Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * srmmu.c: SRMMU specific routines for memory management. |
| 4 | * |
| 5 | * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) |
| 6 | * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com) |
| 7 | * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) |
| 8 | * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) |
| 9 | * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org) |
| 10 | */ |
| 11 | |
| 12 | #include <linux/seq_file.h> |
| 13 | #include <linux/spinlock.h> |
| 14 | #include <linux/bootmem.h> |
| 15 | #include <linux/pagemap.h> |
| 16 | #include <linux/vmalloc.h> |
| 17 | #include <linux/kdebug.h> |
| 18 | #include <linux/export.h> |
| 19 | #include <linux/kernel.h> |
| 20 | #include <linux/init.h> |
| 21 | #include <linux/log2.h> |
| 22 | #include <linux/gfp.h> |
| 23 | #include <linux/fs.h> |
| 24 | #include <linux/mm.h> |
| 25 | |
| 26 | #include <asm/mmu_context.h> |
| 27 | #include <asm/cacheflush.h> |
| 28 | #include <asm/tlbflush.h> |
| 29 | #include <asm/io-unit.h> |
| 30 | #include <asm/pgalloc.h> |
| 31 | #include <asm/pgtable.h> |
| 32 | #include <asm/bitext.h> |
| 33 | #include <asm/vaddrs.h> |
| 34 | #include <asm/cache.h> |
| 35 | #include <asm/traps.h> |
| 36 | #include <asm/oplib.h> |
| 37 | #include <asm/mbus.h> |
| 38 | #include <asm/page.h> |
| 39 | #include <asm/asi.h> |
| 40 | #include <asm/smp.h> |
| 41 | #include <asm/io.h> |
| 42 | |
| 43 | /* Now the cpu specific definitions. */ |
| 44 | #include <asm/turbosparc.h> |
| 45 | #include <asm/tsunami.h> |
| 46 | #include <asm/viking.h> |
| 47 | #include <asm/swift.h> |
| 48 | #include <asm/leon.h> |
| 49 | #include <asm/mxcc.h> |
| 50 | #include <asm/ross.h> |
| 51 | |
| 52 | #include "mm_32.h" |
| 53 | |
| 54 | enum mbus_module srmmu_modtype; |
| 55 | static unsigned int hwbug_bitmask; |
| 56 | int vac_cache_size; |
| 57 | EXPORT_SYMBOL(vac_cache_size); |
| 58 | int vac_line_size; |
| 59 | |
| 60 | extern struct resource sparc_iomap; |
| 61 | |
| 62 | extern unsigned long last_valid_pfn; |
| 63 | |
| 64 | static pgd_t *srmmu_swapper_pg_dir; |
| 65 | |
| 66 | const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops; |
| 67 | EXPORT_SYMBOL(sparc32_cachetlb_ops); |
| 68 | |
| 69 | #ifdef CONFIG_SMP |
| 70 | const struct sparc32_cachetlb_ops *local_ops; |
| 71 | |
| 72 | #define FLUSH_BEGIN(mm) |
| 73 | #define FLUSH_END |
| 74 | #else |
| 75 | #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) { |
| 76 | #define FLUSH_END } |
| 77 | #endif |
| 78 | |
| 79 | int flush_page_for_dma_global = 1; |
| 80 | |
| 81 | char *srmmu_name; |
| 82 | |
| 83 | ctxd_t *srmmu_ctx_table_phys; |
| 84 | static ctxd_t *srmmu_context_table; |
| 85 | |
| 86 | int viking_mxcc_present; |
| 87 | static DEFINE_SPINLOCK(srmmu_context_spinlock); |
| 88 | |
| 89 | static int is_hypersparc; |
| 90 | |
| 91 | static int srmmu_cache_pagetables; |
| 92 | |
| 93 | /* these will be initialized in srmmu_nocache_calcsize() */ |
| 94 | static unsigned long srmmu_nocache_size; |
| 95 | static unsigned long srmmu_nocache_end; |
| 96 | |
| 97 | /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */ |
| 98 | #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4) |
| 99 | |
| 100 | /* The context table is a nocache user with the biggest alignment needs. */ |
| 101 | #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS) |
| 102 | |
| 103 | void *srmmu_nocache_pool; |
| 104 | static struct bit_map srmmu_nocache_map; |
| 105 | |
| 106 | static inline int srmmu_pmd_none(pmd_t pmd) |
| 107 | { return !(pmd_val(pmd) & 0xFFFFFFF); } |
| 108 | |
| 109 | /* XXX should we hyper_flush_whole_icache here - Anton */ |
| 110 | static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp) |
| 111 | { |
| 112 | pte_t pte; |
| 113 | |
| 114 | pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4))); |
| 115 | set_pte((pte_t *)ctxp, pte); |
| 116 | } |
| 117 | |
| 118 | /* |
| 119 | * Locations of MSI Registers. |
| 120 | */ |
| 121 | #define MSI_MBUS_ARBEN 0xe0001008 /* MBus Arbiter Enable register */ |
| 122 | |
| 123 | /* |
| 124 | * Useful bits in the MSI Registers. |
| 125 | */ |
| 126 | #define MSI_ASYNC_MODE 0x80000000 /* Operate the MSI asynchronously */ |
| 127 | |
| 128 | static void msi_set_sync(void) |
| 129 | { |
| 130 | __asm__ __volatile__ ("lda [%0] %1, %%g3\n\t" |
| 131 | "andn %%g3, %2, %%g3\n\t" |
| 132 | "sta %%g3, [%0] %1\n\t" : : |
| 133 | "r" (MSI_MBUS_ARBEN), |
| 134 | "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3"); |
| 135 | } |
| 136 | |
| 137 | void pmd_set(pmd_t *pmdp, pte_t *ptep) |
| 138 | { |
| 139 | unsigned long ptp; /* Physical address, shifted right by 4 */ |
| 140 | int i; |
| 141 | |
| 142 | ptp = __nocache_pa(ptep) >> 4; |
| 143 | for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) { |
| 144 | set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp)); |
| 145 | ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4); |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep) |
| 150 | { |
| 151 | unsigned long ptp; /* Physical address, shifted right by 4 */ |
| 152 | int i; |
| 153 | |
| 154 | ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */ |
| 155 | for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) { |
| 156 | set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp)); |
| 157 | ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4); |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | /* Find an entry in the third-level page table.. */ |
| 162 | pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address) |
| 163 | { |
| 164 | void *pte; |
| 165 | |
| 166 | pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4); |
| 167 | return (pte_t *) pte + |
| 168 | ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); |
| 169 | } |
| 170 | |
| 171 | /* |
| 172 | * size: bytes to allocate in the nocache area. |
| 173 | * align: bytes, number to align at. |
| 174 | * Returns the virtual address of the allocated area. |
| 175 | */ |
| 176 | static void *__srmmu_get_nocache(int size, int align) |
| 177 | { |
| 178 | int offset; |
| 179 | unsigned long addr; |
| 180 | |
| 181 | if (size < SRMMU_NOCACHE_BITMAP_SHIFT) { |
| 182 | printk(KERN_ERR "Size 0x%x too small for nocache request\n", |
| 183 | size); |
| 184 | size = SRMMU_NOCACHE_BITMAP_SHIFT; |
| 185 | } |
| 186 | if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) { |
| 187 | printk(KERN_ERR "Size 0x%x unaligned int nocache request\n", |
| 188 | size); |
| 189 | size += SRMMU_NOCACHE_BITMAP_SHIFT - 1; |
| 190 | } |
| 191 | BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX); |
| 192 | |
| 193 | offset = bit_map_string_get(&srmmu_nocache_map, |
| 194 | size >> SRMMU_NOCACHE_BITMAP_SHIFT, |
| 195 | align >> SRMMU_NOCACHE_BITMAP_SHIFT); |
| 196 | if (offset == -1) { |
| 197 | printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n", |
| 198 | size, (int) srmmu_nocache_size, |
| 199 | srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); |
| 200 | return NULL; |
| 201 | } |
| 202 | |
| 203 | addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT); |
| 204 | return (void *)addr; |
| 205 | } |
| 206 | |
| 207 | void *srmmu_get_nocache(int size, int align) |
| 208 | { |
| 209 | void *tmp; |
| 210 | |
| 211 | tmp = __srmmu_get_nocache(size, align); |
| 212 | |
| 213 | if (tmp) |
| 214 | memset(tmp, 0, size); |
| 215 | |
| 216 | return tmp; |
| 217 | } |
| 218 | |
| 219 | void srmmu_free_nocache(void *addr, int size) |
| 220 | { |
| 221 | unsigned long vaddr; |
| 222 | int offset; |
| 223 | |
| 224 | vaddr = (unsigned long)addr; |
| 225 | if (vaddr < SRMMU_NOCACHE_VADDR) { |
| 226 | printk("Vaddr %lx is smaller than nocache base 0x%lx\n", |
| 227 | vaddr, (unsigned long)SRMMU_NOCACHE_VADDR); |
| 228 | BUG(); |
| 229 | } |
| 230 | if (vaddr + size > srmmu_nocache_end) { |
| 231 | printk("Vaddr %lx is bigger than nocache end 0x%lx\n", |
| 232 | vaddr, srmmu_nocache_end); |
| 233 | BUG(); |
| 234 | } |
| 235 | if (!is_power_of_2(size)) { |
| 236 | printk("Size 0x%x is not a power of 2\n", size); |
| 237 | BUG(); |
| 238 | } |
| 239 | if (size < SRMMU_NOCACHE_BITMAP_SHIFT) { |
| 240 | printk("Size 0x%x is too small\n", size); |
| 241 | BUG(); |
| 242 | } |
| 243 | if (vaddr & (size - 1)) { |
| 244 | printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size); |
| 245 | BUG(); |
| 246 | } |
| 247 | |
| 248 | offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT; |
| 249 | size = size >> SRMMU_NOCACHE_BITMAP_SHIFT; |
| 250 | |
| 251 | bit_map_clear(&srmmu_nocache_map, offset, size); |
| 252 | } |
| 253 | |
| 254 | static void srmmu_early_allocate_ptable_skeleton(unsigned long start, |
| 255 | unsigned long end); |
| 256 | |
| 257 | /* Return how much physical memory we have. */ |
| 258 | static unsigned long __init probe_memory(void) |
| 259 | { |
| 260 | unsigned long total = 0; |
| 261 | int i; |
| 262 | |
| 263 | for (i = 0; sp_banks[i].num_bytes; i++) |
| 264 | total += sp_banks[i].num_bytes; |
| 265 | |
| 266 | return total; |
| 267 | } |
| 268 | |
| 269 | /* |
| 270 | * Reserve nocache dynamically proportionally to the amount of |
| 271 | * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002 |
| 272 | */ |
| 273 | static void __init srmmu_nocache_calcsize(void) |
| 274 | { |
| 275 | unsigned long sysmemavail = probe_memory() / 1024; |
| 276 | int srmmu_nocache_npages; |
| 277 | |
| 278 | srmmu_nocache_npages = |
| 279 | sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256; |
| 280 | |
| 281 | /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */ |
| 282 | // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256; |
| 283 | if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES) |
| 284 | srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES; |
| 285 | |
| 286 | /* anything above 1280 blows up */ |
| 287 | if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES) |
| 288 | srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES; |
| 289 | |
| 290 | srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE; |
| 291 | srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size; |
| 292 | } |
| 293 | |
| 294 | static void __init srmmu_nocache_init(void) |
| 295 | { |
| 296 | void *srmmu_nocache_bitmap; |
| 297 | unsigned int bitmap_bits; |
| 298 | pgd_t *pgd; |
| 299 | pmd_t *pmd; |
| 300 | pte_t *pte; |
| 301 | unsigned long paddr, vaddr; |
| 302 | unsigned long pteval; |
| 303 | |
| 304 | bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT; |
| 305 | |
| 306 | srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size, |
| 307 | SRMMU_NOCACHE_ALIGN_MAX, 0UL); |
| 308 | memset(srmmu_nocache_pool, 0, srmmu_nocache_size); |
| 309 | |
| 310 | srmmu_nocache_bitmap = |
| 311 | __alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long), |
| 312 | SMP_CACHE_BYTES, 0UL); |
| 313 | bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits); |
| 314 | |
| 315 | srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); |
| 316 | memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE); |
| 317 | init_mm.pgd = srmmu_swapper_pg_dir; |
| 318 | |
| 319 | srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end); |
| 320 | |
| 321 | paddr = __pa((unsigned long)srmmu_nocache_pool); |
| 322 | vaddr = SRMMU_NOCACHE_VADDR; |
| 323 | |
| 324 | while (vaddr < srmmu_nocache_end) { |
| 325 | pgd = pgd_offset_k(vaddr); |
| 326 | pmd = pmd_offset(__nocache_fix(pgd), vaddr); |
| 327 | pte = pte_offset_kernel(__nocache_fix(pmd), vaddr); |
| 328 | |
| 329 | pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV); |
| 330 | |
| 331 | if (srmmu_cache_pagetables) |
| 332 | pteval |= SRMMU_CACHE; |
| 333 | |
| 334 | set_pte(__nocache_fix(pte), __pte(pteval)); |
| 335 | |
| 336 | vaddr += PAGE_SIZE; |
| 337 | paddr += PAGE_SIZE; |
| 338 | } |
| 339 | |
| 340 | flush_cache_all(); |
| 341 | flush_tlb_all(); |
| 342 | } |
| 343 | |
| 344 | pgd_t *get_pgd_fast(void) |
| 345 | { |
| 346 | pgd_t *pgd = NULL; |
| 347 | |
| 348 | pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); |
| 349 | if (pgd) { |
| 350 | pgd_t *init = pgd_offset_k(0); |
| 351 | memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t)); |
| 352 | memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD, |
| 353 | (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t)); |
| 354 | } |
| 355 | |
| 356 | return pgd; |
| 357 | } |
| 358 | |
| 359 | /* |
| 360 | * Hardware needs alignment to 256 only, but we align to whole page size |
| 361 | * to reduce fragmentation problems due to the buddy principle. |
| 362 | * XXX Provide actual fragmentation statistics in /proc. |
| 363 | * |
| 364 | * Alignments up to the page size are the same for physical and virtual |
| 365 | * addresses of the nocache area. |
| 366 | */ |
| 367 | pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address) |
| 368 | { |
| 369 | unsigned long pte; |
| 370 | struct page *page; |
| 371 | |
| 372 | if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0) |
| 373 | return NULL; |
| 374 | page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT); |
| 375 | if (!pgtable_page_ctor(page)) { |
| 376 | __free_page(page); |
| 377 | return NULL; |
| 378 | } |
| 379 | return page; |
| 380 | } |
| 381 | |
| 382 | void pte_free(struct mm_struct *mm, pgtable_t pte) |
| 383 | { |
| 384 | unsigned long p; |
| 385 | |
| 386 | pgtable_page_dtor(pte); |
| 387 | p = (unsigned long)page_address(pte); /* Cached address (for test) */ |
| 388 | if (p == 0) |
| 389 | BUG(); |
| 390 | p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */ |
| 391 | |
| 392 | /* free non cached virtual address*/ |
| 393 | srmmu_free_nocache(__nocache_va(p), PTE_SIZE); |
| 394 | } |
| 395 | |
| 396 | /* context handling - a dynamically sized pool is used */ |
| 397 | #define NO_CONTEXT -1 |
| 398 | |
| 399 | struct ctx_list { |
| 400 | struct ctx_list *next; |
| 401 | struct ctx_list *prev; |
| 402 | unsigned int ctx_number; |
| 403 | struct mm_struct *ctx_mm; |
| 404 | }; |
| 405 | |
| 406 | static struct ctx_list *ctx_list_pool; |
| 407 | static struct ctx_list ctx_free; |
| 408 | static struct ctx_list ctx_used; |
| 409 | |
| 410 | /* At boot time we determine the number of contexts */ |
| 411 | static int num_contexts; |
| 412 | |
| 413 | static inline void remove_from_ctx_list(struct ctx_list *entry) |
| 414 | { |
| 415 | entry->next->prev = entry->prev; |
| 416 | entry->prev->next = entry->next; |
| 417 | } |
| 418 | |
| 419 | static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry) |
| 420 | { |
| 421 | entry->next = head; |
| 422 | (entry->prev = head->prev)->next = entry; |
| 423 | head->prev = entry; |
| 424 | } |
| 425 | #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry) |
| 426 | #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry) |
| 427 | |
| 428 | |
| 429 | static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm) |
| 430 | { |
| 431 | struct ctx_list *ctxp; |
| 432 | |
| 433 | ctxp = ctx_free.next; |
| 434 | if (ctxp != &ctx_free) { |
| 435 | remove_from_ctx_list(ctxp); |
| 436 | add_to_used_ctxlist(ctxp); |
| 437 | mm->context = ctxp->ctx_number; |
| 438 | ctxp->ctx_mm = mm; |
| 439 | return; |
| 440 | } |
| 441 | ctxp = ctx_used.next; |
| 442 | if (ctxp->ctx_mm == old_mm) |
| 443 | ctxp = ctxp->next; |
| 444 | if (ctxp == &ctx_used) |
| 445 | panic("out of mmu contexts"); |
| 446 | flush_cache_mm(ctxp->ctx_mm); |
| 447 | flush_tlb_mm(ctxp->ctx_mm); |
| 448 | remove_from_ctx_list(ctxp); |
| 449 | add_to_used_ctxlist(ctxp); |
| 450 | ctxp->ctx_mm->context = NO_CONTEXT; |
| 451 | ctxp->ctx_mm = mm; |
| 452 | mm->context = ctxp->ctx_number; |
| 453 | } |
| 454 | |
| 455 | static inline void free_context(int context) |
| 456 | { |
| 457 | struct ctx_list *ctx_old; |
| 458 | |
| 459 | ctx_old = ctx_list_pool + context; |
| 460 | remove_from_ctx_list(ctx_old); |
| 461 | add_to_free_ctxlist(ctx_old); |
| 462 | } |
| 463 | |
| 464 | static void __init sparc_context_init(int numctx) |
| 465 | { |
| 466 | int ctx; |
| 467 | unsigned long size; |
| 468 | |
| 469 | size = numctx * sizeof(struct ctx_list); |
| 470 | ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL); |
| 471 | |
| 472 | for (ctx = 0; ctx < numctx; ctx++) { |
| 473 | struct ctx_list *clist; |
| 474 | |
| 475 | clist = (ctx_list_pool + ctx); |
| 476 | clist->ctx_number = ctx; |
| 477 | clist->ctx_mm = NULL; |
| 478 | } |
| 479 | ctx_free.next = ctx_free.prev = &ctx_free; |
| 480 | ctx_used.next = ctx_used.prev = &ctx_used; |
| 481 | for (ctx = 0; ctx < numctx; ctx++) |
| 482 | add_to_free_ctxlist(ctx_list_pool + ctx); |
| 483 | } |
| 484 | |
| 485 | void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm, |
| 486 | struct task_struct *tsk) |
| 487 | { |
| 488 | unsigned long flags; |
| 489 | |
| 490 | if (mm->context == NO_CONTEXT) { |
| 491 | spin_lock_irqsave(&srmmu_context_spinlock, flags); |
| 492 | alloc_context(old_mm, mm); |
| 493 | spin_unlock_irqrestore(&srmmu_context_spinlock, flags); |
| 494 | srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd); |
| 495 | } |
| 496 | |
| 497 | if (sparc_cpu_model == sparc_leon) |
| 498 | leon_switch_mm(); |
| 499 | |
| 500 | if (is_hypersparc) |
| 501 | hyper_flush_whole_icache(); |
| 502 | |
| 503 | srmmu_set_context(mm->context); |
| 504 | } |
| 505 | |
| 506 | /* Low level IO area allocation on the SRMMU. */ |
| 507 | static inline void srmmu_mapioaddr(unsigned long physaddr, |
| 508 | unsigned long virt_addr, int bus_type) |
| 509 | { |
| 510 | pgd_t *pgdp; |
| 511 | pmd_t *pmdp; |
| 512 | pte_t *ptep; |
| 513 | unsigned long tmp; |
| 514 | |
| 515 | physaddr &= PAGE_MASK; |
| 516 | pgdp = pgd_offset_k(virt_addr); |
| 517 | pmdp = pmd_offset(pgdp, virt_addr); |
| 518 | ptep = pte_offset_kernel(pmdp, virt_addr); |
| 519 | tmp = (physaddr >> 4) | SRMMU_ET_PTE; |
| 520 | |
| 521 | /* I need to test whether this is consistent over all |
| 522 | * sun4m's. The bus_type represents the upper 4 bits of |
| 523 | * 36-bit physical address on the I/O space lines... |
| 524 | */ |
| 525 | tmp |= (bus_type << 28); |
| 526 | tmp |= SRMMU_PRIV; |
| 527 | __flush_page_to_ram(virt_addr); |
| 528 | set_pte(ptep, __pte(tmp)); |
| 529 | } |
| 530 | |
| 531 | void srmmu_mapiorange(unsigned int bus, unsigned long xpa, |
| 532 | unsigned long xva, unsigned int len) |
| 533 | { |
| 534 | while (len != 0) { |
| 535 | len -= PAGE_SIZE; |
| 536 | srmmu_mapioaddr(xpa, xva, bus); |
| 537 | xva += PAGE_SIZE; |
| 538 | xpa += PAGE_SIZE; |
| 539 | } |
| 540 | flush_tlb_all(); |
| 541 | } |
| 542 | |
| 543 | static inline void srmmu_unmapioaddr(unsigned long virt_addr) |
| 544 | { |
| 545 | pgd_t *pgdp; |
| 546 | pmd_t *pmdp; |
| 547 | pte_t *ptep; |
| 548 | |
| 549 | pgdp = pgd_offset_k(virt_addr); |
| 550 | pmdp = pmd_offset(pgdp, virt_addr); |
| 551 | ptep = pte_offset_kernel(pmdp, virt_addr); |
| 552 | |
| 553 | /* No need to flush uncacheable page. */ |
| 554 | __pte_clear(ptep); |
| 555 | } |
| 556 | |
| 557 | void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len) |
| 558 | { |
| 559 | while (len != 0) { |
| 560 | len -= PAGE_SIZE; |
| 561 | srmmu_unmapioaddr(virt_addr); |
| 562 | virt_addr += PAGE_SIZE; |
| 563 | } |
| 564 | flush_tlb_all(); |
| 565 | } |
| 566 | |
| 567 | /* tsunami.S */ |
| 568 | extern void tsunami_flush_cache_all(void); |
| 569 | extern void tsunami_flush_cache_mm(struct mm_struct *mm); |
| 570 | extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); |
| 571 | extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page); |
| 572 | extern void tsunami_flush_page_to_ram(unsigned long page); |
| 573 | extern void tsunami_flush_page_for_dma(unsigned long page); |
| 574 | extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); |
| 575 | extern void tsunami_flush_tlb_all(void); |
| 576 | extern void tsunami_flush_tlb_mm(struct mm_struct *mm); |
| 577 | extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); |
| 578 | extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); |
| 579 | extern void tsunami_setup_blockops(void); |
| 580 | |
| 581 | /* swift.S */ |
| 582 | extern void swift_flush_cache_all(void); |
| 583 | extern void swift_flush_cache_mm(struct mm_struct *mm); |
| 584 | extern void swift_flush_cache_range(struct vm_area_struct *vma, |
| 585 | unsigned long start, unsigned long end); |
| 586 | extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page); |
| 587 | extern void swift_flush_page_to_ram(unsigned long page); |
| 588 | extern void swift_flush_page_for_dma(unsigned long page); |
| 589 | extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); |
| 590 | extern void swift_flush_tlb_all(void); |
| 591 | extern void swift_flush_tlb_mm(struct mm_struct *mm); |
| 592 | extern void swift_flush_tlb_range(struct vm_area_struct *vma, |
| 593 | unsigned long start, unsigned long end); |
| 594 | extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); |
| 595 | |
| 596 | #if 0 /* P3: deadwood to debug precise flushes on Swift. */ |
| 597 | void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) |
| 598 | { |
| 599 | int cctx, ctx1; |
| 600 | |
| 601 | page &= PAGE_MASK; |
| 602 | if ((ctx1 = vma->vm_mm->context) != -1) { |
| 603 | cctx = srmmu_get_context(); |
| 604 | /* Is context # ever different from current context? P3 */ |
| 605 | if (cctx != ctx1) { |
| 606 | printk("flush ctx %02x curr %02x\n", ctx1, cctx); |
| 607 | srmmu_set_context(ctx1); |
| 608 | swift_flush_page(page); |
| 609 | __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : |
| 610 | "r" (page), "i" (ASI_M_FLUSH_PROBE)); |
| 611 | srmmu_set_context(cctx); |
| 612 | } else { |
| 613 | /* Rm. prot. bits from virt. c. */ |
| 614 | /* swift_flush_cache_all(); */ |
| 615 | /* swift_flush_cache_page(vma, page); */ |
| 616 | swift_flush_page(page); |
| 617 | |
| 618 | __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : |
| 619 | "r" (page), "i" (ASI_M_FLUSH_PROBE)); |
| 620 | /* same as above: srmmu_flush_tlb_page() */ |
| 621 | } |
| 622 | } |
| 623 | } |
| 624 | #endif |
| 625 | |
| 626 | /* |
| 627 | * The following are all MBUS based SRMMU modules, and therefore could |
| 628 | * be found in a multiprocessor configuration. On the whole, these |
| 629 | * chips seems to be much more touchy about DVMA and page tables |
| 630 | * with respect to cache coherency. |
| 631 | */ |
| 632 | |
| 633 | /* viking.S */ |
| 634 | extern void viking_flush_cache_all(void); |
| 635 | extern void viking_flush_cache_mm(struct mm_struct *mm); |
| 636 | extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start, |
| 637 | unsigned long end); |
| 638 | extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page); |
| 639 | extern void viking_flush_page_to_ram(unsigned long page); |
| 640 | extern void viking_flush_page_for_dma(unsigned long page); |
| 641 | extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr); |
| 642 | extern void viking_flush_page(unsigned long page); |
| 643 | extern void viking_mxcc_flush_page(unsigned long page); |
| 644 | extern void viking_flush_tlb_all(void); |
| 645 | extern void viking_flush_tlb_mm(struct mm_struct *mm); |
| 646 | extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, |
| 647 | unsigned long end); |
| 648 | extern void viking_flush_tlb_page(struct vm_area_struct *vma, |
| 649 | unsigned long page); |
| 650 | extern void sun4dsmp_flush_tlb_all(void); |
| 651 | extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm); |
| 652 | extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, |
| 653 | unsigned long end); |
| 654 | extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma, |
| 655 | unsigned long page); |
| 656 | |
| 657 | /* hypersparc.S */ |
| 658 | extern void hypersparc_flush_cache_all(void); |
| 659 | extern void hypersparc_flush_cache_mm(struct mm_struct *mm); |
| 660 | extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); |
| 661 | extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page); |
| 662 | extern void hypersparc_flush_page_to_ram(unsigned long page); |
| 663 | extern void hypersparc_flush_page_for_dma(unsigned long page); |
| 664 | extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); |
| 665 | extern void hypersparc_flush_tlb_all(void); |
| 666 | extern void hypersparc_flush_tlb_mm(struct mm_struct *mm); |
| 667 | extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); |
| 668 | extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); |
| 669 | extern void hypersparc_setup_blockops(void); |
| 670 | |
| 671 | /* |
| 672 | * NOTE: All of this startup code assumes the low 16mb (approx.) of |
| 673 | * kernel mappings are done with one single contiguous chunk of |
| 674 | * ram. On small ram machines (classics mainly) we only get |
| 675 | * around 8mb mapped for us. |
| 676 | */ |
| 677 | |
| 678 | static void __init early_pgtable_allocfail(char *type) |
| 679 | { |
| 680 | prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type); |
| 681 | prom_halt(); |
| 682 | } |
| 683 | |
| 684 | static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start, |
| 685 | unsigned long end) |
| 686 | { |
| 687 | pgd_t *pgdp; |
| 688 | pmd_t *pmdp; |
| 689 | pte_t *ptep; |
| 690 | |
| 691 | while (start < end) { |
| 692 | pgdp = pgd_offset_k(start); |
| 693 | if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) { |
| 694 | pmdp = __srmmu_get_nocache( |
| 695 | SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); |
| 696 | if (pmdp == NULL) |
| 697 | early_pgtable_allocfail("pmd"); |
| 698 | memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); |
| 699 | pgd_set(__nocache_fix(pgdp), pmdp); |
| 700 | } |
| 701 | pmdp = pmd_offset(__nocache_fix(pgdp), start); |
| 702 | if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) { |
| 703 | ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE); |
| 704 | if (ptep == NULL) |
| 705 | early_pgtable_allocfail("pte"); |
| 706 | memset(__nocache_fix(ptep), 0, PTE_SIZE); |
| 707 | pmd_set(__nocache_fix(pmdp), ptep); |
| 708 | } |
| 709 | if (start > (0xffffffffUL - PMD_SIZE)) |
| 710 | break; |
| 711 | start = (start + PMD_SIZE) & PMD_MASK; |
| 712 | } |
| 713 | } |
| 714 | |
| 715 | static void __init srmmu_allocate_ptable_skeleton(unsigned long start, |
| 716 | unsigned long end) |
| 717 | { |
| 718 | pgd_t *pgdp; |
| 719 | pmd_t *pmdp; |
| 720 | pte_t *ptep; |
| 721 | |
| 722 | while (start < end) { |
| 723 | pgdp = pgd_offset_k(start); |
| 724 | if (pgd_none(*pgdp)) { |
| 725 | pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); |
| 726 | if (pmdp == NULL) |
| 727 | early_pgtable_allocfail("pmd"); |
| 728 | memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE); |
| 729 | pgd_set(pgdp, pmdp); |
| 730 | } |
| 731 | pmdp = pmd_offset(pgdp, start); |
| 732 | if (srmmu_pmd_none(*pmdp)) { |
| 733 | ptep = __srmmu_get_nocache(PTE_SIZE, |
| 734 | PTE_SIZE); |
| 735 | if (ptep == NULL) |
| 736 | early_pgtable_allocfail("pte"); |
| 737 | memset(ptep, 0, PTE_SIZE); |
| 738 | pmd_set(pmdp, ptep); |
| 739 | } |
| 740 | if (start > (0xffffffffUL - PMD_SIZE)) |
| 741 | break; |
| 742 | start = (start + PMD_SIZE) & PMD_MASK; |
| 743 | } |
| 744 | } |
| 745 | |
| 746 | /* These flush types are not available on all chips... */ |
| 747 | static inline unsigned long srmmu_probe(unsigned long vaddr) |
| 748 | { |
| 749 | unsigned long retval; |
| 750 | |
| 751 | if (sparc_cpu_model != sparc_leon) { |
| 752 | |
| 753 | vaddr &= PAGE_MASK; |
| 754 | __asm__ __volatile__("lda [%1] %2, %0\n\t" : |
| 755 | "=r" (retval) : |
| 756 | "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE)); |
| 757 | } else { |
| 758 | retval = leon_swprobe(vaddr, NULL); |
| 759 | } |
| 760 | return retval; |
| 761 | } |
| 762 | |
| 763 | /* |
| 764 | * This is much cleaner than poking around physical address space |
| 765 | * looking at the prom's page table directly which is what most |
| 766 | * other OS's do. Yuck... this is much better. |
| 767 | */ |
| 768 | static void __init srmmu_inherit_prom_mappings(unsigned long start, |
| 769 | unsigned long end) |
| 770 | { |
| 771 | unsigned long probed; |
| 772 | unsigned long addr; |
| 773 | pgd_t *pgdp; |
| 774 | pmd_t *pmdp; |
| 775 | pte_t *ptep; |
| 776 | int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */ |
| 777 | |
| 778 | while (start <= end) { |
| 779 | if (start == 0) |
| 780 | break; /* probably wrap around */ |
| 781 | if (start == 0xfef00000) |
| 782 | start = KADB_DEBUGGER_BEGVM; |
| 783 | probed = srmmu_probe(start); |
| 784 | if (!probed) { |
| 785 | /* continue probing until we find an entry */ |
| 786 | start += PAGE_SIZE; |
| 787 | continue; |
| 788 | } |
| 789 | |
| 790 | /* A red snapper, see what it really is. */ |
| 791 | what = 0; |
| 792 | addr = start - PAGE_SIZE; |
| 793 | |
| 794 | if (!(start & ~(SRMMU_REAL_PMD_MASK))) { |
| 795 | if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed) |
| 796 | what = 1; |
| 797 | } |
| 798 | |
| 799 | if (!(start & ~(SRMMU_PGDIR_MASK))) { |
| 800 | if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed) |
| 801 | what = 2; |
| 802 | } |
| 803 | |
| 804 | pgdp = pgd_offset_k(start); |
| 805 | if (what == 2) { |
| 806 | *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed); |
| 807 | start += SRMMU_PGDIR_SIZE; |
| 808 | continue; |
| 809 | } |
| 810 | if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) { |
| 811 | pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, |
| 812 | SRMMU_PMD_TABLE_SIZE); |
| 813 | if (pmdp == NULL) |
| 814 | early_pgtable_allocfail("pmd"); |
| 815 | memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); |
| 816 | pgd_set(__nocache_fix(pgdp), pmdp); |
| 817 | } |
| 818 | pmdp = pmd_offset(__nocache_fix(pgdp), start); |
| 819 | if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) { |
| 820 | ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE); |
| 821 | if (ptep == NULL) |
| 822 | early_pgtable_allocfail("pte"); |
| 823 | memset(__nocache_fix(ptep), 0, PTE_SIZE); |
| 824 | pmd_set(__nocache_fix(pmdp), ptep); |
| 825 | } |
| 826 | if (what == 1) { |
| 827 | /* We bend the rule where all 16 PTPs in a pmd_t point |
| 828 | * inside the same PTE page, and we leak a perfectly |
| 829 | * good hardware PTE piece. Alternatives seem worse. |
| 830 | */ |
| 831 | unsigned int x; /* Index of HW PMD in soft cluster */ |
| 832 | unsigned long *val; |
| 833 | x = (start >> PMD_SHIFT) & 15; |
| 834 | val = &pmdp->pmdv[x]; |
| 835 | *(unsigned long *)__nocache_fix(val) = probed; |
| 836 | start += SRMMU_REAL_PMD_SIZE; |
| 837 | continue; |
| 838 | } |
| 839 | ptep = pte_offset_kernel(__nocache_fix(pmdp), start); |
| 840 | *(pte_t *)__nocache_fix(ptep) = __pte(probed); |
| 841 | start += PAGE_SIZE; |
| 842 | } |
| 843 | } |
| 844 | |
| 845 | #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID) |
| 846 | |
| 847 | /* Create a third-level SRMMU 16MB page mapping. */ |
| 848 | static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base) |
| 849 | { |
| 850 | pgd_t *pgdp = pgd_offset_k(vaddr); |
| 851 | unsigned long big_pte; |
| 852 | |
| 853 | big_pte = KERNEL_PTE(phys_base >> 4); |
| 854 | *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte); |
| 855 | } |
| 856 | |
| 857 | /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */ |
| 858 | static unsigned long __init map_spbank(unsigned long vbase, int sp_entry) |
| 859 | { |
| 860 | unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK); |
| 861 | unsigned long vstart = (vbase & SRMMU_PGDIR_MASK); |
| 862 | unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes); |
| 863 | /* Map "low" memory only */ |
| 864 | const unsigned long min_vaddr = PAGE_OFFSET; |
| 865 | const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM; |
| 866 | |
| 867 | if (vstart < min_vaddr || vstart >= max_vaddr) |
| 868 | return vstart; |
| 869 | |
| 870 | if (vend > max_vaddr || vend < min_vaddr) |
| 871 | vend = max_vaddr; |
| 872 | |
| 873 | while (vstart < vend) { |
| 874 | do_large_mapping(vstart, pstart); |
| 875 | vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE; |
| 876 | } |
| 877 | return vstart; |
| 878 | } |
| 879 | |
| 880 | static void __init map_kernel(void) |
| 881 | { |
| 882 | int i; |
| 883 | |
| 884 | if (phys_base > 0) { |
| 885 | do_large_mapping(PAGE_OFFSET, phys_base); |
| 886 | } |
| 887 | |
| 888 | for (i = 0; sp_banks[i].num_bytes != 0; i++) { |
| 889 | map_spbank((unsigned long)__va(sp_banks[i].base_addr), i); |
| 890 | } |
| 891 | } |
| 892 | |
| 893 | void (*poke_srmmu)(void) = NULL; |
| 894 | |
| 895 | void __init srmmu_paging_init(void) |
| 896 | { |
| 897 | int i; |
| 898 | phandle cpunode; |
| 899 | char node_str[128]; |
| 900 | pgd_t *pgd; |
| 901 | pmd_t *pmd; |
| 902 | pte_t *pte; |
| 903 | unsigned long pages_avail; |
| 904 | |
| 905 | init_mm.context = (unsigned long) NO_CONTEXT; |
| 906 | sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */ |
| 907 | |
| 908 | if (sparc_cpu_model == sun4d) |
| 909 | num_contexts = 65536; /* We know it is Viking */ |
| 910 | else { |
| 911 | /* Find the number of contexts on the srmmu. */ |
| 912 | cpunode = prom_getchild(prom_root_node); |
| 913 | num_contexts = 0; |
| 914 | while (cpunode != 0) { |
| 915 | prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); |
| 916 | if (!strcmp(node_str, "cpu")) { |
| 917 | num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8); |
| 918 | break; |
| 919 | } |
| 920 | cpunode = prom_getsibling(cpunode); |
| 921 | } |
| 922 | } |
| 923 | |
| 924 | if (!num_contexts) { |
| 925 | prom_printf("Something wrong, can't find cpu node in paging_init.\n"); |
| 926 | prom_halt(); |
| 927 | } |
| 928 | |
| 929 | pages_avail = 0; |
| 930 | last_valid_pfn = bootmem_init(&pages_avail); |
| 931 | |
| 932 | srmmu_nocache_calcsize(); |
| 933 | srmmu_nocache_init(); |
| 934 | srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE)); |
| 935 | map_kernel(); |
| 936 | |
| 937 | /* ctx table has to be physically aligned to its size */ |
| 938 | srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t)); |
| 939 | srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table); |
| 940 | |
| 941 | for (i = 0; i < num_contexts; i++) |
| 942 | srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir); |
| 943 | |
| 944 | flush_cache_all(); |
| 945 | srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys); |
| 946 | #ifdef CONFIG_SMP |
| 947 | /* Stop from hanging here... */ |
| 948 | local_ops->tlb_all(); |
| 949 | #else |
| 950 | flush_tlb_all(); |
| 951 | #endif |
| 952 | poke_srmmu(); |
| 953 | |
| 954 | srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END); |
| 955 | srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END); |
| 956 | |
| 957 | srmmu_allocate_ptable_skeleton( |
| 958 | __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP); |
| 959 | srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END); |
| 960 | |
| 961 | pgd = pgd_offset_k(PKMAP_BASE); |
| 962 | pmd = pmd_offset(pgd, PKMAP_BASE); |
| 963 | pte = pte_offset_kernel(pmd, PKMAP_BASE); |
| 964 | pkmap_page_table = pte; |
| 965 | |
| 966 | flush_cache_all(); |
| 967 | flush_tlb_all(); |
| 968 | |
| 969 | sparc_context_init(num_contexts); |
| 970 | |
| 971 | kmap_init(); |
| 972 | |
| 973 | { |
| 974 | unsigned long zones_size[MAX_NR_ZONES]; |
| 975 | unsigned long zholes_size[MAX_NR_ZONES]; |
| 976 | unsigned long npages; |
| 977 | int znum; |
| 978 | |
| 979 | for (znum = 0; znum < MAX_NR_ZONES; znum++) |
| 980 | zones_size[znum] = zholes_size[znum] = 0; |
| 981 | |
| 982 | npages = max_low_pfn - pfn_base; |
| 983 | |
| 984 | zones_size[ZONE_DMA] = npages; |
| 985 | zholes_size[ZONE_DMA] = npages - pages_avail; |
| 986 | |
| 987 | npages = highend_pfn - max_low_pfn; |
| 988 | zones_size[ZONE_HIGHMEM] = npages; |
| 989 | zholes_size[ZONE_HIGHMEM] = npages - calc_highpages(); |
| 990 | |
| 991 | free_area_init_node(0, zones_size, pfn_base, zholes_size); |
| 992 | } |
| 993 | } |
| 994 | |
| 995 | void mmu_info(struct seq_file *m) |
| 996 | { |
| 997 | seq_printf(m, |
| 998 | "MMU type\t: %s\n" |
| 999 | "contexts\t: %d\n" |
| 1000 | "nocache total\t: %ld\n" |
| 1001 | "nocache used\t: %d\n", |
| 1002 | srmmu_name, |
| 1003 | num_contexts, |
| 1004 | srmmu_nocache_size, |
| 1005 | srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); |
| 1006 | } |
| 1007 | |
| 1008 | int init_new_context(struct task_struct *tsk, struct mm_struct *mm) |
| 1009 | { |
| 1010 | mm->context = NO_CONTEXT; |
| 1011 | return 0; |
| 1012 | } |
| 1013 | |
| 1014 | void destroy_context(struct mm_struct *mm) |
| 1015 | { |
| 1016 | unsigned long flags; |
| 1017 | |
| 1018 | if (mm->context != NO_CONTEXT) { |
| 1019 | flush_cache_mm(mm); |
| 1020 | srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir); |
| 1021 | flush_tlb_mm(mm); |
| 1022 | spin_lock_irqsave(&srmmu_context_spinlock, flags); |
| 1023 | free_context(mm->context); |
| 1024 | spin_unlock_irqrestore(&srmmu_context_spinlock, flags); |
| 1025 | mm->context = NO_CONTEXT; |
| 1026 | } |
| 1027 | } |
| 1028 | |
| 1029 | /* Init various srmmu chip types. */ |
| 1030 | static void __init srmmu_is_bad(void) |
| 1031 | { |
| 1032 | prom_printf("Could not determine SRMMU chip type.\n"); |
| 1033 | prom_halt(); |
| 1034 | } |
| 1035 | |
| 1036 | static void __init init_vac_layout(void) |
| 1037 | { |
| 1038 | phandle nd; |
| 1039 | int cache_lines; |
| 1040 | char node_str[128]; |
| 1041 | #ifdef CONFIG_SMP |
| 1042 | int cpu = 0; |
| 1043 | unsigned long max_size = 0; |
| 1044 | unsigned long min_line_size = 0x10000000; |
| 1045 | #endif |
| 1046 | |
| 1047 | nd = prom_getchild(prom_root_node); |
| 1048 | while ((nd = prom_getsibling(nd)) != 0) { |
| 1049 | prom_getstring(nd, "device_type", node_str, sizeof(node_str)); |
| 1050 | if (!strcmp(node_str, "cpu")) { |
| 1051 | vac_line_size = prom_getint(nd, "cache-line-size"); |
| 1052 | if (vac_line_size == -1) { |
| 1053 | prom_printf("can't determine cache-line-size, halting.\n"); |
| 1054 | prom_halt(); |
| 1055 | } |
| 1056 | cache_lines = prom_getint(nd, "cache-nlines"); |
| 1057 | if (cache_lines == -1) { |
| 1058 | prom_printf("can't determine cache-nlines, halting.\n"); |
| 1059 | prom_halt(); |
| 1060 | } |
| 1061 | |
| 1062 | vac_cache_size = cache_lines * vac_line_size; |
| 1063 | #ifdef CONFIG_SMP |
| 1064 | if (vac_cache_size > max_size) |
| 1065 | max_size = vac_cache_size; |
| 1066 | if (vac_line_size < min_line_size) |
| 1067 | min_line_size = vac_line_size; |
| 1068 | //FIXME: cpus not contiguous!! |
| 1069 | cpu++; |
| 1070 | if (cpu >= nr_cpu_ids || !cpu_online(cpu)) |
| 1071 | break; |
| 1072 | #else |
| 1073 | break; |
| 1074 | #endif |
| 1075 | } |
| 1076 | } |
| 1077 | if (nd == 0) { |
| 1078 | prom_printf("No CPU nodes found, halting.\n"); |
| 1079 | prom_halt(); |
| 1080 | } |
| 1081 | #ifdef CONFIG_SMP |
| 1082 | vac_cache_size = max_size; |
| 1083 | vac_line_size = min_line_size; |
| 1084 | #endif |
| 1085 | printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n", |
| 1086 | (int)vac_cache_size, (int)vac_line_size); |
| 1087 | } |
| 1088 | |
| 1089 | static void poke_hypersparc(void) |
| 1090 | { |
| 1091 | volatile unsigned long clear; |
| 1092 | unsigned long mreg = srmmu_get_mmureg(); |
| 1093 | |
| 1094 | hyper_flush_unconditional_combined(); |
| 1095 | |
| 1096 | mreg &= ~(HYPERSPARC_CWENABLE); |
| 1097 | mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE); |
| 1098 | mreg |= (HYPERSPARC_CMODE); |
| 1099 | |
| 1100 | srmmu_set_mmureg(mreg); |
| 1101 | |
| 1102 | #if 0 /* XXX I think this is bad news... -DaveM */ |
| 1103 | hyper_clear_all_tags(); |
| 1104 | #endif |
| 1105 | |
| 1106 | put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE); |
| 1107 | hyper_flush_whole_icache(); |
| 1108 | clear = srmmu_get_faddr(); |
| 1109 | clear = srmmu_get_fstatus(); |
| 1110 | } |
| 1111 | |
| 1112 | static const struct sparc32_cachetlb_ops hypersparc_ops = { |
| 1113 | .cache_all = hypersparc_flush_cache_all, |
| 1114 | .cache_mm = hypersparc_flush_cache_mm, |
| 1115 | .cache_page = hypersparc_flush_cache_page, |
| 1116 | .cache_range = hypersparc_flush_cache_range, |
| 1117 | .tlb_all = hypersparc_flush_tlb_all, |
| 1118 | .tlb_mm = hypersparc_flush_tlb_mm, |
| 1119 | .tlb_page = hypersparc_flush_tlb_page, |
| 1120 | .tlb_range = hypersparc_flush_tlb_range, |
| 1121 | .page_to_ram = hypersparc_flush_page_to_ram, |
| 1122 | .sig_insns = hypersparc_flush_sig_insns, |
| 1123 | .page_for_dma = hypersparc_flush_page_for_dma, |
| 1124 | }; |
| 1125 | |
| 1126 | static void __init init_hypersparc(void) |
| 1127 | { |
| 1128 | srmmu_name = "ROSS HyperSparc"; |
| 1129 | srmmu_modtype = HyperSparc; |
| 1130 | |
| 1131 | init_vac_layout(); |
| 1132 | |
| 1133 | is_hypersparc = 1; |
| 1134 | sparc32_cachetlb_ops = &hypersparc_ops; |
| 1135 | |
| 1136 | poke_srmmu = poke_hypersparc; |
| 1137 | |
| 1138 | hypersparc_setup_blockops(); |
| 1139 | } |
| 1140 | |
| 1141 | static void poke_swift(void) |
| 1142 | { |
| 1143 | unsigned long mreg; |
| 1144 | |
| 1145 | /* Clear any crap from the cache or else... */ |
| 1146 | swift_flush_cache_all(); |
| 1147 | |
| 1148 | /* Enable I & D caches */ |
| 1149 | mreg = srmmu_get_mmureg(); |
| 1150 | mreg |= (SWIFT_IE | SWIFT_DE); |
| 1151 | /* |
| 1152 | * The Swift branch folding logic is completely broken. At |
| 1153 | * trap time, if things are just right, if can mistakenly |
| 1154 | * think that a trap is coming from kernel mode when in fact |
| 1155 | * it is coming from user mode (it mis-executes the branch in |
| 1156 | * the trap code). So you see things like crashme completely |
| 1157 | * hosing your machine which is completely unacceptable. Turn |
| 1158 | * this shit off... nice job Fujitsu. |
| 1159 | */ |
| 1160 | mreg &= ~(SWIFT_BF); |
| 1161 | srmmu_set_mmureg(mreg); |
| 1162 | } |
| 1163 | |
| 1164 | static const struct sparc32_cachetlb_ops swift_ops = { |
| 1165 | .cache_all = swift_flush_cache_all, |
| 1166 | .cache_mm = swift_flush_cache_mm, |
| 1167 | .cache_page = swift_flush_cache_page, |
| 1168 | .cache_range = swift_flush_cache_range, |
| 1169 | .tlb_all = swift_flush_tlb_all, |
| 1170 | .tlb_mm = swift_flush_tlb_mm, |
| 1171 | .tlb_page = swift_flush_tlb_page, |
| 1172 | .tlb_range = swift_flush_tlb_range, |
| 1173 | .page_to_ram = swift_flush_page_to_ram, |
| 1174 | .sig_insns = swift_flush_sig_insns, |
| 1175 | .page_for_dma = swift_flush_page_for_dma, |
| 1176 | }; |
| 1177 | |
| 1178 | #define SWIFT_MASKID_ADDR 0x10003018 |
| 1179 | static void __init init_swift(void) |
| 1180 | { |
| 1181 | unsigned long swift_rev; |
| 1182 | |
| 1183 | __asm__ __volatile__("lda [%1] %2, %0\n\t" |
| 1184 | "srl %0, 0x18, %0\n\t" : |
| 1185 | "=r" (swift_rev) : |
| 1186 | "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS)); |
| 1187 | srmmu_name = "Fujitsu Swift"; |
| 1188 | switch (swift_rev) { |
| 1189 | case 0x11: |
| 1190 | case 0x20: |
| 1191 | case 0x23: |
| 1192 | case 0x30: |
| 1193 | srmmu_modtype = Swift_lots_o_bugs; |
| 1194 | hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN); |
| 1195 | /* |
| 1196 | * Gee george, I wonder why Sun is so hush hush about |
| 1197 | * this hardware bug... really braindamage stuff going |
| 1198 | * on here. However I think we can find a way to avoid |
| 1199 | * all of the workaround overhead under Linux. Basically, |
| 1200 | * any page fault can cause kernel pages to become user |
| 1201 | * accessible (the mmu gets confused and clears some of |
| 1202 | * the ACC bits in kernel ptes). Aha, sounds pretty |
| 1203 | * horrible eh? But wait, after extensive testing it appears |
| 1204 | * that if you use pgd_t level large kernel pte's (like the |
| 1205 | * 4MB pages on the Pentium) the bug does not get tripped |
| 1206 | * at all. This avoids almost all of the major overhead. |
| 1207 | * Welcome to a world where your vendor tells you to, |
| 1208 | * "apply this kernel patch" instead of "sorry for the |
| 1209 | * broken hardware, send it back and we'll give you |
| 1210 | * properly functioning parts" |
| 1211 | */ |
| 1212 | break; |
| 1213 | case 0x25: |
| 1214 | case 0x31: |
| 1215 | srmmu_modtype = Swift_bad_c; |
| 1216 | hwbug_bitmask |= HWBUG_KERN_CBITBROKEN; |
| 1217 | /* |
| 1218 | * You see Sun allude to this hardware bug but never |
| 1219 | * admit things directly, they'll say things like, |
| 1220 | * "the Swift chip cache problems" or similar. |
| 1221 | */ |
| 1222 | break; |
| 1223 | default: |
| 1224 | srmmu_modtype = Swift_ok; |
| 1225 | break; |
| 1226 | } |
| 1227 | |
| 1228 | sparc32_cachetlb_ops = &swift_ops; |
| 1229 | flush_page_for_dma_global = 0; |
| 1230 | |
| 1231 | /* |
| 1232 | * Are you now convinced that the Swift is one of the |
| 1233 | * biggest VLSI abortions of all time? Bravo Fujitsu! |
| 1234 | * Fujitsu, the !#?!%$'d up processor people. I bet if |
| 1235 | * you examined the microcode of the Swift you'd find |
| 1236 | * XXX's all over the place. |
| 1237 | */ |
| 1238 | poke_srmmu = poke_swift; |
| 1239 | } |
| 1240 | |
| 1241 | static void turbosparc_flush_cache_all(void) |
| 1242 | { |
| 1243 | flush_user_windows(); |
| 1244 | turbosparc_idflash_clear(); |
| 1245 | } |
| 1246 | |
| 1247 | static void turbosparc_flush_cache_mm(struct mm_struct *mm) |
| 1248 | { |
| 1249 | FLUSH_BEGIN(mm) |
| 1250 | flush_user_windows(); |
| 1251 | turbosparc_idflash_clear(); |
| 1252 | FLUSH_END |
| 1253 | } |
| 1254 | |
| 1255 | static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) |
| 1256 | { |
| 1257 | FLUSH_BEGIN(vma->vm_mm) |
| 1258 | flush_user_windows(); |
| 1259 | turbosparc_idflash_clear(); |
| 1260 | FLUSH_END |
| 1261 | } |
| 1262 | |
| 1263 | static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page) |
| 1264 | { |
| 1265 | FLUSH_BEGIN(vma->vm_mm) |
| 1266 | flush_user_windows(); |
| 1267 | if (vma->vm_flags & VM_EXEC) |
| 1268 | turbosparc_flush_icache(); |
| 1269 | turbosparc_flush_dcache(); |
| 1270 | FLUSH_END |
| 1271 | } |
| 1272 | |
| 1273 | /* TurboSparc is copy-back, if we turn it on, but this does not work. */ |
| 1274 | static void turbosparc_flush_page_to_ram(unsigned long page) |
| 1275 | { |
| 1276 | #ifdef TURBOSPARC_WRITEBACK |
| 1277 | volatile unsigned long clear; |
| 1278 | |
| 1279 | if (srmmu_probe(page)) |
| 1280 | turbosparc_flush_page_cache(page); |
| 1281 | clear = srmmu_get_fstatus(); |
| 1282 | #endif |
| 1283 | } |
| 1284 | |
| 1285 | static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) |
| 1286 | { |
| 1287 | } |
| 1288 | |
| 1289 | static void turbosparc_flush_page_for_dma(unsigned long page) |
| 1290 | { |
| 1291 | turbosparc_flush_dcache(); |
| 1292 | } |
| 1293 | |
| 1294 | static void turbosparc_flush_tlb_all(void) |
| 1295 | { |
| 1296 | srmmu_flush_whole_tlb(); |
| 1297 | } |
| 1298 | |
| 1299 | static void turbosparc_flush_tlb_mm(struct mm_struct *mm) |
| 1300 | { |
| 1301 | FLUSH_BEGIN(mm) |
| 1302 | srmmu_flush_whole_tlb(); |
| 1303 | FLUSH_END |
| 1304 | } |
| 1305 | |
| 1306 | static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) |
| 1307 | { |
| 1308 | FLUSH_BEGIN(vma->vm_mm) |
| 1309 | srmmu_flush_whole_tlb(); |
| 1310 | FLUSH_END |
| 1311 | } |
| 1312 | |
| 1313 | static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) |
| 1314 | { |
| 1315 | FLUSH_BEGIN(vma->vm_mm) |
| 1316 | srmmu_flush_whole_tlb(); |
| 1317 | FLUSH_END |
| 1318 | } |
| 1319 | |
| 1320 | |
| 1321 | static void poke_turbosparc(void) |
| 1322 | { |
| 1323 | unsigned long mreg = srmmu_get_mmureg(); |
| 1324 | unsigned long ccreg; |
| 1325 | |
| 1326 | /* Clear any crap from the cache or else... */ |
| 1327 | turbosparc_flush_cache_all(); |
| 1328 | /* Temporarily disable I & D caches */ |
| 1329 | mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); |
| 1330 | mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */ |
| 1331 | srmmu_set_mmureg(mreg); |
| 1332 | |
| 1333 | ccreg = turbosparc_get_ccreg(); |
| 1334 | |
| 1335 | #ifdef TURBOSPARC_WRITEBACK |
| 1336 | ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */ |
| 1337 | ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE); |
| 1338 | /* Write-back D-cache, emulate VLSI |
| 1339 | * abortion number three, not number one */ |
| 1340 | #else |
| 1341 | /* For now let's play safe, optimize later */ |
| 1342 | ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE); |
| 1343 | /* Do DVMA snooping in Dcache, Write-thru D-cache */ |
| 1344 | ccreg &= ~(TURBOSPARC_uS2); |
| 1345 | /* Emulate VLSI abortion number three, not number one */ |
| 1346 | #endif |
| 1347 | |
| 1348 | switch (ccreg & 7) { |
| 1349 | case 0: /* No SE cache */ |
| 1350 | case 7: /* Test mode */ |
| 1351 | break; |
| 1352 | default: |
| 1353 | ccreg |= (TURBOSPARC_SCENABLE); |
| 1354 | } |
| 1355 | turbosparc_set_ccreg(ccreg); |
| 1356 | |
| 1357 | mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */ |
| 1358 | mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */ |
| 1359 | srmmu_set_mmureg(mreg); |
| 1360 | } |
| 1361 | |
| 1362 | static const struct sparc32_cachetlb_ops turbosparc_ops = { |
| 1363 | .cache_all = turbosparc_flush_cache_all, |
| 1364 | .cache_mm = turbosparc_flush_cache_mm, |
| 1365 | .cache_page = turbosparc_flush_cache_page, |
| 1366 | .cache_range = turbosparc_flush_cache_range, |
| 1367 | .tlb_all = turbosparc_flush_tlb_all, |
| 1368 | .tlb_mm = turbosparc_flush_tlb_mm, |
| 1369 | .tlb_page = turbosparc_flush_tlb_page, |
| 1370 | .tlb_range = turbosparc_flush_tlb_range, |
| 1371 | .page_to_ram = turbosparc_flush_page_to_ram, |
| 1372 | .sig_insns = turbosparc_flush_sig_insns, |
| 1373 | .page_for_dma = turbosparc_flush_page_for_dma, |
| 1374 | }; |
| 1375 | |
| 1376 | static void __init init_turbosparc(void) |
| 1377 | { |
| 1378 | srmmu_name = "Fujitsu TurboSparc"; |
| 1379 | srmmu_modtype = TurboSparc; |
| 1380 | sparc32_cachetlb_ops = &turbosparc_ops; |
| 1381 | poke_srmmu = poke_turbosparc; |
| 1382 | } |
| 1383 | |
| 1384 | static void poke_tsunami(void) |
| 1385 | { |
| 1386 | unsigned long mreg = srmmu_get_mmureg(); |
| 1387 | |
| 1388 | tsunami_flush_icache(); |
| 1389 | tsunami_flush_dcache(); |
| 1390 | mreg &= ~TSUNAMI_ITD; |
| 1391 | mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB); |
| 1392 | srmmu_set_mmureg(mreg); |
| 1393 | } |
| 1394 | |
| 1395 | static const struct sparc32_cachetlb_ops tsunami_ops = { |
| 1396 | .cache_all = tsunami_flush_cache_all, |
| 1397 | .cache_mm = tsunami_flush_cache_mm, |
| 1398 | .cache_page = tsunami_flush_cache_page, |
| 1399 | .cache_range = tsunami_flush_cache_range, |
| 1400 | .tlb_all = tsunami_flush_tlb_all, |
| 1401 | .tlb_mm = tsunami_flush_tlb_mm, |
| 1402 | .tlb_page = tsunami_flush_tlb_page, |
| 1403 | .tlb_range = tsunami_flush_tlb_range, |
| 1404 | .page_to_ram = tsunami_flush_page_to_ram, |
| 1405 | .sig_insns = tsunami_flush_sig_insns, |
| 1406 | .page_for_dma = tsunami_flush_page_for_dma, |
| 1407 | }; |
| 1408 | |
| 1409 | static void __init init_tsunami(void) |
| 1410 | { |
| 1411 | /* |
| 1412 | * Tsunami's pretty sane, Sun and TI actually got it |
| 1413 | * somewhat right this time. Fujitsu should have |
| 1414 | * taken some lessons from them. |
| 1415 | */ |
| 1416 | |
| 1417 | srmmu_name = "TI Tsunami"; |
| 1418 | srmmu_modtype = Tsunami; |
| 1419 | sparc32_cachetlb_ops = &tsunami_ops; |
| 1420 | poke_srmmu = poke_tsunami; |
| 1421 | |
| 1422 | tsunami_setup_blockops(); |
| 1423 | } |
| 1424 | |
| 1425 | static void poke_viking(void) |
| 1426 | { |
| 1427 | unsigned long mreg = srmmu_get_mmureg(); |
| 1428 | static int smp_catch; |
| 1429 | |
| 1430 | if (viking_mxcc_present) { |
| 1431 | unsigned long mxcc_control = mxcc_get_creg(); |
| 1432 | |
| 1433 | mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE); |
| 1434 | mxcc_control &= ~(MXCC_CTL_RRC); |
| 1435 | mxcc_set_creg(mxcc_control); |
| 1436 | |
| 1437 | /* |
| 1438 | * We don't need memory parity checks. |
| 1439 | * XXX This is a mess, have to dig out later. ecd. |
| 1440 | viking_mxcc_turn_off_parity(&mreg, &mxcc_control); |
| 1441 | */ |
| 1442 | |
| 1443 | /* We do cache ptables on MXCC. */ |
| 1444 | mreg |= VIKING_TCENABLE; |
| 1445 | } else { |
| 1446 | unsigned long bpreg; |
| 1447 | |
| 1448 | mreg &= ~(VIKING_TCENABLE); |
| 1449 | if (smp_catch++) { |
| 1450 | /* Must disable mixed-cmd mode here for other cpu's. */ |
| 1451 | bpreg = viking_get_bpreg(); |
| 1452 | bpreg &= ~(VIKING_ACTION_MIX); |
| 1453 | viking_set_bpreg(bpreg); |
| 1454 | |
| 1455 | /* Just in case PROM does something funny. */ |
| 1456 | msi_set_sync(); |
| 1457 | } |
| 1458 | } |
| 1459 | |
| 1460 | mreg |= VIKING_SPENABLE; |
| 1461 | mreg |= (VIKING_ICENABLE | VIKING_DCENABLE); |
| 1462 | mreg |= VIKING_SBENABLE; |
| 1463 | mreg &= ~(VIKING_ACENABLE); |
| 1464 | srmmu_set_mmureg(mreg); |
| 1465 | } |
| 1466 | |
| 1467 | static struct sparc32_cachetlb_ops viking_ops __ro_after_init = { |
| 1468 | .cache_all = viking_flush_cache_all, |
| 1469 | .cache_mm = viking_flush_cache_mm, |
| 1470 | .cache_page = viking_flush_cache_page, |
| 1471 | .cache_range = viking_flush_cache_range, |
| 1472 | .tlb_all = viking_flush_tlb_all, |
| 1473 | .tlb_mm = viking_flush_tlb_mm, |
| 1474 | .tlb_page = viking_flush_tlb_page, |
| 1475 | .tlb_range = viking_flush_tlb_range, |
| 1476 | .page_to_ram = viking_flush_page_to_ram, |
| 1477 | .sig_insns = viking_flush_sig_insns, |
| 1478 | .page_for_dma = viking_flush_page_for_dma, |
| 1479 | }; |
| 1480 | |
| 1481 | #ifdef CONFIG_SMP |
| 1482 | /* On sun4d the cpu broadcasts local TLB flushes, so we can just |
| 1483 | * perform the local TLB flush and all the other cpus will see it. |
| 1484 | * But, unfortunately, there is a bug in the sun4d XBUS backplane |
| 1485 | * that requires that we add some synchronization to these flushes. |
| 1486 | * |
| 1487 | * The bug is that the fifo which keeps track of all the pending TLB |
| 1488 | * broadcasts in the system is an entry or two too small, so if we |
| 1489 | * have too many going at once we'll overflow that fifo and lose a TLB |
| 1490 | * flush resulting in corruption. |
| 1491 | * |
| 1492 | * Our workaround is to take a global spinlock around the TLB flushes, |
| 1493 | * which guarentees we won't ever have too many pending. It's a big |
| 1494 | * hammer, but a semaphore like system to make sure we only have N TLB |
| 1495 | * flushes going at once will require SMP locking anyways so there's |
| 1496 | * no real value in trying any harder than this. |
| 1497 | */ |
| 1498 | static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = { |
| 1499 | .cache_all = viking_flush_cache_all, |
| 1500 | .cache_mm = viking_flush_cache_mm, |
| 1501 | .cache_page = viking_flush_cache_page, |
| 1502 | .cache_range = viking_flush_cache_range, |
| 1503 | .tlb_all = sun4dsmp_flush_tlb_all, |
| 1504 | .tlb_mm = sun4dsmp_flush_tlb_mm, |
| 1505 | .tlb_page = sun4dsmp_flush_tlb_page, |
| 1506 | .tlb_range = sun4dsmp_flush_tlb_range, |
| 1507 | .page_to_ram = viking_flush_page_to_ram, |
| 1508 | .sig_insns = viking_flush_sig_insns, |
| 1509 | .page_for_dma = viking_flush_page_for_dma, |
| 1510 | }; |
| 1511 | #endif |
| 1512 | |
| 1513 | static void __init init_viking(void) |
| 1514 | { |
| 1515 | unsigned long mreg = srmmu_get_mmureg(); |
| 1516 | |
| 1517 | /* Ahhh, the viking. SRMMU VLSI abortion number two... */ |
| 1518 | if (mreg & VIKING_MMODE) { |
| 1519 | srmmu_name = "TI Viking"; |
| 1520 | viking_mxcc_present = 0; |
| 1521 | msi_set_sync(); |
| 1522 | |
| 1523 | /* |
| 1524 | * We need this to make sure old viking takes no hits |
| 1525 | * on it's cache for dma snoops to workaround the |
| 1526 | * "load from non-cacheable memory" interrupt bug. |
| 1527 | * This is only necessary because of the new way in |
| 1528 | * which we use the IOMMU. |
| 1529 | */ |
| 1530 | viking_ops.page_for_dma = viking_flush_page; |
| 1531 | #ifdef CONFIG_SMP |
| 1532 | viking_sun4d_smp_ops.page_for_dma = viking_flush_page; |
| 1533 | #endif |
| 1534 | flush_page_for_dma_global = 0; |
| 1535 | } else { |
| 1536 | srmmu_name = "TI Viking/MXCC"; |
| 1537 | viking_mxcc_present = 1; |
| 1538 | srmmu_cache_pagetables = 1; |
| 1539 | } |
| 1540 | |
| 1541 | sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) |
| 1542 | &viking_ops; |
| 1543 | #ifdef CONFIG_SMP |
| 1544 | if (sparc_cpu_model == sun4d) |
| 1545 | sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) |
| 1546 | &viking_sun4d_smp_ops; |
| 1547 | #endif |
| 1548 | |
| 1549 | poke_srmmu = poke_viking; |
| 1550 | } |
| 1551 | |
| 1552 | /* Probe for the srmmu chip version. */ |
| 1553 | static void __init get_srmmu_type(void) |
| 1554 | { |
| 1555 | unsigned long mreg, psr; |
| 1556 | unsigned long mod_typ, mod_rev, psr_typ, psr_vers; |
| 1557 | |
| 1558 | srmmu_modtype = SRMMU_INVAL_MOD; |
| 1559 | hwbug_bitmask = 0; |
| 1560 | |
| 1561 | mreg = srmmu_get_mmureg(); psr = get_psr(); |
| 1562 | mod_typ = (mreg & 0xf0000000) >> 28; |
| 1563 | mod_rev = (mreg & 0x0f000000) >> 24; |
| 1564 | psr_typ = (psr >> 28) & 0xf; |
| 1565 | psr_vers = (psr >> 24) & 0xf; |
| 1566 | |
| 1567 | /* First, check for sparc-leon. */ |
| 1568 | if (sparc_cpu_model == sparc_leon) { |
| 1569 | init_leon(); |
| 1570 | return; |
| 1571 | } |
| 1572 | |
| 1573 | /* Second, check for HyperSparc or Cypress. */ |
| 1574 | if (mod_typ == 1) { |
| 1575 | switch (mod_rev) { |
| 1576 | case 7: |
| 1577 | /* UP or MP Hypersparc */ |
| 1578 | init_hypersparc(); |
| 1579 | break; |
| 1580 | case 0: |
| 1581 | case 2: |
| 1582 | case 10: |
| 1583 | case 11: |
| 1584 | case 12: |
| 1585 | case 13: |
| 1586 | case 14: |
| 1587 | case 15: |
| 1588 | default: |
| 1589 | prom_printf("Sparc-Linux Cypress support does not longer exit.\n"); |
| 1590 | prom_halt(); |
| 1591 | break; |
| 1592 | } |
| 1593 | return; |
| 1594 | } |
| 1595 | |
| 1596 | /* Now Fujitsu TurboSparc. It might happen that it is |
| 1597 | * in Swift emulation mode, so we will check later... |
| 1598 | */ |
| 1599 | if (psr_typ == 0 && psr_vers == 5) { |
| 1600 | init_turbosparc(); |
| 1601 | return; |
| 1602 | } |
| 1603 | |
| 1604 | /* Next check for Fujitsu Swift. */ |
| 1605 | if (psr_typ == 0 && psr_vers == 4) { |
| 1606 | phandle cpunode; |
| 1607 | char node_str[128]; |
| 1608 | |
| 1609 | /* Look if it is not a TurboSparc emulating Swift... */ |
| 1610 | cpunode = prom_getchild(prom_root_node); |
| 1611 | while ((cpunode = prom_getsibling(cpunode)) != 0) { |
| 1612 | prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); |
| 1613 | if (!strcmp(node_str, "cpu")) { |
| 1614 | if (!prom_getintdefault(cpunode, "psr-implementation", 1) && |
| 1615 | prom_getintdefault(cpunode, "psr-version", 1) == 5) { |
| 1616 | init_turbosparc(); |
| 1617 | return; |
| 1618 | } |
| 1619 | break; |
| 1620 | } |
| 1621 | } |
| 1622 | |
| 1623 | init_swift(); |
| 1624 | return; |
| 1625 | } |
| 1626 | |
| 1627 | /* Now the Viking family of srmmu. */ |
| 1628 | if (psr_typ == 4 && |
| 1629 | ((psr_vers == 0) || |
| 1630 | ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) { |
| 1631 | init_viking(); |
| 1632 | return; |
| 1633 | } |
| 1634 | |
| 1635 | /* Finally the Tsunami. */ |
| 1636 | if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) { |
| 1637 | init_tsunami(); |
| 1638 | return; |
| 1639 | } |
| 1640 | |
| 1641 | /* Oh well */ |
| 1642 | srmmu_is_bad(); |
| 1643 | } |
| 1644 | |
| 1645 | #ifdef CONFIG_SMP |
| 1646 | /* Local cross-calls. */ |
| 1647 | static void smp_flush_page_for_dma(unsigned long page) |
| 1648 | { |
| 1649 | xc1((smpfunc_t) local_ops->page_for_dma, page); |
| 1650 | local_ops->page_for_dma(page); |
| 1651 | } |
| 1652 | |
| 1653 | static void smp_flush_cache_all(void) |
| 1654 | { |
| 1655 | xc0((smpfunc_t) local_ops->cache_all); |
| 1656 | local_ops->cache_all(); |
| 1657 | } |
| 1658 | |
| 1659 | static void smp_flush_tlb_all(void) |
| 1660 | { |
| 1661 | xc0((smpfunc_t) local_ops->tlb_all); |
| 1662 | local_ops->tlb_all(); |
| 1663 | } |
| 1664 | |
| 1665 | static void smp_flush_cache_mm(struct mm_struct *mm) |
| 1666 | { |
| 1667 | if (mm->context != NO_CONTEXT) { |
| 1668 | cpumask_t cpu_mask; |
| 1669 | cpumask_copy(&cpu_mask, mm_cpumask(mm)); |
| 1670 | cpumask_clear_cpu(smp_processor_id(), &cpu_mask); |
| 1671 | if (!cpumask_empty(&cpu_mask)) |
| 1672 | xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm); |
| 1673 | local_ops->cache_mm(mm); |
| 1674 | } |
| 1675 | } |
| 1676 | |
| 1677 | static void smp_flush_tlb_mm(struct mm_struct *mm) |
| 1678 | { |
| 1679 | if (mm->context != NO_CONTEXT) { |
| 1680 | cpumask_t cpu_mask; |
| 1681 | cpumask_copy(&cpu_mask, mm_cpumask(mm)); |
| 1682 | cpumask_clear_cpu(smp_processor_id(), &cpu_mask); |
| 1683 | if (!cpumask_empty(&cpu_mask)) { |
| 1684 | xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm); |
| 1685 | if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm) |
| 1686 | cpumask_copy(mm_cpumask(mm), |
| 1687 | cpumask_of(smp_processor_id())); |
| 1688 | } |
| 1689 | local_ops->tlb_mm(mm); |
| 1690 | } |
| 1691 | } |
| 1692 | |
| 1693 | static void smp_flush_cache_range(struct vm_area_struct *vma, |
| 1694 | unsigned long start, |
| 1695 | unsigned long end) |
| 1696 | { |
| 1697 | struct mm_struct *mm = vma->vm_mm; |
| 1698 | |
| 1699 | if (mm->context != NO_CONTEXT) { |
| 1700 | cpumask_t cpu_mask; |
| 1701 | cpumask_copy(&cpu_mask, mm_cpumask(mm)); |
| 1702 | cpumask_clear_cpu(smp_processor_id(), &cpu_mask); |
| 1703 | if (!cpumask_empty(&cpu_mask)) |
| 1704 | xc3((smpfunc_t) local_ops->cache_range, |
| 1705 | (unsigned long) vma, start, end); |
| 1706 | local_ops->cache_range(vma, start, end); |
| 1707 | } |
| 1708 | } |
| 1709 | |
| 1710 | static void smp_flush_tlb_range(struct vm_area_struct *vma, |
| 1711 | unsigned long start, |
| 1712 | unsigned long end) |
| 1713 | { |
| 1714 | struct mm_struct *mm = vma->vm_mm; |
| 1715 | |
| 1716 | if (mm->context != NO_CONTEXT) { |
| 1717 | cpumask_t cpu_mask; |
| 1718 | cpumask_copy(&cpu_mask, mm_cpumask(mm)); |
| 1719 | cpumask_clear_cpu(smp_processor_id(), &cpu_mask); |
| 1720 | if (!cpumask_empty(&cpu_mask)) |
| 1721 | xc3((smpfunc_t) local_ops->tlb_range, |
| 1722 | (unsigned long) vma, start, end); |
| 1723 | local_ops->tlb_range(vma, start, end); |
| 1724 | } |
| 1725 | } |
| 1726 | |
| 1727 | static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page) |
| 1728 | { |
| 1729 | struct mm_struct *mm = vma->vm_mm; |
| 1730 | |
| 1731 | if (mm->context != NO_CONTEXT) { |
| 1732 | cpumask_t cpu_mask; |
| 1733 | cpumask_copy(&cpu_mask, mm_cpumask(mm)); |
| 1734 | cpumask_clear_cpu(smp_processor_id(), &cpu_mask); |
| 1735 | if (!cpumask_empty(&cpu_mask)) |
| 1736 | xc2((smpfunc_t) local_ops->cache_page, |
| 1737 | (unsigned long) vma, page); |
| 1738 | local_ops->cache_page(vma, page); |
| 1739 | } |
| 1740 | } |
| 1741 | |
| 1742 | static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) |
| 1743 | { |
| 1744 | struct mm_struct *mm = vma->vm_mm; |
| 1745 | |
| 1746 | if (mm->context != NO_CONTEXT) { |
| 1747 | cpumask_t cpu_mask; |
| 1748 | cpumask_copy(&cpu_mask, mm_cpumask(mm)); |
| 1749 | cpumask_clear_cpu(smp_processor_id(), &cpu_mask); |
| 1750 | if (!cpumask_empty(&cpu_mask)) |
| 1751 | xc2((smpfunc_t) local_ops->tlb_page, |
| 1752 | (unsigned long) vma, page); |
| 1753 | local_ops->tlb_page(vma, page); |
| 1754 | } |
| 1755 | } |
| 1756 | |
| 1757 | static void smp_flush_page_to_ram(unsigned long page) |
| 1758 | { |
| 1759 | /* Current theory is that those who call this are the one's |
| 1760 | * who have just dirtied their cache with the pages contents |
| 1761 | * in kernel space, therefore we only run this on local cpu. |
| 1762 | * |
| 1763 | * XXX This experiment failed, research further... -DaveM |
| 1764 | */ |
| 1765 | #if 1 |
| 1766 | xc1((smpfunc_t) local_ops->page_to_ram, page); |
| 1767 | #endif |
| 1768 | local_ops->page_to_ram(page); |
| 1769 | } |
| 1770 | |
| 1771 | static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) |
| 1772 | { |
| 1773 | cpumask_t cpu_mask; |
| 1774 | cpumask_copy(&cpu_mask, mm_cpumask(mm)); |
| 1775 | cpumask_clear_cpu(smp_processor_id(), &cpu_mask); |
| 1776 | if (!cpumask_empty(&cpu_mask)) |
| 1777 | xc2((smpfunc_t) local_ops->sig_insns, |
| 1778 | (unsigned long) mm, insn_addr); |
| 1779 | local_ops->sig_insns(mm, insn_addr); |
| 1780 | } |
| 1781 | |
| 1782 | static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = { |
| 1783 | .cache_all = smp_flush_cache_all, |
| 1784 | .cache_mm = smp_flush_cache_mm, |
| 1785 | .cache_page = smp_flush_cache_page, |
| 1786 | .cache_range = smp_flush_cache_range, |
| 1787 | .tlb_all = smp_flush_tlb_all, |
| 1788 | .tlb_mm = smp_flush_tlb_mm, |
| 1789 | .tlb_page = smp_flush_tlb_page, |
| 1790 | .tlb_range = smp_flush_tlb_range, |
| 1791 | .page_to_ram = smp_flush_page_to_ram, |
| 1792 | .sig_insns = smp_flush_sig_insns, |
| 1793 | .page_for_dma = smp_flush_page_for_dma, |
| 1794 | }; |
| 1795 | #endif |
| 1796 | |
| 1797 | /* Load up routines and constants for sun4m and sun4d mmu */ |
| 1798 | void __init load_mmu(void) |
| 1799 | { |
| 1800 | /* Functions */ |
| 1801 | get_srmmu_type(); |
| 1802 | |
| 1803 | #ifdef CONFIG_SMP |
| 1804 | /* El switcheroo... */ |
| 1805 | local_ops = sparc32_cachetlb_ops; |
| 1806 | |
| 1807 | if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) { |
| 1808 | smp_cachetlb_ops.tlb_all = local_ops->tlb_all; |
| 1809 | smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm; |
| 1810 | smp_cachetlb_ops.tlb_range = local_ops->tlb_range; |
| 1811 | smp_cachetlb_ops.tlb_page = local_ops->tlb_page; |
| 1812 | } |
| 1813 | |
| 1814 | if (poke_srmmu == poke_viking) { |
| 1815 | /* Avoid unnecessary cross calls. */ |
| 1816 | smp_cachetlb_ops.cache_all = local_ops->cache_all; |
| 1817 | smp_cachetlb_ops.cache_mm = local_ops->cache_mm; |
| 1818 | smp_cachetlb_ops.cache_range = local_ops->cache_range; |
| 1819 | smp_cachetlb_ops.cache_page = local_ops->cache_page; |
| 1820 | |
| 1821 | smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram; |
| 1822 | smp_cachetlb_ops.sig_insns = local_ops->sig_insns; |
| 1823 | smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma; |
| 1824 | } |
| 1825 | |
| 1826 | /* It really is const after this point. */ |
| 1827 | sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) |
| 1828 | &smp_cachetlb_ops; |
| 1829 | #endif |
| 1830 | |
| 1831 | if (sparc_cpu_model == sun4d) |
| 1832 | ld_mmu_iounit(); |
| 1833 | else |
| 1834 | ld_mmu_iommu(); |
| 1835 | #ifdef CONFIG_SMP |
| 1836 | if (sparc_cpu_model == sun4d) |
| 1837 | sun4d_init_smp(); |
| 1838 | else if (sparc_cpu_model == sparc_leon) |
| 1839 | leon_init_smp(); |
| 1840 | else |
| 1841 | sun4m_init_smp(); |
| 1842 | #endif |
| 1843 | } |