blob: dbe07fef268282cc7df52d3b503adfc9fb9d9717 [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0-or-later
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000023 */
24
25#include <linux/page_counter.h>
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
David Brazdil0f672f62019-12-10 10:32:29 +000028#include <linux/pagewalk.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000029#include <linux/sched/mm.h>
30#include <linux/shmem_fs.h>
31#include <linux/hugetlb.h>
32#include <linux/pagemap.h>
David Brazdil0f672f62019-12-10 10:32:29 +000033#include <linux/vm_event_item.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000034#include <linux/smp.h>
35#include <linux/page-flags.h>
36#include <linux/backing-dev.h>
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
39#include <linux/limits.h>
40#include <linux/export.h>
41#include <linux/mutex.h>
42#include <linux/rbtree.h>
43#include <linux/slab.h>
44#include <linux/swap.h>
45#include <linux/swapops.h>
46#include <linux/spinlock.h>
47#include <linux/eventfd.h>
48#include <linux/poll.h>
49#include <linux/sort.h>
50#include <linux/fs.h>
51#include <linux/seq_file.h>
52#include <linux/vmpressure.h>
53#include <linux/mm_inline.h>
54#include <linux/swap_cgroup.h>
55#include <linux/cpu.h>
56#include <linux/oom.h>
57#include <linux/lockdep.h>
58#include <linux/file.h>
59#include <linux/tracehook.h>
David Brazdil0f672f62019-12-10 10:32:29 +000060#include <linux/psi.h>
61#include <linux/seq_buf.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000062#include "internal.h"
63#include <net/sock.h>
64#include <net/ip.h>
65#include "slab.h"
66
67#include <linux/uaccess.h>
68
69#include <trace/events/vmscan.h>
70
71struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72EXPORT_SYMBOL(memory_cgrp_subsys);
73
74struct mem_cgroup *root_mem_cgroup __read_mostly;
75
Olivier Deprez157378f2022-04-04 15:47:50 +020076/* Active memory cgroup to use from an interrupt context */
77DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000078
79/* Socket memory accounting disabled? */
80static bool cgroup_memory_nosocket;
81
82/* Kernel memory accounting disabled? */
83static bool cgroup_memory_nokmem;
84
85/* Whether the swap controller is active */
86#ifdef CONFIG_MEMCG_SWAP
Olivier Deprez157378f2022-04-04 15:47:50 +020087bool cgroup_memory_noswap __read_mostly;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000088#else
Olivier Deprez157378f2022-04-04 15:47:50 +020089#define cgroup_memory_noswap 1
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000090#endif
91
David Brazdil0f672f62019-12-10 10:32:29 +000092#ifdef CONFIG_CGROUP_WRITEBACK
93static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
94#endif
95
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000096/* Whether legacy memory+swap accounting is active */
97static bool do_memsw_account(void)
98{
Olivier Deprez157378f2022-04-04 15:47:50 +020099 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000100}
101
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000102#define THRESHOLDS_EVENTS_TARGET 128
103#define SOFTLIMIT_EVENTS_TARGET 1024
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000104
105/*
106 * Cgroups above their limits are maintained in a RB-Tree, independent of
107 * their hierarchy representation
108 */
109
110struct mem_cgroup_tree_per_node {
111 struct rb_root rb_root;
112 struct rb_node *rb_rightmost;
113 spinlock_t lock;
114};
115
116struct mem_cgroup_tree {
117 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
118};
119
120static struct mem_cgroup_tree soft_limit_tree __read_mostly;
121
122/* for OOM */
123struct mem_cgroup_eventfd_list {
124 struct list_head list;
125 struct eventfd_ctx *eventfd;
126};
127
128/*
129 * cgroup_event represents events which userspace want to receive.
130 */
131struct mem_cgroup_event {
132 /*
133 * memcg which the event belongs to.
134 */
135 struct mem_cgroup *memcg;
136 /*
137 * eventfd to signal userspace about the event.
138 */
139 struct eventfd_ctx *eventfd;
140 /*
141 * Each of these stored in a list by the cgroup.
142 */
143 struct list_head list;
144 /*
145 * register_event() callback will be used to add new userspace
146 * waiter for changes related to this event. Use eventfd_signal()
147 * on eventfd to send notification to userspace.
148 */
149 int (*register_event)(struct mem_cgroup *memcg,
150 struct eventfd_ctx *eventfd, const char *args);
151 /*
152 * unregister_event() callback will be called when userspace closes
153 * the eventfd or on cgroup removing. This callback must be set,
154 * if you want provide notification functionality.
155 */
156 void (*unregister_event)(struct mem_cgroup *memcg,
157 struct eventfd_ctx *eventfd);
158 /*
159 * All fields below needed to unregister event when
160 * userspace closes eventfd.
161 */
162 poll_table pt;
163 wait_queue_head_t *wqh;
164 wait_queue_entry_t wait;
165 struct work_struct remove;
166};
167
168static void mem_cgroup_threshold(struct mem_cgroup *memcg);
169static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
170
171/* Stuffs for move charges at task migration. */
172/*
173 * Types of charges to be moved.
174 */
175#define MOVE_ANON 0x1U
176#define MOVE_FILE 0x2U
177#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
178
179/* "mc" and its members are protected by cgroup_mutex */
180static struct move_charge_struct {
181 spinlock_t lock; /* for from, to */
182 struct mm_struct *mm;
183 struct mem_cgroup *from;
184 struct mem_cgroup *to;
185 unsigned long flags;
186 unsigned long precharge;
187 unsigned long moved_charge;
188 unsigned long moved_swap;
189 struct task_struct *moving_task; /* a task moving charges */
190 wait_queue_head_t waitq; /* a waitq for other context */
191} mc = {
192 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
193 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
194};
195
196/*
197 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
198 * limit reclaim to prevent infinite loops, if they ever occur.
199 */
200#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
201#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
202
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000203/* for encoding cft->private value on file */
204enum res_type {
205 _MEM,
206 _MEMSWAP,
207 _OOM_TYPE,
208 _KMEM,
209 _TCP,
210};
211
212#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
213#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
214#define MEMFILE_ATTR(val) ((val) & 0xffff)
215/* Used for OOM nofiier */
216#define OOM_CONTROL (0)
217
218/*
219 * Iteration constructs for visiting all cgroups (under a tree). If
220 * loops are exited prematurely (break), mem_cgroup_iter_break() must
221 * be used for reference counting.
222 */
223#define for_each_mem_cgroup_tree(iter, root) \
224 for (iter = mem_cgroup_iter(root, NULL, NULL); \
225 iter != NULL; \
226 iter = mem_cgroup_iter(root, iter, NULL))
227
228#define for_each_mem_cgroup(iter) \
229 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(NULL, iter, NULL))
232
Olivier Deprez157378f2022-04-04 15:47:50 +0200233static inline bool task_is_dying(void)
David Brazdil0f672f62019-12-10 10:32:29 +0000234{
235 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 (current->flags & PF_EXITING);
237}
238
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000239/* Some nice accessors for the vmpressure. */
240struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241{
242 if (!memcg)
243 memcg = root_mem_cgroup;
244 return &memcg->vmpressure;
245}
246
247struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
248{
249 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
250}
251
252#ifdef CONFIG_MEMCG_KMEM
Olivier Deprez157378f2022-04-04 15:47:50 +0200253static DEFINE_SPINLOCK(objcg_lock);
254
255static void obj_cgroup_release(struct percpu_ref *ref)
256{
257 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
258 struct mem_cgroup *memcg;
259 unsigned int nr_bytes;
260 unsigned int nr_pages;
261 unsigned long flags;
262
263 /*
264 * At this point all allocated objects are freed, and
265 * objcg->nr_charged_bytes can't have an arbitrary byte value.
266 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
267 *
268 * The following sequence can lead to it:
269 * 1) CPU0: objcg == stock->cached_objcg
270 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
271 * PAGE_SIZE bytes are charged
272 * 3) CPU1: a process from another memcg is allocating something,
273 * the stock if flushed,
274 * objcg->nr_charged_bytes = PAGE_SIZE - 92
275 * 5) CPU0: we do release this object,
276 * 92 bytes are added to stock->nr_bytes
277 * 6) CPU0: stock is flushed,
278 * 92 bytes are added to objcg->nr_charged_bytes
279 *
280 * In the result, nr_charged_bytes == PAGE_SIZE.
281 * This page will be uncharged in obj_cgroup_release().
282 */
283 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
284 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
285 nr_pages = nr_bytes >> PAGE_SHIFT;
286
287 spin_lock_irqsave(&objcg_lock, flags);
288 memcg = obj_cgroup_memcg(objcg);
289 if (nr_pages)
290 __memcg_kmem_uncharge(memcg, nr_pages);
291 list_del(&objcg->list);
292 mem_cgroup_put(memcg);
293 spin_unlock_irqrestore(&objcg_lock, flags);
294
295 percpu_ref_exit(ref);
296 kfree_rcu(objcg, rcu);
297}
298
299static struct obj_cgroup *obj_cgroup_alloc(void)
300{
301 struct obj_cgroup *objcg;
302 int ret;
303
304 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
305 if (!objcg)
306 return NULL;
307
308 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
309 GFP_KERNEL);
310 if (ret) {
311 kfree(objcg);
312 return NULL;
313 }
314 INIT_LIST_HEAD(&objcg->list);
315 return objcg;
316}
317
318static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
319 struct mem_cgroup *parent)
320{
321 struct obj_cgroup *objcg, *iter;
322
323 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
324
325 spin_lock_irq(&objcg_lock);
326
327 /* Move active objcg to the parent's list */
328 xchg(&objcg->memcg, parent);
329 css_get(&parent->css);
330 list_add(&objcg->list, &parent->objcg_list);
331
332 /* Move already reparented objcgs to the parent's list */
333 list_for_each_entry(iter, &memcg->objcg_list, list) {
334 css_get(&parent->css);
335 xchg(&iter->memcg, parent);
336 css_put(&memcg->css);
337 }
338 list_splice(&memcg->objcg_list, &parent->objcg_list);
339
340 spin_unlock_irq(&objcg_lock);
341
342 percpu_ref_kill(&objcg->refcnt);
343}
344
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000345/*
Olivier Deprez157378f2022-04-04 15:47:50 +0200346 * This will be used as a shrinker list's index.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000347 * The main reason for not using cgroup id for this:
348 * this works better in sparse environments, where we have a lot of memcgs,
349 * but only a few kmem-limited. Or also, if we have, for instance, 200
350 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
351 * 200 entry array for that.
352 *
353 * The current size of the caches array is stored in memcg_nr_cache_ids. It
354 * will double each time we have to increase it.
355 */
356static DEFINE_IDA(memcg_cache_ida);
357int memcg_nr_cache_ids;
358
359/* Protects memcg_nr_cache_ids */
360static DECLARE_RWSEM(memcg_cache_ids_sem);
361
362void memcg_get_cache_ids(void)
363{
364 down_read(&memcg_cache_ids_sem);
365}
366
367void memcg_put_cache_ids(void)
368{
369 up_read(&memcg_cache_ids_sem);
370}
371
372/*
373 * MIN_SIZE is different than 1, because we would like to avoid going through
374 * the alloc/free process all the time. In a small machine, 4 kmem-limited
375 * cgroups is a reasonable guess. In the future, it could be a parameter or
376 * tunable, but that is strictly not necessary.
377 *
378 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
379 * this constant directly from cgroup, but it is understandable that this is
380 * better kept as an internal representation in cgroup.c. In any case, the
381 * cgrp_id space is not getting any smaller, and we don't have to necessarily
382 * increase ours as well if it increases.
383 */
384#define MEMCG_CACHES_MIN_SIZE 4
385#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
386
387/*
388 * A lot of the calls to the cache allocation functions are expected to be
Olivier Deprez157378f2022-04-04 15:47:50 +0200389 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000390 * conditional to this static branch, we'll have to allow modules that does
391 * kmem_cache_alloc and the such to see this symbol as well
392 */
393DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
394EXPORT_SYMBOL(memcg_kmem_enabled_key);
David Brazdil0f672f62019-12-10 10:32:29 +0000395#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000396
397static int memcg_shrinker_map_size;
398static DEFINE_MUTEX(memcg_shrinker_map_mutex);
399
400static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
401{
402 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
403}
404
405static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
406 int size, int old_size)
407{
408 struct memcg_shrinker_map *new, *old;
409 int nid;
410
411 lockdep_assert_held(&memcg_shrinker_map_mutex);
412
413 for_each_node(nid) {
414 old = rcu_dereference_protected(
415 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
416 /* Not yet online memcg */
417 if (!old)
418 return 0;
419
Olivier Deprez157378f2022-04-04 15:47:50 +0200420 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000421 if (!new)
422 return -ENOMEM;
423
424 /* Set all old bits, clear all new bits */
425 memset(new->map, (int)0xff, old_size);
426 memset((void *)new->map + old_size, 0, size - old_size);
427
428 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
429 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
430 }
431
432 return 0;
433}
434
435static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
436{
437 struct mem_cgroup_per_node *pn;
438 struct memcg_shrinker_map *map;
439 int nid;
440
441 if (mem_cgroup_is_root(memcg))
442 return;
443
444 for_each_node(nid) {
445 pn = mem_cgroup_nodeinfo(memcg, nid);
446 map = rcu_dereference_protected(pn->shrinker_map, true);
447 if (map)
448 kvfree(map);
449 rcu_assign_pointer(pn->shrinker_map, NULL);
450 }
451}
452
453static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
454{
455 struct memcg_shrinker_map *map;
456 int nid, size, ret = 0;
457
458 if (mem_cgroup_is_root(memcg))
459 return 0;
460
461 mutex_lock(&memcg_shrinker_map_mutex);
462 size = memcg_shrinker_map_size;
463 for_each_node(nid) {
Olivier Deprez157378f2022-04-04 15:47:50 +0200464 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000465 if (!map) {
466 memcg_free_shrinker_maps(memcg);
467 ret = -ENOMEM;
468 break;
469 }
470 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
471 }
472 mutex_unlock(&memcg_shrinker_map_mutex);
473
474 return ret;
475}
476
477int memcg_expand_shrinker_maps(int new_id)
478{
479 int size, old_size, ret = 0;
480 struct mem_cgroup *memcg;
481
482 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
483 old_size = memcg_shrinker_map_size;
484 if (size <= old_size)
485 return 0;
486
487 mutex_lock(&memcg_shrinker_map_mutex);
488 if (!root_mem_cgroup)
489 goto unlock;
490
491 for_each_mem_cgroup(memcg) {
492 if (mem_cgroup_is_root(memcg))
493 continue;
494 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
Olivier Deprez0e641232021-09-23 10:07:05 +0200495 if (ret) {
496 mem_cgroup_iter_break(NULL, memcg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000497 goto unlock;
Olivier Deprez0e641232021-09-23 10:07:05 +0200498 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000499 }
500unlock:
501 if (!ret)
502 memcg_shrinker_map_size = size;
503 mutex_unlock(&memcg_shrinker_map_mutex);
504 return ret;
505}
506
507void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
508{
509 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
510 struct memcg_shrinker_map *map;
511
512 rcu_read_lock();
513 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
514 /* Pairs with smp mb in shrink_slab() */
515 smp_mb__before_atomic();
516 set_bit(shrinker_id, map->map);
517 rcu_read_unlock();
518 }
519}
520
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000521/**
522 * mem_cgroup_css_from_page - css of the memcg associated with a page
523 * @page: page of interest
524 *
525 * If memcg is bound to the default hierarchy, css of the memcg associated
526 * with @page is returned. The returned css remains associated with @page
527 * until it is released.
528 *
529 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
530 * is returned.
531 */
532struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
533{
534 struct mem_cgroup *memcg;
535
536 memcg = page->mem_cgroup;
537
538 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
539 memcg = root_mem_cgroup;
540
541 return &memcg->css;
542}
543
544/**
545 * page_cgroup_ino - return inode number of the memcg a page is charged to
546 * @page: the page
547 *
548 * Look up the closest online ancestor of the memory cgroup @page is charged to
549 * and return its inode number or 0 if @page is not charged to any cgroup. It
550 * is safe to call this function without holding a reference to @page.
551 *
552 * Note, this function is inherently racy, because there is nothing to prevent
553 * the cgroup inode from getting torn down and potentially reallocated a moment
554 * after page_cgroup_ino() returns, so it only should be used by callers that
555 * do not care (such as procfs interfaces).
556 */
557ino_t page_cgroup_ino(struct page *page)
558{
559 struct mem_cgroup *memcg;
560 unsigned long ino = 0;
561
562 rcu_read_lock();
Olivier Deprez157378f2022-04-04 15:47:50 +0200563 memcg = page->mem_cgroup;
564
565 /*
566 * The lowest bit set means that memcg isn't a valid
567 * memcg pointer, but a obj_cgroups pointer.
568 * In this case the page is shared and doesn't belong
569 * to any specific memory cgroup.
570 */
571 if ((unsigned long) memcg & 0x1UL)
572 memcg = NULL;
573
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000574 while (memcg && !(memcg->css.flags & CSS_ONLINE))
575 memcg = parent_mem_cgroup(memcg);
576 if (memcg)
577 ino = cgroup_ino(memcg->css.cgroup);
578 rcu_read_unlock();
579 return ino;
580}
581
582static struct mem_cgroup_per_node *
583mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
584{
585 int nid = page_to_nid(page);
586
587 return memcg->nodeinfo[nid];
588}
589
590static struct mem_cgroup_tree_per_node *
591soft_limit_tree_node(int nid)
592{
593 return soft_limit_tree.rb_tree_per_node[nid];
594}
595
596static struct mem_cgroup_tree_per_node *
597soft_limit_tree_from_page(struct page *page)
598{
599 int nid = page_to_nid(page);
600
601 return soft_limit_tree.rb_tree_per_node[nid];
602}
603
604static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
605 struct mem_cgroup_tree_per_node *mctz,
606 unsigned long new_usage_in_excess)
607{
608 struct rb_node **p = &mctz->rb_root.rb_node;
609 struct rb_node *parent = NULL;
610 struct mem_cgroup_per_node *mz_node;
611 bool rightmost = true;
612
613 if (mz->on_tree)
614 return;
615
616 mz->usage_in_excess = new_usage_in_excess;
617 if (!mz->usage_in_excess)
618 return;
619 while (*p) {
620 parent = *p;
621 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
622 tree_node);
623 if (mz->usage_in_excess < mz_node->usage_in_excess) {
624 p = &(*p)->rb_left;
625 rightmost = false;
626 }
627
628 /*
629 * We can't avoid mem cgroups that are over their soft
630 * limit by the same amount
631 */
632 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
633 p = &(*p)->rb_right;
634 }
635
636 if (rightmost)
637 mctz->rb_rightmost = &mz->tree_node;
638
639 rb_link_node(&mz->tree_node, parent, p);
640 rb_insert_color(&mz->tree_node, &mctz->rb_root);
641 mz->on_tree = true;
642}
643
644static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
645 struct mem_cgroup_tree_per_node *mctz)
646{
647 if (!mz->on_tree)
648 return;
649
650 if (&mz->tree_node == mctz->rb_rightmost)
651 mctz->rb_rightmost = rb_prev(&mz->tree_node);
652
653 rb_erase(&mz->tree_node, &mctz->rb_root);
654 mz->on_tree = false;
655}
656
657static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
658 struct mem_cgroup_tree_per_node *mctz)
659{
660 unsigned long flags;
661
662 spin_lock_irqsave(&mctz->lock, flags);
663 __mem_cgroup_remove_exceeded(mz, mctz);
664 spin_unlock_irqrestore(&mctz->lock, flags);
665}
666
667static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
668{
669 unsigned long nr_pages = page_counter_read(&memcg->memory);
670 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
671 unsigned long excess = 0;
672
673 if (nr_pages > soft_limit)
674 excess = nr_pages - soft_limit;
675
676 return excess;
677}
678
679static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
680{
681 unsigned long excess;
682 struct mem_cgroup_per_node *mz;
683 struct mem_cgroup_tree_per_node *mctz;
684
685 mctz = soft_limit_tree_from_page(page);
686 if (!mctz)
687 return;
688 /*
689 * Necessary to update all ancestors when hierarchy is used.
690 * because their event counter is not touched.
691 */
692 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
693 mz = mem_cgroup_page_nodeinfo(memcg, page);
694 excess = soft_limit_excess(memcg);
695 /*
696 * We have to update the tree if mz is on RB-tree or
697 * mem is over its softlimit.
698 */
699 if (excess || mz->on_tree) {
700 unsigned long flags;
701
702 spin_lock_irqsave(&mctz->lock, flags);
703 /* if on-tree, remove it */
704 if (mz->on_tree)
705 __mem_cgroup_remove_exceeded(mz, mctz);
706 /*
707 * Insert again. mz->usage_in_excess will be updated.
708 * If excess is 0, no tree ops.
709 */
710 __mem_cgroup_insert_exceeded(mz, mctz, excess);
711 spin_unlock_irqrestore(&mctz->lock, flags);
712 }
713 }
714}
715
716static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
717{
718 struct mem_cgroup_tree_per_node *mctz;
719 struct mem_cgroup_per_node *mz;
720 int nid;
721
722 for_each_node(nid) {
723 mz = mem_cgroup_nodeinfo(memcg, nid);
724 mctz = soft_limit_tree_node(nid);
725 if (mctz)
726 mem_cgroup_remove_exceeded(mz, mctz);
727 }
728}
729
730static struct mem_cgroup_per_node *
731__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
732{
733 struct mem_cgroup_per_node *mz;
734
735retry:
736 mz = NULL;
737 if (!mctz->rb_rightmost)
738 goto done; /* Nothing to reclaim from */
739
740 mz = rb_entry(mctz->rb_rightmost,
741 struct mem_cgroup_per_node, tree_node);
742 /*
743 * Remove the node now but someone else can add it back,
744 * we will to add it back at the end of reclaim to its correct
745 * position in the tree.
746 */
747 __mem_cgroup_remove_exceeded(mz, mctz);
748 if (!soft_limit_excess(mz->memcg) ||
Olivier Deprez157378f2022-04-04 15:47:50 +0200749 !css_tryget(&mz->memcg->css))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000750 goto retry;
751done:
752 return mz;
753}
754
755static struct mem_cgroup_per_node *
756mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
757{
758 struct mem_cgroup_per_node *mz;
759
760 spin_lock_irq(&mctz->lock);
761 mz = __mem_cgroup_largest_soft_limit_node(mctz);
762 spin_unlock_irq(&mctz->lock);
763 return mz;
764}
765
David Brazdil0f672f62019-12-10 10:32:29 +0000766/**
767 * __mod_memcg_state - update cgroup memory statistics
768 * @memcg: the memory cgroup
769 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
770 * @val: delta to add to the counter, can be negative
771 */
772void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000773{
Olivier Deprez157378f2022-04-04 15:47:50 +0200774 long x, threshold = MEMCG_CHARGE_BATCH;
David Brazdil0f672f62019-12-10 10:32:29 +0000775
776 if (mem_cgroup_disabled())
777 return;
778
Olivier Deprez157378f2022-04-04 15:47:50 +0200779 if (memcg_stat_item_in_bytes(idx))
780 threshold <<= PAGE_SHIFT;
781
David Brazdil0f672f62019-12-10 10:32:29 +0000782 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
Olivier Deprez157378f2022-04-04 15:47:50 +0200783 if (unlikely(abs(x) > threshold)) {
David Brazdil0f672f62019-12-10 10:32:29 +0000784 struct mem_cgroup *mi;
785
786 /*
787 * Batch local counters to keep them in sync with
788 * the hierarchical ones.
789 */
790 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
791 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
792 atomic_long_add(x, &mi->vmstats[idx]);
793 x = 0;
794 }
795 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
796}
797
798static struct mem_cgroup_per_node *
799parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
800{
801 struct mem_cgroup *parent;
802
803 parent = parent_mem_cgroup(pn->memcg);
804 if (!parent)
805 return NULL;
806 return mem_cgroup_nodeinfo(parent, nid);
807}
808
Olivier Deprez157378f2022-04-04 15:47:50 +0200809void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
810 int val)
811{
812 struct mem_cgroup_per_node *pn;
813 struct mem_cgroup *memcg;
814 long x, threshold = MEMCG_CHARGE_BATCH;
815
816 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
817 memcg = pn->memcg;
818
819 /* Update memcg */
820 __mod_memcg_state(memcg, idx, val);
821
822 /* Update lruvec */
823 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
824
825 if (vmstat_item_in_bytes(idx))
826 threshold <<= PAGE_SHIFT;
827
828 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
829 if (unlikely(abs(x) > threshold)) {
830 pg_data_t *pgdat = lruvec_pgdat(lruvec);
831 struct mem_cgroup_per_node *pi;
832
833 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
834 atomic_long_add(x, &pi->lruvec_stat[idx]);
835 x = 0;
836 }
837 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
838}
839
David Brazdil0f672f62019-12-10 10:32:29 +0000840/**
841 * __mod_lruvec_state - update lruvec memory statistics
842 * @lruvec: the lruvec
843 * @idx: the stat item
844 * @val: delta to add to the counter, can be negative
845 *
846 * The lruvec is the intersection of the NUMA node and a cgroup. This
847 * function updates the all three counters that are affected by a
848 * change of state at this level: per-node, per-cgroup, per-lruvec.
849 */
850void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
851 int val)
852{
David Brazdil0f672f62019-12-10 10:32:29 +0000853 /* Update node */
Olivier Deprez157378f2022-04-04 15:47:50 +0200854 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
David Brazdil0f672f62019-12-10 10:32:29 +0000855
Olivier Deprez157378f2022-04-04 15:47:50 +0200856 /* Update memcg and lruvec */
857 if (!mem_cgroup_disabled())
858 __mod_memcg_lruvec_state(lruvec, idx, val);
David Brazdil0f672f62019-12-10 10:32:29 +0000859}
860
861void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
862{
Olivier Deprez157378f2022-04-04 15:47:50 +0200863 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
David Brazdil0f672f62019-12-10 10:32:29 +0000864 struct mem_cgroup *memcg;
865 struct lruvec *lruvec;
866
867 rcu_read_lock();
Olivier Deprez157378f2022-04-04 15:47:50 +0200868 memcg = mem_cgroup_from_obj(p);
David Brazdil0f672f62019-12-10 10:32:29 +0000869
Olivier Deprez0e641232021-09-23 10:07:05 +0200870 /*
871 * Untracked pages have no memcg, no lruvec. Update only the
872 * node. If we reparent the slab objects to the root memcg,
873 * when we free the slab object, we need to update the per-memcg
874 * vmstats to keep it correct for the root memcg.
875 */
876 if (!memcg) {
David Brazdil0f672f62019-12-10 10:32:29 +0000877 __mod_node_page_state(pgdat, idx, val);
878 } else {
Olivier Deprez157378f2022-04-04 15:47:50 +0200879 lruvec = mem_cgroup_lruvec(memcg, pgdat);
David Brazdil0f672f62019-12-10 10:32:29 +0000880 __mod_lruvec_state(lruvec, idx, val);
881 }
882 rcu_read_unlock();
883}
884
Olivier Deprez0e641232021-09-23 10:07:05 +0200885void mod_memcg_obj_state(void *p, int idx, int val)
886{
887 struct mem_cgroup *memcg;
888
889 rcu_read_lock();
890 memcg = mem_cgroup_from_obj(p);
891 if (memcg)
892 mod_memcg_state(memcg, idx, val);
893 rcu_read_unlock();
894}
895
David Brazdil0f672f62019-12-10 10:32:29 +0000896/**
897 * __count_memcg_events - account VM events in a cgroup
898 * @memcg: the memory cgroup
899 * @idx: the event item
900 * @count: the number of events that occured
901 */
902void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
903 unsigned long count)
904{
905 unsigned long x;
906
907 if (mem_cgroup_disabled())
908 return;
909
910 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
911 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
912 struct mem_cgroup *mi;
913
914 /*
915 * Batch local counters to keep them in sync with
916 * the hierarchical ones.
917 */
918 __this_cpu_add(memcg->vmstats_local->events[idx], x);
919 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
920 atomic_long_add(x, &mi->vmevents[idx]);
921 x = 0;
922 }
923 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
924}
925
926static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
927{
928 return atomic_long_read(&memcg->vmevents[event]);
929}
930
931static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
932{
933 long x = 0;
934 int cpu;
935
936 for_each_possible_cpu(cpu)
937 x += per_cpu(memcg->vmstats_local->events[event], cpu);
938 return x;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000939}
940
941static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
942 struct page *page,
Olivier Deprez157378f2022-04-04 15:47:50 +0200943 int nr_pages)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000944{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000945 /* pagein of a big page is an event. So, ignore page size */
946 if (nr_pages > 0)
947 __count_memcg_events(memcg, PGPGIN, 1);
948 else {
949 __count_memcg_events(memcg, PGPGOUT, 1);
950 nr_pages = -nr_pages; /* for event */
951 }
952
David Brazdil0f672f62019-12-10 10:32:29 +0000953 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000954}
955
956static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
957 enum mem_cgroup_events_target target)
958{
959 unsigned long val, next;
960
David Brazdil0f672f62019-12-10 10:32:29 +0000961 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
962 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000963 /* from time_after() in jiffies.h */
964 if ((long)(next - val) < 0) {
965 switch (target) {
966 case MEM_CGROUP_TARGET_THRESH:
967 next = val + THRESHOLDS_EVENTS_TARGET;
968 break;
969 case MEM_CGROUP_TARGET_SOFTLIMIT:
970 next = val + SOFTLIMIT_EVENTS_TARGET;
971 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000972 default:
973 break;
974 }
David Brazdil0f672f62019-12-10 10:32:29 +0000975 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000976 return true;
977 }
978 return false;
979}
980
981/*
982 * Check events in order.
983 *
984 */
985static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
986{
987 /* threshold event is triggered in finer grain than soft limit */
988 if (unlikely(mem_cgroup_event_ratelimit(memcg,
989 MEM_CGROUP_TARGET_THRESH))) {
990 bool do_softlimit;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000991
992 do_softlimit = mem_cgroup_event_ratelimit(memcg,
993 MEM_CGROUP_TARGET_SOFTLIMIT);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000994 mem_cgroup_threshold(memcg);
995 if (unlikely(do_softlimit))
996 mem_cgroup_update_tree(memcg, page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000997 }
998}
999
1000struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1001{
1002 /*
1003 * mm_update_next_owner() may clear mm->owner to NULL
1004 * if it races with swapoff, page migration, etc.
1005 * So this can be called with p == NULL.
1006 */
1007 if (unlikely(!p))
1008 return NULL;
1009
1010 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1011}
1012EXPORT_SYMBOL(mem_cgroup_from_task);
1013
1014/**
1015 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1016 * @mm: mm from which memcg should be extracted. It can be NULL.
1017 *
1018 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1019 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1020 * returned.
1021 */
1022struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1023{
1024 struct mem_cgroup *memcg;
1025
1026 if (mem_cgroup_disabled())
1027 return NULL;
1028
1029 rcu_read_lock();
1030 do {
1031 /*
1032 * Page cache insertions can happen withou an
1033 * actual mm context, e.g. during disk probing
1034 * on boot, loopback IO, acct() writes etc.
1035 */
1036 if (unlikely(!mm))
1037 memcg = root_mem_cgroup;
1038 else {
1039 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1040 if (unlikely(!memcg))
1041 memcg = root_mem_cgroup;
1042 }
David Brazdil0f672f62019-12-10 10:32:29 +00001043 } while (!css_tryget(&memcg->css));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001044 rcu_read_unlock();
1045 return memcg;
1046}
1047EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1048
1049/**
1050 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1051 * @page: page from which memcg should be extracted.
1052 *
1053 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1054 * root_mem_cgroup is returned.
1055 */
1056struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1057{
1058 struct mem_cgroup *memcg = page->mem_cgroup;
1059
1060 if (mem_cgroup_disabled())
1061 return NULL;
1062
1063 rcu_read_lock();
Olivier Deprez157378f2022-04-04 15:47:50 +02001064 /* Page should not get uncharged and freed memcg under us. */
1065 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001066 memcg = root_mem_cgroup;
1067 rcu_read_unlock();
1068 return memcg;
1069}
1070EXPORT_SYMBOL(get_mem_cgroup_from_page);
1071
Olivier Deprez157378f2022-04-04 15:47:50 +02001072static __always_inline struct mem_cgroup *active_memcg(void)
1073{
1074 if (in_interrupt())
1075 return this_cpu_read(int_active_memcg);
1076 else
1077 return current->active_memcg;
1078}
1079
1080static __always_inline struct mem_cgroup *get_active_memcg(void)
1081{
1082 struct mem_cgroup *memcg;
1083
1084 rcu_read_lock();
1085 memcg = active_memcg();
1086 /* remote memcg must hold a ref. */
1087 if (memcg && WARN_ON_ONCE(!css_tryget(&memcg->css)))
1088 memcg = root_mem_cgroup;
1089 rcu_read_unlock();
1090
1091 return memcg;
1092}
1093
1094static __always_inline bool memcg_kmem_bypass(void)
1095{
1096 /* Allow remote memcg charging from any context. */
1097 if (unlikely(active_memcg()))
1098 return false;
1099
1100 /* Memcg to charge can't be determined. */
1101 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1102 return true;
1103
1104 return false;
1105}
1106
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001107/**
Olivier Deprez157378f2022-04-04 15:47:50 +02001108 * If active memcg is set, do not fallback to current->mm->memcg.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001109 */
1110static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1111{
Olivier Deprez157378f2022-04-04 15:47:50 +02001112 if (memcg_kmem_bypass())
1113 return NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001114
Olivier Deprez157378f2022-04-04 15:47:50 +02001115 if (unlikely(active_memcg()))
1116 return get_active_memcg();
1117
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001118 return get_mem_cgroup_from_mm(current->mm);
1119}
1120
1121/**
1122 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1123 * @root: hierarchy root
1124 * @prev: previously returned memcg, NULL on first invocation
1125 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1126 *
1127 * Returns references to children of the hierarchy below @root, or
1128 * @root itself, or %NULL after a full round-trip.
1129 *
1130 * Caller must pass the return value in @prev on subsequent
1131 * invocations for reference counting, or use mem_cgroup_iter_break()
1132 * to cancel a hierarchy walk before the round-trip is complete.
1133 *
Olivier Deprez157378f2022-04-04 15:47:50 +02001134 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1135 * in the hierarchy among all concurrent reclaimers operating on the
1136 * same node.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001137 */
1138struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1139 struct mem_cgroup *prev,
1140 struct mem_cgroup_reclaim_cookie *reclaim)
1141{
Olivier Deprez157378f2022-04-04 15:47:50 +02001142 struct mem_cgroup_reclaim_iter *iter;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001143 struct cgroup_subsys_state *css = NULL;
1144 struct mem_cgroup *memcg = NULL;
1145 struct mem_cgroup *pos = NULL;
1146
1147 if (mem_cgroup_disabled())
1148 return NULL;
1149
1150 if (!root)
1151 root = root_mem_cgroup;
1152
1153 if (prev && !reclaim)
1154 pos = prev;
1155
1156 if (!root->use_hierarchy && root != root_mem_cgroup) {
1157 if (prev)
1158 goto out;
1159 return root;
1160 }
1161
1162 rcu_read_lock();
1163
1164 if (reclaim) {
1165 struct mem_cgroup_per_node *mz;
1166
1167 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
Olivier Deprez157378f2022-04-04 15:47:50 +02001168 iter = &mz->iter;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001169
1170 if (prev && reclaim->generation != iter->generation)
1171 goto out_unlock;
1172
1173 while (1) {
1174 pos = READ_ONCE(iter->position);
1175 if (!pos || css_tryget(&pos->css))
1176 break;
1177 /*
1178 * css reference reached zero, so iter->position will
1179 * be cleared by ->css_released. However, we should not
1180 * rely on this happening soon, because ->css_released
1181 * is called from a work queue, and by busy-waiting we
1182 * might block it. So we clear iter->position right
1183 * away.
1184 */
1185 (void)cmpxchg(&iter->position, pos, NULL);
1186 }
1187 }
1188
1189 if (pos)
1190 css = &pos->css;
1191
1192 for (;;) {
1193 css = css_next_descendant_pre(css, &root->css);
1194 if (!css) {
1195 /*
1196 * Reclaimers share the hierarchy walk, and a
1197 * new one might jump in right at the end of
1198 * the hierarchy - make sure they see at least
1199 * one group and restart from the beginning.
1200 */
1201 if (!prev)
1202 continue;
1203 break;
1204 }
1205
1206 /*
1207 * Verify the css and acquire a reference. The root
1208 * is provided by the caller, so we know it's alive
1209 * and kicking, and don't take an extra reference.
1210 */
1211 memcg = mem_cgroup_from_css(css);
1212
1213 if (css == &root->css)
1214 break;
1215
1216 if (css_tryget(css))
1217 break;
1218
1219 memcg = NULL;
1220 }
1221
1222 if (reclaim) {
1223 /*
1224 * The position could have already been updated by a competing
1225 * thread, so check that the value hasn't changed since we read
1226 * it to avoid reclaiming from the same cgroup twice.
1227 */
1228 (void)cmpxchg(&iter->position, pos, memcg);
1229
1230 if (pos)
1231 css_put(&pos->css);
1232
1233 if (!memcg)
1234 iter->generation++;
1235 else if (!prev)
1236 reclaim->generation = iter->generation;
1237 }
1238
1239out_unlock:
1240 rcu_read_unlock();
1241out:
1242 if (prev && prev != root)
1243 css_put(&prev->css);
1244
1245 return memcg;
1246}
1247
1248/**
1249 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1250 * @root: hierarchy root
1251 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1252 */
1253void mem_cgroup_iter_break(struct mem_cgroup *root,
1254 struct mem_cgroup *prev)
1255{
1256 if (!root)
1257 root = root_mem_cgroup;
1258 if (prev && prev != root)
1259 css_put(&prev->css);
1260}
1261
David Brazdil0f672f62019-12-10 10:32:29 +00001262static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1263 struct mem_cgroup *dead_memcg)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001264{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001265 struct mem_cgroup_reclaim_iter *iter;
1266 struct mem_cgroup_per_node *mz;
1267 int nid;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001268
David Brazdil0f672f62019-12-10 10:32:29 +00001269 for_each_node(nid) {
1270 mz = mem_cgroup_nodeinfo(from, nid);
Olivier Deprez157378f2022-04-04 15:47:50 +02001271 iter = &mz->iter;
1272 cmpxchg(&iter->position, dead_memcg, NULL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001273 }
1274}
1275
David Brazdil0f672f62019-12-10 10:32:29 +00001276static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1277{
1278 struct mem_cgroup *memcg = dead_memcg;
1279 struct mem_cgroup *last;
1280
1281 do {
1282 __invalidate_reclaim_iterators(memcg, dead_memcg);
1283 last = memcg;
1284 } while ((memcg = parent_mem_cgroup(memcg)));
1285
1286 /*
1287 * When cgruop1 non-hierarchy mode is used,
1288 * parent_mem_cgroup() does not walk all the way up to the
1289 * cgroup root (root_mem_cgroup). So we have to handle
1290 * dead_memcg from cgroup root separately.
1291 */
1292 if (last != root_mem_cgroup)
1293 __invalidate_reclaim_iterators(root_mem_cgroup,
1294 dead_memcg);
1295}
1296
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001297/**
1298 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1299 * @memcg: hierarchy root
1300 * @fn: function to call for each task
1301 * @arg: argument passed to @fn
1302 *
1303 * This function iterates over tasks attached to @memcg or to any of its
1304 * descendants and calls @fn for each task. If @fn returns a non-zero
1305 * value, the function breaks the iteration loop and returns the value.
1306 * Otherwise, it will iterate over all tasks and return 0.
1307 *
1308 * This function must not be called for the root memory cgroup.
1309 */
1310int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1311 int (*fn)(struct task_struct *, void *), void *arg)
1312{
1313 struct mem_cgroup *iter;
1314 int ret = 0;
1315
1316 BUG_ON(memcg == root_mem_cgroup);
1317
1318 for_each_mem_cgroup_tree(iter, memcg) {
1319 struct css_task_iter it;
1320 struct task_struct *task;
1321
David Brazdil0f672f62019-12-10 10:32:29 +00001322 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001323 while (!ret && (task = css_task_iter_next(&it)))
1324 ret = fn(task, arg);
1325 css_task_iter_end(&it);
1326 if (ret) {
1327 mem_cgroup_iter_break(memcg, iter);
1328 break;
1329 }
1330 }
1331 return ret;
1332}
1333
1334/**
1335 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1336 * @page: the page
1337 * @pgdat: pgdat of the page
1338 *
Olivier Deprez157378f2022-04-04 15:47:50 +02001339 * This function relies on page->mem_cgroup being stable - see the
1340 * access rules in commit_charge().
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001341 */
1342struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1343{
1344 struct mem_cgroup_per_node *mz;
1345 struct mem_cgroup *memcg;
1346 struct lruvec *lruvec;
1347
1348 if (mem_cgroup_disabled()) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001349 lruvec = &pgdat->__lruvec;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001350 goto out;
1351 }
1352
1353 memcg = page->mem_cgroup;
1354 /*
1355 * Swapcache readahead pages are added to the LRU - and
1356 * possibly migrated - before they are charged.
1357 */
1358 if (!memcg)
1359 memcg = root_mem_cgroup;
1360
1361 mz = mem_cgroup_page_nodeinfo(memcg, page);
1362 lruvec = &mz->lruvec;
1363out:
1364 /*
1365 * Since a node can be onlined after the mem_cgroup was created,
1366 * we have to be prepared to initialize lruvec->zone here;
1367 * and if offlined then reonlined, we need to reinitialize it.
1368 */
1369 if (unlikely(lruvec->pgdat != pgdat))
1370 lruvec->pgdat = pgdat;
1371 return lruvec;
1372}
1373
1374/**
1375 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1376 * @lruvec: mem_cgroup per zone lru vector
1377 * @lru: index of lru list the page is sitting on
1378 * @zid: zone id of the accounted pages
1379 * @nr_pages: positive when adding or negative when removing
1380 *
1381 * This function must be called under lru_lock, just before a page is added
1382 * to or just after a page is removed from an lru list (that ordering being
1383 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1384 */
1385void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1386 int zid, int nr_pages)
1387{
1388 struct mem_cgroup_per_node *mz;
1389 unsigned long *lru_size;
1390 long size;
1391
1392 if (mem_cgroup_disabled())
1393 return;
1394
1395 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1396 lru_size = &mz->lru_zone_size[zid][lru];
1397
1398 if (nr_pages < 0)
1399 *lru_size += nr_pages;
1400
1401 size = *lru_size;
1402 if (WARN_ONCE(size < 0,
1403 "%s(%p, %d, %d): lru_size %ld\n",
1404 __func__, lruvec, lru, nr_pages, size)) {
1405 VM_BUG_ON(1);
1406 *lru_size = 0;
1407 }
1408
1409 if (nr_pages > 0)
1410 *lru_size += nr_pages;
1411}
1412
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001413/**
1414 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1415 * @memcg: the memory cgroup
1416 *
1417 * Returns the maximum amount of memory @mem can be charged with, in
1418 * pages.
1419 */
1420static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1421{
1422 unsigned long margin = 0;
1423 unsigned long count;
1424 unsigned long limit;
1425
1426 count = page_counter_read(&memcg->memory);
1427 limit = READ_ONCE(memcg->memory.max);
1428 if (count < limit)
1429 margin = limit - count;
1430
1431 if (do_memsw_account()) {
1432 count = page_counter_read(&memcg->memsw);
1433 limit = READ_ONCE(memcg->memsw.max);
Olivier Deprez157378f2022-04-04 15:47:50 +02001434 if (count < limit)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001435 margin = min(margin, limit - count);
1436 else
1437 margin = 0;
1438 }
1439
1440 return margin;
1441}
1442
1443/*
1444 * A routine for checking "mem" is under move_account() or not.
1445 *
1446 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1447 * moving cgroups. This is for waiting at high-memory pressure
1448 * caused by "move".
1449 */
1450static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1451{
1452 struct mem_cgroup *from;
1453 struct mem_cgroup *to;
1454 bool ret = false;
1455 /*
1456 * Unlike task_move routines, we access mc.to, mc.from not under
1457 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1458 */
1459 spin_lock(&mc.lock);
1460 from = mc.from;
1461 to = mc.to;
1462 if (!from)
1463 goto unlock;
1464
1465 ret = mem_cgroup_is_descendant(from, memcg) ||
1466 mem_cgroup_is_descendant(to, memcg);
1467unlock:
1468 spin_unlock(&mc.lock);
1469 return ret;
1470}
1471
1472static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1473{
1474 if (mc.moving_task && current != mc.moving_task) {
1475 if (mem_cgroup_under_move(memcg)) {
1476 DEFINE_WAIT(wait);
1477 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1478 /* moving charge context might have finished. */
1479 if (mc.moving_task)
1480 schedule();
1481 finish_wait(&mc.waitq, &wait);
1482 return true;
1483 }
1484 }
1485 return false;
1486}
1487
Olivier Deprez157378f2022-04-04 15:47:50 +02001488struct memory_stat {
1489 const char *name;
1490 unsigned int ratio;
1491 unsigned int idx;
1492};
1493
1494static struct memory_stat memory_stats[] = {
1495 { "anon", PAGE_SIZE, NR_ANON_MAPPED },
1496 { "file", PAGE_SIZE, NR_FILE_PAGES },
1497 { "kernel_stack", 1024, NR_KERNEL_STACK_KB },
1498 { "percpu", 1, MEMCG_PERCPU_B },
1499 { "sock", PAGE_SIZE, MEMCG_SOCK },
1500 { "shmem", PAGE_SIZE, NR_SHMEM },
1501 { "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
1502 { "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
1503 { "file_writeback", PAGE_SIZE, NR_WRITEBACK },
1504#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1505 /*
1506 * The ratio will be initialized in memory_stats_init(). Because
1507 * on some architectures, the macro of HPAGE_PMD_SIZE is not
1508 * constant(e.g. powerpc).
1509 */
1510 { "anon_thp", 0, NR_ANON_THPS },
1511#endif
1512 { "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
1513 { "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
1514 { "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
1515 { "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
1516 { "unevictable", PAGE_SIZE, NR_UNEVICTABLE },
1517
1518 /*
1519 * Note: The slab_reclaimable and slab_unreclaimable must be
1520 * together and slab_reclaimable must be in front.
1521 */
1522 { "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
1523 { "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },
1524
1525 /* The memory events */
1526 { "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
1527 { "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
1528 { "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
1529 { "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
1530 { "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
1531 { "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
1532 { "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
1533};
1534
1535static int __init memory_stats_init(void)
1536{
1537 int i;
1538
1539 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1540#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1541 if (memory_stats[i].idx == NR_ANON_THPS)
1542 memory_stats[i].ratio = HPAGE_PMD_SIZE;
1543#endif
1544 VM_BUG_ON(!memory_stats[i].ratio);
1545 VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
1546 }
1547
1548 return 0;
1549}
1550pure_initcall(memory_stats_init);
1551
David Brazdil0f672f62019-12-10 10:32:29 +00001552static char *memory_stat_format(struct mem_cgroup *memcg)
1553{
1554 struct seq_buf s;
1555 int i;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001556
David Brazdil0f672f62019-12-10 10:32:29 +00001557 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1558 if (!s.buffer)
1559 return NULL;
1560
1561 /*
1562 * Provide statistics on the state of the memory subsystem as
1563 * well as cumulative event counters that show past behavior.
1564 *
1565 * This list is ordered following a combination of these gradients:
1566 * 1) generic big picture -> specifics and details
1567 * 2) reflecting userspace activity -> reflecting kernel heuristics
1568 *
1569 * Current memory state:
1570 */
1571
Olivier Deprez157378f2022-04-04 15:47:50 +02001572 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1573 u64 size;
David Brazdil0f672f62019-12-10 10:32:29 +00001574
Olivier Deprez157378f2022-04-04 15:47:50 +02001575 size = memcg_page_state(memcg, memory_stats[i].idx);
1576 size *= memory_stats[i].ratio;
1577 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
David Brazdil0f672f62019-12-10 10:32:29 +00001578
Olivier Deprez157378f2022-04-04 15:47:50 +02001579 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1580 size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1581 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
1582 seq_buf_printf(&s, "slab %llu\n", size);
1583 }
1584 }
David Brazdil0f672f62019-12-10 10:32:29 +00001585
1586 /* Accumulated memory events */
1587
Olivier Deprez157378f2022-04-04 15:47:50 +02001588 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1589 memcg_events(memcg, PGFAULT));
1590 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1591 memcg_events(memcg, PGMAJFAULT));
1592 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1593 memcg_events(memcg, PGREFILL));
David Brazdil0f672f62019-12-10 10:32:29 +00001594 seq_buf_printf(&s, "pgscan %lu\n",
1595 memcg_events(memcg, PGSCAN_KSWAPD) +
1596 memcg_events(memcg, PGSCAN_DIRECT));
1597 seq_buf_printf(&s, "pgsteal %lu\n",
1598 memcg_events(memcg, PGSTEAL_KSWAPD) +
1599 memcg_events(memcg, PGSTEAL_DIRECT));
Olivier Deprez157378f2022-04-04 15:47:50 +02001600 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1601 memcg_events(memcg, PGACTIVATE));
1602 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1603 memcg_events(memcg, PGDEACTIVATE));
1604 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1605 memcg_events(memcg, PGLAZYFREE));
1606 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1607 memcg_events(memcg, PGLAZYFREED));
David Brazdil0f672f62019-12-10 10:32:29 +00001608
1609#ifdef CONFIG_TRANSPARENT_HUGEPAGE
Olivier Deprez157378f2022-04-04 15:47:50 +02001610 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
David Brazdil0f672f62019-12-10 10:32:29 +00001611 memcg_events(memcg, THP_FAULT_ALLOC));
Olivier Deprez157378f2022-04-04 15:47:50 +02001612 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
David Brazdil0f672f62019-12-10 10:32:29 +00001613 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1614#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1615
1616 /* The above should easily fit into one page */
1617 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1618
1619 return s.buffer;
1620}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001621
1622#define K(x) ((x) << (PAGE_SHIFT-10))
1623/**
David Brazdil0f672f62019-12-10 10:32:29 +00001624 * mem_cgroup_print_oom_context: Print OOM information relevant to
1625 * memory controller.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001626 * @memcg: The memory cgroup that went over limit
1627 * @p: Task that is going to be killed
1628 *
1629 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1630 * enabled
1631 */
David Brazdil0f672f62019-12-10 10:32:29 +00001632void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001633{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001634 rcu_read_lock();
1635
David Brazdil0f672f62019-12-10 10:32:29 +00001636 if (memcg) {
1637 pr_cont(",oom_memcg=");
1638 pr_cont_cgroup_path(memcg->css.cgroup);
1639 } else
1640 pr_cont(",global_oom");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001641 if (p) {
David Brazdil0f672f62019-12-10 10:32:29 +00001642 pr_cont(",task_memcg=");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001643 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001644 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001645 rcu_read_unlock();
David Brazdil0f672f62019-12-10 10:32:29 +00001646}
1647
1648/**
1649 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1650 * memory controller.
1651 * @memcg: The memory cgroup that went over limit
1652 */
1653void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1654{
1655 char *buf;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001656
1657 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1658 K((u64)page_counter_read(&memcg->memory)),
Olivier Deprez157378f2022-04-04 15:47:50 +02001659 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
David Brazdil0f672f62019-12-10 10:32:29 +00001660 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1661 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1662 K((u64)page_counter_read(&memcg->swap)),
Olivier Deprez157378f2022-04-04 15:47:50 +02001663 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
David Brazdil0f672f62019-12-10 10:32:29 +00001664 else {
1665 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1666 K((u64)page_counter_read(&memcg->memsw)),
1667 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1668 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1669 K((u64)page_counter_read(&memcg->kmem)),
1670 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001671 }
David Brazdil0f672f62019-12-10 10:32:29 +00001672
1673 pr_info("Memory cgroup stats for ");
1674 pr_cont_cgroup_path(memcg->css.cgroup);
1675 pr_cont(":");
1676 buf = memory_stat_format(memcg);
1677 if (!buf)
1678 return;
1679 pr_info("%s", buf);
1680 kfree(buf);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001681}
1682
1683/*
1684 * Return the memory (and swap, if configured) limit for a memcg.
1685 */
1686unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1687{
Olivier Deprez157378f2022-04-04 15:47:50 +02001688 unsigned long max = READ_ONCE(memcg->memory.max);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001689
Olivier Deprez157378f2022-04-04 15:47:50 +02001690 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1691 if (mem_cgroup_swappiness(memcg))
1692 max += min(READ_ONCE(memcg->swap.max),
1693 (unsigned long)total_swap_pages);
1694 } else { /* v1 */
1695 if (mem_cgroup_swappiness(memcg)) {
1696 /* Calculate swap excess capacity from memsw limit */
1697 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001698
Olivier Deprez157378f2022-04-04 15:47:50 +02001699 max += min(swap, (unsigned long)total_swap_pages);
1700 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001701 }
1702 return max;
1703}
1704
David Brazdil0f672f62019-12-10 10:32:29 +00001705unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1706{
1707 return page_counter_read(&memcg->memory);
1708}
1709
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001710static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1711 int order)
1712{
1713 struct oom_control oc = {
1714 .zonelist = NULL,
1715 .nodemask = NULL,
1716 .memcg = memcg,
1717 .gfp_mask = gfp_mask,
1718 .order = order,
1719 };
Olivier Deprez157378f2022-04-04 15:47:50 +02001720 bool ret = true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001721
David Brazdil0f672f62019-12-10 10:32:29 +00001722 if (mutex_lock_killable(&oom_lock))
1723 return true;
Olivier Deprez157378f2022-04-04 15:47:50 +02001724
1725 if (mem_cgroup_margin(memcg) >= (1 << order))
1726 goto unlock;
1727
David Brazdil0f672f62019-12-10 10:32:29 +00001728 /*
1729 * A few threads which were not waiting at mutex_lock_killable() can
1730 * fail to bail out. Therefore, check again after holding oom_lock.
1731 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001732 ret = task_is_dying() || out_of_memory(&oc);
1733
1734unlock:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001735 mutex_unlock(&oom_lock);
1736 return ret;
1737}
1738
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001739static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1740 pg_data_t *pgdat,
1741 gfp_t gfp_mask,
1742 unsigned long *total_scanned)
1743{
1744 struct mem_cgroup *victim = NULL;
1745 int total = 0;
1746 int loop = 0;
1747 unsigned long excess;
1748 unsigned long nr_scanned;
1749 struct mem_cgroup_reclaim_cookie reclaim = {
1750 .pgdat = pgdat,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001751 };
1752
1753 excess = soft_limit_excess(root_memcg);
1754
1755 while (1) {
1756 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1757 if (!victim) {
1758 loop++;
1759 if (loop >= 2) {
1760 /*
1761 * If we have not been able to reclaim
1762 * anything, it might because there are
1763 * no reclaimable pages under this hierarchy
1764 */
1765 if (!total)
1766 break;
1767 /*
1768 * We want to do more targeted reclaim.
1769 * excess >> 2 is not to excessive so as to
1770 * reclaim too much, nor too less that we keep
1771 * coming back to reclaim from this cgroup
1772 */
1773 if (total >= (excess >> 2) ||
1774 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1775 break;
1776 }
1777 continue;
1778 }
1779 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1780 pgdat, &nr_scanned);
1781 *total_scanned += nr_scanned;
1782 if (!soft_limit_excess(root_memcg))
1783 break;
1784 }
1785 mem_cgroup_iter_break(root_memcg, victim);
1786 return total;
1787}
1788
1789#ifdef CONFIG_LOCKDEP
1790static struct lockdep_map memcg_oom_lock_dep_map = {
1791 .name = "memcg_oom_lock",
1792};
1793#endif
1794
1795static DEFINE_SPINLOCK(memcg_oom_lock);
1796
1797/*
1798 * Check OOM-Killer is already running under our hierarchy.
1799 * If someone is running, return false.
1800 */
1801static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1802{
1803 struct mem_cgroup *iter, *failed = NULL;
1804
1805 spin_lock(&memcg_oom_lock);
1806
1807 for_each_mem_cgroup_tree(iter, memcg) {
1808 if (iter->oom_lock) {
1809 /*
1810 * this subtree of our hierarchy is already locked
1811 * so we cannot give a lock.
1812 */
1813 failed = iter;
1814 mem_cgroup_iter_break(memcg, iter);
1815 break;
1816 } else
1817 iter->oom_lock = true;
1818 }
1819
1820 if (failed) {
1821 /*
1822 * OK, we failed to lock the whole subtree so we have
1823 * to clean up what we set up to the failing subtree
1824 */
1825 for_each_mem_cgroup_tree(iter, memcg) {
1826 if (iter == failed) {
1827 mem_cgroup_iter_break(memcg, iter);
1828 break;
1829 }
1830 iter->oom_lock = false;
1831 }
1832 } else
1833 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1834
1835 spin_unlock(&memcg_oom_lock);
1836
1837 return !failed;
1838}
1839
1840static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1841{
1842 struct mem_cgroup *iter;
1843
1844 spin_lock(&memcg_oom_lock);
Olivier Deprez157378f2022-04-04 15:47:50 +02001845 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001846 for_each_mem_cgroup_tree(iter, memcg)
1847 iter->oom_lock = false;
1848 spin_unlock(&memcg_oom_lock);
1849}
1850
1851static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1852{
1853 struct mem_cgroup *iter;
1854
1855 spin_lock(&memcg_oom_lock);
1856 for_each_mem_cgroup_tree(iter, memcg)
1857 iter->under_oom++;
1858 spin_unlock(&memcg_oom_lock);
1859}
1860
1861static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1862{
1863 struct mem_cgroup *iter;
1864
1865 /*
Olivier Deprez157378f2022-04-04 15:47:50 +02001866 * Be careful about under_oom underflows becase a child memcg
1867 * could have been added after mem_cgroup_mark_under_oom.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001868 */
1869 spin_lock(&memcg_oom_lock);
1870 for_each_mem_cgroup_tree(iter, memcg)
1871 if (iter->under_oom > 0)
1872 iter->under_oom--;
1873 spin_unlock(&memcg_oom_lock);
1874}
1875
1876static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1877
1878struct oom_wait_info {
1879 struct mem_cgroup *memcg;
1880 wait_queue_entry_t wait;
1881};
1882
1883static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1884 unsigned mode, int sync, void *arg)
1885{
1886 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1887 struct mem_cgroup *oom_wait_memcg;
1888 struct oom_wait_info *oom_wait_info;
1889
1890 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1891 oom_wait_memcg = oom_wait_info->memcg;
1892
1893 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1894 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1895 return 0;
1896 return autoremove_wake_function(wait, mode, sync, arg);
1897}
1898
1899static void memcg_oom_recover(struct mem_cgroup *memcg)
1900{
1901 /*
1902 * For the following lockless ->under_oom test, the only required
1903 * guarantee is that it must see the state asserted by an OOM when
1904 * this function is called as a result of userland actions
1905 * triggered by the notification of the OOM. This is trivially
1906 * achieved by invoking mem_cgroup_mark_under_oom() before
1907 * triggering notification.
1908 */
1909 if (memcg && memcg->under_oom)
1910 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1911}
1912
1913enum oom_status {
1914 OOM_SUCCESS,
1915 OOM_FAILED,
1916 OOM_ASYNC,
1917 OOM_SKIPPED
1918};
1919
1920static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1921{
David Brazdil0f672f62019-12-10 10:32:29 +00001922 enum oom_status ret;
1923 bool locked;
1924
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001925 if (order > PAGE_ALLOC_COSTLY_ORDER)
1926 return OOM_SKIPPED;
1927
David Brazdil0f672f62019-12-10 10:32:29 +00001928 memcg_memory_event(memcg, MEMCG_OOM);
1929
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001930 /*
1931 * We are in the middle of the charge context here, so we
1932 * don't want to block when potentially sitting on a callstack
1933 * that holds all kinds of filesystem and mm locks.
1934 *
1935 * cgroup1 allows disabling the OOM killer and waiting for outside
1936 * handling until the charge can succeed; remember the context and put
1937 * the task to sleep at the end of the page fault when all locks are
1938 * released.
1939 *
1940 * On the other hand, in-kernel OOM killer allows for an async victim
1941 * memory reclaim (oom_reaper) and that means that we are not solely
1942 * relying on the oom victim to make a forward progress and we can
1943 * invoke the oom killer here.
1944 *
1945 * Please note that mem_cgroup_out_of_memory might fail to find a
1946 * victim and then we have to bail out from the charge path.
1947 */
1948 if (memcg->oom_kill_disable) {
1949 if (!current->in_user_fault)
1950 return OOM_SKIPPED;
1951 css_get(&memcg->css);
1952 current->memcg_in_oom = memcg;
1953 current->memcg_oom_gfp_mask = mask;
1954 current->memcg_oom_order = order;
1955
1956 return OOM_ASYNC;
1957 }
1958
David Brazdil0f672f62019-12-10 10:32:29 +00001959 mem_cgroup_mark_under_oom(memcg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001960
David Brazdil0f672f62019-12-10 10:32:29 +00001961 locked = mem_cgroup_oom_trylock(memcg);
1962
1963 if (locked)
1964 mem_cgroup_oom_notify(memcg);
1965
1966 mem_cgroup_unmark_under_oom(memcg);
1967 if (mem_cgroup_out_of_memory(memcg, mask, order))
1968 ret = OOM_SUCCESS;
1969 else
1970 ret = OOM_FAILED;
1971
1972 if (locked)
1973 mem_cgroup_oom_unlock(memcg);
1974
1975 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001976}
1977
1978/**
1979 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1980 * @handle: actually kill/wait or just clean up the OOM state
1981 *
1982 * This has to be called at the end of a page fault if the memcg OOM
1983 * handler was enabled.
1984 *
1985 * Memcg supports userspace OOM handling where failed allocations must
1986 * sleep on a waitqueue until the userspace task resolves the
1987 * situation. Sleeping directly in the charge context with all kinds
1988 * of locks held is not a good idea, instead we remember an OOM state
1989 * in the task and mem_cgroup_oom_synchronize() has to be called at
1990 * the end of the page fault to complete the OOM handling.
1991 *
1992 * Returns %true if an ongoing memcg OOM situation was detected and
1993 * completed, %false otherwise.
1994 */
1995bool mem_cgroup_oom_synchronize(bool handle)
1996{
1997 struct mem_cgroup *memcg = current->memcg_in_oom;
1998 struct oom_wait_info owait;
1999 bool locked;
2000
2001 /* OOM is global, do not handle */
2002 if (!memcg)
2003 return false;
2004
2005 if (!handle)
2006 goto cleanup;
2007
2008 owait.memcg = memcg;
2009 owait.wait.flags = 0;
2010 owait.wait.func = memcg_oom_wake_function;
2011 owait.wait.private = current;
2012 INIT_LIST_HEAD(&owait.wait.entry);
2013
2014 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2015 mem_cgroup_mark_under_oom(memcg);
2016
2017 locked = mem_cgroup_oom_trylock(memcg);
2018
2019 if (locked)
2020 mem_cgroup_oom_notify(memcg);
2021
2022 if (locked && !memcg->oom_kill_disable) {
2023 mem_cgroup_unmark_under_oom(memcg);
2024 finish_wait(&memcg_oom_waitq, &owait.wait);
2025 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2026 current->memcg_oom_order);
2027 } else {
2028 schedule();
2029 mem_cgroup_unmark_under_oom(memcg);
2030 finish_wait(&memcg_oom_waitq, &owait.wait);
2031 }
2032
2033 if (locked) {
2034 mem_cgroup_oom_unlock(memcg);
2035 /*
2036 * There is no guarantee that an OOM-lock contender
2037 * sees the wakeups triggered by the OOM kill
2038 * uncharges. Wake any sleepers explicitely.
2039 */
2040 memcg_oom_recover(memcg);
2041 }
2042cleanup:
2043 current->memcg_in_oom = NULL;
2044 css_put(&memcg->css);
2045 return true;
2046}
2047
2048/**
2049 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2050 * @victim: task to be killed by the OOM killer
2051 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2052 *
2053 * Returns a pointer to a memory cgroup, which has to be cleaned up
2054 * by killing all belonging OOM-killable tasks.
2055 *
2056 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2057 */
2058struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2059 struct mem_cgroup *oom_domain)
2060{
2061 struct mem_cgroup *oom_group = NULL;
2062 struct mem_cgroup *memcg;
2063
2064 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2065 return NULL;
2066
2067 if (!oom_domain)
2068 oom_domain = root_mem_cgroup;
2069
2070 rcu_read_lock();
2071
2072 memcg = mem_cgroup_from_task(victim);
2073 if (memcg == root_mem_cgroup)
2074 goto out;
2075
2076 /*
Olivier Deprez157378f2022-04-04 15:47:50 +02002077 * If the victim task has been asynchronously moved to a different
2078 * memory cgroup, we might end up killing tasks outside oom_domain.
2079 * In this case it's better to ignore memory.group.oom.
2080 */
2081 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2082 goto out;
2083
2084 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002085 * Traverse the memory cgroup hierarchy from the victim task's
2086 * cgroup up to the OOMing cgroup (or root) to find the
2087 * highest-level memory cgroup with oom.group set.
2088 */
2089 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2090 if (memcg->oom_group)
2091 oom_group = memcg;
2092
2093 if (memcg == oom_domain)
2094 break;
2095 }
2096
2097 if (oom_group)
2098 css_get(&oom_group->css);
2099out:
2100 rcu_read_unlock();
2101
2102 return oom_group;
2103}
2104
2105void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2106{
2107 pr_info("Tasks in ");
2108 pr_cont_cgroup_path(memcg->css.cgroup);
2109 pr_cont(" are going to be killed due to memory.oom.group set\n");
2110}
2111
2112/**
2113 * lock_page_memcg - lock a page->mem_cgroup binding
2114 * @page: the page
2115 *
2116 * This function protects unlocked LRU pages from being moved to
2117 * another cgroup.
2118 *
2119 * It ensures lifetime of the returned memcg. Caller is responsible
2120 * for the lifetime of the page; __unlock_page_memcg() is available
2121 * when @page might get freed inside the locked section.
2122 */
2123struct mem_cgroup *lock_page_memcg(struct page *page)
2124{
Olivier Deprez157378f2022-04-04 15:47:50 +02002125 struct page *head = compound_head(page); /* rmap on tail pages */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002126 struct mem_cgroup *memcg;
2127 unsigned long flags;
2128
2129 /*
2130 * The RCU lock is held throughout the transaction. The fast
2131 * path can get away without acquiring the memcg->move_lock
2132 * because page moving starts with an RCU grace period.
2133 *
2134 * The RCU lock also protects the memcg from being freed when
2135 * the page state that is going to change is the only thing
2136 * preventing the page itself from being freed. E.g. writeback
2137 * doesn't hold a page reference and relies on PG_writeback to
2138 * keep off truncation, migration and so forth.
2139 */
2140 rcu_read_lock();
2141
2142 if (mem_cgroup_disabled())
2143 return NULL;
2144again:
Olivier Deprez157378f2022-04-04 15:47:50 +02002145 memcg = head->mem_cgroup;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002146 if (unlikely(!memcg))
2147 return NULL;
2148
2149 if (atomic_read(&memcg->moving_account) <= 0)
2150 return memcg;
2151
2152 spin_lock_irqsave(&memcg->move_lock, flags);
Olivier Deprez157378f2022-04-04 15:47:50 +02002153 if (memcg != head->mem_cgroup) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002154 spin_unlock_irqrestore(&memcg->move_lock, flags);
2155 goto again;
2156 }
2157
2158 /*
2159 * When charge migration first begins, we can have locked and
2160 * unlocked page stat updates happening concurrently. Track
2161 * the task who has the lock for unlock_page_memcg().
2162 */
2163 memcg->move_lock_task = current;
2164 memcg->move_lock_flags = flags;
2165
2166 return memcg;
2167}
2168EXPORT_SYMBOL(lock_page_memcg);
2169
2170/**
2171 * __unlock_page_memcg - unlock and unpin a memcg
2172 * @memcg: the memcg
2173 *
2174 * Unlock and unpin a memcg returned by lock_page_memcg().
2175 */
2176void __unlock_page_memcg(struct mem_cgroup *memcg)
2177{
2178 if (memcg && memcg->move_lock_task == current) {
2179 unsigned long flags = memcg->move_lock_flags;
2180
2181 memcg->move_lock_task = NULL;
2182 memcg->move_lock_flags = 0;
2183
2184 spin_unlock_irqrestore(&memcg->move_lock, flags);
2185 }
2186
2187 rcu_read_unlock();
2188}
2189
2190/**
2191 * unlock_page_memcg - unlock a page->mem_cgroup binding
2192 * @page: the page
2193 */
2194void unlock_page_memcg(struct page *page)
2195{
Olivier Deprez157378f2022-04-04 15:47:50 +02002196 struct page *head = compound_head(page);
2197
2198 __unlock_page_memcg(head->mem_cgroup);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002199}
2200EXPORT_SYMBOL(unlock_page_memcg);
2201
2202struct memcg_stock_pcp {
2203 struct mem_cgroup *cached; /* this never be root cgroup */
2204 unsigned int nr_pages;
Olivier Deprez157378f2022-04-04 15:47:50 +02002205
2206#ifdef CONFIG_MEMCG_KMEM
2207 struct obj_cgroup *cached_objcg;
2208 unsigned int nr_bytes;
2209#endif
2210
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002211 struct work_struct work;
2212 unsigned long flags;
2213#define FLUSHING_CACHED_CHARGE 0
2214};
2215static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2216static DEFINE_MUTEX(percpu_charge_mutex);
2217
Olivier Deprez157378f2022-04-04 15:47:50 +02002218#ifdef CONFIG_MEMCG_KMEM
2219static void drain_obj_stock(struct memcg_stock_pcp *stock);
2220static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2221 struct mem_cgroup *root_memcg);
2222
2223#else
2224static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2225{
2226}
2227static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2228 struct mem_cgroup *root_memcg)
2229{
2230 return false;
2231}
2232#endif
2233
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002234/**
2235 * consume_stock: Try to consume stocked charge on this cpu.
2236 * @memcg: memcg to consume from.
2237 * @nr_pages: how many pages to charge.
2238 *
2239 * The charges will only happen if @memcg matches the current cpu's memcg
2240 * stock, and at least @nr_pages are available in that stock. Failure to
2241 * service an allocation will refill the stock.
2242 *
2243 * returns true if successful, false otherwise.
2244 */
2245static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2246{
2247 struct memcg_stock_pcp *stock;
2248 unsigned long flags;
2249 bool ret = false;
2250
2251 if (nr_pages > MEMCG_CHARGE_BATCH)
2252 return ret;
2253
2254 local_irq_save(flags);
2255
2256 stock = this_cpu_ptr(&memcg_stock);
2257 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2258 stock->nr_pages -= nr_pages;
2259 ret = true;
2260 }
2261
2262 local_irq_restore(flags);
2263
2264 return ret;
2265}
2266
2267/*
2268 * Returns stocks cached in percpu and reset cached information.
2269 */
2270static void drain_stock(struct memcg_stock_pcp *stock)
2271{
2272 struct mem_cgroup *old = stock->cached;
2273
Olivier Deprez157378f2022-04-04 15:47:50 +02002274 if (!old)
2275 return;
2276
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002277 if (stock->nr_pages) {
2278 page_counter_uncharge(&old->memory, stock->nr_pages);
2279 if (do_memsw_account())
2280 page_counter_uncharge(&old->memsw, stock->nr_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002281 stock->nr_pages = 0;
2282 }
Olivier Deprez157378f2022-04-04 15:47:50 +02002283
2284 css_put(&old->css);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002285 stock->cached = NULL;
2286}
2287
2288static void drain_local_stock(struct work_struct *dummy)
2289{
2290 struct memcg_stock_pcp *stock;
2291 unsigned long flags;
2292
2293 /*
2294 * The only protection from memory hotplug vs. drain_stock races is
2295 * that we always operate on local CPU stock here with IRQ disabled
2296 */
2297 local_irq_save(flags);
2298
2299 stock = this_cpu_ptr(&memcg_stock);
Olivier Deprez157378f2022-04-04 15:47:50 +02002300 drain_obj_stock(stock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002301 drain_stock(stock);
2302 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2303
2304 local_irq_restore(flags);
2305}
2306
2307/*
2308 * Cache charges(val) to local per_cpu area.
2309 * This will be consumed by consume_stock() function, later.
2310 */
2311static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2312{
2313 struct memcg_stock_pcp *stock;
2314 unsigned long flags;
2315
2316 local_irq_save(flags);
2317
2318 stock = this_cpu_ptr(&memcg_stock);
2319 if (stock->cached != memcg) { /* reset if necessary */
2320 drain_stock(stock);
Olivier Deprez157378f2022-04-04 15:47:50 +02002321 css_get(&memcg->css);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002322 stock->cached = memcg;
2323 }
2324 stock->nr_pages += nr_pages;
2325
2326 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2327 drain_stock(stock);
2328
2329 local_irq_restore(flags);
2330}
2331
2332/*
2333 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2334 * of the hierarchy under it.
2335 */
2336static void drain_all_stock(struct mem_cgroup *root_memcg)
2337{
2338 int cpu, curcpu;
2339
2340 /* If someone's already draining, avoid adding running more workers. */
2341 if (!mutex_trylock(&percpu_charge_mutex))
2342 return;
2343 /*
2344 * Notify other cpus that system-wide "drain" is running
2345 * We do not care about races with the cpu hotplug because cpu down
2346 * as well as workers from this path always operate on the local
2347 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2348 */
2349 curcpu = get_cpu();
2350 for_each_online_cpu(cpu) {
2351 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2352 struct mem_cgroup *memcg;
David Brazdil0f672f62019-12-10 10:32:29 +00002353 bool flush = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002354
David Brazdil0f672f62019-12-10 10:32:29 +00002355 rcu_read_lock();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002356 memcg = stock->cached;
David Brazdil0f672f62019-12-10 10:32:29 +00002357 if (memcg && stock->nr_pages &&
2358 mem_cgroup_is_descendant(memcg, root_memcg))
2359 flush = true;
Olivier Deprez157378f2022-04-04 15:47:50 +02002360 if (obj_stock_flush_required(stock, root_memcg))
2361 flush = true;
David Brazdil0f672f62019-12-10 10:32:29 +00002362 rcu_read_unlock();
2363
2364 if (flush &&
2365 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002366 if (cpu == curcpu)
2367 drain_local_stock(&stock->work);
2368 else
2369 schedule_work_on(cpu, &stock->work);
2370 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002371 }
2372 put_cpu();
2373 mutex_unlock(&percpu_charge_mutex);
2374}
2375
2376static int memcg_hotplug_cpu_dead(unsigned int cpu)
2377{
2378 struct memcg_stock_pcp *stock;
David Brazdil0f672f62019-12-10 10:32:29 +00002379 struct mem_cgroup *memcg, *mi;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002380
2381 stock = &per_cpu(memcg_stock, cpu);
2382 drain_stock(stock);
2383
2384 for_each_mem_cgroup(memcg) {
2385 int i;
2386
2387 for (i = 0; i < MEMCG_NR_STAT; i++) {
2388 int nid;
2389 long x;
2390
David Brazdil0f672f62019-12-10 10:32:29 +00002391 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002392 if (x)
David Brazdil0f672f62019-12-10 10:32:29 +00002393 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2394 atomic_long_add(x, &memcg->vmstats[i]);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002395
2396 if (i >= NR_VM_NODE_STAT_ITEMS)
2397 continue;
2398
2399 for_each_node(nid) {
2400 struct mem_cgroup_per_node *pn;
2401
2402 pn = mem_cgroup_nodeinfo(memcg, nid);
2403 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2404 if (x)
David Brazdil0f672f62019-12-10 10:32:29 +00002405 do {
2406 atomic_long_add(x, &pn->lruvec_stat[i]);
2407 } while ((pn = parent_nodeinfo(pn, nid)));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002408 }
2409 }
2410
2411 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2412 long x;
2413
David Brazdil0f672f62019-12-10 10:32:29 +00002414 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002415 if (x)
David Brazdil0f672f62019-12-10 10:32:29 +00002416 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2417 atomic_long_add(x, &memcg->vmevents[i]);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002418 }
2419 }
2420
2421 return 0;
2422}
2423
Olivier Deprez157378f2022-04-04 15:47:50 +02002424static unsigned long reclaim_high(struct mem_cgroup *memcg,
2425 unsigned int nr_pages,
2426 gfp_t gfp_mask)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002427{
Olivier Deprez157378f2022-04-04 15:47:50 +02002428 unsigned long nr_reclaimed = 0;
2429
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002430 do {
Olivier Deprez157378f2022-04-04 15:47:50 +02002431 unsigned long pflags;
2432
2433 if (page_counter_read(&memcg->memory) <=
2434 READ_ONCE(memcg->memory.high))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002435 continue;
Olivier Deprez157378f2022-04-04 15:47:50 +02002436
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002437 memcg_memory_event(memcg, MEMCG_HIGH);
Olivier Deprez157378f2022-04-04 15:47:50 +02002438
2439 psi_memstall_enter(&pflags);
2440 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2441 gfp_mask, true);
2442 psi_memstall_leave(&pflags);
2443 } while ((memcg = parent_mem_cgroup(memcg)) &&
2444 !mem_cgroup_is_root(memcg));
2445
2446 return nr_reclaimed;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002447}
2448
2449static void high_work_func(struct work_struct *work)
2450{
2451 struct mem_cgroup *memcg;
2452
2453 memcg = container_of(work, struct mem_cgroup, high_work);
2454 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2455}
2456
2457/*
David Brazdil0f672f62019-12-10 10:32:29 +00002458 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2459 * enough to still cause a significant slowdown in most cases, while still
2460 * allowing diagnostics and tracing to proceed without becoming stuck.
2461 */
2462#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2463
2464/*
2465 * When calculating the delay, we use these either side of the exponentiation to
2466 * maintain precision and scale to a reasonable number of jiffies (see the table
2467 * below.
2468 *
2469 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2470 * overage ratio to a delay.
Olivier Deprez157378f2022-04-04 15:47:50 +02002471 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
David Brazdil0f672f62019-12-10 10:32:29 +00002472 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2473 * to produce a reasonable delay curve.
2474 *
2475 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2476 * reasonable delay curve compared to precision-adjusted overage, not
2477 * penalising heavily at first, but still making sure that growth beyond the
2478 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2479 * example, with a high of 100 megabytes:
2480 *
2481 * +-------+------------------------+
2482 * | usage | time to allocate in ms |
2483 * +-------+------------------------+
2484 * | 100M | 0 |
2485 * | 101M | 6 |
2486 * | 102M | 25 |
2487 * | 103M | 57 |
2488 * | 104M | 102 |
2489 * | 105M | 159 |
2490 * | 106M | 230 |
2491 * | 107M | 313 |
2492 * | 108M | 409 |
2493 * | 109M | 518 |
2494 * | 110M | 639 |
2495 * | 111M | 774 |
2496 * | 112M | 921 |
2497 * | 113M | 1081 |
2498 * | 114M | 1254 |
2499 * | 115M | 1439 |
2500 * | 116M | 1638 |
2501 * | 117M | 1849 |
2502 * | 118M | 2000 |
2503 * | 119M | 2000 |
2504 * | 120M | 2000 |
2505 * +-------+------------------------+
2506 */
2507 #define MEMCG_DELAY_PRECISION_SHIFT 20
2508 #define MEMCG_DELAY_SCALING_SHIFT 14
2509
Olivier Deprez157378f2022-04-04 15:47:50 +02002510static u64 calculate_overage(unsigned long usage, unsigned long high)
2511{
2512 u64 overage;
2513
2514 if (usage <= high)
2515 return 0;
2516
2517 /*
2518 * Prevent division by 0 in overage calculation by acting as if
2519 * it was a threshold of 1 page
2520 */
2521 high = max(high, 1UL);
2522
2523 overage = usage - high;
2524 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2525 return div64_u64(overage, high);
2526}
2527
2528static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2529{
2530 u64 overage, max_overage = 0;
2531
2532 do {
2533 overage = calculate_overage(page_counter_read(&memcg->memory),
2534 READ_ONCE(memcg->memory.high));
2535 max_overage = max(overage, max_overage);
2536 } while ((memcg = parent_mem_cgroup(memcg)) &&
2537 !mem_cgroup_is_root(memcg));
2538
2539 return max_overage;
2540}
2541
2542static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2543{
2544 u64 overage, max_overage = 0;
2545
2546 do {
2547 overage = calculate_overage(page_counter_read(&memcg->swap),
2548 READ_ONCE(memcg->swap.high));
2549 if (overage)
2550 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2551 max_overage = max(overage, max_overage);
2552 } while ((memcg = parent_mem_cgroup(memcg)) &&
2553 !mem_cgroup_is_root(memcg));
2554
2555 return max_overage;
2556}
2557
David Brazdil0f672f62019-12-10 10:32:29 +00002558/*
Olivier Deprez0e641232021-09-23 10:07:05 +02002559 * Get the number of jiffies that we should penalise a mischievous cgroup which
2560 * is exceeding its memory.high by checking both it and its ancestors.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002561 */
Olivier Deprez0e641232021-09-23 10:07:05 +02002562static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
Olivier Deprez157378f2022-04-04 15:47:50 +02002563 unsigned int nr_pages,
2564 u64 max_overage)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002565{
Olivier Deprez0e641232021-09-23 10:07:05 +02002566 unsigned long penalty_jiffies;
Olivier Deprez0e641232021-09-23 10:07:05 +02002567
2568 if (!max_overage)
2569 return 0;
David Brazdil0f672f62019-12-10 10:32:29 +00002570
2571 /*
David Brazdil0f672f62019-12-10 10:32:29 +00002572 * We use overage compared to memory.high to calculate the number of
2573 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2574 * fairly lenient on small overages, and increasingly harsh when the
2575 * memcg in question makes it clear that it has no intention of stopping
2576 * its crazy behaviour, so we exponentially increase the delay based on
2577 * overage amount.
2578 */
Olivier Deprez0e641232021-09-23 10:07:05 +02002579 penalty_jiffies = max_overage * max_overage * HZ;
2580 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2581 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
David Brazdil0f672f62019-12-10 10:32:29 +00002582
2583 /*
2584 * Factor in the task's own contribution to the overage, such that four
2585 * N-sized allocations are throttled approximately the same as one
2586 * 4N-sized allocation.
2587 *
2588 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2589 * larger the current charge patch is than that.
2590 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002591 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
Olivier Deprez0e641232021-09-23 10:07:05 +02002592}
2593
2594/*
2595 * Scheduled by try_charge() to be executed from the userland return path
2596 * and reclaims memory over the high limit.
2597 */
2598void mem_cgroup_handle_over_high(void)
2599{
2600 unsigned long penalty_jiffies;
2601 unsigned long pflags;
Olivier Deprez157378f2022-04-04 15:47:50 +02002602 unsigned long nr_reclaimed;
Olivier Deprez0e641232021-09-23 10:07:05 +02002603 unsigned int nr_pages = current->memcg_nr_pages_over_high;
Olivier Deprez157378f2022-04-04 15:47:50 +02002604 int nr_retries = MAX_RECLAIM_RETRIES;
Olivier Deprez0e641232021-09-23 10:07:05 +02002605 struct mem_cgroup *memcg;
Olivier Deprez157378f2022-04-04 15:47:50 +02002606 bool in_retry = false;
Olivier Deprez0e641232021-09-23 10:07:05 +02002607
2608 if (likely(!nr_pages))
2609 return;
2610
2611 memcg = get_mem_cgroup_from_mm(current->mm);
Olivier Deprez0e641232021-09-23 10:07:05 +02002612 current->memcg_nr_pages_over_high = 0;
2613
Olivier Deprez157378f2022-04-04 15:47:50 +02002614retry_reclaim:
2615 /*
2616 * The allocating task should reclaim at least the batch size, but for
2617 * subsequent retries we only want to do what's necessary to prevent oom
2618 * or breaching resource isolation.
2619 *
2620 * This is distinct from memory.max or page allocator behaviour because
2621 * memory.high is currently batched, whereas memory.max and the page
2622 * allocator run every time an allocation is made.
2623 */
2624 nr_reclaimed = reclaim_high(memcg,
2625 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2626 GFP_KERNEL);
2627
Olivier Deprez0e641232021-09-23 10:07:05 +02002628 /*
2629 * memory.high is breached and reclaim is unable to keep up. Throttle
2630 * allocators proactively to slow down excessive growth.
2631 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002632 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2633 mem_find_max_overage(memcg));
2634
2635 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2636 swap_find_max_overage(memcg));
2637
2638 /*
2639 * Clamp the max delay per usermode return so as to still keep the
2640 * application moving forwards and also permit diagnostics, albeit
2641 * extremely slowly.
2642 */
2643 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
David Brazdil0f672f62019-12-10 10:32:29 +00002644
2645 /*
2646 * Don't sleep if the amount of jiffies this memcg owes us is so low
2647 * that it's not even worth doing, in an attempt to be nice to those who
2648 * go only a small amount over their memory.high value and maybe haven't
2649 * been aggressively reclaimed enough yet.
2650 */
2651 if (penalty_jiffies <= HZ / 100)
2652 goto out;
2653
2654 /*
Olivier Deprez157378f2022-04-04 15:47:50 +02002655 * If reclaim is making forward progress but we're still over
2656 * memory.high, we want to encourage that rather than doing allocator
2657 * throttling.
2658 */
2659 if (nr_reclaimed || nr_retries--) {
2660 in_retry = true;
2661 goto retry_reclaim;
2662 }
2663
2664 /*
David Brazdil0f672f62019-12-10 10:32:29 +00002665 * If we exit early, we're guaranteed to die (since
2666 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2667 * need to account for any ill-begotten jiffies to pay them off later.
2668 */
2669 psi_memstall_enter(&pflags);
2670 schedule_timeout_killable(penalty_jiffies);
2671 psi_memstall_leave(&pflags);
2672
2673out:
2674 css_put(&memcg->css);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002675}
2676
2677static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2678 unsigned int nr_pages)
2679{
2680 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
Olivier Deprez157378f2022-04-04 15:47:50 +02002681 int nr_retries = MAX_RECLAIM_RETRIES;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002682 struct mem_cgroup *mem_over_limit;
2683 struct page_counter *counter;
Olivier Deprez157378f2022-04-04 15:47:50 +02002684 enum oom_status oom_status;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002685 unsigned long nr_reclaimed;
Olivier Deprez157378f2022-04-04 15:47:50 +02002686 bool passed_oom = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002687 bool may_swap = true;
2688 bool drained = false;
Olivier Deprez157378f2022-04-04 15:47:50 +02002689 unsigned long pflags;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002690
2691 if (mem_cgroup_is_root(memcg))
2692 return 0;
2693retry:
2694 if (consume_stock(memcg, nr_pages))
2695 return 0;
2696
2697 if (!do_memsw_account() ||
2698 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2699 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2700 goto done_restock;
2701 if (do_memsw_account())
2702 page_counter_uncharge(&memcg->memsw, batch);
2703 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2704 } else {
2705 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2706 may_swap = false;
2707 }
2708
2709 if (batch > nr_pages) {
2710 batch = nr_pages;
2711 goto retry;
2712 }
2713
2714 /*
David Brazdil0f672f62019-12-10 10:32:29 +00002715 * Memcg doesn't have a dedicated reserve for atomic
2716 * allocations. But like the global atomic pool, we need to
2717 * put the burden of reclaim on regular allocation requests
2718 * and let these go through as privileged allocations.
2719 */
2720 if (gfp_mask & __GFP_ATOMIC)
2721 goto force;
2722
2723 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002724 * Prevent unbounded recursion when reclaim operations need to
2725 * allocate memory. This might exceed the limits temporarily,
2726 * but we prefer facilitating memory reclaim and getting back
2727 * under the limit over triggering OOM kills in these cases.
2728 */
2729 if (unlikely(current->flags & PF_MEMALLOC))
2730 goto force;
2731
2732 if (unlikely(task_in_memcg_oom(current)))
2733 goto nomem;
2734
2735 if (!gfpflags_allow_blocking(gfp_mask))
2736 goto nomem;
2737
2738 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2739
Olivier Deprez157378f2022-04-04 15:47:50 +02002740 psi_memstall_enter(&pflags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002741 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2742 gfp_mask, may_swap);
Olivier Deprez157378f2022-04-04 15:47:50 +02002743 psi_memstall_leave(&pflags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002744
2745 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2746 goto retry;
2747
2748 if (!drained) {
2749 drain_all_stock(mem_over_limit);
2750 drained = true;
2751 goto retry;
2752 }
2753
2754 if (gfp_mask & __GFP_NORETRY)
2755 goto nomem;
2756 /*
2757 * Even though the limit is exceeded at this point, reclaim
2758 * may have been able to free some pages. Retry the charge
2759 * before killing the task.
2760 *
2761 * Only for regular pages, though: huge pages are rather
2762 * unlikely to succeed so close to the limit, and we fall back
2763 * to regular pages anyway in case of failure.
2764 */
2765 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2766 goto retry;
2767 /*
2768 * At task move, charge accounts can be doubly counted. So, it's
2769 * better to wait until the end of task_move if something is going on.
2770 */
2771 if (mem_cgroup_wait_acct_move(mem_over_limit))
2772 goto retry;
2773
2774 if (nr_retries--)
2775 goto retry;
2776
David Brazdil0f672f62019-12-10 10:32:29 +00002777 if (gfp_mask & __GFP_RETRY_MAYFAIL)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002778 goto nomem;
2779
2780 if (gfp_mask & __GFP_NOFAIL)
2781 goto force;
2782
Olivier Deprez157378f2022-04-04 15:47:50 +02002783 /* Avoid endless loop for tasks bypassed by the oom killer */
2784 if (passed_oom && task_is_dying())
2785 goto nomem;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002786
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002787 /*
2788 * keep retrying as long as the memcg oom killer is able to make
2789 * a forward progress or bypass the charge if the oom killer
2790 * couldn't make any progress.
2791 */
2792 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2793 get_order(nr_pages * PAGE_SIZE));
Olivier Deprez157378f2022-04-04 15:47:50 +02002794 if (oom_status == OOM_SUCCESS) {
2795 passed_oom = true;
2796 nr_retries = MAX_RECLAIM_RETRIES;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002797 goto retry;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002798 }
2799nomem:
2800 if (!(gfp_mask & __GFP_NOFAIL))
2801 return -ENOMEM;
2802force:
2803 /*
2804 * The allocation either can't fail or will lead to more memory
2805 * being freed very soon. Allow memory usage go over the limit
2806 * temporarily by force charging it.
2807 */
2808 page_counter_charge(&memcg->memory, nr_pages);
2809 if (do_memsw_account())
2810 page_counter_charge(&memcg->memsw, nr_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002811
2812 return 0;
2813
2814done_restock:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002815 if (batch > nr_pages)
2816 refill_stock(memcg, batch - nr_pages);
2817
2818 /*
2819 * If the hierarchy is above the normal consumption range, schedule
2820 * reclaim on returning to userland. We can perform reclaim here
2821 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2822 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2823 * not recorded as it most likely matches current's and won't
2824 * change in the meantime. As high limit is checked again before
2825 * reclaim, the cost of mismatch is negligible.
2826 */
2827 do {
Olivier Deprez157378f2022-04-04 15:47:50 +02002828 bool mem_high, swap_high;
2829
2830 mem_high = page_counter_read(&memcg->memory) >
2831 READ_ONCE(memcg->memory.high);
2832 swap_high = page_counter_read(&memcg->swap) >
2833 READ_ONCE(memcg->swap.high);
2834
2835 /* Don't bother a random interrupted task */
2836 if (in_interrupt()) {
2837 if (mem_high) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002838 schedule_work(&memcg->high_work);
2839 break;
2840 }
Olivier Deprez157378f2022-04-04 15:47:50 +02002841 continue;
2842 }
2843
2844 if (mem_high || swap_high) {
2845 /*
2846 * The allocating tasks in this cgroup will need to do
2847 * reclaim or be throttled to prevent further growth
2848 * of the memory or swap footprints.
2849 *
2850 * Target some best-effort fairness between the tasks,
2851 * and distribute reclaim work and delay penalties
2852 * based on how much each task is actually allocating.
2853 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002854 current->memcg_nr_pages_over_high += batch;
2855 set_notify_resume(current);
2856 break;
2857 }
2858 } while ((memcg = parent_mem_cgroup(memcg)));
2859
2860 return 0;
2861}
2862
Olivier Deprez157378f2022-04-04 15:47:50 +02002863#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002864static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2865{
2866 if (mem_cgroup_is_root(memcg))
2867 return;
2868
2869 page_counter_uncharge(&memcg->memory, nr_pages);
2870 if (do_memsw_account())
2871 page_counter_uncharge(&memcg->memsw, nr_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002872}
Olivier Deprez157378f2022-04-04 15:47:50 +02002873#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002874
Olivier Deprez157378f2022-04-04 15:47:50 +02002875static void commit_charge(struct page *page, struct mem_cgroup *memcg)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002876{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002877 VM_BUG_ON_PAGE(page->mem_cgroup, page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002878 /*
Olivier Deprez157378f2022-04-04 15:47:50 +02002879 * Any of the following ensures page->mem_cgroup stability:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002880 *
Olivier Deprez157378f2022-04-04 15:47:50 +02002881 * - the page lock
2882 * - LRU isolation
2883 * - lock_page_memcg()
2884 * - exclusive reference
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002885 */
2886 page->mem_cgroup = memcg;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002887}
2888
2889#ifdef CONFIG_MEMCG_KMEM
Olivier Deprez0e641232021-09-23 10:07:05 +02002890/*
Olivier Deprez157378f2022-04-04 15:47:50 +02002891 * The allocated objcg pointers array is not accounted directly.
2892 * Moreover, it should not come from DMA buffer and is not readily
2893 * reclaimable. So those GFP bits should be masked off.
2894 */
2895#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2896
2897int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2898 gfp_t gfp)
2899{
2900 unsigned int objects = objs_per_slab_page(s, page);
2901 void *vec;
2902
2903 gfp &= ~OBJCGS_CLEAR_MASK;
2904 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2905 page_to_nid(page));
2906 if (!vec)
2907 return -ENOMEM;
2908
2909 if (cmpxchg(&page->obj_cgroups, NULL,
2910 (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
2911 kfree(vec);
2912 else
2913 kmemleak_not_leak(vec);
2914
2915 return 0;
2916}
2917
2918/*
Olivier Deprez0e641232021-09-23 10:07:05 +02002919 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2920 *
2921 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2922 * cgroup_mutex, etc.
2923 */
2924struct mem_cgroup *mem_cgroup_from_obj(void *p)
2925{
2926 struct page *page;
2927
2928 if (mem_cgroup_disabled())
2929 return NULL;
2930
2931 page = virt_to_head_page(p);
2932
2933 /*
Olivier Deprez157378f2022-04-04 15:47:50 +02002934 * If page->mem_cgroup is set, it's either a simple mem_cgroup pointer
2935 * or a pointer to obj_cgroup vector. In the latter case the lowest
2936 * bit of the pointer is set.
2937 * The page->mem_cgroup pointer can be asynchronously changed
2938 * from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed
2939 * from a valid memcg pointer to objcg vector or back.
Olivier Deprez0e641232021-09-23 10:07:05 +02002940 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002941 if (!page->mem_cgroup)
2942 return NULL;
2943
2944 /*
2945 * Slab objects are accounted individually, not per-page.
2946 * Memcg membership data for each individual object is saved in
2947 * the page->obj_cgroups.
2948 */
2949 if (page_has_obj_cgroups(page)) {
2950 struct obj_cgroup *objcg;
2951 unsigned int off;
2952
2953 off = obj_to_index(page->slab_cache, page, p);
2954 objcg = page_obj_cgroups(page)[off];
2955 if (objcg)
2956 return obj_cgroup_memcg(objcg);
2957
2958 return NULL;
2959 }
Olivier Deprez0e641232021-09-23 10:07:05 +02002960
2961 /* All other pages use page->mem_cgroup */
2962 return page->mem_cgroup;
2963}
2964
Olivier Deprez157378f2022-04-04 15:47:50 +02002965__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2966{
2967 struct obj_cgroup *objcg = NULL;
2968 struct mem_cgroup *memcg;
2969
2970 if (memcg_kmem_bypass())
2971 return NULL;
2972
2973 rcu_read_lock();
2974 if (unlikely(active_memcg()))
2975 memcg = active_memcg();
2976 else
2977 memcg = mem_cgroup_from_task(current);
2978
2979 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2980 objcg = rcu_dereference(memcg->objcg);
2981 if (objcg && obj_cgroup_tryget(objcg))
2982 break;
2983 objcg = NULL;
2984 }
2985 rcu_read_unlock();
2986
2987 return objcg;
2988}
2989
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002990static int memcg_alloc_cache_id(void)
2991{
2992 int id, size;
2993 int err;
2994
2995 id = ida_simple_get(&memcg_cache_ida,
2996 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2997 if (id < 0)
2998 return id;
2999
3000 if (id < memcg_nr_cache_ids)
3001 return id;
3002
3003 /*
3004 * There's no space for the new id in memcg_caches arrays,
3005 * so we have to grow them.
3006 */
3007 down_write(&memcg_cache_ids_sem);
3008
3009 size = 2 * (id + 1);
3010 if (size < MEMCG_CACHES_MIN_SIZE)
3011 size = MEMCG_CACHES_MIN_SIZE;
3012 else if (size > MEMCG_CACHES_MAX_SIZE)
3013 size = MEMCG_CACHES_MAX_SIZE;
3014
Olivier Deprez157378f2022-04-04 15:47:50 +02003015 err = memcg_update_all_list_lrus(size);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003016 if (!err)
3017 memcg_nr_cache_ids = size;
3018
3019 up_write(&memcg_cache_ids_sem);
3020
3021 if (err) {
3022 ida_simple_remove(&memcg_cache_ida, id);
3023 return err;
3024 }
3025 return id;
3026}
3027
3028static void memcg_free_cache_id(int id)
3029{
3030 ida_simple_remove(&memcg_cache_ida, id);
3031}
3032
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003033/**
Olivier Deprez157378f2022-04-04 15:47:50 +02003034 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003035 * @memcg: memory cgroup to charge
Olivier Deprez157378f2022-04-04 15:47:50 +02003036 * @gfp: reclaim mode
3037 * @nr_pages: number of pages to charge
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003038 *
3039 * Returns 0 on success, an error code on failure.
3040 */
Olivier Deprez157378f2022-04-04 15:47:50 +02003041int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3042 unsigned int nr_pages)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003043{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003044 struct page_counter *counter;
3045 int ret;
3046
3047 ret = try_charge(memcg, gfp, nr_pages);
3048 if (ret)
3049 return ret;
3050
3051 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3052 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
David Brazdil0f672f62019-12-10 10:32:29 +00003053
3054 /*
3055 * Enforce __GFP_NOFAIL allocation because callers are not
3056 * prepared to see failures and likely do not have any failure
3057 * handling code.
3058 */
3059 if (gfp & __GFP_NOFAIL) {
3060 page_counter_charge(&memcg->kmem, nr_pages);
3061 return 0;
3062 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003063 cancel_charge(memcg, nr_pages);
3064 return -ENOMEM;
3065 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003066 return 0;
3067}
3068
3069/**
Olivier Deprez157378f2022-04-04 15:47:50 +02003070 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3071 * @memcg: memcg to uncharge
3072 * @nr_pages: number of pages to uncharge
3073 */
3074void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3075{
3076 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3077 page_counter_uncharge(&memcg->kmem, nr_pages);
3078
3079 refill_stock(memcg, nr_pages);
3080}
3081
3082/**
3083 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003084 * @page: page to charge
3085 * @gfp: reclaim mode
3086 * @order: allocation order
3087 *
3088 * Returns 0 on success, an error code on failure.
3089 */
Olivier Deprez157378f2022-04-04 15:47:50 +02003090int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003091{
3092 struct mem_cgroup *memcg;
3093 int ret = 0;
3094
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003095 memcg = get_mem_cgroup_from_current();
Olivier Deprez157378f2022-04-04 15:47:50 +02003096 if (memcg && !mem_cgroup_is_root(memcg)) {
3097 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
David Brazdil0f672f62019-12-10 10:32:29 +00003098 if (!ret) {
3099 page->mem_cgroup = memcg;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003100 __SetPageKmemcg(page);
Olivier Deprez157378f2022-04-04 15:47:50 +02003101 return 0;
David Brazdil0f672f62019-12-10 10:32:29 +00003102 }
Olivier Deprez157378f2022-04-04 15:47:50 +02003103 css_put(&memcg->css);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003104 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003105 return ret;
3106}
David Brazdil0f672f62019-12-10 10:32:29 +00003107
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003108/**
Olivier Deprez157378f2022-04-04 15:47:50 +02003109 * __memcg_kmem_uncharge_page: uncharge a kmem page
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003110 * @page: page to uncharge
3111 * @order: allocation order
3112 */
Olivier Deprez157378f2022-04-04 15:47:50 +02003113void __memcg_kmem_uncharge_page(struct page *page, int order)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003114{
3115 struct mem_cgroup *memcg = page->mem_cgroup;
3116 unsigned int nr_pages = 1 << order;
3117
3118 if (!memcg)
3119 return;
3120
3121 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
Olivier Deprez157378f2022-04-04 15:47:50 +02003122 __memcg_kmem_uncharge(memcg, nr_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003123 page->mem_cgroup = NULL;
Olivier Deprez157378f2022-04-04 15:47:50 +02003124 css_put(&memcg->css);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003125
3126 /* slab pages do not have PageKmemcg flag set */
3127 if (PageKmemcg(page))
3128 __ClearPageKmemcg(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003129}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003130
Olivier Deprez157378f2022-04-04 15:47:50 +02003131static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003132{
Olivier Deprez157378f2022-04-04 15:47:50 +02003133 struct memcg_stock_pcp *stock;
3134 unsigned long flags;
3135 bool ret = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003136
Olivier Deprez157378f2022-04-04 15:47:50 +02003137 local_irq_save(flags);
3138
3139 stock = this_cpu_ptr(&memcg_stock);
3140 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3141 stock->nr_bytes -= nr_bytes;
3142 ret = true;
3143 }
3144
3145 local_irq_restore(flags);
3146
3147 return ret;
3148}
3149
3150static void drain_obj_stock(struct memcg_stock_pcp *stock)
3151{
3152 struct obj_cgroup *old = stock->cached_objcg;
3153
3154 if (!old)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003155 return;
3156
Olivier Deprez157378f2022-04-04 15:47:50 +02003157 if (stock->nr_bytes) {
3158 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3159 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003160
Olivier Deprez157378f2022-04-04 15:47:50 +02003161 if (nr_pages) {
3162 struct mem_cgroup *memcg;
3163
3164 rcu_read_lock();
3165retry:
3166 memcg = obj_cgroup_memcg(old);
3167 if (unlikely(!css_tryget(&memcg->css)))
3168 goto retry;
3169 rcu_read_unlock();
3170
3171 __memcg_kmem_uncharge(memcg, nr_pages);
3172 css_put(&memcg->css);
3173 }
3174
3175 /*
3176 * The leftover is flushed to the centralized per-memcg value.
3177 * On the next attempt to refill obj stock it will be moved
3178 * to a per-cpu stock (probably, on an other CPU), see
3179 * refill_obj_stock().
3180 *
3181 * How often it's flushed is a trade-off between the memory
3182 * limit enforcement accuracy and potential CPU contention,
3183 * so it might be changed in the future.
3184 */
3185 atomic_add(nr_bytes, &old->nr_charged_bytes);
3186 stock->nr_bytes = 0;
3187 }
3188
3189 obj_cgroup_put(old);
3190 stock->cached_objcg = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003191}
Olivier Deprez157378f2022-04-04 15:47:50 +02003192
3193static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3194 struct mem_cgroup *root_memcg)
3195{
3196 struct mem_cgroup *memcg;
3197
3198 if (stock->cached_objcg) {
3199 memcg = obj_cgroup_memcg(stock->cached_objcg);
3200 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3201 return true;
3202 }
3203
3204 return false;
3205}
3206
3207static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3208{
3209 struct memcg_stock_pcp *stock;
3210 unsigned long flags;
3211
3212 local_irq_save(flags);
3213
3214 stock = this_cpu_ptr(&memcg_stock);
3215 if (stock->cached_objcg != objcg) { /* reset if necessary */
3216 drain_obj_stock(stock);
3217 obj_cgroup_get(objcg);
3218 stock->cached_objcg = objcg;
3219 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3220 }
3221 stock->nr_bytes += nr_bytes;
3222
3223 if (stock->nr_bytes > PAGE_SIZE)
3224 drain_obj_stock(stock);
3225
3226 local_irq_restore(flags);
3227}
3228
3229int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3230{
3231 struct mem_cgroup *memcg;
3232 unsigned int nr_pages, nr_bytes;
3233 int ret;
3234
3235 if (consume_obj_stock(objcg, size))
3236 return 0;
3237
3238 /*
3239 * In theory, memcg->nr_charged_bytes can have enough
3240 * pre-charged bytes to satisfy the allocation. However,
3241 * flushing memcg->nr_charged_bytes requires two atomic
3242 * operations, and memcg->nr_charged_bytes can't be big,
3243 * so it's better to ignore it and try grab some new pages.
3244 * memcg->nr_charged_bytes will be flushed in
3245 * refill_obj_stock(), called from this function or
3246 * independently later.
3247 */
3248 rcu_read_lock();
3249retry:
3250 memcg = obj_cgroup_memcg(objcg);
3251 if (unlikely(!css_tryget(&memcg->css)))
3252 goto retry;
3253 rcu_read_unlock();
3254
3255 nr_pages = size >> PAGE_SHIFT;
3256 nr_bytes = size & (PAGE_SIZE - 1);
3257
3258 if (nr_bytes)
3259 nr_pages += 1;
3260
3261 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3262 if (!ret && nr_bytes)
3263 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3264
3265 css_put(&memcg->css);
3266 return ret;
3267}
3268
3269void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3270{
3271 refill_obj_stock(objcg, size);
3272}
3273
3274#endif /* CONFIG_MEMCG_KMEM */
3275
3276/*
3277 * Because head->mem_cgroup is not set on tails, set it now.
3278 */
3279void split_page_memcg(struct page *head, unsigned int nr)
3280{
3281 struct mem_cgroup *memcg = head->mem_cgroup;
3282 int kmemcg = PageKmemcg(head);
3283 int i;
3284
3285 if (mem_cgroup_disabled() || !memcg)
3286 return;
3287
3288 for (i = 1; i < nr; i++) {
3289 head[i].mem_cgroup = memcg;
3290 if (kmemcg)
3291 __SetPageKmemcg(head + i);
3292 }
3293 css_get_many(&memcg->css, nr - 1);
3294}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003295
3296#ifdef CONFIG_MEMCG_SWAP
3297/**
3298 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3299 * @entry: swap entry to be moved
3300 * @from: mem_cgroup which the entry is moved from
3301 * @to: mem_cgroup which the entry is moved to
3302 *
3303 * It succeeds only when the swap_cgroup's record for this entry is the same
3304 * as the mem_cgroup's id of @from.
3305 *
3306 * Returns 0 on success, -EINVAL on failure.
3307 *
3308 * The caller must have charged to @to, IOW, called page_counter_charge() about
3309 * both res and memsw, and called css_get().
3310 */
3311static int mem_cgroup_move_swap_account(swp_entry_t entry,
3312 struct mem_cgroup *from, struct mem_cgroup *to)
3313{
3314 unsigned short old_id, new_id;
3315
3316 old_id = mem_cgroup_id(from);
3317 new_id = mem_cgroup_id(to);
3318
3319 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3320 mod_memcg_state(from, MEMCG_SWAP, -1);
3321 mod_memcg_state(to, MEMCG_SWAP, 1);
3322 return 0;
3323 }
3324 return -EINVAL;
3325}
3326#else
3327static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3328 struct mem_cgroup *from, struct mem_cgroup *to)
3329{
3330 return -EINVAL;
3331}
3332#endif
3333
3334static DEFINE_MUTEX(memcg_max_mutex);
3335
3336static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3337 unsigned long max, bool memsw)
3338{
3339 bool enlarge = false;
3340 bool drained = false;
3341 int ret;
3342 bool limits_invariant;
3343 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3344
3345 do {
3346 if (signal_pending(current)) {
3347 ret = -EINTR;
3348 break;
3349 }
3350
3351 mutex_lock(&memcg_max_mutex);
3352 /*
3353 * Make sure that the new limit (memsw or memory limit) doesn't
3354 * break our basic invariant rule memory.max <= memsw.max.
3355 */
Olivier Deprez157378f2022-04-04 15:47:50 +02003356 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003357 max <= memcg->memsw.max;
3358 if (!limits_invariant) {
3359 mutex_unlock(&memcg_max_mutex);
3360 ret = -EINVAL;
3361 break;
3362 }
3363 if (max > counter->max)
3364 enlarge = true;
3365 ret = page_counter_set_max(counter, max);
3366 mutex_unlock(&memcg_max_mutex);
3367
3368 if (!ret)
3369 break;
3370
3371 if (!drained) {
3372 drain_all_stock(memcg);
3373 drained = true;
3374 continue;
3375 }
3376
3377 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3378 GFP_KERNEL, !memsw)) {
3379 ret = -EBUSY;
3380 break;
3381 }
3382 } while (true);
3383
3384 if (!ret && enlarge)
3385 memcg_oom_recover(memcg);
3386
3387 return ret;
3388}
3389
3390unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3391 gfp_t gfp_mask,
3392 unsigned long *total_scanned)
3393{
3394 unsigned long nr_reclaimed = 0;
3395 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3396 unsigned long reclaimed;
3397 int loop = 0;
3398 struct mem_cgroup_tree_per_node *mctz;
3399 unsigned long excess;
3400 unsigned long nr_scanned;
3401
3402 if (order > 0)
3403 return 0;
3404
3405 mctz = soft_limit_tree_node(pgdat->node_id);
3406
3407 /*
3408 * Do not even bother to check the largest node if the root
3409 * is empty. Do it lockless to prevent lock bouncing. Races
3410 * are acceptable as soft limit is best effort anyway.
3411 */
3412 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3413 return 0;
3414
3415 /*
3416 * This loop can run a while, specially if mem_cgroup's continuously
3417 * keep exceeding their soft limit and putting the system under
3418 * pressure
3419 */
3420 do {
3421 if (next_mz)
3422 mz = next_mz;
3423 else
3424 mz = mem_cgroup_largest_soft_limit_node(mctz);
3425 if (!mz)
3426 break;
3427
3428 nr_scanned = 0;
3429 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3430 gfp_mask, &nr_scanned);
3431 nr_reclaimed += reclaimed;
3432 *total_scanned += nr_scanned;
3433 spin_lock_irq(&mctz->lock);
3434 __mem_cgroup_remove_exceeded(mz, mctz);
3435
3436 /*
3437 * If we failed to reclaim anything from this memory cgroup
3438 * it is time to move on to the next cgroup
3439 */
3440 next_mz = NULL;
3441 if (!reclaimed)
3442 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3443
3444 excess = soft_limit_excess(mz->memcg);
3445 /*
3446 * One school of thought says that we should not add
3447 * back the node to the tree if reclaim returns 0.
3448 * But our reclaim could return 0, simply because due
3449 * to priority we are exposing a smaller subset of
3450 * memory to reclaim from. Consider this as a longer
3451 * term TODO.
3452 */
3453 /* If excess == 0, no tree ops */
3454 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3455 spin_unlock_irq(&mctz->lock);
3456 css_put(&mz->memcg->css);
3457 loop++;
3458 /*
3459 * Could not reclaim anything and there are no more
3460 * mem cgroups to try or we seem to be looping without
3461 * reclaiming anything.
3462 */
3463 if (!nr_reclaimed &&
3464 (next_mz == NULL ||
3465 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3466 break;
3467 } while (!nr_reclaimed);
3468 if (next_mz)
3469 css_put(&next_mz->memcg->css);
3470 return nr_reclaimed;
3471}
3472
3473/*
3474 * Test whether @memcg has children, dead or alive. Note that this
3475 * function doesn't care whether @memcg has use_hierarchy enabled and
3476 * returns %true if there are child csses according to the cgroup
Olivier Deprez157378f2022-04-04 15:47:50 +02003477 * hierarchy. Testing use_hierarchy is the caller's responsibility.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003478 */
3479static inline bool memcg_has_children(struct mem_cgroup *memcg)
3480{
3481 bool ret;
3482
3483 rcu_read_lock();
3484 ret = css_next_child(NULL, &memcg->css);
3485 rcu_read_unlock();
3486 return ret;
3487}
3488
3489/*
3490 * Reclaims as many pages from the given memcg as possible.
3491 *
3492 * Caller is responsible for holding css reference for memcg.
3493 */
3494static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3495{
Olivier Deprez157378f2022-04-04 15:47:50 +02003496 int nr_retries = MAX_RECLAIM_RETRIES;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003497
3498 /* we call try-to-free pages for make this cgroup empty */
3499 lru_add_drain_all();
3500
3501 drain_all_stock(memcg);
3502
3503 /* try to free all pages in this cgroup */
3504 while (nr_retries && page_counter_read(&memcg->memory)) {
3505 int progress;
3506
3507 if (signal_pending(current))
3508 return -EINTR;
3509
3510 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3511 GFP_KERNEL, true);
3512 if (!progress) {
3513 nr_retries--;
3514 /* maybe some writeback is necessary */
3515 congestion_wait(BLK_RW_ASYNC, HZ/10);
3516 }
3517
3518 }
3519
3520 return 0;
3521}
3522
3523static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3524 char *buf, size_t nbytes,
3525 loff_t off)
3526{
3527 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3528
3529 if (mem_cgroup_is_root(memcg))
3530 return -EINVAL;
3531 return mem_cgroup_force_empty(memcg) ?: nbytes;
3532}
3533
3534static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3535 struct cftype *cft)
3536{
3537 return mem_cgroup_from_css(css)->use_hierarchy;
3538}
3539
3540static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3541 struct cftype *cft, u64 val)
3542{
3543 int retval = 0;
3544 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3545 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3546
3547 if (memcg->use_hierarchy == val)
3548 return 0;
3549
3550 /*
3551 * If parent's use_hierarchy is set, we can't make any modifications
3552 * in the child subtrees. If it is unset, then the change can
3553 * occur, provided the current cgroup has no children.
3554 *
3555 * For the root cgroup, parent_mem is NULL, we allow value to be
3556 * set if there are no children.
3557 */
3558 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3559 (val == 1 || val == 0)) {
3560 if (!memcg_has_children(memcg))
3561 memcg->use_hierarchy = val;
3562 else
3563 retval = -EBUSY;
3564 } else
3565 retval = -EINVAL;
3566
3567 return retval;
3568}
3569
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003570static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3571{
David Brazdil0f672f62019-12-10 10:32:29 +00003572 unsigned long val;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003573
3574 if (mem_cgroup_is_root(memcg)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02003575 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3576 memcg_page_state(memcg, NR_ANON_MAPPED);
David Brazdil0f672f62019-12-10 10:32:29 +00003577 if (swap)
3578 val += memcg_page_state(memcg, MEMCG_SWAP);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003579 } else {
3580 if (!swap)
3581 val = page_counter_read(&memcg->memory);
3582 else
3583 val = page_counter_read(&memcg->memsw);
3584 }
3585 return val;
3586}
3587
3588enum {
3589 RES_USAGE,
3590 RES_LIMIT,
3591 RES_MAX_USAGE,
3592 RES_FAILCNT,
3593 RES_SOFT_LIMIT,
3594};
3595
3596static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3597 struct cftype *cft)
3598{
3599 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3600 struct page_counter *counter;
3601
3602 switch (MEMFILE_TYPE(cft->private)) {
3603 case _MEM:
3604 counter = &memcg->memory;
3605 break;
3606 case _MEMSWAP:
3607 counter = &memcg->memsw;
3608 break;
3609 case _KMEM:
3610 counter = &memcg->kmem;
3611 break;
3612 case _TCP:
3613 counter = &memcg->tcpmem;
3614 break;
3615 default:
3616 BUG();
3617 }
3618
3619 switch (MEMFILE_ATTR(cft->private)) {
3620 case RES_USAGE:
3621 if (counter == &memcg->memory)
3622 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3623 if (counter == &memcg->memsw)
3624 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3625 return (u64)page_counter_read(counter) * PAGE_SIZE;
3626 case RES_LIMIT:
3627 return (u64)counter->max * PAGE_SIZE;
3628 case RES_MAX_USAGE:
3629 return (u64)counter->watermark * PAGE_SIZE;
3630 case RES_FAILCNT:
3631 return counter->failcnt;
3632 case RES_SOFT_LIMIT:
3633 return (u64)memcg->soft_limit * PAGE_SIZE;
3634 default:
3635 BUG();
3636 }
3637}
3638
Olivier Deprez0e641232021-09-23 10:07:05 +02003639static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
David Brazdil0f672f62019-12-10 10:32:29 +00003640{
Olivier Deprez0e641232021-09-23 10:07:05 +02003641 unsigned long stat[MEMCG_NR_STAT] = {0};
David Brazdil0f672f62019-12-10 10:32:29 +00003642 struct mem_cgroup *mi;
3643 int node, cpu, i;
David Brazdil0f672f62019-12-10 10:32:29 +00003644
3645 for_each_online_cpu(cpu)
Olivier Deprez0e641232021-09-23 10:07:05 +02003646 for (i = 0; i < MEMCG_NR_STAT; i++)
David Brazdil0f672f62019-12-10 10:32:29 +00003647 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3648
3649 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
Olivier Deprez0e641232021-09-23 10:07:05 +02003650 for (i = 0; i < MEMCG_NR_STAT; i++)
David Brazdil0f672f62019-12-10 10:32:29 +00003651 atomic_long_add(stat[i], &mi->vmstats[i]);
3652
David Brazdil0f672f62019-12-10 10:32:29 +00003653 for_each_node(node) {
3654 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3655 struct mem_cgroup_per_node *pi;
3656
Olivier Deprez0e641232021-09-23 10:07:05 +02003657 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
David Brazdil0f672f62019-12-10 10:32:29 +00003658 stat[i] = 0;
3659
3660 for_each_online_cpu(cpu)
Olivier Deprez0e641232021-09-23 10:07:05 +02003661 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
David Brazdil0f672f62019-12-10 10:32:29 +00003662 stat[i] += per_cpu(
3663 pn->lruvec_stat_cpu->count[i], cpu);
3664
3665 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
Olivier Deprez0e641232021-09-23 10:07:05 +02003666 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
David Brazdil0f672f62019-12-10 10:32:29 +00003667 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3668 }
3669}
3670
3671static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3672{
3673 unsigned long events[NR_VM_EVENT_ITEMS];
3674 struct mem_cgroup *mi;
3675 int cpu, i;
3676
3677 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3678 events[i] = 0;
3679
3680 for_each_online_cpu(cpu)
3681 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3682 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3683 cpu);
3684
3685 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3686 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3687 atomic_long_add(events[i], &mi->vmevents[i]);
3688}
3689
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003690#ifdef CONFIG_MEMCG_KMEM
3691static int memcg_online_kmem(struct mem_cgroup *memcg)
3692{
Olivier Deprez157378f2022-04-04 15:47:50 +02003693 struct obj_cgroup *objcg;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003694 int memcg_id;
3695
3696 if (cgroup_memory_nokmem)
3697 return 0;
3698
3699 BUG_ON(memcg->kmemcg_id >= 0);
3700 BUG_ON(memcg->kmem_state);
3701
3702 memcg_id = memcg_alloc_cache_id();
3703 if (memcg_id < 0)
3704 return memcg_id;
3705
Olivier Deprez157378f2022-04-04 15:47:50 +02003706 objcg = obj_cgroup_alloc();
3707 if (!objcg) {
3708 memcg_free_cache_id(memcg_id);
3709 return -ENOMEM;
3710 }
3711 objcg->memcg = memcg;
3712 rcu_assign_pointer(memcg->objcg, objcg);
3713
3714 static_branch_enable(&memcg_kmem_enabled_key);
3715
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003716 /*
3717 * A memory cgroup is considered kmem-online as soon as it gets
3718 * kmemcg_id. Setting the id after enabling static branching will
3719 * guarantee no one starts accounting before all call sites are
3720 * patched.
3721 */
3722 memcg->kmemcg_id = memcg_id;
3723 memcg->kmem_state = KMEM_ONLINE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003724
3725 return 0;
3726}
3727
3728static void memcg_offline_kmem(struct mem_cgroup *memcg)
3729{
3730 struct cgroup_subsys_state *css;
3731 struct mem_cgroup *parent, *child;
3732 int kmemcg_id;
3733
3734 if (memcg->kmem_state != KMEM_ONLINE)
3735 return;
Olivier Deprez157378f2022-04-04 15:47:50 +02003736
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003737 memcg->kmem_state = KMEM_ALLOCATED;
3738
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003739 parent = parent_mem_cgroup(memcg);
3740 if (!parent)
3741 parent = root_mem_cgroup;
3742
Olivier Deprez157378f2022-04-04 15:47:50 +02003743 memcg_reparent_objcgs(memcg, parent);
David Brazdil0f672f62019-12-10 10:32:29 +00003744
3745 kmemcg_id = memcg->kmemcg_id;
3746 BUG_ON(kmemcg_id < 0);
3747
3748 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003749 * Change kmemcg_id of this cgroup and all its descendants to the
3750 * parent's id, and then move all entries from this cgroup's list_lrus
3751 * to ones of the parent. After we have finished, all list_lrus
3752 * corresponding to this cgroup are guaranteed to remain empty. The
3753 * ordering is imposed by list_lru_node->lock taken by
3754 * memcg_drain_all_list_lrus().
3755 */
3756 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3757 css_for_each_descendant_pre(css, &memcg->css) {
3758 child = mem_cgroup_from_css(css);
3759 BUG_ON(child->kmemcg_id != kmemcg_id);
3760 child->kmemcg_id = parent->kmemcg_id;
3761 if (!memcg->use_hierarchy)
3762 break;
3763 }
3764 rcu_read_unlock();
3765
3766 memcg_drain_all_list_lrus(kmemcg_id, parent);
3767
3768 memcg_free_cache_id(kmemcg_id);
3769}
3770
3771static void memcg_free_kmem(struct mem_cgroup *memcg)
3772{
3773 /* css_alloc() failed, offlining didn't happen */
3774 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3775 memcg_offline_kmem(memcg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003776}
3777#else
3778static int memcg_online_kmem(struct mem_cgroup *memcg)
3779{
3780 return 0;
3781}
3782static void memcg_offline_kmem(struct mem_cgroup *memcg)
3783{
3784}
3785static void memcg_free_kmem(struct mem_cgroup *memcg)
3786{
3787}
3788#endif /* CONFIG_MEMCG_KMEM */
3789
3790static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3791 unsigned long max)
3792{
3793 int ret;
3794
3795 mutex_lock(&memcg_max_mutex);
3796 ret = page_counter_set_max(&memcg->kmem, max);
3797 mutex_unlock(&memcg_max_mutex);
3798 return ret;
3799}
3800
3801static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3802{
3803 int ret;
3804
3805 mutex_lock(&memcg_max_mutex);
3806
3807 ret = page_counter_set_max(&memcg->tcpmem, max);
3808 if (ret)
3809 goto out;
3810
3811 if (!memcg->tcpmem_active) {
3812 /*
3813 * The active flag needs to be written after the static_key
3814 * update. This is what guarantees that the socket activation
3815 * function is the last one to run. See mem_cgroup_sk_alloc()
3816 * for details, and note that we don't mark any socket as
3817 * belonging to this memcg until that flag is up.
3818 *
3819 * We need to do this, because static_keys will span multiple
3820 * sites, but we can't control their order. If we mark a socket
3821 * as accounted, but the accounting functions are not patched in
3822 * yet, we'll lose accounting.
3823 *
3824 * We never race with the readers in mem_cgroup_sk_alloc(),
3825 * because when this value change, the code to process it is not
3826 * patched in yet.
3827 */
3828 static_branch_inc(&memcg_sockets_enabled_key);
3829 memcg->tcpmem_active = true;
3830 }
3831out:
3832 mutex_unlock(&memcg_max_mutex);
3833 return ret;
3834}
3835
3836/*
3837 * The user of this function is...
3838 * RES_LIMIT.
3839 */
3840static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3841 char *buf, size_t nbytes, loff_t off)
3842{
3843 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3844 unsigned long nr_pages;
3845 int ret;
3846
3847 buf = strstrip(buf);
3848 ret = page_counter_memparse(buf, "-1", &nr_pages);
3849 if (ret)
3850 return ret;
3851
3852 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3853 case RES_LIMIT:
3854 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3855 ret = -EINVAL;
3856 break;
3857 }
3858 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3859 case _MEM:
3860 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3861 break;
3862 case _MEMSWAP:
3863 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3864 break;
3865 case _KMEM:
David Brazdil0f672f62019-12-10 10:32:29 +00003866 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3867 "Please report your usecase to linux-mm@kvack.org if you "
3868 "depend on this functionality.\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003869 ret = memcg_update_kmem_max(memcg, nr_pages);
3870 break;
3871 case _TCP:
3872 ret = memcg_update_tcp_max(memcg, nr_pages);
3873 break;
3874 }
3875 break;
3876 case RES_SOFT_LIMIT:
3877 memcg->soft_limit = nr_pages;
3878 ret = 0;
3879 break;
3880 }
3881 return ret ?: nbytes;
3882}
3883
3884static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3885 size_t nbytes, loff_t off)
3886{
3887 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3888 struct page_counter *counter;
3889
3890 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3891 case _MEM:
3892 counter = &memcg->memory;
3893 break;
3894 case _MEMSWAP:
3895 counter = &memcg->memsw;
3896 break;
3897 case _KMEM:
3898 counter = &memcg->kmem;
3899 break;
3900 case _TCP:
3901 counter = &memcg->tcpmem;
3902 break;
3903 default:
3904 BUG();
3905 }
3906
3907 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3908 case RES_MAX_USAGE:
3909 page_counter_reset_watermark(counter);
3910 break;
3911 case RES_FAILCNT:
3912 counter->failcnt = 0;
3913 break;
3914 default:
3915 BUG();
3916 }
3917
3918 return nbytes;
3919}
3920
3921static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3922 struct cftype *cft)
3923{
3924 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3925}
3926
3927#ifdef CONFIG_MMU
3928static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3929 struct cftype *cft, u64 val)
3930{
3931 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3932
3933 if (val & ~MOVE_MASK)
3934 return -EINVAL;
3935
3936 /*
3937 * No kind of locking is needed in here, because ->can_attach() will
3938 * check this value once in the beginning of the process, and then carry
3939 * on with stale data. This means that changes to this value will only
3940 * affect task migrations starting after the change.
3941 */
3942 memcg->move_charge_at_immigrate = val;
3943 return 0;
3944}
3945#else
3946static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3947 struct cftype *cft, u64 val)
3948{
3949 return -ENOSYS;
3950}
3951#endif
3952
3953#ifdef CONFIG_NUMA
David Brazdil0f672f62019-12-10 10:32:29 +00003954
3955#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3956#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3957#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3958
3959static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
Olivier Deprez157378f2022-04-04 15:47:50 +02003960 int nid, unsigned int lru_mask, bool tree)
David Brazdil0f672f62019-12-10 10:32:29 +00003961{
Olivier Deprez157378f2022-04-04 15:47:50 +02003962 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
David Brazdil0f672f62019-12-10 10:32:29 +00003963 unsigned long nr = 0;
3964 enum lru_list lru;
3965
3966 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3967
3968 for_each_lru(lru) {
3969 if (!(BIT(lru) & lru_mask))
3970 continue;
Olivier Deprez157378f2022-04-04 15:47:50 +02003971 if (tree)
3972 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3973 else
3974 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
David Brazdil0f672f62019-12-10 10:32:29 +00003975 }
3976 return nr;
3977}
3978
3979static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
Olivier Deprez157378f2022-04-04 15:47:50 +02003980 unsigned int lru_mask,
3981 bool tree)
David Brazdil0f672f62019-12-10 10:32:29 +00003982{
3983 unsigned long nr = 0;
3984 enum lru_list lru;
3985
3986 for_each_lru(lru) {
3987 if (!(BIT(lru) & lru_mask))
3988 continue;
Olivier Deprez157378f2022-04-04 15:47:50 +02003989 if (tree)
3990 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3991 else
3992 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
David Brazdil0f672f62019-12-10 10:32:29 +00003993 }
3994 return nr;
3995}
3996
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003997static int memcg_numa_stat_show(struct seq_file *m, void *v)
3998{
3999 struct numa_stat {
4000 const char *name;
4001 unsigned int lru_mask;
4002 };
4003
4004 static const struct numa_stat stats[] = {
4005 { "total", LRU_ALL },
4006 { "file", LRU_ALL_FILE },
4007 { "anon", LRU_ALL_ANON },
4008 { "unevictable", BIT(LRU_UNEVICTABLE) },
4009 };
4010 const struct numa_stat *stat;
4011 int nid;
David Brazdil0f672f62019-12-10 10:32:29 +00004012 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004013
4014 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
Olivier Deprez157378f2022-04-04 15:47:50 +02004015 seq_printf(m, "%s=%lu", stat->name,
4016 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4017 false));
4018 for_each_node_state(nid, N_MEMORY)
4019 seq_printf(m, " N%d=%lu", nid,
4020 mem_cgroup_node_nr_lru_pages(memcg, nid,
4021 stat->lru_mask, false));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004022 seq_putc(m, '\n');
4023 }
4024
4025 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004026
Olivier Deprez157378f2022-04-04 15:47:50 +02004027 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4028 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4029 true));
4030 for_each_node_state(nid, N_MEMORY)
4031 seq_printf(m, " N%d=%lu", nid,
4032 mem_cgroup_node_nr_lru_pages(memcg, nid,
4033 stat->lru_mask, true));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004034 seq_putc(m, '\n');
4035 }
4036
4037 return 0;
4038}
4039#endif /* CONFIG_NUMA */
4040
David Brazdil0f672f62019-12-10 10:32:29 +00004041static const unsigned int memcg1_stats[] = {
Olivier Deprez157378f2022-04-04 15:47:50 +02004042 NR_FILE_PAGES,
4043 NR_ANON_MAPPED,
4044#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4045 NR_ANON_THPS,
4046#endif
David Brazdil0f672f62019-12-10 10:32:29 +00004047 NR_SHMEM,
4048 NR_FILE_MAPPED,
4049 NR_FILE_DIRTY,
4050 NR_WRITEBACK,
4051 MEMCG_SWAP,
4052};
4053
4054static const char *const memcg1_stat_names[] = {
4055 "cache",
4056 "rss",
Olivier Deprez157378f2022-04-04 15:47:50 +02004057#ifdef CONFIG_TRANSPARENT_HUGEPAGE
David Brazdil0f672f62019-12-10 10:32:29 +00004058 "rss_huge",
Olivier Deprez157378f2022-04-04 15:47:50 +02004059#endif
David Brazdil0f672f62019-12-10 10:32:29 +00004060 "shmem",
4061 "mapped_file",
4062 "dirty",
4063 "writeback",
4064 "swap",
4065};
4066
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004067/* Universal VM events cgroup1 shows, original sort order */
4068static const unsigned int memcg1_events[] = {
4069 PGPGIN,
4070 PGPGOUT,
4071 PGFAULT,
4072 PGMAJFAULT,
4073};
4074
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004075static int memcg_stat_show(struct seq_file *m, void *v)
4076{
David Brazdil0f672f62019-12-10 10:32:29 +00004077 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004078 unsigned long memory, memsw;
4079 struct mem_cgroup *mi;
4080 unsigned int i;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004081
4082 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004083
4084 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
Olivier Deprez157378f2022-04-04 15:47:50 +02004085 unsigned long nr;
4086
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004087 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4088 continue;
Olivier Deprez157378f2022-04-04 15:47:50 +02004089 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4090#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4091 if (memcg1_stats[i] == NR_ANON_THPS)
4092 nr *= HPAGE_PMD_NR;
4093#endif
4094 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004095 }
4096
4097 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
Olivier Deprez157378f2022-04-04 15:47:50 +02004098 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
David Brazdil0f672f62019-12-10 10:32:29 +00004099 memcg_events_local(memcg, memcg1_events[i]));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004100
4101 for (i = 0; i < NR_LRU_LISTS; i++)
Olivier Deprez157378f2022-04-04 15:47:50 +02004102 seq_printf(m, "%s %lu\n", lru_list_name(i),
David Brazdil0f672f62019-12-10 10:32:29 +00004103 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4104 PAGE_SIZE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004105
4106 /* Hierarchical information */
4107 memory = memsw = PAGE_COUNTER_MAX;
4108 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02004109 memory = min(memory, READ_ONCE(mi->memory.max));
4110 memsw = min(memsw, READ_ONCE(mi->memsw.max));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004111 }
4112 seq_printf(m, "hierarchical_memory_limit %llu\n",
4113 (u64)memory * PAGE_SIZE);
4114 if (do_memsw_account())
4115 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4116 (u64)memsw * PAGE_SIZE);
4117
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004118 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
Olivier Deprez157378f2022-04-04 15:47:50 +02004119 unsigned long nr;
4120
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004121 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4122 continue;
Olivier Deprez157378f2022-04-04 15:47:50 +02004123 nr = memcg_page_state(memcg, memcg1_stats[i]);
4124#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4125 if (memcg1_stats[i] == NR_ANON_THPS)
4126 nr *= HPAGE_PMD_NR;
4127#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004128 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
Olivier Deprez157378f2022-04-04 15:47:50 +02004129 (u64)nr * PAGE_SIZE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004130 }
4131
4132 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
Olivier Deprez157378f2022-04-04 15:47:50 +02004133 seq_printf(m, "total_%s %llu\n",
4134 vm_event_name(memcg1_events[i]),
David Brazdil0f672f62019-12-10 10:32:29 +00004135 (u64)memcg_events(memcg, memcg1_events[i]));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004136
4137 for (i = 0; i < NR_LRU_LISTS; i++)
Olivier Deprez157378f2022-04-04 15:47:50 +02004138 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
David Brazdil0f672f62019-12-10 10:32:29 +00004139 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4140 PAGE_SIZE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004141
4142#ifdef CONFIG_DEBUG_VM
4143 {
4144 pg_data_t *pgdat;
4145 struct mem_cgroup_per_node *mz;
Olivier Deprez157378f2022-04-04 15:47:50 +02004146 unsigned long anon_cost = 0;
4147 unsigned long file_cost = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004148
4149 for_each_online_pgdat(pgdat) {
4150 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004151
Olivier Deprez157378f2022-04-04 15:47:50 +02004152 anon_cost += mz->lruvec.anon_cost;
4153 file_cost += mz->lruvec.file_cost;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004154 }
Olivier Deprez157378f2022-04-04 15:47:50 +02004155 seq_printf(m, "anon_cost %lu\n", anon_cost);
4156 seq_printf(m, "file_cost %lu\n", file_cost);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004157 }
4158#endif
4159
4160 return 0;
4161}
4162
4163static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4164 struct cftype *cft)
4165{
4166 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4167
4168 return mem_cgroup_swappiness(memcg);
4169}
4170
4171static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4172 struct cftype *cft, u64 val)
4173{
4174 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4175
4176 if (val > 100)
4177 return -EINVAL;
4178
4179 if (css->parent)
4180 memcg->swappiness = val;
4181 else
4182 vm_swappiness = val;
4183
4184 return 0;
4185}
4186
4187static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4188{
4189 struct mem_cgroup_threshold_ary *t;
4190 unsigned long usage;
4191 int i;
4192
4193 rcu_read_lock();
4194 if (!swap)
4195 t = rcu_dereference(memcg->thresholds.primary);
4196 else
4197 t = rcu_dereference(memcg->memsw_thresholds.primary);
4198
4199 if (!t)
4200 goto unlock;
4201
4202 usage = mem_cgroup_usage(memcg, swap);
4203
4204 /*
4205 * current_threshold points to threshold just below or equal to usage.
4206 * If it's not true, a threshold was crossed after last
4207 * call of __mem_cgroup_threshold().
4208 */
4209 i = t->current_threshold;
4210
4211 /*
4212 * Iterate backward over array of thresholds starting from
4213 * current_threshold and check if a threshold is crossed.
4214 * If none of thresholds below usage is crossed, we read
4215 * only one element of the array here.
4216 */
4217 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4218 eventfd_signal(t->entries[i].eventfd, 1);
4219
4220 /* i = current_threshold + 1 */
4221 i++;
4222
4223 /*
4224 * Iterate forward over array of thresholds starting from
4225 * current_threshold+1 and check if a threshold is crossed.
4226 * If none of thresholds above usage is crossed, we read
4227 * only one element of the array here.
4228 */
4229 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4230 eventfd_signal(t->entries[i].eventfd, 1);
4231
4232 /* Update current_threshold */
4233 t->current_threshold = i - 1;
4234unlock:
4235 rcu_read_unlock();
4236}
4237
4238static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4239{
4240 while (memcg) {
4241 __mem_cgroup_threshold(memcg, false);
4242 if (do_memsw_account())
4243 __mem_cgroup_threshold(memcg, true);
4244
4245 memcg = parent_mem_cgroup(memcg);
4246 }
4247}
4248
4249static int compare_thresholds(const void *a, const void *b)
4250{
4251 const struct mem_cgroup_threshold *_a = a;
4252 const struct mem_cgroup_threshold *_b = b;
4253
4254 if (_a->threshold > _b->threshold)
4255 return 1;
4256
4257 if (_a->threshold < _b->threshold)
4258 return -1;
4259
4260 return 0;
4261}
4262
4263static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4264{
4265 struct mem_cgroup_eventfd_list *ev;
4266
4267 spin_lock(&memcg_oom_lock);
4268
4269 list_for_each_entry(ev, &memcg->oom_notify, list)
4270 eventfd_signal(ev->eventfd, 1);
4271
4272 spin_unlock(&memcg_oom_lock);
4273 return 0;
4274}
4275
4276static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4277{
4278 struct mem_cgroup *iter;
4279
4280 for_each_mem_cgroup_tree(iter, memcg)
4281 mem_cgroup_oom_notify_cb(iter);
4282}
4283
4284static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4285 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4286{
4287 struct mem_cgroup_thresholds *thresholds;
4288 struct mem_cgroup_threshold_ary *new;
4289 unsigned long threshold;
4290 unsigned long usage;
4291 int i, size, ret;
4292
4293 ret = page_counter_memparse(args, "-1", &threshold);
4294 if (ret)
4295 return ret;
4296
4297 mutex_lock(&memcg->thresholds_lock);
4298
4299 if (type == _MEM) {
4300 thresholds = &memcg->thresholds;
4301 usage = mem_cgroup_usage(memcg, false);
4302 } else if (type == _MEMSWAP) {
4303 thresholds = &memcg->memsw_thresholds;
4304 usage = mem_cgroup_usage(memcg, true);
4305 } else
4306 BUG();
4307
4308 /* Check if a threshold crossed before adding a new one */
4309 if (thresholds->primary)
4310 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4311
4312 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4313
4314 /* Allocate memory for new array of thresholds */
David Brazdil0f672f62019-12-10 10:32:29 +00004315 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004316 if (!new) {
4317 ret = -ENOMEM;
4318 goto unlock;
4319 }
4320 new->size = size;
4321
4322 /* Copy thresholds (if any) to new array */
Olivier Deprez157378f2022-04-04 15:47:50 +02004323 if (thresholds->primary)
4324 memcpy(new->entries, thresholds->primary->entries,
4325 flex_array_size(new, entries, size - 1));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004326
4327 /* Add new threshold */
4328 new->entries[size - 1].eventfd = eventfd;
4329 new->entries[size - 1].threshold = threshold;
4330
4331 /* Sort thresholds. Registering of new threshold isn't time-critical */
Olivier Deprez157378f2022-04-04 15:47:50 +02004332 sort(new->entries, size, sizeof(*new->entries),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004333 compare_thresholds, NULL);
4334
4335 /* Find current threshold */
4336 new->current_threshold = -1;
4337 for (i = 0; i < size; i++) {
4338 if (new->entries[i].threshold <= usage) {
4339 /*
4340 * new->current_threshold will not be used until
4341 * rcu_assign_pointer(), so it's safe to increment
4342 * it here.
4343 */
4344 ++new->current_threshold;
4345 } else
4346 break;
4347 }
4348
4349 /* Free old spare buffer and save old primary buffer as spare */
4350 kfree(thresholds->spare);
4351 thresholds->spare = thresholds->primary;
4352
4353 rcu_assign_pointer(thresholds->primary, new);
4354
4355 /* To be sure that nobody uses thresholds */
4356 synchronize_rcu();
4357
4358unlock:
4359 mutex_unlock(&memcg->thresholds_lock);
4360
4361 return ret;
4362}
4363
4364static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4365 struct eventfd_ctx *eventfd, const char *args)
4366{
4367 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4368}
4369
4370static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4371 struct eventfd_ctx *eventfd, const char *args)
4372{
4373 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4374}
4375
4376static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4377 struct eventfd_ctx *eventfd, enum res_type type)
4378{
4379 struct mem_cgroup_thresholds *thresholds;
4380 struct mem_cgroup_threshold_ary *new;
4381 unsigned long usage;
Olivier Deprez0e641232021-09-23 10:07:05 +02004382 int i, j, size, entries;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004383
4384 mutex_lock(&memcg->thresholds_lock);
4385
4386 if (type == _MEM) {
4387 thresholds = &memcg->thresholds;
4388 usage = mem_cgroup_usage(memcg, false);
4389 } else if (type == _MEMSWAP) {
4390 thresholds = &memcg->memsw_thresholds;
4391 usage = mem_cgroup_usage(memcg, true);
4392 } else
4393 BUG();
4394
4395 if (!thresholds->primary)
4396 goto unlock;
4397
4398 /* Check if a threshold crossed before removing */
4399 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4400
4401 /* Calculate new number of threshold */
Olivier Deprez0e641232021-09-23 10:07:05 +02004402 size = entries = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004403 for (i = 0; i < thresholds->primary->size; i++) {
4404 if (thresholds->primary->entries[i].eventfd != eventfd)
4405 size++;
Olivier Deprez0e641232021-09-23 10:07:05 +02004406 else
4407 entries++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004408 }
4409
4410 new = thresholds->spare;
4411
Olivier Deprez0e641232021-09-23 10:07:05 +02004412 /* If no items related to eventfd have been cleared, nothing to do */
4413 if (!entries)
4414 goto unlock;
4415
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004416 /* Set thresholds array to NULL if we don't have thresholds */
4417 if (!size) {
4418 kfree(new);
4419 new = NULL;
4420 goto swap_buffers;
4421 }
4422
4423 new->size = size;
4424
4425 /* Copy thresholds and find current threshold */
4426 new->current_threshold = -1;
4427 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4428 if (thresholds->primary->entries[i].eventfd == eventfd)
4429 continue;
4430
4431 new->entries[j] = thresholds->primary->entries[i];
4432 if (new->entries[j].threshold <= usage) {
4433 /*
4434 * new->current_threshold will not be used
4435 * until rcu_assign_pointer(), so it's safe to increment
4436 * it here.
4437 */
4438 ++new->current_threshold;
4439 }
4440 j++;
4441 }
4442
4443swap_buffers:
4444 /* Swap primary and spare array */
4445 thresholds->spare = thresholds->primary;
4446
4447 rcu_assign_pointer(thresholds->primary, new);
4448
4449 /* To be sure that nobody uses thresholds */
4450 synchronize_rcu();
4451
4452 /* If all events are unregistered, free the spare array */
4453 if (!new) {
4454 kfree(thresholds->spare);
4455 thresholds->spare = NULL;
4456 }
4457unlock:
4458 mutex_unlock(&memcg->thresholds_lock);
4459}
4460
4461static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4462 struct eventfd_ctx *eventfd)
4463{
4464 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4465}
4466
4467static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4468 struct eventfd_ctx *eventfd)
4469{
4470 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4471}
4472
4473static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4474 struct eventfd_ctx *eventfd, const char *args)
4475{
4476 struct mem_cgroup_eventfd_list *event;
4477
4478 event = kmalloc(sizeof(*event), GFP_KERNEL);
4479 if (!event)
4480 return -ENOMEM;
4481
4482 spin_lock(&memcg_oom_lock);
4483
4484 event->eventfd = eventfd;
4485 list_add(&event->list, &memcg->oom_notify);
4486
4487 /* already in OOM ? */
4488 if (memcg->under_oom)
4489 eventfd_signal(eventfd, 1);
4490 spin_unlock(&memcg_oom_lock);
4491
4492 return 0;
4493}
4494
4495static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4496 struct eventfd_ctx *eventfd)
4497{
4498 struct mem_cgroup_eventfd_list *ev, *tmp;
4499
4500 spin_lock(&memcg_oom_lock);
4501
4502 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4503 if (ev->eventfd == eventfd) {
4504 list_del(&ev->list);
4505 kfree(ev);
4506 }
4507 }
4508
4509 spin_unlock(&memcg_oom_lock);
4510}
4511
4512static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4513{
David Brazdil0f672f62019-12-10 10:32:29 +00004514 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004515
4516 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4517 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4518 seq_printf(sf, "oom_kill %lu\n",
4519 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4520 return 0;
4521}
4522
4523static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4524 struct cftype *cft, u64 val)
4525{
4526 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4527
4528 /* cannot set to root cgroup and only 0 and 1 are allowed */
4529 if (!css->parent || !((val == 0) || (val == 1)))
4530 return -EINVAL;
4531
4532 memcg->oom_kill_disable = val;
4533 if (!val)
4534 memcg_oom_recover(memcg);
4535
4536 return 0;
4537}
4538
4539#ifdef CONFIG_CGROUP_WRITEBACK
4540
David Brazdil0f672f62019-12-10 10:32:29 +00004541#include <trace/events/writeback.h>
4542
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004543static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4544{
4545 return wb_domain_init(&memcg->cgwb_domain, gfp);
4546}
4547
4548static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4549{
4550 wb_domain_exit(&memcg->cgwb_domain);
4551}
4552
4553static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4554{
4555 wb_domain_size_changed(&memcg->cgwb_domain);
4556}
4557
4558struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4559{
4560 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4561
4562 if (!memcg->css.parent)
4563 return NULL;
4564
4565 return &memcg->cgwb_domain;
4566}
4567
David Brazdil0f672f62019-12-10 10:32:29 +00004568/*
4569 * idx can be of type enum memcg_stat_item or node_stat_item.
4570 * Keep in sync with memcg_exact_page().
4571 */
4572static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4573{
4574 long x = atomic_long_read(&memcg->vmstats[idx]);
4575 int cpu;
4576
4577 for_each_online_cpu(cpu)
4578 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4579 if (x < 0)
4580 x = 0;
4581 return x;
4582}
4583
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004584/**
4585 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4586 * @wb: bdi_writeback in question
4587 * @pfilepages: out parameter for number of file pages
4588 * @pheadroom: out parameter for number of allocatable pages according to memcg
4589 * @pdirty: out parameter for number of dirty pages
4590 * @pwriteback: out parameter for number of pages under writeback
4591 *
4592 * Determine the numbers of file, headroom, dirty, and writeback pages in
4593 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4594 * is a bit more involved.
4595 *
4596 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4597 * headroom is calculated as the lowest headroom of itself and the
4598 * ancestors. Note that this doesn't consider the actual amount of
4599 * available memory in the system. The caller should further cap
4600 * *@pheadroom accordingly.
4601 */
4602void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4603 unsigned long *pheadroom, unsigned long *pdirty,
4604 unsigned long *pwriteback)
4605{
4606 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4607 struct mem_cgroup *parent;
4608
David Brazdil0f672f62019-12-10 10:32:29 +00004609 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004610
David Brazdil0f672f62019-12-10 10:32:29 +00004611 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4612 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4613 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004614 *pheadroom = PAGE_COUNTER_MAX;
4615
4616 while ((parent = parent_mem_cgroup(memcg))) {
Olivier Deprez157378f2022-04-04 15:47:50 +02004617 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4618 READ_ONCE(memcg->memory.high));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004619 unsigned long used = page_counter_read(&memcg->memory);
4620
4621 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4622 memcg = parent;
4623 }
4624}
4625
David Brazdil0f672f62019-12-10 10:32:29 +00004626/*
4627 * Foreign dirty flushing
4628 *
4629 * There's an inherent mismatch between memcg and writeback. The former
4630 * trackes ownership per-page while the latter per-inode. This was a
4631 * deliberate design decision because honoring per-page ownership in the
4632 * writeback path is complicated, may lead to higher CPU and IO overheads
4633 * and deemed unnecessary given that write-sharing an inode across
4634 * different cgroups isn't a common use-case.
4635 *
4636 * Combined with inode majority-writer ownership switching, this works well
4637 * enough in most cases but there are some pathological cases. For
4638 * example, let's say there are two cgroups A and B which keep writing to
4639 * different but confined parts of the same inode. B owns the inode and
4640 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4641 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4642 * triggering background writeback. A will be slowed down without a way to
4643 * make writeback of the dirty pages happen.
4644 *
4645 * Conditions like the above can lead to a cgroup getting repatedly and
4646 * severely throttled after making some progress after each
4647 * dirty_expire_interval while the underyling IO device is almost
4648 * completely idle.
4649 *
4650 * Solving this problem completely requires matching the ownership tracking
4651 * granularities between memcg and writeback in either direction. However,
4652 * the more egregious behaviors can be avoided by simply remembering the
4653 * most recent foreign dirtying events and initiating remote flushes on
4654 * them when local writeback isn't enough to keep the memory clean enough.
4655 *
4656 * The following two functions implement such mechanism. When a foreign
4657 * page - a page whose memcg and writeback ownerships don't match - is
4658 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4659 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4660 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4661 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4662 * foreign bdi_writebacks which haven't expired. Both the numbers of
4663 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4664 * limited to MEMCG_CGWB_FRN_CNT.
4665 *
4666 * The mechanism only remembers IDs and doesn't hold any object references.
4667 * As being wrong occasionally doesn't matter, updates and accesses to the
4668 * records are lockless and racy.
4669 */
4670void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4671 struct bdi_writeback *wb)
4672{
4673 struct mem_cgroup *memcg = page->mem_cgroup;
4674 struct memcg_cgwb_frn *frn;
4675 u64 now = get_jiffies_64();
4676 u64 oldest_at = now;
4677 int oldest = -1;
4678 int i;
4679
4680 trace_track_foreign_dirty(page, wb);
4681
4682 /*
4683 * Pick the slot to use. If there is already a slot for @wb, keep
4684 * using it. If not replace the oldest one which isn't being
4685 * written out.
4686 */
4687 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4688 frn = &memcg->cgwb_frn[i];
4689 if (frn->bdi_id == wb->bdi->id &&
4690 frn->memcg_id == wb->memcg_css->id)
4691 break;
4692 if (time_before64(frn->at, oldest_at) &&
4693 atomic_read(&frn->done.cnt) == 1) {
4694 oldest = i;
4695 oldest_at = frn->at;
4696 }
4697 }
4698
4699 if (i < MEMCG_CGWB_FRN_CNT) {
4700 /*
4701 * Re-using an existing one. Update timestamp lazily to
4702 * avoid making the cacheline hot. We want them to be
4703 * reasonably up-to-date and significantly shorter than
4704 * dirty_expire_interval as that's what expires the record.
4705 * Use the shorter of 1s and dirty_expire_interval / 8.
4706 */
4707 unsigned long update_intv =
4708 min_t(unsigned long, HZ,
4709 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4710
4711 if (time_before64(frn->at, now - update_intv))
4712 frn->at = now;
4713 } else if (oldest >= 0) {
4714 /* replace the oldest free one */
4715 frn = &memcg->cgwb_frn[oldest];
4716 frn->bdi_id = wb->bdi->id;
4717 frn->memcg_id = wb->memcg_css->id;
4718 frn->at = now;
4719 }
4720}
4721
4722/* issue foreign writeback flushes for recorded foreign dirtying events */
4723void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4724{
4725 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4726 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4727 u64 now = jiffies_64;
4728 int i;
4729
4730 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4731 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4732
4733 /*
4734 * If the record is older than dirty_expire_interval,
4735 * writeback on it has already started. No need to kick it
4736 * off again. Also, don't start a new one if there's
4737 * already one in flight.
4738 */
4739 if (time_after64(frn->at, now - intv) &&
4740 atomic_read(&frn->done.cnt) == 1) {
4741 frn->at = 0;
4742 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4743 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4744 WB_REASON_FOREIGN_FLUSH,
4745 &frn->done);
4746 }
4747 }
4748}
4749
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004750#else /* CONFIG_CGROUP_WRITEBACK */
4751
4752static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4753{
4754 return 0;
4755}
4756
4757static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4758{
4759}
4760
4761static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4762{
4763}
4764
4765#endif /* CONFIG_CGROUP_WRITEBACK */
4766
4767/*
4768 * DO NOT USE IN NEW FILES.
4769 *
4770 * "cgroup.event_control" implementation.
4771 *
4772 * This is way over-engineered. It tries to support fully configurable
4773 * events for each user. Such level of flexibility is completely
4774 * unnecessary especially in the light of the planned unified hierarchy.
4775 *
4776 * Please deprecate this and replace with something simpler if at all
4777 * possible.
4778 */
4779
4780/*
4781 * Unregister event and free resources.
4782 *
4783 * Gets called from workqueue.
4784 */
4785static void memcg_event_remove(struct work_struct *work)
4786{
4787 struct mem_cgroup_event *event =
4788 container_of(work, struct mem_cgroup_event, remove);
4789 struct mem_cgroup *memcg = event->memcg;
4790
4791 remove_wait_queue(event->wqh, &event->wait);
4792
4793 event->unregister_event(memcg, event->eventfd);
4794
4795 /* Notify userspace the event is going away. */
4796 eventfd_signal(event->eventfd, 1);
4797
4798 eventfd_ctx_put(event->eventfd);
4799 kfree(event);
4800 css_put(&memcg->css);
4801}
4802
4803/*
4804 * Gets called on EPOLLHUP on eventfd when user closes it.
4805 *
4806 * Called with wqh->lock held and interrupts disabled.
4807 */
4808static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4809 int sync, void *key)
4810{
4811 struct mem_cgroup_event *event =
4812 container_of(wait, struct mem_cgroup_event, wait);
4813 struct mem_cgroup *memcg = event->memcg;
4814 __poll_t flags = key_to_poll(key);
4815
4816 if (flags & EPOLLHUP) {
4817 /*
4818 * If the event has been detached at cgroup removal, we
4819 * can simply return knowing the other side will cleanup
4820 * for us.
4821 *
4822 * We can't race against event freeing since the other
4823 * side will require wqh->lock via remove_wait_queue(),
4824 * which we hold.
4825 */
4826 spin_lock(&memcg->event_list_lock);
4827 if (!list_empty(&event->list)) {
4828 list_del_init(&event->list);
4829 /*
4830 * We are in atomic context, but cgroup_event_remove()
4831 * may sleep, so we have to call it in workqueue.
4832 */
4833 schedule_work(&event->remove);
4834 }
4835 spin_unlock(&memcg->event_list_lock);
4836 }
4837
4838 return 0;
4839}
4840
4841static void memcg_event_ptable_queue_proc(struct file *file,
4842 wait_queue_head_t *wqh, poll_table *pt)
4843{
4844 struct mem_cgroup_event *event =
4845 container_of(pt, struct mem_cgroup_event, pt);
4846
4847 event->wqh = wqh;
4848 add_wait_queue(wqh, &event->wait);
4849}
4850
4851/*
4852 * DO NOT USE IN NEW FILES.
4853 *
4854 * Parse input and register new cgroup event handler.
4855 *
4856 * Input must be in format '<event_fd> <control_fd> <args>'.
4857 * Interpretation of args is defined by control file implementation.
4858 */
4859static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4860 char *buf, size_t nbytes, loff_t off)
4861{
4862 struct cgroup_subsys_state *css = of_css(of);
4863 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4864 struct mem_cgroup_event *event;
4865 struct cgroup_subsys_state *cfile_css;
4866 unsigned int efd, cfd;
4867 struct fd efile;
4868 struct fd cfile;
4869 const char *name;
4870 char *endp;
4871 int ret;
4872
4873 buf = strstrip(buf);
4874
4875 efd = simple_strtoul(buf, &endp, 10);
4876 if (*endp != ' ')
4877 return -EINVAL;
4878 buf = endp + 1;
4879
4880 cfd = simple_strtoul(buf, &endp, 10);
4881 if ((*endp != ' ') && (*endp != '\0'))
4882 return -EINVAL;
4883 buf = endp + 1;
4884
4885 event = kzalloc(sizeof(*event), GFP_KERNEL);
4886 if (!event)
4887 return -ENOMEM;
4888
4889 event->memcg = memcg;
4890 INIT_LIST_HEAD(&event->list);
4891 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4892 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4893 INIT_WORK(&event->remove, memcg_event_remove);
4894
4895 efile = fdget(efd);
4896 if (!efile.file) {
4897 ret = -EBADF;
4898 goto out_kfree;
4899 }
4900
4901 event->eventfd = eventfd_ctx_fileget(efile.file);
4902 if (IS_ERR(event->eventfd)) {
4903 ret = PTR_ERR(event->eventfd);
4904 goto out_put_efile;
4905 }
4906
4907 cfile = fdget(cfd);
4908 if (!cfile.file) {
4909 ret = -EBADF;
4910 goto out_put_eventfd;
4911 }
4912
4913 /* the process need read permission on control file */
4914 /* AV: shouldn't we check that it's been opened for read instead? */
4915 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4916 if (ret < 0)
4917 goto out_put_cfile;
4918
4919 /*
4920 * Determine the event callbacks and set them in @event. This used
4921 * to be done via struct cftype but cgroup core no longer knows
4922 * about these events. The following is crude but the whole thing
4923 * is for compatibility anyway.
4924 *
4925 * DO NOT ADD NEW FILES.
4926 */
4927 name = cfile.file->f_path.dentry->d_name.name;
4928
4929 if (!strcmp(name, "memory.usage_in_bytes")) {
4930 event->register_event = mem_cgroup_usage_register_event;
4931 event->unregister_event = mem_cgroup_usage_unregister_event;
4932 } else if (!strcmp(name, "memory.oom_control")) {
4933 event->register_event = mem_cgroup_oom_register_event;
4934 event->unregister_event = mem_cgroup_oom_unregister_event;
4935 } else if (!strcmp(name, "memory.pressure_level")) {
4936 event->register_event = vmpressure_register_event;
4937 event->unregister_event = vmpressure_unregister_event;
4938 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4939 event->register_event = memsw_cgroup_usage_register_event;
4940 event->unregister_event = memsw_cgroup_usage_unregister_event;
4941 } else {
4942 ret = -EINVAL;
4943 goto out_put_cfile;
4944 }
4945
4946 /*
4947 * Verify @cfile should belong to @css. Also, remaining events are
4948 * automatically removed on cgroup destruction but the removal is
4949 * asynchronous, so take an extra ref on @css.
4950 */
4951 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4952 &memory_cgrp_subsys);
4953 ret = -EINVAL;
4954 if (IS_ERR(cfile_css))
4955 goto out_put_cfile;
4956 if (cfile_css != css) {
4957 css_put(cfile_css);
4958 goto out_put_cfile;
4959 }
4960
4961 ret = event->register_event(memcg, event->eventfd, buf);
4962 if (ret)
4963 goto out_put_css;
4964
4965 vfs_poll(efile.file, &event->pt);
4966
4967 spin_lock(&memcg->event_list_lock);
4968 list_add(&event->list, &memcg->event_list);
4969 spin_unlock(&memcg->event_list_lock);
4970
4971 fdput(cfile);
4972 fdput(efile);
4973
4974 return nbytes;
4975
4976out_put_css:
4977 css_put(css);
4978out_put_cfile:
4979 fdput(cfile);
4980out_put_eventfd:
4981 eventfd_ctx_put(event->eventfd);
4982out_put_efile:
4983 fdput(efile);
4984out_kfree:
4985 kfree(event);
4986
4987 return ret;
4988}
4989
4990static struct cftype mem_cgroup_legacy_files[] = {
4991 {
4992 .name = "usage_in_bytes",
4993 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4994 .read_u64 = mem_cgroup_read_u64,
4995 },
4996 {
4997 .name = "max_usage_in_bytes",
4998 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4999 .write = mem_cgroup_reset,
5000 .read_u64 = mem_cgroup_read_u64,
5001 },
5002 {
5003 .name = "limit_in_bytes",
5004 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5005 .write = mem_cgroup_write,
5006 .read_u64 = mem_cgroup_read_u64,
5007 },
5008 {
5009 .name = "soft_limit_in_bytes",
5010 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5011 .write = mem_cgroup_write,
5012 .read_u64 = mem_cgroup_read_u64,
5013 },
5014 {
5015 .name = "failcnt",
5016 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5017 .write = mem_cgroup_reset,
5018 .read_u64 = mem_cgroup_read_u64,
5019 },
5020 {
5021 .name = "stat",
5022 .seq_show = memcg_stat_show,
5023 },
5024 {
5025 .name = "force_empty",
5026 .write = mem_cgroup_force_empty_write,
5027 },
5028 {
5029 .name = "use_hierarchy",
5030 .write_u64 = mem_cgroup_hierarchy_write,
5031 .read_u64 = mem_cgroup_hierarchy_read,
5032 },
5033 {
5034 .name = "cgroup.event_control", /* XXX: for compat */
5035 .write = memcg_write_event_control,
5036 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5037 },
5038 {
5039 .name = "swappiness",
5040 .read_u64 = mem_cgroup_swappiness_read,
5041 .write_u64 = mem_cgroup_swappiness_write,
5042 },
5043 {
5044 .name = "move_charge_at_immigrate",
5045 .read_u64 = mem_cgroup_move_charge_read,
5046 .write_u64 = mem_cgroup_move_charge_write,
5047 },
5048 {
5049 .name = "oom_control",
5050 .seq_show = mem_cgroup_oom_control_read,
5051 .write_u64 = mem_cgroup_oom_control_write,
5052 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5053 },
5054 {
5055 .name = "pressure_level",
5056 },
5057#ifdef CONFIG_NUMA
5058 {
5059 .name = "numa_stat",
5060 .seq_show = memcg_numa_stat_show,
5061 },
5062#endif
5063 {
5064 .name = "kmem.limit_in_bytes",
5065 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5066 .write = mem_cgroup_write,
5067 .read_u64 = mem_cgroup_read_u64,
5068 },
5069 {
5070 .name = "kmem.usage_in_bytes",
5071 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5072 .read_u64 = mem_cgroup_read_u64,
5073 },
5074 {
5075 .name = "kmem.failcnt",
5076 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5077 .write = mem_cgroup_reset,
5078 .read_u64 = mem_cgroup_read_u64,
5079 },
5080 {
5081 .name = "kmem.max_usage_in_bytes",
5082 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5083 .write = mem_cgroup_reset,
5084 .read_u64 = mem_cgroup_read_u64,
5085 },
Olivier Deprez157378f2022-04-04 15:47:50 +02005086#if defined(CONFIG_MEMCG_KMEM) && \
5087 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005088 {
5089 .name = "kmem.slabinfo",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005090 .seq_show = memcg_slab_show,
5091 },
5092#endif
5093 {
5094 .name = "kmem.tcp.limit_in_bytes",
5095 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5096 .write = mem_cgroup_write,
5097 .read_u64 = mem_cgroup_read_u64,
5098 },
5099 {
5100 .name = "kmem.tcp.usage_in_bytes",
5101 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5102 .read_u64 = mem_cgroup_read_u64,
5103 },
5104 {
5105 .name = "kmem.tcp.failcnt",
5106 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5107 .write = mem_cgroup_reset,
5108 .read_u64 = mem_cgroup_read_u64,
5109 },
5110 {
5111 .name = "kmem.tcp.max_usage_in_bytes",
5112 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5113 .write = mem_cgroup_reset,
5114 .read_u64 = mem_cgroup_read_u64,
5115 },
5116 { }, /* terminate */
5117};
5118
5119/*
5120 * Private memory cgroup IDR
5121 *
5122 * Swap-out records and page cache shadow entries need to store memcg
5123 * references in constrained space, so we maintain an ID space that is
5124 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5125 * memory-controlled cgroups to 64k.
5126 *
Olivier Deprez157378f2022-04-04 15:47:50 +02005127 * However, there usually are many references to the offline CSS after
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005128 * the cgroup has been destroyed, such as page cache or reclaimable
5129 * slab objects, that don't need to hang on to the ID. We want to keep
5130 * those dead CSS from occupying IDs, or we might quickly exhaust the
5131 * relatively small ID space and prevent the creation of new cgroups
5132 * even when there are much fewer than 64k cgroups - possibly none.
5133 *
5134 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5135 * be freed and recycled when it's no longer needed, which is usually
5136 * when the CSS is offlined.
5137 *
5138 * The only exception to that are records of swapped out tmpfs/shmem
5139 * pages that need to be attributed to live ancestors on swapin. But
5140 * those references are manageable from userspace.
5141 */
5142
5143static DEFINE_IDR(mem_cgroup_idr);
5144
5145static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5146{
5147 if (memcg->id.id > 0) {
5148 idr_remove(&mem_cgroup_idr, memcg->id.id);
5149 memcg->id.id = 0;
5150 }
5151}
5152
Olivier Deprez157378f2022-04-04 15:47:50 +02005153static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5154 unsigned int n)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005155{
David Brazdil0f672f62019-12-10 10:32:29 +00005156 refcount_add(n, &memcg->id.ref);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005157}
5158
5159static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5160{
David Brazdil0f672f62019-12-10 10:32:29 +00005161 if (refcount_sub_and_test(n, &memcg->id.ref)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005162 mem_cgroup_id_remove(memcg);
5163
5164 /* Memcg ID pins CSS */
5165 css_put(&memcg->css);
5166 }
5167}
5168
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005169static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5170{
5171 mem_cgroup_id_put_many(memcg, 1);
5172}
5173
5174/**
5175 * mem_cgroup_from_id - look up a memcg from a memcg id
5176 * @id: the memcg id to look up
5177 *
5178 * Caller must hold rcu_read_lock().
5179 */
5180struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5181{
5182 WARN_ON_ONCE(!rcu_read_lock_held());
5183 return idr_find(&mem_cgroup_idr, id);
5184}
5185
5186static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5187{
5188 struct mem_cgroup_per_node *pn;
5189 int tmp = node;
5190 /*
5191 * This routine is called against possible nodes.
5192 * But it's BUG to call kmalloc() against offline node.
5193 *
5194 * TODO: this routine can waste much memory for nodes which will
5195 * never be onlined. It's better to use memory hotplug callback
5196 * function.
5197 */
5198 if (!node_state(node, N_NORMAL_MEMORY))
5199 tmp = -1;
5200 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5201 if (!pn)
5202 return 1;
5203
Olivier Deprez157378f2022-04-04 15:47:50 +02005204 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5205 GFP_KERNEL_ACCOUNT);
David Brazdil0f672f62019-12-10 10:32:29 +00005206 if (!pn->lruvec_stat_local) {
5207 kfree(pn);
5208 return 1;
5209 }
5210
Olivier Deprez157378f2022-04-04 15:47:50 +02005211 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5212 GFP_KERNEL_ACCOUNT);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005213 if (!pn->lruvec_stat_cpu) {
David Brazdil0f672f62019-12-10 10:32:29 +00005214 free_percpu(pn->lruvec_stat_local);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005215 kfree(pn);
5216 return 1;
5217 }
5218
5219 lruvec_init(&pn->lruvec);
5220 pn->usage_in_excess = 0;
5221 pn->on_tree = false;
5222 pn->memcg = memcg;
5223
5224 memcg->nodeinfo[node] = pn;
5225 return 0;
5226}
5227
5228static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5229{
5230 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5231
5232 if (!pn)
5233 return;
5234
5235 free_percpu(pn->lruvec_stat_cpu);
David Brazdil0f672f62019-12-10 10:32:29 +00005236 free_percpu(pn->lruvec_stat_local);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005237 kfree(pn);
5238}
5239
5240static void __mem_cgroup_free(struct mem_cgroup *memcg)
5241{
5242 int node;
5243
5244 for_each_node(node)
5245 free_mem_cgroup_per_node_info(memcg, node);
David Brazdil0f672f62019-12-10 10:32:29 +00005246 free_percpu(memcg->vmstats_percpu);
5247 free_percpu(memcg->vmstats_local);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005248 kfree(memcg);
5249}
5250
5251static void mem_cgroup_free(struct mem_cgroup *memcg)
5252{
5253 memcg_wb_domain_exit(memcg);
David Brazdil0f672f62019-12-10 10:32:29 +00005254 /*
5255 * Flush percpu vmstats and vmevents to guarantee the value correctness
5256 * on parent's and all ancestor levels.
5257 */
Olivier Deprez0e641232021-09-23 10:07:05 +02005258 memcg_flush_percpu_vmstats(memcg);
David Brazdil0f672f62019-12-10 10:32:29 +00005259 memcg_flush_percpu_vmevents(memcg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005260 __mem_cgroup_free(memcg);
5261}
5262
5263static struct mem_cgroup *mem_cgroup_alloc(void)
5264{
5265 struct mem_cgroup *memcg;
David Brazdil0f672f62019-12-10 10:32:29 +00005266 unsigned int size;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005267 int node;
David Brazdil0f672f62019-12-10 10:32:29 +00005268 int __maybe_unused i;
Olivier Deprez0e641232021-09-23 10:07:05 +02005269 long error = -ENOMEM;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005270
5271 size = sizeof(struct mem_cgroup);
5272 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5273
5274 memcg = kzalloc(size, GFP_KERNEL);
5275 if (!memcg)
Olivier Deprez0e641232021-09-23 10:07:05 +02005276 return ERR_PTR(error);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005277
5278 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5279 1, MEM_CGROUP_ID_MAX,
5280 GFP_KERNEL);
Olivier Deprez0e641232021-09-23 10:07:05 +02005281 if (memcg->id.id < 0) {
5282 error = memcg->id.id;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005283 goto fail;
Olivier Deprez0e641232021-09-23 10:07:05 +02005284 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005285
Olivier Deprez157378f2022-04-04 15:47:50 +02005286 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5287 GFP_KERNEL_ACCOUNT);
David Brazdil0f672f62019-12-10 10:32:29 +00005288 if (!memcg->vmstats_local)
5289 goto fail;
5290
Olivier Deprez157378f2022-04-04 15:47:50 +02005291 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5292 GFP_KERNEL_ACCOUNT);
David Brazdil0f672f62019-12-10 10:32:29 +00005293 if (!memcg->vmstats_percpu)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005294 goto fail;
5295
5296 for_each_node(node)
5297 if (alloc_mem_cgroup_per_node_info(memcg, node))
5298 goto fail;
5299
5300 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5301 goto fail;
5302
5303 INIT_WORK(&memcg->high_work, high_work_func);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005304 INIT_LIST_HEAD(&memcg->oom_notify);
5305 mutex_init(&memcg->thresholds_lock);
5306 spin_lock_init(&memcg->move_lock);
5307 vmpressure_init(&memcg->vmpressure);
5308 INIT_LIST_HEAD(&memcg->event_list);
5309 spin_lock_init(&memcg->event_list_lock);
5310 memcg->socket_pressure = jiffies;
5311#ifdef CONFIG_MEMCG_KMEM
5312 memcg->kmemcg_id = -1;
Olivier Deprez157378f2022-04-04 15:47:50 +02005313 INIT_LIST_HEAD(&memcg->objcg_list);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005314#endif
5315#ifdef CONFIG_CGROUP_WRITEBACK
5316 INIT_LIST_HEAD(&memcg->cgwb_list);
David Brazdil0f672f62019-12-10 10:32:29 +00005317 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5318 memcg->cgwb_frn[i].done =
5319 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5320#endif
5321#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5322 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5323 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5324 memcg->deferred_split_queue.split_queue_len = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005325#endif
5326 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5327 return memcg;
5328fail:
5329 mem_cgroup_id_remove(memcg);
5330 __mem_cgroup_free(memcg);
Olivier Deprez0e641232021-09-23 10:07:05 +02005331 return ERR_PTR(error);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005332}
5333
5334static struct cgroup_subsys_state * __ref
5335mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5336{
5337 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
Olivier Deprez157378f2022-04-04 15:47:50 +02005338 struct mem_cgroup *memcg, *old_memcg;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005339 long error = -ENOMEM;
5340
Olivier Deprez157378f2022-04-04 15:47:50 +02005341 old_memcg = set_active_memcg(parent);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005342 memcg = mem_cgroup_alloc();
Olivier Deprez157378f2022-04-04 15:47:50 +02005343 set_active_memcg(old_memcg);
Olivier Deprez0e641232021-09-23 10:07:05 +02005344 if (IS_ERR(memcg))
5345 return ERR_CAST(memcg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005346
Olivier Deprez157378f2022-04-04 15:47:50 +02005347 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005348 memcg->soft_limit = PAGE_COUNTER_MAX;
Olivier Deprez157378f2022-04-04 15:47:50 +02005349 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005350 if (parent) {
5351 memcg->swappiness = mem_cgroup_swappiness(parent);
5352 memcg->oom_kill_disable = parent->oom_kill_disable;
5353 }
Olivier Deprez157378f2022-04-04 15:47:50 +02005354 if (!parent) {
5355 page_counter_init(&memcg->memory, NULL);
5356 page_counter_init(&memcg->swap, NULL);
5357 page_counter_init(&memcg->kmem, NULL);
5358 page_counter_init(&memcg->tcpmem, NULL);
5359 } else if (parent->use_hierarchy) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005360 memcg->use_hierarchy = true;
5361 page_counter_init(&memcg->memory, &parent->memory);
5362 page_counter_init(&memcg->swap, &parent->swap);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005363 page_counter_init(&memcg->kmem, &parent->kmem);
5364 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5365 } else {
Olivier Deprez157378f2022-04-04 15:47:50 +02005366 page_counter_init(&memcg->memory, &root_mem_cgroup->memory);
5367 page_counter_init(&memcg->swap, &root_mem_cgroup->swap);
5368 page_counter_init(&memcg->kmem, &root_mem_cgroup->kmem);
5369 page_counter_init(&memcg->tcpmem, &root_mem_cgroup->tcpmem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005370 /*
5371 * Deeper hierachy with use_hierarchy == false doesn't make
5372 * much sense so let cgroup subsystem know about this
5373 * unfortunate state in our controller.
5374 */
5375 if (parent != root_mem_cgroup)
5376 memory_cgrp_subsys.broken_hierarchy = true;
5377 }
5378
5379 /* The following stuff does not apply to the root */
5380 if (!parent) {
5381 root_mem_cgroup = memcg;
5382 return &memcg->css;
5383 }
5384
5385 error = memcg_online_kmem(memcg);
5386 if (error)
5387 goto fail;
5388
5389 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5390 static_branch_inc(&memcg_sockets_enabled_key);
5391
5392 return &memcg->css;
5393fail:
5394 mem_cgroup_id_remove(memcg);
5395 mem_cgroup_free(memcg);
Olivier Deprez0e641232021-09-23 10:07:05 +02005396 return ERR_PTR(error);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005397}
5398
5399static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5400{
5401 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5402
5403 /*
5404 * A memcg must be visible for memcg_expand_shrinker_maps()
5405 * by the time the maps are allocated. So, we allocate maps
5406 * here, when for_each_mem_cgroup() can't skip it.
5407 */
5408 if (memcg_alloc_shrinker_maps(memcg)) {
5409 mem_cgroup_id_remove(memcg);
5410 return -ENOMEM;
5411 }
5412
5413 /* Online state pins memcg ID, memcg ID pins CSS */
David Brazdil0f672f62019-12-10 10:32:29 +00005414 refcount_set(&memcg->id.ref, 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005415 css_get(css);
5416 return 0;
5417}
5418
5419static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5420{
5421 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5422 struct mem_cgroup_event *event, *tmp;
5423
5424 /*
5425 * Unregister events and notify userspace.
5426 * Notify userspace about cgroup removing only after rmdir of cgroup
5427 * directory to avoid race between userspace and kernelspace.
5428 */
5429 spin_lock(&memcg->event_list_lock);
5430 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5431 list_del_init(&event->list);
5432 schedule_work(&event->remove);
5433 }
5434 spin_unlock(&memcg->event_list_lock);
5435
5436 page_counter_set_min(&memcg->memory, 0);
5437 page_counter_set_low(&memcg->memory, 0);
5438
5439 memcg_offline_kmem(memcg);
5440 wb_memcg_offline(memcg);
5441
David Brazdil0f672f62019-12-10 10:32:29 +00005442 drain_all_stock(memcg);
5443
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005444 mem_cgroup_id_put(memcg);
5445}
5446
5447static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5448{
5449 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5450
5451 invalidate_reclaim_iterators(memcg);
5452}
5453
5454static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5455{
5456 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
David Brazdil0f672f62019-12-10 10:32:29 +00005457 int __maybe_unused i;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005458
David Brazdil0f672f62019-12-10 10:32:29 +00005459#ifdef CONFIG_CGROUP_WRITEBACK
5460 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5461 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5462#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005463 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5464 static_branch_dec(&memcg_sockets_enabled_key);
5465
5466 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5467 static_branch_dec(&memcg_sockets_enabled_key);
5468
5469 vmpressure_cleanup(&memcg->vmpressure);
5470 cancel_work_sync(&memcg->high_work);
5471 mem_cgroup_remove_from_trees(memcg);
5472 memcg_free_shrinker_maps(memcg);
5473 memcg_free_kmem(memcg);
5474 mem_cgroup_free(memcg);
5475}
5476
5477/**
5478 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5479 * @css: the target css
5480 *
5481 * Reset the states of the mem_cgroup associated with @css. This is
5482 * invoked when the userland requests disabling on the default hierarchy
5483 * but the memcg is pinned through dependency. The memcg should stop
5484 * applying policies and should revert to the vanilla state as it may be
5485 * made visible again.
5486 *
5487 * The current implementation only resets the essential configurations.
5488 * This needs to be expanded to cover all the visible parts.
5489 */
5490static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5491{
5492 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5493
5494 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5495 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005496 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5497 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5498 page_counter_set_min(&memcg->memory, 0);
5499 page_counter_set_low(&memcg->memory, 0);
Olivier Deprez157378f2022-04-04 15:47:50 +02005500 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005501 memcg->soft_limit = PAGE_COUNTER_MAX;
Olivier Deprez157378f2022-04-04 15:47:50 +02005502 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005503 memcg_wb_domain_size_changed(memcg);
5504}
5505
5506#ifdef CONFIG_MMU
5507/* Handlers for move charge at task migration. */
5508static int mem_cgroup_do_precharge(unsigned long count)
5509{
5510 int ret;
5511
5512 /* Try a single bulk charge without reclaim first, kswapd may wake */
5513 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5514 if (!ret) {
5515 mc.precharge += count;
5516 return ret;
5517 }
5518
5519 /* Try charges one by one with reclaim, but do not retry */
5520 while (count--) {
5521 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5522 if (ret)
5523 return ret;
5524 mc.precharge++;
5525 cond_resched();
5526 }
5527 return 0;
5528}
5529
5530union mc_target {
5531 struct page *page;
5532 swp_entry_t ent;
5533};
5534
5535enum mc_target_type {
5536 MC_TARGET_NONE = 0,
5537 MC_TARGET_PAGE,
5538 MC_TARGET_SWAP,
5539 MC_TARGET_DEVICE,
5540};
5541
5542static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5543 unsigned long addr, pte_t ptent)
5544{
David Brazdil0f672f62019-12-10 10:32:29 +00005545 struct page *page = vm_normal_page(vma, addr, ptent);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005546
5547 if (!page || !page_mapped(page))
5548 return NULL;
5549 if (PageAnon(page)) {
5550 if (!(mc.flags & MOVE_ANON))
5551 return NULL;
5552 } else {
5553 if (!(mc.flags & MOVE_FILE))
5554 return NULL;
5555 }
5556 if (!get_page_unless_zero(page))
5557 return NULL;
5558
5559 return page;
5560}
5561
5562#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5563static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5564 pte_t ptent, swp_entry_t *entry)
5565{
5566 struct page *page = NULL;
5567 swp_entry_t ent = pte_to_swp_entry(ptent);
5568
Olivier Deprez0e641232021-09-23 10:07:05 +02005569 if (!(mc.flags & MOVE_ANON))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005570 return NULL;
5571
5572 /*
5573 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5574 * a device and because they are not accessible by CPU they are store
5575 * as special swap entry in the CPU page table.
5576 */
5577 if (is_device_private_entry(ent)) {
5578 page = device_private_entry_to_page(ent);
5579 /*
5580 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5581 * a refcount of 1 when free (unlike normal page)
5582 */
5583 if (!page_ref_add_unless(page, 1, 1))
5584 return NULL;
5585 return page;
5586 }
5587
Olivier Deprez0e641232021-09-23 10:07:05 +02005588 if (non_swap_entry(ent))
5589 return NULL;
5590
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005591 /*
5592 * Because lookup_swap_cache() updates some statistics counter,
5593 * we call find_get_page() with swapper_space directly.
5594 */
5595 page = find_get_page(swap_address_space(ent), swp_offset(ent));
Olivier Deprez157378f2022-04-04 15:47:50 +02005596 entry->val = ent.val;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005597
5598 return page;
5599}
5600#else
5601static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5602 pte_t ptent, swp_entry_t *entry)
5603{
5604 return NULL;
5605}
5606#endif
5607
5608static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5609 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5610{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005611 if (!vma->vm_file) /* anonymous vma */
5612 return NULL;
5613 if (!(mc.flags & MOVE_FILE))
5614 return NULL;
5615
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005616 /* page is moved even if it's not RSS of this task(page-faulted). */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005617 /* shmem/tmpfs may report page out on swap: account for that too. */
Olivier Deprez157378f2022-04-04 15:47:50 +02005618 return find_get_incore_page(vma->vm_file->f_mapping,
5619 linear_page_index(vma, addr));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005620}
5621
5622/**
5623 * mem_cgroup_move_account - move account of the page
5624 * @page: the page
5625 * @compound: charge the page as compound or small page
5626 * @from: mem_cgroup which the page is moved from.
5627 * @to: mem_cgroup which the page is moved to. @from != @to.
5628 *
5629 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5630 *
5631 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5632 * from old cgroup.
5633 */
5634static int mem_cgroup_move_account(struct page *page,
5635 bool compound,
5636 struct mem_cgroup *from,
5637 struct mem_cgroup *to)
5638{
David Brazdil0f672f62019-12-10 10:32:29 +00005639 struct lruvec *from_vec, *to_vec;
5640 struct pglist_data *pgdat;
Olivier Deprez157378f2022-04-04 15:47:50 +02005641 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005642 int ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005643
5644 VM_BUG_ON(from == to);
5645 VM_BUG_ON_PAGE(PageLRU(page), page);
5646 VM_BUG_ON(compound && !PageTransHuge(page));
5647
5648 /*
5649 * Prevent mem_cgroup_migrate() from looking at
5650 * page->mem_cgroup of its source page while we change it.
5651 */
5652 ret = -EBUSY;
5653 if (!trylock_page(page))
5654 goto out;
5655
5656 ret = -EINVAL;
5657 if (page->mem_cgroup != from)
5658 goto out_unlock;
5659
David Brazdil0f672f62019-12-10 10:32:29 +00005660 pgdat = page_pgdat(page);
Olivier Deprez157378f2022-04-04 15:47:50 +02005661 from_vec = mem_cgroup_lruvec(from, pgdat);
5662 to_vec = mem_cgroup_lruvec(to, pgdat);
David Brazdil0f672f62019-12-10 10:32:29 +00005663
Olivier Deprez0e641232021-09-23 10:07:05 +02005664 lock_page_memcg(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005665
Olivier Deprez157378f2022-04-04 15:47:50 +02005666 if (PageAnon(page)) {
5667 if (page_mapped(page)) {
5668 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5669 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5670 if (PageTransHuge(page)) {
5671 __dec_lruvec_state(from_vec, NR_ANON_THPS);
5672 __inc_lruvec_state(to_vec, NR_ANON_THPS);
5673 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005674
Olivier Deprez157378f2022-04-04 15:47:50 +02005675 }
5676 } else {
5677 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5678 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005679
Olivier Deprez157378f2022-04-04 15:47:50 +02005680 if (PageSwapBacked(page)) {
5681 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5682 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5683 }
5684
5685 if (page_mapped(page)) {
5686 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5687 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5688 }
5689
5690 if (PageDirty(page)) {
5691 struct address_space *mapping = page_mapping(page);
5692
5693 if (mapping_can_writeback(mapping)) {
5694 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5695 -nr_pages);
5696 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5697 nr_pages);
5698 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005699 }
5700 }
5701
5702 if (PageWriteback(page)) {
David Brazdil0f672f62019-12-10 10:32:29 +00005703 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5704 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005705 }
5706
5707 /*
Olivier Deprez0e641232021-09-23 10:07:05 +02005708 * All state has been migrated, let's switch to the new memcg.
5709 *
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005710 * It is safe to change page->mem_cgroup here because the page
Olivier Deprez0e641232021-09-23 10:07:05 +02005711 * is referenced, charged, isolated, and locked: we can't race
5712 * with (un)charging, migration, LRU putback, or anything else
5713 * that would rely on a stable page->mem_cgroup.
5714 *
5715 * Note that lock_page_memcg is a memcg lock, not a page lock,
5716 * to save space. As soon as we switch page->mem_cgroup to a
5717 * new memcg that isn't locked, the above state can change
5718 * concurrently again. Make sure we're truly done with it.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005719 */
Olivier Deprez0e641232021-09-23 10:07:05 +02005720 smp_mb();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005721
Olivier Deprez157378f2022-04-04 15:47:50 +02005722 css_get(&to->css);
5723 css_put(&from->css);
5724
5725 page->mem_cgroup = to;
David Brazdil0f672f62019-12-10 10:32:29 +00005726
Olivier Deprez0e641232021-09-23 10:07:05 +02005727 __unlock_page_memcg(from);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005728
5729 ret = 0;
5730
5731 local_irq_disable();
Olivier Deprez157378f2022-04-04 15:47:50 +02005732 mem_cgroup_charge_statistics(to, page, nr_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005733 memcg_check_events(to, page);
Olivier Deprez157378f2022-04-04 15:47:50 +02005734 mem_cgroup_charge_statistics(from, page, -nr_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005735 memcg_check_events(from, page);
5736 local_irq_enable();
5737out_unlock:
5738 unlock_page(page);
5739out:
5740 return ret;
5741}
5742
5743/**
5744 * get_mctgt_type - get target type of moving charge
5745 * @vma: the vma the pte to be checked belongs
5746 * @addr: the address corresponding to the pte to be checked
5747 * @ptent: the pte to be checked
5748 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5749 *
5750 * Returns
5751 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5752 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5753 * move charge. if @target is not NULL, the page is stored in target->page
5754 * with extra refcnt got(Callers should handle it).
5755 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5756 * target for charge migration. if @target is not NULL, the entry is stored
5757 * in target->ent.
David Brazdil0f672f62019-12-10 10:32:29 +00005758 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5759 * (so ZONE_DEVICE page and thus not on the lru).
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005760 * For now we such page is charge like a regular page would be as for all
5761 * intent and purposes it is just special memory taking the place of a
5762 * regular page.
5763 *
5764 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5765 *
5766 * Called with pte lock held.
5767 */
5768
5769static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5770 unsigned long addr, pte_t ptent, union mc_target *target)
5771{
5772 struct page *page = NULL;
5773 enum mc_target_type ret = MC_TARGET_NONE;
5774 swp_entry_t ent = { .val = 0 };
5775
5776 if (pte_present(ptent))
5777 page = mc_handle_present_pte(vma, addr, ptent);
5778 else if (is_swap_pte(ptent))
5779 page = mc_handle_swap_pte(vma, ptent, &ent);
5780 else if (pte_none(ptent))
5781 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5782
5783 if (!page && !ent.val)
5784 return ret;
5785 if (page) {
5786 /*
5787 * Do only loose check w/o serialization.
5788 * mem_cgroup_move_account() checks the page is valid or
5789 * not under LRU exclusion.
5790 */
5791 if (page->mem_cgroup == mc.from) {
5792 ret = MC_TARGET_PAGE;
David Brazdil0f672f62019-12-10 10:32:29 +00005793 if (is_device_private_page(page))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005794 ret = MC_TARGET_DEVICE;
5795 if (target)
5796 target->page = page;
5797 }
5798 if (!ret || !target)
5799 put_page(page);
5800 }
5801 /*
5802 * There is a swap entry and a page doesn't exist or isn't charged.
5803 * But we cannot move a tail-page in a THP.
5804 */
5805 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5806 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5807 ret = MC_TARGET_SWAP;
5808 if (target)
5809 target->ent = ent;
5810 }
5811 return ret;
5812}
5813
5814#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5815/*
5816 * We don't consider PMD mapped swapping or file mapped pages because THP does
5817 * not support them for now.
5818 * Caller should make sure that pmd_trans_huge(pmd) is true.
5819 */
5820static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5821 unsigned long addr, pmd_t pmd, union mc_target *target)
5822{
5823 struct page *page = NULL;
5824 enum mc_target_type ret = MC_TARGET_NONE;
5825
5826 if (unlikely(is_swap_pmd(pmd))) {
5827 VM_BUG_ON(thp_migration_supported() &&
5828 !is_pmd_migration_entry(pmd));
5829 return ret;
5830 }
5831 page = pmd_page(pmd);
5832 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5833 if (!(mc.flags & MOVE_ANON))
5834 return ret;
5835 if (page->mem_cgroup == mc.from) {
5836 ret = MC_TARGET_PAGE;
5837 if (target) {
5838 get_page(page);
5839 target->page = page;
5840 }
5841 }
5842 return ret;
5843}
5844#else
5845static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5846 unsigned long addr, pmd_t pmd, union mc_target *target)
5847{
5848 return MC_TARGET_NONE;
5849}
5850#endif
5851
5852static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5853 unsigned long addr, unsigned long end,
5854 struct mm_walk *walk)
5855{
5856 struct vm_area_struct *vma = walk->vma;
5857 pte_t *pte;
5858 spinlock_t *ptl;
5859
5860 ptl = pmd_trans_huge_lock(pmd, vma);
5861 if (ptl) {
5862 /*
5863 * Note their can not be MC_TARGET_DEVICE for now as we do not
David Brazdil0f672f62019-12-10 10:32:29 +00005864 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5865 * this might change.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005866 */
5867 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5868 mc.precharge += HPAGE_PMD_NR;
5869 spin_unlock(ptl);
5870 return 0;
5871 }
5872
5873 if (pmd_trans_unstable(pmd))
5874 return 0;
5875 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5876 for (; addr != end; pte++, addr += PAGE_SIZE)
5877 if (get_mctgt_type(vma, addr, *pte, NULL))
5878 mc.precharge++; /* increment precharge temporarily */
5879 pte_unmap_unlock(pte - 1, ptl);
5880 cond_resched();
5881
5882 return 0;
5883}
5884
David Brazdil0f672f62019-12-10 10:32:29 +00005885static const struct mm_walk_ops precharge_walk_ops = {
5886 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5887};
5888
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005889static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5890{
5891 unsigned long precharge;
5892
Olivier Deprez157378f2022-04-04 15:47:50 +02005893 mmap_read_lock(mm);
David Brazdil0f672f62019-12-10 10:32:29 +00005894 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
Olivier Deprez157378f2022-04-04 15:47:50 +02005895 mmap_read_unlock(mm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005896
5897 precharge = mc.precharge;
5898 mc.precharge = 0;
5899
5900 return precharge;
5901}
5902
5903static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5904{
5905 unsigned long precharge = mem_cgroup_count_precharge(mm);
5906
5907 VM_BUG_ON(mc.moving_task);
5908 mc.moving_task = current;
5909 return mem_cgroup_do_precharge(precharge);
5910}
5911
5912/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5913static void __mem_cgroup_clear_mc(void)
5914{
5915 struct mem_cgroup *from = mc.from;
5916 struct mem_cgroup *to = mc.to;
5917
5918 /* we must uncharge all the leftover precharges from mc.to */
5919 if (mc.precharge) {
5920 cancel_charge(mc.to, mc.precharge);
5921 mc.precharge = 0;
5922 }
5923 /*
5924 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5925 * we must uncharge here.
5926 */
5927 if (mc.moved_charge) {
5928 cancel_charge(mc.from, mc.moved_charge);
5929 mc.moved_charge = 0;
5930 }
5931 /* we must fixup refcnts and charges */
5932 if (mc.moved_swap) {
5933 /* uncharge swap account from the old cgroup */
5934 if (!mem_cgroup_is_root(mc.from))
5935 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5936
5937 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5938
5939 /*
5940 * we charged both to->memory and to->memsw, so we
5941 * should uncharge to->memory.
5942 */
5943 if (!mem_cgroup_is_root(mc.to))
5944 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5945
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005946 mc.moved_swap = 0;
5947 }
5948 memcg_oom_recover(from);
5949 memcg_oom_recover(to);
5950 wake_up_all(&mc.waitq);
5951}
5952
5953static void mem_cgroup_clear_mc(void)
5954{
5955 struct mm_struct *mm = mc.mm;
5956
5957 /*
5958 * we must clear moving_task before waking up waiters at the end of
5959 * task migration.
5960 */
5961 mc.moving_task = NULL;
5962 __mem_cgroup_clear_mc();
5963 spin_lock(&mc.lock);
5964 mc.from = NULL;
5965 mc.to = NULL;
5966 mc.mm = NULL;
5967 spin_unlock(&mc.lock);
5968
5969 mmput(mm);
5970}
5971
5972static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5973{
5974 struct cgroup_subsys_state *css;
5975 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5976 struct mem_cgroup *from;
5977 struct task_struct *leader, *p;
5978 struct mm_struct *mm;
5979 unsigned long move_flags;
5980 int ret = 0;
5981
5982 /* charge immigration isn't supported on the default hierarchy */
5983 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5984 return 0;
5985
5986 /*
5987 * Multi-process migrations only happen on the default hierarchy
5988 * where charge immigration is not used. Perform charge
5989 * immigration if @tset contains a leader and whine if there are
5990 * multiple.
5991 */
5992 p = NULL;
5993 cgroup_taskset_for_each_leader(leader, css, tset) {
5994 WARN_ON_ONCE(p);
5995 p = leader;
5996 memcg = mem_cgroup_from_css(css);
5997 }
5998 if (!p)
5999 return 0;
6000
6001 /*
6002 * We are now commited to this value whatever it is. Changes in this
6003 * tunable will only affect upcoming migrations, not the current one.
6004 * So we need to save it, and keep it going.
6005 */
6006 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6007 if (!move_flags)
6008 return 0;
6009
6010 from = mem_cgroup_from_task(p);
6011
6012 VM_BUG_ON(from == memcg);
6013
6014 mm = get_task_mm(p);
6015 if (!mm)
6016 return 0;
6017 /* We move charges only when we move a owner of the mm */
6018 if (mm->owner == p) {
6019 VM_BUG_ON(mc.from);
6020 VM_BUG_ON(mc.to);
6021 VM_BUG_ON(mc.precharge);
6022 VM_BUG_ON(mc.moved_charge);
6023 VM_BUG_ON(mc.moved_swap);
6024
6025 spin_lock(&mc.lock);
6026 mc.mm = mm;
6027 mc.from = from;
6028 mc.to = memcg;
6029 mc.flags = move_flags;
6030 spin_unlock(&mc.lock);
6031 /* We set mc.moving_task later */
6032
6033 ret = mem_cgroup_precharge_mc(mm);
6034 if (ret)
6035 mem_cgroup_clear_mc();
6036 } else {
6037 mmput(mm);
6038 }
6039 return ret;
6040}
6041
6042static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6043{
6044 if (mc.to)
6045 mem_cgroup_clear_mc();
6046}
6047
6048static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6049 unsigned long addr, unsigned long end,
6050 struct mm_walk *walk)
6051{
6052 int ret = 0;
6053 struct vm_area_struct *vma = walk->vma;
6054 pte_t *pte;
6055 spinlock_t *ptl;
6056 enum mc_target_type target_type;
6057 union mc_target target;
6058 struct page *page;
6059
6060 ptl = pmd_trans_huge_lock(pmd, vma);
6061 if (ptl) {
6062 if (mc.precharge < HPAGE_PMD_NR) {
6063 spin_unlock(ptl);
6064 return 0;
6065 }
6066 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6067 if (target_type == MC_TARGET_PAGE) {
6068 page = target.page;
6069 if (!isolate_lru_page(page)) {
6070 if (!mem_cgroup_move_account(page, true,
6071 mc.from, mc.to)) {
6072 mc.precharge -= HPAGE_PMD_NR;
6073 mc.moved_charge += HPAGE_PMD_NR;
6074 }
6075 putback_lru_page(page);
6076 }
6077 put_page(page);
6078 } else if (target_type == MC_TARGET_DEVICE) {
6079 page = target.page;
6080 if (!mem_cgroup_move_account(page, true,
6081 mc.from, mc.to)) {
6082 mc.precharge -= HPAGE_PMD_NR;
6083 mc.moved_charge += HPAGE_PMD_NR;
6084 }
6085 put_page(page);
6086 }
6087 spin_unlock(ptl);
6088 return 0;
6089 }
6090
6091 if (pmd_trans_unstable(pmd))
6092 return 0;
6093retry:
6094 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6095 for (; addr != end; addr += PAGE_SIZE) {
6096 pte_t ptent = *(pte++);
6097 bool device = false;
6098 swp_entry_t ent;
6099
6100 if (!mc.precharge)
6101 break;
6102
6103 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6104 case MC_TARGET_DEVICE:
6105 device = true;
Olivier Deprez157378f2022-04-04 15:47:50 +02006106 fallthrough;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006107 case MC_TARGET_PAGE:
6108 page = target.page;
6109 /*
6110 * We can have a part of the split pmd here. Moving it
6111 * can be done but it would be too convoluted so simply
6112 * ignore such a partial THP and keep it in original
6113 * memcg. There should be somebody mapping the head.
6114 */
6115 if (PageTransCompound(page))
6116 goto put;
6117 if (!device && isolate_lru_page(page))
6118 goto put;
6119 if (!mem_cgroup_move_account(page, false,
6120 mc.from, mc.to)) {
6121 mc.precharge--;
6122 /* we uncharge from mc.from later. */
6123 mc.moved_charge++;
6124 }
6125 if (!device)
6126 putback_lru_page(page);
6127put: /* get_mctgt_type() gets the page */
6128 put_page(page);
6129 break;
6130 case MC_TARGET_SWAP:
6131 ent = target.ent;
6132 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6133 mc.precharge--;
Olivier Deprez0e641232021-09-23 10:07:05 +02006134 mem_cgroup_id_get_many(mc.to, 1);
6135 /* we fixup other refcnts and charges later. */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006136 mc.moved_swap++;
6137 }
6138 break;
6139 default:
6140 break;
6141 }
6142 }
6143 pte_unmap_unlock(pte - 1, ptl);
6144 cond_resched();
6145
6146 if (addr != end) {
6147 /*
6148 * We have consumed all precharges we got in can_attach().
6149 * We try charge one by one, but don't do any additional
6150 * charges to mc.to if we have failed in charge once in attach()
6151 * phase.
6152 */
6153 ret = mem_cgroup_do_precharge(1);
6154 if (!ret)
6155 goto retry;
6156 }
6157
6158 return ret;
6159}
6160
David Brazdil0f672f62019-12-10 10:32:29 +00006161static const struct mm_walk_ops charge_walk_ops = {
6162 .pmd_entry = mem_cgroup_move_charge_pte_range,
6163};
6164
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006165static void mem_cgroup_move_charge(void)
6166{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006167 lru_add_drain_all();
6168 /*
6169 * Signal lock_page_memcg() to take the memcg's move_lock
6170 * while we're moving its pages to another memcg. Then wait
6171 * for already started RCU-only updates to finish.
6172 */
6173 atomic_inc(&mc.from->moving_account);
6174 synchronize_rcu();
6175retry:
Olivier Deprez157378f2022-04-04 15:47:50 +02006176 if (unlikely(!mmap_read_trylock(mc.mm))) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006177 /*
Olivier Deprez157378f2022-04-04 15:47:50 +02006178 * Someone who are holding the mmap_lock might be waiting in
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006179 * waitq. So we cancel all extra charges, wake up all waiters,
6180 * and retry. Because we cancel precharges, we might not be able
6181 * to move enough charges, but moving charge is a best-effort
6182 * feature anyway, so it wouldn't be a big problem.
6183 */
6184 __mem_cgroup_clear_mc();
6185 cond_resched();
6186 goto retry;
6187 }
6188 /*
6189 * When we have consumed all precharges and failed in doing
6190 * additional charge, the page walk just aborts.
6191 */
David Brazdil0f672f62019-12-10 10:32:29 +00006192 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6193 NULL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006194
Olivier Deprez157378f2022-04-04 15:47:50 +02006195 mmap_read_unlock(mc.mm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006196 atomic_dec(&mc.from->moving_account);
6197}
6198
6199static void mem_cgroup_move_task(void)
6200{
6201 if (mc.to) {
6202 mem_cgroup_move_charge();
6203 mem_cgroup_clear_mc();
6204 }
6205}
6206#else /* !CONFIG_MMU */
6207static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6208{
6209 return 0;
6210}
6211static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6212{
6213}
6214static void mem_cgroup_move_task(void)
6215{
6216}
6217#endif
6218
6219/*
6220 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6221 * to verify whether we're attached to the default hierarchy on each mount
6222 * attempt.
6223 */
6224static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6225{
6226 /*
6227 * use_hierarchy is forced on the default hierarchy. cgroup core
6228 * guarantees that @root doesn't have any children, so turning it
6229 * on for the root memcg is enough.
6230 */
6231 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6232 root_mem_cgroup->use_hierarchy = true;
6233 else
6234 root_mem_cgroup->use_hierarchy = false;
6235}
6236
David Brazdil0f672f62019-12-10 10:32:29 +00006237static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6238{
6239 if (value == PAGE_COUNTER_MAX)
6240 seq_puts(m, "max\n");
6241 else
6242 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6243
6244 return 0;
6245}
6246
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006247static u64 memory_current_read(struct cgroup_subsys_state *css,
6248 struct cftype *cft)
6249{
6250 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6251
6252 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6253}
6254
6255static int memory_min_show(struct seq_file *m, void *v)
6256{
David Brazdil0f672f62019-12-10 10:32:29 +00006257 return seq_puts_memcg_tunable(m,
6258 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006259}
6260
6261static ssize_t memory_min_write(struct kernfs_open_file *of,
6262 char *buf, size_t nbytes, loff_t off)
6263{
6264 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6265 unsigned long min;
6266 int err;
6267
6268 buf = strstrip(buf);
6269 err = page_counter_memparse(buf, "max", &min);
6270 if (err)
6271 return err;
6272
6273 page_counter_set_min(&memcg->memory, min);
6274
6275 return nbytes;
6276}
6277
6278static int memory_low_show(struct seq_file *m, void *v)
6279{
David Brazdil0f672f62019-12-10 10:32:29 +00006280 return seq_puts_memcg_tunable(m,
6281 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006282}
6283
6284static ssize_t memory_low_write(struct kernfs_open_file *of,
6285 char *buf, size_t nbytes, loff_t off)
6286{
6287 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6288 unsigned long low;
6289 int err;
6290
6291 buf = strstrip(buf);
6292 err = page_counter_memparse(buf, "max", &low);
6293 if (err)
6294 return err;
6295
6296 page_counter_set_low(&memcg->memory, low);
6297
6298 return nbytes;
6299}
6300
6301static int memory_high_show(struct seq_file *m, void *v)
6302{
Olivier Deprez157378f2022-04-04 15:47:50 +02006303 return seq_puts_memcg_tunable(m,
6304 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006305}
6306
6307static ssize_t memory_high_write(struct kernfs_open_file *of,
6308 char *buf, size_t nbytes, loff_t off)
6309{
6310 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
Olivier Deprez157378f2022-04-04 15:47:50 +02006311 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6312 bool drained = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006313 unsigned long high;
6314 int err;
6315
6316 buf = strstrip(buf);
6317 err = page_counter_memparse(buf, "max", &high);
6318 if (err)
6319 return err;
6320
Olivier Deprez157378f2022-04-04 15:47:50 +02006321 page_counter_set_high(&memcg->memory, high);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006322
Olivier Deprez157378f2022-04-04 15:47:50 +02006323 for (;;) {
6324 unsigned long nr_pages = page_counter_read(&memcg->memory);
6325 unsigned long reclaimed;
6326
6327 if (nr_pages <= high)
6328 break;
6329
6330 if (signal_pending(current))
6331 break;
6332
6333 if (!drained) {
6334 drain_all_stock(memcg);
6335 drained = true;
6336 continue;
6337 }
6338
6339 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6340 GFP_KERNEL, true);
6341
6342 if (!reclaimed && !nr_retries--)
6343 break;
6344 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006345
6346 memcg_wb_domain_size_changed(memcg);
6347 return nbytes;
6348}
6349
6350static int memory_max_show(struct seq_file *m, void *v)
6351{
David Brazdil0f672f62019-12-10 10:32:29 +00006352 return seq_puts_memcg_tunable(m,
6353 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006354}
6355
6356static ssize_t memory_max_write(struct kernfs_open_file *of,
6357 char *buf, size_t nbytes, loff_t off)
6358{
6359 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
Olivier Deprez157378f2022-04-04 15:47:50 +02006360 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006361 bool drained = false;
6362 unsigned long max;
6363 int err;
6364
6365 buf = strstrip(buf);
6366 err = page_counter_memparse(buf, "max", &max);
6367 if (err)
6368 return err;
6369
6370 xchg(&memcg->memory.max, max);
6371
6372 for (;;) {
6373 unsigned long nr_pages = page_counter_read(&memcg->memory);
6374
6375 if (nr_pages <= max)
6376 break;
6377
Olivier Deprez157378f2022-04-04 15:47:50 +02006378 if (signal_pending(current))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006379 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006380
6381 if (!drained) {
6382 drain_all_stock(memcg);
6383 drained = true;
6384 continue;
6385 }
6386
6387 if (nr_reclaims) {
6388 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6389 GFP_KERNEL, true))
6390 nr_reclaims--;
6391 continue;
6392 }
6393
6394 memcg_memory_event(memcg, MEMCG_OOM);
6395 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6396 break;
6397 }
6398
6399 memcg_wb_domain_size_changed(memcg);
6400 return nbytes;
6401}
6402
David Brazdil0f672f62019-12-10 10:32:29 +00006403static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6404{
6405 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6406 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6407 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6408 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6409 seq_printf(m, "oom_kill %lu\n",
6410 atomic_long_read(&events[MEMCG_OOM_KILL]));
6411}
6412
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006413static int memory_events_show(struct seq_file *m, void *v)
6414{
David Brazdil0f672f62019-12-10 10:32:29 +00006415 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006416
David Brazdil0f672f62019-12-10 10:32:29 +00006417 __memory_events_show(m, memcg->memory_events);
6418 return 0;
6419}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006420
David Brazdil0f672f62019-12-10 10:32:29 +00006421static int memory_events_local_show(struct seq_file *m, void *v)
6422{
6423 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6424
6425 __memory_events_show(m, memcg->memory_events_local);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006426 return 0;
6427}
6428
6429static int memory_stat_show(struct seq_file *m, void *v)
6430{
David Brazdil0f672f62019-12-10 10:32:29 +00006431 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6432 char *buf;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006433
David Brazdil0f672f62019-12-10 10:32:29 +00006434 buf = memory_stat_format(memcg);
6435 if (!buf)
6436 return -ENOMEM;
6437 seq_puts(m, buf);
6438 kfree(buf);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006439 return 0;
6440}
6441
Olivier Deprez157378f2022-04-04 15:47:50 +02006442#ifdef CONFIG_NUMA
6443static int memory_numa_stat_show(struct seq_file *m, void *v)
6444{
6445 int i;
6446 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6447
6448 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6449 int nid;
6450
6451 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6452 continue;
6453
6454 seq_printf(m, "%s", memory_stats[i].name);
6455 for_each_node_state(nid, N_MEMORY) {
6456 u64 size;
6457 struct lruvec *lruvec;
6458
6459 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6460 size = lruvec_page_state(lruvec, memory_stats[i].idx);
6461 size *= memory_stats[i].ratio;
6462 seq_printf(m, " N%d=%llu", nid, size);
6463 }
6464 seq_putc(m, '\n');
6465 }
6466
6467 return 0;
6468}
6469#endif
6470
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006471static int memory_oom_group_show(struct seq_file *m, void *v)
6472{
David Brazdil0f672f62019-12-10 10:32:29 +00006473 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006474
6475 seq_printf(m, "%d\n", memcg->oom_group);
6476
6477 return 0;
6478}
6479
6480static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6481 char *buf, size_t nbytes, loff_t off)
6482{
6483 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6484 int ret, oom_group;
6485
6486 buf = strstrip(buf);
6487 if (!buf)
6488 return -EINVAL;
6489
6490 ret = kstrtoint(buf, 0, &oom_group);
6491 if (ret)
6492 return ret;
6493
6494 if (oom_group != 0 && oom_group != 1)
6495 return -EINVAL;
6496
6497 memcg->oom_group = oom_group;
6498
6499 return nbytes;
6500}
6501
6502static struct cftype memory_files[] = {
6503 {
6504 .name = "current",
6505 .flags = CFTYPE_NOT_ON_ROOT,
6506 .read_u64 = memory_current_read,
6507 },
6508 {
6509 .name = "min",
6510 .flags = CFTYPE_NOT_ON_ROOT,
6511 .seq_show = memory_min_show,
6512 .write = memory_min_write,
6513 },
6514 {
6515 .name = "low",
6516 .flags = CFTYPE_NOT_ON_ROOT,
6517 .seq_show = memory_low_show,
6518 .write = memory_low_write,
6519 },
6520 {
6521 .name = "high",
6522 .flags = CFTYPE_NOT_ON_ROOT,
6523 .seq_show = memory_high_show,
6524 .write = memory_high_write,
6525 },
6526 {
6527 .name = "max",
6528 .flags = CFTYPE_NOT_ON_ROOT,
6529 .seq_show = memory_max_show,
6530 .write = memory_max_write,
6531 },
6532 {
6533 .name = "events",
6534 .flags = CFTYPE_NOT_ON_ROOT,
6535 .file_offset = offsetof(struct mem_cgroup, events_file),
6536 .seq_show = memory_events_show,
6537 },
6538 {
David Brazdil0f672f62019-12-10 10:32:29 +00006539 .name = "events.local",
6540 .flags = CFTYPE_NOT_ON_ROOT,
6541 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6542 .seq_show = memory_events_local_show,
6543 },
6544 {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006545 .name = "stat",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006546 .seq_show = memory_stat_show,
6547 },
Olivier Deprez157378f2022-04-04 15:47:50 +02006548#ifdef CONFIG_NUMA
6549 {
6550 .name = "numa_stat",
6551 .seq_show = memory_numa_stat_show,
6552 },
6553#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006554 {
6555 .name = "oom.group",
6556 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6557 .seq_show = memory_oom_group_show,
6558 .write = memory_oom_group_write,
6559 },
6560 { } /* terminate */
6561};
6562
6563struct cgroup_subsys memory_cgrp_subsys = {
6564 .css_alloc = mem_cgroup_css_alloc,
6565 .css_online = mem_cgroup_css_online,
6566 .css_offline = mem_cgroup_css_offline,
6567 .css_released = mem_cgroup_css_released,
6568 .css_free = mem_cgroup_css_free,
6569 .css_reset = mem_cgroup_css_reset,
6570 .can_attach = mem_cgroup_can_attach,
6571 .cancel_attach = mem_cgroup_cancel_attach,
6572 .post_attach = mem_cgroup_move_task,
6573 .bind = mem_cgroup_bind,
6574 .dfl_cftypes = memory_files,
6575 .legacy_cftypes = mem_cgroup_legacy_files,
6576 .early_init = 0,
6577};
6578
Olivier Deprez157378f2022-04-04 15:47:50 +02006579/*
6580 * This function calculates an individual cgroup's effective
6581 * protection which is derived from its own memory.min/low, its
6582 * parent's and siblings' settings, as well as the actual memory
6583 * distribution in the tree.
6584 *
6585 * The following rules apply to the effective protection values:
6586 *
6587 * 1. At the first level of reclaim, effective protection is equal to
6588 * the declared protection in memory.min and memory.low.
6589 *
6590 * 2. To enable safe delegation of the protection configuration, at
6591 * subsequent levels the effective protection is capped to the
6592 * parent's effective protection.
6593 *
6594 * 3. To make complex and dynamic subtrees easier to configure, the
6595 * user is allowed to overcommit the declared protection at a given
6596 * level. If that is the case, the parent's effective protection is
6597 * distributed to the children in proportion to how much protection
6598 * they have declared and how much of it they are utilizing.
6599 *
6600 * This makes distribution proportional, but also work-conserving:
6601 * if one cgroup claims much more protection than it uses memory,
6602 * the unused remainder is available to its siblings.
6603 *
6604 * 4. Conversely, when the declared protection is undercommitted at a
6605 * given level, the distribution of the larger parental protection
6606 * budget is NOT proportional. A cgroup's protection from a sibling
6607 * is capped to its own memory.min/low setting.
6608 *
6609 * 5. However, to allow protecting recursive subtrees from each other
6610 * without having to declare each individual cgroup's fixed share
6611 * of the ancestor's claim to protection, any unutilized -
6612 * "floating" - protection from up the tree is distributed in
6613 * proportion to each cgroup's *usage*. This makes the protection
6614 * neutral wrt sibling cgroups and lets them compete freely over
6615 * the shared parental protection budget, but it protects the
6616 * subtree as a whole from neighboring subtrees.
6617 *
6618 * Note that 4. and 5. are not in conflict: 4. is about protecting
6619 * against immediate siblings whereas 5. is about protecting against
6620 * neighboring subtrees.
6621 */
6622static unsigned long effective_protection(unsigned long usage,
6623 unsigned long parent_usage,
6624 unsigned long setting,
6625 unsigned long parent_effective,
6626 unsigned long siblings_protected)
6627{
6628 unsigned long protected;
6629 unsigned long ep;
6630
6631 protected = min(usage, setting);
6632 /*
6633 * If all cgroups at this level combined claim and use more
6634 * protection then what the parent affords them, distribute
6635 * shares in proportion to utilization.
6636 *
6637 * We are using actual utilization rather than the statically
6638 * claimed protection in order to be work-conserving: claimed
6639 * but unused protection is available to siblings that would
6640 * otherwise get a smaller chunk than what they claimed.
6641 */
6642 if (siblings_protected > parent_effective)
6643 return protected * parent_effective / siblings_protected;
6644
6645 /*
6646 * Ok, utilized protection of all children is within what the
6647 * parent affords them, so we know whatever this child claims
6648 * and utilizes is effectively protected.
6649 *
6650 * If there is unprotected usage beyond this value, reclaim
6651 * will apply pressure in proportion to that amount.
6652 *
6653 * If there is unutilized protection, the cgroup will be fully
6654 * shielded from reclaim, but we do return a smaller value for
6655 * protection than what the group could enjoy in theory. This
6656 * is okay. With the overcommit distribution above, effective
6657 * protection is always dependent on how memory is actually
6658 * consumed among the siblings anyway.
6659 */
6660 ep = protected;
6661
6662 /*
6663 * If the children aren't claiming (all of) the protection
6664 * afforded to them by the parent, distribute the remainder in
6665 * proportion to the (unprotected) memory of each cgroup. That
6666 * way, cgroups that aren't explicitly prioritized wrt each
6667 * other compete freely over the allowance, but they are
6668 * collectively protected from neighboring trees.
6669 *
6670 * We're using unprotected memory for the weight so that if
6671 * some cgroups DO claim explicit protection, we don't protect
6672 * the same bytes twice.
6673 *
6674 * Check both usage and parent_usage against the respective
6675 * protected values. One should imply the other, but they
6676 * aren't read atomically - make sure the division is sane.
6677 */
6678 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6679 return ep;
6680 if (parent_effective > siblings_protected &&
6681 parent_usage > siblings_protected &&
6682 usage > protected) {
6683 unsigned long unclaimed;
6684
6685 unclaimed = parent_effective - siblings_protected;
6686 unclaimed *= usage - protected;
6687 unclaimed /= parent_usage - siblings_protected;
6688
6689 ep += unclaimed;
6690 }
6691
6692 return ep;
6693}
6694
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006695/**
6696 * mem_cgroup_protected - check if memory consumption is in the normal range
6697 * @root: the top ancestor of the sub-tree being checked
6698 * @memcg: the memory cgroup to check
6699 *
6700 * WARNING: This function is not stateless! It can only be used as part
6701 * of a top-down tree iteration, not for isolated queries.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006702 */
Olivier Deprez157378f2022-04-04 15:47:50 +02006703void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6704 struct mem_cgroup *memcg)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006705{
Olivier Deprez157378f2022-04-04 15:47:50 +02006706 unsigned long usage, parent_usage;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006707 struct mem_cgroup *parent;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006708
6709 if (mem_cgroup_disabled())
Olivier Deprez157378f2022-04-04 15:47:50 +02006710 return;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006711
6712 if (!root)
6713 root = root_mem_cgroup;
Olivier Deprez0e641232021-09-23 10:07:05 +02006714
6715 /*
6716 * Effective values of the reclaim targets are ignored so they
6717 * can be stale. Have a look at mem_cgroup_protection for more
6718 * details.
6719 * TODO: calculation should be more robust so that we do not need
6720 * that special casing.
6721 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006722 if (memcg == root)
Olivier Deprez157378f2022-04-04 15:47:50 +02006723 return;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006724
6725 usage = page_counter_read(&memcg->memory);
6726 if (!usage)
Olivier Deprez157378f2022-04-04 15:47:50 +02006727 return;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006728
6729 parent = parent_mem_cgroup(memcg);
6730 /* No parent means a non-hierarchical mode on v1 memcg */
6731 if (!parent)
Olivier Deprez157378f2022-04-04 15:47:50 +02006732 return;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006733
Olivier Deprez157378f2022-04-04 15:47:50 +02006734 if (parent == root) {
6735 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6736 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6737 return;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006738 }
6739
Olivier Deprez157378f2022-04-04 15:47:50 +02006740 parent_usage = page_counter_read(&parent->memory);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006741
Olivier Deprez157378f2022-04-04 15:47:50 +02006742 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6743 READ_ONCE(memcg->memory.min),
6744 READ_ONCE(parent->memory.emin),
6745 atomic_long_read(&parent->memory.children_min_usage)));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006746
Olivier Deprez157378f2022-04-04 15:47:50 +02006747 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6748 READ_ONCE(memcg->memory.low),
6749 READ_ONCE(parent->memory.elow),
6750 atomic_long_read(&parent->memory.children_low_usage)));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006751}
6752
6753/**
Olivier Deprez157378f2022-04-04 15:47:50 +02006754 * mem_cgroup_charge - charge a newly allocated page to a cgroup
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006755 * @page: page to charge
6756 * @mm: mm context of the victim
6757 * @gfp_mask: reclaim mode
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006758 *
6759 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6760 * pages according to @gfp_mask if necessary.
6761 *
Olivier Deprez157378f2022-04-04 15:47:50 +02006762 * Returns 0 on success. Otherwise, an error code is returned.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006763 */
Olivier Deprez157378f2022-04-04 15:47:50 +02006764int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006765{
Olivier Deprez157378f2022-04-04 15:47:50 +02006766 unsigned int nr_pages = thp_nr_pages(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006767 struct mem_cgroup *memcg = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006768 int ret = 0;
6769
6770 if (mem_cgroup_disabled())
6771 goto out;
6772
6773 if (PageSwapCache(page)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02006774 swp_entry_t ent = { .val = page_private(page), };
6775 unsigned short id;
6776
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006777 /*
6778 * Every swap fault against a single page tries to charge the
6779 * page, bail as early as possible. shmem_unuse() encounters
Olivier Deprez157378f2022-04-04 15:47:50 +02006780 * already charged pages, too. page->mem_cgroup is protected
6781 * by the page lock, which serializes swap cache removal, which
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006782 * in turn serializes uncharging.
6783 */
6784 VM_BUG_ON_PAGE(!PageLocked(page), page);
6785 if (compound_head(page)->mem_cgroup)
6786 goto out;
6787
Olivier Deprez157378f2022-04-04 15:47:50 +02006788 id = lookup_swap_cgroup_id(ent);
6789 rcu_read_lock();
6790 memcg = mem_cgroup_from_id(id);
6791 if (memcg && !css_tryget_online(&memcg->css))
6792 memcg = NULL;
6793 rcu_read_unlock();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006794 }
6795
6796 if (!memcg)
6797 memcg = get_mem_cgroup_from_mm(mm);
6798
6799 ret = try_charge(memcg, gfp_mask, nr_pages);
Olivier Deprez157378f2022-04-04 15:47:50 +02006800 if (ret)
6801 goto out_put;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006802
Olivier Deprez157378f2022-04-04 15:47:50 +02006803 css_get(&memcg->css);
6804 commit_charge(page, memcg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006805
6806 local_irq_disable();
Olivier Deprez157378f2022-04-04 15:47:50 +02006807 mem_cgroup_charge_statistics(memcg, page, nr_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006808 memcg_check_events(memcg, page);
6809 local_irq_enable();
6810
Olivier Deprez157378f2022-04-04 15:47:50 +02006811 /*
6812 * Cgroup1's unified memory+swap counter has been charged with the
6813 * new swapcache page, finish the transfer by uncharging the swap
6814 * slot. The swap slot would also get uncharged when it dies, but
6815 * it can stick around indefinitely and we'd count the page twice
6816 * the entire time.
6817 *
6818 * Cgroup2 has separate resource counters for memory and swap,
6819 * so this is a non-issue here. Memory and swap charge lifetimes
6820 * correspond 1:1 to page and swap slot lifetimes: we charge the
6821 * page to memory here, and uncharge swap when the slot is freed.
6822 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006823 if (do_memsw_account() && PageSwapCache(page)) {
6824 swp_entry_t entry = { .val = page_private(page) };
6825 /*
6826 * The swap entry might not get freed for a long time,
6827 * let's not wait for it. The page already received a
6828 * memory+swap charge, drop the swap entry duplicate.
6829 */
6830 mem_cgroup_uncharge_swap(entry, nr_pages);
6831 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006832
Olivier Deprez157378f2022-04-04 15:47:50 +02006833out_put:
6834 css_put(&memcg->css);
6835out:
6836 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006837}
6838
6839struct uncharge_gather {
6840 struct mem_cgroup *memcg;
Olivier Deprez157378f2022-04-04 15:47:50 +02006841 unsigned long nr_pages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006842 unsigned long pgpgout;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006843 unsigned long nr_kmem;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006844 struct page *dummy_page;
6845};
6846
6847static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6848{
6849 memset(ug, 0, sizeof(*ug));
6850}
6851
6852static void uncharge_batch(const struct uncharge_gather *ug)
6853{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006854 unsigned long flags;
6855
6856 if (!mem_cgroup_is_root(ug->memcg)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02006857 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006858 if (do_memsw_account())
Olivier Deprez157378f2022-04-04 15:47:50 +02006859 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006860 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6861 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6862 memcg_oom_recover(ug->memcg);
6863 }
6864
6865 local_irq_save(flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006866 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
Olivier Deprez157378f2022-04-04 15:47:50 +02006867 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006868 memcg_check_events(ug->memcg, ug->dummy_page);
6869 local_irq_restore(flags);
6870
Olivier Deprez157378f2022-04-04 15:47:50 +02006871 /* drop reference from uncharge_page */
6872 css_put(&ug->memcg->css);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006873}
6874
6875static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6876{
Olivier Deprez157378f2022-04-04 15:47:50 +02006877 unsigned long nr_pages;
6878
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006879 VM_BUG_ON_PAGE(PageLRU(page), page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006880
6881 if (!page->mem_cgroup)
6882 return;
6883
6884 /*
6885 * Nobody should be changing or seriously looking at
6886 * page->mem_cgroup at this point, we have fully
6887 * exclusive access to the page.
6888 */
6889
6890 if (ug->memcg != page->mem_cgroup) {
6891 if (ug->memcg) {
6892 uncharge_batch(ug);
6893 uncharge_gather_clear(ug);
6894 }
6895 ug->memcg = page->mem_cgroup;
Olivier Deprez157378f2022-04-04 15:47:50 +02006896
6897 /* pairs with css_put in uncharge_batch */
6898 css_get(&ug->memcg->css);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006899 }
6900
Olivier Deprez157378f2022-04-04 15:47:50 +02006901 nr_pages = compound_nr(page);
6902 ug->nr_pages += nr_pages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006903
Olivier Deprez157378f2022-04-04 15:47:50 +02006904 if (!PageKmemcg(page)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006905 ug->pgpgout++;
6906 } else {
Olivier Deprez157378f2022-04-04 15:47:50 +02006907 ug->nr_kmem += nr_pages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006908 __ClearPageKmemcg(page);
6909 }
6910
6911 ug->dummy_page = page;
6912 page->mem_cgroup = NULL;
Olivier Deprez157378f2022-04-04 15:47:50 +02006913 css_put(&ug->memcg->css);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006914}
6915
6916static void uncharge_list(struct list_head *page_list)
6917{
6918 struct uncharge_gather ug;
6919 struct list_head *next;
6920
6921 uncharge_gather_clear(&ug);
6922
6923 /*
6924 * Note that the list can be a single page->lru; hence the
6925 * do-while loop instead of a simple list_for_each_entry().
6926 */
6927 next = page_list->next;
6928 do {
6929 struct page *page;
6930
6931 page = list_entry(next, struct page, lru);
6932 next = page->lru.next;
6933
6934 uncharge_page(page, &ug);
6935 } while (next != page_list);
6936
6937 if (ug.memcg)
6938 uncharge_batch(&ug);
6939}
6940
6941/**
6942 * mem_cgroup_uncharge - uncharge a page
6943 * @page: page to uncharge
6944 *
Olivier Deprez157378f2022-04-04 15:47:50 +02006945 * Uncharge a page previously charged with mem_cgroup_charge().
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006946 */
6947void mem_cgroup_uncharge(struct page *page)
6948{
6949 struct uncharge_gather ug;
6950
6951 if (mem_cgroup_disabled())
6952 return;
6953
6954 /* Don't touch page->lru of any random page, pre-check: */
6955 if (!page->mem_cgroup)
6956 return;
6957
6958 uncharge_gather_clear(&ug);
6959 uncharge_page(page, &ug);
6960 uncharge_batch(&ug);
6961}
6962
6963/**
6964 * mem_cgroup_uncharge_list - uncharge a list of page
6965 * @page_list: list of pages to uncharge
6966 *
6967 * Uncharge a list of pages previously charged with
Olivier Deprez157378f2022-04-04 15:47:50 +02006968 * mem_cgroup_charge().
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006969 */
6970void mem_cgroup_uncharge_list(struct list_head *page_list)
6971{
6972 if (mem_cgroup_disabled())
6973 return;
6974
6975 if (!list_empty(page_list))
6976 uncharge_list(page_list);
6977}
6978
6979/**
6980 * mem_cgroup_migrate - charge a page's replacement
6981 * @oldpage: currently circulating page
6982 * @newpage: replacement page
6983 *
6984 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6985 * be uncharged upon free.
6986 *
6987 * Both pages must be locked, @newpage->mapping must be set up.
6988 */
6989void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6990{
6991 struct mem_cgroup *memcg;
6992 unsigned int nr_pages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006993 unsigned long flags;
6994
6995 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6996 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6997 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6998 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6999 newpage);
7000
7001 if (mem_cgroup_disabled())
7002 return;
7003
7004 /* Page cache replacement: new page already charged? */
7005 if (newpage->mem_cgroup)
7006 return;
7007
7008 /* Swapcache readahead pages can get replaced before being charged */
7009 memcg = oldpage->mem_cgroup;
7010 if (!memcg)
7011 return;
7012
7013 /* Force-charge the new page. The old one will be freed soon */
Olivier Deprez157378f2022-04-04 15:47:50 +02007014 nr_pages = thp_nr_pages(newpage);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007015
7016 page_counter_charge(&memcg->memory, nr_pages);
7017 if (do_memsw_account())
7018 page_counter_charge(&memcg->memsw, nr_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007019
Olivier Deprez157378f2022-04-04 15:47:50 +02007020 css_get(&memcg->css);
7021 commit_charge(newpage, memcg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007022
7023 local_irq_save(flags);
Olivier Deprez157378f2022-04-04 15:47:50 +02007024 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007025 memcg_check_events(memcg, newpage);
7026 local_irq_restore(flags);
7027}
7028
7029DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7030EXPORT_SYMBOL(memcg_sockets_enabled_key);
7031
7032void mem_cgroup_sk_alloc(struct sock *sk)
7033{
7034 struct mem_cgroup *memcg;
7035
7036 if (!mem_cgroup_sockets_enabled)
7037 return;
7038
Olivier Deprez0e641232021-09-23 10:07:05 +02007039 /* Do not associate the sock with unrelated interrupted task's memcg. */
7040 if (in_interrupt())
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007041 return;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007042
7043 rcu_read_lock();
7044 memcg = mem_cgroup_from_task(current);
7045 if (memcg == root_mem_cgroup)
7046 goto out;
7047 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7048 goto out;
Olivier Deprez157378f2022-04-04 15:47:50 +02007049 if (css_tryget(&memcg->css))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007050 sk->sk_memcg = memcg;
7051out:
7052 rcu_read_unlock();
7053}
7054
7055void mem_cgroup_sk_free(struct sock *sk)
7056{
7057 if (sk->sk_memcg)
7058 css_put(&sk->sk_memcg->css);
7059}
7060
7061/**
7062 * mem_cgroup_charge_skmem - charge socket memory
7063 * @memcg: memcg to charge
7064 * @nr_pages: number of pages to charge
7065 *
7066 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7067 * @memcg's configured limit, %false if the charge had to be forced.
7068 */
7069bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7070{
7071 gfp_t gfp_mask = GFP_KERNEL;
7072
7073 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7074 struct page_counter *fail;
7075
7076 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7077 memcg->tcpmem_pressure = 0;
7078 return true;
7079 }
7080 page_counter_charge(&memcg->tcpmem, nr_pages);
7081 memcg->tcpmem_pressure = 1;
7082 return false;
7083 }
7084
7085 /* Don't block in the packet receive path */
7086 if (in_softirq())
7087 gfp_mask = GFP_NOWAIT;
7088
7089 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7090
7091 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7092 return true;
7093
7094 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7095 return false;
7096}
7097
7098/**
7099 * mem_cgroup_uncharge_skmem - uncharge socket memory
7100 * @memcg: memcg to uncharge
7101 * @nr_pages: number of pages to uncharge
7102 */
7103void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7104{
7105 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7106 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7107 return;
7108 }
7109
7110 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7111
7112 refill_stock(memcg, nr_pages);
7113}
7114
7115static int __init cgroup_memory(char *s)
7116{
7117 char *token;
7118
7119 while ((token = strsep(&s, ",")) != NULL) {
7120 if (!*token)
7121 continue;
7122 if (!strcmp(token, "nosocket"))
7123 cgroup_memory_nosocket = true;
7124 if (!strcmp(token, "nokmem"))
7125 cgroup_memory_nokmem = true;
7126 }
7127 return 0;
7128}
7129__setup("cgroup.memory=", cgroup_memory);
7130
7131/*
7132 * subsys_initcall() for memory controller.
7133 *
7134 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7135 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7136 * basically everything that doesn't depend on a specific mem_cgroup structure
7137 * should be initialized from here.
7138 */
7139static int __init mem_cgroup_init(void)
7140{
7141 int cpu, node;
7142
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007143 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7144 memcg_hotplug_cpu_dead);
7145
7146 for_each_possible_cpu(cpu)
7147 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7148 drain_local_stock);
7149
7150 for_each_node(node) {
7151 struct mem_cgroup_tree_per_node *rtpn;
7152
7153 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7154 node_online(node) ? node : NUMA_NO_NODE);
7155
7156 rtpn->rb_root = RB_ROOT;
7157 rtpn->rb_rightmost = NULL;
7158 spin_lock_init(&rtpn->lock);
7159 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7160 }
7161
7162 return 0;
7163}
7164subsys_initcall(mem_cgroup_init);
7165
7166#ifdef CONFIG_MEMCG_SWAP
7167static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7168{
David Brazdil0f672f62019-12-10 10:32:29 +00007169 while (!refcount_inc_not_zero(&memcg->id.ref)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007170 /*
7171 * The root cgroup cannot be destroyed, so it's refcount must
7172 * always be >= 1.
7173 */
7174 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7175 VM_BUG_ON(1);
7176 break;
7177 }
7178 memcg = parent_mem_cgroup(memcg);
7179 if (!memcg)
7180 memcg = root_mem_cgroup;
7181 }
7182 return memcg;
7183}
7184
7185/**
7186 * mem_cgroup_swapout - transfer a memsw charge to swap
7187 * @page: page whose memsw charge to transfer
7188 * @entry: swap entry to move the charge to
7189 *
7190 * Transfer the memsw charge of @page to @entry.
7191 */
7192void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7193{
7194 struct mem_cgroup *memcg, *swap_memcg;
7195 unsigned int nr_entries;
7196 unsigned short oldid;
7197
7198 VM_BUG_ON_PAGE(PageLRU(page), page);
7199 VM_BUG_ON_PAGE(page_count(page), page);
7200
Olivier Deprez157378f2022-04-04 15:47:50 +02007201 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007202 return;
7203
7204 memcg = page->mem_cgroup;
7205
7206 /* Readahead page, never charged */
7207 if (!memcg)
7208 return;
7209
7210 /*
7211 * In case the memcg owning these pages has been offlined and doesn't
7212 * have an ID allocated to it anymore, charge the closest online
7213 * ancestor for the swap instead and transfer the memory+swap charge.
7214 */
7215 swap_memcg = mem_cgroup_id_get_online(memcg);
Olivier Deprez157378f2022-04-04 15:47:50 +02007216 nr_entries = thp_nr_pages(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007217 /* Get references for the tail pages, too */
7218 if (nr_entries > 1)
7219 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7220 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7221 nr_entries);
7222 VM_BUG_ON_PAGE(oldid, page);
7223 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7224
7225 page->mem_cgroup = NULL;
7226
7227 if (!mem_cgroup_is_root(memcg))
7228 page_counter_uncharge(&memcg->memory, nr_entries);
7229
Olivier Deprez157378f2022-04-04 15:47:50 +02007230 if (!cgroup_memory_noswap && memcg != swap_memcg) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007231 if (!mem_cgroup_is_root(swap_memcg))
7232 page_counter_charge(&swap_memcg->memsw, nr_entries);
7233 page_counter_uncharge(&memcg->memsw, nr_entries);
7234 }
7235
7236 /*
7237 * Interrupts should be disabled here because the caller holds the
7238 * i_pages lock which is taken with interrupts-off. It is
7239 * important here to have the interrupts disabled because it is the
7240 * only synchronisation we have for updating the per-CPU variables.
7241 */
7242 VM_BUG_ON(!irqs_disabled());
Olivier Deprez157378f2022-04-04 15:47:50 +02007243 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007244 memcg_check_events(memcg, page);
7245
Olivier Deprez157378f2022-04-04 15:47:50 +02007246 css_put(&memcg->css);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007247}
7248
7249/**
7250 * mem_cgroup_try_charge_swap - try charging swap space for a page
7251 * @page: page being added to swap
7252 * @entry: swap entry to charge
7253 *
7254 * Try to charge @page's memcg for the swap space at @entry.
7255 *
7256 * Returns 0 on success, -ENOMEM on failure.
7257 */
7258int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7259{
Olivier Deprez157378f2022-04-04 15:47:50 +02007260 unsigned int nr_pages = thp_nr_pages(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007261 struct page_counter *counter;
7262 struct mem_cgroup *memcg;
7263 unsigned short oldid;
7264
Olivier Deprez157378f2022-04-04 15:47:50 +02007265 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007266 return 0;
7267
7268 memcg = page->mem_cgroup;
7269
7270 /* Readahead page, never charged */
7271 if (!memcg)
7272 return 0;
7273
7274 if (!entry.val) {
7275 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7276 return 0;
7277 }
7278
7279 memcg = mem_cgroup_id_get_online(memcg);
7280
Olivier Deprez157378f2022-04-04 15:47:50 +02007281 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007282 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7283 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7284 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7285 mem_cgroup_id_put(memcg);
7286 return -ENOMEM;
7287 }
7288
7289 /* Get references for the tail pages, too */
7290 if (nr_pages > 1)
7291 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7292 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7293 VM_BUG_ON_PAGE(oldid, page);
7294 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7295
7296 return 0;
7297}
7298
7299/**
7300 * mem_cgroup_uncharge_swap - uncharge swap space
7301 * @entry: swap entry to uncharge
7302 * @nr_pages: the amount of swap space to uncharge
7303 */
7304void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7305{
7306 struct mem_cgroup *memcg;
7307 unsigned short id;
7308
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007309 id = swap_cgroup_record(entry, 0, nr_pages);
7310 rcu_read_lock();
7311 memcg = mem_cgroup_from_id(id);
7312 if (memcg) {
Olivier Deprez157378f2022-04-04 15:47:50 +02007313 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007314 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7315 page_counter_uncharge(&memcg->swap, nr_pages);
7316 else
7317 page_counter_uncharge(&memcg->memsw, nr_pages);
7318 }
7319 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7320 mem_cgroup_id_put_many(memcg, nr_pages);
7321 }
7322 rcu_read_unlock();
7323}
7324
7325long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7326{
7327 long nr_swap_pages = get_nr_swap_pages();
7328
Olivier Deprez157378f2022-04-04 15:47:50 +02007329 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007330 return nr_swap_pages;
7331 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7332 nr_swap_pages = min_t(long, nr_swap_pages,
7333 READ_ONCE(memcg->swap.max) -
7334 page_counter_read(&memcg->swap));
7335 return nr_swap_pages;
7336}
7337
7338bool mem_cgroup_swap_full(struct page *page)
7339{
7340 struct mem_cgroup *memcg;
7341
7342 VM_BUG_ON_PAGE(!PageLocked(page), page);
7343
7344 if (vm_swap_full())
7345 return true;
Olivier Deprez157378f2022-04-04 15:47:50 +02007346 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007347 return false;
7348
7349 memcg = page->mem_cgroup;
7350 if (!memcg)
7351 return false;
7352
Olivier Deprez157378f2022-04-04 15:47:50 +02007353 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7354 unsigned long usage = page_counter_read(&memcg->swap);
7355
7356 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7357 usage * 2 >= READ_ONCE(memcg->swap.max))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007358 return true;
Olivier Deprez157378f2022-04-04 15:47:50 +02007359 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007360
7361 return false;
7362}
7363
Olivier Deprez157378f2022-04-04 15:47:50 +02007364static int __init setup_swap_account(char *s)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007365{
7366 if (!strcmp(s, "1"))
Olivier Deprez157378f2022-04-04 15:47:50 +02007367 cgroup_memory_noswap = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007368 else if (!strcmp(s, "0"))
Olivier Deprez157378f2022-04-04 15:47:50 +02007369 cgroup_memory_noswap = 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007370 return 1;
7371}
Olivier Deprez157378f2022-04-04 15:47:50 +02007372__setup("swapaccount=", setup_swap_account);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007373
7374static u64 swap_current_read(struct cgroup_subsys_state *css,
7375 struct cftype *cft)
7376{
7377 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7378
7379 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7380}
7381
Olivier Deprez157378f2022-04-04 15:47:50 +02007382static int swap_high_show(struct seq_file *m, void *v)
7383{
7384 return seq_puts_memcg_tunable(m,
7385 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7386}
7387
7388static ssize_t swap_high_write(struct kernfs_open_file *of,
7389 char *buf, size_t nbytes, loff_t off)
7390{
7391 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7392 unsigned long high;
7393 int err;
7394
7395 buf = strstrip(buf);
7396 err = page_counter_memparse(buf, "max", &high);
7397 if (err)
7398 return err;
7399
7400 page_counter_set_high(&memcg->swap, high);
7401
7402 return nbytes;
7403}
7404
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007405static int swap_max_show(struct seq_file *m, void *v)
7406{
David Brazdil0f672f62019-12-10 10:32:29 +00007407 return seq_puts_memcg_tunable(m,
7408 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007409}
7410
7411static ssize_t swap_max_write(struct kernfs_open_file *of,
7412 char *buf, size_t nbytes, loff_t off)
7413{
7414 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7415 unsigned long max;
7416 int err;
7417
7418 buf = strstrip(buf);
7419 err = page_counter_memparse(buf, "max", &max);
7420 if (err)
7421 return err;
7422
7423 xchg(&memcg->swap.max, max);
7424
7425 return nbytes;
7426}
7427
7428static int swap_events_show(struct seq_file *m, void *v)
7429{
David Brazdil0f672f62019-12-10 10:32:29 +00007430 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007431
Olivier Deprez157378f2022-04-04 15:47:50 +02007432 seq_printf(m, "high %lu\n",
7433 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007434 seq_printf(m, "max %lu\n",
7435 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7436 seq_printf(m, "fail %lu\n",
7437 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7438
7439 return 0;
7440}
7441
7442static struct cftype swap_files[] = {
7443 {
7444 .name = "swap.current",
7445 .flags = CFTYPE_NOT_ON_ROOT,
7446 .read_u64 = swap_current_read,
7447 },
7448 {
Olivier Deprez157378f2022-04-04 15:47:50 +02007449 .name = "swap.high",
7450 .flags = CFTYPE_NOT_ON_ROOT,
7451 .seq_show = swap_high_show,
7452 .write = swap_high_write,
7453 },
7454 {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007455 .name = "swap.max",
7456 .flags = CFTYPE_NOT_ON_ROOT,
7457 .seq_show = swap_max_show,
7458 .write = swap_max_write,
7459 },
7460 {
7461 .name = "swap.events",
7462 .flags = CFTYPE_NOT_ON_ROOT,
7463 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7464 .seq_show = swap_events_show,
7465 },
7466 { } /* terminate */
7467};
7468
Olivier Deprez157378f2022-04-04 15:47:50 +02007469static struct cftype memsw_files[] = {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007470 {
7471 .name = "memsw.usage_in_bytes",
7472 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7473 .read_u64 = mem_cgroup_read_u64,
7474 },
7475 {
7476 .name = "memsw.max_usage_in_bytes",
7477 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7478 .write = mem_cgroup_reset,
7479 .read_u64 = mem_cgroup_read_u64,
7480 },
7481 {
7482 .name = "memsw.limit_in_bytes",
7483 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7484 .write = mem_cgroup_write,
7485 .read_u64 = mem_cgroup_read_u64,
7486 },
7487 {
7488 .name = "memsw.failcnt",
7489 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7490 .write = mem_cgroup_reset,
7491 .read_u64 = mem_cgroup_read_u64,
7492 },
7493 { }, /* terminate */
7494};
7495
Olivier Deprez157378f2022-04-04 15:47:50 +02007496/*
7497 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7498 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7499 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7500 * boot parameter. This may result in premature OOPS inside
7501 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7502 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007503static int __init mem_cgroup_swap_init(void)
7504{
Olivier Deprez157378f2022-04-04 15:47:50 +02007505 /* No memory control -> no swap control */
7506 if (mem_cgroup_disabled())
7507 cgroup_memory_noswap = true;
7508
7509 if (cgroup_memory_noswap)
7510 return 0;
7511
7512 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7513 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7514
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007515 return 0;
7516}
Olivier Deprez157378f2022-04-04 15:47:50 +02007517core_initcall(mem_cgroup_swap_init);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007518
7519#endif /* CONFIG_MEMCG_SWAP */