v4.19.13 snapshot.
diff --git a/arch/arm/mm/mmu.c b/arch/arm/mm/mmu.c
new file mode 100644
index 0000000..e46a6a4
--- /dev/null
+++ b/arch/arm/mm/mmu.c
@@ -0,0 +1,1653 @@
+/*
+ *  linux/arch/arm/mm/mmu.c
+ *
+ *  Copyright (C) 1995-2005 Russell King
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/errno.h>
+#include <linux/init.h>
+#include <linux/mman.h>
+#include <linux/nodemask.h>
+#include <linux/memblock.h>
+#include <linux/fs.h>
+#include <linux/vmalloc.h>
+#include <linux/sizes.h>
+
+#include <asm/cp15.h>
+#include <asm/cputype.h>
+#include <asm/sections.h>
+#include <asm/cachetype.h>
+#include <asm/fixmap.h>
+#include <asm/sections.h>
+#include <asm/setup.h>
+#include <asm/smp_plat.h>
+#include <asm/tlb.h>
+#include <asm/highmem.h>
+#include <asm/system_info.h>
+#include <asm/traps.h>
+#include <asm/procinfo.h>
+#include <asm/memory.h>
+
+#include <asm/mach/arch.h>
+#include <asm/mach/map.h>
+#include <asm/mach/pci.h>
+#include <asm/fixmap.h>
+
+#include "fault.h"
+#include "mm.h"
+#include "tcm.h"
+
+/*
+ * empty_zero_page is a special page that is used for
+ * zero-initialized data and COW.
+ */
+struct page *empty_zero_page;
+EXPORT_SYMBOL(empty_zero_page);
+
+/*
+ * The pmd table for the upper-most set of pages.
+ */
+pmd_t *top_pmd;
+
+pmdval_t user_pmd_table = _PAGE_USER_TABLE;
+
+#define CPOLICY_UNCACHED	0
+#define CPOLICY_BUFFERED	1
+#define CPOLICY_WRITETHROUGH	2
+#define CPOLICY_WRITEBACK	3
+#define CPOLICY_WRITEALLOC	4
+
+static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
+static unsigned int ecc_mask __initdata = 0;
+pgprot_t pgprot_user;
+pgprot_t pgprot_kernel;
+pgprot_t pgprot_hyp_device;
+pgprot_t pgprot_s2;
+pgprot_t pgprot_s2_device;
+
+EXPORT_SYMBOL(pgprot_user);
+EXPORT_SYMBOL(pgprot_kernel);
+
+struct cachepolicy {
+	const char	policy[16];
+	unsigned int	cr_mask;
+	pmdval_t	pmd;
+	pteval_t	pte;
+	pteval_t	pte_s2;
+};
+
+#ifdef CONFIG_ARM_LPAE
+#define s2_policy(policy)	policy
+#else
+#define s2_policy(policy)	0
+#endif
+
+unsigned long kimage_voffset __ro_after_init;
+
+static struct cachepolicy cache_policies[] __initdata = {
+	{
+		.policy		= "uncached",
+		.cr_mask	= CR_W|CR_C,
+		.pmd		= PMD_SECT_UNCACHED,
+		.pte		= L_PTE_MT_UNCACHED,
+		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
+	}, {
+		.policy		= "buffered",
+		.cr_mask	= CR_C,
+		.pmd		= PMD_SECT_BUFFERED,
+		.pte		= L_PTE_MT_BUFFERABLE,
+		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
+	}, {
+		.policy		= "writethrough",
+		.cr_mask	= 0,
+		.pmd		= PMD_SECT_WT,
+		.pte		= L_PTE_MT_WRITETHROUGH,
+		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
+	}, {
+		.policy		= "writeback",
+		.cr_mask	= 0,
+		.pmd		= PMD_SECT_WB,
+		.pte		= L_PTE_MT_WRITEBACK,
+		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
+	}, {
+		.policy		= "writealloc",
+		.cr_mask	= 0,
+		.pmd		= PMD_SECT_WBWA,
+		.pte		= L_PTE_MT_WRITEALLOC,
+		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
+	}
+};
+
+#ifdef CONFIG_CPU_CP15
+static unsigned long initial_pmd_value __initdata = 0;
+
+/*
+ * Initialise the cache_policy variable with the initial state specified
+ * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
+ * the C code sets the page tables up with the same policy as the head
+ * assembly code, which avoids an illegal state where the TLBs can get
+ * confused.  See comments in early_cachepolicy() for more information.
+ */
+void __init init_default_cache_policy(unsigned long pmd)
+{
+	int i;
+
+	initial_pmd_value = pmd;
+
+	pmd &= PMD_SECT_CACHE_MASK;
+
+	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
+		if (cache_policies[i].pmd == pmd) {
+			cachepolicy = i;
+			break;
+		}
+
+	if (i == ARRAY_SIZE(cache_policies))
+		pr_err("ERROR: could not find cache policy\n");
+}
+
+/*
+ * These are useful for identifying cache coherency problems by allowing
+ * the cache or the cache and writebuffer to be turned off.  (Note: the
+ * write buffer should not be on and the cache off).
+ */
+static int __init early_cachepolicy(char *p)
+{
+	int i, selected = -1;
+
+	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
+		int len = strlen(cache_policies[i].policy);
+
+		if (memcmp(p, cache_policies[i].policy, len) == 0) {
+			selected = i;
+			break;
+		}
+	}
+
+	if (selected == -1)
+		pr_err("ERROR: unknown or unsupported cache policy\n");
+
+	/*
+	 * This restriction is partly to do with the way we boot; it is
+	 * unpredictable to have memory mapped using two different sets of
+	 * memory attributes (shared, type, and cache attribs).  We can not
+	 * change these attributes once the initial assembly has setup the
+	 * page tables.
+	 */
+	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
+		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
+			cache_policies[cachepolicy].policy);
+		return 0;
+	}
+
+	if (selected != cachepolicy) {
+		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
+		cachepolicy = selected;
+		flush_cache_all();
+		set_cr(cr);
+	}
+	return 0;
+}
+early_param("cachepolicy", early_cachepolicy);
+
+static int __init early_nocache(char *__unused)
+{
+	char *p = "buffered";
+	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
+	early_cachepolicy(p);
+	return 0;
+}
+early_param("nocache", early_nocache);
+
+static int __init early_nowrite(char *__unused)
+{
+	char *p = "uncached";
+	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
+	early_cachepolicy(p);
+	return 0;
+}
+early_param("nowb", early_nowrite);
+
+#ifndef CONFIG_ARM_LPAE
+static int __init early_ecc(char *p)
+{
+	if (memcmp(p, "on", 2) == 0)
+		ecc_mask = PMD_PROTECTION;
+	else if (memcmp(p, "off", 3) == 0)
+		ecc_mask = 0;
+	return 0;
+}
+early_param("ecc", early_ecc);
+#endif
+
+#else /* ifdef CONFIG_CPU_CP15 */
+
+static int __init early_cachepolicy(char *p)
+{
+	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
+}
+early_param("cachepolicy", early_cachepolicy);
+
+static int __init noalign_setup(char *__unused)
+{
+	pr_warn("noalign kernel parameter not supported without cp15\n");
+}
+__setup("noalign", noalign_setup);
+
+#endif /* ifdef CONFIG_CPU_CP15 / else */
+
+#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
+#define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
+#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
+
+static struct mem_type mem_types[] __ro_after_init = {
+	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
+		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
+				  L_PTE_SHARED,
+		.prot_pte_s2	= s2_policy(PROT_PTE_S2_DEVICE) |
+				  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
+				  L_PTE_SHARED,
+		.prot_l1	= PMD_TYPE_TABLE,
+		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
+		.domain		= DOMAIN_IO,
+	},
+	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
+		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
+		.prot_l1	= PMD_TYPE_TABLE,
+		.prot_sect	= PROT_SECT_DEVICE,
+		.domain		= DOMAIN_IO,
+	},
+	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
+		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
+		.prot_l1	= PMD_TYPE_TABLE,
+		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
+		.domain		= DOMAIN_IO,
+	},
+	[MT_DEVICE_WC] = {	/* ioremap_wc */
+		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
+		.prot_l1	= PMD_TYPE_TABLE,
+		.prot_sect	= PROT_SECT_DEVICE,
+		.domain		= DOMAIN_IO,
+	},
+	[MT_UNCACHED] = {
+		.prot_pte	= PROT_PTE_DEVICE,
+		.prot_l1	= PMD_TYPE_TABLE,
+		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
+		.domain		= DOMAIN_IO,
+	},
+	[MT_CACHECLEAN] = {
+		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
+		.domain    = DOMAIN_KERNEL,
+	},
+#ifndef CONFIG_ARM_LPAE
+	[MT_MINICLEAN] = {
+		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
+		.domain    = DOMAIN_KERNEL,
+	},
+#endif
+	[MT_LOW_VECTORS] = {
+		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
+				L_PTE_RDONLY,
+		.prot_l1   = PMD_TYPE_TABLE,
+		.domain    = DOMAIN_VECTORS,
+	},
+	[MT_HIGH_VECTORS] = {
+		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
+				L_PTE_USER | L_PTE_RDONLY,
+		.prot_l1   = PMD_TYPE_TABLE,
+		.domain    = DOMAIN_VECTORS,
+	},
+	[MT_MEMORY_RWX] = {
+		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
+		.prot_l1   = PMD_TYPE_TABLE,
+		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
+		.domain    = DOMAIN_KERNEL,
+	},
+	[MT_MEMORY_RW] = {
+		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
+			     L_PTE_XN,
+		.prot_l1   = PMD_TYPE_TABLE,
+		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
+		.domain    = DOMAIN_KERNEL,
+	},
+	[MT_ROM] = {
+		.prot_sect = PMD_TYPE_SECT,
+		.domain    = DOMAIN_KERNEL,
+	},
+	[MT_MEMORY_RWX_NONCACHED] = {
+		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
+				L_PTE_MT_BUFFERABLE,
+		.prot_l1   = PMD_TYPE_TABLE,
+		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
+		.domain    = DOMAIN_KERNEL,
+	},
+	[MT_MEMORY_RW_DTCM] = {
+		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
+				L_PTE_XN,
+		.prot_l1   = PMD_TYPE_TABLE,
+		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
+		.domain    = DOMAIN_KERNEL,
+	},
+	[MT_MEMORY_RWX_ITCM] = {
+		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
+		.prot_l1   = PMD_TYPE_TABLE,
+		.domain    = DOMAIN_KERNEL,
+	},
+	[MT_MEMORY_RW_SO] = {
+		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
+				L_PTE_MT_UNCACHED | L_PTE_XN,
+		.prot_l1   = PMD_TYPE_TABLE,
+		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
+				PMD_SECT_UNCACHED | PMD_SECT_XN,
+		.domain    = DOMAIN_KERNEL,
+	},
+	[MT_MEMORY_DMA_READY] = {
+		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
+				L_PTE_XN,
+		.prot_l1   = PMD_TYPE_TABLE,
+		.domain    = DOMAIN_KERNEL,
+	},
+};
+
+const struct mem_type *get_mem_type(unsigned int type)
+{
+	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
+}
+EXPORT_SYMBOL(get_mem_type);
+
+static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
+
+static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
+	__aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
+
+static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
+{
+	return &bm_pte[pte_index(addr)];
+}
+
+static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
+{
+	return pte_offset_kernel(dir, addr);
+}
+
+static inline pmd_t * __init fixmap_pmd(unsigned long addr)
+{
+	pgd_t *pgd = pgd_offset_k(addr);
+	pud_t *pud = pud_offset(pgd, addr);
+	pmd_t *pmd = pmd_offset(pud, addr);
+
+	return pmd;
+}
+
+void __init early_fixmap_init(void)
+{
+	pmd_t *pmd;
+
+	/*
+	 * The early fixmap range spans multiple pmds, for which
+	 * we are not prepared:
+	 */
+	BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
+		     != FIXADDR_TOP >> PMD_SHIFT);
+
+	pmd = fixmap_pmd(FIXADDR_TOP);
+	pmd_populate_kernel(&init_mm, pmd, bm_pte);
+
+	pte_offset_fixmap = pte_offset_early_fixmap;
+}
+
+/*
+ * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
+ * As a result, this can only be called with preemption disabled, as under
+ * stop_machine().
+ */
+void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
+{
+	unsigned long vaddr = __fix_to_virt(idx);
+	pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
+
+	/* Make sure fixmap region does not exceed available allocation. */
+	BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
+		     FIXADDR_END);
+	BUG_ON(idx >= __end_of_fixed_addresses);
+
+	/* we only support device mappings until pgprot_kernel has been set */
+	if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
+		    pgprot_val(pgprot_kernel) == 0))
+		return;
+
+	if (pgprot_val(prot))
+		set_pte_at(NULL, vaddr, pte,
+			pfn_pte(phys >> PAGE_SHIFT, prot));
+	else
+		pte_clear(NULL, vaddr, pte);
+	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
+}
+
+/*
+ * Adjust the PMD section entries according to the CPU in use.
+ */
+static void __init build_mem_type_table(void)
+{
+	struct cachepolicy *cp;
+	unsigned int cr = get_cr();
+	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
+	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
+	int cpu_arch = cpu_architecture();
+	int i;
+
+	if (cpu_arch < CPU_ARCH_ARMv6) {
+#if defined(CONFIG_CPU_DCACHE_DISABLE)
+		if (cachepolicy > CPOLICY_BUFFERED)
+			cachepolicy = CPOLICY_BUFFERED;
+#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
+		if (cachepolicy > CPOLICY_WRITETHROUGH)
+			cachepolicy = CPOLICY_WRITETHROUGH;
+#endif
+	}
+	if (cpu_arch < CPU_ARCH_ARMv5) {
+		if (cachepolicy >= CPOLICY_WRITEALLOC)
+			cachepolicy = CPOLICY_WRITEBACK;
+		ecc_mask = 0;
+	}
+
+	if (is_smp()) {
+		if (cachepolicy != CPOLICY_WRITEALLOC) {
+			pr_warn("Forcing write-allocate cache policy for SMP\n");
+			cachepolicy = CPOLICY_WRITEALLOC;
+		}
+		if (!(initial_pmd_value & PMD_SECT_S)) {
+			pr_warn("Forcing shared mappings for SMP\n");
+			initial_pmd_value |= PMD_SECT_S;
+		}
+	}
+
+	/*
+	 * Strip out features not present on earlier architectures.
+	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
+	 * without extended page tables don't have the 'Shared' bit.
+	 */
+	if (cpu_arch < CPU_ARCH_ARMv5)
+		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
+			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
+	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
+		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
+			mem_types[i].prot_sect &= ~PMD_SECT_S;
+
+	/*
+	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
+	 * "update-able on write" bit on ARM610).  However, Xscale and
+	 * Xscale3 require this bit to be cleared.
+	 */
+	if (cpu_is_xscale_family()) {
+		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
+			mem_types[i].prot_sect &= ~PMD_BIT4;
+			mem_types[i].prot_l1 &= ~PMD_BIT4;
+		}
+	} else if (cpu_arch < CPU_ARCH_ARMv6) {
+		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
+			if (mem_types[i].prot_l1)
+				mem_types[i].prot_l1 |= PMD_BIT4;
+			if (mem_types[i].prot_sect)
+				mem_types[i].prot_sect |= PMD_BIT4;
+		}
+	}
+
+	/*
+	 * Mark the device areas according to the CPU/architecture.
+	 */
+	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
+		if (!cpu_is_xsc3()) {
+			/*
+			 * Mark device regions on ARMv6+ as execute-never
+			 * to prevent speculative instruction fetches.
+			 */
+			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
+			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
+			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
+			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
+
+			/* Also setup NX memory mapping */
+			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
+		}
+		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
+			/*
+			 * For ARMv7 with TEX remapping,
+			 * - shared device is SXCB=1100
+			 * - nonshared device is SXCB=0100
+			 * - write combine device mem is SXCB=0001
+			 * (Uncached Normal memory)
+			 */
+			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
+			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
+			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
+		} else if (cpu_is_xsc3()) {
+			/*
+			 * For Xscale3,
+			 * - shared device is TEXCB=00101
+			 * - nonshared device is TEXCB=01000
+			 * - write combine device mem is TEXCB=00100
+			 * (Inner/Outer Uncacheable in xsc3 parlance)
+			 */
+			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
+			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
+			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
+		} else {
+			/*
+			 * For ARMv6 and ARMv7 without TEX remapping,
+			 * - shared device is TEXCB=00001
+			 * - nonshared device is TEXCB=01000
+			 * - write combine device mem is TEXCB=00100
+			 * (Uncached Normal in ARMv6 parlance).
+			 */
+			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
+			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
+			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
+		}
+	} else {
+		/*
+		 * On others, write combining is "Uncached/Buffered"
+		 */
+		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
+	}
+
+	/*
+	 * Now deal with the memory-type mappings
+	 */
+	cp = &cache_policies[cachepolicy];
+	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
+	s2_pgprot = cp->pte_s2;
+	hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
+	s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
+
+#ifndef CONFIG_ARM_LPAE
+	/*
+	 * We don't use domains on ARMv6 (since this causes problems with
+	 * v6/v7 kernels), so we must use a separate memory type for user
+	 * r/o, kernel r/w to map the vectors page.
+	 */
+	if (cpu_arch == CPU_ARCH_ARMv6)
+		vecs_pgprot |= L_PTE_MT_VECTORS;
+
+	/*
+	 * Check is it with support for the PXN bit
+	 * in the Short-descriptor translation table format descriptors.
+	 */
+	if (cpu_arch == CPU_ARCH_ARMv7 &&
+		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
+		user_pmd_table |= PMD_PXNTABLE;
+	}
+#endif
+
+	/*
+	 * ARMv6 and above have extended page tables.
+	 */
+	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
+#ifndef CONFIG_ARM_LPAE
+		/*
+		 * Mark cache clean areas and XIP ROM read only
+		 * from SVC mode and no access from userspace.
+		 */
+		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
+		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
+		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
+#endif
+
+		/*
+		 * If the initial page tables were created with the S bit
+		 * set, then we need to do the same here for the same
+		 * reasons given in early_cachepolicy().
+		 */
+		if (initial_pmd_value & PMD_SECT_S) {
+			user_pgprot |= L_PTE_SHARED;
+			kern_pgprot |= L_PTE_SHARED;
+			vecs_pgprot |= L_PTE_SHARED;
+			s2_pgprot |= L_PTE_SHARED;
+			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
+			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
+			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
+			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
+			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
+			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
+			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
+			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
+			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
+			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
+			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
+		}
+	}
+
+	/*
+	 * Non-cacheable Normal - intended for memory areas that must
+	 * not cause dirty cache line writebacks when used
+	 */
+	if (cpu_arch >= CPU_ARCH_ARMv6) {
+		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
+			/* Non-cacheable Normal is XCB = 001 */
+			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
+				PMD_SECT_BUFFERED;
+		} else {
+			/* For both ARMv6 and non-TEX-remapping ARMv7 */
+			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
+				PMD_SECT_TEX(1);
+		}
+	} else {
+		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
+	}
+
+#ifdef CONFIG_ARM_LPAE
+	/*
+	 * Do not generate access flag faults for the kernel mappings.
+	 */
+	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
+		mem_types[i].prot_pte |= PTE_EXT_AF;
+		if (mem_types[i].prot_sect)
+			mem_types[i].prot_sect |= PMD_SECT_AF;
+	}
+	kern_pgprot |= PTE_EXT_AF;
+	vecs_pgprot |= PTE_EXT_AF;
+
+	/*
+	 * Set PXN for user mappings
+	 */
+	user_pgprot |= PTE_EXT_PXN;
+#endif
+
+	for (i = 0; i < 16; i++) {
+		pteval_t v = pgprot_val(protection_map[i]);
+		protection_map[i] = __pgprot(v | user_pgprot);
+	}
+
+	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
+	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
+
+	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
+	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
+				 L_PTE_DIRTY | kern_pgprot);
+	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
+	pgprot_s2_device  = __pgprot(s2_device_pgprot);
+	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
+
+	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
+	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
+	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
+	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
+	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
+	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
+	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
+	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
+	mem_types[MT_ROM].prot_sect |= cp->pmd;
+
+	switch (cp->pmd) {
+	case PMD_SECT_WT:
+		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
+		break;
+	case PMD_SECT_WB:
+	case PMD_SECT_WBWA:
+		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
+		break;
+	}
+	pr_info("Memory policy: %sData cache %s\n",
+		ecc_mask ? "ECC enabled, " : "", cp->policy);
+
+	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
+		struct mem_type *t = &mem_types[i];
+		if (t->prot_l1)
+			t->prot_l1 |= PMD_DOMAIN(t->domain);
+		if (t->prot_sect)
+			t->prot_sect |= PMD_DOMAIN(t->domain);
+	}
+}
+
+#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
+pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
+			      unsigned long size, pgprot_t vma_prot)
+{
+	if (!pfn_valid(pfn))
+		return pgprot_noncached(vma_prot);
+	else if (file->f_flags & O_SYNC)
+		return pgprot_writecombine(vma_prot);
+	return vma_prot;
+}
+EXPORT_SYMBOL(phys_mem_access_prot);
+#endif
+
+#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
+
+static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
+{
+	void *ptr = __va(memblock_alloc(sz, align));
+	memset(ptr, 0, sz);
+	return ptr;
+}
+
+static void __init *early_alloc(unsigned long sz)
+{
+	return early_alloc_aligned(sz, sz);
+}
+
+static void *__init late_alloc(unsigned long sz)
+{
+	void *ptr = (void *)__get_free_pages(PGALLOC_GFP, get_order(sz));
+
+	if (!ptr || !pgtable_page_ctor(virt_to_page(ptr)))
+		BUG();
+	return ptr;
+}
+
+static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
+				unsigned long prot,
+				void *(*alloc)(unsigned long sz))
+{
+	if (pmd_none(*pmd)) {
+		pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
+		__pmd_populate(pmd, __pa(pte), prot);
+	}
+	BUG_ON(pmd_bad(*pmd));
+	return pte_offset_kernel(pmd, addr);
+}
+
+static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
+				      unsigned long prot)
+{
+	return arm_pte_alloc(pmd, addr, prot, early_alloc);
+}
+
+static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
+				  unsigned long end, unsigned long pfn,
+				  const struct mem_type *type,
+				  void *(*alloc)(unsigned long sz),
+				  bool ng)
+{
+	pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
+	do {
+		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
+			    ng ? PTE_EXT_NG : 0);
+		pfn++;
+	} while (pte++, addr += PAGE_SIZE, addr != end);
+}
+
+static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
+			unsigned long end, phys_addr_t phys,
+			const struct mem_type *type, bool ng)
+{
+	pmd_t *p = pmd;
+
+#ifndef CONFIG_ARM_LPAE
+	/*
+	 * In classic MMU format, puds and pmds are folded in to
+	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
+	 * group of L1 entries making up one logical pointer to
+	 * an L2 table (2MB), where as PMDs refer to the individual
+	 * L1 entries (1MB). Hence increment to get the correct
+	 * offset for odd 1MB sections.
+	 * (See arch/arm/include/asm/pgtable-2level.h)
+	 */
+	if (addr & SECTION_SIZE)
+		pmd++;
+#endif
+	do {
+		*pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
+		phys += SECTION_SIZE;
+	} while (pmd++, addr += SECTION_SIZE, addr != end);
+
+	flush_pmd_entry(p);
+}
+
+static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
+				      unsigned long end, phys_addr_t phys,
+				      const struct mem_type *type,
+				      void *(*alloc)(unsigned long sz), bool ng)
+{
+	pmd_t *pmd = pmd_offset(pud, addr);
+	unsigned long next;
+
+	do {
+		/*
+		 * With LPAE, we must loop over to map
+		 * all the pmds for the given range.
+		 */
+		next = pmd_addr_end(addr, end);
+
+		/*
+		 * Try a section mapping - addr, next and phys must all be
+		 * aligned to a section boundary.
+		 */
+		if (type->prot_sect &&
+				((addr | next | phys) & ~SECTION_MASK) == 0) {
+			__map_init_section(pmd, addr, next, phys, type, ng);
+		} else {
+			alloc_init_pte(pmd, addr, next,
+				       __phys_to_pfn(phys), type, alloc, ng);
+		}
+
+		phys += next - addr;
+
+	} while (pmd++, addr = next, addr != end);
+}
+
+static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
+				  unsigned long end, phys_addr_t phys,
+				  const struct mem_type *type,
+				  void *(*alloc)(unsigned long sz), bool ng)
+{
+	pud_t *pud = pud_offset(pgd, addr);
+	unsigned long next;
+
+	do {
+		next = pud_addr_end(addr, end);
+		alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
+		phys += next - addr;
+	} while (pud++, addr = next, addr != end);
+}
+
+#ifndef CONFIG_ARM_LPAE
+static void __init create_36bit_mapping(struct mm_struct *mm,
+					struct map_desc *md,
+					const struct mem_type *type,
+					bool ng)
+{
+	unsigned long addr, length, end;
+	phys_addr_t phys;
+	pgd_t *pgd;
+
+	addr = md->virtual;
+	phys = __pfn_to_phys(md->pfn);
+	length = PAGE_ALIGN(md->length);
+
+	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
+		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
+		       (long long)__pfn_to_phys((u64)md->pfn), addr);
+		return;
+	}
+
+	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
+	 *	Since domain assignments can in fact be arbitrary, the
+	 *	'domain == 0' check below is required to insure that ARMv6
+	 *	supersections are only allocated for domain 0 regardless
+	 *	of the actual domain assignments in use.
+	 */
+	if (type->domain) {
+		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
+		       (long long)__pfn_to_phys((u64)md->pfn), addr);
+		return;
+	}
+
+	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
+		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
+		       (long long)__pfn_to_phys((u64)md->pfn), addr);
+		return;
+	}
+
+	/*
+	 * Shift bits [35:32] of address into bits [23:20] of PMD
+	 * (See ARMv6 spec).
+	 */
+	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
+
+	pgd = pgd_offset(mm, addr);
+	end = addr + length;
+	do {
+		pud_t *pud = pud_offset(pgd, addr);
+		pmd_t *pmd = pmd_offset(pud, addr);
+		int i;
+
+		for (i = 0; i < 16; i++)
+			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
+				       (ng ? PMD_SECT_nG : 0));
+
+		addr += SUPERSECTION_SIZE;
+		phys += SUPERSECTION_SIZE;
+		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
+	} while (addr != end);
+}
+#endif	/* !CONFIG_ARM_LPAE */
+
+static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
+				    void *(*alloc)(unsigned long sz),
+				    bool ng)
+{
+	unsigned long addr, length, end;
+	phys_addr_t phys;
+	const struct mem_type *type;
+	pgd_t *pgd;
+
+	type = &mem_types[md->type];
+
+#ifndef CONFIG_ARM_LPAE
+	/*
+	 * Catch 36-bit addresses
+	 */
+	if (md->pfn >= 0x100000) {
+		create_36bit_mapping(mm, md, type, ng);
+		return;
+	}
+#endif
+
+	addr = md->virtual & PAGE_MASK;
+	phys = __pfn_to_phys(md->pfn);
+	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
+
+	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
+		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
+			(long long)__pfn_to_phys(md->pfn), addr);
+		return;
+	}
+
+	pgd = pgd_offset(mm, addr);
+	end = addr + length;
+	do {
+		unsigned long next = pgd_addr_end(addr, end);
+
+		alloc_init_pud(pgd, addr, next, phys, type, alloc, ng);
+
+		phys += next - addr;
+		addr = next;
+	} while (pgd++, addr != end);
+}
+
+/*
+ * Create the page directory entries and any necessary
+ * page tables for the mapping specified by `md'.  We
+ * are able to cope here with varying sizes and address
+ * offsets, and we take full advantage of sections and
+ * supersections.
+ */
+static void __init create_mapping(struct map_desc *md)
+{
+	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
+		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
+			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
+		return;
+	}
+
+	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
+	    md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
+	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
+		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
+			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
+	}
+
+	__create_mapping(&init_mm, md, early_alloc, false);
+}
+
+void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
+				bool ng)
+{
+#ifdef CONFIG_ARM_LPAE
+	pud_t *pud = pud_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
+	if (WARN_ON(!pud))
+		return;
+	pmd_alloc(mm, pud, 0);
+#endif
+	__create_mapping(mm, md, late_alloc, ng);
+}
+
+/*
+ * Create the architecture specific mappings
+ */
+void __init iotable_init(struct map_desc *io_desc, int nr)
+{
+	struct map_desc *md;
+	struct vm_struct *vm;
+	struct static_vm *svm;
+
+	if (!nr)
+		return;
+
+	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
+
+	for (md = io_desc; nr; md++, nr--) {
+		create_mapping(md);
+
+		vm = &svm->vm;
+		vm->addr = (void *)(md->virtual & PAGE_MASK);
+		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
+		vm->phys_addr = __pfn_to_phys(md->pfn);
+		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
+		vm->flags |= VM_ARM_MTYPE(md->type);
+		vm->caller = iotable_init;
+		add_static_vm_early(svm++);
+	}
+}
+
+void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
+				  void *caller)
+{
+	struct vm_struct *vm;
+	struct static_vm *svm;
+
+	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
+
+	vm = &svm->vm;
+	vm->addr = (void *)addr;
+	vm->size = size;
+	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
+	vm->caller = caller;
+	add_static_vm_early(svm);
+}
+
+#ifndef CONFIG_ARM_LPAE
+
+/*
+ * The Linux PMD is made of two consecutive section entries covering 2MB
+ * (see definition in include/asm/pgtable-2level.h).  However a call to
+ * create_mapping() may optimize static mappings by using individual
+ * 1MB section mappings.  This leaves the actual PMD potentially half
+ * initialized if the top or bottom section entry isn't used, leaving it
+ * open to problems if a subsequent ioremap() or vmalloc() tries to use
+ * the virtual space left free by that unused section entry.
+ *
+ * Let's avoid the issue by inserting dummy vm entries covering the unused
+ * PMD halves once the static mappings are in place.
+ */
+
+static void __init pmd_empty_section_gap(unsigned long addr)
+{
+	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
+}
+
+static void __init fill_pmd_gaps(void)
+{
+	struct static_vm *svm;
+	struct vm_struct *vm;
+	unsigned long addr, next = 0;
+	pmd_t *pmd;
+
+	list_for_each_entry(svm, &static_vmlist, list) {
+		vm = &svm->vm;
+		addr = (unsigned long)vm->addr;
+		if (addr < next)
+			continue;
+
+		/*
+		 * Check if this vm starts on an odd section boundary.
+		 * If so and the first section entry for this PMD is free
+		 * then we block the corresponding virtual address.
+		 */
+		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
+			pmd = pmd_off_k(addr);
+			if (pmd_none(*pmd))
+				pmd_empty_section_gap(addr & PMD_MASK);
+		}
+
+		/*
+		 * Then check if this vm ends on an odd section boundary.
+		 * If so and the second section entry for this PMD is empty
+		 * then we block the corresponding virtual address.
+		 */
+		addr += vm->size;
+		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
+			pmd = pmd_off_k(addr) + 1;
+			if (pmd_none(*pmd))
+				pmd_empty_section_gap(addr);
+		}
+
+		/* no need to look at any vm entry until we hit the next PMD */
+		next = (addr + PMD_SIZE - 1) & PMD_MASK;
+	}
+}
+
+#else
+#define fill_pmd_gaps() do { } while (0)
+#endif
+
+#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
+static void __init pci_reserve_io(void)
+{
+	struct static_vm *svm;
+
+	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
+	if (svm)
+		return;
+
+	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
+}
+#else
+#define pci_reserve_io() do { } while (0)
+#endif
+
+#ifdef CONFIG_DEBUG_LL
+void __init debug_ll_io_init(void)
+{
+	struct map_desc map;
+
+	debug_ll_addr(&map.pfn, &map.virtual);
+	if (!map.pfn || !map.virtual)
+		return;
+	map.pfn = __phys_to_pfn(map.pfn);
+	map.virtual &= PAGE_MASK;
+	map.length = PAGE_SIZE;
+	map.type = MT_DEVICE;
+	iotable_init(&map, 1);
+}
+#endif
+
+static void * __initdata vmalloc_min =
+	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
+
+/*
+ * vmalloc=size forces the vmalloc area to be exactly 'size'
+ * bytes. This can be used to increase (or decrease) the vmalloc
+ * area - the default is 240m.
+ */
+static int __init early_vmalloc(char *arg)
+{
+	unsigned long vmalloc_reserve = memparse(arg, NULL);
+
+	if (vmalloc_reserve < SZ_16M) {
+		vmalloc_reserve = SZ_16M;
+		pr_warn("vmalloc area too small, limiting to %luMB\n",
+			vmalloc_reserve >> 20);
+	}
+
+	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
+		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
+		pr_warn("vmalloc area is too big, limiting to %luMB\n",
+			vmalloc_reserve >> 20);
+	}
+
+	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
+	return 0;
+}
+early_param("vmalloc", early_vmalloc);
+
+phys_addr_t arm_lowmem_limit __initdata = 0;
+
+void __init adjust_lowmem_bounds(void)
+{
+	phys_addr_t memblock_limit = 0;
+	u64 vmalloc_limit;
+	struct memblock_region *reg;
+	phys_addr_t lowmem_limit = 0;
+
+	/*
+	 * Let's use our own (unoptimized) equivalent of __pa() that is
+	 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
+	 * The result is used as the upper bound on physical memory address
+	 * and may itself be outside the valid range for which phys_addr_t
+	 * and therefore __pa() is defined.
+	 */
+	vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET;
+
+	for_each_memblock(memory, reg) {
+		phys_addr_t block_start = reg->base;
+		phys_addr_t block_end = reg->base + reg->size;
+
+		if (reg->base < vmalloc_limit) {
+			if (block_end > lowmem_limit)
+				/*
+				 * Compare as u64 to ensure vmalloc_limit does
+				 * not get truncated. block_end should always
+				 * fit in phys_addr_t so there should be no
+				 * issue with assignment.
+				 */
+				lowmem_limit = min_t(u64,
+							 vmalloc_limit,
+							 block_end);
+
+			/*
+			 * Find the first non-pmd-aligned page, and point
+			 * memblock_limit at it. This relies on rounding the
+			 * limit down to be pmd-aligned, which happens at the
+			 * end of this function.
+			 *
+			 * With this algorithm, the start or end of almost any
+			 * bank can be non-pmd-aligned. The only exception is
+			 * that the start of the bank 0 must be section-
+			 * aligned, since otherwise memory would need to be
+			 * allocated when mapping the start of bank 0, which
+			 * occurs before any free memory is mapped.
+			 */
+			if (!memblock_limit) {
+				if (!IS_ALIGNED(block_start, PMD_SIZE))
+					memblock_limit = block_start;
+				else if (!IS_ALIGNED(block_end, PMD_SIZE))
+					memblock_limit = lowmem_limit;
+			}
+
+		}
+	}
+
+	arm_lowmem_limit = lowmem_limit;
+
+	high_memory = __va(arm_lowmem_limit - 1) + 1;
+
+	if (!memblock_limit)
+		memblock_limit = arm_lowmem_limit;
+
+	/*
+	 * Round the memblock limit down to a pmd size.  This
+	 * helps to ensure that we will allocate memory from the
+	 * last full pmd, which should be mapped.
+	 */
+	memblock_limit = round_down(memblock_limit, PMD_SIZE);
+
+	if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
+		if (memblock_end_of_DRAM() > arm_lowmem_limit) {
+			phys_addr_t end = memblock_end_of_DRAM();
+
+			pr_notice("Ignoring RAM at %pa-%pa\n",
+				  &memblock_limit, &end);
+			pr_notice("Consider using a HIGHMEM enabled kernel.\n");
+
+			memblock_remove(memblock_limit, end - memblock_limit);
+		}
+	}
+
+	memblock_set_current_limit(memblock_limit);
+}
+
+static inline void prepare_page_table(void)
+{
+	unsigned long addr;
+	phys_addr_t end;
+
+	/*
+	 * Clear out all the mappings below the kernel image.
+	 */
+	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
+		pmd_clear(pmd_off_k(addr));
+
+#ifdef CONFIG_XIP_KERNEL
+	/* The XIP kernel is mapped in the module area -- skip over it */
+	addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
+#endif
+	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
+		pmd_clear(pmd_off_k(addr));
+
+	/*
+	 * Find the end of the first block of lowmem.
+	 */
+	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
+	if (end >= arm_lowmem_limit)
+		end = arm_lowmem_limit;
+
+	/*
+	 * Clear out all the kernel space mappings, except for the first
+	 * memory bank, up to the vmalloc region.
+	 */
+	for (addr = __phys_to_virt(end);
+	     addr < VMALLOC_START; addr += PMD_SIZE)
+		pmd_clear(pmd_off_k(addr));
+}
+
+#ifdef CONFIG_ARM_LPAE
+/* the first page is reserved for pgd */
+#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
+				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
+#else
+#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
+#endif
+
+/*
+ * Reserve the special regions of memory
+ */
+void __init arm_mm_memblock_reserve(void)
+{
+	/*
+	 * Reserve the page tables.  These are already in use,
+	 * and can only be in node 0.
+	 */
+	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
+
+#ifdef CONFIG_SA1111
+	/*
+	 * Because of the SA1111 DMA bug, we want to preserve our
+	 * precious DMA-able memory...
+	 */
+	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
+#endif
+}
+
+/*
+ * Set up the device mappings.  Since we clear out the page tables for all
+ * mappings above VMALLOC_START, except early fixmap, we might remove debug
+ * device mappings.  This means earlycon can be used to debug this function
+ * Any other function or debugging method which may touch any device _will_
+ * crash the kernel.
+ */
+static void __init devicemaps_init(const struct machine_desc *mdesc)
+{
+	struct map_desc map;
+	unsigned long addr;
+	void *vectors;
+
+	/*
+	 * Allocate the vector page early.
+	 */
+	vectors = early_alloc(PAGE_SIZE * 2);
+
+	early_trap_init(vectors);
+
+	/*
+	 * Clear page table except top pmd used by early fixmaps
+	 */
+	for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
+		pmd_clear(pmd_off_k(addr));
+
+	/*
+	 * Map the kernel if it is XIP.
+	 * It is always first in the modulearea.
+	 */
+#ifdef CONFIG_XIP_KERNEL
+	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
+	map.virtual = MODULES_VADDR;
+	map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
+	map.type = MT_ROM;
+	create_mapping(&map);
+#endif
+
+	/*
+	 * Map the cache flushing regions.
+	 */
+#ifdef FLUSH_BASE
+	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
+	map.virtual = FLUSH_BASE;
+	map.length = SZ_1M;
+	map.type = MT_CACHECLEAN;
+	create_mapping(&map);
+#endif
+#ifdef FLUSH_BASE_MINICACHE
+	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
+	map.virtual = FLUSH_BASE_MINICACHE;
+	map.length = SZ_1M;
+	map.type = MT_MINICLEAN;
+	create_mapping(&map);
+#endif
+
+	/*
+	 * Create a mapping for the machine vectors at the high-vectors
+	 * location (0xffff0000).  If we aren't using high-vectors, also
+	 * create a mapping at the low-vectors virtual address.
+	 */
+	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
+	map.virtual = 0xffff0000;
+	map.length = PAGE_SIZE;
+#ifdef CONFIG_KUSER_HELPERS
+	map.type = MT_HIGH_VECTORS;
+#else
+	map.type = MT_LOW_VECTORS;
+#endif
+	create_mapping(&map);
+
+	if (!vectors_high()) {
+		map.virtual = 0;
+		map.length = PAGE_SIZE * 2;
+		map.type = MT_LOW_VECTORS;
+		create_mapping(&map);
+	}
+
+	/* Now create a kernel read-only mapping */
+	map.pfn += 1;
+	map.virtual = 0xffff0000 + PAGE_SIZE;
+	map.length = PAGE_SIZE;
+	map.type = MT_LOW_VECTORS;
+	create_mapping(&map);
+
+	/*
+	 * Ask the machine support to map in the statically mapped devices.
+	 */
+	if (mdesc->map_io)
+		mdesc->map_io();
+	else
+		debug_ll_io_init();
+	fill_pmd_gaps();
+
+	/* Reserve fixed i/o space in VMALLOC region */
+	pci_reserve_io();
+
+	/*
+	 * Finally flush the caches and tlb to ensure that we're in a
+	 * consistent state wrt the writebuffer.  This also ensures that
+	 * any write-allocated cache lines in the vector page are written
+	 * back.  After this point, we can start to touch devices again.
+	 */
+	local_flush_tlb_all();
+	flush_cache_all();
+
+	/* Enable asynchronous aborts */
+	early_abt_enable();
+}
+
+static void __init kmap_init(void)
+{
+#ifdef CONFIG_HIGHMEM
+	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
+		PKMAP_BASE, _PAGE_KERNEL_TABLE);
+#endif
+
+	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
+			_PAGE_KERNEL_TABLE);
+}
+
+static void __init map_lowmem(void)
+{
+	struct memblock_region *reg;
+	phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE);
+	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
+
+	/* Map all the lowmem memory banks. */
+	for_each_memblock(memory, reg) {
+		phys_addr_t start = reg->base;
+		phys_addr_t end = start + reg->size;
+		struct map_desc map;
+
+		if (memblock_is_nomap(reg))
+			continue;
+
+		if (end > arm_lowmem_limit)
+			end = arm_lowmem_limit;
+		if (start >= end)
+			break;
+
+		if (end < kernel_x_start) {
+			map.pfn = __phys_to_pfn(start);
+			map.virtual = __phys_to_virt(start);
+			map.length = end - start;
+			map.type = MT_MEMORY_RWX;
+
+			create_mapping(&map);
+		} else if (start >= kernel_x_end) {
+			map.pfn = __phys_to_pfn(start);
+			map.virtual = __phys_to_virt(start);
+			map.length = end - start;
+			map.type = MT_MEMORY_RW;
+
+			create_mapping(&map);
+		} else {
+			/* This better cover the entire kernel */
+			if (start < kernel_x_start) {
+				map.pfn = __phys_to_pfn(start);
+				map.virtual = __phys_to_virt(start);
+				map.length = kernel_x_start - start;
+				map.type = MT_MEMORY_RW;
+
+				create_mapping(&map);
+			}
+
+			map.pfn = __phys_to_pfn(kernel_x_start);
+			map.virtual = __phys_to_virt(kernel_x_start);
+			map.length = kernel_x_end - kernel_x_start;
+			map.type = MT_MEMORY_RWX;
+
+			create_mapping(&map);
+
+			if (kernel_x_end < end) {
+				map.pfn = __phys_to_pfn(kernel_x_end);
+				map.virtual = __phys_to_virt(kernel_x_end);
+				map.length = end - kernel_x_end;
+				map.type = MT_MEMORY_RW;
+
+				create_mapping(&map);
+			}
+		}
+	}
+}
+
+#ifdef CONFIG_ARM_PV_FIXUP
+extern unsigned long __atags_pointer;
+typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
+pgtables_remap lpae_pgtables_remap_asm;
+
+/*
+ * early_paging_init() recreates boot time page table setup, allowing machines
+ * to switch over to a high (>4G) address space on LPAE systems
+ */
+static void __init early_paging_init(const struct machine_desc *mdesc)
+{
+	pgtables_remap *lpae_pgtables_remap;
+	unsigned long pa_pgd;
+	unsigned int cr, ttbcr;
+	long long offset;
+	void *boot_data;
+
+	if (!mdesc->pv_fixup)
+		return;
+
+	offset = mdesc->pv_fixup();
+	if (offset == 0)
+		return;
+
+	/*
+	 * Get the address of the remap function in the 1:1 identity
+	 * mapping setup by the early page table assembly code.  We
+	 * must get this prior to the pv update.  The following barrier
+	 * ensures that this is complete before we fixup any P:V offsets.
+	 */
+	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
+	pa_pgd = __pa(swapper_pg_dir);
+	boot_data = __va(__atags_pointer);
+	barrier();
+
+	pr_info("Switching physical address space to 0x%08llx\n",
+		(u64)PHYS_OFFSET + offset);
+
+	/* Re-set the phys pfn offset, and the pv offset */
+	__pv_offset += offset;
+	__pv_phys_pfn_offset += PFN_DOWN(offset);
+
+	/* Run the patch stub to update the constants */
+	fixup_pv_table(&__pv_table_begin,
+		(&__pv_table_end - &__pv_table_begin) << 2);
+
+	/*
+	 * We changing not only the virtual to physical mapping, but also
+	 * the physical addresses used to access memory.  We need to flush
+	 * all levels of cache in the system with caching disabled to
+	 * ensure that all data is written back, and nothing is prefetched
+	 * into the caches.  We also need to prevent the TLB walkers
+	 * allocating into the caches too.  Note that this is ARMv7 LPAE
+	 * specific.
+	 */
+	cr = get_cr();
+	set_cr(cr & ~(CR_I | CR_C));
+	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
+	asm volatile("mcr p15, 0, %0, c2, c0, 2"
+		: : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
+	flush_cache_all();
+
+	/*
+	 * Fixup the page tables - this must be in the idmap region as
+	 * we need to disable the MMU to do this safely, and hence it
+	 * needs to be assembly.  It's fairly simple, as we're using the
+	 * temporary tables setup by the initial assembly code.
+	 */
+	lpae_pgtables_remap(offset, pa_pgd, boot_data);
+
+	/* Re-enable the caches and cacheable TLB walks */
+	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
+	set_cr(cr);
+}
+
+#else
+
+static void __init early_paging_init(const struct machine_desc *mdesc)
+{
+	long long offset;
+
+	if (!mdesc->pv_fixup)
+		return;
+
+	offset = mdesc->pv_fixup();
+	if (offset == 0)
+		return;
+
+	pr_crit("Physical address space modification is only to support Keystone2.\n");
+	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
+	pr_crit("feature. Your kernel may crash now, have a good day.\n");
+	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
+}
+
+#endif
+
+static void __init early_fixmap_shutdown(void)
+{
+	int i;
+	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
+
+	pte_offset_fixmap = pte_offset_late_fixmap;
+	pmd_clear(fixmap_pmd(va));
+	local_flush_tlb_kernel_page(va);
+
+	for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
+		pte_t *pte;
+		struct map_desc map;
+
+		map.virtual = fix_to_virt(i);
+		pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
+
+		/* Only i/o device mappings are supported ATM */
+		if (pte_none(*pte) ||
+		    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
+			continue;
+
+		map.pfn = pte_pfn(*pte);
+		map.type = MT_DEVICE;
+		map.length = PAGE_SIZE;
+
+		create_mapping(&map);
+	}
+}
+
+/*
+ * paging_init() sets up the page tables, initialises the zone memory
+ * maps, and sets up the zero page, bad page and bad page tables.
+ */
+void __init paging_init(const struct machine_desc *mdesc)
+{
+	void *zero_page;
+
+	prepare_page_table();
+	map_lowmem();
+	memblock_set_current_limit(arm_lowmem_limit);
+	dma_contiguous_remap();
+	early_fixmap_shutdown();
+	devicemaps_init(mdesc);
+	kmap_init();
+	tcm_init();
+
+	top_pmd = pmd_off_k(0xffff0000);
+
+	/* allocate the zero page. */
+	zero_page = early_alloc(PAGE_SIZE);
+
+	bootmem_init();
+
+	empty_zero_page = virt_to_page(zero_page);
+	__flush_dcache_page(NULL, empty_zero_page);
+
+	/* Compute the virt/idmap offset, mostly for the sake of KVM */
+	kimage_voffset = (unsigned long)&kimage_voffset - virt_to_idmap(&kimage_voffset);
+}
+
+void __init early_mm_init(const struct machine_desc *mdesc)
+{
+	build_mem_type_table();
+	early_paging_init(mdesc);
+}