Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * linux/arch/x86_64/mm/init.c |
| 3 | * |
| 4 | * Copyright (C) 1995 Linus Torvalds |
| 5 | * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz> |
| 6 | * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de> |
| 7 | */ |
| 8 | |
| 9 | #include <linux/signal.h> |
| 10 | #include <linux/sched.h> |
| 11 | #include <linux/kernel.h> |
| 12 | #include <linux/errno.h> |
| 13 | #include <linux/string.h> |
| 14 | #include <linux/types.h> |
| 15 | #include <linux/ptrace.h> |
| 16 | #include <linux/mman.h> |
| 17 | #include <linux/mm.h> |
| 18 | #include <linux/swap.h> |
| 19 | #include <linux/smp.h> |
| 20 | #include <linux/init.h> |
| 21 | #include <linux/initrd.h> |
| 22 | #include <linux/pagemap.h> |
| 23 | #include <linux/bootmem.h> |
| 24 | #include <linux/memblock.h> |
| 25 | #include <linux/proc_fs.h> |
| 26 | #include <linux/pci.h> |
| 27 | #include <linux/pfn.h> |
| 28 | #include <linux/poison.h> |
| 29 | #include <linux/dma-mapping.h> |
| 30 | #include <linux/memory.h> |
| 31 | #include <linux/memory_hotplug.h> |
| 32 | #include <linux/memremap.h> |
| 33 | #include <linux/nmi.h> |
| 34 | #include <linux/gfp.h> |
| 35 | #include <linux/kcore.h> |
| 36 | |
| 37 | #include <asm/processor.h> |
| 38 | #include <asm/bios_ebda.h> |
| 39 | #include <linux/uaccess.h> |
| 40 | #include <asm/pgtable.h> |
| 41 | #include <asm/pgalloc.h> |
| 42 | #include <asm/dma.h> |
| 43 | #include <asm/fixmap.h> |
| 44 | #include <asm/e820/api.h> |
| 45 | #include <asm/apic.h> |
| 46 | #include <asm/tlb.h> |
| 47 | #include <asm/mmu_context.h> |
| 48 | #include <asm/proto.h> |
| 49 | #include <asm/smp.h> |
| 50 | #include <asm/sections.h> |
| 51 | #include <asm/kdebug.h> |
| 52 | #include <asm/numa.h> |
| 53 | #include <asm/set_memory.h> |
| 54 | #include <asm/init.h> |
| 55 | #include <asm/uv/uv.h> |
| 56 | #include <asm/setup.h> |
| 57 | |
| 58 | #include "mm_internal.h" |
| 59 | |
| 60 | #include "ident_map.c" |
| 61 | |
| 62 | /* |
| 63 | * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the |
| 64 | * physical space so we can cache the place of the first one and move |
| 65 | * around without checking the pgd every time. |
| 66 | */ |
| 67 | |
| 68 | /* Bits supported by the hardware: */ |
| 69 | pteval_t __supported_pte_mask __read_mostly = ~0; |
| 70 | /* Bits allowed in normal kernel mappings: */ |
| 71 | pteval_t __default_kernel_pte_mask __read_mostly = ~0; |
| 72 | EXPORT_SYMBOL_GPL(__supported_pte_mask); |
| 73 | /* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */ |
| 74 | EXPORT_SYMBOL(__default_kernel_pte_mask); |
| 75 | |
| 76 | int force_personality32; |
| 77 | |
| 78 | /* |
| 79 | * noexec32=on|off |
| 80 | * Control non executable heap for 32bit processes. |
| 81 | * To control the stack too use noexec=off |
| 82 | * |
| 83 | * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default) |
| 84 | * off PROT_READ implies PROT_EXEC |
| 85 | */ |
| 86 | static int __init nonx32_setup(char *str) |
| 87 | { |
| 88 | if (!strcmp(str, "on")) |
| 89 | force_personality32 &= ~READ_IMPLIES_EXEC; |
| 90 | else if (!strcmp(str, "off")) |
| 91 | force_personality32 |= READ_IMPLIES_EXEC; |
| 92 | return 1; |
| 93 | } |
| 94 | __setup("noexec32=", nonx32_setup); |
| 95 | |
| 96 | static void sync_global_pgds_l5(unsigned long start, unsigned long end) |
| 97 | { |
| 98 | unsigned long addr; |
| 99 | |
| 100 | for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) { |
| 101 | const pgd_t *pgd_ref = pgd_offset_k(addr); |
| 102 | struct page *page; |
| 103 | |
| 104 | /* Check for overflow */ |
| 105 | if (addr < start) |
| 106 | break; |
| 107 | |
| 108 | if (pgd_none(*pgd_ref)) |
| 109 | continue; |
| 110 | |
| 111 | spin_lock(&pgd_lock); |
| 112 | list_for_each_entry(page, &pgd_list, lru) { |
| 113 | pgd_t *pgd; |
| 114 | spinlock_t *pgt_lock; |
| 115 | |
| 116 | pgd = (pgd_t *)page_address(page) + pgd_index(addr); |
| 117 | /* the pgt_lock only for Xen */ |
| 118 | pgt_lock = &pgd_page_get_mm(page)->page_table_lock; |
| 119 | spin_lock(pgt_lock); |
| 120 | |
| 121 | if (!pgd_none(*pgd_ref) && !pgd_none(*pgd)) |
| 122 | BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); |
| 123 | |
| 124 | if (pgd_none(*pgd)) |
| 125 | set_pgd(pgd, *pgd_ref); |
| 126 | |
| 127 | spin_unlock(pgt_lock); |
| 128 | } |
| 129 | spin_unlock(&pgd_lock); |
| 130 | } |
| 131 | } |
| 132 | |
| 133 | static void sync_global_pgds_l4(unsigned long start, unsigned long end) |
| 134 | { |
| 135 | unsigned long addr; |
| 136 | |
| 137 | for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) { |
| 138 | pgd_t *pgd_ref = pgd_offset_k(addr); |
| 139 | const p4d_t *p4d_ref; |
| 140 | struct page *page; |
| 141 | |
| 142 | /* |
| 143 | * With folded p4d, pgd_none() is always false, we need to |
| 144 | * handle synchonization on p4d level. |
| 145 | */ |
| 146 | MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref)); |
| 147 | p4d_ref = p4d_offset(pgd_ref, addr); |
| 148 | |
| 149 | if (p4d_none(*p4d_ref)) |
| 150 | continue; |
| 151 | |
| 152 | spin_lock(&pgd_lock); |
| 153 | list_for_each_entry(page, &pgd_list, lru) { |
| 154 | pgd_t *pgd; |
| 155 | p4d_t *p4d; |
| 156 | spinlock_t *pgt_lock; |
| 157 | |
| 158 | pgd = (pgd_t *)page_address(page) + pgd_index(addr); |
| 159 | p4d = p4d_offset(pgd, addr); |
| 160 | /* the pgt_lock only for Xen */ |
| 161 | pgt_lock = &pgd_page_get_mm(page)->page_table_lock; |
| 162 | spin_lock(pgt_lock); |
| 163 | |
| 164 | if (!p4d_none(*p4d_ref) && !p4d_none(*p4d)) |
| 165 | BUG_ON(p4d_page_vaddr(*p4d) |
| 166 | != p4d_page_vaddr(*p4d_ref)); |
| 167 | |
| 168 | if (p4d_none(*p4d)) |
| 169 | set_p4d(p4d, *p4d_ref); |
| 170 | |
| 171 | spin_unlock(pgt_lock); |
| 172 | } |
| 173 | spin_unlock(&pgd_lock); |
| 174 | } |
| 175 | } |
| 176 | |
| 177 | /* |
| 178 | * When memory was added make sure all the processes MM have |
| 179 | * suitable PGD entries in the local PGD level page. |
| 180 | */ |
| 181 | void sync_global_pgds(unsigned long start, unsigned long end) |
| 182 | { |
| 183 | if (pgtable_l5_enabled()) |
| 184 | sync_global_pgds_l5(start, end); |
| 185 | else |
| 186 | sync_global_pgds_l4(start, end); |
| 187 | } |
| 188 | |
| 189 | /* |
| 190 | * NOTE: This function is marked __ref because it calls __init function |
| 191 | * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0. |
| 192 | */ |
| 193 | static __ref void *spp_getpage(void) |
| 194 | { |
| 195 | void *ptr; |
| 196 | |
| 197 | if (after_bootmem) |
| 198 | ptr = (void *) get_zeroed_page(GFP_ATOMIC); |
| 199 | else |
| 200 | ptr = alloc_bootmem_pages(PAGE_SIZE); |
| 201 | |
| 202 | if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) { |
| 203 | panic("set_pte_phys: cannot allocate page data %s\n", |
| 204 | after_bootmem ? "after bootmem" : ""); |
| 205 | } |
| 206 | |
| 207 | pr_debug("spp_getpage %p\n", ptr); |
| 208 | |
| 209 | return ptr; |
| 210 | } |
| 211 | |
| 212 | static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr) |
| 213 | { |
| 214 | if (pgd_none(*pgd)) { |
| 215 | p4d_t *p4d = (p4d_t *)spp_getpage(); |
| 216 | pgd_populate(&init_mm, pgd, p4d); |
| 217 | if (p4d != p4d_offset(pgd, 0)) |
| 218 | printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n", |
| 219 | p4d, p4d_offset(pgd, 0)); |
| 220 | } |
| 221 | return p4d_offset(pgd, vaddr); |
| 222 | } |
| 223 | |
| 224 | static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr) |
| 225 | { |
| 226 | if (p4d_none(*p4d)) { |
| 227 | pud_t *pud = (pud_t *)spp_getpage(); |
| 228 | p4d_populate(&init_mm, p4d, pud); |
| 229 | if (pud != pud_offset(p4d, 0)) |
| 230 | printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n", |
| 231 | pud, pud_offset(p4d, 0)); |
| 232 | } |
| 233 | return pud_offset(p4d, vaddr); |
| 234 | } |
| 235 | |
| 236 | static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr) |
| 237 | { |
| 238 | if (pud_none(*pud)) { |
| 239 | pmd_t *pmd = (pmd_t *) spp_getpage(); |
| 240 | pud_populate(&init_mm, pud, pmd); |
| 241 | if (pmd != pmd_offset(pud, 0)) |
| 242 | printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n", |
| 243 | pmd, pmd_offset(pud, 0)); |
| 244 | } |
| 245 | return pmd_offset(pud, vaddr); |
| 246 | } |
| 247 | |
| 248 | static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr) |
| 249 | { |
| 250 | if (pmd_none(*pmd)) { |
| 251 | pte_t *pte = (pte_t *) spp_getpage(); |
| 252 | pmd_populate_kernel(&init_mm, pmd, pte); |
| 253 | if (pte != pte_offset_kernel(pmd, 0)) |
| 254 | printk(KERN_ERR "PAGETABLE BUG #03!\n"); |
| 255 | } |
| 256 | return pte_offset_kernel(pmd, vaddr); |
| 257 | } |
| 258 | |
| 259 | static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte) |
| 260 | { |
| 261 | pmd_t *pmd = fill_pmd(pud, vaddr); |
| 262 | pte_t *pte = fill_pte(pmd, vaddr); |
| 263 | |
| 264 | set_pte(pte, new_pte); |
| 265 | |
| 266 | /* |
| 267 | * It's enough to flush this one mapping. |
| 268 | * (PGE mappings get flushed as well) |
| 269 | */ |
| 270 | __flush_tlb_one_kernel(vaddr); |
| 271 | } |
| 272 | |
| 273 | void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte) |
| 274 | { |
| 275 | p4d_t *p4d = p4d_page + p4d_index(vaddr); |
| 276 | pud_t *pud = fill_pud(p4d, vaddr); |
| 277 | |
| 278 | __set_pte_vaddr(pud, vaddr, new_pte); |
| 279 | } |
| 280 | |
| 281 | void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte) |
| 282 | { |
| 283 | pud_t *pud = pud_page + pud_index(vaddr); |
| 284 | |
| 285 | __set_pte_vaddr(pud, vaddr, new_pte); |
| 286 | } |
| 287 | |
| 288 | void set_pte_vaddr(unsigned long vaddr, pte_t pteval) |
| 289 | { |
| 290 | pgd_t *pgd; |
| 291 | p4d_t *p4d_page; |
| 292 | |
| 293 | pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval)); |
| 294 | |
| 295 | pgd = pgd_offset_k(vaddr); |
| 296 | if (pgd_none(*pgd)) { |
| 297 | printk(KERN_ERR |
| 298 | "PGD FIXMAP MISSING, it should be setup in head.S!\n"); |
| 299 | return; |
| 300 | } |
| 301 | |
| 302 | p4d_page = p4d_offset(pgd, 0); |
| 303 | set_pte_vaddr_p4d(p4d_page, vaddr, pteval); |
| 304 | } |
| 305 | |
| 306 | pmd_t * __init populate_extra_pmd(unsigned long vaddr) |
| 307 | { |
| 308 | pgd_t *pgd; |
| 309 | p4d_t *p4d; |
| 310 | pud_t *pud; |
| 311 | |
| 312 | pgd = pgd_offset_k(vaddr); |
| 313 | p4d = fill_p4d(pgd, vaddr); |
| 314 | pud = fill_pud(p4d, vaddr); |
| 315 | return fill_pmd(pud, vaddr); |
| 316 | } |
| 317 | |
| 318 | pte_t * __init populate_extra_pte(unsigned long vaddr) |
| 319 | { |
| 320 | pmd_t *pmd; |
| 321 | |
| 322 | pmd = populate_extra_pmd(vaddr); |
| 323 | return fill_pte(pmd, vaddr); |
| 324 | } |
| 325 | |
| 326 | /* |
| 327 | * Create large page table mappings for a range of physical addresses. |
| 328 | */ |
| 329 | static void __init __init_extra_mapping(unsigned long phys, unsigned long size, |
| 330 | enum page_cache_mode cache) |
| 331 | { |
| 332 | pgd_t *pgd; |
| 333 | p4d_t *p4d; |
| 334 | pud_t *pud; |
| 335 | pmd_t *pmd; |
| 336 | pgprot_t prot; |
| 337 | |
| 338 | pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) | |
| 339 | pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache))); |
| 340 | BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK)); |
| 341 | for (; size; phys += PMD_SIZE, size -= PMD_SIZE) { |
| 342 | pgd = pgd_offset_k((unsigned long)__va(phys)); |
| 343 | if (pgd_none(*pgd)) { |
| 344 | p4d = (p4d_t *) spp_getpage(); |
| 345 | set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE | |
| 346 | _PAGE_USER)); |
| 347 | } |
| 348 | p4d = p4d_offset(pgd, (unsigned long)__va(phys)); |
| 349 | if (p4d_none(*p4d)) { |
| 350 | pud = (pud_t *) spp_getpage(); |
| 351 | set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE | |
| 352 | _PAGE_USER)); |
| 353 | } |
| 354 | pud = pud_offset(p4d, (unsigned long)__va(phys)); |
| 355 | if (pud_none(*pud)) { |
| 356 | pmd = (pmd_t *) spp_getpage(); |
| 357 | set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | |
| 358 | _PAGE_USER)); |
| 359 | } |
| 360 | pmd = pmd_offset(pud, phys); |
| 361 | BUG_ON(!pmd_none(*pmd)); |
| 362 | set_pmd(pmd, __pmd(phys | pgprot_val(prot))); |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | void __init init_extra_mapping_wb(unsigned long phys, unsigned long size) |
| 367 | { |
| 368 | __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB); |
| 369 | } |
| 370 | |
| 371 | void __init init_extra_mapping_uc(unsigned long phys, unsigned long size) |
| 372 | { |
| 373 | __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC); |
| 374 | } |
| 375 | |
| 376 | /* |
| 377 | * The head.S code sets up the kernel high mapping: |
| 378 | * |
| 379 | * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text) |
| 380 | * |
| 381 | * phys_base holds the negative offset to the kernel, which is added |
| 382 | * to the compile time generated pmds. This results in invalid pmds up |
| 383 | * to the point where we hit the physaddr 0 mapping. |
| 384 | * |
| 385 | * We limit the mappings to the region from _text to _brk_end. _brk_end |
| 386 | * is rounded up to the 2MB boundary. This catches the invalid pmds as |
| 387 | * well, as they are located before _text: |
| 388 | */ |
| 389 | void __init cleanup_highmap(void) |
| 390 | { |
| 391 | unsigned long vaddr = __START_KERNEL_map; |
| 392 | unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE; |
| 393 | unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1; |
| 394 | pmd_t *pmd = level2_kernel_pgt; |
| 395 | |
| 396 | /* |
| 397 | * Native path, max_pfn_mapped is not set yet. |
| 398 | * Xen has valid max_pfn_mapped set in |
| 399 | * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable(). |
| 400 | */ |
| 401 | if (max_pfn_mapped) |
| 402 | vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT); |
| 403 | |
| 404 | for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) { |
| 405 | if (pmd_none(*pmd)) |
| 406 | continue; |
| 407 | if (vaddr < (unsigned long) _text || vaddr > end) |
| 408 | set_pmd(pmd, __pmd(0)); |
| 409 | } |
| 410 | } |
| 411 | |
| 412 | /* |
| 413 | * Create PTE level page table mapping for physical addresses. |
| 414 | * It returns the last physical address mapped. |
| 415 | */ |
| 416 | static unsigned long __meminit |
| 417 | phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end, |
| 418 | pgprot_t prot) |
| 419 | { |
| 420 | unsigned long pages = 0, paddr_next; |
| 421 | unsigned long paddr_last = paddr_end; |
| 422 | pte_t *pte; |
| 423 | int i; |
| 424 | |
| 425 | pte = pte_page + pte_index(paddr); |
| 426 | i = pte_index(paddr); |
| 427 | |
| 428 | for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) { |
| 429 | paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE; |
| 430 | if (paddr >= paddr_end) { |
| 431 | if (!after_bootmem && |
| 432 | !e820__mapped_any(paddr & PAGE_MASK, paddr_next, |
| 433 | E820_TYPE_RAM) && |
| 434 | !e820__mapped_any(paddr & PAGE_MASK, paddr_next, |
| 435 | E820_TYPE_RESERVED_KERN)) |
| 436 | set_pte(pte, __pte(0)); |
| 437 | continue; |
| 438 | } |
| 439 | |
| 440 | /* |
| 441 | * We will re-use the existing mapping. |
| 442 | * Xen for example has some special requirements, like mapping |
| 443 | * pagetable pages as RO. So assume someone who pre-setup |
| 444 | * these mappings are more intelligent. |
| 445 | */ |
| 446 | if (!pte_none(*pte)) { |
| 447 | if (!after_bootmem) |
| 448 | pages++; |
| 449 | continue; |
| 450 | } |
| 451 | |
| 452 | if (0) |
| 453 | pr_info(" pte=%p addr=%lx pte=%016lx\n", pte, paddr, |
| 454 | pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte); |
| 455 | pages++; |
| 456 | set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot)); |
| 457 | paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE; |
| 458 | } |
| 459 | |
| 460 | update_page_count(PG_LEVEL_4K, pages); |
| 461 | |
| 462 | return paddr_last; |
| 463 | } |
| 464 | |
| 465 | /* |
| 466 | * Create PMD level page table mapping for physical addresses. The virtual |
| 467 | * and physical address have to be aligned at this level. |
| 468 | * It returns the last physical address mapped. |
| 469 | */ |
| 470 | static unsigned long __meminit |
| 471 | phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end, |
| 472 | unsigned long page_size_mask, pgprot_t prot) |
| 473 | { |
| 474 | unsigned long pages = 0, paddr_next; |
| 475 | unsigned long paddr_last = paddr_end; |
| 476 | |
| 477 | int i = pmd_index(paddr); |
| 478 | |
| 479 | for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) { |
| 480 | pmd_t *pmd = pmd_page + pmd_index(paddr); |
| 481 | pte_t *pte; |
| 482 | pgprot_t new_prot = prot; |
| 483 | |
| 484 | paddr_next = (paddr & PMD_MASK) + PMD_SIZE; |
| 485 | if (paddr >= paddr_end) { |
| 486 | if (!after_bootmem && |
| 487 | !e820__mapped_any(paddr & PMD_MASK, paddr_next, |
| 488 | E820_TYPE_RAM) && |
| 489 | !e820__mapped_any(paddr & PMD_MASK, paddr_next, |
| 490 | E820_TYPE_RESERVED_KERN)) |
| 491 | set_pmd(pmd, __pmd(0)); |
| 492 | continue; |
| 493 | } |
| 494 | |
| 495 | if (!pmd_none(*pmd)) { |
| 496 | if (!pmd_large(*pmd)) { |
| 497 | spin_lock(&init_mm.page_table_lock); |
| 498 | pte = (pte_t *)pmd_page_vaddr(*pmd); |
| 499 | paddr_last = phys_pte_init(pte, paddr, |
| 500 | paddr_end, prot); |
| 501 | spin_unlock(&init_mm.page_table_lock); |
| 502 | continue; |
| 503 | } |
| 504 | /* |
| 505 | * If we are ok with PG_LEVEL_2M mapping, then we will |
| 506 | * use the existing mapping, |
| 507 | * |
| 508 | * Otherwise, we will split the large page mapping but |
| 509 | * use the same existing protection bits except for |
| 510 | * large page, so that we don't violate Intel's TLB |
| 511 | * Application note (317080) which says, while changing |
| 512 | * the page sizes, new and old translations should |
| 513 | * not differ with respect to page frame and |
| 514 | * attributes. |
| 515 | */ |
| 516 | if (page_size_mask & (1 << PG_LEVEL_2M)) { |
| 517 | if (!after_bootmem) |
| 518 | pages++; |
| 519 | paddr_last = paddr_next; |
| 520 | continue; |
| 521 | } |
| 522 | new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd)); |
| 523 | } |
| 524 | |
| 525 | if (page_size_mask & (1<<PG_LEVEL_2M)) { |
| 526 | pages++; |
| 527 | spin_lock(&init_mm.page_table_lock); |
| 528 | set_pte((pte_t *)pmd, |
| 529 | pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT, |
| 530 | __pgprot(pgprot_val(prot) | _PAGE_PSE))); |
| 531 | spin_unlock(&init_mm.page_table_lock); |
| 532 | paddr_last = paddr_next; |
| 533 | continue; |
| 534 | } |
| 535 | |
| 536 | pte = alloc_low_page(); |
| 537 | paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot); |
| 538 | |
| 539 | spin_lock(&init_mm.page_table_lock); |
| 540 | pmd_populate_kernel(&init_mm, pmd, pte); |
| 541 | spin_unlock(&init_mm.page_table_lock); |
| 542 | } |
| 543 | update_page_count(PG_LEVEL_2M, pages); |
| 544 | return paddr_last; |
| 545 | } |
| 546 | |
| 547 | /* |
| 548 | * Create PUD level page table mapping for physical addresses. The virtual |
| 549 | * and physical address do not have to be aligned at this level. KASLR can |
| 550 | * randomize virtual addresses up to this level. |
| 551 | * It returns the last physical address mapped. |
| 552 | */ |
| 553 | static unsigned long __meminit |
| 554 | phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end, |
| 555 | unsigned long page_size_mask) |
| 556 | { |
| 557 | unsigned long pages = 0, paddr_next; |
| 558 | unsigned long paddr_last = paddr_end; |
| 559 | unsigned long vaddr = (unsigned long)__va(paddr); |
| 560 | int i = pud_index(vaddr); |
| 561 | |
| 562 | for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) { |
| 563 | pud_t *pud; |
| 564 | pmd_t *pmd; |
| 565 | pgprot_t prot = PAGE_KERNEL; |
| 566 | |
| 567 | vaddr = (unsigned long)__va(paddr); |
| 568 | pud = pud_page + pud_index(vaddr); |
| 569 | paddr_next = (paddr & PUD_MASK) + PUD_SIZE; |
| 570 | |
| 571 | if (paddr >= paddr_end) { |
| 572 | if (!after_bootmem && |
| 573 | !e820__mapped_any(paddr & PUD_MASK, paddr_next, |
| 574 | E820_TYPE_RAM) && |
| 575 | !e820__mapped_any(paddr & PUD_MASK, paddr_next, |
| 576 | E820_TYPE_RESERVED_KERN)) |
| 577 | set_pud(pud, __pud(0)); |
| 578 | continue; |
| 579 | } |
| 580 | |
| 581 | if (!pud_none(*pud)) { |
| 582 | if (!pud_large(*pud)) { |
| 583 | pmd = pmd_offset(pud, 0); |
| 584 | paddr_last = phys_pmd_init(pmd, paddr, |
| 585 | paddr_end, |
| 586 | page_size_mask, |
| 587 | prot); |
| 588 | __flush_tlb_all(); |
| 589 | continue; |
| 590 | } |
| 591 | /* |
| 592 | * If we are ok with PG_LEVEL_1G mapping, then we will |
| 593 | * use the existing mapping. |
| 594 | * |
| 595 | * Otherwise, we will split the gbpage mapping but use |
| 596 | * the same existing protection bits except for large |
| 597 | * page, so that we don't violate Intel's TLB |
| 598 | * Application note (317080) which says, while changing |
| 599 | * the page sizes, new and old translations should |
| 600 | * not differ with respect to page frame and |
| 601 | * attributes. |
| 602 | */ |
| 603 | if (page_size_mask & (1 << PG_LEVEL_1G)) { |
| 604 | if (!after_bootmem) |
| 605 | pages++; |
| 606 | paddr_last = paddr_next; |
| 607 | continue; |
| 608 | } |
| 609 | prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud)); |
| 610 | } |
| 611 | |
| 612 | if (page_size_mask & (1<<PG_LEVEL_1G)) { |
| 613 | pages++; |
| 614 | spin_lock(&init_mm.page_table_lock); |
| 615 | set_pte((pte_t *)pud, |
| 616 | pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT, |
| 617 | PAGE_KERNEL_LARGE)); |
| 618 | spin_unlock(&init_mm.page_table_lock); |
| 619 | paddr_last = paddr_next; |
| 620 | continue; |
| 621 | } |
| 622 | |
| 623 | pmd = alloc_low_page(); |
| 624 | paddr_last = phys_pmd_init(pmd, paddr, paddr_end, |
| 625 | page_size_mask, prot); |
| 626 | |
| 627 | spin_lock(&init_mm.page_table_lock); |
| 628 | pud_populate(&init_mm, pud, pmd); |
| 629 | spin_unlock(&init_mm.page_table_lock); |
| 630 | } |
| 631 | __flush_tlb_all(); |
| 632 | |
| 633 | update_page_count(PG_LEVEL_1G, pages); |
| 634 | |
| 635 | return paddr_last; |
| 636 | } |
| 637 | |
| 638 | static unsigned long __meminit |
| 639 | phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end, |
| 640 | unsigned long page_size_mask) |
| 641 | { |
| 642 | unsigned long paddr_next, paddr_last = paddr_end; |
| 643 | unsigned long vaddr = (unsigned long)__va(paddr); |
| 644 | int i = p4d_index(vaddr); |
| 645 | |
| 646 | if (!pgtable_l5_enabled()) |
| 647 | return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end, page_size_mask); |
| 648 | |
| 649 | for (; i < PTRS_PER_P4D; i++, paddr = paddr_next) { |
| 650 | p4d_t *p4d; |
| 651 | pud_t *pud; |
| 652 | |
| 653 | vaddr = (unsigned long)__va(paddr); |
| 654 | p4d = p4d_page + p4d_index(vaddr); |
| 655 | paddr_next = (paddr & P4D_MASK) + P4D_SIZE; |
| 656 | |
| 657 | if (paddr >= paddr_end) { |
| 658 | if (!after_bootmem && |
| 659 | !e820__mapped_any(paddr & P4D_MASK, paddr_next, |
| 660 | E820_TYPE_RAM) && |
| 661 | !e820__mapped_any(paddr & P4D_MASK, paddr_next, |
| 662 | E820_TYPE_RESERVED_KERN)) |
| 663 | set_p4d(p4d, __p4d(0)); |
| 664 | continue; |
| 665 | } |
| 666 | |
| 667 | if (!p4d_none(*p4d)) { |
| 668 | pud = pud_offset(p4d, 0); |
| 669 | paddr_last = phys_pud_init(pud, paddr, |
| 670 | paddr_end, |
| 671 | page_size_mask); |
| 672 | __flush_tlb_all(); |
| 673 | continue; |
| 674 | } |
| 675 | |
| 676 | pud = alloc_low_page(); |
| 677 | paddr_last = phys_pud_init(pud, paddr, paddr_end, |
| 678 | page_size_mask); |
| 679 | |
| 680 | spin_lock(&init_mm.page_table_lock); |
| 681 | p4d_populate(&init_mm, p4d, pud); |
| 682 | spin_unlock(&init_mm.page_table_lock); |
| 683 | } |
| 684 | __flush_tlb_all(); |
| 685 | |
| 686 | return paddr_last; |
| 687 | } |
| 688 | |
| 689 | /* |
| 690 | * Create page table mapping for the physical memory for specific physical |
| 691 | * addresses. The virtual and physical addresses have to be aligned on PMD level |
| 692 | * down. It returns the last physical address mapped. |
| 693 | */ |
| 694 | unsigned long __meminit |
| 695 | kernel_physical_mapping_init(unsigned long paddr_start, |
| 696 | unsigned long paddr_end, |
| 697 | unsigned long page_size_mask) |
| 698 | { |
| 699 | bool pgd_changed = false; |
| 700 | unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last; |
| 701 | |
| 702 | paddr_last = paddr_end; |
| 703 | vaddr = (unsigned long)__va(paddr_start); |
| 704 | vaddr_end = (unsigned long)__va(paddr_end); |
| 705 | vaddr_start = vaddr; |
| 706 | |
| 707 | for (; vaddr < vaddr_end; vaddr = vaddr_next) { |
| 708 | pgd_t *pgd = pgd_offset_k(vaddr); |
| 709 | p4d_t *p4d; |
| 710 | |
| 711 | vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE; |
| 712 | |
| 713 | if (pgd_val(*pgd)) { |
| 714 | p4d = (p4d_t *)pgd_page_vaddr(*pgd); |
| 715 | paddr_last = phys_p4d_init(p4d, __pa(vaddr), |
| 716 | __pa(vaddr_end), |
| 717 | page_size_mask); |
| 718 | continue; |
| 719 | } |
| 720 | |
| 721 | p4d = alloc_low_page(); |
| 722 | paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end), |
| 723 | page_size_mask); |
| 724 | |
| 725 | spin_lock(&init_mm.page_table_lock); |
| 726 | if (pgtable_l5_enabled()) |
| 727 | pgd_populate(&init_mm, pgd, p4d); |
| 728 | else |
| 729 | p4d_populate(&init_mm, p4d_offset(pgd, vaddr), (pud_t *) p4d); |
| 730 | spin_unlock(&init_mm.page_table_lock); |
| 731 | pgd_changed = true; |
| 732 | } |
| 733 | |
| 734 | if (pgd_changed) |
| 735 | sync_global_pgds(vaddr_start, vaddr_end - 1); |
| 736 | |
| 737 | __flush_tlb_all(); |
| 738 | |
| 739 | return paddr_last; |
| 740 | } |
| 741 | |
| 742 | #ifndef CONFIG_NUMA |
| 743 | void __init initmem_init(void) |
| 744 | { |
| 745 | memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0); |
| 746 | } |
| 747 | #endif |
| 748 | |
| 749 | void __init paging_init(void) |
| 750 | { |
| 751 | sparse_memory_present_with_active_regions(MAX_NUMNODES); |
| 752 | sparse_init(); |
| 753 | |
| 754 | /* |
| 755 | * clear the default setting with node 0 |
| 756 | * note: don't use nodes_clear here, that is really clearing when |
| 757 | * numa support is not compiled in, and later node_set_state |
| 758 | * will not set it back. |
| 759 | */ |
| 760 | node_clear_state(0, N_MEMORY); |
| 761 | if (N_MEMORY != N_NORMAL_MEMORY) |
| 762 | node_clear_state(0, N_NORMAL_MEMORY); |
| 763 | |
| 764 | zone_sizes_init(); |
| 765 | } |
| 766 | |
| 767 | /* |
| 768 | * Memory hotplug specific functions |
| 769 | */ |
| 770 | #ifdef CONFIG_MEMORY_HOTPLUG |
| 771 | /* |
| 772 | * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need |
| 773 | * updating. |
| 774 | */ |
| 775 | static void update_end_of_memory_vars(u64 start, u64 size) |
| 776 | { |
| 777 | unsigned long end_pfn = PFN_UP(start + size); |
| 778 | |
| 779 | if (end_pfn > max_pfn) { |
| 780 | max_pfn = end_pfn; |
| 781 | max_low_pfn = end_pfn; |
| 782 | high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1; |
| 783 | } |
| 784 | } |
| 785 | |
| 786 | int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages, |
| 787 | struct vmem_altmap *altmap, bool want_memblock) |
| 788 | { |
| 789 | int ret; |
| 790 | |
| 791 | ret = __add_pages(nid, start_pfn, nr_pages, altmap, want_memblock); |
| 792 | WARN_ON_ONCE(ret); |
| 793 | |
| 794 | /* update max_pfn, max_low_pfn and high_memory */ |
| 795 | update_end_of_memory_vars(start_pfn << PAGE_SHIFT, |
| 796 | nr_pages << PAGE_SHIFT); |
| 797 | |
| 798 | return ret; |
| 799 | } |
| 800 | |
| 801 | int arch_add_memory(int nid, u64 start, u64 size, struct vmem_altmap *altmap, |
| 802 | bool want_memblock) |
| 803 | { |
| 804 | unsigned long start_pfn = start >> PAGE_SHIFT; |
| 805 | unsigned long nr_pages = size >> PAGE_SHIFT; |
| 806 | |
| 807 | init_memory_mapping(start, start + size); |
| 808 | |
| 809 | return add_pages(nid, start_pfn, nr_pages, altmap, want_memblock); |
| 810 | } |
| 811 | |
| 812 | #define PAGE_INUSE 0xFD |
| 813 | |
| 814 | static void __meminit free_pagetable(struct page *page, int order) |
| 815 | { |
| 816 | unsigned long magic; |
| 817 | unsigned int nr_pages = 1 << order; |
| 818 | |
| 819 | /* bootmem page has reserved flag */ |
| 820 | if (PageReserved(page)) { |
| 821 | __ClearPageReserved(page); |
| 822 | |
| 823 | magic = (unsigned long)page->freelist; |
| 824 | if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) { |
| 825 | while (nr_pages--) |
| 826 | put_page_bootmem(page++); |
| 827 | } else |
| 828 | while (nr_pages--) |
| 829 | free_reserved_page(page++); |
| 830 | } else |
| 831 | free_pages((unsigned long)page_address(page), order); |
| 832 | } |
| 833 | |
| 834 | static void __meminit free_hugepage_table(struct page *page, |
| 835 | struct vmem_altmap *altmap) |
| 836 | { |
| 837 | if (altmap) |
| 838 | vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE); |
| 839 | else |
| 840 | free_pagetable(page, get_order(PMD_SIZE)); |
| 841 | } |
| 842 | |
| 843 | static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd) |
| 844 | { |
| 845 | pte_t *pte; |
| 846 | int i; |
| 847 | |
| 848 | for (i = 0; i < PTRS_PER_PTE; i++) { |
| 849 | pte = pte_start + i; |
| 850 | if (!pte_none(*pte)) |
| 851 | return; |
| 852 | } |
| 853 | |
| 854 | /* free a pte talbe */ |
| 855 | free_pagetable(pmd_page(*pmd), 0); |
| 856 | spin_lock(&init_mm.page_table_lock); |
| 857 | pmd_clear(pmd); |
| 858 | spin_unlock(&init_mm.page_table_lock); |
| 859 | } |
| 860 | |
| 861 | static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud) |
| 862 | { |
| 863 | pmd_t *pmd; |
| 864 | int i; |
| 865 | |
| 866 | for (i = 0; i < PTRS_PER_PMD; i++) { |
| 867 | pmd = pmd_start + i; |
| 868 | if (!pmd_none(*pmd)) |
| 869 | return; |
| 870 | } |
| 871 | |
| 872 | /* free a pmd talbe */ |
| 873 | free_pagetable(pud_page(*pud), 0); |
| 874 | spin_lock(&init_mm.page_table_lock); |
| 875 | pud_clear(pud); |
| 876 | spin_unlock(&init_mm.page_table_lock); |
| 877 | } |
| 878 | |
| 879 | static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d) |
| 880 | { |
| 881 | pud_t *pud; |
| 882 | int i; |
| 883 | |
| 884 | for (i = 0; i < PTRS_PER_PUD; i++) { |
| 885 | pud = pud_start + i; |
| 886 | if (!pud_none(*pud)) |
| 887 | return; |
| 888 | } |
| 889 | |
| 890 | /* free a pud talbe */ |
| 891 | free_pagetable(p4d_page(*p4d), 0); |
| 892 | spin_lock(&init_mm.page_table_lock); |
| 893 | p4d_clear(p4d); |
| 894 | spin_unlock(&init_mm.page_table_lock); |
| 895 | } |
| 896 | |
| 897 | static void __meminit |
| 898 | remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end, |
| 899 | bool direct) |
| 900 | { |
| 901 | unsigned long next, pages = 0; |
| 902 | pte_t *pte; |
| 903 | void *page_addr; |
| 904 | phys_addr_t phys_addr; |
| 905 | |
| 906 | pte = pte_start + pte_index(addr); |
| 907 | for (; addr < end; addr = next, pte++) { |
| 908 | next = (addr + PAGE_SIZE) & PAGE_MASK; |
| 909 | if (next > end) |
| 910 | next = end; |
| 911 | |
| 912 | if (!pte_present(*pte)) |
| 913 | continue; |
| 914 | |
| 915 | /* |
| 916 | * We mapped [0,1G) memory as identity mapping when |
| 917 | * initializing, in arch/x86/kernel/head_64.S. These |
| 918 | * pagetables cannot be removed. |
| 919 | */ |
| 920 | phys_addr = pte_val(*pte) + (addr & PAGE_MASK); |
| 921 | if (phys_addr < (phys_addr_t)0x40000000) |
| 922 | return; |
| 923 | |
| 924 | if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) { |
| 925 | /* |
| 926 | * Do not free direct mapping pages since they were |
| 927 | * freed when offlining, or simplely not in use. |
| 928 | */ |
| 929 | if (!direct) |
| 930 | free_pagetable(pte_page(*pte), 0); |
| 931 | |
| 932 | spin_lock(&init_mm.page_table_lock); |
| 933 | pte_clear(&init_mm, addr, pte); |
| 934 | spin_unlock(&init_mm.page_table_lock); |
| 935 | |
| 936 | /* For non-direct mapping, pages means nothing. */ |
| 937 | pages++; |
| 938 | } else { |
| 939 | /* |
| 940 | * If we are here, we are freeing vmemmap pages since |
| 941 | * direct mapped memory ranges to be freed are aligned. |
| 942 | * |
| 943 | * If we are not removing the whole page, it means |
| 944 | * other page structs in this page are being used and |
| 945 | * we canot remove them. So fill the unused page_structs |
| 946 | * with 0xFD, and remove the page when it is wholly |
| 947 | * filled with 0xFD. |
| 948 | */ |
| 949 | memset((void *)addr, PAGE_INUSE, next - addr); |
| 950 | |
| 951 | page_addr = page_address(pte_page(*pte)); |
| 952 | if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) { |
| 953 | free_pagetable(pte_page(*pte), 0); |
| 954 | |
| 955 | spin_lock(&init_mm.page_table_lock); |
| 956 | pte_clear(&init_mm, addr, pte); |
| 957 | spin_unlock(&init_mm.page_table_lock); |
| 958 | } |
| 959 | } |
| 960 | } |
| 961 | |
| 962 | /* Call free_pte_table() in remove_pmd_table(). */ |
| 963 | flush_tlb_all(); |
| 964 | if (direct) |
| 965 | update_page_count(PG_LEVEL_4K, -pages); |
| 966 | } |
| 967 | |
| 968 | static void __meminit |
| 969 | remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end, |
| 970 | bool direct, struct vmem_altmap *altmap) |
| 971 | { |
| 972 | unsigned long next, pages = 0; |
| 973 | pte_t *pte_base; |
| 974 | pmd_t *pmd; |
| 975 | void *page_addr; |
| 976 | |
| 977 | pmd = pmd_start + pmd_index(addr); |
| 978 | for (; addr < end; addr = next, pmd++) { |
| 979 | next = pmd_addr_end(addr, end); |
| 980 | |
| 981 | if (!pmd_present(*pmd)) |
| 982 | continue; |
| 983 | |
| 984 | if (pmd_large(*pmd)) { |
| 985 | if (IS_ALIGNED(addr, PMD_SIZE) && |
| 986 | IS_ALIGNED(next, PMD_SIZE)) { |
| 987 | if (!direct) |
| 988 | free_hugepage_table(pmd_page(*pmd), |
| 989 | altmap); |
| 990 | |
| 991 | spin_lock(&init_mm.page_table_lock); |
| 992 | pmd_clear(pmd); |
| 993 | spin_unlock(&init_mm.page_table_lock); |
| 994 | pages++; |
| 995 | } else { |
| 996 | /* If here, we are freeing vmemmap pages. */ |
| 997 | memset((void *)addr, PAGE_INUSE, next - addr); |
| 998 | |
| 999 | page_addr = page_address(pmd_page(*pmd)); |
| 1000 | if (!memchr_inv(page_addr, PAGE_INUSE, |
| 1001 | PMD_SIZE)) { |
| 1002 | free_hugepage_table(pmd_page(*pmd), |
| 1003 | altmap); |
| 1004 | |
| 1005 | spin_lock(&init_mm.page_table_lock); |
| 1006 | pmd_clear(pmd); |
| 1007 | spin_unlock(&init_mm.page_table_lock); |
| 1008 | } |
| 1009 | } |
| 1010 | |
| 1011 | continue; |
| 1012 | } |
| 1013 | |
| 1014 | pte_base = (pte_t *)pmd_page_vaddr(*pmd); |
| 1015 | remove_pte_table(pte_base, addr, next, direct); |
| 1016 | free_pte_table(pte_base, pmd); |
| 1017 | } |
| 1018 | |
| 1019 | /* Call free_pmd_table() in remove_pud_table(). */ |
| 1020 | if (direct) |
| 1021 | update_page_count(PG_LEVEL_2M, -pages); |
| 1022 | } |
| 1023 | |
| 1024 | static void __meminit |
| 1025 | remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end, |
| 1026 | struct vmem_altmap *altmap, bool direct) |
| 1027 | { |
| 1028 | unsigned long next, pages = 0; |
| 1029 | pmd_t *pmd_base; |
| 1030 | pud_t *pud; |
| 1031 | void *page_addr; |
| 1032 | |
| 1033 | pud = pud_start + pud_index(addr); |
| 1034 | for (; addr < end; addr = next, pud++) { |
| 1035 | next = pud_addr_end(addr, end); |
| 1036 | |
| 1037 | if (!pud_present(*pud)) |
| 1038 | continue; |
| 1039 | |
| 1040 | if (pud_large(*pud)) { |
| 1041 | if (IS_ALIGNED(addr, PUD_SIZE) && |
| 1042 | IS_ALIGNED(next, PUD_SIZE)) { |
| 1043 | if (!direct) |
| 1044 | free_pagetable(pud_page(*pud), |
| 1045 | get_order(PUD_SIZE)); |
| 1046 | |
| 1047 | spin_lock(&init_mm.page_table_lock); |
| 1048 | pud_clear(pud); |
| 1049 | spin_unlock(&init_mm.page_table_lock); |
| 1050 | pages++; |
| 1051 | } else { |
| 1052 | /* If here, we are freeing vmemmap pages. */ |
| 1053 | memset((void *)addr, PAGE_INUSE, next - addr); |
| 1054 | |
| 1055 | page_addr = page_address(pud_page(*pud)); |
| 1056 | if (!memchr_inv(page_addr, PAGE_INUSE, |
| 1057 | PUD_SIZE)) { |
| 1058 | free_pagetable(pud_page(*pud), |
| 1059 | get_order(PUD_SIZE)); |
| 1060 | |
| 1061 | spin_lock(&init_mm.page_table_lock); |
| 1062 | pud_clear(pud); |
| 1063 | spin_unlock(&init_mm.page_table_lock); |
| 1064 | } |
| 1065 | } |
| 1066 | |
| 1067 | continue; |
| 1068 | } |
| 1069 | |
| 1070 | pmd_base = pmd_offset(pud, 0); |
| 1071 | remove_pmd_table(pmd_base, addr, next, direct, altmap); |
| 1072 | free_pmd_table(pmd_base, pud); |
| 1073 | } |
| 1074 | |
| 1075 | if (direct) |
| 1076 | update_page_count(PG_LEVEL_1G, -pages); |
| 1077 | } |
| 1078 | |
| 1079 | static void __meminit |
| 1080 | remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end, |
| 1081 | struct vmem_altmap *altmap, bool direct) |
| 1082 | { |
| 1083 | unsigned long next, pages = 0; |
| 1084 | pud_t *pud_base; |
| 1085 | p4d_t *p4d; |
| 1086 | |
| 1087 | p4d = p4d_start + p4d_index(addr); |
| 1088 | for (; addr < end; addr = next, p4d++) { |
| 1089 | next = p4d_addr_end(addr, end); |
| 1090 | |
| 1091 | if (!p4d_present(*p4d)) |
| 1092 | continue; |
| 1093 | |
| 1094 | BUILD_BUG_ON(p4d_large(*p4d)); |
| 1095 | |
| 1096 | pud_base = pud_offset(p4d, 0); |
| 1097 | remove_pud_table(pud_base, addr, next, altmap, direct); |
| 1098 | /* |
| 1099 | * For 4-level page tables we do not want to free PUDs, but in the |
| 1100 | * 5-level case we should free them. This code will have to change |
| 1101 | * to adapt for boot-time switching between 4 and 5 level page tables. |
| 1102 | */ |
| 1103 | if (pgtable_l5_enabled()) |
| 1104 | free_pud_table(pud_base, p4d); |
| 1105 | } |
| 1106 | |
| 1107 | if (direct) |
| 1108 | update_page_count(PG_LEVEL_512G, -pages); |
| 1109 | } |
| 1110 | |
| 1111 | /* start and end are both virtual address. */ |
| 1112 | static void __meminit |
| 1113 | remove_pagetable(unsigned long start, unsigned long end, bool direct, |
| 1114 | struct vmem_altmap *altmap) |
| 1115 | { |
| 1116 | unsigned long next; |
| 1117 | unsigned long addr; |
| 1118 | pgd_t *pgd; |
| 1119 | p4d_t *p4d; |
| 1120 | |
| 1121 | for (addr = start; addr < end; addr = next) { |
| 1122 | next = pgd_addr_end(addr, end); |
| 1123 | |
| 1124 | pgd = pgd_offset_k(addr); |
| 1125 | if (!pgd_present(*pgd)) |
| 1126 | continue; |
| 1127 | |
| 1128 | p4d = p4d_offset(pgd, 0); |
| 1129 | remove_p4d_table(p4d, addr, next, altmap, direct); |
| 1130 | } |
| 1131 | |
| 1132 | flush_tlb_all(); |
| 1133 | } |
| 1134 | |
| 1135 | void __ref vmemmap_free(unsigned long start, unsigned long end, |
| 1136 | struct vmem_altmap *altmap) |
| 1137 | { |
| 1138 | remove_pagetable(start, end, false, altmap); |
| 1139 | } |
| 1140 | |
| 1141 | #ifdef CONFIG_MEMORY_HOTREMOVE |
| 1142 | static void __meminit |
| 1143 | kernel_physical_mapping_remove(unsigned long start, unsigned long end) |
| 1144 | { |
| 1145 | start = (unsigned long)__va(start); |
| 1146 | end = (unsigned long)__va(end); |
| 1147 | |
| 1148 | remove_pagetable(start, end, true, NULL); |
| 1149 | } |
| 1150 | |
| 1151 | int __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap) |
| 1152 | { |
| 1153 | unsigned long start_pfn = start >> PAGE_SHIFT; |
| 1154 | unsigned long nr_pages = size >> PAGE_SHIFT; |
| 1155 | struct page *page = pfn_to_page(start_pfn); |
| 1156 | struct zone *zone; |
| 1157 | int ret; |
| 1158 | |
| 1159 | /* With altmap the first mapped page is offset from @start */ |
| 1160 | if (altmap) |
| 1161 | page += vmem_altmap_offset(altmap); |
| 1162 | zone = page_zone(page); |
| 1163 | ret = __remove_pages(zone, start_pfn, nr_pages, altmap); |
| 1164 | WARN_ON_ONCE(ret); |
| 1165 | kernel_physical_mapping_remove(start, start + size); |
| 1166 | |
| 1167 | return ret; |
| 1168 | } |
| 1169 | #endif |
| 1170 | #endif /* CONFIG_MEMORY_HOTPLUG */ |
| 1171 | |
| 1172 | static struct kcore_list kcore_vsyscall; |
| 1173 | |
| 1174 | static void __init register_page_bootmem_info(void) |
| 1175 | { |
| 1176 | #ifdef CONFIG_NUMA |
| 1177 | int i; |
| 1178 | |
| 1179 | for_each_online_node(i) |
| 1180 | register_page_bootmem_info_node(NODE_DATA(i)); |
| 1181 | #endif |
| 1182 | } |
| 1183 | |
| 1184 | void __init mem_init(void) |
| 1185 | { |
| 1186 | pci_iommu_alloc(); |
| 1187 | |
| 1188 | /* clear_bss() already clear the empty_zero_page */ |
| 1189 | |
| 1190 | /* this will put all memory onto the freelists */ |
| 1191 | free_all_bootmem(); |
| 1192 | after_bootmem = 1; |
| 1193 | x86_init.hyper.init_after_bootmem(); |
| 1194 | |
| 1195 | /* |
| 1196 | * Must be done after boot memory is put on freelist, because here we |
| 1197 | * might set fields in deferred struct pages that have not yet been |
| 1198 | * initialized, and free_all_bootmem() initializes all the reserved |
| 1199 | * deferred pages for us. |
| 1200 | */ |
| 1201 | register_page_bootmem_info(); |
| 1202 | |
| 1203 | /* Register memory areas for /proc/kcore */ |
| 1204 | if (get_gate_vma(&init_mm)) |
| 1205 | kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER); |
| 1206 | |
| 1207 | mem_init_print_info(NULL); |
| 1208 | } |
| 1209 | |
| 1210 | int kernel_set_to_readonly; |
| 1211 | |
| 1212 | void set_kernel_text_rw(void) |
| 1213 | { |
| 1214 | unsigned long start = PFN_ALIGN(_text); |
| 1215 | unsigned long end = PFN_ALIGN(__stop___ex_table); |
| 1216 | |
| 1217 | if (!kernel_set_to_readonly) |
| 1218 | return; |
| 1219 | |
| 1220 | pr_debug("Set kernel text: %lx - %lx for read write\n", |
| 1221 | start, end); |
| 1222 | |
| 1223 | /* |
| 1224 | * Make the kernel identity mapping for text RW. Kernel text |
| 1225 | * mapping will always be RO. Refer to the comment in |
| 1226 | * static_protections() in pageattr.c |
| 1227 | */ |
| 1228 | set_memory_rw(start, (end - start) >> PAGE_SHIFT); |
| 1229 | } |
| 1230 | |
| 1231 | void set_kernel_text_ro(void) |
| 1232 | { |
| 1233 | unsigned long start = PFN_ALIGN(_text); |
| 1234 | unsigned long end = PFN_ALIGN(__stop___ex_table); |
| 1235 | |
| 1236 | if (!kernel_set_to_readonly) |
| 1237 | return; |
| 1238 | |
| 1239 | pr_debug("Set kernel text: %lx - %lx for read only\n", |
| 1240 | start, end); |
| 1241 | |
| 1242 | /* |
| 1243 | * Set the kernel identity mapping for text RO. |
| 1244 | */ |
| 1245 | set_memory_ro(start, (end - start) >> PAGE_SHIFT); |
| 1246 | } |
| 1247 | |
| 1248 | void mark_rodata_ro(void) |
| 1249 | { |
| 1250 | unsigned long start = PFN_ALIGN(_text); |
| 1251 | unsigned long rodata_start = PFN_ALIGN(__start_rodata); |
| 1252 | unsigned long end = (unsigned long) &__end_rodata_hpage_align; |
| 1253 | unsigned long text_end = PFN_ALIGN(&__stop___ex_table); |
| 1254 | unsigned long rodata_end = PFN_ALIGN(&__end_rodata); |
| 1255 | unsigned long all_end; |
| 1256 | |
| 1257 | printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n", |
| 1258 | (end - start) >> 10); |
| 1259 | set_memory_ro(start, (end - start) >> PAGE_SHIFT); |
| 1260 | |
| 1261 | kernel_set_to_readonly = 1; |
| 1262 | |
| 1263 | /* |
| 1264 | * The rodata/data/bss/brk section (but not the kernel text!) |
| 1265 | * should also be not-executable. |
| 1266 | * |
| 1267 | * We align all_end to PMD_SIZE because the existing mapping |
| 1268 | * is a full PMD. If we would align _brk_end to PAGE_SIZE we |
| 1269 | * split the PMD and the reminder between _brk_end and the end |
| 1270 | * of the PMD will remain mapped executable. |
| 1271 | * |
| 1272 | * Any PMD which was setup after the one which covers _brk_end |
| 1273 | * has been zapped already via cleanup_highmem(). |
| 1274 | */ |
| 1275 | all_end = roundup((unsigned long)_brk_end, PMD_SIZE); |
| 1276 | set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT); |
| 1277 | |
| 1278 | #ifdef CONFIG_CPA_DEBUG |
| 1279 | printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end); |
| 1280 | set_memory_rw(start, (end-start) >> PAGE_SHIFT); |
| 1281 | |
| 1282 | printk(KERN_INFO "Testing CPA: again\n"); |
| 1283 | set_memory_ro(start, (end-start) >> PAGE_SHIFT); |
| 1284 | #endif |
| 1285 | |
| 1286 | free_kernel_image_pages((void *)text_end, (void *)rodata_start); |
| 1287 | free_kernel_image_pages((void *)rodata_end, (void *)_sdata); |
| 1288 | |
| 1289 | debug_checkwx(); |
| 1290 | } |
| 1291 | |
| 1292 | int kern_addr_valid(unsigned long addr) |
| 1293 | { |
| 1294 | unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT; |
| 1295 | pgd_t *pgd; |
| 1296 | p4d_t *p4d; |
| 1297 | pud_t *pud; |
| 1298 | pmd_t *pmd; |
| 1299 | pte_t *pte; |
| 1300 | |
| 1301 | if (above != 0 && above != -1UL) |
| 1302 | return 0; |
| 1303 | |
| 1304 | pgd = pgd_offset_k(addr); |
| 1305 | if (pgd_none(*pgd)) |
| 1306 | return 0; |
| 1307 | |
| 1308 | p4d = p4d_offset(pgd, addr); |
| 1309 | if (p4d_none(*p4d)) |
| 1310 | return 0; |
| 1311 | |
| 1312 | pud = pud_offset(p4d, addr); |
| 1313 | if (pud_none(*pud)) |
| 1314 | return 0; |
| 1315 | |
| 1316 | if (pud_large(*pud)) |
| 1317 | return pfn_valid(pud_pfn(*pud)); |
| 1318 | |
| 1319 | pmd = pmd_offset(pud, addr); |
| 1320 | if (pmd_none(*pmd)) |
| 1321 | return 0; |
| 1322 | |
| 1323 | if (pmd_large(*pmd)) |
| 1324 | return pfn_valid(pmd_pfn(*pmd)); |
| 1325 | |
| 1326 | pte = pte_offset_kernel(pmd, addr); |
| 1327 | if (pte_none(*pte)) |
| 1328 | return 0; |
| 1329 | |
| 1330 | return pfn_valid(pte_pfn(*pte)); |
| 1331 | } |
| 1332 | |
| 1333 | /* |
| 1334 | * Block size is the minimum amount of memory which can be hotplugged or |
| 1335 | * hotremoved. It must be power of two and must be equal or larger than |
| 1336 | * MIN_MEMORY_BLOCK_SIZE. |
| 1337 | */ |
| 1338 | #define MAX_BLOCK_SIZE (2UL << 30) |
| 1339 | |
| 1340 | /* Amount of ram needed to start using large blocks */ |
| 1341 | #define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30) |
| 1342 | |
| 1343 | /* Adjustable memory block size */ |
| 1344 | static unsigned long set_memory_block_size; |
| 1345 | int __init set_memory_block_size_order(unsigned int order) |
| 1346 | { |
| 1347 | unsigned long size = 1UL << order; |
| 1348 | |
| 1349 | if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE) |
| 1350 | return -EINVAL; |
| 1351 | |
| 1352 | set_memory_block_size = size; |
| 1353 | return 0; |
| 1354 | } |
| 1355 | |
| 1356 | static unsigned long probe_memory_block_size(void) |
| 1357 | { |
| 1358 | unsigned long boot_mem_end = max_pfn << PAGE_SHIFT; |
| 1359 | unsigned long bz; |
| 1360 | |
| 1361 | /* If memory block size has been set, then use it */ |
| 1362 | bz = set_memory_block_size; |
| 1363 | if (bz) |
| 1364 | goto done; |
| 1365 | |
| 1366 | /* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */ |
| 1367 | if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) { |
| 1368 | bz = MIN_MEMORY_BLOCK_SIZE; |
| 1369 | goto done; |
| 1370 | } |
| 1371 | |
| 1372 | /* Find the largest allowed block size that aligns to memory end */ |
| 1373 | for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) { |
| 1374 | if (IS_ALIGNED(boot_mem_end, bz)) |
| 1375 | break; |
| 1376 | } |
| 1377 | done: |
| 1378 | pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20); |
| 1379 | |
| 1380 | return bz; |
| 1381 | } |
| 1382 | |
| 1383 | static unsigned long memory_block_size_probed; |
| 1384 | unsigned long memory_block_size_bytes(void) |
| 1385 | { |
| 1386 | if (!memory_block_size_probed) |
| 1387 | memory_block_size_probed = probe_memory_block_size(); |
| 1388 | |
| 1389 | return memory_block_size_probed; |
| 1390 | } |
| 1391 | |
| 1392 | #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| 1393 | /* |
| 1394 | * Initialise the sparsemem vmemmap using huge-pages at the PMD level. |
| 1395 | */ |
| 1396 | static long __meminitdata addr_start, addr_end; |
| 1397 | static void __meminitdata *p_start, *p_end; |
| 1398 | static int __meminitdata node_start; |
| 1399 | |
| 1400 | static int __meminit vmemmap_populate_hugepages(unsigned long start, |
| 1401 | unsigned long end, int node, struct vmem_altmap *altmap) |
| 1402 | { |
| 1403 | unsigned long addr; |
| 1404 | unsigned long next; |
| 1405 | pgd_t *pgd; |
| 1406 | p4d_t *p4d; |
| 1407 | pud_t *pud; |
| 1408 | pmd_t *pmd; |
| 1409 | |
| 1410 | for (addr = start; addr < end; addr = next) { |
| 1411 | next = pmd_addr_end(addr, end); |
| 1412 | |
| 1413 | pgd = vmemmap_pgd_populate(addr, node); |
| 1414 | if (!pgd) |
| 1415 | return -ENOMEM; |
| 1416 | |
| 1417 | p4d = vmemmap_p4d_populate(pgd, addr, node); |
| 1418 | if (!p4d) |
| 1419 | return -ENOMEM; |
| 1420 | |
| 1421 | pud = vmemmap_pud_populate(p4d, addr, node); |
| 1422 | if (!pud) |
| 1423 | return -ENOMEM; |
| 1424 | |
| 1425 | pmd = pmd_offset(pud, addr); |
| 1426 | if (pmd_none(*pmd)) { |
| 1427 | void *p; |
| 1428 | |
| 1429 | if (altmap) |
| 1430 | p = altmap_alloc_block_buf(PMD_SIZE, altmap); |
| 1431 | else |
| 1432 | p = vmemmap_alloc_block_buf(PMD_SIZE, node); |
| 1433 | if (p) { |
| 1434 | pte_t entry; |
| 1435 | |
| 1436 | entry = pfn_pte(__pa(p) >> PAGE_SHIFT, |
| 1437 | PAGE_KERNEL_LARGE); |
| 1438 | set_pmd(pmd, __pmd(pte_val(entry))); |
| 1439 | |
| 1440 | /* check to see if we have contiguous blocks */ |
| 1441 | if (p_end != p || node_start != node) { |
| 1442 | if (p_start) |
| 1443 | pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n", |
| 1444 | addr_start, addr_end-1, p_start, p_end-1, node_start); |
| 1445 | addr_start = addr; |
| 1446 | node_start = node; |
| 1447 | p_start = p; |
| 1448 | } |
| 1449 | |
| 1450 | addr_end = addr + PMD_SIZE; |
| 1451 | p_end = p + PMD_SIZE; |
| 1452 | continue; |
| 1453 | } else if (altmap) |
| 1454 | return -ENOMEM; /* no fallback */ |
| 1455 | } else if (pmd_large(*pmd)) { |
| 1456 | vmemmap_verify((pte_t *)pmd, node, addr, next); |
| 1457 | continue; |
| 1458 | } |
| 1459 | if (vmemmap_populate_basepages(addr, next, node)) |
| 1460 | return -ENOMEM; |
| 1461 | } |
| 1462 | return 0; |
| 1463 | } |
| 1464 | |
| 1465 | int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, |
| 1466 | struct vmem_altmap *altmap) |
| 1467 | { |
| 1468 | int err; |
| 1469 | |
| 1470 | if (boot_cpu_has(X86_FEATURE_PSE)) |
| 1471 | err = vmemmap_populate_hugepages(start, end, node, altmap); |
| 1472 | else if (altmap) { |
| 1473 | pr_err_once("%s: no cpu support for altmap allocations\n", |
| 1474 | __func__); |
| 1475 | err = -ENOMEM; |
| 1476 | } else |
| 1477 | err = vmemmap_populate_basepages(start, end, node); |
| 1478 | if (!err) |
| 1479 | sync_global_pgds(start, end - 1); |
| 1480 | return err; |
| 1481 | } |
| 1482 | |
| 1483 | #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE) |
| 1484 | void register_page_bootmem_memmap(unsigned long section_nr, |
| 1485 | struct page *start_page, unsigned long nr_pages) |
| 1486 | { |
| 1487 | unsigned long addr = (unsigned long)start_page; |
| 1488 | unsigned long end = (unsigned long)(start_page + nr_pages); |
| 1489 | unsigned long next; |
| 1490 | pgd_t *pgd; |
| 1491 | p4d_t *p4d; |
| 1492 | pud_t *pud; |
| 1493 | pmd_t *pmd; |
| 1494 | unsigned int nr_pmd_pages; |
| 1495 | struct page *page; |
| 1496 | |
| 1497 | for (; addr < end; addr = next) { |
| 1498 | pte_t *pte = NULL; |
| 1499 | |
| 1500 | pgd = pgd_offset_k(addr); |
| 1501 | if (pgd_none(*pgd)) { |
| 1502 | next = (addr + PAGE_SIZE) & PAGE_MASK; |
| 1503 | continue; |
| 1504 | } |
| 1505 | get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO); |
| 1506 | |
| 1507 | p4d = p4d_offset(pgd, addr); |
| 1508 | if (p4d_none(*p4d)) { |
| 1509 | next = (addr + PAGE_SIZE) & PAGE_MASK; |
| 1510 | continue; |
| 1511 | } |
| 1512 | get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO); |
| 1513 | |
| 1514 | pud = pud_offset(p4d, addr); |
| 1515 | if (pud_none(*pud)) { |
| 1516 | next = (addr + PAGE_SIZE) & PAGE_MASK; |
| 1517 | continue; |
| 1518 | } |
| 1519 | get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO); |
| 1520 | |
| 1521 | if (!boot_cpu_has(X86_FEATURE_PSE)) { |
| 1522 | next = (addr + PAGE_SIZE) & PAGE_MASK; |
| 1523 | pmd = pmd_offset(pud, addr); |
| 1524 | if (pmd_none(*pmd)) |
| 1525 | continue; |
| 1526 | get_page_bootmem(section_nr, pmd_page(*pmd), |
| 1527 | MIX_SECTION_INFO); |
| 1528 | |
| 1529 | pte = pte_offset_kernel(pmd, addr); |
| 1530 | if (pte_none(*pte)) |
| 1531 | continue; |
| 1532 | get_page_bootmem(section_nr, pte_page(*pte), |
| 1533 | SECTION_INFO); |
| 1534 | } else { |
| 1535 | next = pmd_addr_end(addr, end); |
| 1536 | |
| 1537 | pmd = pmd_offset(pud, addr); |
| 1538 | if (pmd_none(*pmd)) |
| 1539 | continue; |
| 1540 | |
| 1541 | nr_pmd_pages = 1 << get_order(PMD_SIZE); |
| 1542 | page = pmd_page(*pmd); |
| 1543 | while (nr_pmd_pages--) |
| 1544 | get_page_bootmem(section_nr, page++, |
| 1545 | SECTION_INFO); |
| 1546 | } |
| 1547 | } |
| 1548 | } |
| 1549 | #endif |
| 1550 | |
| 1551 | void __meminit vmemmap_populate_print_last(void) |
| 1552 | { |
| 1553 | if (p_start) { |
| 1554 | pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n", |
| 1555 | addr_start, addr_end-1, p_start, p_end-1, node_start); |
| 1556 | p_start = NULL; |
| 1557 | p_end = NULL; |
| 1558 | node_start = 0; |
| 1559 | } |
| 1560 | } |
| 1561 | #endif |