v4.19.13 snapshot.
diff --git a/drivers/firmware/efi/libstub/fdt.c b/drivers/firmware/efi/libstub/fdt.c
new file mode 100644
index 0000000..0c0d231
--- /dev/null
+++ b/drivers/firmware/efi/libstub/fdt.c
@@ -0,0 +1,391 @@
+/*
+ * FDT related Helper functions used by the EFI stub on multiple
+ * architectures. This should be #included by the EFI stub
+ * implementation files.
+ *
+ * Copyright 2013 Linaro Limited; author Roy Franz
+ *
+ * This file is part of the Linux kernel, and is made available
+ * under the terms of the GNU General Public License version 2.
+ *
+ */
+
+#include <linux/efi.h>
+#include <linux/libfdt.h>
+#include <asm/efi.h>
+
+#include "efistub.h"
+
+#define EFI_DT_ADDR_CELLS_DEFAULT 2
+#define EFI_DT_SIZE_CELLS_DEFAULT 2
+
+static void fdt_update_cell_size(efi_system_table_t *sys_table, void *fdt)
+{
+	int offset;
+
+	offset = fdt_path_offset(fdt, "/");
+	/* Set the #address-cells and #size-cells values for an empty tree */
+
+	fdt_setprop_u32(fdt, offset, "#address-cells",
+			EFI_DT_ADDR_CELLS_DEFAULT);
+
+	fdt_setprop_u32(fdt, offset, "#size-cells", EFI_DT_SIZE_CELLS_DEFAULT);
+}
+
+static efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt,
+			       unsigned long orig_fdt_size,
+			       void *fdt, int new_fdt_size, char *cmdline_ptr,
+			       u64 initrd_addr, u64 initrd_size)
+{
+	int node, num_rsv;
+	int status;
+	u32 fdt_val32;
+	u64 fdt_val64;
+
+	/* Do some checks on provided FDT, if it exists*/
+	if (orig_fdt) {
+		if (fdt_check_header(orig_fdt)) {
+			pr_efi_err(sys_table, "Device Tree header not valid!\n");
+			return EFI_LOAD_ERROR;
+		}
+		/*
+		 * We don't get the size of the FDT if we get if from a
+		 * configuration table.
+		 */
+		if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
+			pr_efi_err(sys_table, "Truncated device tree! foo!\n");
+			return EFI_LOAD_ERROR;
+		}
+	}
+
+	if (orig_fdt) {
+		status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
+	} else {
+		status = fdt_create_empty_tree(fdt, new_fdt_size);
+		if (status == 0) {
+			/*
+			 * Any failure from the following function is non
+			 * critical
+			 */
+			fdt_update_cell_size(sys_table, fdt);
+		}
+	}
+
+	if (status != 0)
+		goto fdt_set_fail;
+
+	/*
+	 * Delete all memory reserve map entries. When booting via UEFI,
+	 * kernel will use the UEFI memory map to find reserved regions.
+	 */
+	num_rsv = fdt_num_mem_rsv(fdt);
+	while (num_rsv-- > 0)
+		fdt_del_mem_rsv(fdt, num_rsv);
+
+	node = fdt_subnode_offset(fdt, 0, "chosen");
+	if (node < 0) {
+		node = fdt_add_subnode(fdt, 0, "chosen");
+		if (node < 0) {
+			status = node; /* node is error code when negative */
+			goto fdt_set_fail;
+		}
+	}
+
+	if ((cmdline_ptr != NULL) && (strlen(cmdline_ptr) > 0)) {
+		status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
+				     strlen(cmdline_ptr) + 1);
+		if (status)
+			goto fdt_set_fail;
+	}
+
+	/* Set initrd address/end in device tree, if present */
+	if (initrd_size != 0) {
+		u64 initrd_image_end;
+		u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
+
+		status = fdt_setprop(fdt, node, "linux,initrd-start",
+				     &initrd_image_start, sizeof(u64));
+		if (status)
+			goto fdt_set_fail;
+		initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
+		status = fdt_setprop(fdt, node, "linux,initrd-end",
+				     &initrd_image_end, sizeof(u64));
+		if (status)
+			goto fdt_set_fail;
+	}
+
+	/* Add FDT entries for EFI runtime services in chosen node. */
+	node = fdt_subnode_offset(fdt, 0, "chosen");
+	fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table);
+	status = fdt_setprop(fdt, node, "linux,uefi-system-table",
+			     &fdt_val64, sizeof(fdt_val64));
+	if (status)
+		goto fdt_set_fail;
+
+	fdt_val64 = U64_MAX; /* placeholder */
+	status = fdt_setprop(fdt, node, "linux,uefi-mmap-start",
+			     &fdt_val64,  sizeof(fdt_val64));
+	if (status)
+		goto fdt_set_fail;
+
+	fdt_val32 = U32_MAX; /* placeholder */
+	status = fdt_setprop(fdt, node, "linux,uefi-mmap-size",
+			     &fdt_val32,  sizeof(fdt_val32));
+	if (status)
+		goto fdt_set_fail;
+
+	status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-size",
+			     &fdt_val32, sizeof(fdt_val32));
+	if (status)
+		goto fdt_set_fail;
+
+	status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-ver",
+			     &fdt_val32, sizeof(fdt_val32));
+	if (status)
+		goto fdt_set_fail;
+
+	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
+		efi_status_t efi_status;
+
+		efi_status = efi_get_random_bytes(sys_table, sizeof(fdt_val64),
+						  (u8 *)&fdt_val64);
+		if (efi_status == EFI_SUCCESS) {
+			status = fdt_setprop(fdt, node, "kaslr-seed",
+					     &fdt_val64, sizeof(fdt_val64));
+			if (status)
+				goto fdt_set_fail;
+		} else if (efi_status != EFI_NOT_FOUND) {
+			return efi_status;
+		}
+	}
+
+	/* shrink the FDT back to its minimum size */
+	fdt_pack(fdt);
+
+	return EFI_SUCCESS;
+
+fdt_set_fail:
+	if (status == -FDT_ERR_NOSPACE)
+		return EFI_BUFFER_TOO_SMALL;
+
+	return EFI_LOAD_ERROR;
+}
+
+static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map)
+{
+	int node = fdt_path_offset(fdt, "/chosen");
+	u64 fdt_val64;
+	u32 fdt_val32;
+	int err;
+
+	if (node < 0)
+		return EFI_LOAD_ERROR;
+
+	fdt_val64 = cpu_to_fdt64((unsigned long)*map->map);
+	err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-start",
+				  &fdt_val64, sizeof(fdt_val64));
+	if (err)
+		return EFI_LOAD_ERROR;
+
+	fdt_val32 = cpu_to_fdt32(*map->map_size);
+	err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-size",
+				  &fdt_val32, sizeof(fdt_val32));
+	if (err)
+		return EFI_LOAD_ERROR;
+
+	fdt_val32 = cpu_to_fdt32(*map->desc_size);
+	err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-desc-size",
+				  &fdt_val32, sizeof(fdt_val32));
+	if (err)
+		return EFI_LOAD_ERROR;
+
+	fdt_val32 = cpu_to_fdt32(*map->desc_ver);
+	err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-desc-ver",
+				  &fdt_val32, sizeof(fdt_val32));
+	if (err)
+		return EFI_LOAD_ERROR;
+
+	return EFI_SUCCESS;
+}
+
+#ifndef EFI_FDT_ALIGN
+#define EFI_FDT_ALIGN EFI_PAGE_SIZE
+#endif
+
+struct exit_boot_struct {
+	efi_memory_desc_t *runtime_map;
+	int *runtime_entry_count;
+	void *new_fdt_addr;
+};
+
+static efi_status_t exit_boot_func(efi_system_table_t *sys_table_arg,
+				   struct efi_boot_memmap *map,
+				   void *priv)
+{
+	struct exit_boot_struct *p = priv;
+	/*
+	 * Update the memory map with virtual addresses. The function will also
+	 * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
+	 * entries so that we can pass it straight to SetVirtualAddressMap()
+	 */
+	efi_get_virtmap(*map->map, *map->map_size, *map->desc_size,
+			p->runtime_map, p->runtime_entry_count);
+
+	return update_fdt_memmap(p->new_fdt_addr, map);
+}
+
+#ifndef MAX_FDT_SIZE
+#define MAX_FDT_SIZE	SZ_2M
+#endif
+
+/*
+ * Allocate memory for a new FDT, then add EFI, commandline, and
+ * initrd related fields to the FDT.  This routine increases the
+ * FDT allocation size until the allocated memory is large
+ * enough.  EFI allocations are in EFI_PAGE_SIZE granules,
+ * which are fixed at 4K bytes, so in most cases the first
+ * allocation should succeed.
+ * EFI boot services are exited at the end of this function.
+ * There must be no allocations between the get_memory_map()
+ * call and the exit_boot_services() call, so the exiting of
+ * boot services is very tightly tied to the creation of the FDT
+ * with the final memory map in it.
+ */
+
+efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table,
+					    void *handle,
+					    unsigned long *new_fdt_addr,
+					    unsigned long max_addr,
+					    u64 initrd_addr, u64 initrd_size,
+					    char *cmdline_ptr,
+					    unsigned long fdt_addr,
+					    unsigned long fdt_size)
+{
+	unsigned long map_size, desc_size, buff_size;
+	u32 desc_ver;
+	unsigned long mmap_key;
+	efi_memory_desc_t *memory_map, *runtime_map;
+	efi_status_t status;
+	int runtime_entry_count = 0;
+	struct efi_boot_memmap map;
+	struct exit_boot_struct priv;
+
+	map.map =	&runtime_map;
+	map.map_size =	&map_size;
+	map.desc_size =	&desc_size;
+	map.desc_ver =	&desc_ver;
+	map.key_ptr =	&mmap_key;
+	map.buff_size =	&buff_size;
+
+	/*
+	 * Get a copy of the current memory map that we will use to prepare
+	 * the input for SetVirtualAddressMap(). We don't have to worry about
+	 * subsequent allocations adding entries, since they could not affect
+	 * the number of EFI_MEMORY_RUNTIME regions.
+	 */
+	status = efi_get_memory_map(sys_table, &map);
+	if (status != EFI_SUCCESS) {
+		pr_efi_err(sys_table, "Unable to retrieve UEFI memory map.\n");
+		return status;
+	}
+
+	pr_efi(sys_table,
+	       "Exiting boot services and installing virtual address map...\n");
+
+	map.map = &memory_map;
+	status = efi_high_alloc(sys_table, MAX_FDT_SIZE, EFI_FDT_ALIGN,
+				new_fdt_addr, max_addr);
+	if (status != EFI_SUCCESS) {
+		pr_efi_err(sys_table,
+			   "Unable to allocate memory for new device tree.\n");
+		goto fail;
+	}
+
+	/*
+	 * Now that we have done our final memory allocation (and free)
+	 * we can get the memory map key needed for exit_boot_services().
+	 */
+	status = efi_get_memory_map(sys_table, &map);
+	if (status != EFI_SUCCESS)
+		goto fail_free_new_fdt;
+
+	status = update_fdt(sys_table, (void *)fdt_addr, fdt_size,
+			    (void *)*new_fdt_addr, MAX_FDT_SIZE, cmdline_ptr,
+			    initrd_addr, initrd_size);
+
+	if (status != EFI_SUCCESS) {
+		pr_efi_err(sys_table, "Unable to construct new device tree.\n");
+		goto fail_free_new_fdt;
+	}
+
+	priv.runtime_map = runtime_map;
+	priv.runtime_entry_count = &runtime_entry_count;
+	priv.new_fdt_addr = (void *)*new_fdt_addr;
+	status = efi_exit_boot_services(sys_table, handle, &map, &priv,
+					exit_boot_func);
+
+	if (status == EFI_SUCCESS) {
+		efi_set_virtual_address_map_t *svam;
+
+		/* Install the new virtual address map */
+		svam = sys_table->runtime->set_virtual_address_map;
+		status = svam(runtime_entry_count * desc_size, desc_size,
+			      desc_ver, runtime_map);
+
+		/*
+		 * We are beyond the point of no return here, so if the call to
+		 * SetVirtualAddressMap() failed, we need to signal that to the
+		 * incoming kernel but proceed normally otherwise.
+		 */
+		if (status != EFI_SUCCESS) {
+			int l;
+
+			/*
+			 * Set the virtual address field of all
+			 * EFI_MEMORY_RUNTIME entries to 0. This will signal
+			 * the incoming kernel that no virtual translation has
+			 * been installed.
+			 */
+			for (l = 0; l < map_size; l += desc_size) {
+				efi_memory_desc_t *p = (void *)memory_map + l;
+
+				if (p->attribute & EFI_MEMORY_RUNTIME)
+					p->virt_addr = 0;
+			}
+		}
+		return EFI_SUCCESS;
+	}
+
+	pr_efi_err(sys_table, "Exit boot services failed.\n");
+
+fail_free_new_fdt:
+	efi_free(sys_table, MAX_FDT_SIZE, *new_fdt_addr);
+
+fail:
+	sys_table->boottime->free_pool(runtime_map);
+	return EFI_LOAD_ERROR;
+}
+
+void *get_fdt(efi_system_table_t *sys_table, unsigned long *fdt_size)
+{
+	efi_guid_t fdt_guid = DEVICE_TREE_GUID;
+	efi_config_table_t *tables;
+	void *fdt;
+	int i;
+
+	tables = (efi_config_table_t *) sys_table->tables;
+	fdt = NULL;
+
+	for (i = 0; i < sys_table->nr_tables; i++)
+		if (efi_guidcmp(tables[i].guid, fdt_guid) == 0) {
+			fdt = (void *) tables[i].table;
+			if (fdt_check_header(fdt) != 0) {
+				pr_efi_err(sys_table, "Invalid header detected on UEFI supplied FDT, ignoring ...\n");
+				return NULL;
+			}
+			*fdt_size = fdt_totalsize(fdt);
+			break;
+	 }
+
+	return fdt;
+}