v4.19.13 snapshot.
diff --git a/arch/sparc/mm/srmmu.c b/arch/sparc/mm/srmmu.c
new file mode 100644
index 0000000..be9cb00
--- /dev/null
+++ b/arch/sparc/mm/srmmu.c
@@ -0,0 +1,1843 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * srmmu.c:  SRMMU specific routines for memory management.
+ *
+ * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
+ * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
+ * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
+ * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
+ * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
+ */
+
+#include <linux/seq_file.h>
+#include <linux/spinlock.h>
+#include <linux/bootmem.h>
+#include <linux/pagemap.h>
+#include <linux/vmalloc.h>
+#include <linux/kdebug.h>
+#include <linux/export.h>
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/log2.h>
+#include <linux/gfp.h>
+#include <linux/fs.h>
+#include <linux/mm.h>
+
+#include <asm/mmu_context.h>
+#include <asm/cacheflush.h>
+#include <asm/tlbflush.h>
+#include <asm/io-unit.h>
+#include <asm/pgalloc.h>
+#include <asm/pgtable.h>
+#include <asm/bitext.h>
+#include <asm/vaddrs.h>
+#include <asm/cache.h>
+#include <asm/traps.h>
+#include <asm/oplib.h>
+#include <asm/mbus.h>
+#include <asm/page.h>
+#include <asm/asi.h>
+#include <asm/smp.h>
+#include <asm/io.h>
+
+/* Now the cpu specific definitions. */
+#include <asm/turbosparc.h>
+#include <asm/tsunami.h>
+#include <asm/viking.h>
+#include <asm/swift.h>
+#include <asm/leon.h>
+#include <asm/mxcc.h>
+#include <asm/ross.h>
+
+#include "mm_32.h"
+
+enum mbus_module srmmu_modtype;
+static unsigned int hwbug_bitmask;
+int vac_cache_size;
+EXPORT_SYMBOL(vac_cache_size);
+int vac_line_size;
+
+extern struct resource sparc_iomap;
+
+extern unsigned long last_valid_pfn;
+
+static pgd_t *srmmu_swapper_pg_dir;
+
+const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
+EXPORT_SYMBOL(sparc32_cachetlb_ops);
+
+#ifdef CONFIG_SMP
+const struct sparc32_cachetlb_ops *local_ops;
+
+#define FLUSH_BEGIN(mm)
+#define FLUSH_END
+#else
+#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
+#define FLUSH_END	}
+#endif
+
+int flush_page_for_dma_global = 1;
+
+char *srmmu_name;
+
+ctxd_t *srmmu_ctx_table_phys;
+static ctxd_t *srmmu_context_table;
+
+int viking_mxcc_present;
+static DEFINE_SPINLOCK(srmmu_context_spinlock);
+
+static int is_hypersparc;
+
+static int srmmu_cache_pagetables;
+
+/* these will be initialized in srmmu_nocache_calcsize() */
+static unsigned long srmmu_nocache_size;
+static unsigned long srmmu_nocache_end;
+
+/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
+#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
+
+/* The context table is a nocache user with the biggest alignment needs. */
+#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
+
+void *srmmu_nocache_pool;
+static struct bit_map srmmu_nocache_map;
+
+static inline int srmmu_pmd_none(pmd_t pmd)
+{ return !(pmd_val(pmd) & 0xFFFFFFF); }
+
+/* XXX should we hyper_flush_whole_icache here - Anton */
+static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
+{
+	pte_t pte;
+
+	pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
+	set_pte((pte_t *)ctxp, pte);
+}
+
+/*
+ * Locations of MSI Registers.
+ */
+#define MSI_MBUS_ARBEN	0xe0001008	/* MBus Arbiter Enable register */
+
+/*
+ * Useful bits in the MSI Registers.
+ */
+#define MSI_ASYNC_MODE  0x80000000	/* Operate the MSI asynchronously */
+
+static void msi_set_sync(void)
+{
+	__asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
+			      "andn %%g3, %2, %%g3\n\t"
+			      "sta %%g3, [%0] %1\n\t" : :
+			      "r" (MSI_MBUS_ARBEN),
+			      "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
+}
+
+void pmd_set(pmd_t *pmdp, pte_t *ptep)
+{
+	unsigned long ptp;	/* Physical address, shifted right by 4 */
+	int i;
+
+	ptp = __nocache_pa(ptep) >> 4;
+	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
+		set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
+		ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
+	}
+}
+
+void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
+{
+	unsigned long ptp;	/* Physical address, shifted right by 4 */
+	int i;
+
+	ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);	/* watch for overflow */
+	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
+		set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
+		ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
+	}
+}
+
+/* Find an entry in the third-level page table.. */
+pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
+{
+	void *pte;
+
+	pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
+	return (pte_t *) pte +
+	    ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
+}
+
+/*
+ * size: bytes to allocate in the nocache area.
+ * align: bytes, number to align at.
+ * Returns the virtual address of the allocated area.
+ */
+static void *__srmmu_get_nocache(int size, int align)
+{
+	int offset;
+	unsigned long addr;
+
+	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
+		printk(KERN_ERR "Size 0x%x too small for nocache request\n",
+		       size);
+		size = SRMMU_NOCACHE_BITMAP_SHIFT;
+	}
+	if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
+		printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
+		       size);
+		size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
+	}
+	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
+
+	offset = bit_map_string_get(&srmmu_nocache_map,
+				    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
+				    align >> SRMMU_NOCACHE_BITMAP_SHIFT);
+	if (offset == -1) {
+		printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
+		       size, (int) srmmu_nocache_size,
+		       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
+		return NULL;
+	}
+
+	addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
+	return (void *)addr;
+}
+
+void *srmmu_get_nocache(int size, int align)
+{
+	void *tmp;
+
+	tmp = __srmmu_get_nocache(size, align);
+
+	if (tmp)
+		memset(tmp, 0, size);
+
+	return tmp;
+}
+
+void srmmu_free_nocache(void *addr, int size)
+{
+	unsigned long vaddr;
+	int offset;
+
+	vaddr = (unsigned long)addr;
+	if (vaddr < SRMMU_NOCACHE_VADDR) {
+		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
+		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
+		BUG();
+	}
+	if (vaddr + size > srmmu_nocache_end) {
+		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
+		    vaddr, srmmu_nocache_end);
+		BUG();
+	}
+	if (!is_power_of_2(size)) {
+		printk("Size 0x%x is not a power of 2\n", size);
+		BUG();
+	}
+	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
+		printk("Size 0x%x is too small\n", size);
+		BUG();
+	}
+	if (vaddr & (size - 1)) {
+		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
+		BUG();
+	}
+
+	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
+	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
+
+	bit_map_clear(&srmmu_nocache_map, offset, size);
+}
+
+static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
+						 unsigned long end);
+
+/* Return how much physical memory we have.  */
+static unsigned long __init probe_memory(void)
+{
+	unsigned long total = 0;
+	int i;
+
+	for (i = 0; sp_banks[i].num_bytes; i++)
+		total += sp_banks[i].num_bytes;
+
+	return total;
+}
+
+/*
+ * Reserve nocache dynamically proportionally to the amount of
+ * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
+ */
+static void __init srmmu_nocache_calcsize(void)
+{
+	unsigned long sysmemavail = probe_memory() / 1024;
+	int srmmu_nocache_npages;
+
+	srmmu_nocache_npages =
+		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
+
+ /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
+	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
+	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
+		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
+
+	/* anything above 1280 blows up */
+	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
+		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
+
+	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
+	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
+}
+
+static void __init srmmu_nocache_init(void)
+{
+	void *srmmu_nocache_bitmap;
+	unsigned int bitmap_bits;
+	pgd_t *pgd;
+	pmd_t *pmd;
+	pte_t *pte;
+	unsigned long paddr, vaddr;
+	unsigned long pteval;
+
+	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
+
+	srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
+		SRMMU_NOCACHE_ALIGN_MAX, 0UL);
+	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
+
+	srmmu_nocache_bitmap =
+		__alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
+				SMP_CACHE_BYTES, 0UL);
+	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
+
+	srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
+	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
+	init_mm.pgd = srmmu_swapper_pg_dir;
+
+	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
+
+	paddr = __pa((unsigned long)srmmu_nocache_pool);
+	vaddr = SRMMU_NOCACHE_VADDR;
+
+	while (vaddr < srmmu_nocache_end) {
+		pgd = pgd_offset_k(vaddr);
+		pmd = pmd_offset(__nocache_fix(pgd), vaddr);
+		pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
+
+		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
+
+		if (srmmu_cache_pagetables)
+			pteval |= SRMMU_CACHE;
+
+		set_pte(__nocache_fix(pte), __pte(pteval));
+
+		vaddr += PAGE_SIZE;
+		paddr += PAGE_SIZE;
+	}
+
+	flush_cache_all();
+	flush_tlb_all();
+}
+
+pgd_t *get_pgd_fast(void)
+{
+	pgd_t *pgd = NULL;
+
+	pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
+	if (pgd) {
+		pgd_t *init = pgd_offset_k(0);
+		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
+		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
+						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
+	}
+
+	return pgd;
+}
+
+/*
+ * Hardware needs alignment to 256 only, but we align to whole page size
+ * to reduce fragmentation problems due to the buddy principle.
+ * XXX Provide actual fragmentation statistics in /proc.
+ *
+ * Alignments up to the page size are the same for physical and virtual
+ * addresses of the nocache area.
+ */
+pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
+{
+	unsigned long pte;
+	struct page *page;
+
+	if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
+		return NULL;
+	page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
+	if (!pgtable_page_ctor(page)) {
+		__free_page(page);
+		return NULL;
+	}
+	return page;
+}
+
+void pte_free(struct mm_struct *mm, pgtable_t pte)
+{
+	unsigned long p;
+
+	pgtable_page_dtor(pte);
+	p = (unsigned long)page_address(pte);	/* Cached address (for test) */
+	if (p == 0)
+		BUG();
+	p = page_to_pfn(pte) << PAGE_SHIFT;	/* Physical address */
+
+	/* free non cached virtual address*/
+	srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
+}
+
+/* context handling - a dynamically sized pool is used */
+#define NO_CONTEXT	-1
+
+struct ctx_list {
+	struct ctx_list *next;
+	struct ctx_list *prev;
+	unsigned int ctx_number;
+	struct mm_struct *ctx_mm;
+};
+
+static struct ctx_list *ctx_list_pool;
+static struct ctx_list ctx_free;
+static struct ctx_list ctx_used;
+
+/* At boot time we determine the number of contexts */
+static int num_contexts;
+
+static inline void remove_from_ctx_list(struct ctx_list *entry)
+{
+	entry->next->prev = entry->prev;
+	entry->prev->next = entry->next;
+}
+
+static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
+{
+	entry->next = head;
+	(entry->prev = head->prev)->next = entry;
+	head->prev = entry;
+}
+#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
+#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
+
+
+static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
+{
+	struct ctx_list *ctxp;
+
+	ctxp = ctx_free.next;
+	if (ctxp != &ctx_free) {
+		remove_from_ctx_list(ctxp);
+		add_to_used_ctxlist(ctxp);
+		mm->context = ctxp->ctx_number;
+		ctxp->ctx_mm = mm;
+		return;
+	}
+	ctxp = ctx_used.next;
+	if (ctxp->ctx_mm == old_mm)
+		ctxp = ctxp->next;
+	if (ctxp == &ctx_used)
+		panic("out of mmu contexts");
+	flush_cache_mm(ctxp->ctx_mm);
+	flush_tlb_mm(ctxp->ctx_mm);
+	remove_from_ctx_list(ctxp);
+	add_to_used_ctxlist(ctxp);
+	ctxp->ctx_mm->context = NO_CONTEXT;
+	ctxp->ctx_mm = mm;
+	mm->context = ctxp->ctx_number;
+}
+
+static inline void free_context(int context)
+{
+	struct ctx_list *ctx_old;
+
+	ctx_old = ctx_list_pool + context;
+	remove_from_ctx_list(ctx_old);
+	add_to_free_ctxlist(ctx_old);
+}
+
+static void __init sparc_context_init(int numctx)
+{
+	int ctx;
+	unsigned long size;
+
+	size = numctx * sizeof(struct ctx_list);
+	ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
+
+	for (ctx = 0; ctx < numctx; ctx++) {
+		struct ctx_list *clist;
+
+		clist = (ctx_list_pool + ctx);
+		clist->ctx_number = ctx;
+		clist->ctx_mm = NULL;
+	}
+	ctx_free.next = ctx_free.prev = &ctx_free;
+	ctx_used.next = ctx_used.prev = &ctx_used;
+	for (ctx = 0; ctx < numctx; ctx++)
+		add_to_free_ctxlist(ctx_list_pool + ctx);
+}
+
+void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
+	       struct task_struct *tsk)
+{
+	unsigned long flags;
+
+	if (mm->context == NO_CONTEXT) {
+		spin_lock_irqsave(&srmmu_context_spinlock, flags);
+		alloc_context(old_mm, mm);
+		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
+		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
+	}
+
+	if (sparc_cpu_model == sparc_leon)
+		leon_switch_mm();
+
+	if (is_hypersparc)
+		hyper_flush_whole_icache();
+
+	srmmu_set_context(mm->context);
+}
+
+/* Low level IO area allocation on the SRMMU. */
+static inline void srmmu_mapioaddr(unsigned long physaddr,
+				   unsigned long virt_addr, int bus_type)
+{
+	pgd_t *pgdp;
+	pmd_t *pmdp;
+	pte_t *ptep;
+	unsigned long tmp;
+
+	physaddr &= PAGE_MASK;
+	pgdp = pgd_offset_k(virt_addr);
+	pmdp = pmd_offset(pgdp, virt_addr);
+	ptep = pte_offset_kernel(pmdp, virt_addr);
+	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
+
+	/* I need to test whether this is consistent over all
+	 * sun4m's.  The bus_type represents the upper 4 bits of
+	 * 36-bit physical address on the I/O space lines...
+	 */
+	tmp |= (bus_type << 28);
+	tmp |= SRMMU_PRIV;
+	__flush_page_to_ram(virt_addr);
+	set_pte(ptep, __pte(tmp));
+}
+
+void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
+		      unsigned long xva, unsigned int len)
+{
+	while (len != 0) {
+		len -= PAGE_SIZE;
+		srmmu_mapioaddr(xpa, xva, bus);
+		xva += PAGE_SIZE;
+		xpa += PAGE_SIZE;
+	}
+	flush_tlb_all();
+}
+
+static inline void srmmu_unmapioaddr(unsigned long virt_addr)
+{
+	pgd_t *pgdp;
+	pmd_t *pmdp;
+	pte_t *ptep;
+
+	pgdp = pgd_offset_k(virt_addr);
+	pmdp = pmd_offset(pgdp, virt_addr);
+	ptep = pte_offset_kernel(pmdp, virt_addr);
+
+	/* No need to flush uncacheable page. */
+	__pte_clear(ptep);
+}
+
+void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
+{
+	while (len != 0) {
+		len -= PAGE_SIZE;
+		srmmu_unmapioaddr(virt_addr);
+		virt_addr += PAGE_SIZE;
+	}
+	flush_tlb_all();
+}
+
+/* tsunami.S */
+extern void tsunami_flush_cache_all(void);
+extern void tsunami_flush_cache_mm(struct mm_struct *mm);
+extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
+extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
+extern void tsunami_flush_page_to_ram(unsigned long page);
+extern void tsunami_flush_page_for_dma(unsigned long page);
+extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
+extern void tsunami_flush_tlb_all(void);
+extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
+extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
+extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
+extern void tsunami_setup_blockops(void);
+
+/* swift.S */
+extern void swift_flush_cache_all(void);
+extern void swift_flush_cache_mm(struct mm_struct *mm);
+extern void swift_flush_cache_range(struct vm_area_struct *vma,
+				    unsigned long start, unsigned long end);
+extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
+extern void swift_flush_page_to_ram(unsigned long page);
+extern void swift_flush_page_for_dma(unsigned long page);
+extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
+extern void swift_flush_tlb_all(void);
+extern void swift_flush_tlb_mm(struct mm_struct *mm);
+extern void swift_flush_tlb_range(struct vm_area_struct *vma,
+				  unsigned long start, unsigned long end);
+extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
+
+#if 0  /* P3: deadwood to debug precise flushes on Swift. */
+void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
+{
+	int cctx, ctx1;
+
+	page &= PAGE_MASK;
+	if ((ctx1 = vma->vm_mm->context) != -1) {
+		cctx = srmmu_get_context();
+/* Is context # ever different from current context? P3 */
+		if (cctx != ctx1) {
+			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
+			srmmu_set_context(ctx1);
+			swift_flush_page(page);
+			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
+					"r" (page), "i" (ASI_M_FLUSH_PROBE));
+			srmmu_set_context(cctx);
+		} else {
+			 /* Rm. prot. bits from virt. c. */
+			/* swift_flush_cache_all(); */
+			/* swift_flush_cache_page(vma, page); */
+			swift_flush_page(page);
+
+			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
+				"r" (page), "i" (ASI_M_FLUSH_PROBE));
+			/* same as above: srmmu_flush_tlb_page() */
+		}
+	}
+}
+#endif
+
+/*
+ * The following are all MBUS based SRMMU modules, and therefore could
+ * be found in a multiprocessor configuration.  On the whole, these
+ * chips seems to be much more touchy about DVMA and page tables
+ * with respect to cache coherency.
+ */
+
+/* viking.S */
+extern void viking_flush_cache_all(void);
+extern void viking_flush_cache_mm(struct mm_struct *mm);
+extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
+				     unsigned long end);
+extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
+extern void viking_flush_page_to_ram(unsigned long page);
+extern void viking_flush_page_for_dma(unsigned long page);
+extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
+extern void viking_flush_page(unsigned long page);
+extern void viking_mxcc_flush_page(unsigned long page);
+extern void viking_flush_tlb_all(void);
+extern void viking_flush_tlb_mm(struct mm_struct *mm);
+extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
+				   unsigned long end);
+extern void viking_flush_tlb_page(struct vm_area_struct *vma,
+				  unsigned long page);
+extern void sun4dsmp_flush_tlb_all(void);
+extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
+extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
+				   unsigned long end);
+extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
+				  unsigned long page);
+
+/* hypersparc.S */
+extern void hypersparc_flush_cache_all(void);
+extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
+extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
+extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
+extern void hypersparc_flush_page_to_ram(unsigned long page);
+extern void hypersparc_flush_page_for_dma(unsigned long page);
+extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
+extern void hypersparc_flush_tlb_all(void);
+extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
+extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
+extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
+extern void hypersparc_setup_blockops(void);
+
+/*
+ * NOTE: All of this startup code assumes the low 16mb (approx.) of
+ *       kernel mappings are done with one single contiguous chunk of
+ *       ram.  On small ram machines (classics mainly) we only get
+ *       around 8mb mapped for us.
+ */
+
+static void __init early_pgtable_allocfail(char *type)
+{
+	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
+	prom_halt();
+}
+
+static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
+							unsigned long end)
+{
+	pgd_t *pgdp;
+	pmd_t *pmdp;
+	pte_t *ptep;
+
+	while (start < end) {
+		pgdp = pgd_offset_k(start);
+		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
+			pmdp = __srmmu_get_nocache(
+			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
+			if (pmdp == NULL)
+				early_pgtable_allocfail("pmd");
+			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
+			pgd_set(__nocache_fix(pgdp), pmdp);
+		}
+		pmdp = pmd_offset(__nocache_fix(pgdp), start);
+		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
+			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
+			if (ptep == NULL)
+				early_pgtable_allocfail("pte");
+			memset(__nocache_fix(ptep), 0, PTE_SIZE);
+			pmd_set(__nocache_fix(pmdp), ptep);
+		}
+		if (start > (0xffffffffUL - PMD_SIZE))
+			break;
+		start = (start + PMD_SIZE) & PMD_MASK;
+	}
+}
+
+static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
+						  unsigned long end)
+{
+	pgd_t *pgdp;
+	pmd_t *pmdp;
+	pte_t *ptep;
+
+	while (start < end) {
+		pgdp = pgd_offset_k(start);
+		if (pgd_none(*pgdp)) {
+			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
+			if (pmdp == NULL)
+				early_pgtable_allocfail("pmd");
+			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
+			pgd_set(pgdp, pmdp);
+		}
+		pmdp = pmd_offset(pgdp, start);
+		if (srmmu_pmd_none(*pmdp)) {
+			ptep = __srmmu_get_nocache(PTE_SIZE,
+							     PTE_SIZE);
+			if (ptep == NULL)
+				early_pgtable_allocfail("pte");
+			memset(ptep, 0, PTE_SIZE);
+			pmd_set(pmdp, ptep);
+		}
+		if (start > (0xffffffffUL - PMD_SIZE))
+			break;
+		start = (start + PMD_SIZE) & PMD_MASK;
+	}
+}
+
+/* These flush types are not available on all chips... */
+static inline unsigned long srmmu_probe(unsigned long vaddr)
+{
+	unsigned long retval;
+
+	if (sparc_cpu_model != sparc_leon) {
+
+		vaddr &= PAGE_MASK;
+		__asm__ __volatile__("lda [%1] %2, %0\n\t" :
+				     "=r" (retval) :
+				     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
+	} else {
+		retval = leon_swprobe(vaddr, NULL);
+	}
+	return retval;
+}
+
+/*
+ * This is much cleaner than poking around physical address space
+ * looking at the prom's page table directly which is what most
+ * other OS's do.  Yuck... this is much better.
+ */
+static void __init srmmu_inherit_prom_mappings(unsigned long start,
+					       unsigned long end)
+{
+	unsigned long probed;
+	unsigned long addr;
+	pgd_t *pgdp;
+	pmd_t *pmdp;
+	pte_t *ptep;
+	int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
+
+	while (start <= end) {
+		if (start == 0)
+			break; /* probably wrap around */
+		if (start == 0xfef00000)
+			start = KADB_DEBUGGER_BEGVM;
+		probed = srmmu_probe(start);
+		if (!probed) {
+			/* continue probing until we find an entry */
+			start += PAGE_SIZE;
+			continue;
+		}
+
+		/* A red snapper, see what it really is. */
+		what = 0;
+		addr = start - PAGE_SIZE;
+
+		if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
+			if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
+				what = 1;
+		}
+
+		if (!(start & ~(SRMMU_PGDIR_MASK))) {
+			if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
+				what = 2;
+		}
+
+		pgdp = pgd_offset_k(start);
+		if (what == 2) {
+			*(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
+			start += SRMMU_PGDIR_SIZE;
+			continue;
+		}
+		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
+			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
+						   SRMMU_PMD_TABLE_SIZE);
+			if (pmdp == NULL)
+				early_pgtable_allocfail("pmd");
+			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
+			pgd_set(__nocache_fix(pgdp), pmdp);
+		}
+		pmdp = pmd_offset(__nocache_fix(pgdp), start);
+		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
+			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
+			if (ptep == NULL)
+				early_pgtable_allocfail("pte");
+			memset(__nocache_fix(ptep), 0, PTE_SIZE);
+			pmd_set(__nocache_fix(pmdp), ptep);
+		}
+		if (what == 1) {
+			/* We bend the rule where all 16 PTPs in a pmd_t point
+			 * inside the same PTE page, and we leak a perfectly
+			 * good hardware PTE piece. Alternatives seem worse.
+			 */
+			unsigned int x;	/* Index of HW PMD in soft cluster */
+			unsigned long *val;
+			x = (start >> PMD_SHIFT) & 15;
+			val = &pmdp->pmdv[x];
+			*(unsigned long *)__nocache_fix(val) = probed;
+			start += SRMMU_REAL_PMD_SIZE;
+			continue;
+		}
+		ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
+		*(pte_t *)__nocache_fix(ptep) = __pte(probed);
+		start += PAGE_SIZE;
+	}
+}
+
+#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
+
+/* Create a third-level SRMMU 16MB page mapping. */
+static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
+{
+	pgd_t *pgdp = pgd_offset_k(vaddr);
+	unsigned long big_pte;
+
+	big_pte = KERNEL_PTE(phys_base >> 4);
+	*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
+}
+
+/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
+static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
+{
+	unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
+	unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
+	unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
+	/* Map "low" memory only */
+	const unsigned long min_vaddr = PAGE_OFFSET;
+	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
+
+	if (vstart < min_vaddr || vstart >= max_vaddr)
+		return vstart;
+
+	if (vend > max_vaddr || vend < min_vaddr)
+		vend = max_vaddr;
+
+	while (vstart < vend) {
+		do_large_mapping(vstart, pstart);
+		vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
+	}
+	return vstart;
+}
+
+static void __init map_kernel(void)
+{
+	int i;
+
+	if (phys_base > 0) {
+		do_large_mapping(PAGE_OFFSET, phys_base);
+	}
+
+	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
+		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
+	}
+}
+
+void (*poke_srmmu)(void) = NULL;
+
+void __init srmmu_paging_init(void)
+{
+	int i;
+	phandle cpunode;
+	char node_str[128];
+	pgd_t *pgd;
+	pmd_t *pmd;
+	pte_t *pte;
+	unsigned long pages_avail;
+
+	init_mm.context = (unsigned long) NO_CONTEXT;
+	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
+
+	if (sparc_cpu_model == sun4d)
+		num_contexts = 65536; /* We know it is Viking */
+	else {
+		/* Find the number of contexts on the srmmu. */
+		cpunode = prom_getchild(prom_root_node);
+		num_contexts = 0;
+		while (cpunode != 0) {
+			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
+			if (!strcmp(node_str, "cpu")) {
+				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
+				break;
+			}
+			cpunode = prom_getsibling(cpunode);
+		}
+	}
+
+	if (!num_contexts) {
+		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
+		prom_halt();
+	}
+
+	pages_avail = 0;
+	last_valid_pfn = bootmem_init(&pages_avail);
+
+	srmmu_nocache_calcsize();
+	srmmu_nocache_init();
+	srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
+	map_kernel();
+
+	/* ctx table has to be physically aligned to its size */
+	srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
+	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
+
+	for (i = 0; i < num_contexts; i++)
+		srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
+
+	flush_cache_all();
+	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
+#ifdef CONFIG_SMP
+	/* Stop from hanging here... */
+	local_ops->tlb_all();
+#else
+	flush_tlb_all();
+#endif
+	poke_srmmu();
+
+	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
+	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
+
+	srmmu_allocate_ptable_skeleton(
+		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
+	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
+
+	pgd = pgd_offset_k(PKMAP_BASE);
+	pmd = pmd_offset(pgd, PKMAP_BASE);
+	pte = pte_offset_kernel(pmd, PKMAP_BASE);
+	pkmap_page_table = pte;
+
+	flush_cache_all();
+	flush_tlb_all();
+
+	sparc_context_init(num_contexts);
+
+	kmap_init();
+
+	{
+		unsigned long zones_size[MAX_NR_ZONES];
+		unsigned long zholes_size[MAX_NR_ZONES];
+		unsigned long npages;
+		int znum;
+
+		for (znum = 0; znum < MAX_NR_ZONES; znum++)
+			zones_size[znum] = zholes_size[znum] = 0;
+
+		npages = max_low_pfn - pfn_base;
+
+		zones_size[ZONE_DMA] = npages;
+		zholes_size[ZONE_DMA] = npages - pages_avail;
+
+		npages = highend_pfn - max_low_pfn;
+		zones_size[ZONE_HIGHMEM] = npages;
+		zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
+
+		free_area_init_node(0, zones_size, pfn_base, zholes_size);
+	}
+}
+
+void mmu_info(struct seq_file *m)
+{
+	seq_printf(m,
+		   "MMU type\t: %s\n"
+		   "contexts\t: %d\n"
+		   "nocache total\t: %ld\n"
+		   "nocache used\t: %d\n",
+		   srmmu_name,
+		   num_contexts,
+		   srmmu_nocache_size,
+		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
+}
+
+int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
+{
+	mm->context = NO_CONTEXT;
+	return 0;
+}
+
+void destroy_context(struct mm_struct *mm)
+{
+	unsigned long flags;
+
+	if (mm->context != NO_CONTEXT) {
+		flush_cache_mm(mm);
+		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
+		flush_tlb_mm(mm);
+		spin_lock_irqsave(&srmmu_context_spinlock, flags);
+		free_context(mm->context);
+		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
+		mm->context = NO_CONTEXT;
+	}
+}
+
+/* Init various srmmu chip types. */
+static void __init srmmu_is_bad(void)
+{
+	prom_printf("Could not determine SRMMU chip type.\n");
+	prom_halt();
+}
+
+static void __init init_vac_layout(void)
+{
+	phandle nd;
+	int cache_lines;
+	char node_str[128];
+#ifdef CONFIG_SMP
+	int cpu = 0;
+	unsigned long max_size = 0;
+	unsigned long min_line_size = 0x10000000;
+#endif
+
+	nd = prom_getchild(prom_root_node);
+	while ((nd = prom_getsibling(nd)) != 0) {
+		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
+		if (!strcmp(node_str, "cpu")) {
+			vac_line_size = prom_getint(nd, "cache-line-size");
+			if (vac_line_size == -1) {
+				prom_printf("can't determine cache-line-size, halting.\n");
+				prom_halt();
+			}
+			cache_lines = prom_getint(nd, "cache-nlines");
+			if (cache_lines == -1) {
+				prom_printf("can't determine cache-nlines, halting.\n");
+				prom_halt();
+			}
+
+			vac_cache_size = cache_lines * vac_line_size;
+#ifdef CONFIG_SMP
+			if (vac_cache_size > max_size)
+				max_size = vac_cache_size;
+			if (vac_line_size < min_line_size)
+				min_line_size = vac_line_size;
+			//FIXME: cpus not contiguous!!
+			cpu++;
+			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
+				break;
+#else
+			break;
+#endif
+		}
+	}
+	if (nd == 0) {
+		prom_printf("No CPU nodes found, halting.\n");
+		prom_halt();
+	}
+#ifdef CONFIG_SMP
+	vac_cache_size = max_size;
+	vac_line_size = min_line_size;
+#endif
+	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
+	       (int)vac_cache_size, (int)vac_line_size);
+}
+
+static void poke_hypersparc(void)
+{
+	volatile unsigned long clear;
+	unsigned long mreg = srmmu_get_mmureg();
+
+	hyper_flush_unconditional_combined();
+
+	mreg &= ~(HYPERSPARC_CWENABLE);
+	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
+	mreg |= (HYPERSPARC_CMODE);
+
+	srmmu_set_mmureg(mreg);
+
+#if 0 /* XXX I think this is bad news... -DaveM */
+	hyper_clear_all_tags();
+#endif
+
+	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
+	hyper_flush_whole_icache();
+	clear = srmmu_get_faddr();
+	clear = srmmu_get_fstatus();
+}
+
+static const struct sparc32_cachetlb_ops hypersparc_ops = {
+	.cache_all	= hypersparc_flush_cache_all,
+	.cache_mm	= hypersparc_flush_cache_mm,
+	.cache_page	= hypersparc_flush_cache_page,
+	.cache_range	= hypersparc_flush_cache_range,
+	.tlb_all	= hypersparc_flush_tlb_all,
+	.tlb_mm		= hypersparc_flush_tlb_mm,
+	.tlb_page	= hypersparc_flush_tlb_page,
+	.tlb_range	= hypersparc_flush_tlb_range,
+	.page_to_ram	= hypersparc_flush_page_to_ram,
+	.sig_insns	= hypersparc_flush_sig_insns,
+	.page_for_dma	= hypersparc_flush_page_for_dma,
+};
+
+static void __init init_hypersparc(void)
+{
+	srmmu_name = "ROSS HyperSparc";
+	srmmu_modtype = HyperSparc;
+
+	init_vac_layout();
+
+	is_hypersparc = 1;
+	sparc32_cachetlb_ops = &hypersparc_ops;
+
+	poke_srmmu = poke_hypersparc;
+
+	hypersparc_setup_blockops();
+}
+
+static void poke_swift(void)
+{
+	unsigned long mreg;
+
+	/* Clear any crap from the cache or else... */
+	swift_flush_cache_all();
+
+	/* Enable I & D caches */
+	mreg = srmmu_get_mmureg();
+	mreg |= (SWIFT_IE | SWIFT_DE);
+	/*
+	 * The Swift branch folding logic is completely broken.  At
+	 * trap time, if things are just right, if can mistakenly
+	 * think that a trap is coming from kernel mode when in fact
+	 * it is coming from user mode (it mis-executes the branch in
+	 * the trap code).  So you see things like crashme completely
+	 * hosing your machine which is completely unacceptable.  Turn
+	 * this shit off... nice job Fujitsu.
+	 */
+	mreg &= ~(SWIFT_BF);
+	srmmu_set_mmureg(mreg);
+}
+
+static const struct sparc32_cachetlb_ops swift_ops = {
+	.cache_all	= swift_flush_cache_all,
+	.cache_mm	= swift_flush_cache_mm,
+	.cache_page	= swift_flush_cache_page,
+	.cache_range	= swift_flush_cache_range,
+	.tlb_all	= swift_flush_tlb_all,
+	.tlb_mm		= swift_flush_tlb_mm,
+	.tlb_page	= swift_flush_tlb_page,
+	.tlb_range	= swift_flush_tlb_range,
+	.page_to_ram	= swift_flush_page_to_ram,
+	.sig_insns	= swift_flush_sig_insns,
+	.page_for_dma	= swift_flush_page_for_dma,
+};
+
+#define SWIFT_MASKID_ADDR  0x10003018
+static void __init init_swift(void)
+{
+	unsigned long swift_rev;
+
+	__asm__ __volatile__("lda [%1] %2, %0\n\t"
+			     "srl %0, 0x18, %0\n\t" :
+			     "=r" (swift_rev) :
+			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
+	srmmu_name = "Fujitsu Swift";
+	switch (swift_rev) {
+	case 0x11:
+	case 0x20:
+	case 0x23:
+	case 0x30:
+		srmmu_modtype = Swift_lots_o_bugs;
+		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
+		/*
+		 * Gee george, I wonder why Sun is so hush hush about
+		 * this hardware bug... really braindamage stuff going
+		 * on here.  However I think we can find a way to avoid
+		 * all of the workaround overhead under Linux.  Basically,
+		 * any page fault can cause kernel pages to become user
+		 * accessible (the mmu gets confused and clears some of
+		 * the ACC bits in kernel ptes).  Aha, sounds pretty
+		 * horrible eh?  But wait, after extensive testing it appears
+		 * that if you use pgd_t level large kernel pte's (like the
+		 * 4MB pages on the Pentium) the bug does not get tripped
+		 * at all.  This avoids almost all of the major overhead.
+		 * Welcome to a world where your vendor tells you to,
+		 * "apply this kernel patch" instead of "sorry for the
+		 * broken hardware, send it back and we'll give you
+		 * properly functioning parts"
+		 */
+		break;
+	case 0x25:
+	case 0x31:
+		srmmu_modtype = Swift_bad_c;
+		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
+		/*
+		 * You see Sun allude to this hardware bug but never
+		 * admit things directly, they'll say things like,
+		 * "the Swift chip cache problems" or similar.
+		 */
+		break;
+	default:
+		srmmu_modtype = Swift_ok;
+		break;
+	}
+
+	sparc32_cachetlb_ops = &swift_ops;
+	flush_page_for_dma_global = 0;
+
+	/*
+	 * Are you now convinced that the Swift is one of the
+	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
+	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
+	 * you examined the microcode of the Swift you'd find
+	 * XXX's all over the place.
+	 */
+	poke_srmmu = poke_swift;
+}
+
+static void turbosparc_flush_cache_all(void)
+{
+	flush_user_windows();
+	turbosparc_idflash_clear();
+}
+
+static void turbosparc_flush_cache_mm(struct mm_struct *mm)
+{
+	FLUSH_BEGIN(mm)
+	flush_user_windows();
+	turbosparc_idflash_clear();
+	FLUSH_END
+}
+
+static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
+{
+	FLUSH_BEGIN(vma->vm_mm)
+	flush_user_windows();
+	turbosparc_idflash_clear();
+	FLUSH_END
+}
+
+static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
+{
+	FLUSH_BEGIN(vma->vm_mm)
+	flush_user_windows();
+	if (vma->vm_flags & VM_EXEC)
+		turbosparc_flush_icache();
+	turbosparc_flush_dcache();
+	FLUSH_END
+}
+
+/* TurboSparc is copy-back, if we turn it on, but this does not work. */
+static void turbosparc_flush_page_to_ram(unsigned long page)
+{
+#ifdef TURBOSPARC_WRITEBACK
+	volatile unsigned long clear;
+
+	if (srmmu_probe(page))
+		turbosparc_flush_page_cache(page);
+	clear = srmmu_get_fstatus();
+#endif
+}
+
+static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
+{
+}
+
+static void turbosparc_flush_page_for_dma(unsigned long page)
+{
+	turbosparc_flush_dcache();
+}
+
+static void turbosparc_flush_tlb_all(void)
+{
+	srmmu_flush_whole_tlb();
+}
+
+static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
+{
+	FLUSH_BEGIN(mm)
+	srmmu_flush_whole_tlb();
+	FLUSH_END
+}
+
+static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
+{
+	FLUSH_BEGIN(vma->vm_mm)
+	srmmu_flush_whole_tlb();
+	FLUSH_END
+}
+
+static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
+{
+	FLUSH_BEGIN(vma->vm_mm)
+	srmmu_flush_whole_tlb();
+	FLUSH_END
+}
+
+
+static void poke_turbosparc(void)
+{
+	unsigned long mreg = srmmu_get_mmureg();
+	unsigned long ccreg;
+
+	/* Clear any crap from the cache or else... */
+	turbosparc_flush_cache_all();
+	/* Temporarily disable I & D caches */
+	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
+	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
+	srmmu_set_mmureg(mreg);
+
+	ccreg = turbosparc_get_ccreg();
+
+#ifdef TURBOSPARC_WRITEBACK
+	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
+	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
+			/* Write-back D-cache, emulate VLSI
+			 * abortion number three, not number one */
+#else
+	/* For now let's play safe, optimize later */
+	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
+			/* Do DVMA snooping in Dcache, Write-thru D-cache */
+	ccreg &= ~(TURBOSPARC_uS2);
+			/* Emulate VLSI abortion number three, not number one */
+#endif
+
+	switch (ccreg & 7) {
+	case 0: /* No SE cache */
+	case 7: /* Test mode */
+		break;
+	default:
+		ccreg |= (TURBOSPARC_SCENABLE);
+	}
+	turbosparc_set_ccreg(ccreg);
+
+	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
+	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
+	srmmu_set_mmureg(mreg);
+}
+
+static const struct sparc32_cachetlb_ops turbosparc_ops = {
+	.cache_all	= turbosparc_flush_cache_all,
+	.cache_mm	= turbosparc_flush_cache_mm,
+	.cache_page	= turbosparc_flush_cache_page,
+	.cache_range	= turbosparc_flush_cache_range,
+	.tlb_all	= turbosparc_flush_tlb_all,
+	.tlb_mm		= turbosparc_flush_tlb_mm,
+	.tlb_page	= turbosparc_flush_tlb_page,
+	.tlb_range	= turbosparc_flush_tlb_range,
+	.page_to_ram	= turbosparc_flush_page_to_ram,
+	.sig_insns	= turbosparc_flush_sig_insns,
+	.page_for_dma	= turbosparc_flush_page_for_dma,
+};
+
+static void __init init_turbosparc(void)
+{
+	srmmu_name = "Fujitsu TurboSparc";
+	srmmu_modtype = TurboSparc;
+	sparc32_cachetlb_ops = &turbosparc_ops;
+	poke_srmmu = poke_turbosparc;
+}
+
+static void poke_tsunami(void)
+{
+	unsigned long mreg = srmmu_get_mmureg();
+
+	tsunami_flush_icache();
+	tsunami_flush_dcache();
+	mreg &= ~TSUNAMI_ITD;
+	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
+	srmmu_set_mmureg(mreg);
+}
+
+static const struct sparc32_cachetlb_ops tsunami_ops = {
+	.cache_all	= tsunami_flush_cache_all,
+	.cache_mm	= tsunami_flush_cache_mm,
+	.cache_page	= tsunami_flush_cache_page,
+	.cache_range	= tsunami_flush_cache_range,
+	.tlb_all	= tsunami_flush_tlb_all,
+	.tlb_mm		= tsunami_flush_tlb_mm,
+	.tlb_page	= tsunami_flush_tlb_page,
+	.tlb_range	= tsunami_flush_tlb_range,
+	.page_to_ram	= tsunami_flush_page_to_ram,
+	.sig_insns	= tsunami_flush_sig_insns,
+	.page_for_dma	= tsunami_flush_page_for_dma,
+};
+
+static void __init init_tsunami(void)
+{
+	/*
+	 * Tsunami's pretty sane, Sun and TI actually got it
+	 * somewhat right this time.  Fujitsu should have
+	 * taken some lessons from them.
+	 */
+
+	srmmu_name = "TI Tsunami";
+	srmmu_modtype = Tsunami;
+	sparc32_cachetlb_ops = &tsunami_ops;
+	poke_srmmu = poke_tsunami;
+
+	tsunami_setup_blockops();
+}
+
+static void poke_viking(void)
+{
+	unsigned long mreg = srmmu_get_mmureg();
+	static int smp_catch;
+
+	if (viking_mxcc_present) {
+		unsigned long mxcc_control = mxcc_get_creg();
+
+		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
+		mxcc_control &= ~(MXCC_CTL_RRC);
+		mxcc_set_creg(mxcc_control);
+
+		/*
+		 * We don't need memory parity checks.
+		 * XXX This is a mess, have to dig out later. ecd.
+		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
+		 */
+
+		/* We do cache ptables on MXCC. */
+		mreg |= VIKING_TCENABLE;
+	} else {
+		unsigned long bpreg;
+
+		mreg &= ~(VIKING_TCENABLE);
+		if (smp_catch++) {
+			/* Must disable mixed-cmd mode here for other cpu's. */
+			bpreg = viking_get_bpreg();
+			bpreg &= ~(VIKING_ACTION_MIX);
+			viking_set_bpreg(bpreg);
+
+			/* Just in case PROM does something funny. */
+			msi_set_sync();
+		}
+	}
+
+	mreg |= VIKING_SPENABLE;
+	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
+	mreg |= VIKING_SBENABLE;
+	mreg &= ~(VIKING_ACENABLE);
+	srmmu_set_mmureg(mreg);
+}
+
+static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
+	.cache_all	= viking_flush_cache_all,
+	.cache_mm	= viking_flush_cache_mm,
+	.cache_page	= viking_flush_cache_page,
+	.cache_range	= viking_flush_cache_range,
+	.tlb_all	= viking_flush_tlb_all,
+	.tlb_mm		= viking_flush_tlb_mm,
+	.tlb_page	= viking_flush_tlb_page,
+	.tlb_range	= viking_flush_tlb_range,
+	.page_to_ram	= viking_flush_page_to_ram,
+	.sig_insns	= viking_flush_sig_insns,
+	.page_for_dma	= viking_flush_page_for_dma,
+};
+
+#ifdef CONFIG_SMP
+/* On sun4d the cpu broadcasts local TLB flushes, so we can just
+ * perform the local TLB flush and all the other cpus will see it.
+ * But, unfortunately, there is a bug in the sun4d XBUS backplane
+ * that requires that we add some synchronization to these flushes.
+ *
+ * The bug is that the fifo which keeps track of all the pending TLB
+ * broadcasts in the system is an entry or two too small, so if we
+ * have too many going at once we'll overflow that fifo and lose a TLB
+ * flush resulting in corruption.
+ *
+ * Our workaround is to take a global spinlock around the TLB flushes,
+ * which guarentees we won't ever have too many pending.  It's a big
+ * hammer, but a semaphore like system to make sure we only have N TLB
+ * flushes going at once will require SMP locking anyways so there's
+ * no real value in trying any harder than this.
+ */
+static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
+	.cache_all	= viking_flush_cache_all,
+	.cache_mm	= viking_flush_cache_mm,
+	.cache_page	= viking_flush_cache_page,
+	.cache_range	= viking_flush_cache_range,
+	.tlb_all	= sun4dsmp_flush_tlb_all,
+	.tlb_mm		= sun4dsmp_flush_tlb_mm,
+	.tlb_page	= sun4dsmp_flush_tlb_page,
+	.tlb_range	= sun4dsmp_flush_tlb_range,
+	.page_to_ram	= viking_flush_page_to_ram,
+	.sig_insns	= viking_flush_sig_insns,
+	.page_for_dma	= viking_flush_page_for_dma,
+};
+#endif
+
+static void __init init_viking(void)
+{
+	unsigned long mreg = srmmu_get_mmureg();
+
+	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
+	if (mreg & VIKING_MMODE) {
+		srmmu_name = "TI Viking";
+		viking_mxcc_present = 0;
+		msi_set_sync();
+
+		/*
+		 * We need this to make sure old viking takes no hits
+		 * on it's cache for dma snoops to workaround the
+		 * "load from non-cacheable memory" interrupt bug.
+		 * This is only necessary because of the new way in
+		 * which we use the IOMMU.
+		 */
+		viking_ops.page_for_dma = viking_flush_page;
+#ifdef CONFIG_SMP
+		viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
+#endif
+		flush_page_for_dma_global = 0;
+	} else {
+		srmmu_name = "TI Viking/MXCC";
+		viking_mxcc_present = 1;
+		srmmu_cache_pagetables = 1;
+	}
+
+	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
+		&viking_ops;
+#ifdef CONFIG_SMP
+	if (sparc_cpu_model == sun4d)
+		sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
+			&viking_sun4d_smp_ops;
+#endif
+
+	poke_srmmu = poke_viking;
+}
+
+/* Probe for the srmmu chip version. */
+static void __init get_srmmu_type(void)
+{
+	unsigned long mreg, psr;
+	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
+
+	srmmu_modtype = SRMMU_INVAL_MOD;
+	hwbug_bitmask = 0;
+
+	mreg = srmmu_get_mmureg(); psr = get_psr();
+	mod_typ = (mreg & 0xf0000000) >> 28;
+	mod_rev = (mreg & 0x0f000000) >> 24;
+	psr_typ = (psr >> 28) & 0xf;
+	psr_vers = (psr >> 24) & 0xf;
+
+	/* First, check for sparc-leon. */
+	if (sparc_cpu_model == sparc_leon) {
+		init_leon();
+		return;
+	}
+
+	/* Second, check for HyperSparc or Cypress. */
+	if (mod_typ == 1) {
+		switch (mod_rev) {
+		case 7:
+			/* UP or MP Hypersparc */
+			init_hypersparc();
+			break;
+		case 0:
+		case 2:
+		case 10:
+		case 11:
+		case 12:
+		case 13:
+		case 14:
+		case 15:
+		default:
+			prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
+			prom_halt();
+			break;
+		}
+		return;
+	}
+
+	/* Now Fujitsu TurboSparc. It might happen that it is
+	 * in Swift emulation mode, so we will check later...
+	 */
+	if (psr_typ == 0 && psr_vers == 5) {
+		init_turbosparc();
+		return;
+	}
+
+	/* Next check for Fujitsu Swift. */
+	if (psr_typ == 0 && psr_vers == 4) {
+		phandle cpunode;
+		char node_str[128];
+
+		/* Look if it is not a TurboSparc emulating Swift... */
+		cpunode = prom_getchild(prom_root_node);
+		while ((cpunode = prom_getsibling(cpunode)) != 0) {
+			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
+			if (!strcmp(node_str, "cpu")) {
+				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
+				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
+					init_turbosparc();
+					return;
+				}
+				break;
+			}
+		}
+
+		init_swift();
+		return;
+	}
+
+	/* Now the Viking family of srmmu. */
+	if (psr_typ == 4 &&
+	   ((psr_vers == 0) ||
+	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
+		init_viking();
+		return;
+	}
+
+	/* Finally the Tsunami. */
+	if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
+		init_tsunami();
+		return;
+	}
+
+	/* Oh well */
+	srmmu_is_bad();
+}
+
+#ifdef CONFIG_SMP
+/* Local cross-calls. */
+static void smp_flush_page_for_dma(unsigned long page)
+{
+	xc1((smpfunc_t) local_ops->page_for_dma, page);
+	local_ops->page_for_dma(page);
+}
+
+static void smp_flush_cache_all(void)
+{
+	xc0((smpfunc_t) local_ops->cache_all);
+	local_ops->cache_all();
+}
+
+static void smp_flush_tlb_all(void)
+{
+	xc0((smpfunc_t) local_ops->tlb_all);
+	local_ops->tlb_all();
+}
+
+static void smp_flush_cache_mm(struct mm_struct *mm)
+{
+	if (mm->context != NO_CONTEXT) {
+		cpumask_t cpu_mask;
+		cpumask_copy(&cpu_mask, mm_cpumask(mm));
+		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
+		if (!cpumask_empty(&cpu_mask))
+			xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
+		local_ops->cache_mm(mm);
+	}
+}
+
+static void smp_flush_tlb_mm(struct mm_struct *mm)
+{
+	if (mm->context != NO_CONTEXT) {
+		cpumask_t cpu_mask;
+		cpumask_copy(&cpu_mask, mm_cpumask(mm));
+		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
+		if (!cpumask_empty(&cpu_mask)) {
+			xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
+			if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
+				cpumask_copy(mm_cpumask(mm),
+					     cpumask_of(smp_processor_id()));
+		}
+		local_ops->tlb_mm(mm);
+	}
+}
+
+static void smp_flush_cache_range(struct vm_area_struct *vma,
+				  unsigned long start,
+				  unsigned long end)
+{
+	struct mm_struct *mm = vma->vm_mm;
+
+	if (mm->context != NO_CONTEXT) {
+		cpumask_t cpu_mask;
+		cpumask_copy(&cpu_mask, mm_cpumask(mm));
+		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
+		if (!cpumask_empty(&cpu_mask))
+			xc3((smpfunc_t) local_ops->cache_range,
+			    (unsigned long) vma, start, end);
+		local_ops->cache_range(vma, start, end);
+	}
+}
+
+static void smp_flush_tlb_range(struct vm_area_struct *vma,
+				unsigned long start,
+				unsigned long end)
+{
+	struct mm_struct *mm = vma->vm_mm;
+
+	if (mm->context != NO_CONTEXT) {
+		cpumask_t cpu_mask;
+		cpumask_copy(&cpu_mask, mm_cpumask(mm));
+		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
+		if (!cpumask_empty(&cpu_mask))
+			xc3((smpfunc_t) local_ops->tlb_range,
+			    (unsigned long) vma, start, end);
+		local_ops->tlb_range(vma, start, end);
+	}
+}
+
+static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
+{
+	struct mm_struct *mm = vma->vm_mm;
+
+	if (mm->context != NO_CONTEXT) {
+		cpumask_t cpu_mask;
+		cpumask_copy(&cpu_mask, mm_cpumask(mm));
+		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
+		if (!cpumask_empty(&cpu_mask))
+			xc2((smpfunc_t) local_ops->cache_page,
+			    (unsigned long) vma, page);
+		local_ops->cache_page(vma, page);
+	}
+}
+
+static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
+{
+	struct mm_struct *mm = vma->vm_mm;
+
+	if (mm->context != NO_CONTEXT) {
+		cpumask_t cpu_mask;
+		cpumask_copy(&cpu_mask, mm_cpumask(mm));
+		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
+		if (!cpumask_empty(&cpu_mask))
+			xc2((smpfunc_t) local_ops->tlb_page,
+			    (unsigned long) vma, page);
+		local_ops->tlb_page(vma, page);
+	}
+}
+
+static void smp_flush_page_to_ram(unsigned long page)
+{
+	/* Current theory is that those who call this are the one's
+	 * who have just dirtied their cache with the pages contents
+	 * in kernel space, therefore we only run this on local cpu.
+	 *
+	 * XXX This experiment failed, research further... -DaveM
+	 */
+#if 1
+	xc1((smpfunc_t) local_ops->page_to_ram, page);
+#endif
+	local_ops->page_to_ram(page);
+}
+
+static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
+{
+	cpumask_t cpu_mask;
+	cpumask_copy(&cpu_mask, mm_cpumask(mm));
+	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
+	if (!cpumask_empty(&cpu_mask))
+		xc2((smpfunc_t) local_ops->sig_insns,
+		    (unsigned long) mm, insn_addr);
+	local_ops->sig_insns(mm, insn_addr);
+}
+
+static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
+	.cache_all	= smp_flush_cache_all,
+	.cache_mm	= smp_flush_cache_mm,
+	.cache_page	= smp_flush_cache_page,
+	.cache_range	= smp_flush_cache_range,
+	.tlb_all	= smp_flush_tlb_all,
+	.tlb_mm		= smp_flush_tlb_mm,
+	.tlb_page	= smp_flush_tlb_page,
+	.tlb_range	= smp_flush_tlb_range,
+	.page_to_ram	= smp_flush_page_to_ram,
+	.sig_insns	= smp_flush_sig_insns,
+	.page_for_dma	= smp_flush_page_for_dma,
+};
+#endif
+
+/* Load up routines and constants for sun4m and sun4d mmu */
+void __init load_mmu(void)
+{
+	/* Functions */
+	get_srmmu_type();
+
+#ifdef CONFIG_SMP
+	/* El switcheroo... */
+	local_ops = sparc32_cachetlb_ops;
+
+	if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
+		smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
+		smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
+		smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
+		smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
+	}
+
+	if (poke_srmmu == poke_viking) {
+		/* Avoid unnecessary cross calls. */
+		smp_cachetlb_ops.cache_all = local_ops->cache_all;
+		smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
+		smp_cachetlb_ops.cache_range = local_ops->cache_range;
+		smp_cachetlb_ops.cache_page = local_ops->cache_page;
+
+		smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
+		smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
+		smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
+	}
+
+	/* It really is const after this point. */
+	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
+		&smp_cachetlb_ops;
+#endif
+
+	if (sparc_cpu_model == sun4d)
+		ld_mmu_iounit();
+	else
+		ld_mmu_iommu();
+#ifdef CONFIG_SMP
+	if (sparc_cpu_model == sun4d)
+		sun4d_init_smp();
+	else if (sparc_cpu_model == sparc_leon)
+		leon_init_smp();
+	else
+		sun4m_init_smp();
+#endif
+}