Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * FDT related Helper functions used by the EFI stub on multiple |
| 3 | * architectures. This should be #included by the EFI stub |
| 4 | * implementation files. |
| 5 | * |
| 6 | * Copyright 2013 Linaro Limited; author Roy Franz |
| 7 | * |
| 8 | * This file is part of the Linux kernel, and is made available |
| 9 | * under the terms of the GNU General Public License version 2. |
| 10 | * |
| 11 | */ |
| 12 | |
| 13 | #include <linux/efi.h> |
| 14 | #include <linux/libfdt.h> |
| 15 | #include <asm/efi.h> |
| 16 | |
| 17 | #include "efistub.h" |
| 18 | |
| 19 | #define EFI_DT_ADDR_CELLS_DEFAULT 2 |
| 20 | #define EFI_DT_SIZE_CELLS_DEFAULT 2 |
| 21 | |
| 22 | static void fdt_update_cell_size(efi_system_table_t *sys_table, void *fdt) |
| 23 | { |
| 24 | int offset; |
| 25 | |
| 26 | offset = fdt_path_offset(fdt, "/"); |
| 27 | /* Set the #address-cells and #size-cells values for an empty tree */ |
| 28 | |
| 29 | fdt_setprop_u32(fdt, offset, "#address-cells", |
| 30 | EFI_DT_ADDR_CELLS_DEFAULT); |
| 31 | |
| 32 | fdt_setprop_u32(fdt, offset, "#size-cells", EFI_DT_SIZE_CELLS_DEFAULT); |
| 33 | } |
| 34 | |
| 35 | static efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt, |
| 36 | unsigned long orig_fdt_size, |
| 37 | void *fdt, int new_fdt_size, char *cmdline_ptr, |
| 38 | u64 initrd_addr, u64 initrd_size) |
| 39 | { |
| 40 | int node, num_rsv; |
| 41 | int status; |
| 42 | u32 fdt_val32; |
| 43 | u64 fdt_val64; |
| 44 | |
| 45 | /* Do some checks on provided FDT, if it exists*/ |
| 46 | if (orig_fdt) { |
| 47 | if (fdt_check_header(orig_fdt)) { |
| 48 | pr_efi_err(sys_table, "Device Tree header not valid!\n"); |
| 49 | return EFI_LOAD_ERROR; |
| 50 | } |
| 51 | /* |
| 52 | * We don't get the size of the FDT if we get if from a |
| 53 | * configuration table. |
| 54 | */ |
| 55 | if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) { |
| 56 | pr_efi_err(sys_table, "Truncated device tree! foo!\n"); |
| 57 | return EFI_LOAD_ERROR; |
| 58 | } |
| 59 | } |
| 60 | |
| 61 | if (orig_fdt) { |
| 62 | status = fdt_open_into(orig_fdt, fdt, new_fdt_size); |
| 63 | } else { |
| 64 | status = fdt_create_empty_tree(fdt, new_fdt_size); |
| 65 | if (status == 0) { |
| 66 | /* |
| 67 | * Any failure from the following function is non |
| 68 | * critical |
| 69 | */ |
| 70 | fdt_update_cell_size(sys_table, fdt); |
| 71 | } |
| 72 | } |
| 73 | |
| 74 | if (status != 0) |
| 75 | goto fdt_set_fail; |
| 76 | |
| 77 | /* |
| 78 | * Delete all memory reserve map entries. When booting via UEFI, |
| 79 | * kernel will use the UEFI memory map to find reserved regions. |
| 80 | */ |
| 81 | num_rsv = fdt_num_mem_rsv(fdt); |
| 82 | while (num_rsv-- > 0) |
| 83 | fdt_del_mem_rsv(fdt, num_rsv); |
| 84 | |
| 85 | node = fdt_subnode_offset(fdt, 0, "chosen"); |
| 86 | if (node < 0) { |
| 87 | node = fdt_add_subnode(fdt, 0, "chosen"); |
| 88 | if (node < 0) { |
| 89 | status = node; /* node is error code when negative */ |
| 90 | goto fdt_set_fail; |
| 91 | } |
| 92 | } |
| 93 | |
| 94 | if ((cmdline_ptr != NULL) && (strlen(cmdline_ptr) > 0)) { |
| 95 | status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr, |
| 96 | strlen(cmdline_ptr) + 1); |
| 97 | if (status) |
| 98 | goto fdt_set_fail; |
| 99 | } |
| 100 | |
| 101 | /* Set initrd address/end in device tree, if present */ |
| 102 | if (initrd_size != 0) { |
| 103 | u64 initrd_image_end; |
| 104 | u64 initrd_image_start = cpu_to_fdt64(initrd_addr); |
| 105 | |
| 106 | status = fdt_setprop(fdt, node, "linux,initrd-start", |
| 107 | &initrd_image_start, sizeof(u64)); |
| 108 | if (status) |
| 109 | goto fdt_set_fail; |
| 110 | initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size); |
| 111 | status = fdt_setprop(fdt, node, "linux,initrd-end", |
| 112 | &initrd_image_end, sizeof(u64)); |
| 113 | if (status) |
| 114 | goto fdt_set_fail; |
| 115 | } |
| 116 | |
| 117 | /* Add FDT entries for EFI runtime services in chosen node. */ |
| 118 | node = fdt_subnode_offset(fdt, 0, "chosen"); |
| 119 | fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table); |
| 120 | status = fdt_setprop(fdt, node, "linux,uefi-system-table", |
| 121 | &fdt_val64, sizeof(fdt_val64)); |
| 122 | if (status) |
| 123 | goto fdt_set_fail; |
| 124 | |
| 125 | fdt_val64 = U64_MAX; /* placeholder */ |
| 126 | status = fdt_setprop(fdt, node, "linux,uefi-mmap-start", |
| 127 | &fdt_val64, sizeof(fdt_val64)); |
| 128 | if (status) |
| 129 | goto fdt_set_fail; |
| 130 | |
| 131 | fdt_val32 = U32_MAX; /* placeholder */ |
| 132 | status = fdt_setprop(fdt, node, "linux,uefi-mmap-size", |
| 133 | &fdt_val32, sizeof(fdt_val32)); |
| 134 | if (status) |
| 135 | goto fdt_set_fail; |
| 136 | |
| 137 | status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-size", |
| 138 | &fdt_val32, sizeof(fdt_val32)); |
| 139 | if (status) |
| 140 | goto fdt_set_fail; |
| 141 | |
| 142 | status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-ver", |
| 143 | &fdt_val32, sizeof(fdt_val32)); |
| 144 | if (status) |
| 145 | goto fdt_set_fail; |
| 146 | |
| 147 | if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) { |
| 148 | efi_status_t efi_status; |
| 149 | |
| 150 | efi_status = efi_get_random_bytes(sys_table, sizeof(fdt_val64), |
| 151 | (u8 *)&fdt_val64); |
| 152 | if (efi_status == EFI_SUCCESS) { |
| 153 | status = fdt_setprop(fdt, node, "kaslr-seed", |
| 154 | &fdt_val64, sizeof(fdt_val64)); |
| 155 | if (status) |
| 156 | goto fdt_set_fail; |
| 157 | } else if (efi_status != EFI_NOT_FOUND) { |
| 158 | return efi_status; |
| 159 | } |
| 160 | } |
| 161 | |
| 162 | /* shrink the FDT back to its minimum size */ |
| 163 | fdt_pack(fdt); |
| 164 | |
| 165 | return EFI_SUCCESS; |
| 166 | |
| 167 | fdt_set_fail: |
| 168 | if (status == -FDT_ERR_NOSPACE) |
| 169 | return EFI_BUFFER_TOO_SMALL; |
| 170 | |
| 171 | return EFI_LOAD_ERROR; |
| 172 | } |
| 173 | |
| 174 | static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map) |
| 175 | { |
| 176 | int node = fdt_path_offset(fdt, "/chosen"); |
| 177 | u64 fdt_val64; |
| 178 | u32 fdt_val32; |
| 179 | int err; |
| 180 | |
| 181 | if (node < 0) |
| 182 | return EFI_LOAD_ERROR; |
| 183 | |
| 184 | fdt_val64 = cpu_to_fdt64((unsigned long)*map->map); |
| 185 | err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-start", |
| 186 | &fdt_val64, sizeof(fdt_val64)); |
| 187 | if (err) |
| 188 | return EFI_LOAD_ERROR; |
| 189 | |
| 190 | fdt_val32 = cpu_to_fdt32(*map->map_size); |
| 191 | err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-size", |
| 192 | &fdt_val32, sizeof(fdt_val32)); |
| 193 | if (err) |
| 194 | return EFI_LOAD_ERROR; |
| 195 | |
| 196 | fdt_val32 = cpu_to_fdt32(*map->desc_size); |
| 197 | err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-desc-size", |
| 198 | &fdt_val32, sizeof(fdt_val32)); |
| 199 | if (err) |
| 200 | return EFI_LOAD_ERROR; |
| 201 | |
| 202 | fdt_val32 = cpu_to_fdt32(*map->desc_ver); |
| 203 | err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-desc-ver", |
| 204 | &fdt_val32, sizeof(fdt_val32)); |
| 205 | if (err) |
| 206 | return EFI_LOAD_ERROR; |
| 207 | |
| 208 | return EFI_SUCCESS; |
| 209 | } |
| 210 | |
| 211 | #ifndef EFI_FDT_ALIGN |
| 212 | #define EFI_FDT_ALIGN EFI_PAGE_SIZE |
| 213 | #endif |
| 214 | |
| 215 | struct exit_boot_struct { |
| 216 | efi_memory_desc_t *runtime_map; |
| 217 | int *runtime_entry_count; |
| 218 | void *new_fdt_addr; |
| 219 | }; |
| 220 | |
| 221 | static efi_status_t exit_boot_func(efi_system_table_t *sys_table_arg, |
| 222 | struct efi_boot_memmap *map, |
| 223 | void *priv) |
| 224 | { |
| 225 | struct exit_boot_struct *p = priv; |
| 226 | /* |
| 227 | * Update the memory map with virtual addresses. The function will also |
| 228 | * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME |
| 229 | * entries so that we can pass it straight to SetVirtualAddressMap() |
| 230 | */ |
| 231 | efi_get_virtmap(*map->map, *map->map_size, *map->desc_size, |
| 232 | p->runtime_map, p->runtime_entry_count); |
| 233 | |
| 234 | return update_fdt_memmap(p->new_fdt_addr, map); |
| 235 | } |
| 236 | |
| 237 | #ifndef MAX_FDT_SIZE |
| 238 | #define MAX_FDT_SIZE SZ_2M |
| 239 | #endif |
| 240 | |
| 241 | /* |
| 242 | * Allocate memory for a new FDT, then add EFI, commandline, and |
| 243 | * initrd related fields to the FDT. This routine increases the |
| 244 | * FDT allocation size until the allocated memory is large |
| 245 | * enough. EFI allocations are in EFI_PAGE_SIZE granules, |
| 246 | * which are fixed at 4K bytes, so in most cases the first |
| 247 | * allocation should succeed. |
| 248 | * EFI boot services are exited at the end of this function. |
| 249 | * There must be no allocations between the get_memory_map() |
| 250 | * call and the exit_boot_services() call, so the exiting of |
| 251 | * boot services is very tightly tied to the creation of the FDT |
| 252 | * with the final memory map in it. |
| 253 | */ |
| 254 | |
| 255 | efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table, |
| 256 | void *handle, |
| 257 | unsigned long *new_fdt_addr, |
| 258 | unsigned long max_addr, |
| 259 | u64 initrd_addr, u64 initrd_size, |
| 260 | char *cmdline_ptr, |
| 261 | unsigned long fdt_addr, |
| 262 | unsigned long fdt_size) |
| 263 | { |
| 264 | unsigned long map_size, desc_size, buff_size; |
| 265 | u32 desc_ver; |
| 266 | unsigned long mmap_key; |
| 267 | efi_memory_desc_t *memory_map, *runtime_map; |
| 268 | efi_status_t status; |
| 269 | int runtime_entry_count = 0; |
| 270 | struct efi_boot_memmap map; |
| 271 | struct exit_boot_struct priv; |
| 272 | |
| 273 | map.map = &runtime_map; |
| 274 | map.map_size = &map_size; |
| 275 | map.desc_size = &desc_size; |
| 276 | map.desc_ver = &desc_ver; |
| 277 | map.key_ptr = &mmap_key; |
| 278 | map.buff_size = &buff_size; |
| 279 | |
| 280 | /* |
| 281 | * Get a copy of the current memory map that we will use to prepare |
| 282 | * the input for SetVirtualAddressMap(). We don't have to worry about |
| 283 | * subsequent allocations adding entries, since they could not affect |
| 284 | * the number of EFI_MEMORY_RUNTIME regions. |
| 285 | */ |
| 286 | status = efi_get_memory_map(sys_table, &map); |
| 287 | if (status != EFI_SUCCESS) { |
| 288 | pr_efi_err(sys_table, "Unable to retrieve UEFI memory map.\n"); |
| 289 | return status; |
| 290 | } |
| 291 | |
| 292 | pr_efi(sys_table, |
| 293 | "Exiting boot services and installing virtual address map...\n"); |
| 294 | |
| 295 | map.map = &memory_map; |
| 296 | status = efi_high_alloc(sys_table, MAX_FDT_SIZE, EFI_FDT_ALIGN, |
| 297 | new_fdt_addr, max_addr); |
| 298 | if (status != EFI_SUCCESS) { |
| 299 | pr_efi_err(sys_table, |
| 300 | "Unable to allocate memory for new device tree.\n"); |
| 301 | goto fail; |
| 302 | } |
| 303 | |
| 304 | /* |
| 305 | * Now that we have done our final memory allocation (and free) |
| 306 | * we can get the memory map key needed for exit_boot_services(). |
| 307 | */ |
| 308 | status = efi_get_memory_map(sys_table, &map); |
| 309 | if (status != EFI_SUCCESS) |
| 310 | goto fail_free_new_fdt; |
| 311 | |
| 312 | status = update_fdt(sys_table, (void *)fdt_addr, fdt_size, |
| 313 | (void *)*new_fdt_addr, MAX_FDT_SIZE, cmdline_ptr, |
| 314 | initrd_addr, initrd_size); |
| 315 | |
| 316 | if (status != EFI_SUCCESS) { |
| 317 | pr_efi_err(sys_table, "Unable to construct new device tree.\n"); |
| 318 | goto fail_free_new_fdt; |
| 319 | } |
| 320 | |
| 321 | priv.runtime_map = runtime_map; |
| 322 | priv.runtime_entry_count = &runtime_entry_count; |
| 323 | priv.new_fdt_addr = (void *)*new_fdt_addr; |
| 324 | status = efi_exit_boot_services(sys_table, handle, &map, &priv, |
| 325 | exit_boot_func); |
| 326 | |
| 327 | if (status == EFI_SUCCESS) { |
| 328 | efi_set_virtual_address_map_t *svam; |
| 329 | |
| 330 | /* Install the new virtual address map */ |
| 331 | svam = sys_table->runtime->set_virtual_address_map; |
| 332 | status = svam(runtime_entry_count * desc_size, desc_size, |
| 333 | desc_ver, runtime_map); |
| 334 | |
| 335 | /* |
| 336 | * We are beyond the point of no return here, so if the call to |
| 337 | * SetVirtualAddressMap() failed, we need to signal that to the |
| 338 | * incoming kernel but proceed normally otherwise. |
| 339 | */ |
| 340 | if (status != EFI_SUCCESS) { |
| 341 | int l; |
| 342 | |
| 343 | /* |
| 344 | * Set the virtual address field of all |
| 345 | * EFI_MEMORY_RUNTIME entries to 0. This will signal |
| 346 | * the incoming kernel that no virtual translation has |
| 347 | * been installed. |
| 348 | */ |
| 349 | for (l = 0; l < map_size; l += desc_size) { |
| 350 | efi_memory_desc_t *p = (void *)memory_map + l; |
| 351 | |
| 352 | if (p->attribute & EFI_MEMORY_RUNTIME) |
| 353 | p->virt_addr = 0; |
| 354 | } |
| 355 | } |
| 356 | return EFI_SUCCESS; |
| 357 | } |
| 358 | |
| 359 | pr_efi_err(sys_table, "Exit boot services failed.\n"); |
| 360 | |
| 361 | fail_free_new_fdt: |
| 362 | efi_free(sys_table, MAX_FDT_SIZE, *new_fdt_addr); |
| 363 | |
| 364 | fail: |
| 365 | sys_table->boottime->free_pool(runtime_map); |
| 366 | return EFI_LOAD_ERROR; |
| 367 | } |
| 368 | |
| 369 | void *get_fdt(efi_system_table_t *sys_table, unsigned long *fdt_size) |
| 370 | { |
| 371 | efi_guid_t fdt_guid = DEVICE_TREE_GUID; |
| 372 | efi_config_table_t *tables; |
| 373 | void *fdt; |
| 374 | int i; |
| 375 | |
| 376 | tables = (efi_config_table_t *) sys_table->tables; |
| 377 | fdt = NULL; |
| 378 | |
| 379 | for (i = 0; i < sys_table->nr_tables; i++) |
| 380 | if (efi_guidcmp(tables[i].guid, fdt_guid) == 0) { |
| 381 | fdt = (void *) tables[i].table; |
| 382 | if (fdt_check_header(fdt) != 0) { |
| 383 | pr_efi_err(sys_table, "Invalid header detected on UEFI supplied FDT, ignoring ...\n"); |
| 384 | return NULL; |
| 385 | } |
| 386 | *fdt_size = fdt_totalsize(fdt); |
| 387 | break; |
| 388 | } |
| 389 | |
| 390 | return fdt; |
| 391 | } |