v4.19.13 snapshot.
diff --git a/arch/x86/mm/init_64.c b/arch/x86/mm/init_64.c
new file mode 100644
index 0000000..dd519f3
--- /dev/null
+++ b/arch/x86/mm/init_64.c
@@ -0,0 +1,1561 @@
+/*
+ *  linux/arch/x86_64/mm/init.c
+ *
+ *  Copyright (C) 1995  Linus Torvalds
+ *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
+ *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
+ */
+
+#include <linux/signal.h>
+#include <linux/sched.h>
+#include <linux/kernel.h>
+#include <linux/errno.h>
+#include <linux/string.h>
+#include <linux/types.h>
+#include <linux/ptrace.h>
+#include <linux/mman.h>
+#include <linux/mm.h>
+#include <linux/swap.h>
+#include <linux/smp.h>
+#include <linux/init.h>
+#include <linux/initrd.h>
+#include <linux/pagemap.h>
+#include <linux/bootmem.h>
+#include <linux/memblock.h>
+#include <linux/proc_fs.h>
+#include <linux/pci.h>
+#include <linux/pfn.h>
+#include <linux/poison.h>
+#include <linux/dma-mapping.h>
+#include <linux/memory.h>
+#include <linux/memory_hotplug.h>
+#include <linux/memremap.h>
+#include <linux/nmi.h>
+#include <linux/gfp.h>
+#include <linux/kcore.h>
+
+#include <asm/processor.h>
+#include <asm/bios_ebda.h>
+#include <linux/uaccess.h>
+#include <asm/pgtable.h>
+#include <asm/pgalloc.h>
+#include <asm/dma.h>
+#include <asm/fixmap.h>
+#include <asm/e820/api.h>
+#include <asm/apic.h>
+#include <asm/tlb.h>
+#include <asm/mmu_context.h>
+#include <asm/proto.h>
+#include <asm/smp.h>
+#include <asm/sections.h>
+#include <asm/kdebug.h>
+#include <asm/numa.h>
+#include <asm/set_memory.h>
+#include <asm/init.h>
+#include <asm/uv/uv.h>
+#include <asm/setup.h>
+
+#include "mm_internal.h"
+
+#include "ident_map.c"
+
+/*
+ * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
+ * physical space so we can cache the place of the first one and move
+ * around without checking the pgd every time.
+ */
+
+/* Bits supported by the hardware: */
+pteval_t __supported_pte_mask __read_mostly = ~0;
+/* Bits allowed in normal kernel mappings: */
+pteval_t __default_kernel_pte_mask __read_mostly = ~0;
+EXPORT_SYMBOL_GPL(__supported_pte_mask);
+/* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
+EXPORT_SYMBOL(__default_kernel_pte_mask);
+
+int force_personality32;
+
+/*
+ * noexec32=on|off
+ * Control non executable heap for 32bit processes.
+ * To control the stack too use noexec=off
+ *
+ * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
+ * off	PROT_READ implies PROT_EXEC
+ */
+static int __init nonx32_setup(char *str)
+{
+	if (!strcmp(str, "on"))
+		force_personality32 &= ~READ_IMPLIES_EXEC;
+	else if (!strcmp(str, "off"))
+		force_personality32 |= READ_IMPLIES_EXEC;
+	return 1;
+}
+__setup("noexec32=", nonx32_setup);
+
+static void sync_global_pgds_l5(unsigned long start, unsigned long end)
+{
+	unsigned long addr;
+
+	for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
+		const pgd_t *pgd_ref = pgd_offset_k(addr);
+		struct page *page;
+
+		/* Check for overflow */
+		if (addr < start)
+			break;
+
+		if (pgd_none(*pgd_ref))
+			continue;
+
+		spin_lock(&pgd_lock);
+		list_for_each_entry(page, &pgd_list, lru) {
+			pgd_t *pgd;
+			spinlock_t *pgt_lock;
+
+			pgd = (pgd_t *)page_address(page) + pgd_index(addr);
+			/* the pgt_lock only for Xen */
+			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
+			spin_lock(pgt_lock);
+
+			if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
+				BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
+
+			if (pgd_none(*pgd))
+				set_pgd(pgd, *pgd_ref);
+
+			spin_unlock(pgt_lock);
+		}
+		spin_unlock(&pgd_lock);
+	}
+}
+
+static void sync_global_pgds_l4(unsigned long start, unsigned long end)
+{
+	unsigned long addr;
+
+	for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
+		pgd_t *pgd_ref = pgd_offset_k(addr);
+		const p4d_t *p4d_ref;
+		struct page *page;
+
+		/*
+		 * With folded p4d, pgd_none() is always false, we need to
+		 * handle synchonization on p4d level.
+		 */
+		MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
+		p4d_ref = p4d_offset(pgd_ref, addr);
+
+		if (p4d_none(*p4d_ref))
+			continue;
+
+		spin_lock(&pgd_lock);
+		list_for_each_entry(page, &pgd_list, lru) {
+			pgd_t *pgd;
+			p4d_t *p4d;
+			spinlock_t *pgt_lock;
+
+			pgd = (pgd_t *)page_address(page) + pgd_index(addr);
+			p4d = p4d_offset(pgd, addr);
+			/* the pgt_lock only for Xen */
+			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
+			spin_lock(pgt_lock);
+
+			if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
+				BUG_ON(p4d_page_vaddr(*p4d)
+				       != p4d_page_vaddr(*p4d_ref));
+
+			if (p4d_none(*p4d))
+				set_p4d(p4d, *p4d_ref);
+
+			spin_unlock(pgt_lock);
+		}
+		spin_unlock(&pgd_lock);
+	}
+}
+
+/*
+ * When memory was added make sure all the processes MM have
+ * suitable PGD entries in the local PGD level page.
+ */
+void sync_global_pgds(unsigned long start, unsigned long end)
+{
+	if (pgtable_l5_enabled())
+		sync_global_pgds_l5(start, end);
+	else
+		sync_global_pgds_l4(start, end);
+}
+
+/*
+ * NOTE: This function is marked __ref because it calls __init function
+ * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
+ */
+static __ref void *spp_getpage(void)
+{
+	void *ptr;
+
+	if (after_bootmem)
+		ptr = (void *) get_zeroed_page(GFP_ATOMIC);
+	else
+		ptr = alloc_bootmem_pages(PAGE_SIZE);
+
+	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
+		panic("set_pte_phys: cannot allocate page data %s\n",
+			after_bootmem ? "after bootmem" : "");
+	}
+
+	pr_debug("spp_getpage %p\n", ptr);
+
+	return ptr;
+}
+
+static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
+{
+	if (pgd_none(*pgd)) {
+		p4d_t *p4d = (p4d_t *)spp_getpage();
+		pgd_populate(&init_mm, pgd, p4d);
+		if (p4d != p4d_offset(pgd, 0))
+			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
+			       p4d, p4d_offset(pgd, 0));
+	}
+	return p4d_offset(pgd, vaddr);
+}
+
+static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
+{
+	if (p4d_none(*p4d)) {
+		pud_t *pud = (pud_t *)spp_getpage();
+		p4d_populate(&init_mm, p4d, pud);
+		if (pud != pud_offset(p4d, 0))
+			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
+			       pud, pud_offset(p4d, 0));
+	}
+	return pud_offset(p4d, vaddr);
+}
+
+static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
+{
+	if (pud_none(*pud)) {
+		pmd_t *pmd = (pmd_t *) spp_getpage();
+		pud_populate(&init_mm, pud, pmd);
+		if (pmd != pmd_offset(pud, 0))
+			printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
+			       pmd, pmd_offset(pud, 0));
+	}
+	return pmd_offset(pud, vaddr);
+}
+
+static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
+{
+	if (pmd_none(*pmd)) {
+		pte_t *pte = (pte_t *) spp_getpage();
+		pmd_populate_kernel(&init_mm, pmd, pte);
+		if (pte != pte_offset_kernel(pmd, 0))
+			printk(KERN_ERR "PAGETABLE BUG #03!\n");
+	}
+	return pte_offset_kernel(pmd, vaddr);
+}
+
+static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
+{
+	pmd_t *pmd = fill_pmd(pud, vaddr);
+	pte_t *pte = fill_pte(pmd, vaddr);
+
+	set_pte(pte, new_pte);
+
+	/*
+	 * It's enough to flush this one mapping.
+	 * (PGE mappings get flushed as well)
+	 */
+	__flush_tlb_one_kernel(vaddr);
+}
+
+void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
+{
+	p4d_t *p4d = p4d_page + p4d_index(vaddr);
+	pud_t *pud = fill_pud(p4d, vaddr);
+
+	__set_pte_vaddr(pud, vaddr, new_pte);
+}
+
+void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
+{
+	pud_t *pud = pud_page + pud_index(vaddr);
+
+	__set_pte_vaddr(pud, vaddr, new_pte);
+}
+
+void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
+{
+	pgd_t *pgd;
+	p4d_t *p4d_page;
+
+	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
+
+	pgd = pgd_offset_k(vaddr);
+	if (pgd_none(*pgd)) {
+		printk(KERN_ERR
+			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
+		return;
+	}
+
+	p4d_page = p4d_offset(pgd, 0);
+	set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
+}
+
+pmd_t * __init populate_extra_pmd(unsigned long vaddr)
+{
+	pgd_t *pgd;
+	p4d_t *p4d;
+	pud_t *pud;
+
+	pgd = pgd_offset_k(vaddr);
+	p4d = fill_p4d(pgd, vaddr);
+	pud = fill_pud(p4d, vaddr);
+	return fill_pmd(pud, vaddr);
+}
+
+pte_t * __init populate_extra_pte(unsigned long vaddr)
+{
+	pmd_t *pmd;
+
+	pmd = populate_extra_pmd(vaddr);
+	return fill_pte(pmd, vaddr);
+}
+
+/*
+ * Create large page table mappings for a range of physical addresses.
+ */
+static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
+					enum page_cache_mode cache)
+{
+	pgd_t *pgd;
+	p4d_t *p4d;
+	pud_t *pud;
+	pmd_t *pmd;
+	pgprot_t prot;
+
+	pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
+		pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
+	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
+	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
+		pgd = pgd_offset_k((unsigned long)__va(phys));
+		if (pgd_none(*pgd)) {
+			p4d = (p4d_t *) spp_getpage();
+			set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
+						_PAGE_USER));
+		}
+		p4d = p4d_offset(pgd, (unsigned long)__va(phys));
+		if (p4d_none(*p4d)) {
+			pud = (pud_t *) spp_getpage();
+			set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
+						_PAGE_USER));
+		}
+		pud = pud_offset(p4d, (unsigned long)__va(phys));
+		if (pud_none(*pud)) {
+			pmd = (pmd_t *) spp_getpage();
+			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
+						_PAGE_USER));
+		}
+		pmd = pmd_offset(pud, phys);
+		BUG_ON(!pmd_none(*pmd));
+		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
+	}
+}
+
+void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
+{
+	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
+}
+
+void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
+{
+	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
+}
+
+/*
+ * The head.S code sets up the kernel high mapping:
+ *
+ *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
+ *
+ * phys_base holds the negative offset to the kernel, which is added
+ * to the compile time generated pmds. This results in invalid pmds up
+ * to the point where we hit the physaddr 0 mapping.
+ *
+ * We limit the mappings to the region from _text to _brk_end.  _brk_end
+ * is rounded up to the 2MB boundary. This catches the invalid pmds as
+ * well, as they are located before _text:
+ */
+void __init cleanup_highmap(void)
+{
+	unsigned long vaddr = __START_KERNEL_map;
+	unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
+	unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
+	pmd_t *pmd = level2_kernel_pgt;
+
+	/*
+	 * Native path, max_pfn_mapped is not set yet.
+	 * Xen has valid max_pfn_mapped set in
+	 *	arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
+	 */
+	if (max_pfn_mapped)
+		vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
+
+	for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
+		if (pmd_none(*pmd))
+			continue;
+		if (vaddr < (unsigned long) _text || vaddr > end)
+			set_pmd(pmd, __pmd(0));
+	}
+}
+
+/*
+ * Create PTE level page table mapping for physical addresses.
+ * It returns the last physical address mapped.
+ */
+static unsigned long __meminit
+phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
+	      pgprot_t prot)
+{
+	unsigned long pages = 0, paddr_next;
+	unsigned long paddr_last = paddr_end;
+	pte_t *pte;
+	int i;
+
+	pte = pte_page + pte_index(paddr);
+	i = pte_index(paddr);
+
+	for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
+		paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
+		if (paddr >= paddr_end) {
+			if (!after_bootmem &&
+			    !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
+					     E820_TYPE_RAM) &&
+			    !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
+					     E820_TYPE_RESERVED_KERN))
+				set_pte(pte, __pte(0));
+			continue;
+		}
+
+		/*
+		 * We will re-use the existing mapping.
+		 * Xen for example has some special requirements, like mapping
+		 * pagetable pages as RO. So assume someone who pre-setup
+		 * these mappings are more intelligent.
+		 */
+		if (!pte_none(*pte)) {
+			if (!after_bootmem)
+				pages++;
+			continue;
+		}
+
+		if (0)
+			pr_info("   pte=%p addr=%lx pte=%016lx\n", pte, paddr,
+				pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
+		pages++;
+		set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
+		paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
+	}
+
+	update_page_count(PG_LEVEL_4K, pages);
+
+	return paddr_last;
+}
+
+/*
+ * Create PMD level page table mapping for physical addresses. The virtual
+ * and physical address have to be aligned at this level.
+ * It returns the last physical address mapped.
+ */
+static unsigned long __meminit
+phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
+	      unsigned long page_size_mask, pgprot_t prot)
+{
+	unsigned long pages = 0, paddr_next;
+	unsigned long paddr_last = paddr_end;
+
+	int i = pmd_index(paddr);
+
+	for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
+		pmd_t *pmd = pmd_page + pmd_index(paddr);
+		pte_t *pte;
+		pgprot_t new_prot = prot;
+
+		paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
+		if (paddr >= paddr_end) {
+			if (!after_bootmem &&
+			    !e820__mapped_any(paddr & PMD_MASK, paddr_next,
+					     E820_TYPE_RAM) &&
+			    !e820__mapped_any(paddr & PMD_MASK, paddr_next,
+					     E820_TYPE_RESERVED_KERN))
+				set_pmd(pmd, __pmd(0));
+			continue;
+		}
+
+		if (!pmd_none(*pmd)) {
+			if (!pmd_large(*pmd)) {
+				spin_lock(&init_mm.page_table_lock);
+				pte = (pte_t *)pmd_page_vaddr(*pmd);
+				paddr_last = phys_pte_init(pte, paddr,
+							   paddr_end, prot);
+				spin_unlock(&init_mm.page_table_lock);
+				continue;
+			}
+			/*
+			 * If we are ok with PG_LEVEL_2M mapping, then we will
+			 * use the existing mapping,
+			 *
+			 * Otherwise, we will split the large page mapping but
+			 * use the same existing protection bits except for
+			 * large page, so that we don't violate Intel's TLB
+			 * Application note (317080) which says, while changing
+			 * the page sizes, new and old translations should
+			 * not differ with respect to page frame and
+			 * attributes.
+			 */
+			if (page_size_mask & (1 << PG_LEVEL_2M)) {
+				if (!after_bootmem)
+					pages++;
+				paddr_last = paddr_next;
+				continue;
+			}
+			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
+		}
+
+		if (page_size_mask & (1<<PG_LEVEL_2M)) {
+			pages++;
+			spin_lock(&init_mm.page_table_lock);
+			set_pte((pte_t *)pmd,
+				pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
+					__pgprot(pgprot_val(prot) | _PAGE_PSE)));
+			spin_unlock(&init_mm.page_table_lock);
+			paddr_last = paddr_next;
+			continue;
+		}
+
+		pte = alloc_low_page();
+		paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot);
+
+		spin_lock(&init_mm.page_table_lock);
+		pmd_populate_kernel(&init_mm, pmd, pte);
+		spin_unlock(&init_mm.page_table_lock);
+	}
+	update_page_count(PG_LEVEL_2M, pages);
+	return paddr_last;
+}
+
+/*
+ * Create PUD level page table mapping for physical addresses. The virtual
+ * and physical address do not have to be aligned at this level. KASLR can
+ * randomize virtual addresses up to this level.
+ * It returns the last physical address mapped.
+ */
+static unsigned long __meminit
+phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
+	      unsigned long page_size_mask)
+{
+	unsigned long pages = 0, paddr_next;
+	unsigned long paddr_last = paddr_end;
+	unsigned long vaddr = (unsigned long)__va(paddr);
+	int i = pud_index(vaddr);
+
+	for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
+		pud_t *pud;
+		pmd_t *pmd;
+		pgprot_t prot = PAGE_KERNEL;
+
+		vaddr = (unsigned long)__va(paddr);
+		pud = pud_page + pud_index(vaddr);
+		paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
+
+		if (paddr >= paddr_end) {
+			if (!after_bootmem &&
+			    !e820__mapped_any(paddr & PUD_MASK, paddr_next,
+					     E820_TYPE_RAM) &&
+			    !e820__mapped_any(paddr & PUD_MASK, paddr_next,
+					     E820_TYPE_RESERVED_KERN))
+				set_pud(pud, __pud(0));
+			continue;
+		}
+
+		if (!pud_none(*pud)) {
+			if (!pud_large(*pud)) {
+				pmd = pmd_offset(pud, 0);
+				paddr_last = phys_pmd_init(pmd, paddr,
+							   paddr_end,
+							   page_size_mask,
+							   prot);
+				__flush_tlb_all();
+				continue;
+			}
+			/*
+			 * If we are ok with PG_LEVEL_1G mapping, then we will
+			 * use the existing mapping.
+			 *
+			 * Otherwise, we will split the gbpage mapping but use
+			 * the same existing protection  bits except for large
+			 * page, so that we don't violate Intel's TLB
+			 * Application note (317080) which says, while changing
+			 * the page sizes, new and old translations should
+			 * not differ with respect to page frame and
+			 * attributes.
+			 */
+			if (page_size_mask & (1 << PG_LEVEL_1G)) {
+				if (!after_bootmem)
+					pages++;
+				paddr_last = paddr_next;
+				continue;
+			}
+			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
+		}
+
+		if (page_size_mask & (1<<PG_LEVEL_1G)) {
+			pages++;
+			spin_lock(&init_mm.page_table_lock);
+			set_pte((pte_t *)pud,
+				pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
+					PAGE_KERNEL_LARGE));
+			spin_unlock(&init_mm.page_table_lock);
+			paddr_last = paddr_next;
+			continue;
+		}
+
+		pmd = alloc_low_page();
+		paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
+					   page_size_mask, prot);
+
+		spin_lock(&init_mm.page_table_lock);
+		pud_populate(&init_mm, pud, pmd);
+		spin_unlock(&init_mm.page_table_lock);
+	}
+	__flush_tlb_all();
+
+	update_page_count(PG_LEVEL_1G, pages);
+
+	return paddr_last;
+}
+
+static unsigned long __meminit
+phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
+	      unsigned long page_size_mask)
+{
+	unsigned long paddr_next, paddr_last = paddr_end;
+	unsigned long vaddr = (unsigned long)__va(paddr);
+	int i = p4d_index(vaddr);
+
+	if (!pgtable_l5_enabled())
+		return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end, page_size_mask);
+
+	for (; i < PTRS_PER_P4D; i++, paddr = paddr_next) {
+		p4d_t *p4d;
+		pud_t *pud;
+
+		vaddr = (unsigned long)__va(paddr);
+		p4d = p4d_page + p4d_index(vaddr);
+		paddr_next = (paddr & P4D_MASK) + P4D_SIZE;
+
+		if (paddr >= paddr_end) {
+			if (!after_bootmem &&
+			    !e820__mapped_any(paddr & P4D_MASK, paddr_next,
+					     E820_TYPE_RAM) &&
+			    !e820__mapped_any(paddr & P4D_MASK, paddr_next,
+					     E820_TYPE_RESERVED_KERN))
+				set_p4d(p4d, __p4d(0));
+			continue;
+		}
+
+		if (!p4d_none(*p4d)) {
+			pud = pud_offset(p4d, 0);
+			paddr_last = phys_pud_init(pud, paddr,
+					paddr_end,
+					page_size_mask);
+			__flush_tlb_all();
+			continue;
+		}
+
+		pud = alloc_low_page();
+		paddr_last = phys_pud_init(pud, paddr, paddr_end,
+					   page_size_mask);
+
+		spin_lock(&init_mm.page_table_lock);
+		p4d_populate(&init_mm, p4d, pud);
+		spin_unlock(&init_mm.page_table_lock);
+	}
+	__flush_tlb_all();
+
+	return paddr_last;
+}
+
+/*
+ * Create page table mapping for the physical memory for specific physical
+ * addresses. The virtual and physical addresses have to be aligned on PMD level
+ * down. It returns the last physical address mapped.
+ */
+unsigned long __meminit
+kernel_physical_mapping_init(unsigned long paddr_start,
+			     unsigned long paddr_end,
+			     unsigned long page_size_mask)
+{
+	bool pgd_changed = false;
+	unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
+
+	paddr_last = paddr_end;
+	vaddr = (unsigned long)__va(paddr_start);
+	vaddr_end = (unsigned long)__va(paddr_end);
+	vaddr_start = vaddr;
+
+	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
+		pgd_t *pgd = pgd_offset_k(vaddr);
+		p4d_t *p4d;
+
+		vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
+
+		if (pgd_val(*pgd)) {
+			p4d = (p4d_t *)pgd_page_vaddr(*pgd);
+			paddr_last = phys_p4d_init(p4d, __pa(vaddr),
+						   __pa(vaddr_end),
+						   page_size_mask);
+			continue;
+		}
+
+		p4d = alloc_low_page();
+		paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
+					   page_size_mask);
+
+		spin_lock(&init_mm.page_table_lock);
+		if (pgtable_l5_enabled())
+			pgd_populate(&init_mm, pgd, p4d);
+		else
+			p4d_populate(&init_mm, p4d_offset(pgd, vaddr), (pud_t *) p4d);
+		spin_unlock(&init_mm.page_table_lock);
+		pgd_changed = true;
+	}
+
+	if (pgd_changed)
+		sync_global_pgds(vaddr_start, vaddr_end - 1);
+
+	__flush_tlb_all();
+
+	return paddr_last;
+}
+
+#ifndef CONFIG_NUMA
+void __init initmem_init(void)
+{
+	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
+}
+#endif
+
+void __init paging_init(void)
+{
+	sparse_memory_present_with_active_regions(MAX_NUMNODES);
+	sparse_init();
+
+	/*
+	 * clear the default setting with node 0
+	 * note: don't use nodes_clear here, that is really clearing when
+	 *	 numa support is not compiled in, and later node_set_state
+	 *	 will not set it back.
+	 */
+	node_clear_state(0, N_MEMORY);
+	if (N_MEMORY != N_NORMAL_MEMORY)
+		node_clear_state(0, N_NORMAL_MEMORY);
+
+	zone_sizes_init();
+}
+
+/*
+ * Memory hotplug specific functions
+ */
+#ifdef CONFIG_MEMORY_HOTPLUG
+/*
+ * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
+ * updating.
+ */
+static void update_end_of_memory_vars(u64 start, u64 size)
+{
+	unsigned long end_pfn = PFN_UP(start + size);
+
+	if (end_pfn > max_pfn) {
+		max_pfn = end_pfn;
+		max_low_pfn = end_pfn;
+		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
+	}
+}
+
+int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
+		struct vmem_altmap *altmap, bool want_memblock)
+{
+	int ret;
+
+	ret = __add_pages(nid, start_pfn, nr_pages, altmap, want_memblock);
+	WARN_ON_ONCE(ret);
+
+	/* update max_pfn, max_low_pfn and high_memory */
+	update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
+				  nr_pages << PAGE_SHIFT);
+
+	return ret;
+}
+
+int arch_add_memory(int nid, u64 start, u64 size, struct vmem_altmap *altmap,
+		bool want_memblock)
+{
+	unsigned long start_pfn = start >> PAGE_SHIFT;
+	unsigned long nr_pages = size >> PAGE_SHIFT;
+
+	init_memory_mapping(start, start + size);
+
+	return add_pages(nid, start_pfn, nr_pages, altmap, want_memblock);
+}
+
+#define PAGE_INUSE 0xFD
+
+static void __meminit free_pagetable(struct page *page, int order)
+{
+	unsigned long magic;
+	unsigned int nr_pages = 1 << order;
+
+	/* bootmem page has reserved flag */
+	if (PageReserved(page)) {
+		__ClearPageReserved(page);
+
+		magic = (unsigned long)page->freelist;
+		if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
+			while (nr_pages--)
+				put_page_bootmem(page++);
+		} else
+			while (nr_pages--)
+				free_reserved_page(page++);
+	} else
+		free_pages((unsigned long)page_address(page), order);
+}
+
+static void __meminit free_hugepage_table(struct page *page,
+		struct vmem_altmap *altmap)
+{
+	if (altmap)
+		vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
+	else
+		free_pagetable(page, get_order(PMD_SIZE));
+}
+
+static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
+{
+	pte_t *pte;
+	int i;
+
+	for (i = 0; i < PTRS_PER_PTE; i++) {
+		pte = pte_start + i;
+		if (!pte_none(*pte))
+			return;
+	}
+
+	/* free a pte talbe */
+	free_pagetable(pmd_page(*pmd), 0);
+	spin_lock(&init_mm.page_table_lock);
+	pmd_clear(pmd);
+	spin_unlock(&init_mm.page_table_lock);
+}
+
+static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
+{
+	pmd_t *pmd;
+	int i;
+
+	for (i = 0; i < PTRS_PER_PMD; i++) {
+		pmd = pmd_start + i;
+		if (!pmd_none(*pmd))
+			return;
+	}
+
+	/* free a pmd talbe */
+	free_pagetable(pud_page(*pud), 0);
+	spin_lock(&init_mm.page_table_lock);
+	pud_clear(pud);
+	spin_unlock(&init_mm.page_table_lock);
+}
+
+static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
+{
+	pud_t *pud;
+	int i;
+
+	for (i = 0; i < PTRS_PER_PUD; i++) {
+		pud = pud_start + i;
+		if (!pud_none(*pud))
+			return;
+	}
+
+	/* free a pud talbe */
+	free_pagetable(p4d_page(*p4d), 0);
+	spin_lock(&init_mm.page_table_lock);
+	p4d_clear(p4d);
+	spin_unlock(&init_mm.page_table_lock);
+}
+
+static void __meminit
+remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
+		 bool direct)
+{
+	unsigned long next, pages = 0;
+	pte_t *pte;
+	void *page_addr;
+	phys_addr_t phys_addr;
+
+	pte = pte_start + pte_index(addr);
+	for (; addr < end; addr = next, pte++) {
+		next = (addr + PAGE_SIZE) & PAGE_MASK;
+		if (next > end)
+			next = end;
+
+		if (!pte_present(*pte))
+			continue;
+
+		/*
+		 * We mapped [0,1G) memory as identity mapping when
+		 * initializing, in arch/x86/kernel/head_64.S. These
+		 * pagetables cannot be removed.
+		 */
+		phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
+		if (phys_addr < (phys_addr_t)0x40000000)
+			return;
+
+		if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
+			/*
+			 * Do not free direct mapping pages since they were
+			 * freed when offlining, or simplely not in use.
+			 */
+			if (!direct)
+				free_pagetable(pte_page(*pte), 0);
+
+			spin_lock(&init_mm.page_table_lock);
+			pte_clear(&init_mm, addr, pte);
+			spin_unlock(&init_mm.page_table_lock);
+
+			/* For non-direct mapping, pages means nothing. */
+			pages++;
+		} else {
+			/*
+			 * If we are here, we are freeing vmemmap pages since
+			 * direct mapped memory ranges to be freed are aligned.
+			 *
+			 * If we are not removing the whole page, it means
+			 * other page structs in this page are being used and
+			 * we canot remove them. So fill the unused page_structs
+			 * with 0xFD, and remove the page when it is wholly
+			 * filled with 0xFD.
+			 */
+			memset((void *)addr, PAGE_INUSE, next - addr);
+
+			page_addr = page_address(pte_page(*pte));
+			if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
+				free_pagetable(pte_page(*pte), 0);
+
+				spin_lock(&init_mm.page_table_lock);
+				pte_clear(&init_mm, addr, pte);
+				spin_unlock(&init_mm.page_table_lock);
+			}
+		}
+	}
+
+	/* Call free_pte_table() in remove_pmd_table(). */
+	flush_tlb_all();
+	if (direct)
+		update_page_count(PG_LEVEL_4K, -pages);
+}
+
+static void __meminit
+remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
+		 bool direct, struct vmem_altmap *altmap)
+{
+	unsigned long next, pages = 0;
+	pte_t *pte_base;
+	pmd_t *pmd;
+	void *page_addr;
+
+	pmd = pmd_start + pmd_index(addr);
+	for (; addr < end; addr = next, pmd++) {
+		next = pmd_addr_end(addr, end);
+
+		if (!pmd_present(*pmd))
+			continue;
+
+		if (pmd_large(*pmd)) {
+			if (IS_ALIGNED(addr, PMD_SIZE) &&
+			    IS_ALIGNED(next, PMD_SIZE)) {
+				if (!direct)
+					free_hugepage_table(pmd_page(*pmd),
+							    altmap);
+
+				spin_lock(&init_mm.page_table_lock);
+				pmd_clear(pmd);
+				spin_unlock(&init_mm.page_table_lock);
+				pages++;
+			} else {
+				/* If here, we are freeing vmemmap pages. */
+				memset((void *)addr, PAGE_INUSE, next - addr);
+
+				page_addr = page_address(pmd_page(*pmd));
+				if (!memchr_inv(page_addr, PAGE_INUSE,
+						PMD_SIZE)) {
+					free_hugepage_table(pmd_page(*pmd),
+							    altmap);
+
+					spin_lock(&init_mm.page_table_lock);
+					pmd_clear(pmd);
+					spin_unlock(&init_mm.page_table_lock);
+				}
+			}
+
+			continue;
+		}
+
+		pte_base = (pte_t *)pmd_page_vaddr(*pmd);
+		remove_pte_table(pte_base, addr, next, direct);
+		free_pte_table(pte_base, pmd);
+	}
+
+	/* Call free_pmd_table() in remove_pud_table(). */
+	if (direct)
+		update_page_count(PG_LEVEL_2M, -pages);
+}
+
+static void __meminit
+remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
+		 struct vmem_altmap *altmap, bool direct)
+{
+	unsigned long next, pages = 0;
+	pmd_t *pmd_base;
+	pud_t *pud;
+	void *page_addr;
+
+	pud = pud_start + pud_index(addr);
+	for (; addr < end; addr = next, pud++) {
+		next = pud_addr_end(addr, end);
+
+		if (!pud_present(*pud))
+			continue;
+
+		if (pud_large(*pud)) {
+			if (IS_ALIGNED(addr, PUD_SIZE) &&
+			    IS_ALIGNED(next, PUD_SIZE)) {
+				if (!direct)
+					free_pagetable(pud_page(*pud),
+						       get_order(PUD_SIZE));
+
+				spin_lock(&init_mm.page_table_lock);
+				pud_clear(pud);
+				spin_unlock(&init_mm.page_table_lock);
+				pages++;
+			} else {
+				/* If here, we are freeing vmemmap pages. */
+				memset((void *)addr, PAGE_INUSE, next - addr);
+
+				page_addr = page_address(pud_page(*pud));
+				if (!memchr_inv(page_addr, PAGE_INUSE,
+						PUD_SIZE)) {
+					free_pagetable(pud_page(*pud),
+						       get_order(PUD_SIZE));
+
+					spin_lock(&init_mm.page_table_lock);
+					pud_clear(pud);
+					spin_unlock(&init_mm.page_table_lock);
+				}
+			}
+
+			continue;
+		}
+
+		pmd_base = pmd_offset(pud, 0);
+		remove_pmd_table(pmd_base, addr, next, direct, altmap);
+		free_pmd_table(pmd_base, pud);
+	}
+
+	if (direct)
+		update_page_count(PG_LEVEL_1G, -pages);
+}
+
+static void __meminit
+remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
+		 struct vmem_altmap *altmap, bool direct)
+{
+	unsigned long next, pages = 0;
+	pud_t *pud_base;
+	p4d_t *p4d;
+
+	p4d = p4d_start + p4d_index(addr);
+	for (; addr < end; addr = next, p4d++) {
+		next = p4d_addr_end(addr, end);
+
+		if (!p4d_present(*p4d))
+			continue;
+
+		BUILD_BUG_ON(p4d_large(*p4d));
+
+		pud_base = pud_offset(p4d, 0);
+		remove_pud_table(pud_base, addr, next, altmap, direct);
+		/*
+		 * For 4-level page tables we do not want to free PUDs, but in the
+		 * 5-level case we should free them. This code will have to change
+		 * to adapt for boot-time switching between 4 and 5 level page tables.
+		 */
+		if (pgtable_l5_enabled())
+			free_pud_table(pud_base, p4d);
+	}
+
+	if (direct)
+		update_page_count(PG_LEVEL_512G, -pages);
+}
+
+/* start and end are both virtual address. */
+static void __meminit
+remove_pagetable(unsigned long start, unsigned long end, bool direct,
+		struct vmem_altmap *altmap)
+{
+	unsigned long next;
+	unsigned long addr;
+	pgd_t *pgd;
+	p4d_t *p4d;
+
+	for (addr = start; addr < end; addr = next) {
+		next = pgd_addr_end(addr, end);
+
+		pgd = pgd_offset_k(addr);
+		if (!pgd_present(*pgd))
+			continue;
+
+		p4d = p4d_offset(pgd, 0);
+		remove_p4d_table(p4d, addr, next, altmap, direct);
+	}
+
+	flush_tlb_all();
+}
+
+void __ref vmemmap_free(unsigned long start, unsigned long end,
+		struct vmem_altmap *altmap)
+{
+	remove_pagetable(start, end, false, altmap);
+}
+
+#ifdef CONFIG_MEMORY_HOTREMOVE
+static void __meminit
+kernel_physical_mapping_remove(unsigned long start, unsigned long end)
+{
+	start = (unsigned long)__va(start);
+	end = (unsigned long)__va(end);
+
+	remove_pagetable(start, end, true, NULL);
+}
+
+int __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
+{
+	unsigned long start_pfn = start >> PAGE_SHIFT;
+	unsigned long nr_pages = size >> PAGE_SHIFT;
+	struct page *page = pfn_to_page(start_pfn);
+	struct zone *zone;
+	int ret;
+
+	/* With altmap the first mapped page is offset from @start */
+	if (altmap)
+		page += vmem_altmap_offset(altmap);
+	zone = page_zone(page);
+	ret = __remove_pages(zone, start_pfn, nr_pages, altmap);
+	WARN_ON_ONCE(ret);
+	kernel_physical_mapping_remove(start, start + size);
+
+	return ret;
+}
+#endif
+#endif /* CONFIG_MEMORY_HOTPLUG */
+
+static struct kcore_list kcore_vsyscall;
+
+static void __init register_page_bootmem_info(void)
+{
+#ifdef CONFIG_NUMA
+	int i;
+
+	for_each_online_node(i)
+		register_page_bootmem_info_node(NODE_DATA(i));
+#endif
+}
+
+void __init mem_init(void)
+{
+	pci_iommu_alloc();
+
+	/* clear_bss() already clear the empty_zero_page */
+
+	/* this will put all memory onto the freelists */
+	free_all_bootmem();
+	after_bootmem = 1;
+	x86_init.hyper.init_after_bootmem();
+
+	/*
+	 * Must be done after boot memory is put on freelist, because here we
+	 * might set fields in deferred struct pages that have not yet been
+	 * initialized, and free_all_bootmem() initializes all the reserved
+	 * deferred pages for us.
+	 */
+	register_page_bootmem_info();
+
+	/* Register memory areas for /proc/kcore */
+	if (get_gate_vma(&init_mm))
+		kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
+
+	mem_init_print_info(NULL);
+}
+
+int kernel_set_to_readonly;
+
+void set_kernel_text_rw(void)
+{
+	unsigned long start = PFN_ALIGN(_text);
+	unsigned long end = PFN_ALIGN(__stop___ex_table);
+
+	if (!kernel_set_to_readonly)
+		return;
+
+	pr_debug("Set kernel text: %lx - %lx for read write\n",
+		 start, end);
+
+	/*
+	 * Make the kernel identity mapping for text RW. Kernel text
+	 * mapping will always be RO. Refer to the comment in
+	 * static_protections() in pageattr.c
+	 */
+	set_memory_rw(start, (end - start) >> PAGE_SHIFT);
+}
+
+void set_kernel_text_ro(void)
+{
+	unsigned long start = PFN_ALIGN(_text);
+	unsigned long end = PFN_ALIGN(__stop___ex_table);
+
+	if (!kernel_set_to_readonly)
+		return;
+
+	pr_debug("Set kernel text: %lx - %lx for read only\n",
+		 start, end);
+
+	/*
+	 * Set the kernel identity mapping for text RO.
+	 */
+	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
+}
+
+void mark_rodata_ro(void)
+{
+	unsigned long start = PFN_ALIGN(_text);
+	unsigned long rodata_start = PFN_ALIGN(__start_rodata);
+	unsigned long end = (unsigned long) &__end_rodata_hpage_align;
+	unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
+	unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
+	unsigned long all_end;
+
+	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
+	       (end - start) >> 10);
+	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
+
+	kernel_set_to_readonly = 1;
+
+	/*
+	 * The rodata/data/bss/brk section (but not the kernel text!)
+	 * should also be not-executable.
+	 *
+	 * We align all_end to PMD_SIZE because the existing mapping
+	 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
+	 * split the PMD and the reminder between _brk_end and the end
+	 * of the PMD will remain mapped executable.
+	 *
+	 * Any PMD which was setup after the one which covers _brk_end
+	 * has been zapped already via cleanup_highmem().
+	 */
+	all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
+	set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
+
+#ifdef CONFIG_CPA_DEBUG
+	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
+	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
+
+	printk(KERN_INFO "Testing CPA: again\n");
+	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
+#endif
+
+	free_kernel_image_pages((void *)text_end, (void *)rodata_start);
+	free_kernel_image_pages((void *)rodata_end, (void *)_sdata);
+
+	debug_checkwx();
+}
+
+int kern_addr_valid(unsigned long addr)
+{
+	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
+	pgd_t *pgd;
+	p4d_t *p4d;
+	pud_t *pud;
+	pmd_t *pmd;
+	pte_t *pte;
+
+	if (above != 0 && above != -1UL)
+		return 0;
+
+	pgd = pgd_offset_k(addr);
+	if (pgd_none(*pgd))
+		return 0;
+
+	p4d = p4d_offset(pgd, addr);
+	if (p4d_none(*p4d))
+		return 0;
+
+	pud = pud_offset(p4d, addr);
+	if (pud_none(*pud))
+		return 0;
+
+	if (pud_large(*pud))
+		return pfn_valid(pud_pfn(*pud));
+
+	pmd = pmd_offset(pud, addr);
+	if (pmd_none(*pmd))
+		return 0;
+
+	if (pmd_large(*pmd))
+		return pfn_valid(pmd_pfn(*pmd));
+
+	pte = pte_offset_kernel(pmd, addr);
+	if (pte_none(*pte))
+		return 0;
+
+	return pfn_valid(pte_pfn(*pte));
+}
+
+/*
+ * Block size is the minimum amount of memory which can be hotplugged or
+ * hotremoved. It must be power of two and must be equal or larger than
+ * MIN_MEMORY_BLOCK_SIZE.
+ */
+#define MAX_BLOCK_SIZE (2UL << 30)
+
+/* Amount of ram needed to start using large blocks */
+#define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
+
+/* Adjustable memory block size */
+static unsigned long set_memory_block_size;
+int __init set_memory_block_size_order(unsigned int order)
+{
+	unsigned long size = 1UL << order;
+
+	if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
+		return -EINVAL;
+
+	set_memory_block_size = size;
+	return 0;
+}
+
+static unsigned long probe_memory_block_size(void)
+{
+	unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
+	unsigned long bz;
+
+	/* If memory block size has been set, then use it */
+	bz = set_memory_block_size;
+	if (bz)
+		goto done;
+
+	/* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
+	if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
+		bz = MIN_MEMORY_BLOCK_SIZE;
+		goto done;
+	}
+
+	/* Find the largest allowed block size that aligns to memory end */
+	for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
+		if (IS_ALIGNED(boot_mem_end, bz))
+			break;
+	}
+done:
+	pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
+
+	return bz;
+}
+
+static unsigned long memory_block_size_probed;
+unsigned long memory_block_size_bytes(void)
+{
+	if (!memory_block_size_probed)
+		memory_block_size_probed = probe_memory_block_size();
+
+	return memory_block_size_probed;
+}
+
+#ifdef CONFIG_SPARSEMEM_VMEMMAP
+/*
+ * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
+ */
+static long __meminitdata addr_start, addr_end;
+static void __meminitdata *p_start, *p_end;
+static int __meminitdata node_start;
+
+static int __meminit vmemmap_populate_hugepages(unsigned long start,
+		unsigned long end, int node, struct vmem_altmap *altmap)
+{
+	unsigned long addr;
+	unsigned long next;
+	pgd_t *pgd;
+	p4d_t *p4d;
+	pud_t *pud;
+	pmd_t *pmd;
+
+	for (addr = start; addr < end; addr = next) {
+		next = pmd_addr_end(addr, end);
+
+		pgd = vmemmap_pgd_populate(addr, node);
+		if (!pgd)
+			return -ENOMEM;
+
+		p4d = vmemmap_p4d_populate(pgd, addr, node);
+		if (!p4d)
+			return -ENOMEM;
+
+		pud = vmemmap_pud_populate(p4d, addr, node);
+		if (!pud)
+			return -ENOMEM;
+
+		pmd = pmd_offset(pud, addr);
+		if (pmd_none(*pmd)) {
+			void *p;
+
+			if (altmap)
+				p = altmap_alloc_block_buf(PMD_SIZE, altmap);
+			else
+				p = vmemmap_alloc_block_buf(PMD_SIZE, node);
+			if (p) {
+				pte_t entry;
+
+				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
+						PAGE_KERNEL_LARGE);
+				set_pmd(pmd, __pmd(pte_val(entry)));
+
+				/* check to see if we have contiguous blocks */
+				if (p_end != p || node_start != node) {
+					if (p_start)
+						pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
+						       addr_start, addr_end-1, p_start, p_end-1, node_start);
+					addr_start = addr;
+					node_start = node;
+					p_start = p;
+				}
+
+				addr_end = addr + PMD_SIZE;
+				p_end = p + PMD_SIZE;
+				continue;
+			} else if (altmap)
+				return -ENOMEM; /* no fallback */
+		} else if (pmd_large(*pmd)) {
+			vmemmap_verify((pte_t *)pmd, node, addr, next);
+			continue;
+		}
+		if (vmemmap_populate_basepages(addr, next, node))
+			return -ENOMEM;
+	}
+	return 0;
+}
+
+int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
+		struct vmem_altmap *altmap)
+{
+	int err;
+
+	if (boot_cpu_has(X86_FEATURE_PSE))
+		err = vmemmap_populate_hugepages(start, end, node, altmap);
+	else if (altmap) {
+		pr_err_once("%s: no cpu support for altmap allocations\n",
+				__func__);
+		err = -ENOMEM;
+	} else
+		err = vmemmap_populate_basepages(start, end, node);
+	if (!err)
+		sync_global_pgds(start, end - 1);
+	return err;
+}
+
+#if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
+void register_page_bootmem_memmap(unsigned long section_nr,
+				  struct page *start_page, unsigned long nr_pages)
+{
+	unsigned long addr = (unsigned long)start_page;
+	unsigned long end = (unsigned long)(start_page + nr_pages);
+	unsigned long next;
+	pgd_t *pgd;
+	p4d_t *p4d;
+	pud_t *pud;
+	pmd_t *pmd;
+	unsigned int nr_pmd_pages;
+	struct page *page;
+
+	for (; addr < end; addr = next) {
+		pte_t *pte = NULL;
+
+		pgd = pgd_offset_k(addr);
+		if (pgd_none(*pgd)) {
+			next = (addr + PAGE_SIZE) & PAGE_MASK;
+			continue;
+		}
+		get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
+
+		p4d = p4d_offset(pgd, addr);
+		if (p4d_none(*p4d)) {
+			next = (addr + PAGE_SIZE) & PAGE_MASK;
+			continue;
+		}
+		get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
+
+		pud = pud_offset(p4d, addr);
+		if (pud_none(*pud)) {
+			next = (addr + PAGE_SIZE) & PAGE_MASK;
+			continue;
+		}
+		get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
+
+		if (!boot_cpu_has(X86_FEATURE_PSE)) {
+			next = (addr + PAGE_SIZE) & PAGE_MASK;
+			pmd = pmd_offset(pud, addr);
+			if (pmd_none(*pmd))
+				continue;
+			get_page_bootmem(section_nr, pmd_page(*pmd),
+					 MIX_SECTION_INFO);
+
+			pte = pte_offset_kernel(pmd, addr);
+			if (pte_none(*pte))
+				continue;
+			get_page_bootmem(section_nr, pte_page(*pte),
+					 SECTION_INFO);
+		} else {
+			next = pmd_addr_end(addr, end);
+
+			pmd = pmd_offset(pud, addr);
+			if (pmd_none(*pmd))
+				continue;
+
+			nr_pmd_pages = 1 << get_order(PMD_SIZE);
+			page = pmd_page(*pmd);
+			while (nr_pmd_pages--)
+				get_page_bootmem(section_nr, page++,
+						 SECTION_INFO);
+		}
+	}
+}
+#endif
+
+void __meminit vmemmap_populate_print_last(void)
+{
+	if (p_start) {
+		pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
+			addr_start, addr_end-1, p_start, p_end-1, node_start);
+		p_start = NULL;
+		p_end = NULL;
+		node_start = 0;
+	}
+}
+#endif