			i = mmu_pages_next(&pvec, &parents, i))
+
+static int mmu_pages_next(struct kvm_mmu_pages *pvec,
+			  struct mmu_page_path *parents,
+			  int i)
+{
+	int n;
+
+	for (n = i+1; n < pvec->nr; n++) {
+		struct kvm_mmu_page *sp = pvec->page[n].sp;
+		unsigned idx = pvec->page[n].idx;
+		int level = sp->role.level;
+
+		parents->idx[level-1] = idx;
+		if (level == PT_PAGE_TABLE_LEVEL)
+			break;
+
+		parents->parent[level-2] = sp;
+	}
+
+	return n;
+}
+
+static int mmu_pages_first(struct kvm_mmu_pages *pvec,
+			   struct mmu_page_path *parents)
+{
+	struct kvm_mmu_page *sp;
+	int level;
+
+	if (pvec->nr == 0)
+		return 0;
+
+	WARN_ON(pvec->page[0].idx != INVALID_INDEX);
+
+	sp = pvec->page[0].sp;
+	level = sp->role.level;
+	WARN_ON(level == PT_PAGE_TABLE_LEVEL);
+
+	parents->parent[level-2] = sp;
+
+	/* Also set up a sentinel.  Further entries in pvec are all
+	 * children of sp, so this element is never overwritten.
+	 */
+	parents->parent[level-1] = NULL;
+	return mmu_pages_next(pvec, parents, 0);
+}
+
+static void mmu_pages_clear_parents(struct mmu_page_path *parents)
+{
+	struct kvm_mmu_page *sp;
+	unsigned int level = 0;
+
+	do {
+		unsigned int idx = parents->idx[level];
+		sp = parents->parent[level];
+		if (!sp)
+			return;
+
+		WARN_ON(idx == INVALID_INDEX);
+		clear_unsync_child_bit(sp, idx);
+		level++;
+	} while (!sp->unsync_children);
+}
+
+static void mmu_sync_children(struct kvm_vcpu *vcpu,
+			      struct kvm_mmu_page *parent)
+{
+	int i;
+	struct kvm_mmu_page *sp;
+	struct mmu_page_path parents;
+	struct kvm_mmu_pages pages;
+	LIST_HEAD(invalid_list);
+	bool flush = false;
+
+	while (mmu_unsync_walk(parent, &pages)) {
+		bool protected = false;
+
+		for_each_sp(pages, sp, parents, i)
+			protected |= rmap_write_protect(vcpu, sp->gfn);
+
+		if (protected) {
+			kvm_flush_remote_tlbs(vcpu->kvm);
+			flush = false;
+		}
+
+		for_each_sp(pages, sp, parents, i) {
+			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
+			mmu_pages_clear_parents(&parents);
+		}
+		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
+			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
+			cond_resched_lock(&vcpu->kvm->mmu_lock);
+			flush = false;
+		}
+	}
+
+	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
+}
+
+static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
+{
+	atomic_set(&sp->write_flooding_count,  0);
+}
+
+static void clear_sp_write_flooding_count(u64 *spte)
+{
+	struct kvm_mmu_page *sp =  page_header(__pa(spte));
+
+	__clear_sp_write_flooding_count(sp);
+}
+
+static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
+					     gfn_t gfn,
+					     gva_t gaddr,
+					     unsigned level,
+					     int direct,
+					     unsigned access)
+{
+	union kvm_mmu_page_role role;
+	unsigned quadrant;
+	struct kvm_mmu_page *sp;
+	bool need_sync = false;
+	bool flush = false;
+	int collisions = 0;
+	LIST_HEAD(invalid_list);
+
+	role = vcpu->arch.mmu.base_role;
+	role.level = level;
+	role.direct = direct;
+	if (role.direct)
+		role.cr4_pae = 0;
+	role.access = access;
+	if (!vcpu->arch.mmu.direct_map
+	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
+		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
+		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
+		role.quadrant = quadrant;
+	}
+	for_each_valid_sp(vcpu->kvm, sp, gfn) {
+		if (sp->gfn != gfn) {
+			collisions++;
+			continue;
+		}
+
+		if (!need_sync && sp->unsync)
+			need_sync = true;
+
+		if (sp->role.word != role.word)
+			continue;
+
+		if (sp->unsync) {
+			/* The page is good, but __kvm_sync_page might still end
+			 * up zapping it.  If so, break in order to rebuild it.
+			 */
+			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
+				break;
+
+			WARN_ON(!list_empty(&invalid_list));
+			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+		}
+
+		if (sp->unsync_children)
+			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
+
+		__clear_sp_write_flooding_count(sp);
+		trace_kvm_mmu_get_page(sp, false);
+		goto out;
+	}
+
+	++vcpu->kvm->stat.mmu_cache_miss;
+
+	sp = kvm_mmu_alloc_page(vcpu, direct);
+
+	sp->gfn = gfn;
+	sp->role = role;
+	hlist_add_head(&sp->hash_link,
+		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
+	if (!direct) {
+		/*
+		 * we should do write protection before syncing pages
+		 * otherwise the content of the synced shadow page may
+		 * be inconsistent with guest page table.
+		 */
+		account_shadowed(vcpu->kvm, sp);
+		if (level == PT_PAGE_TABLE_LEVEL &&
+		      rmap_write_protect(vcpu, gfn))
+			kvm_flush_remote_tlbs(vcpu->kvm);
+
+		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
+			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
+	}
+	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
+	clear_page(sp->spt);
+	trace_kvm_mmu_get_page(sp, true);
+
+	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
+out:
+	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
+		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
+	return sp;
+}
+
+static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
+					struct kvm_vcpu *vcpu, hpa_t root,
+					u64 addr)
+{
+	iterator->addr = addr;
+	iterator->shadow_addr = root;
+	iterator->level = vcpu->arch.mmu.shadow_root_level;
+
+	if (iterator->level == PT64_ROOT_4LEVEL &&
+	    vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL &&
+	    !vcpu->arch.mmu.direct_map)
+		--iterator->level;
+
+	if (iterator->level == PT32E_ROOT_LEVEL) {
+		/*
+		 * prev_root is currently only used for 64-bit hosts. So only
+		 * the active root_hpa is valid here.
+		 */
+		BUG_ON(root != vcpu->arch.mmu.root_hpa);
+
+		iterator->shadow_addr
+			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
+		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
+		--iterator->level;
+		if (!iterator->shadow_addr)
+			iterator->level = 0;
+	}
+}
+
+static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
+			     struct kvm_vcpu *vcpu, u64 addr)
+{
+	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu.root_hpa,
+				    addr);
+}
+
+static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
+{
+	if (iterator->level < PT_PAGE_TABLE_LEVEL)
+		return false;
+
+	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
+	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
+	return true;
+}
+
+static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
+			       u64 spte)
+{
+	if (is_last_spte(spte, iterator->level)) {
+		iterator->level = 0;
+		return;
+	}
+
+	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
+	--iterator->level;
+}
+
+static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
+{
+	__shadow_walk_next(iterator, *iterator->sptep);
+}
+
+static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
+			     struct kvm_mmu_page *sp)
+{
+	u64 spte;
+
+	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
+
+	spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
+	       shadow_user_mask | shadow_x_mask | shadow_me_mask;
+
+	if (sp_ad_disabled(sp))
+		spte |= shadow_acc_track_value;
+	else
+		spte |= shadow_accessed_mask;
+
+	mmu_spte_set(sptep, spte);
+
+	mmu_page_add_parent_pte(vcpu, sp, sptep);
+
+	if (sp->unsync_children || sp->unsync)
+		mark_unsync(sptep);
+}
+
+static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
+				   unsigned direct_access)
+{
+	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
+		struct kvm_mmu_page *child;
+
+		/*
+		 * For the direct sp, if the guest pte's dirty bit
+		 * changed form clean to dirty, it will corrupt the
+		 * sp's access: allow writable in the read-only sp,
+		 * so we should update the spte at this point to get
+		 * a new sp with the correct access.
+		 */
+		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
+		if (child->role.access == direct_access)
+			return;
+
+		drop_parent_pte(child, sptep);
+		kvm_flush_remote_tlbs(vcpu->kvm);
+	}
+}
+
+static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
+			     u64 *spte)
+{
+	u64 pte;
+	struct kvm_mmu_page *child;
+
+	pte = *spte;
+	if (is_shadow_present_pte(pte)) {
+		if (is_last_spte(pte, sp->role.level)) {
+			drop_spte(kvm, spte);
+			if (is_large_pte(pte))
+				--kvm->stat.lpages;
+		} else {
+			child = page_header(pte & PT64_BASE_ADDR_MASK);
+			drop_parent_pte(child, spte);
+		}
+		return true;
+	}
+
+	if (is_mmio_spte(pte))
+		mmu_spte_clear_no_track(spte);
+
+	return false;
+}
+
+static void kvm_mmu_page_unlink_children(struct kvm *kvm,
+					 struct kvm_mmu_page *sp)
+{
+	unsigned i;
+
+	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
+		mmu_page_zap_pte(kvm, sp, sp->spt + i);
+}
+
+static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
+{
+	u64 *sptep;
+	struct rmap_iterator iter;
+
+	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
+		drop_parent_pte(sp, sptep);
+}
+
+static int mmu_zap_unsync_children(struct kvm *kvm,
+				   struct kvm_mmu_page *parent,
+				   struct list_head *invalid_list)
+{
+	int i, zapped = 0;
+	struct mmu_page_path parents;
+	struct kvm_mmu_pages pages;
+
+	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
+		return 0;
+
+	while (mmu_unsync_walk(parent, &pages)) {
+		struct kvm_mmu_page *sp;
+
+		for_each_sp(pages, sp, parents, i) {
+			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
+			mmu_pages_clear_parents(&parents);
+			zapped++;
+		}
+	}
+
+	return zapped;
+}
+
+static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
+				    struct list_head *invalid_list)
+{
+	int ret;
+
+	trace_kvm_mmu_prepare_zap_page(sp);
+	++kvm->stat.mmu_shadow_zapped;
+	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
+	kvm_mmu_page_unlink_children(kvm, sp);
+	kvm_mmu_unlink_parents(kvm, sp);
+
+	if (!sp->role.invalid && !sp->role.direct)
+		unaccount_shadowed(kvm, sp);
+
+	if (sp->unsync)
+		kvm_unlink_unsync_page(kvm, sp);
+	if (!sp->root_count) {
+		/* Count self */
+		ret++;
+		list_move(&sp->link, invalid_list);
+		kvm_mod_used_mmu_pages(kvm, -1);
+	} else {
+		list_move(&sp->link, &kvm->arch.active_mmu_pages);
+
+		/*
+		 * The obsolete pages can not be used on any vcpus.
+		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
+		 */
+		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
+			kvm_reload_remote_mmus(kvm);
+	}
+
+	sp->role.invalid = 1;
+	return ret;
+}
+
+static void kvm_mmu_commit_zap_page(struct kvm *kvm,
+				    struct list_head *invalid_list)
+{
+	struct kvm_mmu_page *sp, *nsp;
+
+	if (list_empty(invalid_list))
+		return;
+
+	/*
+	 * We need to make sure everyone sees our modifications to
+	 * the page tables and see changes to vcpu->mode here. The barrier
+	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
+	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
+	 *
+	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
+	 * guest mode and/or lockless shadow page table walks.
+	 */
+	kvm_flush_remote_tlbs(kvm);
+
+	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
+		WARN_ON(!sp->role.invalid || sp->root_count);
+		kvm_mmu_free_page(sp);
+	}
+}
+
+static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
+					struct list_head *invalid_list)
+{
+	struct kvm_mmu_page *sp;
+
+	if (list_empty(&kvm->arch.active_mmu_pages))
+		return false;
+
+	sp = list_last_entry(&kvm->arch.active_mmu_pages,
+			     struct kvm_mmu_page, link);
+	return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
+}
+
+/*
+ * Changing the number of mmu pages allocated to the vm
+ * Note: if goal_nr_mmu_pages is too small, you will get dead lock
+ */
+void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
+{
+	LIST_HEAD(invalid_list);
+
+	spin_lock(&kvm->mmu_lock);
+
+	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
+		/* Need to free some mmu pages to achieve the goal. */
+		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
+			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
+				break;
+
+		kvm_mmu_commit_zap_page(kvm, &invalid_list);
+		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
+	}
+
+	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
+
+	spin_unlock(&kvm->mmu_lock);
+}
+
+int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
+{
+	struct kvm_mmu_page *sp;
+	LIST_HEAD(invalid_list);
+	int r;
+
+	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
+	r = 0;
+	spin_lock(&kvm->mmu_lock);
+	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
+		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
+			 sp->role.word);
+		r = 1;
+		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
+	}
+	kvm_mmu_commit_zap_page(kvm, &invalid_list);
+	spin_unlock(&kvm->mmu_lock);
+
+	return r;
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
+
+static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
+{
+	trace_kvm_mmu_unsync_page(sp);
+	++vcpu->kvm->stat.mmu_unsync;
+	sp->unsync = 1;
+
+	kvm_mmu_mark_parents_unsync(sp);
+}
+
+static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
+				   bool can_unsync)
+{
+	struct kvm_mmu_page *sp;
+
+	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
+		return true;
+
+	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
+		if (!can_unsync)
+			return true;
+
+		if (sp->unsync)
+			continue;
+
+		WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
+		kvm_unsync_page(vcpu, sp);
+	}
+
+	/*
+	 * We need to ensure that the marking of unsync pages is visible
+	 * before the SPTE is updated to allow writes because
+	 * kvm_mmu_sync_roots() checks the unsync flags without holding
+	 * the MMU lock and so can race with this. If the SPTE was updated
+	 * before the page had been marked as unsync-ed, something like the
+	 * following could happen:
+	 *
+	 * CPU 1                    CPU 2
+	 * ---------------------------------------------------------------------
+	 * 1.2 Host updates SPTE
+	 *     to be writable
+	 *                      2.1 Guest writes a GPTE for GVA X.
+	 *                          (GPTE being in the guest page table shadowed
+	 *                           by the SP from CPU 1.)
+	 *                          This reads SPTE during the page table walk.
+	 *                          Since SPTE.W is read as 1, there is no
+	 *                          fault.
+	 *
+	 *                      2.2 Guest issues TLB flush.
+	 *                          That causes a VM Exit.
+	 *
+	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
+	 *                          Since it is false, so it just returns.
+	 *
+	 *                      2.4 Guest accesses GVA X.
+	 *                          Since the mapping in the SP was not updated,
+	 *                          so the old mapping for GVA X incorrectly
+	 *                          gets used.
+	 * 1.1 Host marks SP
+	 *     as unsync
+	 *     (sp->unsync = true)
+	 *
+	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
+	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
+	 * pairs with this write barrier.
+	 */
+	smp_wmb();
+
+	return false;
+}
+
+static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
+{
+	if (pfn_valid(pfn))
+		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
+			/*
+			 * Some reserved pages, such as those from NVDIMM
+			 * DAX devices, are not for MMIO, and can be mapped
+			 * with cached memory type for better performance.
+			 * However, the above check misconceives those pages
+			 * as MMIO, and results in KVM mapping them with UC
+			 * memory type, which would hurt the performance.
+			 * Therefore, we check the host memory type in addition
+			 * and only treat UC/UC-/WC pages as MMIO.
+			 */
+			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
+
+	return true;
+}
+
+/* Bits which may be returned by set_spte() */
+#define SET_SPTE_WRITE_PROTECTED_PT	BIT(0)
+#define SET_SPTE_NEED_REMOTE_TLB_FLUSH	BIT(1)
+
+static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
+		    unsigned pte_access, int level,
+		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
+		    bool can_unsync, bool host_writable)
+{
+	u64 spte = 0;
+	int ret = 0;
+	struct kvm_mmu_page *sp;
+
+	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
+		return 0;
+
+	sp = page_header(__pa(sptep));
+	if (sp_ad_disabled(sp))
+		spte |= shadow_acc_track_value;
+
+	/*
+	 * For the EPT case, shadow_present_mask is 0 if hardware
+	 * supports exec-only page table entries.  In that case,
+	 * ACC_USER_MASK and shadow_user_mask are used to represent
+	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
+	 */
+	spte |= shadow_present_mask;
+	if (!speculative)
+		spte |= spte_shadow_accessed_mask(spte);
+
+	if (pte_access & ACC_EXEC_MASK)
+		spte |= shadow_x_mask;
+	else
+		spte |= shadow_nx_mask;
+
+	if (pte_access & ACC_USER_MASK)
+		spte |= shadow_user_mask;
+
+	if (level > PT_PAGE_TABLE_LEVEL)
+		spte |= PT_PAGE_SIZE_MASK;
+	if (tdp_enabled)
+		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
+			kvm_is_mmio_pfn(pfn));
+
+	if (host_writable)
+		spte |= SPTE_HOST_WRITEABLE;
+	else
+		pte_access &= ~ACC_WRITE_MASK;
+
+	if (!kvm_is_mmio_pfn(pfn))
+		spte |= shadow_me_mask;
+
+	spte |= (u64)pfn << PAGE_SHIFT;
+
+	if (pte_access & ACC_WRITE_MASK) {
+
+		/*
+		 * Other vcpu creates new sp in the window between
+		 * mapping_level() and acquiring mmu-lock. We can
+		 * allow guest to retry the access, the mapping can
+		 * be fixed if guest refault.
+		 */
+		if (level > PT_PAGE_TABLE_LEVEL &&
+		    mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
+			goto done;
+
+		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
+
+		/*
+		 * Optimization: for pte sync, if spte was writable the hash
+		 * lookup is unnecessary (and expensive). Write protection
+		 * is responsibility of mmu_get_page / kvm_sync_page.
+		 * Same reasoning can be applied to dirty page accounting.
+		 */
+		if (!can_unsync && is_writable_pte(*sptep))
+			goto set_pte;
+
+		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
+			pgprintk("%s: found shadow page for %llx, marking ro\n",
+				 __func__, gfn);
+			ret |= SET_SPTE_WRITE_PROTECTED_PT;
+			pte_access &= ~ACC_WRITE_MASK;
+			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
+		}
+	}
+
+	if (pte_access & ACC_WRITE_MASK) {
+		kvm_vcpu_mark_page_dirty(vcpu, gfn);
+		spte |= spte_shadow_dirty_mask(spte);
+	}
+
+	if (speculative)
+		spte = mark_spte_for_access_track(spte);
+
+set_pte:
+	if (mmu_spte_update(sptep, spte))
+		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
+done:
+	return ret;
+}
+
+static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
+			int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
+		       	bool speculative, bool host_writable)
+{
+	int was_rmapped = 0;
+	int rmap_count;
+	int set_spte_ret;
+	int ret = RET_PF_RETRY;
+	bool flush = false;
+
+	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
+		 *sptep, write_fault, gfn);
+
+	if (is_shadow_present_pte(*sptep)) {
+		/*
+		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
+		 * the parent of the now unreachable PTE.
+		 */
+		if (level > PT_PAGE_TABLE_LEVEL &&
+		    !is_large_pte(*sptep)) {
+			struct kvm_mmu_page *child;
+			u64 pte = *sptep;
+
+			child = page_header(pte & PT64_BASE_ADDR_MASK);
+			drop_parent_pte(child, sptep);
+			flush = true;
+		} else if (pfn != spte_to_pfn(*sptep)) {
+			pgprintk("hfn old %llx new %llx\n",
+				 spte_to_pfn(*sptep), pfn);
+			drop_spte(vcpu->kvm, sptep);
+			flush = true;
+		} else
+			was_rmapped = 1;
+	}
+
+	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
+				speculative, true, host_writable);
+	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
+		if (write_fault)
+			ret = RET_PF_EMULATE;
+		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+	}
+	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
+		kvm_flush_remote_tlbs(vcpu->kvm);
+
+	if (unlikely(is_mmio_spte(*sptep)))
+		ret = RET_PF_EMULATE;
+
+	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
+	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
+		 is_large_pte(*sptep)? "2MB" : "4kB",
+		 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
+		 *sptep, sptep);
+	if (!was_rmapped && is_large_pte(*sptep))
+		++vcpu->kvm->stat.lpages;
+
+	if (is_shadow_present_pte(*sptep)) {
+		if (!was_rmapped) {
+			rmap_count = rmap_add(vcpu, sptep, gfn);
+			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
+				rmap_recycle(vcpu, sptep, gfn);
+		}
+	}
+
+	kvm_release_pfn_clean(pfn);
+
+	return ret;
+}
+
+static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
+				     bool no_dirty_log)
+{
+	struct kvm_memory_slot *slot;
+
+	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
+	if (!slot)
+		return KVM_PFN_ERR_FAULT;
+
+	return gfn_to_pfn_memslot_atomic(slot, gfn);
+}
+
+static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
+				    struct kvm_mmu_page *sp,
+				    u64 *start, u64 *end)
+{
+	struct page *pages[PTE_PREFETCH_NUM];
+	struct kvm_memory_slot *slot;
+	unsigned access = sp->role.access;
+	int i, ret;
+	gfn_t gfn;
+
+	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
+	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
+	if (!slot)
+		return -1;
+
+	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
+	if (ret <= 0)
+		return -1;
+
+	for (i = 0; i < ret; i++, gfn++, start++)
+		mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
+			     page_to_pfn(pages[i]), true, true);
+
+	return 0;
+}
+
+static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
+				  struct kvm_mmu_page *sp, u64 *sptep)
+{
+	u64 *spte, *start = NULL;
+	int i;
+
+	WARN_ON(!sp->role.direct);
+
+	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
+	spte = sp->spt + i;
+
+	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
+		if (is_shadow_present_pte(*spte) || spte == sptep) {
+			if (!start)
+				continue;
+			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
+				break;
+			start = NULL;
+		} else if (!start)
+			start = spte;
+	}
+}
+
+static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
+{
+	struct kvm_mmu_page *sp;
+
+	sp = page_header(__pa(sptep));
+
+	/*
+	 * Without accessed bits, there's no way to distinguish between
+	 * actually accessed translations and prefetched, so disable pte
+	 * prefetch if accessed bits aren't available.
+	 */
+	if (sp_ad_disabled(sp))
+		return;
+
+	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
+		return;
+
+	__direct_pte_prefetch(vcpu, sp, sptep);
+}
+
+static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
+			int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
+{
+	struct kvm_shadow_walk_iterator iterator;
+	struct kvm_mmu_page *sp;
+	int emulate = 0;
+	gfn_t pseudo_gfn;
+
+	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+		return 0;
+
+	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
+		if (iterator.level == level) {
+			emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
+					       write, level, gfn, pfn, prefault,
+					       map_writable);
+			direct_pte_prefetch(vcpu, iterator.sptep);
+			++vcpu->stat.pf_fixed;
+			break;
+		}
+
+		drop_large_spte(vcpu, iterator.sptep);
+		if (!is_shadow_present_pte(*iterator.sptep)) {
+			u64 base_addr = iterator.addr;
+
+			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
+			pseudo_gfn = base_addr >> PAGE_SHIFT;
+			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
+					      iterator.level - 1, 1, ACC_ALL);
+
+			link_shadow_page(vcpu, iterator.sptep, sp);
+		}
+	}
+	return emulate;
+}
+
+static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
+{
+	siginfo_t info;
+
+	clear_siginfo(&info);
+	info.si_signo	= SIGBUS;
+	info.si_errno	= 0;
+	info.si_code	= BUS_MCEERR_AR;
+	info.si_addr	= (void __user *)address;
+	info.si_addr_lsb = PAGE_SHIFT;
+
+	send_sig_info(SIGBUS, &info, tsk);
+}
+
+static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
+{
+	/*
+	 * Do not cache the mmio info caused by writing the readonly gfn
+	 * into the spte otherwise read access on readonly gfn also can
+	 * caused mmio page fault and treat it as mmio access.
+	 */
+	if (pfn == KVM_PFN_ERR_RO_FAULT)
+		return RET_PF_EMULATE;
+
+	if (pfn == KVM_PFN_ERR_HWPOISON) {
+		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
+		return RET_PF_RETRY;
+	}
+
+	return -EFAULT;
+}
+
+static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
+					gfn_t *gfnp, kvm_pfn_t *pfnp,
+					int *levelp)
+{
+	kvm_pfn_t pfn = *pfnp;
+	gfn_t gfn = *gfnp;
+	int level = *levelp;
+
+	/*
+	 * Check if it's a transparent hugepage. If this would be an
+	 * hugetlbfs page, level wouldn't be set to
+	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
+	 * here.
+	 */
+	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
+	    level == PT_PAGE_TABLE_LEVEL &&
+	    PageTransCompoundMap(pfn_to_page(pfn)) &&
+	    !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
+		unsigned long mask;
+		/*
+		 * mmu_notifier_retry was successful and we hold the
+		 * mmu_lock here, so the pmd can't become splitting
+		 * from under us, and in turn
+		 * __split_huge_page_refcount() can't run from under
+		 * us and we can safely transfer the refcount from
+		 * PG_tail to PG_head as we switch the pfn to tail to
+		 * head.
+		 */
+		*levelp = level = PT_DIRECTORY_LEVEL;
+		mask = KVM_PAGES_PER_HPAGE(level) - 1;
+		VM_BUG_ON((gfn & mask) != (pfn & mask));
+		if (pfn & mask) {
+			gfn &= ~mask;
+			*gfnp = gfn;
+			kvm_release_pfn_clean(pfn);
+			pfn &= ~mask;
+			kvm_get_pfn(pfn);
+			*pfnp = pfn;
+		}
+	}
+}
+
+static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
+				kvm_pfn_t pfn, unsigned access, int *ret_val)
+{
+	/* The pfn is invalid, report the error! */
+	if (unlikely(is_error_pfn(pfn))) {
+		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
+		return true;
+	}
+
+	if (unlikely(is_noslot_pfn(pfn)))
+		vcpu_cache_mmio_info(vcpu, gva, gfn, access);
+
+	return false;
+}
+
+static bool page_fault_can_be_fast(u32 error_code)
+{
+	/*
+	 * Do not fix the mmio spte with invalid generation number which
+	 * need to be updated by slow page fault path.
+	 */
+	if (unlikely(error_code & PFERR_RSVD_MASK))
+		return false;
+
+	/* See if the page fault is due to an NX violation */
+	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
+		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
+		return false;
+
+	/*
+	 * #PF can be fast if:
+	 * 1. The shadow page table entry is not present, which could mean that
+	 *    the fault is potentially caused by access tracking (if enabled).
+	 * 2. The shadow page table entry is present and the fault
+	 *    is caused by write-protect, that means we just need change the W
+	 *    bit of the spte which can be done out of mmu-lock.
+	 *
+	 * However, if access tracking is disabled we know that a non-present
+	 * page must be a genuine page fault where we have to create a new SPTE.
+	 * So, if access tracking is disabled, we return true only for write
+	 * accesses to a present page.
+	 */
+
+	return shadow_acc_track_mask != 0 ||
+	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
+		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
+}
+
+/*
+ * Returns true if the SPTE was fixed successfully. Otherwise,
+ * someone else modified the SPTE from its original value.
+ */
+static bool
+fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
+			u64 *sptep, u64 old_spte, u64 new_spte)
+{
+	gfn_t gfn;
+
+	WARN_ON(!sp->role.direct);
+
+	/*
+	 * Theoretically we could also set dirty bit (and flush TLB) here in
+	 * order to eliminate unnecessary PML logging. See comments in
+	 * set_spte. But fast_page_fault is very unlikely to happen with PML
+	 * enabled, so we do not do this. This might result in the same GPA
+	 * to be logged in PML buffer again when the write really happens, and
+	 * eventually to be called by mark_page_dirty twice. But it's also no
+	 * harm. This also avoids the TLB flush needed after setting dirty bit
+	 * so non-PML cases won't be impacted.
+	 *
+	 * Compare with set_spte where instead shadow_dirty_mask is set.
+	 */
+	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
+		return false;
+
+	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
+		/*
+		 * The gfn of direct spte is stable since it is
+		 * calculated by sp->gfn.
+		 */
+		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
+		kvm_vcpu_mark_page_dirty(vcpu, gfn);
+	}
+
+	return true;
+}
+
+static bool is_access_allowed(u32 fault_err_code, u64 spte)
+{
+	if (fault_err_code & PFERR_FETCH_MASK)
+		return is_executable_pte(spte);
+
+	if (fault_err_code & PFERR_WRITE_MASK)
+		return is_writable_pte(spte);
+
+	/* Fault was on Read access */
+	return spte & PT_PRESENT_MASK;
+}
+
+/*
+ * Return value:
+ * - true: let the vcpu to access on the same address again.
+ * - false: let the real page fault path to fix it.
+ */
+static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
+			    u32 error_code)
+{
+	struct kvm_shadow_walk_iterator iterator;
+	struct kvm_mmu_page *sp;
+	bool fault_handled = false;
+	u64 spte = 0ull;
+	uint retry_count = 0;
+
+	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+		return false;
+
+	if (!page_fault_can_be_fast(error_code))
+		return false;
+
+	walk_shadow_page_lockless_begin(vcpu);
+
+	do {
+		u64 new_spte;
+
+		for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
+			if (!is_shadow_present_pte(spte) ||
+			    iterator.level < level)
+				break;
+
+		sp = page_header(__pa(iterator.sptep));
+		if (!is_last_spte(spte, sp->role.level))
+			break;
+
+		/*
+		 * Check whether the memory access that caused the fault would
+		 * still cause it if it were to be performed right now. If not,
+		 * then this is a spurious fault caused by TLB lazily flushed,
+		 * or some other CPU has already fixed the PTE after the
+		 * current CPU took the fault.
+		 *
+		 * Need not check the access of upper level table entries since
+		 * they are always ACC_ALL.
+		 */
+		if (is_access_allowed(error_code, spte)) {
+			fault_handled = true;
+			break;
+		}
+
+		new_spte = spte;
+
+		if (is_access_track_spte(spte))
+			new_spte = restore_acc_track_spte(new_spte);
+
+		/*
+		 * Currently, to simplify the code, write-protection can
+		 * be removed in the fast path only if the SPTE was
+		 * write-protected for dirty-logging or access tracking.
+		 */
+		if ((error_code & PFERR_WRITE_MASK) &&
+		    spte_can_locklessly_be_made_writable(spte))
+		{
+			new_spte |= PT_WRITABLE_MASK;
+
+			/*
+			 * Do not fix write-permission on the large spte.  Since
+			 * we only dirty the first page into the dirty-bitmap in
+			 * fast_pf_fix_direct_spte(), other pages are missed
+			 * if its slot has dirty logging enabled.
+			 *
+			 * Instead, we let the slow page fault path create a
+			 * normal spte to fix the access.
+			 *
+			 * See the comments in kvm_arch_commit_memory_region().
+			 */
+			if (sp->role.level > PT_PAGE_TABLE_LEVEL)
+				break;
+		}
+
+		/* Verify that the fault can be handled in the fast path */
+		if (new_spte == spte ||
+		    !is_access_allowed(error_code, new_spte))
+			break;
+
+		/*
+		 * Currently, fast page fault only works for direct mapping
+		 * since the gfn is not stable for indirect shadow page. See
+		 * Documentation/virtual/kvm/locking.txt to get more detail.
+		 */
+		fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
+							iterator.sptep, spte,
+							new_spte);
+		if (fault_handled)
+			break;
+
+		if (++retry_count > 4) {
+			printk_once(KERN_WARNING
+				"kvm: Fast #PF retrying more than 4 times.\n");
+			break;
+		}
+
+	} while (true);
+
+	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
+			      spte, fault_handled);
+	walk_shadow_page_lockless_end(vcpu);
+
+	return fault_handled;
+}
+
+static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
+			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
+static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
+
+static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
+			 gfn_t gfn, bool prefault)
+{
+	int r;
+	int level;
+	bool force_pt_level = false;
+	kvm_pfn_t pfn;
+	unsigned long mmu_seq;
+	bool map_writable, write = error_code & PFERR_WRITE_MASK;
+
+	level = mapping_level(vcpu, gfn, &force_pt_level);
+	if (likely(!force_pt_level)) {
+		/*
+		 * This path builds a PAE pagetable - so we can map
+		 * 2mb pages at maximum. Therefore check if the level
+		 * is larger than that.
+		 */
+		if (level > PT_DIRECTORY_LEVEL)
+			level = PT_DIRECTORY_LEVEL;
+
+		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
+	}
+
+	if (fast_page_fault(vcpu, v, level, error_code))
+		return RET_PF_RETRY;
+
+	mmu_seq = vcpu->kvm->mmu_notifier_seq;
+	smp_rmb();
+
+	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
+		return RET_PF_RETRY;
+
+	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
+		return r;
+
+	spin_lock(&vcpu->kvm->mmu_lock);
+	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
+		goto out_unlock;
+	if (make_mmu_pages_available(vcpu) < 0)
+		goto out_unlock;
+	if (likely(!force_pt_level))
+		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
+	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
+	spin_unlock(&vcpu->kvm->mmu_lock);
+
+	return r;
+
+out_unlock:
+	spin_unlock(&vcpu->kvm->mmu_lock);
+	kvm_release_pfn_clean(pfn);
+	return RET_PF_RETRY;
+}
+
+static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
+			       struct list_head *invalid_list)
+{
+	struct kvm_mmu_page *sp;
+
+	if (!VALID_PAGE(*root_hpa))
+		return;
+
+	sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
+	--sp->root_count;
+	if (!sp->root_count && sp->role.invalid)
+		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
+
+	*root_hpa = INVALID_PAGE;
+}
+
+/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
+void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, ulong roots_to_free)
+{
+	int i;
+	LIST_HEAD(invalid_list);
+	struct kvm_mmu *mmu = &vcpu->arch.mmu;
+	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
+
+	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
+
+	/* Before acquiring the MMU lock, see if we need to do any real work. */
+	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
+		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
+			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
+			    VALID_PAGE(mmu->prev_roots[i].hpa))
+				break;
+
+		if (i == KVM_MMU_NUM_PREV_ROOTS)
+			return;
+	}
+
+	spin_lock(&vcpu->kvm->mmu_lock);
+
+	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
+		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
+			mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
+					   &invalid_list);
+
+	if (free_active_root) {
+		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
+		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
+			mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
+					   &invalid_list);
+		} else {
+			for (i = 0; i < 4; ++i)
+				if (mmu->pae_root[i] != 0)
+					mmu_free_root_page(vcpu->kvm,
+							   &mmu->pae_root[i],
+							   &invalid_list);
+			mmu->root_hpa = INVALID_PAGE;
+		}
+	}
+
+	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
+	spin_unlock(&vcpu->kvm->mmu_lock);
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
+
+static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
+{
+	int ret = 0;
+
+	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
+		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+		ret = 1;
+	}
+
+	return ret;
+}
+
+static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
+{
+	struct kvm_mmu_page *sp;
+	unsigned i;
+
+	if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) {
+		spin_lock(&vcpu->kvm->mmu_lock);
+		if(make_mmu_pages_available(vcpu) < 0) {
+			spin_unlock(&vcpu->kvm->mmu_lock);
+			return -ENOSPC;
+		}
+		sp = kvm_mmu_get_page(vcpu, 0, 0,
+				vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL);
+		++sp->root_count;
+		spin_unlock(&vcpu->kvm->mmu_lock);
+		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
+	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
+		for (i = 0; i < 4; ++i) {
+			hpa_t root = vcpu->arch.mmu.pae_root[i];
+
+			MMU_WARN_ON(VALID_PAGE(root));
+			spin_lock(&vcpu->kvm->mmu_lock);
+			if (make_mmu_pages_available(vcpu) < 0) {
+				spin_unlock(&vcpu->kvm->mmu_lock);
+				return -ENOSPC;
+			}
+			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
+					i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
+			root = __pa(sp->spt);
+			++sp->root_count;
+			spin_unlock(&vcpu->kvm->mmu_lock);
+			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
+		}
+		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
+	} else
+		BUG();
+
+	return 0;
+}
+
+static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
+{
+	struct kvm_mmu_page *sp;
+	u64 pdptr, pm_mask;
+	gfn_t root_gfn;
+	int i;
+
+	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
+
+	if (mmu_check_root(vcpu, root_gfn))
+		return 1;
+
+	/*
+	 * Do we shadow a long mode page table? If so we need to
+	 * write-protect the guests page table root.
+	 */
+	if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
+		hpa_t root = vcpu->arch.mmu.root_hpa;
+
+		MMU_WARN_ON(VALID_PAGE(root));
+
+		spin_lock(&vcpu->kvm->mmu_lock);
+		if (make_mmu_pages_available(vcpu) < 0) {
+			spin_unlock(&vcpu->kvm->mmu_lock);
+			return -ENOSPC;
+		}
+		sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
+				vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL);
+		root = __pa(sp->spt);
+		++sp->root_count;
+		spin_unlock(&vcpu->kvm->mmu_lock);
+		vcpu->arch.mmu.root_hpa = root;
+		return 0;
+	}
+
+	/*
+	 * We shadow a 32 bit page table. This may be a legacy 2-level
+	 * or a PAE 3-level page table. In either case we need to be aware that
+	 * the shadow page table may be a PAE or a long mode page table.
+	 */
+	pm_mask = PT_PRESENT_MASK;
+	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL)
+		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
+
+	for (i = 0; i < 4; ++i) {
+		hpa_t root = vcpu->arch.mmu.pae_root[i];
+
+		MMU_WARN_ON(VALID_PAGE(root));
+		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
+			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
+			if (!(pdptr & PT_PRESENT_MASK)) {
+				vcpu->arch.mmu.pae_root[i] = 0;
+				continue;
+			}
+			root_gfn = pdptr >> PAGE_SHIFT;
+			if (mmu_check_root(vcpu, root_gfn))
+				return 1;
+		}
+		spin_lock(&vcpu->kvm->mmu_lock);
+		if (make_mmu_pages_available(vcpu) < 0) {
+			spin_unlock(&vcpu->kvm->mmu_lock);
+			return -ENOSPC;
+		}
+		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
+				      0, ACC_ALL);
+		root = __pa(sp->spt);
+		++sp->root_count;
+		spin_unlock(&vcpu->kvm->mmu_lock);
+
+		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
+	}
+	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
+
+	/*
+	 * If we shadow a 32 bit page table with a long mode page
+	 * table we enter this path.
+	 */
+	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) {
+		if (vcpu->arch.mmu.lm_root == NULL) {
+			/*
+			 * The additional page necessary for this is only
+			 * allocated on demand.
+			 */
+
+			u64 *lm_root;
+
+			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
+			if (lm_root == NULL)
+				return 1;
+
+			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
+
+			vcpu->arch.mmu.lm_root = lm_root;
+		}
+
+		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
+	}
+
+	return 0;
+}
+
+static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
+{
+	if (vcpu->arch.mmu.direct_map)
+		return mmu_alloc_direct_roots(vcpu);
+	else
+		return mmu_alloc_shadow_roots(vcpu);
+}
+
+void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
+{
+	int i;
+	struct kvm_mmu_page *sp;
+
+	if (vcpu->arch.mmu.direct_map)
+		return;
+
+	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+		return;
+
+	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
+
+	if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
+		hpa_t root = vcpu->arch.mmu.root_hpa;
+
+		sp = page_header(root);
+
+		/*
+		 * Even if another CPU was marking the SP as unsync-ed
+		 * simultaneously, any guest page table changes are not
+		 * guaranteed to be visible anyway until this VCPU issues a TLB
+		 * flush strictly after those changes are made. We only need to
+		 * ensure that the other CPU sets these flags before any actual
+		 * changes to the page tables are made. The comments in
+		 * mmu_need_write_protect() describe what could go wrong if this
+		 * requirement isn't satisfied.
+		 */
+		if (!smp_load_acquire(&sp->unsync) &&
+		    !smp_load_acquire(&sp->unsync_children))
+			return;
+
+		spin_lock(&vcpu->kvm->mmu_lock);
+		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
+
+		mmu_sync_children(vcpu, sp);
+
+		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
+		spin_unlock(&vcpu->kvm->mmu_lock);
+		return;
+	}
+
+	spin_lock(&vcpu->kvm->mmu_lock);
+	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
+
+	for (i = 0; i < 4; ++i) {
+		hpa_t root = vcpu->arch.mmu.pae_root[i];
+
+		if (root && VALID_PAGE(root)) {
+			root &= PT64_BASE_ADDR_MASK;
+			sp = page_header(root);
+			mmu_sync_children(vcpu, sp);
+		}
+	}
+
+	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
+	spin_unlock(&vcpu->kvm->mmu_lock);
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
+
+static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
+				  u32 access, struct x86_exception *exception)
+{
+	if (exception)
+		exception->error_code = 0;
+	return vaddr;
+}
+
+static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
+					 u32 access,
+					 struct x86_exception *exception)
+{
+	if (exception)
+		exception->error_code = 0;
+	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
+}
+
+static bool
+__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
+{
+	int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
+
+	return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
+		((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
+}
+
+static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
+{
+	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
+}
+
+static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
+{
+	return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
+}
+
+static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
+{
+	/*
+	 * A nested guest cannot use the MMIO cache if it is using nested
+	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
+	 */
+	if (mmu_is_nested(vcpu))
+		return false;
+
+	if (direct)
+		return vcpu_match_mmio_gpa(vcpu, addr);
+
+	return vcpu_match_mmio_gva(vcpu, addr);
+}
+
+/* return true if reserved bit is detected on spte. */
+static bool
+walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
+{
+	struct kvm_shadow_walk_iterator iterator;
+	u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
+	int root, leaf;
+	bool reserved = false;
+
+	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+		goto exit;
+
+	walk_shadow_page_lockless_begin(vcpu);
+
+	for (shadow_walk_init(&iterator, vcpu, addr),
+		 leaf = root = iterator.level;
+	     shadow_walk_okay(&iterator);
+	     __shadow_walk_next(&iterator, spte)) {
+		spte = mmu_spte_get_lockless(iterator.sptep);
+
+		sptes[leaf - 1] = spte;
+		leaf--;
+
+		if (!is_shadow_present_pte(spte))
+			break;
+
+		reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
+						    iterator.level);
+	}
+
+	walk_shadow_page_lockless_end(vcpu);
+
+	if (reserved) {
+		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
+		       __func__, addr);
+		while (root > leaf) {
+			pr_err("------ spte 0x%llx level %d.\n",
+			       sptes[root - 1], root);
+			root--;
+		}
+	}
+exit:
+	*sptep = spte;
+	return reserved;
+}
+
+static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
+{
+	u64 spte;
+	bool reserved;
+
+	if (mmio_info_in_cache(vcpu, addr, direct))
+		return RET_PF_EMULATE;
+
+	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
+	if (WARN_ON(reserved))
+		return -EINVAL;
+
+	if (is_mmio_spte(spte)) {
+		gfn_t gfn = get_mmio_spte_gfn(spte);
+		unsigned access = get_mmio_spte_access(spte);
+
+		if (!check_mmio_spte(vcpu, spte))
+			return RET_PF_INVALID;
+
+		if (direct)
+			addr = 0;
+
+		trace_handle_mmio_page_fault(addr, gfn, access);
+		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
+		return RET_PF_EMULATE;
+	}
+
+	/*
+	 * If the page table is zapped by other cpus, let CPU fault again on
+	 * the address.
+	 */
+	return RET_PF_RETRY;
+}
+
+static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
+					 u32 error_code, gfn_t gfn)
+{
+	if (unlikely(error_code & PFERR_RSVD_MASK))
+		return false;
+
+	if (!(error_code & PFERR_PRESENT_MASK) ||
+	      !(error_code & PFERR_WRITE_MASK))
+		return false;
+
+	/*
+	 * guest is writing the page which is write tracked which can
+	 * not be fixed by page fault handler.
+	 */
+	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
+		return true;
+
+	return false;
+}
+
+static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
+{
+	struct kvm_shadow_walk_iterator iterator;
+	u64 spte;
+
+	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+		return;
+
+	walk_shadow_page_lockless_begin(vcpu);
+	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
+		clear_sp_write_flooding_count(iterator.sptep);
+		if (!is_shadow_present_pte(spte))
+			break;
+	}
+	walk_shadow_page_lockless_end(vcpu);
+}
+
+static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
+				u32 error_code, bool prefault)
+{
+	gfn_t gfn = gva >> PAGE_SHIFT;
+	int r;
+
+	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
+
+	if (page_fault_handle_page_track(vcpu, error_code, gfn))
+		return RET_PF_EMULATE;
+
+	r = mmu_topup_memory_caches(vcpu);
+	if (r)
+		return r;
+
+	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
+
+
+	return nonpaging_map(vcpu, gva & PAGE_MASK,
+			     error_code, gfn, prefault);
+}
+
+static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
+{
+	struct kvm_arch_async_pf arch;
+
+	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
+	arch.gfn = gfn;
+	arch.direct_map = vcpu->arch.mmu.direct_map;
+	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
+
+	return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
+}
+
+bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
+{
+	if (unlikely(!lapic_in_kernel(vcpu) ||
+		     kvm_event_needs_reinjection(vcpu) ||
+		     vcpu->arch.exception.pending))
+		return false;
+
+	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
+		return false;
+
+	return kvm_x86_ops->interrupt_allowed(vcpu);
+}
+
+static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
+			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
+{
+	struct kvm_memory_slot *slot;
+	bool async;
+
+	/*
+	 * Don't expose private memslots to L2.
+	 */
+	if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
+		*pfn = KVM_PFN_NOSLOT;
+		return false;
+	}
+
+	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
+	async = false;
+	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
+	if (!async)
+		return false; /* *pfn has correct page already */
+
+	if (!prefault && kvm_can_do_async_pf(vcpu)) {
+		trace_kvm_try_async_get_page(gva, gfn);
+		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
+			trace_kvm_async_pf_doublefault(gva, gfn);
+			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
+			return true;
+		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
+			return true;
+	}
+
+	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
+	return false;
+}
+
+int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
+				u64 fault_address, char *insn, int insn_len)
+{
+	int r = 1;
+
+	vcpu->arch.l1tf_flush_l1d = true;
+	switch (vcpu->arch.apf.host_apf_reason) {
+	default:
+		trace_kvm_page_fault(fault_address, error_code);
+
+		if (kvm_event_needs_reinjection(vcpu))
+			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
+		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
+				insn_len);
+		break;
+	case KVM_PV_REASON_PAGE_NOT_PRESENT:
+		vcpu->arch.apf.host_apf_reason = 0;
+		local_irq_disable();
+		kvm_async_pf_task_wait(fault_address, 0);
+		local_irq_enable();
+		break;
+	case KVM_PV_REASON_PAGE_READY:
+		vcpu->arch.apf.host_apf_reason = 0;
+		local_irq_disable();
+		kvm_async_pf_task_wake(fault_address);
+		local_irq_enable();
+		break;
+	}
+	return r;
+}
+EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
+
+static bool
+check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
+{
+	int page_num = KVM_PAGES_PER_HPAGE(level);
+
+	gfn &= ~(page_num - 1);
+
+	return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
+}
+
+static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
+			  bool prefault)
+{
+	kvm_pfn_t pfn;
+	int r;
+	int level;
+	bool force_pt_level;
+	gfn_t gfn = gpa >> PAGE_SHIFT;
+	unsigned long mmu_seq;
+	int write = error_code & PFERR_WRITE_MASK;
+	bool map_writable;
+
+	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
+
+	if (page_fault_handle_page_track(vcpu, error_code, gfn))
+		return RET_PF_EMULATE;
+
+	r = mmu_topup_memory_caches(vcpu);
+	if (r)
+		return r;
+
+	force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
+							   PT_DIRECTORY_LEVEL);
+	level = mapping_level(vcpu, gfn, &force_pt_level);
+	if (likely(!force_pt_level)) {
+		if (level > PT_DIRECTORY_LEVEL &&
+		    !check_hugepage_cache_consistency(vcpu, gfn, level))
+			level = PT_DIRECTORY_LEVEL;
+		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
+	}
+
+	if (fast_page_fault(vcpu, gpa, level, error_code))
+		return RET_PF_RETRY;
+
+	mmu_seq = vcpu->kvm->mmu_notifier_seq;
+	smp_rmb();
+
+	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
+		return RET_PF_RETRY;
+
+	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
+		return r;
+
+	spin_lock(&vcpu->kvm->mmu_lock);
+	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
+		goto out_unlock;
+	if (make_mmu_pages_available(vcpu) < 0)
+		goto out_unlock;
+	if (likely(!force_pt_level))
+		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
+	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
+	spin_unlock(&vcpu->kvm->mmu_lock);
+
+	return r;
+
+out_unlock:
+	spin_unlock(&vcpu->kvm->mmu_lock);
+	kvm_release_pfn_clean(pfn);
+	return RET_PF_RETRY;
+}
+
+static void nonpaging_init_context(struct kvm_vcpu *vcpu,
+				   struct kvm_mmu *context)
+{
+	context->page_fault = nonpaging_page_fault;
+	context->gva_to_gpa = nonpaging_gva_to_gpa;
+	context->sync_page = nonpaging_sync_page;
+	context->invlpg = nonpaging_invlpg;
+	context->update_pte = nonpaging_update_pte;
+	context->root_level = 0;
+	context->shadow_root_level = PT32E_ROOT_LEVEL;
+	context->direct_map = true;
+	context->nx = false;
+}
+
+/*
+ * Find out if a previously cached root matching the new CR3/role is available.
+ * The current root is also inserted into the cache.
+ * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
+ * returned.
+ * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
+ * false is returned. This root should now be freed by the caller.
+ */
+static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
+				  union kvm_mmu_page_role new_role)
+{
+	uint i;
+	struct kvm_mmu_root_info root;
+	struct kvm_mmu *mmu = &vcpu->arch.mmu;
+
+	root.cr3 = mmu->get_cr3(vcpu);
+	root.hpa = mmu->root_hpa;
+
+	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
+		swap(root, mmu->prev_roots[i]);
+
+		if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
+		    page_header(root.hpa) != NULL &&
+		    new_role.word == page_header(root.hpa)->role.word)
+			break;
+	}
+
+	mmu->root_hpa = root.hpa;
+
+	return i < KVM_MMU_NUM_PREV_ROOTS;
+}
+
+static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
+			    union kvm_mmu_page_role new_role,
+			    bool skip_tlb_flush)
+{
+	struct kvm_mmu *mmu = &vcpu->arch.mmu;
+
+	/*
+	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
+	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
+	 * later if necessary.
+	 */
+	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
+	    mmu->root_level >= PT64_ROOT_4LEVEL) {
+		if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
+			return false;
+
+		if (cached_root_available(vcpu, new_cr3, new_role)) {
+			/*
+			 * It is possible that the cached previous root page is
+			 * obsolete because of a change in the MMU
+			 * generation number. However, that is accompanied by
+			 * KVM_REQ_MMU_RELOAD, which will free the root that we
+			 * have set here and allocate a new one.
+			 */
+
+			kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
+			if (!skip_tlb_flush) {
+				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
+				kvm_x86_ops->tlb_flush(vcpu, true);
+			}
+
+			/*
+			 * The last MMIO access's GVA and GPA are cached in the
+			 * VCPU. When switching to a new CR3, that GVA->GPA
+			 * mapping may no longer be valid. So clear any cached
+			 * MMIO info even when we don't need to sync the shadow
+			 * page tables.
+			 */
+			vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
+
+			__clear_sp_write_flooding_count(
+				page_header(mmu->root_hpa));
+
+			return true;
+		}
+	}
+
+	return false;
+}
+
+static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
+			      union kvm_mmu_page_role new_role,
+			      bool skip_tlb_flush)
+{
+	if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
+		kvm_mmu_free_roots(vcpu, KVM_MMU_ROOT_CURRENT);
+}
+
+void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
+{
+	__kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
+			  skip_tlb_flush);
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
+
+static unsigned long get_cr3(struct kvm_vcpu *vcpu)
+{
+	return kvm_read_cr3(vcpu);
+}
+
+static void inject_page_fault(struct kvm_vcpu *vcpu,
+			      struct x86_exception *fault)
+{
+	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
+}
+
+static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
+			   unsigned access, int *nr_present)
+{
+	if (unlikely(is_mmio_spte(*sptep))) {
+		if (gfn != get_mmio_spte_gfn(*sptep)) {
+			mmu_spte_clear_no_track(sptep);
+			return true;
+		}
+
+		(*nr_present)++;
+		mark_mmio_spte(vcpu, sptep, gfn, access);
+		return true;
+	}
+
+	return false;
+}
+
+static inline bool is_last_gpte(struct kvm_mmu *mmu,
+				unsigned level, unsigned gpte)
+{
+	/*
+	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
+	 * If it is clear, there are no large pages at this level, so clear
+	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
+	 */
+	gpte &= level - mmu->last_nonleaf_level;
+
+	/*
+	 * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
+	 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
+	 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
+	 */
+	gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
+
+	return gpte & PT_PAGE_SIZE_MASK;
+}
+
+#define PTTYPE_EPT 18 /* arbitrary */
+#define PTTYPE PTTYPE_EPT
+#include "paging_tmpl.h"
+#undef PTTYPE
+
+#define PTTYPE 64
+#include "paging_tmpl.h"
+#undef PTTYPE
+
+#define PTTYPE 32
+#include "paging_tmpl.h"
+#undef PTTYPE
+
+static void
+__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
+			struct rsvd_bits_validate *rsvd_check,
+			int maxphyaddr, int level, bool nx, bool gbpages,
+			bool pse, bool amd)
+{
+	u64 exb_bit_rsvd = 0;
+	u64 gbpages_bit_rsvd = 0;
+	u64 nonleaf_bit8_rsvd = 0;
+
+	rsvd_check->bad_mt_xwr = 0;
+
+	if (!nx)
+		exb_bit_rsvd = rsvd_bits(63, 63);
+	if (!gbpages)
+		gbpages_bit_rsvd = rsvd_bits(7, 7);
+
+	/*
+	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
+	 * leaf entries) on AMD CPUs only.
+	 */
+	if (amd)
+		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
+
+	switch (level) {
+	case PT32_ROOT_LEVEL:
+		/* no rsvd bits for 2 level 4K page table entries */
+		rsvd_check->rsvd_bits_mask[0][1] = 0;
+		rsvd_check->rsvd_bits_mask[0][0] = 0;
+		rsvd_check->rsvd_bits_mask[1][0] =
+			rsvd_check->rsvd_bits_mask[0][0];
+
+		if (!pse) {
+			rsvd_check->rsvd_bits_mask[1][1] = 0;
+			break;
+		}
+
+		if (is_cpuid_PSE36())
+			/* 36bits PSE 4MB page */
+			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
+		else
+			/* 32 bits PSE 4MB page */
+			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
+		break;
+	case PT32E_ROOT_LEVEL:
+		rsvd_check->rsvd_bits_mask[0][2] =
+			rsvd_bits(maxphyaddr, 63) |
+			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
+		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
+			rsvd_bits(maxphyaddr, 62);	/* PDE */
+		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
+			rsvd_bits(maxphyaddr, 62); 	/* PTE */
+		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
+			rsvd_bits(maxphyaddr, 62) |
+			rsvd_bits(13, 20);		/* large page */
+		rsvd_check->rsvd_bits_mask[1][0] =
+			rsvd_check->rsvd_bits_mask[0][0];
+		break;
+	case PT64_ROOT_5LEVEL:
+		rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
+			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
+			rsvd_bits(maxphyaddr, 51);
+		rsvd_check->rsvd_bits_mask[1][4] =
+			rsvd_check->rsvd_bits_mask[0][4];
+	case PT64_ROOT_4LEVEL:
+		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
+			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
+			rsvd_bits(maxphyaddr, 51);
+		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
+			nonleaf_bit8_rsvd | gbpages_bit_rsvd |
+			rsvd_bits(maxphyaddr, 51);
+		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
+			rsvd_bits(maxphyaddr, 51);
+		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
+			rsvd_bits(maxphyaddr, 51);
+		rsvd_check->rsvd_bits_mask[1][3] =
+			rsvd_check->rsvd_bits_mask[0][3];
+		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
+			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
+			rsvd_bits(13, 29);
+		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
+			rsvd_bits(maxphyaddr, 51) |
+			rsvd_bits(13, 20);		/* large page */
+		rsvd_check->rsvd_bits_mask[1][0] =
+			rsvd_check->rsvd_bits_mask[0][0];
+		break;
+	}
+}
+
+static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
+				  struct kvm_mmu *context)
+{
+	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
+				cpuid_maxphyaddr(vcpu), context->root_level,
+				context->nx,
+				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
+				is_pse(vcpu), guest_cpuid_is_amd(vcpu));
+}
+
+static void
+__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
+			    int maxphyaddr, bool execonly)
+{
+	u64 bad_mt_xwr;
+
+	rsvd_check->rsvd_bits_mask[0][4] =
+		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
+	rsvd_check->rsvd_bits_mask[0][3] =
+		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
+	rsvd_check->rsvd_bits_mask[0][2] =
+		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
+	rsvd_check->rsvd_bits_mask[0][1] =
+		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
+	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
+
+	/* large page */
+	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
+	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
+	rsvd_check->rsvd_bits_mask[1][2] =
+		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
+	rsvd_check->rsvd_bits_mask[1][1] =
+		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
+	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
+
+	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
+	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
+	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
+	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
+	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
+	if (!execonly) {
+		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
+		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
+	}
+	rsvd_check->bad_mt_xwr = bad_mt_xwr;
+}
+
+static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
+		struct kvm_mmu *context, bool execonly)
+{
+	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
+				    cpuid_maxphyaddr(vcpu), execonly);
+}
+
+/*
+ * the page table on host is the shadow page table for the page
+ * table in guest or amd nested guest, its mmu features completely
+ * follow the features in guest.
+ */
+void
+reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
+{
+	bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
+	struct rsvd_bits_validate *shadow_zero_check;
+	int i;
+
+	/*
+	 * Passing "true" to the last argument is okay; it adds a check
+	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
+	 */
+	shadow_zero_check = &context->shadow_zero_check;
+	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
+				boot_cpu_data.x86_phys_bits,
+				context->shadow_root_level, uses_nx,
+				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
+				is_pse(vcpu), true);
+
+	if (!shadow_me_mask)
+		return;
+
+	for (i = context->shadow_root_level; --i >= 0;) {
+		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
+		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
+	}
+
+}
+EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
+
+static inline bool boot_cpu_is_amd(void)
+{
+	WARN_ON_ONCE(!tdp_enabled);
+	return shadow_x_mask == 0;
+}
+
+/*
+ * the direct page table on host, use as much mmu features as
+ * possible, however, kvm currently does not do execution-protection.
+ */
+static void
+reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
+				struct kvm_mmu *context)
+{
+	struct rsvd_bits_validate *shadow_zero_check;
+	int i;
+
+	shadow_zero_check = &context->shadow_zero_check;
+
+	if (boot_cpu_is_amd())
+		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
+					boot_cpu_data.x86_phys_bits,
+					context->shadow_root_level, false,
+					boot_cpu_has(X86_FEATURE_GBPAGES),
+					true, true);
+	else
+		__reset_rsvds_bits_mask_ept(shadow_zero_check,
+					    boot_cpu_data.x86_phys_bits,
+					    false);
+
+	if (!shadow_me_mask)
+		return;
+
+	for (i = context->shadow_root_level; --i >= 0;) {
+		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
+		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
+	}
+}
+
+/*
+ * as the comments in reset_shadow_zero_bits_mask() except it
+ * is the shadow page table for intel nested guest.
+ */
+static void
+reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
+				struct kvm_mmu *context, bool execonly)
+{
+	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
+				    boot_cpu_data.x86_phys_bits, execonly);
+}
+
+#define BYTE_MASK(access) \
+	((1 & (access) ? 2 : 0) | \
+	 (2 & (access) ? 4 : 0) | \
+	 (3 & (access) ? 8 : 0) | \
+	 (4 & (access) ? 16 : 0) | \
+	 (5 & (access) ? 32 : 0) | \
+	 (6 & (access) ? 64 : 0) | \
+	 (7 & (access) ? 128 : 0))
+
+
+static void update_permission_bitmask(struct kvm_vcpu *vcpu,
+				      struct kvm_mmu *mmu, bool ept)
+{
+	unsigned byte;
+
+	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
+	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
+	const u8 u = BYTE_MASK(ACC_USER_MASK);
+
+	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
+	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
+	bool cr0_wp = is_write_protection(vcpu);
+
+	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
+		unsigned pfec = byte << 1;
+
+		/*
+		 * Each "*f" variable has a 1 bit for each UWX value
+		 * that causes a fault with the given PFEC.
+		 */
+
+		/* Faults from writes to non-writable pages */
+		u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
+		/* Faults from user mode accesses to supervisor pages */
+		u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
+		/* Faults from fetches of non-executable pages*/
+		u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
+		/* Faults from kernel mode fetches of user pages */
+		u8 smepf = 0;
+		/* Faults from kernel mode accesses of user pages */
+		u8 smapf = 0;
+
+		if (!ept) {
+			/* Faults from kernel mode accesses to user pages */
+			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
+
+			/* Not really needed: !nx will cause pte.nx to fault */
+			if (!mmu->nx)
+				ff = 0;
+
+			/* Allow supervisor writes if !cr0.wp */
+			if (!cr0_wp)
+				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
+
+			/* Disallow supervisor fetches of user code if cr4.smep */
+			if (cr4_smep)
+				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
+
+			/*
+			 * SMAP:kernel-mode data accesses from user-mode
+			 * mappings should fault. A fault is considered
+			 * as a SMAP violation if all of the following
+			 * conditions are ture:
+			 *   - X86_CR4_SMAP is set in CR4
+			 *   - A user page is accessed
+			 *   - The access is not a fetch
+			 *   - Page fault in kernel mode
+			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
+			 *
+			 * Here, we cover the first three conditions.
+			 * The fourth is computed dynamically in permission_fault();
+			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
+			 * *not* subject to SMAP restrictions.
+			 */
+			if (cr4_smap)
+				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
+		}
+
+		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
+	}
+}
+
+/*
+* PKU is an additional mechanism by which the paging controls access to
+* user-mode addresses based on the value in the PKRU register.  Protection
+* key violations are reported through a bit in the page fault error code.
+* Unlike other bits of the error code, the PK bit is not known at the
+* call site of e.g. gva_to_gpa; it must be computed directly in
+* permission_fault based on two bits of PKRU, on some machine state (CR4,
+* CR0, EFER, CPL), and on other bits of the error code and the page tables.
+*
+* In particular the following conditions come from the error code, the
+* page tables and the machine state:
+* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
+* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
+* - PK is always zero if U=0 in the page tables
+* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
+*
+* The PKRU bitmask caches the result of these four conditions.  The error
+* code (minus the P bit) and the page table's U bit form an index into the
+* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
+* with the two bits of the PKRU register corresponding to the protection key.
+* For the first three conditions above the bits will be 00, thus masking
+* away both AD and WD.  For all reads or if the last condition holds, WD
+* only will be masked away.
+*/
+static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
+				bool ept)
+{
+	unsigned bit;
+	bool wp;
+
+	if (ept) {
+		mmu->pkru_mask = 0;
+		return;
+	}
+
+	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
+	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
+		mmu->pkru_mask = 0;
+		return;
+	}
+
+	wp = is_write_protection(vcpu);
+
+	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
+		unsigned pfec, pkey_bits;
+		bool check_pkey, check_write, ff, uf, wf, pte_user;
+
+		pfec = bit << 1;
+		ff = pfec & PFERR_FETCH_MASK;
+		uf = pfec & PFERR_USER_MASK;
+		wf = pfec & PFERR_WRITE_MASK;
+
+		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
+		pte_user = pfec & PFERR_RSVD_MASK;
+
+		/*
+		 * Only need to check the access which is not an
+		 * instruction fetch and is to a user page.
+		 */
+		check_pkey = (!ff && pte_user);
+		/*
+		 * write access is controlled by PKRU if it is a
+		 * user access or CR0.WP = 1.
+		 */
+		check_write = check_pkey && wf && (uf || wp);
+
+		/* PKRU.AD stops both read and write access. */
+		pkey_bits = !!check_pkey;
+		/* PKRU.WD stops write access. */
+		pkey_bits |= (!!check_write) << 1;
+
+		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
+	}
+}
+
+static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
+{
+	unsigned root_level = mmu->root_level;
+
+	mmu->last_nonleaf_level = root_level;
+	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
+		mmu->last_nonleaf_level++;
+}
+
+static void paging64_init_context_common(struct kvm_vcpu *vcpu,
+					 struct kvm_mmu *context,
+					 int level)
+{
+	context->nx = is_nx(vcpu);
+	context->root_level = level;
+
+	reset_rsvds_bits_mask(vcpu, context);
+	update_permission_bitmask(vcpu, context, false);
+	update_pkru_bitmask(vcpu, context, false);
+	update_last_nonleaf_level(vcpu, context);
+
+	MMU_WARN_ON(!is_pae(vcpu));
+	context->page_fault = paging64_page_fault;
+	context->gva_to_gpa = paging64_gva_to_gpa;
+	context->sync_page = paging64_sync_page;
+	context->invlpg = paging64_invlpg;
+	context->update_pte = paging64_update_pte;
+	context->shadow_root_level = level;
+	context->direct_map = false;
+}
+
+static void paging64_init_context(struct kvm_vcpu *vcpu,
+				  struct kvm_mmu *context)
+{
+	int root_level = is_la57_mode(vcpu) ?
+			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
+
+	paging64_init_context_common(vcpu, context, root_level);
+}
+
+static void paging32_init_context(struct kvm_vcpu *vcpu,
+				  struct kvm_mmu *context)
+{
+	context->nx = false;
+	context->root_level = PT32_ROOT_LEVEL;
+
+	reset_rsvds_bits_mask(vcpu, context);
+	update_permission_bitmask(vcpu, context, false);
+	update_pkru_bitmask(vcpu, context, false);
+	update_last_nonleaf_level(vcpu, context);
+
+	context->page_fault = paging32_page_fault;
+	context->gva_to_gpa = paging32_gva_to_gpa;
+	context->sync_page = paging32_sync_page;
+	context->invlpg = paging32_invlpg;
+	context->update_pte = paging32_update_pte;
+	context->shadow_root_level = PT32E_ROOT_LEVEL;
+	context->direct_map = false;
+}
+
+static void paging32E_init_context(struct kvm_vcpu *vcpu,
+				   struct kvm_mmu *context)
+{
+	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
+}
+
+static union kvm_mmu_page_role
+kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu)
+{
+	union kvm_mmu_page_role role = {0};
+
+	role.guest_mode = is_guest_mode(vcpu);
+	role.smm = is_smm(vcpu);
+	role.ad_disabled = (shadow_accessed_mask == 0);
+	role.level = kvm_x86_ops->get_tdp_level(vcpu);
+	role.direct = true;
+	role.access = ACC_ALL;
+
+	return role;
+}
+
+static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
+{
+	struct kvm_mmu *context = &vcpu->arch.mmu;
+
+	context->base_role.word = mmu_base_role_mask.word &
+				  kvm_calc_tdp_mmu_root_page_role(vcpu).word;
+	context->page_fault = tdp_page_fault;
+	context->sync_page = nonpaging_sync_page;
+	context->invlpg = nonpaging_invlpg;
+	context->update_pte = nonpaging_update_pte;
+	context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
+	context->direct_map = true;
+	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
+	context->get_cr3 = get_cr3;
+	context->get_pdptr = kvm_pdptr_read;
+	context->inject_page_fault = kvm_inject_page_fault;
+
+	if (!is_paging(vcpu)) {
+		context->nx = false;
+		context->gva_to_gpa = nonpaging_gva_to_gpa;
+		context->root_level = 0;
+	} else if (is_long_mode(vcpu)) {
+		context->nx = is_nx(vcpu);
+		context->root_level = is_la57_mode(vcpu) ?
+				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
+		reset_rsvds_bits_mask(vcpu, context);
+		context->gva_to_gpa = paging64_gva_to_gpa;
+	} else if (is_pae(vcpu)) {
+		context->nx = is_nx(vcpu);
+		context->root_level = PT32E_ROOT_LEVEL;
+		reset_rsvds_bits_mask(vcpu, context);
+		context->gva_to_gpa = paging64_gva_to_gpa;
+	} else {
+		context->nx = false;
+		context->root_level = PT32_ROOT_LEVEL;
+		reset_rsvds_bits_mask(vcpu, context);
+		context->gva_to_gpa = paging32_gva_to_gpa;
+	}
+
+	update_permission_bitmask(vcpu, context, false);
+	update_pkru_bitmask(vcpu, context, false);
+	update_last_nonleaf_level(vcpu, context);
+	reset_tdp_shadow_zero_bits_mask(vcpu, context);
+}
+
+static union kvm_mmu_page_role
+kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu)
+{
+	union kvm_mmu_page_role role = {0};
+	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
+	bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
+
+	role.nxe = is_nx(vcpu);
+	role.cr4_pae = !!is_pae(vcpu);
+	role.cr0_wp  = is_write_protection(vcpu);
+	role.smep_andnot_wp = smep && !is_write_protection(vcpu);
+	role.smap_andnot_wp = smap && !is_write_protection(vcpu);
+	role.guest_mode = is_guest_mode(vcpu);
+	role.smm = is_smm(vcpu);
+	role.direct = !is_paging(vcpu);
+	role.access = ACC_ALL;
+
+	if (!is_long_mode(vcpu))
+		role.level = PT32E_ROOT_LEVEL;
+	else if (is_la57_mode(vcpu))
+		role.level = PT64_ROOT_5LEVEL;
+	else
+		role.level = PT64_ROOT_4LEVEL;
+
+	return role;
+}
+
+void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
+{
+	struct kvm_mmu *context = &vcpu->arch.mmu;
+
+	if (!is_paging(vcpu))
+		nonpaging_init_context(vcpu, context);
+	else if (is_long_mode(vcpu))
+		paging64_init_context(vcpu, context);
+	else if (is_pae(vcpu))
+		paging32E_init_context(vcpu, context);
+	else
+		paging32_init_context(vcpu, context);
+
+	context->base_role.word = mmu_base_role_mask.word &
+				  kvm_calc_shadow_mmu_root_page_role(vcpu).word;
+	reset_shadow_zero_bits_mask(vcpu, context);
+}
+EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
+
+static union kvm_mmu_page_role
+kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty)
+{
+	union kvm_mmu_page_role role = vcpu->arch.mmu.base_role;
+
+	role.level = PT64_ROOT_4LEVEL;
+	role.direct = false;
+	role.ad_disabled = !accessed_dirty;
+	role.guest_mode = true;
+	role.access = ACC_ALL;
+
+	return role;
+}
+
+void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
+			     bool accessed_dirty, gpa_t new_eptp)
+{
+	struct kvm_mmu *context = &vcpu->arch.mmu;
+	union kvm_mmu_page_role root_page_role =
+		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty);
+
+	__kvm_mmu_new_cr3(vcpu, new_eptp, root_page_role, false);
+	context->shadow_root_level = PT64_ROOT_4LEVEL;
+
+	context->nx = true;
+	context->ept_ad = accessed_dirty;
+	context->page_fault = ept_page_fault;
+	context->gva_to_gpa = ept_gva_to_gpa;
+	context->sync_page = ept_sync_page;
+	context->invlpg = ept_invlpg;
+	context->update_pte = ept_update_pte;
+	context->root_level = PT64_ROOT_4LEVEL;
+	context->direct_map = false;
+	context->base_role.word = root_page_role.word & mmu_base_role_mask.word;
+	update_permission_bitmask(vcpu, context, true);
+	update_pkru_bitmask(vcpu, context, true);
+	update_last_nonleaf_level(vcpu, context);
+	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
+	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
+}
+EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
+
+static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
+{
+	struct kvm_mmu *context = &vcpu->arch.mmu;
+
+	kvm_init_shadow_mmu(vcpu);
+	context->set_cr3           = kvm_x86_ops->set_cr3;
+	context->get_cr3           = get_cr3;
+	context->get_pdptr         = kvm_pdptr_read;
+	context->inject_page_fault = kvm_inject_page_fault;
+}
+
+static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
+{
+	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
+
+	g_context->get_cr3           = get_cr3;
+	g_context->get_pdptr         = kvm_pdptr_read;
+	g_context->inject_page_fault = kvm_inject_page_fault;
+
+	/*
+	 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
+	 * L1's nested page tables (e.g. EPT12). The nested translation
+	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
+	 * L2's page tables as the first level of translation and L1's
+	 * nested page tables as the second level of translation. Basically
+	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
+	 */
+	if (!is_paging(vcpu)) {
+		g_context->nx = false;
+		g_context->root_level = 0;
+		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
+	} else if (is_long_mode(vcpu)) {
+		g_context->nx = is_nx(vcpu);
+		g_context->root_level = is_la57_mode(vcpu) ?
+					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
+		reset_rsvds_bits_mask(vcpu, g_context);
+		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
+	} else if (is_pae(vcpu)) {
+		g_context->nx = is_nx(vcpu);
+		g_context->root_level = PT32E_ROOT_LEVEL;
+		reset_rsvds_bits_mask(vcpu, g_context);
+		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
+	} else {
+		g_context->nx = false;
+		g_context->root_level = PT32_ROOT_LEVEL;
+		reset_rsvds_bits_mask(vcpu, g_context);
+		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
+	}
+
+	update_permission_bitmask(vcpu, g_context, false);
+	update_pkru_bitmask(vcpu, g_context, false);
+	update_last_nonleaf_level(vcpu, g_context);
+}
+
+void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
+{
+	if (reset_roots) {
+		uint i;
+
+		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
+
+		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
+			vcpu->arch.mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
+	}
+
+	if (mmu_is_nested(vcpu))
+		init_kvm_nested_mmu(vcpu);
+	else if (tdp_enabled)
+		init_kvm_tdp_mmu(vcpu);
+	else
+		init_kvm_softmmu(vcpu);
+}
+EXPORT_SYMBOL_GPL(kvm_init_mmu);
+
+static union kvm_mmu_page_role
+kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
+{
+	if (tdp_enabled)
+		return kvm_calc_tdp_mmu_root_page_role(vcpu);
+	else
+		return kvm_calc_shadow_mmu_root_page_role(vcpu);
+}
+
+void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
+{
+	kvm_mmu_unload(vcpu);
+	kvm_init_mmu(vcpu, true);
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
+
+int kvm_mmu_load(struct kvm_vcpu *vcpu)
+{
+	int r;
+
+	r = mmu_topup_memory_caches(vcpu);
+	if (r)
+		goto out;
+	r = mmu_alloc_roots(vcpu);
+	kvm_mmu_sync_roots(vcpu);
+	if (r)
+		goto out;
+	kvm_mmu_load_cr3(vcpu);
+	kvm_x86_ops->tlb_flush(vcpu, true);
+out:
+	return r;
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_load);
+
+void kvm_mmu_unload(struct kvm_vcpu *vcpu)
+{
+	kvm_mmu_free_roots(vcpu, KVM_MMU_ROOTS_ALL);
+	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_unload);
+
+static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
+				  struct kvm_mmu_page *sp, u64 *spte,
+				  const void *new)
+{
+	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
+		++vcpu->kvm->stat.mmu_pde_zapped;
+		return;
+        }
+
+	++vcpu->kvm->stat.mmu_pte_updated;
+	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
+}
+
+static bool need_remote_flush(u64 old, u64 new)
+{
+	if (!is_shadow_present_pte(old))
+		return false;
+	if (!is_shadow_present_pte(new))
+		return true;
+	if ((old ^ new) & PT64_BASE_ADDR_MASK)
+		return true;
+	old ^= shadow_nx_mask;
+	new ^= shadow_nx_mask;
+	return (old & ~new & PT64_PERM_MASK) != 0;
+}
+
+static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
+				    int *bytes)
+{
+	u64 gentry = 0;
+	int r;
+
+	/*
+	 * Assume that the pte write on a page table of the same type
+	 * as the current vcpu paging mode since we update the sptes only
+	 * when they have the same mode.
+	 */
+	if (is_pae(vcpu) && *bytes == 4) {
+		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
+		*gpa &= ~(gpa_t)7;
+		*bytes = 8;
+	}
+
+	if (*bytes == 4 || *bytes == 8) {
+		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
+		if (r)
+			gentry = 0;
+	}
+
+	return gentry;
+}
+
+/*
+ * If we're seeing too many writes to a page, it may no longer be a page table,
+ * or we may be forking, in which case it is better to unmap the page.
+ */
+static bool detect_write_flooding(struct kvm_mmu_page *sp)
+{
+	/*
+	 * Skip write-flooding detected for the sp whose level is 1, because
+	 * it can become unsync, then the guest page is not write-protected.
+	 */
+	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
+		return false;
+
+	atomic_inc(&sp->write_flooding_count);
+	return atomic_read(&sp->write_flooding_count) >= 3;
+}
+
+/*
+ * Misaligned accesses are too much trouble to fix up; also, they usually
+ * indicate a page is not used as a page table.
+ */
+static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
+				    int bytes)
+{
+	unsigned offset, pte_size, misaligned;
+
+	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
+		 gpa, bytes, sp->role.word);
+
+	offset = offset_in_page(gpa);
+	pte_size = sp->role.cr4_pae ? 8 : 4;
+
+	/*
+	 * Sometimes, the OS only writes the last one bytes to update status
+	 * bits, for example, in linux, andb instruction is used in clear_bit().
+	 */
+	if (!(offset & (pte_size - 1)) && bytes == 1)
+		return false;
+
+	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
+	misaligned |= bytes < 4;
+
+	return misaligned;
+}
+
+static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
+{
+	unsigned page_offset, quadrant;
+	u64 *spte;
+	int level;
+
+	page_offset = offset_in_page(gpa);
+	level = sp->role.level;
+	*nspte = 1;
+	if (!sp->role.cr4_pae) {
+		page_offset <<= 1;	/* 32->64 */
+		/*
+		 * A 32-bit pde maps 4MB while the shadow pdes map
+		 * only 2MB.  So we need to double the offset again
+		 * and zap two pdes instead of one.
+		 */
+		if (level == PT32_ROOT_LEVEL) {
+			page_offset &= ~7; /* kill rounding error */
+			page_offset <<= 1;
+			*nspte = 2;
+		}
+		quadrant = page_offset >> PAGE_SHIFT;
+		page_offset &= ~PAGE_MASK;
+		if (quadrant != sp->role.quadrant)
+			return NULL;
+	}
+
+	spte = &sp->spt[page_offset / sizeof(*spte)];
+	return spte;
+}
+
+static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
+			      const u8 *new, int bytes,
+			      struct kvm_page_track_notifier_node *node)
+{
+	gfn_t gfn = gpa >> PAGE_SHIFT;
+	struct kvm_mmu_page *sp;
+	LIST_HEAD(invalid_list);
+	u64 entry, gentry, *spte;
+	int npte;
+	bool remote_flush, local_flush;
+
+	/*
+	 * If we don't have indirect shadow pages, it means no page is
+	 * write-protected, so we can exit simply.
+	 */
+	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
+		return;
+
+	remote_flush = local_flush = false;
+
+	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
+
+	/*
+	 * No need to care whether allocation memory is successful
+	 * or not since pte prefetch is skiped if it does not have
+	 * enough objects in the cache.
+	 */
+	mmu_topup_memory_caches(vcpu);
+
+	spin_lock(&vcpu->kvm->mmu_lock);
+
+	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
+
+	++vcpu->kvm->stat.mmu_pte_write;
+	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
+
+	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
+		if (detect_write_misaligned(sp, gpa, bytes) ||
+		      detect_write_flooding(sp)) {
+			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
+			++vcpu->kvm->stat.mmu_flooded;
+			continue;
+		}
+
+		spte = get_written_sptes(sp, gpa, &npte);
+		if (!spte)
+			continue;
+
+		local_flush = true;
+		while (npte--) {
+			entry = *spte;
+			mmu_page_zap_pte(vcpu->kvm, sp, spte);
+			if (gentry &&
+			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
+			      & mmu_base_role_mask.word) && rmap_can_add(vcpu))
+				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
+			if (need_remote_flush(entry, *spte))
+				remote_flush = true;
+			++spte;
+		}
+	}
+	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
+	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
+	spin_unlock(&vcpu->kvm->mmu_lock);
+}
+
+int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
+{
+	gpa_t gpa;
+	int r;
+
+	if (vcpu->arch.mmu.direct_map)
+		return 0;
+
+	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
+
+	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
+
+	return r;
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
+
+static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
+{
+	LIST_HEAD(invalid_list);
+
+	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
+		return 0;
+
+	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
+		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
+			break;
+
+		++vcpu->kvm->stat.mmu_recycled;
+	}
+	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
+
+	if (!kvm_mmu_available_pages(vcpu->kvm))
+		return -ENOSPC;
+	return 0;
+}
+
+int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
+		       void *insn, int insn_len)
+{
+	int r, emulation_type = 0;
+	enum emulation_result er;
+	bool direct = vcpu->arch.mmu.direct_map;
+
+	/* With shadow page tables, fault_address contains a GVA or nGPA.  */
+	if (vcpu->arch.mmu.direct_map) {
+		vcpu->arch.gpa_available = true;
+		vcpu->arch.gpa_val = cr2;
+	}
+
+	r = RET_PF_INVALID;
+	if (unlikely(error_code & PFERR_RSVD_MASK)) {
+		r = handle_mmio_page_fault(vcpu, cr2, direct);
+		if (r == RET_PF_EMULATE)
+			goto emulate;
+	}
+
+	if (r == RET_PF_INVALID) {
+		r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
+					      false);
+		WARN_ON(r == RET_PF_INVALID);
+	}
+
+	if (r == RET_PF_RETRY)
+		return 1;
+	if (r < 0)
+		return r;
+
+	/*
+	 * Before emulating the instruction, check if the error code
+	 * was due to a RO violation while translating the guest page.
+	 * This can occur when using nested virtualization with nested
+	 * paging in both guests. If true, we simply unprotect the page
+	 * and resume the guest.
+	 */
+	if (vcpu->arch.mmu.direct_map &&
+	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
+		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
+		return 1;
+	}
+
+	/*
+	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
+	 * optimistically try to just unprotect the page and let the processor
+	 * re-execute the instruction that caused the page fault.  Do not allow
+	 * retrying MMIO emulation, as it's not only pointless but could also
+	 * cause us to enter an infinite loop because the processor will keep
+	 * faulting on the non-existent MMIO address.  Retrying an instruction
+	 * from a nested guest is also pointless and dangerous as we are only
+	 * explicitly shadowing L1's page tables, i.e. unprotecting something
+	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
+	 */
+	if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu))
+		emulation_type = EMULTYPE_ALLOW_RETRY;
+emulate:
+	/*
+	 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
+	 * This can happen if a guest gets a page-fault on data access but the HW
+	 * table walker is not able to read the instruction page (e.g instruction
+	 * page is not present in memory). In those cases we simply restart the
+	 * guest.
+	 */
+	if (unlikely(insn && !insn_len))
+		return 1;
+
+	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
+
+	switch (er) {
+	case EMULATE_DONE:
+		return 1;
+	case EMULATE_USER_EXIT:
+		++vcpu->stat.mmio_exits;
+		/* fall through */
+	case EMULATE_FAIL:
+		return 0;
+	default:
+		BUG();
+	}
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
+
+void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
+{
+	struct kvm_mmu *mmu = &vcpu->arch.mmu;
+	int i;
+
+	/* INVLPG on a * non-canonical address is a NOP according to the SDM.  */
+	if (is_noncanonical_address(gva, vcpu))
+		return;
+
+	mmu->invlpg(vcpu, gva, mmu->root_hpa);
+
+	/*
+	 * INVLPG is required to invalidate any global mappings for the VA,
+	 * irrespective of PCID. Since it would take us roughly similar amount
+	 * of work to determine whether any of the prev_root mappings of the VA
+	 * is marked global, or to just sync it blindly, so we might as well
+	 * just always sync it.
+	 *
+	 * Mappings not reachable via the current cr3 or the prev_roots will be
+	 * synced when switching to that cr3, so nothing needs to be done here
+	 * for them.
+	 */
+	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
+		if (VALID_PAGE(mmu->prev_roots[i].hpa))
+			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
+
+	kvm_x86_ops->tlb_flush_gva(vcpu, gva);
+	++vcpu->stat.invlpg;
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
+
+void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
+{
+	struct kvm_mmu *mmu = &vcpu->arch.mmu;
+	bool tlb_flush = false;
+	uint i;
+
+	if (pcid == kvm_get_active_pcid(vcpu)) {
+		mmu->invlpg(vcpu, gva, mmu->root_hpa);
+		tlb_flush = true;
+	}
+
+	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
+		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
+		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
+			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
+			tlb_flush = true;
+		}
+	}
+
+	if (tlb_flush)
+		kvm_x86_ops->tlb_flush_gva(vcpu, gva);
+
+	++vcpu->stat.invlpg;
+
+	/*
+	 * Mappings not reachable via the current cr3 or the prev_roots will be
+	 * synced when switching to that cr3, so nothing needs to be done here
+	 * for them.
+	 */
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
+
+void kvm_enable_tdp(void)
+{
+	tdp_enabled = true;
+}
+EXPORT_SYMBOL_GPL(kvm_enable_tdp);
+
+void kvm_disable_tdp(void)
+{
+	tdp_enabled = false;
+}
+EXPORT_SYMBOL_GPL(kvm_disable_tdp);
+
+static void free_mmu_pages(struct kvm_vcpu *vcpu)
+{
+	free_page((unsigned long)vcpu->arch.mmu.pae_root);
+	free_page((unsigned long)vcpu->arch.mmu.lm_root);
+}
+
+static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
+{
+	struct page *page;
+	int i;
+
+	if (tdp_enabled)
+		return 0;
+
+	/*
+	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
+	 * Therefore we need to allocate shadow page tables in the first
+	 * 4GB of memory, which happens to fit the DMA32 zone.
+	 */
+	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
+	if (!page)
+		return -ENOMEM;
+
+	vcpu->arch.mmu.pae_root = page_address(page);
+	for (i = 0; i < 4; ++i)
+		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
+
+	return 0;
+}
+
+int kvm_mmu_create(struct kvm_vcpu *vcpu)
+{
+	uint i;
+
+	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
+	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
+	vcpu->arch.mmu.translate_gpa = translate_gpa;
+	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
+
+	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
+		vcpu->arch.mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
+
+	return alloc_mmu_pages(vcpu);
+}
+
+void kvm_mmu_setup(struct kvm_vcpu *vcpu)
+{
+	MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
+
+	/*
+	 * kvm_mmu_setup() is called only on vCPU initialization.  
+	 * Therefore, no need to reset mmu roots as they are not yet
+	 * initialized.
+	 */
+	kvm_init_mmu(vcpu, false);
+}
+
+static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
+			struct kvm_memory_slot *slot,
+			struct kvm_page_track_notifier_node *node)
+{
+	kvm_mmu_invalidate_zap_all_pages(kvm);
+}
+
+void kvm_mmu_init_vm(struct kvm *kvm)
+{
+	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
+
+	node->track_write = kvm_mmu_pte_write;
+	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
+	kvm_page_track_register_notifier(kvm, node);
+}
+
+void kvm_mmu_uninit_vm(struct kvm *kvm)
+{
+	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
+
+	kvm_page_track_unregister_notifier(kvm, node);
+}
+
+/* The return value indicates if tlb flush on all vcpus is needed. */
+typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
+
+/* The caller should hold mmu-lock before calling this function. */
+static __always_inline bool
+slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
+			slot_level_handler fn, int start_level, int end_level,
+			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
+{
+	struct slot_rmap_walk_iterator iterator;
+	bool flush = false;
+
+	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
+			end_gfn, &iterator) {
+		if (iterator.rmap)
+			flush |= fn(kvm, iterator.rmap);
+
+		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
+			if (flush && lock_flush_tlb) {
+				kvm_flush_remote_tlbs(kvm);
+				flush = false;
+			}
+			cond_resched_lock(&kvm->mmu_lock);
+		}
+	}
+
+	if (flush && lock_flush_tlb) {
+		kvm_flush_remote_tlbs(kvm);
+		flush = false;
+	}
+
+	return flush;
+}
+
+static __always_inline bool
+slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
+		  slot_level_handler fn, int start_level, int end_level,
+		  bool lock_flush_tlb)
+{
+	return slot_handle_level_range(kvm, memslot, fn, start_level,
+			end_level, memslot->base_gfn,
+			memslot->base_gfn + memslot->npages - 1,
+			lock_flush_tlb);
+}
+
+static __always_inline bool
+slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
+		      slot_level_handler fn, bool lock_flush_tlb)
+{
+	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
+				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
+}
+
+static __always_inline bool
+slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
+			slot_level_handler fn, bool lock_flush_tlb)
+{
+	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
+				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
+}
+
+static __always_inline bool
+slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
+		 slot_level_handler fn, bool lock_flush_tlb)
+{
+	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
+				 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
+}
+
+void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
+{
+	struct kvm_memslots *slots;
+	struct kvm_memory_slot *memslot;
+	int i;
+
+	spin_lock(&kvm->mmu_lock);
+	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
+		slots = __kvm_memslots(kvm, i);
+		kvm_for_each_memslot(memslot, slots) {
+			gfn_t start, end;
+
+			start = max(gfn_start, memslot->base_gfn);
+			end = min(gfn_end, memslot->base_gfn + memslot->npages);
+			if (start >= end)
+				continue;
+
+			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
+						PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
+						start, end - 1, true);
+		}
+	}
+
+	spin_unlock(&kvm->mmu_lock);
+}
+
+static bool slot_rmap_write_protect(struct kvm *kvm,
+				    struct kvm_rmap_head *rmap_head)
+{
+	return __rmap_write_protect(kvm, rmap_head, false);
+}
+
+void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
+				      struct kvm_memory_slot *memslot)
+{
+	bool flush;
+
+	spin_lock(&kvm->mmu_lock);
+	flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
+				      false);
+	spin_unlock(&kvm->mmu_lock);
+
+	/*
+	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
+	 * which do tlb flush out of mmu-lock should be serialized by
+	 * kvm->slots_lock otherwise tlb flush would be missed.
+	 */
+	lockdep_assert_held(&kvm->slots_lock);
+
+	/*
+	 * We can flush all the TLBs out of the mmu lock without TLB
+	 * corruption since we just change the spte from writable to
+	 * readonly so that we only need to care the case of changing
+	 * spte from present to present (changing the spte from present
+	 * to nonpresent will flush all the TLBs immediately), in other
+	 * words, the only case we care is mmu_spte_update() where we
+	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
+	 * instead of PT_WRITABLE_MASK, that means it does not depend
+	 * on PT_WRITABLE_MASK anymore.
+	 */
+	if (flush)
+		kvm_flush_remote_tlbs(kvm);
+}
+
+static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
+					 struct kvm_rmap_head *rmap_head)
+{
+	u64 *sptep;
+	struct rmap_iterator iter;
+	int need_tlb_flush = 0;
+	kvm_pfn_t pfn;
+	struct kvm_mmu_page *sp;
+
+restart:
+	for_each_rmap_spte(rmap_head, &iter, sptep) {
+		sp = page_header(__pa(sptep));
+		pfn = spte_to_pfn(*sptep);
+
+		/*
+		 * We cannot do huge page mapping for indirect shadow pages,
+		 * which are found on the last rmap (level = 1) when not using
+		 * tdp; such shadow pages are synced with the page table in
+		 * the guest, and the guest page table is using 4K page size
+		 * mapping if the indirect sp has level = 1.
+		 */
+		if (sp->role.direct &&
+			!kvm_is_reserved_pfn(pfn) &&
+			PageTransCompoundMap(pfn_to_page(pfn))) {
+			drop_spte(kvm, sptep);
+			need_tlb_flush = 1;
+			goto restart;
+		}
+	}
+
+	return need_tlb_flush;
+}
+
+void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
+				   const struct kvm_memory_slot *memslot)
+{
+	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
+	spin_lock(&kvm->mmu_lock);
+	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
+			 kvm_mmu_zap_collapsible_spte, true);
+	spin_unlock(&kvm->mmu_lock);
+}
+
+void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
+				   struct kvm_memory_slot *memslot)
+{
+	bool flush;
+
+	spin_lock(&kvm->mmu_lock);
+	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
+	spin_unlock(&kvm->mmu_lock);
+
+	lockdep_assert_held(&kvm->slots_lock);
+
+	/*
+	 * It's also safe to flush TLBs out of mmu lock here as currently this
+	 * function is only used for dirty logging, in which case flushing TLB
+	 * out of mmu lock also guarantees no dirty pages will be lost in
+	 * dirty_bitmap.
+	 */
+	if (flush)
+		kvm_flush_remote_tlbs(kvm);
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
+
+void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
+					struct kvm_memory_slot *memslot)
+{
+	bool flush;
+
+	spin_lock(&kvm->mmu_lock);
+	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
+					false);
+	spin_unlock(&kvm->mmu_lock);
+
+	/* see kvm_mmu_slot_remove_write_access */
+	lockdep_assert_held(&kvm->slots_lock);
+
+	if (flush)
+		kvm_flush_remote_tlbs(kvm);
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
+
+void kvm_mmu_slot_set_dirty(struct kvm *kvm,
+			    struct kvm_memory_slot *memslot)
+{
+	bool flush;
+
+	spin_lock(&kvm->mmu_lock);
+	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
+	spin_unlock(&kvm->mmu_lock);
+
+	lockdep_assert_held(&kvm->slots_lock);
+
+	/* see kvm_mmu_slot_leaf_clear_dirty */
+	if (flush)
+		kvm_flush_remote_tlbs(kvm);
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
+
+#define BATCH_ZAP_PAGES	10
+static void kvm_zap_obsolete_pages(struct kvm *kvm)
+{
+	struct kvm_mmu_page *sp, *node;
+	int batch = 0;
+
+restart:
+	list_for_each_entry_safe_reverse(sp, node,
+	      &kvm->arch.active_mmu_pages, link) {
+		int ret;
+
+		/*
+		 * No obsolete page exists before new created page since
+		 * active_mmu_pages is the FIFO list.
+		 */
+		if (!is_obsolete_sp(kvm, sp))
+			break;
+
+		/*
+		 * Since we are reversely walking the list and the invalid
+		 * list will be moved to the head, skip the invalid page
+		 * can help us to avoid the infinity list walking.
+		 */
+		if (sp->role.invalid)
+			continue;
+
+		/*
+		 * Need not flush tlb since we only zap the sp with invalid
+		 * generation number.
+		 */
+		if (batch >= BATCH_ZAP_PAGES &&
+		      cond_resched_lock(&kvm->mmu_lock)) {
+			batch = 0;
+			goto restart;
+		}
+
+		ret = kvm_mmu_prepare_zap_page(kvm, sp,
+				&kvm->arch.zapped_obsolete_pages);
+		batch += ret;
+
+		if (ret)
+			goto restart;
+	}
+
+	/*
+	 * Should flush tlb before free page tables since lockless-walking
+	 * may use the pages.
+	 */
+	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
+}
+
+/*
+ * Fast invalidate all shadow pages and use lock-break technique
+ * to zap obsolete pages.
+ *
+ * It's required when memslot is being deleted or VM is being
+ * destroyed, in these cases, we should ensure that KVM MMU does
+ * not use any resource of the being-deleted slot or all slots
+ * after calling the function.
+ */
+void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
+{
+	spin_lock(&kvm->mmu_lock);
+	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
+	kvm->arch.mmu_valid_gen++;
+
+	/*
+	 * Notify all vcpus to reload its shadow page table
+	 * and flush TLB. Then all vcpus will switch to new
+	 * shadow page table with the new mmu_valid_gen.
+	 *
+	 * Note: we should do this under the protection of
+	 * mmu-lock, otherwise, vcpu would purge shadow page
+	 * but miss tlb flush.
+	 */
+	kvm_reload_remote_mmus(kvm);
+
+	kvm_zap_obsolete_pages(kvm);
+	spin_unlock(&kvm->mmu_lock);
+}
+
+static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
+{
+	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
+}
+
+void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
+{
+	/*
+	 * The very rare case: if the generation-number is round,
+	 * zap all shadow pages.
+	 */
+	if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
+		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
+		kvm_mmu_invalidate_zap_all_pages(kvm);
+	}
+}
+
+static unsigned long
+mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
+{
+	struct kvm *kvm;
+	int nr_to_scan = sc->nr_to_scan;
+	unsigned long freed = 0;
+
+	spin_lock(&kvm_lock);
+
+	list_for_each_entry(kvm, &vm_list, vm_list) {
+		int idx;
+		LIST_HEAD(invalid_list);
+
+		/*
+		 * Never scan more than sc->nr_to_scan VM instances.
+		 * Will not hit this condition practically since we do not try
+		 * to shrink more than one VM and it is very unlikely to see
+		 * !n_used_mmu_pages so many times.
+		 */
+		if (!nr_to_scan--)
+			break;
+		/*
+		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
+		 * here. We may skip a VM instance errorneosly, but we do not
+		 * want to shrink a VM that only started to populate its MMU
+		 * anyway.
+		 */
+		if (!kvm->arch.n_used_mmu_pages &&
+		      !kvm_has_zapped_obsolete_pages(kvm))
+			continue;
+
+		idx = srcu_read_lock(&kvm->srcu);
+		spin_lock(&kvm->mmu_lock);
+
+		if (kvm_has_zapped_obsolete_pages(kvm)) {
+			kvm_mmu_commit_zap_page(kvm,
+			      &kvm->arch.zapped_obsolete_pages);
+			goto unlock;
+		}
+
+		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
+			freed++;
+		kvm_mmu_commit_zap_page(kvm, &invalid_list);
+
+unlock:
+		spin_unlock(&kvm->mmu_lock);
+		srcu_read_unlock(&kvm->srcu, idx);
+
+		/*
+		 * unfair on small ones
+		 * per-vm shrinkers cry out
+		 * sadness comes quickly
+		 */
+		list_move_tail(&kvm->vm_list, &vm_list);
+		break;
+	}
+
+	spin_unlock(&kvm_lock);
+	return freed;
+}
+
+static unsigned long
+mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
+{
+	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
+}
+
+static struct shrinker mmu_shrinker = {
+	.count_objects = mmu_shrink_count,
+	.scan_objects = mmu_shrink_scan,
+	.seeks = DEFAULT_SEEKS * 10,
+};
+
+static void mmu_destroy_caches(void)
+{
+	kmem_cache_destroy(pte_list_desc_cache);
+	kmem_cache_destroy(mmu_page_header_cache);
+}
+
+int kvm_mmu_module_init(void)
+{
+	int ret = -ENOMEM;
+
+	kvm_mmu_reset_all_pte_masks();
+
+	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
+					    sizeof(struct pte_list_desc),
+					    0, SLAB_ACCOUNT, NULL);
+	if (!pte_list_desc_cache)
+		goto out;
+
+	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
+						  sizeof(struct kvm_mmu_page),
+						  0, SLAB_ACCOUNT, NULL);
+	if (!mmu_page_header_cache)
+		goto out;
+
+	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
+		goto out;
+
+	ret = register_shrinker(&mmu_shrinker);
+	if (ret)
+		goto out;
+
+	return 0;
+
+out:
+	mmu_destroy_caches();
+	return ret;
+}
+
+/*
+ * Caculate mmu pages needed for kvm.
+ */
+unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
+{
+	unsigned int nr_mmu_pages;
+	unsigned int  nr_pages = 0;
+	struct kvm_memslots *slots;
+	struct kvm_memory_slot *memslot;
+	int i;
+
+	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
+		slots = __kvm_memslots(kvm, i);
+
+		kvm_for_each_memslot(memslot, slots)
+			nr_pages += memslot->npages;
+	}
+
+	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
+	nr_mmu_pages = max(nr_mmu_pages,
+			   (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
+
+	return nr_mmu_pages;
+}
+
+void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
+{
+	kvm_mmu_unload(vcpu);
+	free_mmu_pages(vcpu);
+	mmu_free_memory_caches(vcpu);
+}
+
+void kvm_mmu_module_exit(void)
+{
+	mmu_destroy_caches();
+	percpu_counter_destroy(&kvm_total_used_mmu_pages);
+	unregister_shrinker(&mmu_shrinker);
+	mmu_audit_disable();
+}