Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * linux/arch/arm/mm/mmu.c |
| 3 | * |
| 4 | * Copyright (C) 1995-2005 Russell King |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU General Public License version 2 as |
| 8 | * published by the Free Software Foundation. |
| 9 | */ |
| 10 | #include <linux/module.h> |
| 11 | #include <linux/kernel.h> |
| 12 | #include <linux/errno.h> |
| 13 | #include <linux/init.h> |
| 14 | #include <linux/mman.h> |
| 15 | #include <linux/nodemask.h> |
| 16 | #include <linux/memblock.h> |
| 17 | #include <linux/fs.h> |
| 18 | #include <linux/vmalloc.h> |
| 19 | #include <linux/sizes.h> |
| 20 | |
| 21 | #include <asm/cp15.h> |
| 22 | #include <asm/cputype.h> |
| 23 | #include <asm/sections.h> |
| 24 | #include <asm/cachetype.h> |
| 25 | #include <asm/fixmap.h> |
| 26 | #include <asm/sections.h> |
| 27 | #include <asm/setup.h> |
| 28 | #include <asm/smp_plat.h> |
| 29 | #include <asm/tlb.h> |
| 30 | #include <asm/highmem.h> |
| 31 | #include <asm/system_info.h> |
| 32 | #include <asm/traps.h> |
| 33 | #include <asm/procinfo.h> |
| 34 | #include <asm/memory.h> |
| 35 | |
| 36 | #include <asm/mach/arch.h> |
| 37 | #include <asm/mach/map.h> |
| 38 | #include <asm/mach/pci.h> |
| 39 | #include <asm/fixmap.h> |
| 40 | |
| 41 | #include "fault.h" |
| 42 | #include "mm.h" |
| 43 | #include "tcm.h" |
| 44 | |
| 45 | /* |
| 46 | * empty_zero_page is a special page that is used for |
| 47 | * zero-initialized data and COW. |
| 48 | */ |
| 49 | struct page *empty_zero_page; |
| 50 | EXPORT_SYMBOL(empty_zero_page); |
| 51 | |
| 52 | /* |
| 53 | * The pmd table for the upper-most set of pages. |
| 54 | */ |
| 55 | pmd_t *top_pmd; |
| 56 | |
| 57 | pmdval_t user_pmd_table = _PAGE_USER_TABLE; |
| 58 | |
| 59 | #define CPOLICY_UNCACHED 0 |
| 60 | #define CPOLICY_BUFFERED 1 |
| 61 | #define CPOLICY_WRITETHROUGH 2 |
| 62 | #define CPOLICY_WRITEBACK 3 |
| 63 | #define CPOLICY_WRITEALLOC 4 |
| 64 | |
| 65 | static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK; |
| 66 | static unsigned int ecc_mask __initdata = 0; |
| 67 | pgprot_t pgprot_user; |
| 68 | pgprot_t pgprot_kernel; |
| 69 | pgprot_t pgprot_hyp_device; |
| 70 | pgprot_t pgprot_s2; |
| 71 | pgprot_t pgprot_s2_device; |
| 72 | |
| 73 | EXPORT_SYMBOL(pgprot_user); |
| 74 | EXPORT_SYMBOL(pgprot_kernel); |
| 75 | |
| 76 | struct cachepolicy { |
| 77 | const char policy[16]; |
| 78 | unsigned int cr_mask; |
| 79 | pmdval_t pmd; |
| 80 | pteval_t pte; |
| 81 | pteval_t pte_s2; |
| 82 | }; |
| 83 | |
| 84 | #ifdef CONFIG_ARM_LPAE |
| 85 | #define s2_policy(policy) policy |
| 86 | #else |
| 87 | #define s2_policy(policy) 0 |
| 88 | #endif |
| 89 | |
| 90 | unsigned long kimage_voffset __ro_after_init; |
| 91 | |
| 92 | static struct cachepolicy cache_policies[] __initdata = { |
| 93 | { |
| 94 | .policy = "uncached", |
| 95 | .cr_mask = CR_W|CR_C, |
| 96 | .pmd = PMD_SECT_UNCACHED, |
| 97 | .pte = L_PTE_MT_UNCACHED, |
| 98 | .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED), |
| 99 | }, { |
| 100 | .policy = "buffered", |
| 101 | .cr_mask = CR_C, |
| 102 | .pmd = PMD_SECT_BUFFERED, |
| 103 | .pte = L_PTE_MT_BUFFERABLE, |
| 104 | .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED), |
| 105 | }, { |
| 106 | .policy = "writethrough", |
| 107 | .cr_mask = 0, |
| 108 | .pmd = PMD_SECT_WT, |
| 109 | .pte = L_PTE_MT_WRITETHROUGH, |
| 110 | .pte_s2 = s2_policy(L_PTE_S2_MT_WRITETHROUGH), |
| 111 | }, { |
| 112 | .policy = "writeback", |
| 113 | .cr_mask = 0, |
| 114 | .pmd = PMD_SECT_WB, |
| 115 | .pte = L_PTE_MT_WRITEBACK, |
| 116 | .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK), |
| 117 | }, { |
| 118 | .policy = "writealloc", |
| 119 | .cr_mask = 0, |
| 120 | .pmd = PMD_SECT_WBWA, |
| 121 | .pte = L_PTE_MT_WRITEALLOC, |
| 122 | .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK), |
| 123 | } |
| 124 | }; |
| 125 | |
| 126 | #ifdef CONFIG_CPU_CP15 |
| 127 | static unsigned long initial_pmd_value __initdata = 0; |
| 128 | |
| 129 | /* |
| 130 | * Initialise the cache_policy variable with the initial state specified |
| 131 | * via the "pmd" value. This is used to ensure that on ARMv6 and later, |
| 132 | * the C code sets the page tables up with the same policy as the head |
| 133 | * assembly code, which avoids an illegal state where the TLBs can get |
| 134 | * confused. See comments in early_cachepolicy() for more information. |
| 135 | */ |
| 136 | void __init init_default_cache_policy(unsigned long pmd) |
| 137 | { |
| 138 | int i; |
| 139 | |
| 140 | initial_pmd_value = pmd; |
| 141 | |
| 142 | pmd &= PMD_SECT_CACHE_MASK; |
| 143 | |
| 144 | for (i = 0; i < ARRAY_SIZE(cache_policies); i++) |
| 145 | if (cache_policies[i].pmd == pmd) { |
| 146 | cachepolicy = i; |
| 147 | break; |
| 148 | } |
| 149 | |
| 150 | if (i == ARRAY_SIZE(cache_policies)) |
| 151 | pr_err("ERROR: could not find cache policy\n"); |
| 152 | } |
| 153 | |
| 154 | /* |
| 155 | * These are useful for identifying cache coherency problems by allowing |
| 156 | * the cache or the cache and writebuffer to be turned off. (Note: the |
| 157 | * write buffer should not be on and the cache off). |
| 158 | */ |
| 159 | static int __init early_cachepolicy(char *p) |
| 160 | { |
| 161 | int i, selected = -1; |
| 162 | |
| 163 | for (i = 0; i < ARRAY_SIZE(cache_policies); i++) { |
| 164 | int len = strlen(cache_policies[i].policy); |
| 165 | |
| 166 | if (memcmp(p, cache_policies[i].policy, len) == 0) { |
| 167 | selected = i; |
| 168 | break; |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | if (selected == -1) |
| 173 | pr_err("ERROR: unknown or unsupported cache policy\n"); |
| 174 | |
| 175 | /* |
| 176 | * This restriction is partly to do with the way we boot; it is |
| 177 | * unpredictable to have memory mapped using two different sets of |
| 178 | * memory attributes (shared, type, and cache attribs). We can not |
| 179 | * change these attributes once the initial assembly has setup the |
| 180 | * page tables. |
| 181 | */ |
| 182 | if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) { |
| 183 | pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n", |
| 184 | cache_policies[cachepolicy].policy); |
| 185 | return 0; |
| 186 | } |
| 187 | |
| 188 | if (selected != cachepolicy) { |
| 189 | unsigned long cr = __clear_cr(cache_policies[selected].cr_mask); |
| 190 | cachepolicy = selected; |
| 191 | flush_cache_all(); |
| 192 | set_cr(cr); |
| 193 | } |
| 194 | return 0; |
| 195 | } |
| 196 | early_param("cachepolicy", early_cachepolicy); |
| 197 | |
| 198 | static int __init early_nocache(char *__unused) |
| 199 | { |
| 200 | char *p = "buffered"; |
| 201 | pr_warn("nocache is deprecated; use cachepolicy=%s\n", p); |
| 202 | early_cachepolicy(p); |
| 203 | return 0; |
| 204 | } |
| 205 | early_param("nocache", early_nocache); |
| 206 | |
| 207 | static int __init early_nowrite(char *__unused) |
| 208 | { |
| 209 | char *p = "uncached"; |
| 210 | pr_warn("nowb is deprecated; use cachepolicy=%s\n", p); |
| 211 | early_cachepolicy(p); |
| 212 | return 0; |
| 213 | } |
| 214 | early_param("nowb", early_nowrite); |
| 215 | |
| 216 | #ifndef CONFIG_ARM_LPAE |
| 217 | static int __init early_ecc(char *p) |
| 218 | { |
| 219 | if (memcmp(p, "on", 2) == 0) |
| 220 | ecc_mask = PMD_PROTECTION; |
| 221 | else if (memcmp(p, "off", 3) == 0) |
| 222 | ecc_mask = 0; |
| 223 | return 0; |
| 224 | } |
| 225 | early_param("ecc", early_ecc); |
| 226 | #endif |
| 227 | |
| 228 | #else /* ifdef CONFIG_CPU_CP15 */ |
| 229 | |
| 230 | static int __init early_cachepolicy(char *p) |
| 231 | { |
| 232 | pr_warn("cachepolicy kernel parameter not supported without cp15\n"); |
| 233 | } |
| 234 | early_param("cachepolicy", early_cachepolicy); |
| 235 | |
| 236 | static int __init noalign_setup(char *__unused) |
| 237 | { |
| 238 | pr_warn("noalign kernel parameter not supported without cp15\n"); |
| 239 | } |
| 240 | __setup("noalign", noalign_setup); |
| 241 | |
| 242 | #endif /* ifdef CONFIG_CPU_CP15 / else */ |
| 243 | |
| 244 | #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN |
| 245 | #define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE |
| 246 | #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE |
| 247 | |
| 248 | static struct mem_type mem_types[] __ro_after_init = { |
| 249 | [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */ |
| 250 | .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED | |
| 251 | L_PTE_SHARED, |
| 252 | .prot_pte_s2 = s2_policy(PROT_PTE_S2_DEVICE) | |
| 253 | s2_policy(L_PTE_S2_MT_DEV_SHARED) | |
| 254 | L_PTE_SHARED, |
| 255 | .prot_l1 = PMD_TYPE_TABLE, |
| 256 | .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S, |
| 257 | .domain = DOMAIN_IO, |
| 258 | }, |
| 259 | [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */ |
| 260 | .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED, |
| 261 | .prot_l1 = PMD_TYPE_TABLE, |
| 262 | .prot_sect = PROT_SECT_DEVICE, |
| 263 | .domain = DOMAIN_IO, |
| 264 | }, |
| 265 | [MT_DEVICE_CACHED] = { /* ioremap_cached */ |
| 266 | .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED, |
| 267 | .prot_l1 = PMD_TYPE_TABLE, |
| 268 | .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB, |
| 269 | .domain = DOMAIN_IO, |
| 270 | }, |
| 271 | [MT_DEVICE_WC] = { /* ioremap_wc */ |
| 272 | .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC, |
| 273 | .prot_l1 = PMD_TYPE_TABLE, |
| 274 | .prot_sect = PROT_SECT_DEVICE, |
| 275 | .domain = DOMAIN_IO, |
| 276 | }, |
| 277 | [MT_UNCACHED] = { |
| 278 | .prot_pte = PROT_PTE_DEVICE, |
| 279 | .prot_l1 = PMD_TYPE_TABLE, |
| 280 | .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, |
| 281 | .domain = DOMAIN_IO, |
| 282 | }, |
| 283 | [MT_CACHECLEAN] = { |
| 284 | .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, |
| 285 | .domain = DOMAIN_KERNEL, |
| 286 | }, |
| 287 | #ifndef CONFIG_ARM_LPAE |
| 288 | [MT_MINICLEAN] = { |
| 289 | .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE, |
| 290 | .domain = DOMAIN_KERNEL, |
| 291 | }, |
| 292 | #endif |
| 293 | [MT_LOW_VECTORS] = { |
| 294 | .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | |
| 295 | L_PTE_RDONLY, |
| 296 | .prot_l1 = PMD_TYPE_TABLE, |
| 297 | .domain = DOMAIN_VECTORS, |
| 298 | }, |
| 299 | [MT_HIGH_VECTORS] = { |
| 300 | .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | |
| 301 | L_PTE_USER | L_PTE_RDONLY, |
| 302 | .prot_l1 = PMD_TYPE_TABLE, |
| 303 | .domain = DOMAIN_VECTORS, |
| 304 | }, |
| 305 | [MT_MEMORY_RWX] = { |
| 306 | .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY, |
| 307 | .prot_l1 = PMD_TYPE_TABLE, |
| 308 | .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, |
| 309 | .domain = DOMAIN_KERNEL, |
| 310 | }, |
| 311 | [MT_MEMORY_RW] = { |
| 312 | .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | |
| 313 | L_PTE_XN, |
| 314 | .prot_l1 = PMD_TYPE_TABLE, |
| 315 | .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, |
| 316 | .domain = DOMAIN_KERNEL, |
| 317 | }, |
| 318 | [MT_ROM] = { |
| 319 | .prot_sect = PMD_TYPE_SECT, |
| 320 | .domain = DOMAIN_KERNEL, |
| 321 | }, |
| 322 | [MT_MEMORY_RWX_NONCACHED] = { |
| 323 | .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | |
| 324 | L_PTE_MT_BUFFERABLE, |
| 325 | .prot_l1 = PMD_TYPE_TABLE, |
| 326 | .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, |
| 327 | .domain = DOMAIN_KERNEL, |
| 328 | }, |
| 329 | [MT_MEMORY_RW_DTCM] = { |
| 330 | .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | |
| 331 | L_PTE_XN, |
| 332 | .prot_l1 = PMD_TYPE_TABLE, |
| 333 | .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, |
| 334 | .domain = DOMAIN_KERNEL, |
| 335 | }, |
| 336 | [MT_MEMORY_RWX_ITCM] = { |
| 337 | .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY, |
| 338 | .prot_l1 = PMD_TYPE_TABLE, |
| 339 | .domain = DOMAIN_KERNEL, |
| 340 | }, |
| 341 | [MT_MEMORY_RW_SO] = { |
| 342 | .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | |
| 343 | L_PTE_MT_UNCACHED | L_PTE_XN, |
| 344 | .prot_l1 = PMD_TYPE_TABLE, |
| 345 | .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S | |
| 346 | PMD_SECT_UNCACHED | PMD_SECT_XN, |
| 347 | .domain = DOMAIN_KERNEL, |
| 348 | }, |
| 349 | [MT_MEMORY_DMA_READY] = { |
| 350 | .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | |
| 351 | L_PTE_XN, |
| 352 | .prot_l1 = PMD_TYPE_TABLE, |
| 353 | .domain = DOMAIN_KERNEL, |
| 354 | }, |
| 355 | }; |
| 356 | |
| 357 | const struct mem_type *get_mem_type(unsigned int type) |
| 358 | { |
| 359 | return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL; |
| 360 | } |
| 361 | EXPORT_SYMBOL(get_mem_type); |
| 362 | |
| 363 | static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr); |
| 364 | |
| 365 | static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS] |
| 366 | __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata; |
| 367 | |
| 368 | static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr) |
| 369 | { |
| 370 | return &bm_pte[pte_index(addr)]; |
| 371 | } |
| 372 | |
| 373 | static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr) |
| 374 | { |
| 375 | return pte_offset_kernel(dir, addr); |
| 376 | } |
| 377 | |
| 378 | static inline pmd_t * __init fixmap_pmd(unsigned long addr) |
| 379 | { |
| 380 | pgd_t *pgd = pgd_offset_k(addr); |
| 381 | pud_t *pud = pud_offset(pgd, addr); |
| 382 | pmd_t *pmd = pmd_offset(pud, addr); |
| 383 | |
| 384 | return pmd; |
| 385 | } |
| 386 | |
| 387 | void __init early_fixmap_init(void) |
| 388 | { |
| 389 | pmd_t *pmd; |
| 390 | |
| 391 | /* |
| 392 | * The early fixmap range spans multiple pmds, for which |
| 393 | * we are not prepared: |
| 394 | */ |
| 395 | BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT) |
| 396 | != FIXADDR_TOP >> PMD_SHIFT); |
| 397 | |
| 398 | pmd = fixmap_pmd(FIXADDR_TOP); |
| 399 | pmd_populate_kernel(&init_mm, pmd, bm_pte); |
| 400 | |
| 401 | pte_offset_fixmap = pte_offset_early_fixmap; |
| 402 | } |
| 403 | |
| 404 | /* |
| 405 | * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range(). |
| 406 | * As a result, this can only be called with preemption disabled, as under |
| 407 | * stop_machine(). |
| 408 | */ |
| 409 | void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot) |
| 410 | { |
| 411 | unsigned long vaddr = __fix_to_virt(idx); |
| 412 | pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr); |
| 413 | |
| 414 | /* Make sure fixmap region does not exceed available allocation. */ |
| 415 | BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) > |
| 416 | FIXADDR_END); |
| 417 | BUG_ON(idx >= __end_of_fixed_addresses); |
| 418 | |
| 419 | /* we only support device mappings until pgprot_kernel has been set */ |
| 420 | if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) && |
| 421 | pgprot_val(pgprot_kernel) == 0)) |
| 422 | return; |
| 423 | |
| 424 | if (pgprot_val(prot)) |
| 425 | set_pte_at(NULL, vaddr, pte, |
| 426 | pfn_pte(phys >> PAGE_SHIFT, prot)); |
| 427 | else |
| 428 | pte_clear(NULL, vaddr, pte); |
| 429 | local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE); |
| 430 | } |
| 431 | |
| 432 | /* |
| 433 | * Adjust the PMD section entries according to the CPU in use. |
| 434 | */ |
| 435 | static void __init build_mem_type_table(void) |
| 436 | { |
| 437 | struct cachepolicy *cp; |
| 438 | unsigned int cr = get_cr(); |
| 439 | pteval_t user_pgprot, kern_pgprot, vecs_pgprot; |
| 440 | pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot; |
| 441 | int cpu_arch = cpu_architecture(); |
| 442 | int i; |
| 443 | |
| 444 | if (cpu_arch < CPU_ARCH_ARMv6) { |
| 445 | #if defined(CONFIG_CPU_DCACHE_DISABLE) |
| 446 | if (cachepolicy > CPOLICY_BUFFERED) |
| 447 | cachepolicy = CPOLICY_BUFFERED; |
| 448 | #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH) |
| 449 | if (cachepolicy > CPOLICY_WRITETHROUGH) |
| 450 | cachepolicy = CPOLICY_WRITETHROUGH; |
| 451 | #endif |
| 452 | } |
| 453 | if (cpu_arch < CPU_ARCH_ARMv5) { |
| 454 | if (cachepolicy >= CPOLICY_WRITEALLOC) |
| 455 | cachepolicy = CPOLICY_WRITEBACK; |
| 456 | ecc_mask = 0; |
| 457 | } |
| 458 | |
| 459 | if (is_smp()) { |
| 460 | if (cachepolicy != CPOLICY_WRITEALLOC) { |
| 461 | pr_warn("Forcing write-allocate cache policy for SMP\n"); |
| 462 | cachepolicy = CPOLICY_WRITEALLOC; |
| 463 | } |
| 464 | if (!(initial_pmd_value & PMD_SECT_S)) { |
| 465 | pr_warn("Forcing shared mappings for SMP\n"); |
| 466 | initial_pmd_value |= PMD_SECT_S; |
| 467 | } |
| 468 | } |
| 469 | |
| 470 | /* |
| 471 | * Strip out features not present on earlier architectures. |
| 472 | * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those |
| 473 | * without extended page tables don't have the 'Shared' bit. |
| 474 | */ |
| 475 | if (cpu_arch < CPU_ARCH_ARMv5) |
| 476 | for (i = 0; i < ARRAY_SIZE(mem_types); i++) |
| 477 | mem_types[i].prot_sect &= ~PMD_SECT_TEX(7); |
| 478 | if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3()) |
| 479 | for (i = 0; i < ARRAY_SIZE(mem_types); i++) |
| 480 | mem_types[i].prot_sect &= ~PMD_SECT_S; |
| 481 | |
| 482 | /* |
| 483 | * ARMv5 and lower, bit 4 must be set for page tables (was: cache |
| 484 | * "update-able on write" bit on ARM610). However, Xscale and |
| 485 | * Xscale3 require this bit to be cleared. |
| 486 | */ |
| 487 | if (cpu_is_xscale_family()) { |
| 488 | for (i = 0; i < ARRAY_SIZE(mem_types); i++) { |
| 489 | mem_types[i].prot_sect &= ~PMD_BIT4; |
| 490 | mem_types[i].prot_l1 &= ~PMD_BIT4; |
| 491 | } |
| 492 | } else if (cpu_arch < CPU_ARCH_ARMv6) { |
| 493 | for (i = 0; i < ARRAY_SIZE(mem_types); i++) { |
| 494 | if (mem_types[i].prot_l1) |
| 495 | mem_types[i].prot_l1 |= PMD_BIT4; |
| 496 | if (mem_types[i].prot_sect) |
| 497 | mem_types[i].prot_sect |= PMD_BIT4; |
| 498 | } |
| 499 | } |
| 500 | |
| 501 | /* |
| 502 | * Mark the device areas according to the CPU/architecture. |
| 503 | */ |
| 504 | if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) { |
| 505 | if (!cpu_is_xsc3()) { |
| 506 | /* |
| 507 | * Mark device regions on ARMv6+ as execute-never |
| 508 | * to prevent speculative instruction fetches. |
| 509 | */ |
| 510 | mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN; |
| 511 | mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN; |
| 512 | mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN; |
| 513 | mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN; |
| 514 | |
| 515 | /* Also setup NX memory mapping */ |
| 516 | mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN; |
| 517 | } |
| 518 | if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { |
| 519 | /* |
| 520 | * For ARMv7 with TEX remapping, |
| 521 | * - shared device is SXCB=1100 |
| 522 | * - nonshared device is SXCB=0100 |
| 523 | * - write combine device mem is SXCB=0001 |
| 524 | * (Uncached Normal memory) |
| 525 | */ |
| 526 | mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1); |
| 527 | mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1); |
| 528 | mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; |
| 529 | } else if (cpu_is_xsc3()) { |
| 530 | /* |
| 531 | * For Xscale3, |
| 532 | * - shared device is TEXCB=00101 |
| 533 | * - nonshared device is TEXCB=01000 |
| 534 | * - write combine device mem is TEXCB=00100 |
| 535 | * (Inner/Outer Uncacheable in xsc3 parlance) |
| 536 | */ |
| 537 | mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED; |
| 538 | mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); |
| 539 | mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); |
| 540 | } else { |
| 541 | /* |
| 542 | * For ARMv6 and ARMv7 without TEX remapping, |
| 543 | * - shared device is TEXCB=00001 |
| 544 | * - nonshared device is TEXCB=01000 |
| 545 | * - write combine device mem is TEXCB=00100 |
| 546 | * (Uncached Normal in ARMv6 parlance). |
| 547 | */ |
| 548 | mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED; |
| 549 | mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); |
| 550 | mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); |
| 551 | } |
| 552 | } else { |
| 553 | /* |
| 554 | * On others, write combining is "Uncached/Buffered" |
| 555 | */ |
| 556 | mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; |
| 557 | } |
| 558 | |
| 559 | /* |
| 560 | * Now deal with the memory-type mappings |
| 561 | */ |
| 562 | cp = &cache_policies[cachepolicy]; |
| 563 | vecs_pgprot = kern_pgprot = user_pgprot = cp->pte; |
| 564 | s2_pgprot = cp->pte_s2; |
| 565 | hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte; |
| 566 | s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2; |
| 567 | |
| 568 | #ifndef CONFIG_ARM_LPAE |
| 569 | /* |
| 570 | * We don't use domains on ARMv6 (since this causes problems with |
| 571 | * v6/v7 kernels), so we must use a separate memory type for user |
| 572 | * r/o, kernel r/w to map the vectors page. |
| 573 | */ |
| 574 | if (cpu_arch == CPU_ARCH_ARMv6) |
| 575 | vecs_pgprot |= L_PTE_MT_VECTORS; |
| 576 | |
| 577 | /* |
| 578 | * Check is it with support for the PXN bit |
| 579 | * in the Short-descriptor translation table format descriptors. |
| 580 | */ |
| 581 | if (cpu_arch == CPU_ARCH_ARMv7 && |
| 582 | (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) { |
| 583 | user_pmd_table |= PMD_PXNTABLE; |
| 584 | } |
| 585 | #endif |
| 586 | |
| 587 | /* |
| 588 | * ARMv6 and above have extended page tables. |
| 589 | */ |
| 590 | if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) { |
| 591 | #ifndef CONFIG_ARM_LPAE |
| 592 | /* |
| 593 | * Mark cache clean areas and XIP ROM read only |
| 594 | * from SVC mode and no access from userspace. |
| 595 | */ |
| 596 | mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; |
| 597 | mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; |
| 598 | mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; |
| 599 | #endif |
| 600 | |
| 601 | /* |
| 602 | * If the initial page tables were created with the S bit |
| 603 | * set, then we need to do the same here for the same |
| 604 | * reasons given in early_cachepolicy(). |
| 605 | */ |
| 606 | if (initial_pmd_value & PMD_SECT_S) { |
| 607 | user_pgprot |= L_PTE_SHARED; |
| 608 | kern_pgprot |= L_PTE_SHARED; |
| 609 | vecs_pgprot |= L_PTE_SHARED; |
| 610 | s2_pgprot |= L_PTE_SHARED; |
| 611 | mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S; |
| 612 | mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED; |
| 613 | mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S; |
| 614 | mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED; |
| 615 | mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S; |
| 616 | mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED; |
| 617 | mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S; |
| 618 | mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED; |
| 619 | mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED; |
| 620 | mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S; |
| 621 | mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED; |
| 622 | } |
| 623 | } |
| 624 | |
| 625 | /* |
| 626 | * Non-cacheable Normal - intended for memory areas that must |
| 627 | * not cause dirty cache line writebacks when used |
| 628 | */ |
| 629 | if (cpu_arch >= CPU_ARCH_ARMv6) { |
| 630 | if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { |
| 631 | /* Non-cacheable Normal is XCB = 001 */ |
| 632 | mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= |
| 633 | PMD_SECT_BUFFERED; |
| 634 | } else { |
| 635 | /* For both ARMv6 and non-TEX-remapping ARMv7 */ |
| 636 | mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= |
| 637 | PMD_SECT_TEX(1); |
| 638 | } |
| 639 | } else { |
| 640 | mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE; |
| 641 | } |
| 642 | |
| 643 | #ifdef CONFIG_ARM_LPAE |
| 644 | /* |
| 645 | * Do not generate access flag faults for the kernel mappings. |
| 646 | */ |
| 647 | for (i = 0; i < ARRAY_SIZE(mem_types); i++) { |
| 648 | mem_types[i].prot_pte |= PTE_EXT_AF; |
| 649 | if (mem_types[i].prot_sect) |
| 650 | mem_types[i].prot_sect |= PMD_SECT_AF; |
| 651 | } |
| 652 | kern_pgprot |= PTE_EXT_AF; |
| 653 | vecs_pgprot |= PTE_EXT_AF; |
| 654 | |
| 655 | /* |
| 656 | * Set PXN for user mappings |
| 657 | */ |
| 658 | user_pgprot |= PTE_EXT_PXN; |
| 659 | #endif |
| 660 | |
| 661 | for (i = 0; i < 16; i++) { |
| 662 | pteval_t v = pgprot_val(protection_map[i]); |
| 663 | protection_map[i] = __pgprot(v | user_pgprot); |
| 664 | } |
| 665 | |
| 666 | mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot; |
| 667 | mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot; |
| 668 | |
| 669 | pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot); |
| 670 | pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | |
| 671 | L_PTE_DIRTY | kern_pgprot); |
| 672 | pgprot_s2 = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot); |
| 673 | pgprot_s2_device = __pgprot(s2_device_pgprot); |
| 674 | pgprot_hyp_device = __pgprot(hyp_device_pgprot); |
| 675 | |
| 676 | mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask; |
| 677 | mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask; |
| 678 | mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd; |
| 679 | mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot; |
| 680 | mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd; |
| 681 | mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot; |
| 682 | mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot; |
| 683 | mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask; |
| 684 | mem_types[MT_ROM].prot_sect |= cp->pmd; |
| 685 | |
| 686 | switch (cp->pmd) { |
| 687 | case PMD_SECT_WT: |
| 688 | mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT; |
| 689 | break; |
| 690 | case PMD_SECT_WB: |
| 691 | case PMD_SECT_WBWA: |
| 692 | mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB; |
| 693 | break; |
| 694 | } |
| 695 | pr_info("Memory policy: %sData cache %s\n", |
| 696 | ecc_mask ? "ECC enabled, " : "", cp->policy); |
| 697 | |
| 698 | for (i = 0; i < ARRAY_SIZE(mem_types); i++) { |
| 699 | struct mem_type *t = &mem_types[i]; |
| 700 | if (t->prot_l1) |
| 701 | t->prot_l1 |= PMD_DOMAIN(t->domain); |
| 702 | if (t->prot_sect) |
| 703 | t->prot_sect |= PMD_DOMAIN(t->domain); |
| 704 | } |
| 705 | } |
| 706 | |
| 707 | #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE |
| 708 | pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, |
| 709 | unsigned long size, pgprot_t vma_prot) |
| 710 | { |
| 711 | if (!pfn_valid(pfn)) |
| 712 | return pgprot_noncached(vma_prot); |
| 713 | else if (file->f_flags & O_SYNC) |
| 714 | return pgprot_writecombine(vma_prot); |
| 715 | return vma_prot; |
| 716 | } |
| 717 | EXPORT_SYMBOL(phys_mem_access_prot); |
| 718 | #endif |
| 719 | |
| 720 | #define vectors_base() (vectors_high() ? 0xffff0000 : 0) |
| 721 | |
| 722 | static void __init *early_alloc_aligned(unsigned long sz, unsigned long align) |
| 723 | { |
| 724 | void *ptr = __va(memblock_alloc(sz, align)); |
| 725 | memset(ptr, 0, sz); |
| 726 | return ptr; |
| 727 | } |
| 728 | |
| 729 | static void __init *early_alloc(unsigned long sz) |
| 730 | { |
| 731 | return early_alloc_aligned(sz, sz); |
| 732 | } |
| 733 | |
| 734 | static void *__init late_alloc(unsigned long sz) |
| 735 | { |
| 736 | void *ptr = (void *)__get_free_pages(PGALLOC_GFP, get_order(sz)); |
| 737 | |
| 738 | if (!ptr || !pgtable_page_ctor(virt_to_page(ptr))) |
| 739 | BUG(); |
| 740 | return ptr; |
| 741 | } |
| 742 | |
| 743 | static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr, |
| 744 | unsigned long prot, |
| 745 | void *(*alloc)(unsigned long sz)) |
| 746 | { |
| 747 | if (pmd_none(*pmd)) { |
| 748 | pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE); |
| 749 | __pmd_populate(pmd, __pa(pte), prot); |
| 750 | } |
| 751 | BUG_ON(pmd_bad(*pmd)); |
| 752 | return pte_offset_kernel(pmd, addr); |
| 753 | } |
| 754 | |
| 755 | static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, |
| 756 | unsigned long prot) |
| 757 | { |
| 758 | return arm_pte_alloc(pmd, addr, prot, early_alloc); |
| 759 | } |
| 760 | |
| 761 | static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr, |
| 762 | unsigned long end, unsigned long pfn, |
| 763 | const struct mem_type *type, |
| 764 | void *(*alloc)(unsigned long sz), |
| 765 | bool ng) |
| 766 | { |
| 767 | pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc); |
| 768 | do { |
| 769 | set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), |
| 770 | ng ? PTE_EXT_NG : 0); |
| 771 | pfn++; |
| 772 | } while (pte++, addr += PAGE_SIZE, addr != end); |
| 773 | } |
| 774 | |
| 775 | static void __init __map_init_section(pmd_t *pmd, unsigned long addr, |
| 776 | unsigned long end, phys_addr_t phys, |
| 777 | const struct mem_type *type, bool ng) |
| 778 | { |
| 779 | pmd_t *p = pmd; |
| 780 | |
| 781 | #ifndef CONFIG_ARM_LPAE |
| 782 | /* |
| 783 | * In classic MMU format, puds and pmds are folded in to |
| 784 | * the pgds. pmd_offset gives the PGD entry. PGDs refer to a |
| 785 | * group of L1 entries making up one logical pointer to |
| 786 | * an L2 table (2MB), where as PMDs refer to the individual |
| 787 | * L1 entries (1MB). Hence increment to get the correct |
| 788 | * offset for odd 1MB sections. |
| 789 | * (See arch/arm/include/asm/pgtable-2level.h) |
| 790 | */ |
| 791 | if (addr & SECTION_SIZE) |
| 792 | pmd++; |
| 793 | #endif |
| 794 | do { |
| 795 | *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0)); |
| 796 | phys += SECTION_SIZE; |
| 797 | } while (pmd++, addr += SECTION_SIZE, addr != end); |
| 798 | |
| 799 | flush_pmd_entry(p); |
| 800 | } |
| 801 | |
| 802 | static void __init alloc_init_pmd(pud_t *pud, unsigned long addr, |
| 803 | unsigned long end, phys_addr_t phys, |
| 804 | const struct mem_type *type, |
| 805 | void *(*alloc)(unsigned long sz), bool ng) |
| 806 | { |
| 807 | pmd_t *pmd = pmd_offset(pud, addr); |
| 808 | unsigned long next; |
| 809 | |
| 810 | do { |
| 811 | /* |
| 812 | * With LPAE, we must loop over to map |
| 813 | * all the pmds for the given range. |
| 814 | */ |
| 815 | next = pmd_addr_end(addr, end); |
| 816 | |
| 817 | /* |
| 818 | * Try a section mapping - addr, next and phys must all be |
| 819 | * aligned to a section boundary. |
| 820 | */ |
| 821 | if (type->prot_sect && |
| 822 | ((addr | next | phys) & ~SECTION_MASK) == 0) { |
| 823 | __map_init_section(pmd, addr, next, phys, type, ng); |
| 824 | } else { |
| 825 | alloc_init_pte(pmd, addr, next, |
| 826 | __phys_to_pfn(phys), type, alloc, ng); |
| 827 | } |
| 828 | |
| 829 | phys += next - addr; |
| 830 | |
| 831 | } while (pmd++, addr = next, addr != end); |
| 832 | } |
| 833 | |
| 834 | static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr, |
| 835 | unsigned long end, phys_addr_t phys, |
| 836 | const struct mem_type *type, |
| 837 | void *(*alloc)(unsigned long sz), bool ng) |
| 838 | { |
| 839 | pud_t *pud = pud_offset(pgd, addr); |
| 840 | unsigned long next; |
| 841 | |
| 842 | do { |
| 843 | next = pud_addr_end(addr, end); |
| 844 | alloc_init_pmd(pud, addr, next, phys, type, alloc, ng); |
| 845 | phys += next - addr; |
| 846 | } while (pud++, addr = next, addr != end); |
| 847 | } |
| 848 | |
| 849 | #ifndef CONFIG_ARM_LPAE |
| 850 | static void __init create_36bit_mapping(struct mm_struct *mm, |
| 851 | struct map_desc *md, |
| 852 | const struct mem_type *type, |
| 853 | bool ng) |
| 854 | { |
| 855 | unsigned long addr, length, end; |
| 856 | phys_addr_t phys; |
| 857 | pgd_t *pgd; |
| 858 | |
| 859 | addr = md->virtual; |
| 860 | phys = __pfn_to_phys(md->pfn); |
| 861 | length = PAGE_ALIGN(md->length); |
| 862 | |
| 863 | if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) { |
| 864 | pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n", |
| 865 | (long long)__pfn_to_phys((u64)md->pfn), addr); |
| 866 | return; |
| 867 | } |
| 868 | |
| 869 | /* N.B. ARMv6 supersections are only defined to work with domain 0. |
| 870 | * Since domain assignments can in fact be arbitrary, the |
| 871 | * 'domain == 0' check below is required to insure that ARMv6 |
| 872 | * supersections are only allocated for domain 0 regardless |
| 873 | * of the actual domain assignments in use. |
| 874 | */ |
| 875 | if (type->domain) { |
| 876 | pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n", |
| 877 | (long long)__pfn_to_phys((u64)md->pfn), addr); |
| 878 | return; |
| 879 | } |
| 880 | |
| 881 | if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) { |
| 882 | pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n", |
| 883 | (long long)__pfn_to_phys((u64)md->pfn), addr); |
| 884 | return; |
| 885 | } |
| 886 | |
| 887 | /* |
| 888 | * Shift bits [35:32] of address into bits [23:20] of PMD |
| 889 | * (See ARMv6 spec). |
| 890 | */ |
| 891 | phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20); |
| 892 | |
| 893 | pgd = pgd_offset(mm, addr); |
| 894 | end = addr + length; |
| 895 | do { |
| 896 | pud_t *pud = pud_offset(pgd, addr); |
| 897 | pmd_t *pmd = pmd_offset(pud, addr); |
| 898 | int i; |
| 899 | |
| 900 | for (i = 0; i < 16; i++) |
| 901 | *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER | |
| 902 | (ng ? PMD_SECT_nG : 0)); |
| 903 | |
| 904 | addr += SUPERSECTION_SIZE; |
| 905 | phys += SUPERSECTION_SIZE; |
| 906 | pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT; |
| 907 | } while (addr != end); |
| 908 | } |
| 909 | #endif /* !CONFIG_ARM_LPAE */ |
| 910 | |
| 911 | static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md, |
| 912 | void *(*alloc)(unsigned long sz), |
| 913 | bool ng) |
| 914 | { |
| 915 | unsigned long addr, length, end; |
| 916 | phys_addr_t phys; |
| 917 | const struct mem_type *type; |
| 918 | pgd_t *pgd; |
| 919 | |
| 920 | type = &mem_types[md->type]; |
| 921 | |
| 922 | #ifndef CONFIG_ARM_LPAE |
| 923 | /* |
| 924 | * Catch 36-bit addresses |
| 925 | */ |
| 926 | if (md->pfn >= 0x100000) { |
| 927 | create_36bit_mapping(mm, md, type, ng); |
| 928 | return; |
| 929 | } |
| 930 | #endif |
| 931 | |
| 932 | addr = md->virtual & PAGE_MASK; |
| 933 | phys = __pfn_to_phys(md->pfn); |
| 934 | length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); |
| 935 | |
| 936 | if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) { |
| 937 | pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n", |
| 938 | (long long)__pfn_to_phys(md->pfn), addr); |
| 939 | return; |
| 940 | } |
| 941 | |
| 942 | pgd = pgd_offset(mm, addr); |
| 943 | end = addr + length; |
| 944 | do { |
| 945 | unsigned long next = pgd_addr_end(addr, end); |
| 946 | |
| 947 | alloc_init_pud(pgd, addr, next, phys, type, alloc, ng); |
| 948 | |
| 949 | phys += next - addr; |
| 950 | addr = next; |
| 951 | } while (pgd++, addr != end); |
| 952 | } |
| 953 | |
| 954 | /* |
| 955 | * Create the page directory entries and any necessary |
| 956 | * page tables for the mapping specified by `md'. We |
| 957 | * are able to cope here with varying sizes and address |
| 958 | * offsets, and we take full advantage of sections and |
| 959 | * supersections. |
| 960 | */ |
| 961 | static void __init create_mapping(struct map_desc *md) |
| 962 | { |
| 963 | if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) { |
| 964 | pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n", |
| 965 | (long long)__pfn_to_phys((u64)md->pfn), md->virtual); |
| 966 | return; |
| 967 | } |
| 968 | |
| 969 | if ((md->type == MT_DEVICE || md->type == MT_ROM) && |
| 970 | md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START && |
| 971 | (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) { |
| 972 | pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n", |
| 973 | (long long)__pfn_to_phys((u64)md->pfn), md->virtual); |
| 974 | } |
| 975 | |
| 976 | __create_mapping(&init_mm, md, early_alloc, false); |
| 977 | } |
| 978 | |
| 979 | void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md, |
| 980 | bool ng) |
| 981 | { |
| 982 | #ifdef CONFIG_ARM_LPAE |
| 983 | pud_t *pud = pud_alloc(mm, pgd_offset(mm, md->virtual), md->virtual); |
| 984 | if (WARN_ON(!pud)) |
| 985 | return; |
| 986 | pmd_alloc(mm, pud, 0); |
| 987 | #endif |
| 988 | __create_mapping(mm, md, late_alloc, ng); |
| 989 | } |
| 990 | |
| 991 | /* |
| 992 | * Create the architecture specific mappings |
| 993 | */ |
| 994 | void __init iotable_init(struct map_desc *io_desc, int nr) |
| 995 | { |
| 996 | struct map_desc *md; |
| 997 | struct vm_struct *vm; |
| 998 | struct static_vm *svm; |
| 999 | |
| 1000 | if (!nr) |
| 1001 | return; |
| 1002 | |
| 1003 | svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm)); |
| 1004 | |
| 1005 | for (md = io_desc; nr; md++, nr--) { |
| 1006 | create_mapping(md); |
| 1007 | |
| 1008 | vm = &svm->vm; |
| 1009 | vm->addr = (void *)(md->virtual & PAGE_MASK); |
| 1010 | vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); |
| 1011 | vm->phys_addr = __pfn_to_phys(md->pfn); |
| 1012 | vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING; |
| 1013 | vm->flags |= VM_ARM_MTYPE(md->type); |
| 1014 | vm->caller = iotable_init; |
| 1015 | add_static_vm_early(svm++); |
| 1016 | } |
| 1017 | } |
| 1018 | |
| 1019 | void __init vm_reserve_area_early(unsigned long addr, unsigned long size, |
| 1020 | void *caller) |
| 1021 | { |
| 1022 | struct vm_struct *vm; |
| 1023 | struct static_vm *svm; |
| 1024 | |
| 1025 | svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm)); |
| 1026 | |
| 1027 | vm = &svm->vm; |
| 1028 | vm->addr = (void *)addr; |
| 1029 | vm->size = size; |
| 1030 | vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING; |
| 1031 | vm->caller = caller; |
| 1032 | add_static_vm_early(svm); |
| 1033 | } |
| 1034 | |
| 1035 | #ifndef CONFIG_ARM_LPAE |
| 1036 | |
| 1037 | /* |
| 1038 | * The Linux PMD is made of two consecutive section entries covering 2MB |
| 1039 | * (see definition in include/asm/pgtable-2level.h). However a call to |
| 1040 | * create_mapping() may optimize static mappings by using individual |
| 1041 | * 1MB section mappings. This leaves the actual PMD potentially half |
| 1042 | * initialized if the top or bottom section entry isn't used, leaving it |
| 1043 | * open to problems if a subsequent ioremap() or vmalloc() tries to use |
| 1044 | * the virtual space left free by that unused section entry. |
| 1045 | * |
| 1046 | * Let's avoid the issue by inserting dummy vm entries covering the unused |
| 1047 | * PMD halves once the static mappings are in place. |
| 1048 | */ |
| 1049 | |
| 1050 | static void __init pmd_empty_section_gap(unsigned long addr) |
| 1051 | { |
| 1052 | vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap); |
| 1053 | } |
| 1054 | |
| 1055 | static void __init fill_pmd_gaps(void) |
| 1056 | { |
| 1057 | struct static_vm *svm; |
| 1058 | struct vm_struct *vm; |
| 1059 | unsigned long addr, next = 0; |
| 1060 | pmd_t *pmd; |
| 1061 | |
| 1062 | list_for_each_entry(svm, &static_vmlist, list) { |
| 1063 | vm = &svm->vm; |
| 1064 | addr = (unsigned long)vm->addr; |
| 1065 | if (addr < next) |
| 1066 | continue; |
| 1067 | |
| 1068 | /* |
| 1069 | * Check if this vm starts on an odd section boundary. |
| 1070 | * If so and the first section entry for this PMD is free |
| 1071 | * then we block the corresponding virtual address. |
| 1072 | */ |
| 1073 | if ((addr & ~PMD_MASK) == SECTION_SIZE) { |
| 1074 | pmd = pmd_off_k(addr); |
| 1075 | if (pmd_none(*pmd)) |
| 1076 | pmd_empty_section_gap(addr & PMD_MASK); |
| 1077 | } |
| 1078 | |
| 1079 | /* |
| 1080 | * Then check if this vm ends on an odd section boundary. |
| 1081 | * If so and the second section entry for this PMD is empty |
| 1082 | * then we block the corresponding virtual address. |
| 1083 | */ |
| 1084 | addr += vm->size; |
| 1085 | if ((addr & ~PMD_MASK) == SECTION_SIZE) { |
| 1086 | pmd = pmd_off_k(addr) + 1; |
| 1087 | if (pmd_none(*pmd)) |
| 1088 | pmd_empty_section_gap(addr); |
| 1089 | } |
| 1090 | |
| 1091 | /* no need to look at any vm entry until we hit the next PMD */ |
| 1092 | next = (addr + PMD_SIZE - 1) & PMD_MASK; |
| 1093 | } |
| 1094 | } |
| 1095 | |
| 1096 | #else |
| 1097 | #define fill_pmd_gaps() do { } while (0) |
| 1098 | #endif |
| 1099 | |
| 1100 | #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H) |
| 1101 | static void __init pci_reserve_io(void) |
| 1102 | { |
| 1103 | struct static_vm *svm; |
| 1104 | |
| 1105 | svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE); |
| 1106 | if (svm) |
| 1107 | return; |
| 1108 | |
| 1109 | vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io); |
| 1110 | } |
| 1111 | #else |
| 1112 | #define pci_reserve_io() do { } while (0) |
| 1113 | #endif |
| 1114 | |
| 1115 | #ifdef CONFIG_DEBUG_LL |
| 1116 | void __init debug_ll_io_init(void) |
| 1117 | { |
| 1118 | struct map_desc map; |
| 1119 | |
| 1120 | debug_ll_addr(&map.pfn, &map.virtual); |
| 1121 | if (!map.pfn || !map.virtual) |
| 1122 | return; |
| 1123 | map.pfn = __phys_to_pfn(map.pfn); |
| 1124 | map.virtual &= PAGE_MASK; |
| 1125 | map.length = PAGE_SIZE; |
| 1126 | map.type = MT_DEVICE; |
| 1127 | iotable_init(&map, 1); |
| 1128 | } |
| 1129 | #endif |
| 1130 | |
| 1131 | static void * __initdata vmalloc_min = |
| 1132 | (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET); |
| 1133 | |
| 1134 | /* |
| 1135 | * vmalloc=size forces the vmalloc area to be exactly 'size' |
| 1136 | * bytes. This can be used to increase (or decrease) the vmalloc |
| 1137 | * area - the default is 240m. |
| 1138 | */ |
| 1139 | static int __init early_vmalloc(char *arg) |
| 1140 | { |
| 1141 | unsigned long vmalloc_reserve = memparse(arg, NULL); |
| 1142 | |
| 1143 | if (vmalloc_reserve < SZ_16M) { |
| 1144 | vmalloc_reserve = SZ_16M; |
| 1145 | pr_warn("vmalloc area too small, limiting to %luMB\n", |
| 1146 | vmalloc_reserve >> 20); |
| 1147 | } |
| 1148 | |
| 1149 | if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) { |
| 1150 | vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M); |
| 1151 | pr_warn("vmalloc area is too big, limiting to %luMB\n", |
| 1152 | vmalloc_reserve >> 20); |
| 1153 | } |
| 1154 | |
| 1155 | vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve); |
| 1156 | return 0; |
| 1157 | } |
| 1158 | early_param("vmalloc", early_vmalloc); |
| 1159 | |
| 1160 | phys_addr_t arm_lowmem_limit __initdata = 0; |
| 1161 | |
| 1162 | void __init adjust_lowmem_bounds(void) |
| 1163 | { |
| 1164 | phys_addr_t memblock_limit = 0; |
| 1165 | u64 vmalloc_limit; |
| 1166 | struct memblock_region *reg; |
| 1167 | phys_addr_t lowmem_limit = 0; |
| 1168 | |
| 1169 | /* |
| 1170 | * Let's use our own (unoptimized) equivalent of __pa() that is |
| 1171 | * not affected by wrap-arounds when sizeof(phys_addr_t) == 4. |
| 1172 | * The result is used as the upper bound on physical memory address |
| 1173 | * and may itself be outside the valid range for which phys_addr_t |
| 1174 | * and therefore __pa() is defined. |
| 1175 | */ |
| 1176 | vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET; |
| 1177 | |
| 1178 | for_each_memblock(memory, reg) { |
| 1179 | phys_addr_t block_start = reg->base; |
| 1180 | phys_addr_t block_end = reg->base + reg->size; |
| 1181 | |
| 1182 | if (reg->base < vmalloc_limit) { |
| 1183 | if (block_end > lowmem_limit) |
| 1184 | /* |
| 1185 | * Compare as u64 to ensure vmalloc_limit does |
| 1186 | * not get truncated. block_end should always |
| 1187 | * fit in phys_addr_t so there should be no |
| 1188 | * issue with assignment. |
| 1189 | */ |
| 1190 | lowmem_limit = min_t(u64, |
| 1191 | vmalloc_limit, |
| 1192 | block_end); |
| 1193 | |
| 1194 | /* |
| 1195 | * Find the first non-pmd-aligned page, and point |
| 1196 | * memblock_limit at it. This relies on rounding the |
| 1197 | * limit down to be pmd-aligned, which happens at the |
| 1198 | * end of this function. |
| 1199 | * |
| 1200 | * With this algorithm, the start or end of almost any |
| 1201 | * bank can be non-pmd-aligned. The only exception is |
| 1202 | * that the start of the bank 0 must be section- |
| 1203 | * aligned, since otherwise memory would need to be |
| 1204 | * allocated when mapping the start of bank 0, which |
| 1205 | * occurs before any free memory is mapped. |
| 1206 | */ |
| 1207 | if (!memblock_limit) { |
| 1208 | if (!IS_ALIGNED(block_start, PMD_SIZE)) |
| 1209 | memblock_limit = block_start; |
| 1210 | else if (!IS_ALIGNED(block_end, PMD_SIZE)) |
| 1211 | memblock_limit = lowmem_limit; |
| 1212 | } |
| 1213 | |
| 1214 | } |
| 1215 | } |
| 1216 | |
| 1217 | arm_lowmem_limit = lowmem_limit; |
| 1218 | |
| 1219 | high_memory = __va(arm_lowmem_limit - 1) + 1; |
| 1220 | |
| 1221 | if (!memblock_limit) |
| 1222 | memblock_limit = arm_lowmem_limit; |
| 1223 | |
| 1224 | /* |
| 1225 | * Round the memblock limit down to a pmd size. This |
| 1226 | * helps to ensure that we will allocate memory from the |
| 1227 | * last full pmd, which should be mapped. |
| 1228 | */ |
| 1229 | memblock_limit = round_down(memblock_limit, PMD_SIZE); |
| 1230 | |
| 1231 | if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) { |
| 1232 | if (memblock_end_of_DRAM() > arm_lowmem_limit) { |
| 1233 | phys_addr_t end = memblock_end_of_DRAM(); |
| 1234 | |
| 1235 | pr_notice("Ignoring RAM at %pa-%pa\n", |
| 1236 | &memblock_limit, &end); |
| 1237 | pr_notice("Consider using a HIGHMEM enabled kernel.\n"); |
| 1238 | |
| 1239 | memblock_remove(memblock_limit, end - memblock_limit); |
| 1240 | } |
| 1241 | } |
| 1242 | |
| 1243 | memblock_set_current_limit(memblock_limit); |
| 1244 | } |
| 1245 | |
| 1246 | static inline void prepare_page_table(void) |
| 1247 | { |
| 1248 | unsigned long addr; |
| 1249 | phys_addr_t end; |
| 1250 | |
| 1251 | /* |
| 1252 | * Clear out all the mappings below the kernel image. |
| 1253 | */ |
| 1254 | for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE) |
| 1255 | pmd_clear(pmd_off_k(addr)); |
| 1256 | |
| 1257 | #ifdef CONFIG_XIP_KERNEL |
| 1258 | /* The XIP kernel is mapped in the module area -- skip over it */ |
| 1259 | addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK; |
| 1260 | #endif |
| 1261 | for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE) |
| 1262 | pmd_clear(pmd_off_k(addr)); |
| 1263 | |
| 1264 | /* |
| 1265 | * Find the end of the first block of lowmem. |
| 1266 | */ |
| 1267 | end = memblock.memory.regions[0].base + memblock.memory.regions[0].size; |
| 1268 | if (end >= arm_lowmem_limit) |
| 1269 | end = arm_lowmem_limit; |
| 1270 | |
| 1271 | /* |
| 1272 | * Clear out all the kernel space mappings, except for the first |
| 1273 | * memory bank, up to the vmalloc region. |
| 1274 | */ |
| 1275 | for (addr = __phys_to_virt(end); |
| 1276 | addr < VMALLOC_START; addr += PMD_SIZE) |
| 1277 | pmd_clear(pmd_off_k(addr)); |
| 1278 | } |
| 1279 | |
| 1280 | #ifdef CONFIG_ARM_LPAE |
| 1281 | /* the first page is reserved for pgd */ |
| 1282 | #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \ |
| 1283 | PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t)) |
| 1284 | #else |
| 1285 | #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t)) |
| 1286 | #endif |
| 1287 | |
| 1288 | /* |
| 1289 | * Reserve the special regions of memory |
| 1290 | */ |
| 1291 | void __init arm_mm_memblock_reserve(void) |
| 1292 | { |
| 1293 | /* |
| 1294 | * Reserve the page tables. These are already in use, |
| 1295 | * and can only be in node 0. |
| 1296 | */ |
| 1297 | memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE); |
| 1298 | |
| 1299 | #ifdef CONFIG_SA1111 |
| 1300 | /* |
| 1301 | * Because of the SA1111 DMA bug, we want to preserve our |
| 1302 | * precious DMA-able memory... |
| 1303 | */ |
| 1304 | memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET); |
| 1305 | #endif |
| 1306 | } |
| 1307 | |
| 1308 | /* |
| 1309 | * Set up the device mappings. Since we clear out the page tables for all |
| 1310 | * mappings above VMALLOC_START, except early fixmap, we might remove debug |
| 1311 | * device mappings. This means earlycon can be used to debug this function |
| 1312 | * Any other function or debugging method which may touch any device _will_ |
| 1313 | * crash the kernel. |
| 1314 | */ |
| 1315 | static void __init devicemaps_init(const struct machine_desc *mdesc) |
| 1316 | { |
| 1317 | struct map_desc map; |
| 1318 | unsigned long addr; |
| 1319 | void *vectors; |
| 1320 | |
| 1321 | /* |
| 1322 | * Allocate the vector page early. |
| 1323 | */ |
| 1324 | vectors = early_alloc(PAGE_SIZE * 2); |
| 1325 | |
| 1326 | early_trap_init(vectors); |
| 1327 | |
| 1328 | /* |
| 1329 | * Clear page table except top pmd used by early fixmaps |
| 1330 | */ |
| 1331 | for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE) |
| 1332 | pmd_clear(pmd_off_k(addr)); |
| 1333 | |
| 1334 | /* |
| 1335 | * Map the kernel if it is XIP. |
| 1336 | * It is always first in the modulearea. |
| 1337 | */ |
| 1338 | #ifdef CONFIG_XIP_KERNEL |
| 1339 | map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK); |
| 1340 | map.virtual = MODULES_VADDR; |
| 1341 | map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK; |
| 1342 | map.type = MT_ROM; |
| 1343 | create_mapping(&map); |
| 1344 | #endif |
| 1345 | |
| 1346 | /* |
| 1347 | * Map the cache flushing regions. |
| 1348 | */ |
| 1349 | #ifdef FLUSH_BASE |
| 1350 | map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS); |
| 1351 | map.virtual = FLUSH_BASE; |
| 1352 | map.length = SZ_1M; |
| 1353 | map.type = MT_CACHECLEAN; |
| 1354 | create_mapping(&map); |
| 1355 | #endif |
| 1356 | #ifdef FLUSH_BASE_MINICACHE |
| 1357 | map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M); |
| 1358 | map.virtual = FLUSH_BASE_MINICACHE; |
| 1359 | map.length = SZ_1M; |
| 1360 | map.type = MT_MINICLEAN; |
| 1361 | create_mapping(&map); |
| 1362 | #endif |
| 1363 | |
| 1364 | /* |
| 1365 | * Create a mapping for the machine vectors at the high-vectors |
| 1366 | * location (0xffff0000). If we aren't using high-vectors, also |
| 1367 | * create a mapping at the low-vectors virtual address. |
| 1368 | */ |
| 1369 | map.pfn = __phys_to_pfn(virt_to_phys(vectors)); |
| 1370 | map.virtual = 0xffff0000; |
| 1371 | map.length = PAGE_SIZE; |
| 1372 | #ifdef CONFIG_KUSER_HELPERS |
| 1373 | map.type = MT_HIGH_VECTORS; |
| 1374 | #else |
| 1375 | map.type = MT_LOW_VECTORS; |
| 1376 | #endif |
| 1377 | create_mapping(&map); |
| 1378 | |
| 1379 | if (!vectors_high()) { |
| 1380 | map.virtual = 0; |
| 1381 | map.length = PAGE_SIZE * 2; |
| 1382 | map.type = MT_LOW_VECTORS; |
| 1383 | create_mapping(&map); |
| 1384 | } |
| 1385 | |
| 1386 | /* Now create a kernel read-only mapping */ |
| 1387 | map.pfn += 1; |
| 1388 | map.virtual = 0xffff0000 + PAGE_SIZE; |
| 1389 | map.length = PAGE_SIZE; |
| 1390 | map.type = MT_LOW_VECTORS; |
| 1391 | create_mapping(&map); |
| 1392 | |
| 1393 | /* |
| 1394 | * Ask the machine support to map in the statically mapped devices. |
| 1395 | */ |
| 1396 | if (mdesc->map_io) |
| 1397 | mdesc->map_io(); |
| 1398 | else |
| 1399 | debug_ll_io_init(); |
| 1400 | fill_pmd_gaps(); |
| 1401 | |
| 1402 | /* Reserve fixed i/o space in VMALLOC region */ |
| 1403 | pci_reserve_io(); |
| 1404 | |
| 1405 | /* |
| 1406 | * Finally flush the caches and tlb to ensure that we're in a |
| 1407 | * consistent state wrt the writebuffer. This also ensures that |
| 1408 | * any write-allocated cache lines in the vector page are written |
| 1409 | * back. After this point, we can start to touch devices again. |
| 1410 | */ |
| 1411 | local_flush_tlb_all(); |
| 1412 | flush_cache_all(); |
| 1413 | |
| 1414 | /* Enable asynchronous aborts */ |
| 1415 | early_abt_enable(); |
| 1416 | } |
| 1417 | |
| 1418 | static void __init kmap_init(void) |
| 1419 | { |
| 1420 | #ifdef CONFIG_HIGHMEM |
| 1421 | pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE), |
| 1422 | PKMAP_BASE, _PAGE_KERNEL_TABLE); |
| 1423 | #endif |
| 1424 | |
| 1425 | early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START, |
| 1426 | _PAGE_KERNEL_TABLE); |
| 1427 | } |
| 1428 | |
| 1429 | static void __init map_lowmem(void) |
| 1430 | { |
| 1431 | struct memblock_region *reg; |
| 1432 | phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE); |
| 1433 | phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE); |
| 1434 | |
| 1435 | /* Map all the lowmem memory banks. */ |
| 1436 | for_each_memblock(memory, reg) { |
| 1437 | phys_addr_t start = reg->base; |
| 1438 | phys_addr_t end = start + reg->size; |
| 1439 | struct map_desc map; |
| 1440 | |
| 1441 | if (memblock_is_nomap(reg)) |
| 1442 | continue; |
| 1443 | |
| 1444 | if (end > arm_lowmem_limit) |
| 1445 | end = arm_lowmem_limit; |
| 1446 | if (start >= end) |
| 1447 | break; |
| 1448 | |
| 1449 | if (end < kernel_x_start) { |
| 1450 | map.pfn = __phys_to_pfn(start); |
| 1451 | map.virtual = __phys_to_virt(start); |
| 1452 | map.length = end - start; |
| 1453 | map.type = MT_MEMORY_RWX; |
| 1454 | |
| 1455 | create_mapping(&map); |
| 1456 | } else if (start >= kernel_x_end) { |
| 1457 | map.pfn = __phys_to_pfn(start); |
| 1458 | map.virtual = __phys_to_virt(start); |
| 1459 | map.length = end - start; |
| 1460 | map.type = MT_MEMORY_RW; |
| 1461 | |
| 1462 | create_mapping(&map); |
| 1463 | } else { |
| 1464 | /* This better cover the entire kernel */ |
| 1465 | if (start < kernel_x_start) { |
| 1466 | map.pfn = __phys_to_pfn(start); |
| 1467 | map.virtual = __phys_to_virt(start); |
| 1468 | map.length = kernel_x_start - start; |
| 1469 | map.type = MT_MEMORY_RW; |
| 1470 | |
| 1471 | create_mapping(&map); |
| 1472 | } |
| 1473 | |
| 1474 | map.pfn = __phys_to_pfn(kernel_x_start); |
| 1475 | map.virtual = __phys_to_virt(kernel_x_start); |
| 1476 | map.length = kernel_x_end - kernel_x_start; |
| 1477 | map.type = MT_MEMORY_RWX; |
| 1478 | |
| 1479 | create_mapping(&map); |
| 1480 | |
| 1481 | if (kernel_x_end < end) { |
| 1482 | map.pfn = __phys_to_pfn(kernel_x_end); |
| 1483 | map.virtual = __phys_to_virt(kernel_x_end); |
| 1484 | map.length = end - kernel_x_end; |
| 1485 | map.type = MT_MEMORY_RW; |
| 1486 | |
| 1487 | create_mapping(&map); |
| 1488 | } |
| 1489 | } |
| 1490 | } |
| 1491 | } |
| 1492 | |
| 1493 | #ifdef CONFIG_ARM_PV_FIXUP |
| 1494 | extern unsigned long __atags_pointer; |
| 1495 | typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata); |
| 1496 | pgtables_remap lpae_pgtables_remap_asm; |
| 1497 | |
| 1498 | /* |
| 1499 | * early_paging_init() recreates boot time page table setup, allowing machines |
| 1500 | * to switch over to a high (>4G) address space on LPAE systems |
| 1501 | */ |
| 1502 | static void __init early_paging_init(const struct machine_desc *mdesc) |
| 1503 | { |
| 1504 | pgtables_remap *lpae_pgtables_remap; |
| 1505 | unsigned long pa_pgd; |
| 1506 | unsigned int cr, ttbcr; |
| 1507 | long long offset; |
| 1508 | void *boot_data; |
| 1509 | |
| 1510 | if (!mdesc->pv_fixup) |
| 1511 | return; |
| 1512 | |
| 1513 | offset = mdesc->pv_fixup(); |
| 1514 | if (offset == 0) |
| 1515 | return; |
| 1516 | |
| 1517 | /* |
| 1518 | * Get the address of the remap function in the 1:1 identity |
| 1519 | * mapping setup by the early page table assembly code. We |
| 1520 | * must get this prior to the pv update. The following barrier |
| 1521 | * ensures that this is complete before we fixup any P:V offsets. |
| 1522 | */ |
| 1523 | lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm); |
| 1524 | pa_pgd = __pa(swapper_pg_dir); |
| 1525 | boot_data = __va(__atags_pointer); |
| 1526 | barrier(); |
| 1527 | |
| 1528 | pr_info("Switching physical address space to 0x%08llx\n", |
| 1529 | (u64)PHYS_OFFSET + offset); |
| 1530 | |
| 1531 | /* Re-set the phys pfn offset, and the pv offset */ |
| 1532 | __pv_offset += offset; |
| 1533 | __pv_phys_pfn_offset += PFN_DOWN(offset); |
| 1534 | |
| 1535 | /* Run the patch stub to update the constants */ |
| 1536 | fixup_pv_table(&__pv_table_begin, |
| 1537 | (&__pv_table_end - &__pv_table_begin) << 2); |
| 1538 | |
| 1539 | /* |
| 1540 | * We changing not only the virtual to physical mapping, but also |
| 1541 | * the physical addresses used to access memory. We need to flush |
| 1542 | * all levels of cache in the system with caching disabled to |
| 1543 | * ensure that all data is written back, and nothing is prefetched |
| 1544 | * into the caches. We also need to prevent the TLB walkers |
| 1545 | * allocating into the caches too. Note that this is ARMv7 LPAE |
| 1546 | * specific. |
| 1547 | */ |
| 1548 | cr = get_cr(); |
| 1549 | set_cr(cr & ~(CR_I | CR_C)); |
| 1550 | asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr)); |
| 1551 | asm volatile("mcr p15, 0, %0, c2, c0, 2" |
| 1552 | : : "r" (ttbcr & ~(3 << 8 | 3 << 10))); |
| 1553 | flush_cache_all(); |
| 1554 | |
| 1555 | /* |
| 1556 | * Fixup the page tables - this must be in the idmap region as |
| 1557 | * we need to disable the MMU to do this safely, and hence it |
| 1558 | * needs to be assembly. It's fairly simple, as we're using the |
| 1559 | * temporary tables setup by the initial assembly code. |
| 1560 | */ |
| 1561 | lpae_pgtables_remap(offset, pa_pgd, boot_data); |
| 1562 | |
| 1563 | /* Re-enable the caches and cacheable TLB walks */ |
| 1564 | asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr)); |
| 1565 | set_cr(cr); |
| 1566 | } |
| 1567 | |
| 1568 | #else |
| 1569 | |
| 1570 | static void __init early_paging_init(const struct machine_desc *mdesc) |
| 1571 | { |
| 1572 | long long offset; |
| 1573 | |
| 1574 | if (!mdesc->pv_fixup) |
| 1575 | return; |
| 1576 | |
| 1577 | offset = mdesc->pv_fixup(); |
| 1578 | if (offset == 0) |
| 1579 | return; |
| 1580 | |
| 1581 | pr_crit("Physical address space modification is only to support Keystone2.\n"); |
| 1582 | pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n"); |
| 1583 | pr_crit("feature. Your kernel may crash now, have a good day.\n"); |
| 1584 | add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); |
| 1585 | } |
| 1586 | |
| 1587 | #endif |
| 1588 | |
| 1589 | static void __init early_fixmap_shutdown(void) |
| 1590 | { |
| 1591 | int i; |
| 1592 | unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1); |
| 1593 | |
| 1594 | pte_offset_fixmap = pte_offset_late_fixmap; |
| 1595 | pmd_clear(fixmap_pmd(va)); |
| 1596 | local_flush_tlb_kernel_page(va); |
| 1597 | |
| 1598 | for (i = 0; i < __end_of_permanent_fixed_addresses; i++) { |
| 1599 | pte_t *pte; |
| 1600 | struct map_desc map; |
| 1601 | |
| 1602 | map.virtual = fix_to_virt(i); |
| 1603 | pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual); |
| 1604 | |
| 1605 | /* Only i/o device mappings are supported ATM */ |
| 1606 | if (pte_none(*pte) || |
| 1607 | (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED) |
| 1608 | continue; |
| 1609 | |
| 1610 | map.pfn = pte_pfn(*pte); |
| 1611 | map.type = MT_DEVICE; |
| 1612 | map.length = PAGE_SIZE; |
| 1613 | |
| 1614 | create_mapping(&map); |
| 1615 | } |
| 1616 | } |
| 1617 | |
| 1618 | /* |
| 1619 | * paging_init() sets up the page tables, initialises the zone memory |
| 1620 | * maps, and sets up the zero page, bad page and bad page tables. |
| 1621 | */ |
| 1622 | void __init paging_init(const struct machine_desc *mdesc) |
| 1623 | { |
| 1624 | void *zero_page; |
| 1625 | |
| 1626 | prepare_page_table(); |
| 1627 | map_lowmem(); |
| 1628 | memblock_set_current_limit(arm_lowmem_limit); |
| 1629 | dma_contiguous_remap(); |
| 1630 | early_fixmap_shutdown(); |
| 1631 | devicemaps_init(mdesc); |
| 1632 | kmap_init(); |
| 1633 | tcm_init(); |
| 1634 | |
| 1635 | top_pmd = pmd_off_k(0xffff0000); |
| 1636 | |
| 1637 | /* allocate the zero page. */ |
| 1638 | zero_page = early_alloc(PAGE_SIZE); |
| 1639 | |
| 1640 | bootmem_init(); |
| 1641 | |
| 1642 | empty_zero_page = virt_to_page(zero_page); |
| 1643 | __flush_dcache_page(NULL, empty_zero_page); |
| 1644 | |
| 1645 | /* Compute the virt/idmap offset, mostly for the sake of KVM */ |
| 1646 | kimage_voffset = (unsigned long)&kimage_voffset - virt_to_idmap(&kimage_voffset); |
| 1647 | } |
| 1648 | |
| 1649 | void __init early_mm_init(const struct machine_desc *mdesc) |
| 1650 | { |
| 1651 | build_mem_type_table(); |
| 1652 | early_paging_init(mdesc); |
| 1653 | } |