Update Linux to v5.10.109
Sourced from [1]
[1] https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.10.109.tar.xz
Change-Id: I19bca9fc6762d4e63bcf3e4cba88bbe560d9c76c
Signed-off-by: Olivier Deprez <olivier.deprez@arm.com>
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index 6d7fe35..dbe07fe 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -73,7 +73,8 @@
struct mem_cgroup *root_mem_cgroup __read_mostly;
-#define MEM_CGROUP_RECLAIM_RETRIES 5
+/* Active memory cgroup to use from an interrupt context */
+DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;
@@ -83,9 +84,9 @@
/* Whether the swap controller is active */
#ifdef CONFIG_MEMCG_SWAP
-int do_swap_account __read_mostly;
+bool cgroup_memory_noswap __read_mostly;
#else
-#define do_swap_account 0
+#define cgroup_memory_noswap 1
#endif
#ifdef CONFIG_CGROUP_WRITEBACK
@@ -95,20 +96,11 @@
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
- return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
+ return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
}
-static const char *const mem_cgroup_lru_names[] = {
- "inactive_anon",
- "active_anon",
- "inactive_file",
- "active_file",
- "unevictable",
-};
-
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
-#define NUMAINFO_EVENTS_TARGET 1024
/*
* Cgroups above their limits are maintained in a RB-Tree, independent of
@@ -208,14 +200,6 @@
#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
-enum charge_type {
- MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
- MEM_CGROUP_CHARGE_TYPE_ANON,
- MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
- MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
- NR_CHARGE_TYPE,
-};
-
/* for encoding cft->private value on file */
enum res_type {
_MEM,
@@ -246,7 +230,7 @@
iter != NULL; \
iter = mem_cgroup_iter(NULL, iter, NULL))
-static inline bool should_force_charge(void)
+static inline bool task_is_dying(void)
{
return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
(current->flags & PF_EXITING);
@@ -266,8 +250,100 @@
}
#ifdef CONFIG_MEMCG_KMEM
+static DEFINE_SPINLOCK(objcg_lock);
+
+static void obj_cgroup_release(struct percpu_ref *ref)
+{
+ struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
+ struct mem_cgroup *memcg;
+ unsigned int nr_bytes;
+ unsigned int nr_pages;
+ unsigned long flags;
+
+ /*
+ * At this point all allocated objects are freed, and
+ * objcg->nr_charged_bytes can't have an arbitrary byte value.
+ * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
+ *
+ * The following sequence can lead to it:
+ * 1) CPU0: objcg == stock->cached_objcg
+ * 2) CPU1: we do a small allocation (e.g. 92 bytes),
+ * PAGE_SIZE bytes are charged
+ * 3) CPU1: a process from another memcg is allocating something,
+ * the stock if flushed,
+ * objcg->nr_charged_bytes = PAGE_SIZE - 92
+ * 5) CPU0: we do release this object,
+ * 92 bytes are added to stock->nr_bytes
+ * 6) CPU0: stock is flushed,
+ * 92 bytes are added to objcg->nr_charged_bytes
+ *
+ * In the result, nr_charged_bytes == PAGE_SIZE.
+ * This page will be uncharged in obj_cgroup_release().
+ */
+ nr_bytes = atomic_read(&objcg->nr_charged_bytes);
+ WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
+ nr_pages = nr_bytes >> PAGE_SHIFT;
+
+ spin_lock_irqsave(&objcg_lock, flags);
+ memcg = obj_cgroup_memcg(objcg);
+ if (nr_pages)
+ __memcg_kmem_uncharge(memcg, nr_pages);
+ list_del(&objcg->list);
+ mem_cgroup_put(memcg);
+ spin_unlock_irqrestore(&objcg_lock, flags);
+
+ percpu_ref_exit(ref);
+ kfree_rcu(objcg, rcu);
+}
+
+static struct obj_cgroup *obj_cgroup_alloc(void)
+{
+ struct obj_cgroup *objcg;
+ int ret;
+
+ objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
+ if (!objcg)
+ return NULL;
+
+ ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
+ GFP_KERNEL);
+ if (ret) {
+ kfree(objcg);
+ return NULL;
+ }
+ INIT_LIST_HEAD(&objcg->list);
+ return objcg;
+}
+
+static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
+ struct mem_cgroup *parent)
+{
+ struct obj_cgroup *objcg, *iter;
+
+ objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
+
+ spin_lock_irq(&objcg_lock);
+
+ /* Move active objcg to the parent's list */
+ xchg(&objcg->memcg, parent);
+ css_get(&parent->css);
+ list_add(&objcg->list, &parent->objcg_list);
+
+ /* Move already reparented objcgs to the parent's list */
+ list_for_each_entry(iter, &memcg->objcg_list, list) {
+ css_get(&parent->css);
+ xchg(&iter->memcg, parent);
+ css_put(&memcg->css);
+ }
+ list_splice(&memcg->objcg_list, &parent->objcg_list);
+
+ spin_unlock_irq(&objcg_lock);
+
+ percpu_ref_kill(&objcg->refcnt);
+}
+
/*
- * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
+ * This will be used as a shrinker list's index.
* The main reason for not using cgroup id for this:
* this works better in sparse environments, where we have a lot of memcgs,
* but only a few kmem-limited. Or also, if we have, for instance, 200
@@ -310,14 +386,12 @@
/*
* A lot of the calls to the cache allocation functions are expected to be
- * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
+ * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
* conditional to this static branch, we'll have to allow modules that does
* kmem_cache_alloc and the such to see this symbol as well
*/
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
EXPORT_SYMBOL(memcg_kmem_enabled_key);
-
-struct workqueue_struct *memcg_kmem_cache_wq;
#endif
static int memcg_shrinker_map_size;
@@ -343,7 +417,7 @@
if (!old)
return 0;
- new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
+ new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
if (!new)
return -ENOMEM;
@@ -387,7 +461,7 @@
mutex_lock(&memcg_shrinker_map_mutex);
size = memcg_shrinker_map_size;
for_each_node(nid) {
- map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
+ map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
if (!map) {
memcg_free_shrinker_maps(memcg);
ret = -ENOMEM;
@@ -486,10 +560,17 @@
unsigned long ino = 0;
rcu_read_lock();
- if (PageSlab(page) && !PageTail(page))
- memcg = memcg_from_slab_page(page);
- else
- memcg = READ_ONCE(page->mem_cgroup);
+ memcg = page->mem_cgroup;
+
+ /*
+ * The lowest bit set means that memcg isn't a valid
+ * memcg pointer, but a obj_cgroups pointer.
+ * In this case the page is shared and doesn't belong
+ * to any specific memory cgroup.
+ */
+ if ((unsigned long) memcg & 0x1UL)
+ memcg = NULL;
+
while (memcg && !(memcg->css.flags & CSS_ONLINE))
memcg = parent_mem_cgroup(memcg);
if (memcg)
@@ -665,7 +746,7 @@
*/
__mem_cgroup_remove_exceeded(mz, mctz);
if (!soft_limit_excess(mz->memcg) ||
- !css_tryget_online(&mz->memcg->css))
+ !css_tryget(&mz->memcg->css))
goto retry;
done:
return mz;
@@ -690,13 +771,16 @@
*/
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
- long x;
+ long x, threshold = MEMCG_CHARGE_BATCH;
if (mem_cgroup_disabled())
return;
+ if (memcg_stat_item_in_bytes(idx))
+ threshold <<= PAGE_SHIFT;
+
x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
- if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
+ if (unlikely(abs(x) > threshold)) {
struct mem_cgroup *mi;
/*
@@ -722,6 +806,37 @@
return mem_cgroup_nodeinfo(parent, nid);
}
+void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
+ int val)
+{
+ struct mem_cgroup_per_node *pn;
+ struct mem_cgroup *memcg;
+ long x, threshold = MEMCG_CHARGE_BATCH;
+
+ pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
+ memcg = pn->memcg;
+
+ /* Update memcg */
+ __mod_memcg_state(memcg, idx, val);
+
+ /* Update lruvec */
+ __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
+
+ if (vmstat_item_in_bytes(idx))
+ threshold <<= PAGE_SHIFT;
+
+ x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
+ if (unlikely(abs(x) > threshold)) {
+ pg_data_t *pgdat = lruvec_pgdat(lruvec);
+ struct mem_cgroup_per_node *pi;
+
+ for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
+ atomic_long_add(x, &pi->lruvec_stat[idx]);
+ x = 0;
+ }
+ __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
+}
+
/**
* __mod_lruvec_state - update lruvec memory statistics
* @lruvec: the lruvec
@@ -735,46 +850,22 @@
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
int val)
{
- pg_data_t *pgdat = lruvec_pgdat(lruvec);
- struct mem_cgroup_per_node *pn;
- struct mem_cgroup *memcg;
- long x;
-
/* Update node */
- __mod_node_page_state(pgdat, idx, val);
+ __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
- if (mem_cgroup_disabled())
- return;
-
- pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
- memcg = pn->memcg;
-
- /* Update memcg */
- __mod_memcg_state(memcg, idx, val);
-
- /* Update lruvec */
- __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
-
- x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
- if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
- struct mem_cgroup_per_node *pi;
-
- for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
- atomic_long_add(x, &pi->lruvec_stat[idx]);
- x = 0;
- }
- __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
+ /* Update memcg and lruvec */
+ if (!mem_cgroup_disabled())
+ __mod_memcg_lruvec_state(lruvec, idx, val);
}
void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
{
- struct page *page = virt_to_head_page(p);
- pg_data_t *pgdat = page_pgdat(page);
+ pg_data_t *pgdat = page_pgdat(virt_to_page(p));
struct mem_cgroup *memcg;
struct lruvec *lruvec;
rcu_read_lock();
- memcg = memcg_from_slab_page(page);
+ memcg = mem_cgroup_from_obj(p);
/*
* Untracked pages have no memcg, no lruvec. Update only the
@@ -785,7 +876,7 @@
if (!memcg) {
__mod_node_page_state(pgdat, idx, val);
} else {
- lruvec = mem_cgroup_lruvec(pgdat, memcg);
+ lruvec = mem_cgroup_lruvec(memcg, pgdat);
__mod_lruvec_state(lruvec, idx, val);
}
rcu_read_unlock();
@@ -849,25 +940,8 @@
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
struct page *page,
- bool compound, int nr_pages)
+ int nr_pages)
{
- /*
- * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
- * counted as CACHE even if it's on ANON LRU.
- */
- if (PageAnon(page))
- __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
- else {
- __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
- if (PageSwapBacked(page))
- __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
- }
-
- if (compound) {
- VM_BUG_ON_PAGE(!PageTransHuge(page), page);
- __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
- }
-
/* pagein of a big page is an event. So, ignore page size */
if (nr_pages > 0)
__count_memcg_events(memcg, PGPGIN, 1);
@@ -895,9 +969,6 @@
case MEM_CGROUP_TARGET_SOFTLIMIT:
next = val + SOFTLIMIT_EVENTS_TARGET;
break;
- case MEM_CGROUP_TARGET_NUMAINFO:
- next = val + NUMAINFO_EVENTS_TARGET;
- break;
default:
break;
}
@@ -917,21 +988,12 @@
if (unlikely(mem_cgroup_event_ratelimit(memcg,
MEM_CGROUP_TARGET_THRESH))) {
bool do_softlimit;
- bool do_numainfo __maybe_unused;
do_softlimit = mem_cgroup_event_ratelimit(memcg,
MEM_CGROUP_TARGET_SOFTLIMIT);
-#if MAX_NUMNODES > 1
- do_numainfo = mem_cgroup_event_ratelimit(memcg,
- MEM_CGROUP_TARGET_NUMAINFO);
-#endif
mem_cgroup_threshold(memcg);
if (unlikely(do_softlimit))
mem_cgroup_update_tree(memcg, page);
-#if MAX_NUMNODES > 1
- if (unlikely(do_numainfo))
- atomic_inc(&memcg->numainfo_events);
-#endif
}
}
@@ -999,27 +1061,60 @@
return NULL;
rcu_read_lock();
- if (!memcg || !css_tryget_online(&memcg->css))
+ /* Page should not get uncharged and freed memcg under us. */
+ if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
memcg = root_mem_cgroup;
rcu_read_unlock();
return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);
+static __always_inline struct mem_cgroup *active_memcg(void)
+{
+ if (in_interrupt())
+ return this_cpu_read(int_active_memcg);
+ else
+ return current->active_memcg;
+}
+
+static __always_inline struct mem_cgroup *get_active_memcg(void)
+{
+ struct mem_cgroup *memcg;
+
+ rcu_read_lock();
+ memcg = active_memcg();
+ /* remote memcg must hold a ref. */
+ if (memcg && WARN_ON_ONCE(!css_tryget(&memcg->css)))
+ memcg = root_mem_cgroup;
+ rcu_read_unlock();
+
+ return memcg;
+}
+
+static __always_inline bool memcg_kmem_bypass(void)
+{
+ /* Allow remote memcg charging from any context. */
+ if (unlikely(active_memcg()))
+ return false;
+
+ /* Memcg to charge can't be determined. */
+ if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
+ return true;
+
+ return false;
+}
+
/**
- * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
+ * If active memcg is set, do not fallback to current->mm->memcg.
*/
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
- if (unlikely(current->active_memcg)) {
- struct mem_cgroup *memcg = root_mem_cgroup;
+ if (memcg_kmem_bypass())
+ return NULL;
- rcu_read_lock();
- if (css_tryget_online(¤t->active_memcg->css))
- memcg = current->active_memcg;
- rcu_read_unlock();
- return memcg;
- }
+ if (unlikely(active_memcg()))
+ return get_active_memcg();
+
return get_mem_cgroup_from_mm(current->mm);
}
@@ -1036,15 +1131,15 @@
* invocations for reference counting, or use mem_cgroup_iter_break()
* to cancel a hierarchy walk before the round-trip is complete.
*
- * Reclaimers can specify a node and a priority level in @reclaim to
- * divide up the memcgs in the hierarchy among all concurrent
- * reclaimers operating on the same node and priority.
+ * Reclaimers can specify a node in @reclaim to divide up the memcgs
+ * in the hierarchy among all concurrent reclaimers operating on the
+ * same node.
*/
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
struct mem_cgroup *prev,
struct mem_cgroup_reclaim_cookie *reclaim)
{
- struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
+ struct mem_cgroup_reclaim_iter *iter;
struct cgroup_subsys_state *css = NULL;
struct mem_cgroup *memcg = NULL;
struct mem_cgroup *pos = NULL;
@@ -1070,7 +1165,7 @@
struct mem_cgroup_per_node *mz;
mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
- iter = &mz->iter[reclaim->priority];
+ iter = &mz->iter;
if (prev && reclaim->generation != iter->generation)
goto out_unlock;
@@ -1170,15 +1265,11 @@
struct mem_cgroup_reclaim_iter *iter;
struct mem_cgroup_per_node *mz;
int nid;
- int i;
for_each_node(nid) {
mz = mem_cgroup_nodeinfo(from, nid);
- for (i = 0; i <= DEF_PRIORITY; i++) {
- iter = &mz->iter[i];
- cmpxchg(&iter->position,
- dead_memcg, NULL);
- }
+ iter = &mz->iter;
+ cmpxchg(&iter->position, dead_memcg, NULL);
}
}
@@ -1245,9 +1336,8 @@
* @page: the page
* @pgdat: pgdat of the page
*
- * This function is only safe when following the LRU page isolation
- * and putback protocol: the LRU lock must be held, and the page must
- * either be PageLRU() or the caller must have isolated/allocated it.
+ * This function relies on page->mem_cgroup being stable - see the
+ * access rules in commit_charge().
*/
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
{
@@ -1256,7 +1346,7 @@
struct lruvec *lruvec;
if (mem_cgroup_disabled()) {
- lruvec = &pgdat->lruvec;
+ lruvec = &pgdat->__lruvec;
goto out;
}
@@ -1341,7 +1431,7 @@
if (do_memsw_account()) {
count = page_counter_read(&memcg->memsw);
limit = READ_ONCE(memcg->memsw.max);
- if (count <= limit)
+ if (count < limit)
margin = min(margin, limit - count);
else
margin = 0;
@@ -1395,6 +1485,70 @@
return false;
}
+struct memory_stat {
+ const char *name;
+ unsigned int ratio;
+ unsigned int idx;
+};
+
+static struct memory_stat memory_stats[] = {
+ { "anon", PAGE_SIZE, NR_ANON_MAPPED },
+ { "file", PAGE_SIZE, NR_FILE_PAGES },
+ { "kernel_stack", 1024, NR_KERNEL_STACK_KB },
+ { "percpu", 1, MEMCG_PERCPU_B },
+ { "sock", PAGE_SIZE, MEMCG_SOCK },
+ { "shmem", PAGE_SIZE, NR_SHMEM },
+ { "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
+ { "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
+ { "file_writeback", PAGE_SIZE, NR_WRITEBACK },
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+ /*
+ * The ratio will be initialized in memory_stats_init(). Because
+ * on some architectures, the macro of HPAGE_PMD_SIZE is not
+ * constant(e.g. powerpc).
+ */
+ { "anon_thp", 0, NR_ANON_THPS },
+#endif
+ { "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
+ { "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
+ { "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
+ { "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
+ { "unevictable", PAGE_SIZE, NR_UNEVICTABLE },
+
+ /*
+ * Note: The slab_reclaimable and slab_unreclaimable must be
+ * together and slab_reclaimable must be in front.
+ */
+ { "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
+ { "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },
+
+ /* The memory events */
+ { "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
+ { "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
+ { "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
+ { "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
+ { "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
+ { "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
+ { "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
+};
+
+static int __init memory_stats_init(void)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+ if (memory_stats[i].idx == NR_ANON_THPS)
+ memory_stats[i].ratio = HPAGE_PMD_SIZE;
+#endif
+ VM_BUG_ON(!memory_stats[i].ratio);
+ VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
+ }
+
+ return 0;
+}
+pure_initcall(memory_stats_init);
+
static char *memory_stat_format(struct mem_cgroup *memcg)
{
struct seq_buf s;
@@ -1415,86 +1569,47 @@
* Current memory state:
*/
- seq_buf_printf(&s, "anon %llu\n",
- (u64)memcg_page_state(memcg, MEMCG_RSS) *
- PAGE_SIZE);
- seq_buf_printf(&s, "file %llu\n",
- (u64)memcg_page_state(memcg, MEMCG_CACHE) *
- PAGE_SIZE);
- seq_buf_printf(&s, "kernel_stack %llu\n",
- (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
- 1024);
- seq_buf_printf(&s, "slab %llu\n",
- (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
- memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
- PAGE_SIZE);
- seq_buf_printf(&s, "sock %llu\n",
- (u64)memcg_page_state(memcg, MEMCG_SOCK) *
- PAGE_SIZE);
+ for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
+ u64 size;
- seq_buf_printf(&s, "shmem %llu\n",
- (u64)memcg_page_state(memcg, NR_SHMEM) *
- PAGE_SIZE);
- seq_buf_printf(&s, "file_mapped %llu\n",
- (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
- PAGE_SIZE);
- seq_buf_printf(&s, "file_dirty %llu\n",
- (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
- PAGE_SIZE);
- seq_buf_printf(&s, "file_writeback %llu\n",
- (u64)memcg_page_state(memcg, NR_WRITEBACK) *
- PAGE_SIZE);
+ size = memcg_page_state(memcg, memory_stats[i].idx);
+ size *= memory_stats[i].ratio;
+ seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
- /*
- * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
- * with the NR_ANON_THP vm counter, but right now it's a pain in the
- * arse because it requires migrating the work out of rmap to a place
- * where the page->mem_cgroup is set up and stable.
- */
- seq_buf_printf(&s, "anon_thp %llu\n",
- (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
- PAGE_SIZE);
-
- for (i = 0; i < NR_LRU_LISTS; i++)
- seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
- (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
- PAGE_SIZE);
-
- seq_buf_printf(&s, "slab_reclaimable %llu\n",
- (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
- PAGE_SIZE);
- seq_buf_printf(&s, "slab_unreclaimable %llu\n",
- (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
- PAGE_SIZE);
+ if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
+ size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
+ memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
+ seq_buf_printf(&s, "slab %llu\n", size);
+ }
+ }
/* Accumulated memory events */
- seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
- seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
-
- seq_buf_printf(&s, "workingset_refault %lu\n",
- memcg_page_state(memcg, WORKINGSET_REFAULT));
- seq_buf_printf(&s, "workingset_activate %lu\n",
- memcg_page_state(memcg, WORKINGSET_ACTIVATE));
- seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
- memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
-
- seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
+ seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
+ memcg_events(memcg, PGFAULT));
+ seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
+ memcg_events(memcg, PGMAJFAULT));
+ seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
+ memcg_events(memcg, PGREFILL));
seq_buf_printf(&s, "pgscan %lu\n",
memcg_events(memcg, PGSCAN_KSWAPD) +
memcg_events(memcg, PGSCAN_DIRECT));
seq_buf_printf(&s, "pgsteal %lu\n",
memcg_events(memcg, PGSTEAL_KSWAPD) +
memcg_events(memcg, PGSTEAL_DIRECT));
- seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
- seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
- seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
- seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
+ seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
+ memcg_events(memcg, PGACTIVATE));
+ seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
+ memcg_events(memcg, PGDEACTIVATE));
+ seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
+ memcg_events(memcg, PGLAZYFREE));
+ seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
+ memcg_events(memcg, PGLAZYFREED));
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
- seq_buf_printf(&s, "thp_fault_alloc %lu\n",
+ seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
memcg_events(memcg, THP_FAULT_ALLOC));
- seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
+ seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
@@ -1541,11 +1656,11 @@
pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
K((u64)page_counter_read(&memcg->memory)),
- K((u64)memcg->memory.max), memcg->memory.failcnt);
+ K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
K((u64)page_counter_read(&memcg->swap)),
- K((u64)memcg->swap.max), memcg->swap.failcnt);
+ K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
else {
pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
K((u64)page_counter_read(&memcg->memsw)),
@@ -1570,17 +1685,19 @@
*/
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
{
- unsigned long max;
+ unsigned long max = READ_ONCE(memcg->memory.max);
- max = memcg->memory.max;
- if (mem_cgroup_swappiness(memcg)) {
- unsigned long memsw_max;
- unsigned long swap_max;
+ if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
+ if (mem_cgroup_swappiness(memcg))
+ max += min(READ_ONCE(memcg->swap.max),
+ (unsigned long)total_swap_pages);
+ } else { /* v1 */
+ if (mem_cgroup_swappiness(memcg)) {
+ /* Calculate swap excess capacity from memsw limit */
+ unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
- memsw_max = memcg->memsw.max;
- swap_max = memcg->swap.max;
- swap_max = min(swap_max, (unsigned long)total_swap_pages);
- max = min(max + swap_max, memsw_max);
+ max += min(swap, (unsigned long)total_swap_pages);
+ }
}
return max;
}
@@ -1600,117 +1717,25 @@
.gfp_mask = gfp_mask,
.order = order,
};
- bool ret;
+ bool ret = true;
if (mutex_lock_killable(&oom_lock))
return true;
+
+ if (mem_cgroup_margin(memcg) >= (1 << order))
+ goto unlock;
+
/*
* A few threads which were not waiting at mutex_lock_killable() can
* fail to bail out. Therefore, check again after holding oom_lock.
*/
- ret = should_force_charge() || out_of_memory(&oc);
+ ret = task_is_dying() || out_of_memory(&oc);
+
+unlock:
mutex_unlock(&oom_lock);
return ret;
}
-#if MAX_NUMNODES > 1
-
-/**
- * test_mem_cgroup_node_reclaimable
- * @memcg: the target memcg
- * @nid: the node ID to be checked.
- * @noswap : specify true here if the user wants flle only information.
- *
- * This function returns whether the specified memcg contains any
- * reclaimable pages on a node. Returns true if there are any reclaimable
- * pages in the node.
- */
-static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
- int nid, bool noswap)
-{
- struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
-
- if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
- lruvec_page_state(lruvec, NR_ACTIVE_FILE))
- return true;
- if (noswap || !total_swap_pages)
- return false;
- if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
- lruvec_page_state(lruvec, NR_ACTIVE_ANON))
- return true;
- return false;
-
-}
-
-/*
- * Always updating the nodemask is not very good - even if we have an empty
- * list or the wrong list here, we can start from some node and traverse all
- * nodes based on the zonelist. So update the list loosely once per 10 secs.
- *
- */
-static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
-{
- int nid;
- /*
- * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
- * pagein/pageout changes since the last update.
- */
- if (!atomic_read(&memcg->numainfo_events))
- return;
- if (atomic_inc_return(&memcg->numainfo_updating) > 1)
- return;
-
- /* make a nodemask where this memcg uses memory from */
- memcg->scan_nodes = node_states[N_MEMORY];
-
- for_each_node_mask(nid, node_states[N_MEMORY]) {
-
- if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
- node_clear(nid, memcg->scan_nodes);
- }
-
- atomic_set(&memcg->numainfo_events, 0);
- atomic_set(&memcg->numainfo_updating, 0);
-}
-
-/*
- * Selecting a node where we start reclaim from. Because what we need is just
- * reducing usage counter, start from anywhere is O,K. Considering
- * memory reclaim from current node, there are pros. and cons.
- *
- * Freeing memory from current node means freeing memory from a node which
- * we'll use or we've used. So, it may make LRU bad. And if several threads
- * hit limits, it will see a contention on a node. But freeing from remote
- * node means more costs for memory reclaim because of memory latency.
- *
- * Now, we use round-robin. Better algorithm is welcomed.
- */
-int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
-{
- int node;
-
- mem_cgroup_may_update_nodemask(memcg);
- node = memcg->last_scanned_node;
-
- node = next_node_in(node, memcg->scan_nodes);
- /*
- * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
- * last time it really checked all the LRUs due to rate limiting.
- * Fallback to the current node in that case for simplicity.
- */
- if (unlikely(node == MAX_NUMNODES))
- node = numa_node_id();
-
- memcg->last_scanned_node = node;
- return node;
-}
-#else
-int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
-{
- return 0;
-}
-#endif
-
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
pg_data_t *pgdat,
gfp_t gfp_mask,
@@ -1723,7 +1748,6 @@
unsigned long nr_scanned;
struct mem_cgroup_reclaim_cookie reclaim = {
.pgdat = pgdat,
- .priority = 0,
};
excess = soft_limit_excess(root_memcg);
@@ -1818,7 +1842,7 @@
struct mem_cgroup *iter;
spin_lock(&memcg_oom_lock);
- mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
+ mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
for_each_mem_cgroup_tree(iter, memcg)
iter->oom_lock = false;
spin_unlock(&memcg_oom_lock);
@@ -1839,8 +1863,8 @@
struct mem_cgroup *iter;
/*
- * When a new child is created while the hierarchy is under oom,
- * mem_cgroup_oom_lock() may not be called. Watch for underflow.
+ * Be careful about under_oom underflows becase a child memcg
+ * could have been added after mem_cgroup_mark_under_oom.
*/
spin_lock(&memcg_oom_lock);
for_each_mem_cgroup_tree(iter, memcg)
@@ -2050,6 +2074,14 @@
goto out;
/*
+ * If the victim task has been asynchronously moved to a different
+ * memory cgroup, we might end up killing tasks outside oom_domain.
+ * In this case it's better to ignore memory.group.oom.
+ */
+ if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
+ goto out;
+
+ /*
* Traverse the memory cgroup hierarchy from the victim task's
* cgroup up to the OOMing cgroup (or root) to find the
* highest-level memory cgroup with oom.group set.
@@ -2090,6 +2122,7 @@
*/
struct mem_cgroup *lock_page_memcg(struct page *page)
{
+ struct page *head = compound_head(page); /* rmap on tail pages */
struct mem_cgroup *memcg;
unsigned long flags;
@@ -2109,7 +2142,7 @@
if (mem_cgroup_disabled())
return NULL;
again:
- memcg = page->mem_cgroup;
+ memcg = head->mem_cgroup;
if (unlikely(!memcg))
return NULL;
@@ -2117,7 +2150,7 @@
return memcg;
spin_lock_irqsave(&memcg->move_lock, flags);
- if (memcg != page->mem_cgroup) {
+ if (memcg != head->mem_cgroup) {
spin_unlock_irqrestore(&memcg->move_lock, flags);
goto again;
}
@@ -2160,13 +2193,21 @@
*/
void unlock_page_memcg(struct page *page)
{
- __unlock_page_memcg(page->mem_cgroup);
+ struct page *head = compound_head(page);
+
+ __unlock_page_memcg(head->mem_cgroup);
}
EXPORT_SYMBOL(unlock_page_memcg);
struct memcg_stock_pcp {
struct mem_cgroup *cached; /* this never be root cgroup */
unsigned int nr_pages;
+
+#ifdef CONFIG_MEMCG_KMEM
+ struct obj_cgroup *cached_objcg;
+ unsigned int nr_bytes;
+#endif
+
struct work_struct work;
unsigned long flags;
#define FLUSHING_CACHED_CHARGE 0
@@ -2174,6 +2215,22 @@
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static DEFINE_MUTEX(percpu_charge_mutex);
+#ifdef CONFIG_MEMCG_KMEM
+static void drain_obj_stock(struct memcg_stock_pcp *stock);
+static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
+ struct mem_cgroup *root_memcg);
+
+#else
+static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
+{
+}
+static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
+ struct mem_cgroup *root_memcg)
+{
+ return false;
+}
+#endif
+
/**
* consume_stock: Try to consume stocked charge on this cpu.
* @memcg: memcg to consume from.
@@ -2214,13 +2271,17 @@
{
struct mem_cgroup *old = stock->cached;
+ if (!old)
+ return;
+
if (stock->nr_pages) {
page_counter_uncharge(&old->memory, stock->nr_pages);
if (do_memsw_account())
page_counter_uncharge(&old->memsw, stock->nr_pages);
- css_put_many(&old->css, stock->nr_pages);
stock->nr_pages = 0;
}
+
+ css_put(&old->css);
stock->cached = NULL;
}
@@ -2236,6 +2297,7 @@
local_irq_save(flags);
stock = this_cpu_ptr(&memcg_stock);
+ drain_obj_stock(stock);
drain_stock(stock);
clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
@@ -2256,6 +2318,7 @@
stock = this_cpu_ptr(&memcg_stock);
if (stock->cached != memcg) { /* reset if necessary */
drain_stock(stock);
+ css_get(&memcg->css);
stock->cached = memcg;
}
stock->nr_pages += nr_pages;
@@ -2294,6 +2357,8 @@
if (memcg && stock->nr_pages &&
mem_cgroup_is_descendant(memcg, root_memcg))
flush = true;
+ if (obj_stock_flush_required(stock, root_memcg))
+ flush = true;
rcu_read_unlock();
if (flush &&
@@ -2356,16 +2421,29 @@
return 0;
}
-static void reclaim_high(struct mem_cgroup *memcg,
- unsigned int nr_pages,
- gfp_t gfp_mask)
+static unsigned long reclaim_high(struct mem_cgroup *memcg,
+ unsigned int nr_pages,
+ gfp_t gfp_mask)
{
+ unsigned long nr_reclaimed = 0;
+
do {
- if (page_counter_read(&memcg->memory) <= memcg->high)
+ unsigned long pflags;
+
+ if (page_counter_read(&memcg->memory) <=
+ READ_ONCE(memcg->memory.high))
continue;
+
memcg_memory_event(memcg, MEMCG_HIGH);
- try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
- } while ((memcg = parent_mem_cgroup(memcg)));
+
+ psi_memstall_enter(&pflags);
+ nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
+ gfp_mask, true);
+ psi_memstall_leave(&pflags);
+ } while ((memcg = parent_mem_cgroup(memcg)) &&
+ !mem_cgroup_is_root(memcg));
+
+ return nr_reclaimed;
}
static void high_work_func(struct work_struct *work)
@@ -2390,7 +2468,7 @@
*
* - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
* overage ratio to a delay.
- * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
+ * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
* proposed penalty in order to reduce to a reasonable number of jiffies, and
* to produce a reasonable delay curve.
*
@@ -2429,40 +2507,63 @@
#define MEMCG_DELAY_PRECISION_SHIFT 20
#define MEMCG_DELAY_SCALING_SHIFT 14
+static u64 calculate_overage(unsigned long usage, unsigned long high)
+{
+ u64 overage;
+
+ if (usage <= high)
+ return 0;
+
+ /*
+ * Prevent division by 0 in overage calculation by acting as if
+ * it was a threshold of 1 page
+ */
+ high = max(high, 1UL);
+
+ overage = usage - high;
+ overage <<= MEMCG_DELAY_PRECISION_SHIFT;
+ return div64_u64(overage, high);
+}
+
+static u64 mem_find_max_overage(struct mem_cgroup *memcg)
+{
+ u64 overage, max_overage = 0;
+
+ do {
+ overage = calculate_overage(page_counter_read(&memcg->memory),
+ READ_ONCE(memcg->memory.high));
+ max_overage = max(overage, max_overage);
+ } while ((memcg = parent_mem_cgroup(memcg)) &&
+ !mem_cgroup_is_root(memcg));
+
+ return max_overage;
+}
+
+static u64 swap_find_max_overage(struct mem_cgroup *memcg)
+{
+ u64 overage, max_overage = 0;
+
+ do {
+ overage = calculate_overage(page_counter_read(&memcg->swap),
+ READ_ONCE(memcg->swap.high));
+ if (overage)
+ memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
+ max_overage = max(overage, max_overage);
+ } while ((memcg = parent_mem_cgroup(memcg)) &&
+ !mem_cgroup_is_root(memcg));
+
+ return max_overage;
+}
+
/*
* Get the number of jiffies that we should penalise a mischievous cgroup which
* is exceeding its memory.high by checking both it and its ancestors.
*/
static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
- unsigned int nr_pages)
+ unsigned int nr_pages,
+ u64 max_overage)
{
unsigned long penalty_jiffies;
- u64 max_overage = 0;
-
- do {
- unsigned long usage, high;
- u64 overage;
-
- usage = page_counter_read(&memcg->memory);
- high = READ_ONCE(memcg->high);
-
- if (usage <= high)
- continue;
-
- /*
- * Prevent division by 0 in overage calculation by acting as if
- * it was a threshold of 1 page
- */
- high = max(high, 1UL);
-
- overage = usage - high;
- overage <<= MEMCG_DELAY_PRECISION_SHIFT;
- overage = div64_u64(overage, high);
-
- if (overage > max_overage)
- max_overage = overage;
- } while ((memcg = parent_mem_cgroup(memcg)) &&
- !mem_cgroup_is_root(memcg));
if (!max_overage)
return 0;
@@ -2487,14 +2588,7 @@
* MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
* larger the current charge patch is than that.
*/
- penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
-
- /*
- * Clamp the max delay per usermode return so as to still keep the
- * application moving forwards and also permit diagnostics, albeit
- * extremely slowly.
- */
- return min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
+ return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
}
/*
@@ -2505,21 +2599,48 @@
{
unsigned long penalty_jiffies;
unsigned long pflags;
+ unsigned long nr_reclaimed;
unsigned int nr_pages = current->memcg_nr_pages_over_high;
+ int nr_retries = MAX_RECLAIM_RETRIES;
struct mem_cgroup *memcg;
+ bool in_retry = false;
if (likely(!nr_pages))
return;
memcg = get_mem_cgroup_from_mm(current->mm);
- reclaim_high(memcg, nr_pages, GFP_KERNEL);
current->memcg_nr_pages_over_high = 0;
+retry_reclaim:
+ /*
+ * The allocating task should reclaim at least the batch size, but for
+ * subsequent retries we only want to do what's necessary to prevent oom
+ * or breaching resource isolation.
+ *
+ * This is distinct from memory.max or page allocator behaviour because
+ * memory.high is currently batched, whereas memory.max and the page
+ * allocator run every time an allocation is made.
+ */
+ nr_reclaimed = reclaim_high(memcg,
+ in_retry ? SWAP_CLUSTER_MAX : nr_pages,
+ GFP_KERNEL);
+
/*
* memory.high is breached and reclaim is unable to keep up. Throttle
* allocators proactively to slow down excessive growth.
*/
- penalty_jiffies = calculate_high_delay(memcg, nr_pages);
+ penalty_jiffies = calculate_high_delay(memcg, nr_pages,
+ mem_find_max_overage(memcg));
+
+ penalty_jiffies += calculate_high_delay(memcg, nr_pages,
+ swap_find_max_overage(memcg));
+
+ /*
+ * Clamp the max delay per usermode return so as to still keep the
+ * application moving forwards and also permit diagnostics, albeit
+ * extremely slowly.
+ */
+ penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
/*
* Don't sleep if the amount of jiffies this memcg owes us is so low
@@ -2531,6 +2652,16 @@
goto out;
/*
+ * If reclaim is making forward progress but we're still over
+ * memory.high, we want to encourage that rather than doing allocator
+ * throttling.
+ */
+ if (nr_reclaimed || nr_retries--) {
+ in_retry = true;
+ goto retry_reclaim;
+ }
+
+ /*
* If we exit early, we're guaranteed to die (since
* schedule_timeout_killable sets TASK_KILLABLE). This means we don't
* need to account for any ill-begotten jiffies to pay them off later.
@@ -2547,13 +2678,15 @@
unsigned int nr_pages)
{
unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
- int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
+ int nr_retries = MAX_RECLAIM_RETRIES;
struct mem_cgroup *mem_over_limit;
struct page_counter *counter;
+ enum oom_status oom_status;
unsigned long nr_reclaimed;
+ bool passed_oom = false;
bool may_swap = true;
bool drained = false;
- enum oom_status oom_status;
+ unsigned long pflags;
if (mem_cgroup_is_root(memcg))
return 0;
@@ -2588,15 +2721,6 @@
goto force;
/*
- * Unlike in global OOM situations, memcg is not in a physical
- * memory shortage. Allow dying and OOM-killed tasks to
- * bypass the last charges so that they can exit quickly and
- * free their memory.
- */
- if (unlikely(should_force_charge()))
- goto force;
-
- /*
* Prevent unbounded recursion when reclaim operations need to
* allocate memory. This might exceed the limits temporarily,
* but we prefer facilitating memory reclaim and getting back
@@ -2613,8 +2737,10 @@
memcg_memory_event(mem_over_limit, MEMCG_MAX);
+ psi_memstall_enter(&pflags);
nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
gfp_mask, may_swap);
+ psi_memstall_leave(&pflags);
if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
goto retry;
@@ -2654,8 +2780,9 @@
if (gfp_mask & __GFP_NOFAIL)
goto force;
- if (fatal_signal_pending(current))
- goto force;
+ /* Avoid endless loop for tasks bypassed by the oom killer */
+ if (passed_oom && task_is_dying())
+ goto nomem;
/*
* keep retrying as long as the memcg oom killer is able to make
@@ -2664,14 +2791,10 @@
*/
oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
get_order(nr_pages * PAGE_SIZE));
- switch (oom_status) {
- case OOM_SUCCESS:
- nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
+ if (oom_status == OOM_SUCCESS) {
+ passed_oom = true;
+ nr_retries = MAX_RECLAIM_RETRIES;
goto retry;
- case OOM_FAILED:
- goto force;
- default:
- goto nomem;
}
nomem:
if (!(gfp_mask & __GFP_NOFAIL))
@@ -2685,12 +2808,10 @@
page_counter_charge(&memcg->memory, nr_pages);
if (do_memsw_account())
page_counter_charge(&memcg->memsw, nr_pages);
- css_get_many(&memcg->css, nr_pages);
return 0;
done_restock:
- css_get_many(&memcg->css, batch);
if (batch > nr_pages)
refill_stock(memcg, batch - nr_pages);
@@ -2704,12 +2825,32 @@
* reclaim, the cost of mismatch is negligible.
*/
do {
- if (page_counter_read(&memcg->memory) > memcg->high) {
- /* Don't bother a random interrupted task */
- if (in_interrupt()) {
+ bool mem_high, swap_high;
+
+ mem_high = page_counter_read(&memcg->memory) >
+ READ_ONCE(memcg->memory.high);
+ swap_high = page_counter_read(&memcg->swap) >
+ READ_ONCE(memcg->swap.high);
+
+ /* Don't bother a random interrupted task */
+ if (in_interrupt()) {
+ if (mem_high) {
schedule_work(&memcg->high_work);
break;
}
+ continue;
+ }
+
+ if (mem_high || swap_high) {
+ /*
+ * The allocating tasks in this cgroup will need to do
+ * reclaim or be throttled to prevent further growth
+ * of the memory or swap footprints.
+ *
+ * Target some best-effort fairness between the tasks,
+ * and distribute reclaim work and delay penalties
+ * based on how much each task is actually allocating.
+ */
current->memcg_nr_pages_over_high += batch;
set_notify_resume(current);
break;
@@ -2719,6 +2860,7 @@
return 0;
}
+#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
{
if (mem_cgroup_is_root(memcg))
@@ -2727,77 +2869,53 @@
page_counter_uncharge(&memcg->memory, nr_pages);
if (do_memsw_account())
page_counter_uncharge(&memcg->memsw, nr_pages);
-
- css_put_many(&memcg->css, nr_pages);
}
+#endif
-static void lock_page_lru(struct page *page, int *isolated)
+static void commit_charge(struct page *page, struct mem_cgroup *memcg)
{
- pg_data_t *pgdat = page_pgdat(page);
-
- spin_lock_irq(&pgdat->lru_lock);
- if (PageLRU(page)) {
- struct lruvec *lruvec;
-
- lruvec = mem_cgroup_page_lruvec(page, pgdat);
- ClearPageLRU(page);
- del_page_from_lru_list(page, lruvec, page_lru(page));
- *isolated = 1;
- } else
- *isolated = 0;
-}
-
-static void unlock_page_lru(struct page *page, int isolated)
-{
- pg_data_t *pgdat = page_pgdat(page);
-
- if (isolated) {
- struct lruvec *lruvec;
-
- lruvec = mem_cgroup_page_lruvec(page, pgdat);
- VM_BUG_ON_PAGE(PageLRU(page), page);
- SetPageLRU(page);
- add_page_to_lru_list(page, lruvec, page_lru(page));
- }
- spin_unlock_irq(&pgdat->lru_lock);
-}
-
-static void commit_charge(struct page *page, struct mem_cgroup *memcg,
- bool lrucare)
-{
- int isolated;
-
VM_BUG_ON_PAGE(page->mem_cgroup, page);
-
/*
- * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
- * may already be on some other mem_cgroup's LRU. Take care of it.
- */
- if (lrucare)
- lock_page_lru(page, &isolated);
-
- /*
- * Nobody should be changing or seriously looking at
- * page->mem_cgroup at this point:
+ * Any of the following ensures page->mem_cgroup stability:
*
- * - the page is uncharged
- *
- * - the page is off-LRU
- *
- * - an anonymous fault has exclusive page access, except for
- * a locked page table
- *
- * - a page cache insertion, a swapin fault, or a migration
- * have the page locked
+ * - the page lock
+ * - LRU isolation
+ * - lock_page_memcg()
+ * - exclusive reference
*/
page->mem_cgroup = memcg;
-
- if (lrucare)
- unlock_page_lru(page, isolated);
}
#ifdef CONFIG_MEMCG_KMEM
/*
+ * The allocated objcg pointers array is not accounted directly.
+ * Moreover, it should not come from DMA buffer and is not readily
+ * reclaimable. So those GFP bits should be masked off.
+ */
+#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
+
+int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
+ gfp_t gfp)
+{
+ unsigned int objects = objs_per_slab_page(s, page);
+ void *vec;
+
+ gfp &= ~OBJCGS_CLEAR_MASK;
+ vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
+ page_to_nid(page));
+ if (!vec)
+ return -ENOMEM;
+
+ if (cmpxchg(&page->obj_cgroups, NULL,
+ (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
+ kfree(vec);
+ else
+ kmemleak_not_leak(vec);
+
+ return 0;
+}
+
+/*
* Returns a pointer to the memory cgroup to which the kernel object is charged.
*
* The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
@@ -2813,17 +2931,62 @@
page = virt_to_head_page(p);
/*
- * Slab pages don't have page->mem_cgroup set because corresponding
- * kmem caches can be reparented during the lifetime. That's why
- * memcg_from_slab_page() should be used instead.
+ * If page->mem_cgroup is set, it's either a simple mem_cgroup pointer
+ * or a pointer to obj_cgroup vector. In the latter case the lowest
+ * bit of the pointer is set.
+ * The page->mem_cgroup pointer can be asynchronously changed
+ * from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed
+ * from a valid memcg pointer to objcg vector or back.
*/
- if (PageSlab(page))
- return memcg_from_slab_page(page);
+ if (!page->mem_cgroup)
+ return NULL;
+
+ /*
+ * Slab objects are accounted individually, not per-page.
+ * Memcg membership data for each individual object is saved in
+ * the page->obj_cgroups.
+ */
+ if (page_has_obj_cgroups(page)) {
+ struct obj_cgroup *objcg;
+ unsigned int off;
+
+ off = obj_to_index(page->slab_cache, page, p);
+ objcg = page_obj_cgroups(page)[off];
+ if (objcg)
+ return obj_cgroup_memcg(objcg);
+
+ return NULL;
+ }
/* All other pages use page->mem_cgroup */
return page->mem_cgroup;
}
+__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
+{
+ struct obj_cgroup *objcg = NULL;
+ struct mem_cgroup *memcg;
+
+ if (memcg_kmem_bypass())
+ return NULL;
+
+ rcu_read_lock();
+ if (unlikely(active_memcg()))
+ memcg = active_memcg();
+ else
+ memcg = mem_cgroup_from_task(current);
+
+ for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
+ objcg = rcu_dereference(memcg->objcg);
+ if (objcg && obj_cgroup_tryget(objcg))
+ break;
+ objcg = NULL;
+ }
+ rcu_read_unlock();
+
+ return objcg;
+}
+
static int memcg_alloc_cache_id(void)
{
int id, size;
@@ -2849,9 +3012,7 @@
else if (size > MEMCG_CACHES_MAX_SIZE)
size = MEMCG_CACHES_MAX_SIZE;
- err = memcg_update_all_caches(size);
- if (!err)
- err = memcg_update_all_list_lrus(size);
+ err = memcg_update_all_list_lrus(size);
if (!err)
memcg_nr_cache_ids = size;
@@ -2869,158 +3030,17 @@
ida_simple_remove(&memcg_cache_ida, id);
}
-struct memcg_kmem_cache_create_work {
- struct mem_cgroup *memcg;
- struct kmem_cache *cachep;
- struct work_struct work;
-};
-
-static void memcg_kmem_cache_create_func(struct work_struct *w)
-{
- struct memcg_kmem_cache_create_work *cw =
- container_of(w, struct memcg_kmem_cache_create_work, work);
- struct mem_cgroup *memcg = cw->memcg;
- struct kmem_cache *cachep = cw->cachep;
-
- memcg_create_kmem_cache(memcg, cachep);
-
- css_put(&memcg->css);
- kfree(cw);
-}
-
-/*
- * Enqueue the creation of a per-memcg kmem_cache.
- */
-static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
- struct kmem_cache *cachep)
-{
- struct memcg_kmem_cache_create_work *cw;
-
- if (!css_tryget_online(&memcg->css))
- return;
-
- cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
- if (!cw) {
- css_put(&memcg->css);
- return;
- }
-
- cw->memcg = memcg;
- cw->cachep = cachep;
- INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
-
- queue_work(memcg_kmem_cache_wq, &cw->work);
-}
-
-static inline bool memcg_kmem_bypass(void)
-{
- if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
- return true;
- return false;
-}
-
/**
- * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
- * @cachep: the original global kmem cache
- *
- * Return the kmem_cache we're supposed to use for a slab allocation.
- * We try to use the current memcg's version of the cache.
- *
- * If the cache does not exist yet, if we are the first user of it, we
- * create it asynchronously in a workqueue and let the current allocation
- * go through with the original cache.
- *
- * This function takes a reference to the cache it returns to assure it
- * won't get destroyed while we are working with it. Once the caller is
- * done with it, memcg_kmem_put_cache() must be called to release the
- * reference.
- */
-struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
-{
- struct mem_cgroup *memcg;
- struct kmem_cache *memcg_cachep;
- struct memcg_cache_array *arr;
- int kmemcg_id;
-
- VM_BUG_ON(!is_root_cache(cachep));
-
- if (memcg_kmem_bypass())
- return cachep;
-
- rcu_read_lock();
-
- if (unlikely(current->active_memcg))
- memcg = current->active_memcg;
- else
- memcg = mem_cgroup_from_task(current);
-
- if (!memcg || memcg == root_mem_cgroup)
- goto out_unlock;
-
- kmemcg_id = READ_ONCE(memcg->kmemcg_id);
- if (kmemcg_id < 0)
- goto out_unlock;
-
- arr = rcu_dereference(cachep->memcg_params.memcg_caches);
-
- /*
- * Make sure we will access the up-to-date value. The code updating
- * memcg_caches issues a write barrier to match the data dependency
- * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
- */
- memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
-
- /*
- * If we are in a safe context (can wait, and not in interrupt
- * context), we could be be predictable and return right away.
- * This would guarantee that the allocation being performed
- * already belongs in the new cache.
- *
- * However, there are some clashes that can arrive from locking.
- * For instance, because we acquire the slab_mutex while doing
- * memcg_create_kmem_cache, this means no further allocation
- * could happen with the slab_mutex held. So it's better to
- * defer everything.
- *
- * If the memcg is dying or memcg_cache is about to be released,
- * don't bother creating new kmem_caches. Because memcg_cachep
- * is ZEROed as the fist step of kmem offlining, we don't need
- * percpu_ref_tryget_live() here. css_tryget_online() check in
- * memcg_schedule_kmem_cache_create() will prevent us from
- * creation of a new kmem_cache.
- */
- if (unlikely(!memcg_cachep))
- memcg_schedule_kmem_cache_create(memcg, cachep);
- else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
- cachep = memcg_cachep;
-out_unlock:
- rcu_read_unlock();
- return cachep;
-}
-
-/**
- * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
- * @cachep: the cache returned by memcg_kmem_get_cache
- */
-void memcg_kmem_put_cache(struct kmem_cache *cachep)
-{
- if (!is_root_cache(cachep))
- percpu_ref_put(&cachep->memcg_params.refcnt);
-}
-
-/**
- * __memcg_kmem_charge_memcg: charge a kmem page
- * @page: page to charge
- * @gfp: reclaim mode
- * @order: allocation order
+ * __memcg_kmem_charge: charge a number of kernel pages to a memcg
* @memcg: memory cgroup to charge
+ * @gfp: reclaim mode
+ * @nr_pages: number of pages to charge
*
* Returns 0 on success, an error code on failure.
*/
-int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
- struct mem_cgroup *memcg)
+int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
+ unsigned int nr_pages)
{
- unsigned int nr_pages = 1 << order;
struct page_counter *counter;
int ret;
@@ -3047,54 +3067,50 @@
}
/**
- * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
+ * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
+ * @memcg: memcg to uncharge
+ * @nr_pages: number of pages to uncharge
+ */
+void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
+{
+ if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ page_counter_uncharge(&memcg->kmem, nr_pages);
+
+ refill_stock(memcg, nr_pages);
+}
+
+/**
+ * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
* @page: page to charge
* @gfp: reclaim mode
* @order: allocation order
*
* Returns 0 on success, an error code on failure.
*/
-int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
+int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
{
struct mem_cgroup *memcg;
int ret = 0;
- if (memcg_kmem_bypass())
- return 0;
-
memcg = get_mem_cgroup_from_current();
- if (!mem_cgroup_is_root(memcg)) {
- ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
+ if (memcg && !mem_cgroup_is_root(memcg)) {
+ ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
if (!ret) {
page->mem_cgroup = memcg;
__SetPageKmemcg(page);
+ return 0;
}
+ css_put(&memcg->css);
}
- css_put(&memcg->css);
return ret;
}
/**
- * __memcg_kmem_uncharge_memcg: uncharge a kmem page
- * @memcg: memcg to uncharge
- * @nr_pages: number of pages to uncharge
- */
-void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
- unsigned int nr_pages)
-{
- if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
- page_counter_uncharge(&memcg->kmem, nr_pages);
-
- page_counter_uncharge(&memcg->memory, nr_pages);
- if (do_memsw_account())
- page_counter_uncharge(&memcg->memsw, nr_pages);
-}
-/**
- * __memcg_kmem_uncharge: uncharge a kmem page
+ * __memcg_kmem_uncharge_page: uncharge a kmem page
* @page: page to uncharge
* @order: allocation order
*/
-void __memcg_kmem_uncharge(struct page *page, int order)
+void __memcg_kmem_uncharge_page(struct page *page, int order)
{
struct mem_cgroup *memcg = page->mem_cgroup;
unsigned int nr_pages = 1 << order;
@@ -3103,36 +3119,179 @@
return;
VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
- __memcg_kmem_uncharge_memcg(memcg, nr_pages);
+ __memcg_kmem_uncharge(memcg, nr_pages);
page->mem_cgroup = NULL;
+ css_put(&memcg->css);
/* slab pages do not have PageKmemcg flag set */
if (PageKmemcg(page))
__ClearPageKmemcg(page);
-
- css_put_many(&memcg->css, nr_pages);
}
-#endif /* CONFIG_MEMCG_KMEM */
-#ifdef CONFIG_TRANSPARENT_HUGEPAGE
-
-/*
- * Because tail pages are not marked as "used", set it. We're under
- * pgdat->lru_lock and migration entries setup in all page mappings.
- */
-void mem_cgroup_split_huge_fixup(struct page *head)
+static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
- int i;
+ struct memcg_stock_pcp *stock;
+ unsigned long flags;
+ bool ret = false;
- if (mem_cgroup_disabled())
+ local_irq_save(flags);
+
+ stock = this_cpu_ptr(&memcg_stock);
+ if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
+ stock->nr_bytes -= nr_bytes;
+ ret = true;
+ }
+
+ local_irq_restore(flags);
+
+ return ret;
+}
+
+static void drain_obj_stock(struct memcg_stock_pcp *stock)
+{
+ struct obj_cgroup *old = stock->cached_objcg;
+
+ if (!old)
return;
- for (i = 1; i < HPAGE_PMD_NR; i++)
- head[i].mem_cgroup = head->mem_cgroup;
+ if (stock->nr_bytes) {
+ unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
+ unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
- __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
+ if (nr_pages) {
+ struct mem_cgroup *memcg;
+
+ rcu_read_lock();
+retry:
+ memcg = obj_cgroup_memcg(old);
+ if (unlikely(!css_tryget(&memcg->css)))
+ goto retry;
+ rcu_read_unlock();
+
+ __memcg_kmem_uncharge(memcg, nr_pages);
+ css_put(&memcg->css);
+ }
+
+ /*
+ * The leftover is flushed to the centralized per-memcg value.
+ * On the next attempt to refill obj stock it will be moved
+ * to a per-cpu stock (probably, on an other CPU), see
+ * refill_obj_stock().
+ *
+ * How often it's flushed is a trade-off between the memory
+ * limit enforcement accuracy and potential CPU contention,
+ * so it might be changed in the future.
+ */
+ atomic_add(nr_bytes, &old->nr_charged_bytes);
+ stock->nr_bytes = 0;
+ }
+
+ obj_cgroup_put(old);
+ stock->cached_objcg = NULL;
}
-#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
+
+static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
+ struct mem_cgroup *root_memcg)
+{
+ struct mem_cgroup *memcg;
+
+ if (stock->cached_objcg) {
+ memcg = obj_cgroup_memcg(stock->cached_objcg);
+ if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
+ return true;
+ }
+
+ return false;
+}
+
+static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
+{
+ struct memcg_stock_pcp *stock;
+ unsigned long flags;
+
+ local_irq_save(flags);
+
+ stock = this_cpu_ptr(&memcg_stock);
+ if (stock->cached_objcg != objcg) { /* reset if necessary */
+ drain_obj_stock(stock);
+ obj_cgroup_get(objcg);
+ stock->cached_objcg = objcg;
+ stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
+ }
+ stock->nr_bytes += nr_bytes;
+
+ if (stock->nr_bytes > PAGE_SIZE)
+ drain_obj_stock(stock);
+
+ local_irq_restore(flags);
+}
+
+int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
+{
+ struct mem_cgroup *memcg;
+ unsigned int nr_pages, nr_bytes;
+ int ret;
+
+ if (consume_obj_stock(objcg, size))
+ return 0;
+
+ /*
+ * In theory, memcg->nr_charged_bytes can have enough
+ * pre-charged bytes to satisfy the allocation. However,
+ * flushing memcg->nr_charged_bytes requires two atomic
+ * operations, and memcg->nr_charged_bytes can't be big,
+ * so it's better to ignore it and try grab some new pages.
+ * memcg->nr_charged_bytes will be flushed in
+ * refill_obj_stock(), called from this function or
+ * independently later.
+ */
+ rcu_read_lock();
+retry:
+ memcg = obj_cgroup_memcg(objcg);
+ if (unlikely(!css_tryget(&memcg->css)))
+ goto retry;
+ rcu_read_unlock();
+
+ nr_pages = size >> PAGE_SHIFT;
+ nr_bytes = size & (PAGE_SIZE - 1);
+
+ if (nr_bytes)
+ nr_pages += 1;
+
+ ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
+ if (!ret && nr_bytes)
+ refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
+
+ css_put(&memcg->css);
+ return ret;
+}
+
+void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
+{
+ refill_obj_stock(objcg, size);
+}
+
+#endif /* CONFIG_MEMCG_KMEM */
+
+/*
+ * Because head->mem_cgroup is not set on tails, set it now.
+ */
+void split_page_memcg(struct page *head, unsigned int nr)
+{
+ struct mem_cgroup *memcg = head->mem_cgroup;
+ int kmemcg = PageKmemcg(head);
+ int i;
+
+ if (mem_cgroup_disabled() || !memcg)
+ return;
+
+ for (i = 1; i < nr; i++) {
+ head[i].mem_cgroup = memcg;
+ if (kmemcg)
+ __SetPageKmemcg(head + i);
+ }
+ css_get_many(&memcg->css, nr - 1);
+}
#ifdef CONFIG_MEMCG_SWAP
/**
@@ -3194,7 +3353,7 @@
* Make sure that the new limit (memsw or memory limit) doesn't
* break our basic invariant rule memory.max <= memsw.max.
*/
- limits_invariant = memsw ? max >= memcg->memory.max :
+ limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
max <= memcg->memsw.max;
if (!limits_invariant) {
mutex_unlock(&memcg_max_mutex);
@@ -3315,7 +3474,7 @@
* Test whether @memcg has children, dead or alive. Note that this
* function doesn't care whether @memcg has use_hierarchy enabled and
* returns %true if there are child csses according to the cgroup
- * hierarchy. Testing use_hierarchy is the caller's responsiblity.
+ * hierarchy. Testing use_hierarchy is the caller's responsibility.
*/
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
@@ -3334,7 +3493,7 @@
*/
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
- int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
+ int nr_retries = MAX_RECLAIM_RETRIES;
/* we call try-to-free pages for make this cgroup empty */
lru_add_drain_all();
@@ -3413,8 +3572,8 @@
unsigned long val;
if (mem_cgroup_is_root(memcg)) {
- val = memcg_page_state(memcg, MEMCG_CACHE) +
- memcg_page_state(memcg, MEMCG_RSS);
+ val = memcg_page_state(memcg, NR_FILE_PAGES) +
+ memcg_page_state(memcg, NR_ANON_MAPPED);
if (swap)
val += memcg_page_state(memcg, MEMCG_SWAP);
} else {
@@ -3531,6 +3690,7 @@
#ifdef CONFIG_MEMCG_KMEM
static int memcg_online_kmem(struct mem_cgroup *memcg)
{
+ struct obj_cgroup *objcg;
int memcg_id;
if (cgroup_memory_nokmem)
@@ -3543,7 +3703,16 @@
if (memcg_id < 0)
return memcg_id;
- static_branch_inc(&memcg_kmem_enabled_key);
+ objcg = obj_cgroup_alloc();
+ if (!objcg) {
+ memcg_free_cache_id(memcg_id);
+ return -ENOMEM;
+ }
+ objcg->memcg = memcg;
+ rcu_assign_pointer(memcg->objcg, objcg);
+
+ static_branch_enable(&memcg_kmem_enabled_key);
+
/*
* A memory cgroup is considered kmem-online as soon as it gets
* kmemcg_id. Setting the id after enabling static branching will
@@ -3552,7 +3721,6 @@
*/
memcg->kmemcg_id = memcg_id;
memcg->kmem_state = KMEM_ONLINE;
- INIT_LIST_HEAD(&memcg->kmem_caches);
return 0;
}
@@ -3565,22 +3733,14 @@
if (memcg->kmem_state != KMEM_ONLINE)
return;
- /*
- * Clear the online state before clearing memcg_caches array
- * entries. The slab_mutex in memcg_deactivate_kmem_caches()
- * guarantees that no cache will be created for this cgroup
- * after we are done (see memcg_create_kmem_cache()).
- */
+
memcg->kmem_state = KMEM_ALLOCATED;
parent = parent_mem_cgroup(memcg);
if (!parent)
parent = root_mem_cgroup;
- /*
- * Deactivate and reparent kmem_caches.
- */
- memcg_deactivate_kmem_caches(memcg, parent);
+ memcg_reparent_objcgs(memcg, parent);
kmemcg_id = memcg->kmemcg_id;
BUG_ON(kmemcg_id < 0);
@@ -3613,11 +3773,6 @@
/* css_alloc() failed, offlining didn't happen */
if (unlikely(memcg->kmem_state == KMEM_ONLINE))
memcg_offline_kmem(memcg);
-
- if (memcg->kmem_state == KMEM_ALLOCATED) {
- WARN_ON(!list_empty(&memcg->kmem_caches));
- static_branch_dec(&memcg_kmem_enabled_key);
- }
}
#else
static int memcg_online_kmem(struct mem_cgroup *memcg)
@@ -3802,9 +3957,9 @@
#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
- int nid, unsigned int lru_mask)
+ int nid, unsigned int lru_mask, bool tree)
{
- struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
+ struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
unsigned long nr = 0;
enum lru_list lru;
@@ -3813,13 +3968,17 @@
for_each_lru(lru) {
if (!(BIT(lru) & lru_mask))
continue;
- nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
+ if (tree)
+ nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
+ else
+ nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
}
return nr;
}
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
- unsigned int lru_mask)
+ unsigned int lru_mask,
+ bool tree)
{
unsigned long nr = 0;
enum lru_list lru;
@@ -3827,7 +3986,10 @@
for_each_lru(lru) {
if (!(BIT(lru) & lru_mask))
continue;
- nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
+ if (tree)
+ nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
+ else
+ nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
}
return nr;
}
@@ -3847,34 +4009,28 @@
};
const struct numa_stat *stat;
int nid;
- unsigned long nr;
struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
- nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
- seq_printf(m, "%s=%lu", stat->name, nr);
- for_each_node_state(nid, N_MEMORY) {
- nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
- stat->lru_mask);
- seq_printf(m, " N%d=%lu", nid, nr);
- }
+ seq_printf(m, "%s=%lu", stat->name,
+ mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
+ false));
+ for_each_node_state(nid, N_MEMORY)
+ seq_printf(m, " N%d=%lu", nid,
+ mem_cgroup_node_nr_lru_pages(memcg, nid,
+ stat->lru_mask, false));
seq_putc(m, '\n');
}
for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
- struct mem_cgroup *iter;
- nr = 0;
- for_each_mem_cgroup_tree(iter, memcg)
- nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
- seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
- for_each_node_state(nid, N_MEMORY) {
- nr = 0;
- for_each_mem_cgroup_tree(iter, memcg)
- nr += mem_cgroup_node_nr_lru_pages(
- iter, nid, stat->lru_mask);
- seq_printf(m, " N%d=%lu", nid, nr);
- }
+ seq_printf(m, "hierarchical_%s=%lu", stat->name,
+ mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
+ true));
+ for_each_node_state(nid, N_MEMORY)
+ seq_printf(m, " N%d=%lu", nid,
+ mem_cgroup_node_nr_lru_pages(memcg, nid,
+ stat->lru_mask, true));
seq_putc(m, '\n');
}
@@ -3883,9 +4039,11 @@
#endif /* CONFIG_NUMA */
static const unsigned int memcg1_stats[] = {
- MEMCG_CACHE,
- MEMCG_RSS,
- MEMCG_RSS_HUGE,
+ NR_FILE_PAGES,
+ NR_ANON_MAPPED,
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+ NR_ANON_THPS,
+#endif
NR_SHMEM,
NR_FILE_MAPPED,
NR_FILE_DIRTY,
@@ -3896,7 +4054,9 @@
static const char *const memcg1_stat_names[] = {
"cache",
"rss",
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
"rss_huge",
+#endif
"shmem",
"mapped_file",
"dirty",
@@ -3912,13 +4072,6 @@
PGMAJFAULT,
};
-static const char *const memcg1_event_names[] = {
- "pgpgin",
- "pgpgout",
- "pgfault",
- "pgmajfault",
-};
-
static int memcg_stat_show(struct seq_file *m, void *v)
{
struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
@@ -3927,30 +4080,34 @@
unsigned int i;
BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
- BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
+ unsigned long nr;
+
if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
continue;
- seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
- memcg_page_state_local(memcg, memcg1_stats[i]) *
- PAGE_SIZE);
+ nr = memcg_page_state_local(memcg, memcg1_stats[i]);
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+ if (memcg1_stats[i] == NR_ANON_THPS)
+ nr *= HPAGE_PMD_NR;
+#endif
+ seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
}
for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
- seq_printf(m, "%s %lu\n", memcg1_event_names[i],
+ seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
memcg_events_local(memcg, memcg1_events[i]));
for (i = 0; i < NR_LRU_LISTS; i++)
- seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
+ seq_printf(m, "%s %lu\n", lru_list_name(i),
memcg_page_state_local(memcg, NR_LRU_BASE + i) *
PAGE_SIZE);
/* Hierarchical information */
memory = memsw = PAGE_COUNTER_MAX;
for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
- memory = min(memory, mi->memory.max);
- memsw = min(memsw, mi->memsw.max);
+ memory = min(memory, READ_ONCE(mi->memory.max));
+ memsw = min(memsw, READ_ONCE(mi->memsw.max));
}
seq_printf(m, "hierarchical_memory_limit %llu\n",
(u64)memory * PAGE_SIZE);
@@ -3959,19 +4116,26 @@
(u64)memsw * PAGE_SIZE);
for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
+ unsigned long nr;
+
if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
continue;
+ nr = memcg_page_state(memcg, memcg1_stats[i]);
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+ if (memcg1_stats[i] == NR_ANON_THPS)
+ nr *= HPAGE_PMD_NR;
+#endif
seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
- (u64)memcg_page_state(memcg, memcg1_stats[i]) *
- PAGE_SIZE);
+ (u64)nr * PAGE_SIZE);
}
for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
- seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
+ seq_printf(m, "total_%s %llu\n",
+ vm_event_name(memcg1_events[i]),
(u64)memcg_events(memcg, memcg1_events[i]));
for (i = 0; i < NR_LRU_LISTS; i++)
- seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
+ seq_printf(m, "total_%s %llu\n", lru_list_name(i),
(u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
PAGE_SIZE);
@@ -3979,23 +4143,17 @@
{
pg_data_t *pgdat;
struct mem_cgroup_per_node *mz;
- struct zone_reclaim_stat *rstat;
- unsigned long recent_rotated[2] = {0, 0};
- unsigned long recent_scanned[2] = {0, 0};
+ unsigned long anon_cost = 0;
+ unsigned long file_cost = 0;
for_each_online_pgdat(pgdat) {
mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
- rstat = &mz->lruvec.reclaim_stat;
- recent_rotated[0] += rstat->recent_rotated[0];
- recent_rotated[1] += rstat->recent_rotated[1];
- recent_scanned[0] += rstat->recent_scanned[0];
- recent_scanned[1] += rstat->recent_scanned[1];
+ anon_cost += mz->lruvec.anon_cost;
+ file_cost += mz->lruvec.file_cost;
}
- seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
- seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
- seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
- seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
+ seq_printf(m, "anon_cost %lu\n", anon_cost);
+ seq_printf(m, "file_cost %lu\n", file_cost);
}
#endif
@@ -4162,17 +4320,16 @@
new->size = size;
/* Copy thresholds (if any) to new array */
- if (thresholds->primary) {
- memcpy(new->entries, thresholds->primary->entries, (size - 1) *
- sizeof(struct mem_cgroup_threshold));
- }
+ if (thresholds->primary)
+ memcpy(new->entries, thresholds->primary->entries,
+ flex_array_size(new, entries, size - 1));
/* Add new threshold */
new->entries[size - 1].eventfd = eventfd;
new->entries[size - 1].threshold = threshold;
/* Sort thresholds. Registering of new threshold isn't time-critical */
- sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
+ sort(new->entries, size, sizeof(*new->entries),
compare_thresholds, NULL);
/* Find current threshold */
@@ -4451,14 +4608,14 @@
*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
- /* this should eventually include NR_UNSTABLE_NFS */
*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
*pheadroom = PAGE_COUNTER_MAX;
while ((parent = parent_mem_cgroup(memcg))) {
- unsigned long ceiling = min(memcg->memory.max, memcg->high);
+ unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
+ READ_ONCE(memcg->memory.high));
unsigned long used = page_counter_read(&memcg->memory);
*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
@@ -4926,12 +5083,10 @@
.write = mem_cgroup_reset,
.read_u64 = mem_cgroup_read_u64,
},
-#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
+#if defined(CONFIG_MEMCG_KMEM) && \
+ (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
{
.name = "kmem.slabinfo",
- .seq_start = memcg_slab_start,
- .seq_next = memcg_slab_next,
- .seq_stop = memcg_slab_stop,
.seq_show = memcg_slab_show,
},
#endif
@@ -4969,7 +5124,7 @@
* limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
* memory-controlled cgroups to 64k.
*
- * However, there usually are many references to the oflline CSS after
+ * However, there usually are many references to the offline CSS after
* the cgroup has been destroyed, such as page cache or reclaimable
* slab objects, that don't need to hang on to the ID. We want to keep
* those dead CSS from occupying IDs, or we might quickly exhaust the
@@ -4995,7 +5150,8 @@
}
}
-static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
+static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
+ unsigned int n)
{
refcount_add(n, &memcg->id.ref);
}
@@ -5045,13 +5201,15 @@
if (!pn)
return 1;
- pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
+ pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
+ GFP_KERNEL_ACCOUNT);
if (!pn->lruvec_stat_local) {
kfree(pn);
return 1;
}
- pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
+ pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
+ GFP_KERNEL_ACCOUNT);
if (!pn->lruvec_stat_cpu) {
free_percpu(pn->lruvec_stat_local);
kfree(pn);
@@ -5125,11 +5283,13 @@
goto fail;
}
- memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
+ memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
+ GFP_KERNEL_ACCOUNT);
if (!memcg->vmstats_local)
goto fail;
- memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
+ memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
+ GFP_KERNEL_ACCOUNT);
if (!memcg->vmstats_percpu)
goto fail;
@@ -5141,7 +5301,6 @@
goto fail;
INIT_WORK(&memcg->high_work, high_work_func);
- memcg->last_scanned_node = MAX_NUMNODES;
INIT_LIST_HEAD(&memcg->oom_notify);
mutex_init(&memcg->thresholds_lock);
spin_lock_init(&memcg->move_lock);
@@ -5151,6 +5310,7 @@
memcg->socket_pressure = jiffies;
#ifdef CONFIG_MEMCG_KMEM
memcg->kmemcg_id = -1;
+ INIT_LIST_HEAD(&memcg->objcg_list);
#endif
#ifdef CONFIG_CGROUP_WRITEBACK
INIT_LIST_HEAD(&memcg->cgwb_list);
@@ -5175,32 +5335,38 @@
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
{
struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
- struct mem_cgroup *memcg;
+ struct mem_cgroup *memcg, *old_memcg;
long error = -ENOMEM;
+ old_memcg = set_active_memcg(parent);
memcg = mem_cgroup_alloc();
+ set_active_memcg(old_memcg);
if (IS_ERR(memcg))
return ERR_CAST(memcg);
- memcg->high = PAGE_COUNTER_MAX;
+ page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
memcg->soft_limit = PAGE_COUNTER_MAX;
+ page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
if (parent) {
memcg->swappiness = mem_cgroup_swappiness(parent);
memcg->oom_kill_disable = parent->oom_kill_disable;
}
- if (parent && parent->use_hierarchy) {
+ if (!parent) {
+ page_counter_init(&memcg->memory, NULL);
+ page_counter_init(&memcg->swap, NULL);
+ page_counter_init(&memcg->kmem, NULL);
+ page_counter_init(&memcg->tcpmem, NULL);
+ } else if (parent->use_hierarchy) {
memcg->use_hierarchy = true;
page_counter_init(&memcg->memory, &parent->memory);
page_counter_init(&memcg->swap, &parent->swap);
- page_counter_init(&memcg->memsw, &parent->memsw);
page_counter_init(&memcg->kmem, &parent->kmem);
page_counter_init(&memcg->tcpmem, &parent->tcpmem);
} else {
- page_counter_init(&memcg->memory, NULL);
- page_counter_init(&memcg->swap, NULL);
- page_counter_init(&memcg->memsw, NULL);
- page_counter_init(&memcg->kmem, NULL);
- page_counter_init(&memcg->tcpmem, NULL);
+ page_counter_init(&memcg->memory, &root_mem_cgroup->memory);
+ page_counter_init(&memcg->swap, &root_mem_cgroup->swap);
+ page_counter_init(&memcg->kmem, &root_mem_cgroup->kmem);
+ page_counter_init(&memcg->tcpmem, &root_mem_cgroup->tcpmem);
/*
* Deeper hierachy with use_hierarchy == false doesn't make
* much sense so let cgroup subsystem know about this
@@ -5212,9 +5378,6 @@
/* The following stuff does not apply to the root */
if (!parent) {
-#ifdef CONFIG_MEMCG_KMEM
- INIT_LIST_HEAD(&memcg->kmem_caches);
-#endif
root_mem_cgroup = memcg;
return &memcg->css;
}
@@ -5330,13 +5493,13 @@
page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
- page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
page_counter_set_min(&memcg->memory, 0);
page_counter_set_low(&memcg->memory, 0);
- memcg->high = PAGE_COUNTER_MAX;
+ page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
memcg->soft_limit = PAGE_COUNTER_MAX;
+ page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
memcg_wb_domain_size_changed(memcg);
}
@@ -5430,8 +5593,7 @@
* we call find_get_page() with swapper_space directly.
*/
page = find_get_page(swap_address_space(ent), swp_offset(ent));
- if (do_memsw_account())
- entry->val = ent.val;
+ entry->val = ent.val;
return page;
}
@@ -5446,36 +5608,15 @@
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
- struct page *page = NULL;
- struct address_space *mapping;
- pgoff_t pgoff;
-
if (!vma->vm_file) /* anonymous vma */
return NULL;
if (!(mc.flags & MOVE_FILE))
return NULL;
- mapping = vma->vm_file->f_mapping;
- pgoff = linear_page_index(vma, addr);
-
/* page is moved even if it's not RSS of this task(page-faulted). */
-#ifdef CONFIG_SWAP
/* shmem/tmpfs may report page out on swap: account for that too. */
- if (shmem_mapping(mapping)) {
- page = find_get_entry(mapping, pgoff);
- if (xa_is_value(page)) {
- swp_entry_t swp = radix_to_swp_entry(page);
- if (do_memsw_account())
- *entry = swp;
- page = find_get_page(swap_address_space(swp),
- swp_offset(swp));
- }
- } else
- page = find_get_page(mapping, pgoff);
-#else
- page = find_get_page(mapping, pgoff);
-#endif
- return page;
+ return find_get_incore_page(vma->vm_file->f_mapping,
+ linear_page_index(vma, addr));
}
/**
@@ -5497,9 +5638,8 @@
{
struct lruvec *from_vec, *to_vec;
struct pglist_data *pgdat;
- unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
+ unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
int ret;
- bool anon;
VM_BUG_ON(from == to);
VM_BUG_ON_PAGE(PageLRU(page), page);
@@ -5517,25 +5657,45 @@
if (page->mem_cgroup != from)
goto out_unlock;
- anon = PageAnon(page);
-
pgdat = page_pgdat(page);
- from_vec = mem_cgroup_lruvec(pgdat, from);
- to_vec = mem_cgroup_lruvec(pgdat, to);
+ from_vec = mem_cgroup_lruvec(from, pgdat);
+ to_vec = mem_cgroup_lruvec(to, pgdat);
lock_page_memcg(page);
- if (!anon && page_mapped(page)) {
- __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
- __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
- }
+ if (PageAnon(page)) {
+ if (page_mapped(page)) {
+ __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
+ __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
+ if (PageTransHuge(page)) {
+ __dec_lruvec_state(from_vec, NR_ANON_THPS);
+ __inc_lruvec_state(to_vec, NR_ANON_THPS);
+ }
- if (!anon && PageDirty(page)) {
- struct address_space *mapping = page_mapping(page);
+ }
+ } else {
+ __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
+ __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
- if (mapping_cap_account_dirty(mapping)) {
- __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
- __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
+ if (PageSwapBacked(page)) {
+ __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
+ __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
+ }
+
+ if (page_mapped(page)) {
+ __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
+ __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
+ }
+
+ if (PageDirty(page)) {
+ struct address_space *mapping = page_mapping(page);
+
+ if (mapping_can_writeback(mapping)) {
+ __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
+ -nr_pages);
+ __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
+ nr_pages);
+ }
}
}
@@ -5559,16 +5719,19 @@
*/
smp_mb();
- page->mem_cgroup = to; /* caller should have done css_get */
+ css_get(&to->css);
+ css_put(&from->css);
+
+ page->mem_cgroup = to;
__unlock_page_memcg(from);
ret = 0;
local_irq_disable();
- mem_cgroup_charge_statistics(to, page, compound, nr_pages);
+ mem_cgroup_charge_statistics(to, page, nr_pages);
memcg_check_events(to, page);
- mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
+ mem_cgroup_charge_statistics(from, page, -nr_pages);
memcg_check_events(from, page);
local_irq_enable();
out_unlock:
@@ -5727,9 +5890,9 @@
{
unsigned long precharge;
- down_read(&mm->mmap_sem);
+ mmap_read_lock(mm);
walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
- up_read(&mm->mmap_sem);
+ mmap_read_unlock(mm);
precharge = mc.precharge;
mc.precharge = 0;
@@ -5780,8 +5943,6 @@
if (!mem_cgroup_is_root(mc.to))
page_counter_uncharge(&mc.to->memory, mc.moved_swap);
- css_put_many(&mc.to->css, mc.moved_swap);
-
mc.moved_swap = 0;
}
memcg_oom_recover(from);
@@ -5942,7 +6103,7 @@
switch (get_mctgt_type(vma, addr, ptent, &target)) {
case MC_TARGET_DEVICE:
device = true;
- /* fall through */
+ fallthrough;
case MC_TARGET_PAGE:
page = target.page;
/*
@@ -6012,9 +6173,9 @@
atomic_inc(&mc.from->moving_account);
synchronize_rcu();
retry:
- if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
+ if (unlikely(!mmap_read_trylock(mc.mm))) {
/*
- * Someone who are holding the mmap_sem might be waiting in
+ * Someone who are holding the mmap_lock might be waiting in
* waitq. So we cancel all extra charges, wake up all waiters,
* and retry. Because we cancel precharges, we might not be able
* to move enough charges, but moving charge is a best-effort
@@ -6031,7 +6192,7 @@
walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
NULL);
- up_read(&mc.mm->mmap_sem);
+ mmap_read_unlock(mc.mm);
atomic_dec(&mc.from->moving_account);
}
@@ -6139,14 +6300,16 @@
static int memory_high_show(struct seq_file *m, void *v)
{
- return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
+ return seq_puts_memcg_tunable(m,
+ READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
}
static ssize_t memory_high_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
- unsigned long nr_pages;
+ unsigned int nr_retries = MAX_RECLAIM_RETRIES;
+ bool drained = false;
unsigned long high;
int err;
@@ -6155,12 +6318,30 @@
if (err)
return err;
- memcg->high = high;
+ page_counter_set_high(&memcg->memory, high);
- nr_pages = page_counter_read(&memcg->memory);
- if (nr_pages > high)
- try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
- GFP_KERNEL, true);
+ for (;;) {
+ unsigned long nr_pages = page_counter_read(&memcg->memory);
+ unsigned long reclaimed;
+
+ if (nr_pages <= high)
+ break;
+
+ if (signal_pending(current))
+ break;
+
+ if (!drained) {
+ drain_all_stock(memcg);
+ drained = true;
+ continue;
+ }
+
+ reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
+ GFP_KERNEL, true);
+
+ if (!reclaimed && !nr_retries--)
+ break;
+ }
memcg_wb_domain_size_changed(memcg);
return nbytes;
@@ -6176,7 +6357,7 @@
char *buf, size_t nbytes, loff_t off)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
- unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
+ unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
bool drained = false;
unsigned long max;
int err;
@@ -6194,10 +6375,8 @@
if (nr_pages <= max)
break;
- if (signal_pending(current)) {
- err = -EINTR;
+ if (signal_pending(current))
break;
- }
if (!drained) {
drain_all_stock(memcg);
@@ -6260,6 +6439,35 @@
return 0;
}
+#ifdef CONFIG_NUMA
+static int memory_numa_stat_show(struct seq_file *m, void *v)
+{
+ int i;
+ struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
+
+ for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
+ int nid;
+
+ if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
+ continue;
+
+ seq_printf(m, "%s", memory_stats[i].name);
+ for_each_node_state(nid, N_MEMORY) {
+ u64 size;
+ struct lruvec *lruvec;
+
+ lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
+ size = lruvec_page_state(lruvec, memory_stats[i].idx);
+ size *= memory_stats[i].ratio;
+ seq_printf(m, " N%d=%llu", nid, size);
+ }
+ seq_putc(m, '\n');
+ }
+
+ return 0;
+}
+#endif
+
static int memory_oom_group_show(struct seq_file *m, void *v)
{
struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
@@ -6335,9 +6543,14 @@
},
{
.name = "stat",
- .flags = CFTYPE_NOT_ON_ROOT,
.seq_show = memory_stat_show,
},
+#ifdef CONFIG_NUMA
+ {
+ .name = "numa_stat",
+ .seq_show = memory_numa_stat_show,
+ },
+#endif
{
.name = "oom.group",
.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
@@ -6363,6 +6576,122 @@
.early_init = 0,
};
+/*
+ * This function calculates an individual cgroup's effective
+ * protection which is derived from its own memory.min/low, its
+ * parent's and siblings' settings, as well as the actual memory
+ * distribution in the tree.
+ *
+ * The following rules apply to the effective protection values:
+ *
+ * 1. At the first level of reclaim, effective protection is equal to
+ * the declared protection in memory.min and memory.low.
+ *
+ * 2. To enable safe delegation of the protection configuration, at
+ * subsequent levels the effective protection is capped to the
+ * parent's effective protection.
+ *
+ * 3. To make complex and dynamic subtrees easier to configure, the
+ * user is allowed to overcommit the declared protection at a given
+ * level. If that is the case, the parent's effective protection is
+ * distributed to the children in proportion to how much protection
+ * they have declared and how much of it they are utilizing.
+ *
+ * This makes distribution proportional, but also work-conserving:
+ * if one cgroup claims much more protection than it uses memory,
+ * the unused remainder is available to its siblings.
+ *
+ * 4. Conversely, when the declared protection is undercommitted at a
+ * given level, the distribution of the larger parental protection
+ * budget is NOT proportional. A cgroup's protection from a sibling
+ * is capped to its own memory.min/low setting.
+ *
+ * 5. However, to allow protecting recursive subtrees from each other
+ * without having to declare each individual cgroup's fixed share
+ * of the ancestor's claim to protection, any unutilized -
+ * "floating" - protection from up the tree is distributed in
+ * proportion to each cgroup's *usage*. This makes the protection
+ * neutral wrt sibling cgroups and lets them compete freely over
+ * the shared parental protection budget, but it protects the
+ * subtree as a whole from neighboring subtrees.
+ *
+ * Note that 4. and 5. are not in conflict: 4. is about protecting
+ * against immediate siblings whereas 5. is about protecting against
+ * neighboring subtrees.
+ */
+static unsigned long effective_protection(unsigned long usage,
+ unsigned long parent_usage,
+ unsigned long setting,
+ unsigned long parent_effective,
+ unsigned long siblings_protected)
+{
+ unsigned long protected;
+ unsigned long ep;
+
+ protected = min(usage, setting);
+ /*
+ * If all cgroups at this level combined claim and use more
+ * protection then what the parent affords them, distribute
+ * shares in proportion to utilization.
+ *
+ * We are using actual utilization rather than the statically
+ * claimed protection in order to be work-conserving: claimed
+ * but unused protection is available to siblings that would
+ * otherwise get a smaller chunk than what they claimed.
+ */
+ if (siblings_protected > parent_effective)
+ return protected * parent_effective / siblings_protected;
+
+ /*
+ * Ok, utilized protection of all children is within what the
+ * parent affords them, so we know whatever this child claims
+ * and utilizes is effectively protected.
+ *
+ * If there is unprotected usage beyond this value, reclaim
+ * will apply pressure in proportion to that amount.
+ *
+ * If there is unutilized protection, the cgroup will be fully
+ * shielded from reclaim, but we do return a smaller value for
+ * protection than what the group could enjoy in theory. This
+ * is okay. With the overcommit distribution above, effective
+ * protection is always dependent on how memory is actually
+ * consumed among the siblings anyway.
+ */
+ ep = protected;
+
+ /*
+ * If the children aren't claiming (all of) the protection
+ * afforded to them by the parent, distribute the remainder in
+ * proportion to the (unprotected) memory of each cgroup. That
+ * way, cgroups that aren't explicitly prioritized wrt each
+ * other compete freely over the allowance, but they are
+ * collectively protected from neighboring trees.
+ *
+ * We're using unprotected memory for the weight so that if
+ * some cgroups DO claim explicit protection, we don't protect
+ * the same bytes twice.
+ *
+ * Check both usage and parent_usage against the respective
+ * protected values. One should imply the other, but they
+ * aren't read atomically - make sure the division is sane.
+ */
+ if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
+ return ep;
+ if (parent_effective > siblings_protected &&
+ parent_usage > siblings_protected &&
+ usage > protected) {
+ unsigned long unclaimed;
+
+ unclaimed = parent_effective - siblings_protected;
+ unclaimed *= usage - protected;
+ unclaimed /= parent_usage - siblings_protected;
+
+ ep += unclaimed;
+ }
+
+ return ep;
+}
+
/**
* mem_cgroup_protected - check if memory consumption is in the normal range
* @root: the top ancestor of the sub-tree being checked
@@ -6370,79 +6699,15 @@
*
* WARNING: This function is not stateless! It can only be used as part
* of a top-down tree iteration, not for isolated queries.
- *
- * Returns one of the following:
- * MEMCG_PROT_NONE: cgroup memory is not protected
- * MEMCG_PROT_LOW: cgroup memory is protected as long there is
- * an unprotected supply of reclaimable memory from other cgroups.
- * MEMCG_PROT_MIN: cgroup memory is protected
- *
- * @root is exclusive; it is never protected when looked at directly
- *
- * To provide a proper hierarchical behavior, effective memory.min/low values
- * are used. Below is the description of how effective memory.low is calculated.
- * Effective memory.min values is calculated in the same way.
- *
- * Effective memory.low is always equal or less than the original memory.low.
- * If there is no memory.low overcommittment (which is always true for
- * top-level memory cgroups), these two values are equal.
- * Otherwise, it's a part of parent's effective memory.low,
- * calculated as a cgroup's memory.low usage divided by sum of sibling's
- * memory.low usages, where memory.low usage is the size of actually
- * protected memory.
- *
- * low_usage
- * elow = min( memory.low, parent->elow * ------------------ ),
- * siblings_low_usage
- *
- * | memory.current, if memory.current < memory.low
- * low_usage = |
- * | 0, otherwise.
- *
- *
- * Such definition of the effective memory.low provides the expected
- * hierarchical behavior: parent's memory.low value is limiting
- * children, unprotected memory is reclaimed first and cgroups,
- * which are not using their guarantee do not affect actual memory
- * distribution.
- *
- * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
- *
- * A A/memory.low = 2G, A/memory.current = 6G
- * //\\
- * BC DE B/memory.low = 3G B/memory.current = 2G
- * C/memory.low = 1G C/memory.current = 2G
- * D/memory.low = 0 D/memory.current = 2G
- * E/memory.low = 10G E/memory.current = 0
- *
- * and the memory pressure is applied, the following memory distribution
- * is expected (approximately):
- *
- * A/memory.current = 2G
- *
- * B/memory.current = 1.3G
- * C/memory.current = 0.6G
- * D/memory.current = 0
- * E/memory.current = 0
- *
- * These calculations require constant tracking of the actual low usages
- * (see propagate_protected_usage()), as well as recursive calculation of
- * effective memory.low values. But as we do call mem_cgroup_protected()
- * path for each memory cgroup top-down from the reclaim,
- * it's possible to optimize this part, and save calculated elow
- * for next usage. This part is intentionally racy, but it's ok,
- * as memory.low is a best-effort mechanism.
*/
-enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
- struct mem_cgroup *memcg)
+void mem_cgroup_calculate_protection(struct mem_cgroup *root,
+ struct mem_cgroup *memcg)
{
+ unsigned long usage, parent_usage;
struct mem_cgroup *parent;
- unsigned long emin, parent_emin;
- unsigned long elow, parent_elow;
- unsigned long usage;
if (mem_cgroup_disabled())
- return MEMCG_PROT_NONE;
+ return;
if (!root)
root = root_mem_cgroup;
@@ -6455,182 +6720,106 @@
* that special casing.
*/
if (memcg == root)
- return MEMCG_PROT_NONE;
+ return;
usage = page_counter_read(&memcg->memory);
if (!usage)
- return MEMCG_PROT_NONE;
-
- emin = memcg->memory.min;
- elow = memcg->memory.low;
+ return;
parent = parent_mem_cgroup(memcg);
/* No parent means a non-hierarchical mode on v1 memcg */
if (!parent)
- return MEMCG_PROT_NONE;
+ return;
- if (parent == root)
- goto exit;
-
- parent_emin = READ_ONCE(parent->memory.emin);
- emin = min(emin, parent_emin);
- if (emin && parent_emin) {
- unsigned long min_usage, siblings_min_usage;
-
- min_usage = min(usage, memcg->memory.min);
- siblings_min_usage = atomic_long_read(
- &parent->memory.children_min_usage);
-
- if (min_usage && siblings_min_usage)
- emin = min(emin, parent_emin * min_usage /
- siblings_min_usage);
+ if (parent == root) {
+ memcg->memory.emin = READ_ONCE(memcg->memory.min);
+ memcg->memory.elow = READ_ONCE(memcg->memory.low);
+ return;
}
- parent_elow = READ_ONCE(parent->memory.elow);
- elow = min(elow, parent_elow);
- if (elow && parent_elow) {
- unsigned long low_usage, siblings_low_usage;
+ parent_usage = page_counter_read(&parent->memory);
- low_usage = min(usage, memcg->memory.low);
- siblings_low_usage = atomic_long_read(
- &parent->memory.children_low_usage);
+ WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
+ READ_ONCE(memcg->memory.min),
+ READ_ONCE(parent->memory.emin),
+ atomic_long_read(&parent->memory.children_min_usage)));
- if (low_usage && siblings_low_usage)
- elow = min(elow, parent_elow * low_usage /
- siblings_low_usage);
- }
-
-exit:
- memcg->memory.emin = emin;
- memcg->memory.elow = elow;
-
- if (usage <= emin)
- return MEMCG_PROT_MIN;
- else if (usage <= elow)
- return MEMCG_PROT_LOW;
- else
- return MEMCG_PROT_NONE;
+ WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
+ READ_ONCE(memcg->memory.low),
+ READ_ONCE(parent->memory.elow),
+ atomic_long_read(&parent->memory.children_low_usage)));
}
/**
- * mem_cgroup_try_charge - try charging a page
+ * mem_cgroup_charge - charge a newly allocated page to a cgroup
* @page: page to charge
* @mm: mm context of the victim
* @gfp_mask: reclaim mode
- * @memcgp: charged memcg return
- * @compound: charge the page as compound or small page
*
* Try to charge @page to the memcg that @mm belongs to, reclaiming
* pages according to @gfp_mask if necessary.
*
- * Returns 0 on success, with *@memcgp pointing to the charged memcg.
- * Otherwise, an error code is returned.
- *
- * After page->mapping has been set up, the caller must finalize the
- * charge with mem_cgroup_commit_charge(). Or abort the transaction
- * with mem_cgroup_cancel_charge() in case page instantiation fails.
+ * Returns 0 on success. Otherwise, an error code is returned.
*/
-int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
- gfp_t gfp_mask, struct mem_cgroup **memcgp,
- bool compound)
+int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
{
+ unsigned int nr_pages = thp_nr_pages(page);
struct mem_cgroup *memcg = NULL;
- unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
int ret = 0;
if (mem_cgroup_disabled())
goto out;
if (PageSwapCache(page)) {
+ swp_entry_t ent = { .val = page_private(page), };
+ unsigned short id;
+
/*
* Every swap fault against a single page tries to charge the
* page, bail as early as possible. shmem_unuse() encounters
- * already charged pages, too. The USED bit is protected by
- * the page lock, which serializes swap cache removal, which
+ * already charged pages, too. page->mem_cgroup is protected
+ * by the page lock, which serializes swap cache removal, which
* in turn serializes uncharging.
*/
VM_BUG_ON_PAGE(!PageLocked(page), page);
if (compound_head(page)->mem_cgroup)
goto out;
- if (do_swap_account) {
- swp_entry_t ent = { .val = page_private(page), };
- unsigned short id = lookup_swap_cgroup_id(ent);
-
- rcu_read_lock();
- memcg = mem_cgroup_from_id(id);
- if (memcg && !css_tryget_online(&memcg->css))
- memcg = NULL;
- rcu_read_unlock();
- }
+ id = lookup_swap_cgroup_id(ent);
+ rcu_read_lock();
+ memcg = mem_cgroup_from_id(id);
+ if (memcg && !css_tryget_online(&memcg->css))
+ memcg = NULL;
+ rcu_read_unlock();
}
if (!memcg)
memcg = get_mem_cgroup_from_mm(mm);
ret = try_charge(memcg, gfp_mask, nr_pages);
+ if (ret)
+ goto out_put;
- css_put(&memcg->css);
-out:
- *memcgp = memcg;
- return ret;
-}
-
-int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
- gfp_t gfp_mask, struct mem_cgroup **memcgp,
- bool compound)
-{
- struct mem_cgroup *memcg;
- int ret;
-
- ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
- memcg = *memcgp;
- mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
- return ret;
-}
-
-/**
- * mem_cgroup_commit_charge - commit a page charge
- * @page: page to charge
- * @memcg: memcg to charge the page to
- * @lrucare: page might be on LRU already
- * @compound: charge the page as compound or small page
- *
- * Finalize a charge transaction started by mem_cgroup_try_charge(),
- * after page->mapping has been set up. This must happen atomically
- * as part of the page instantiation, i.e. under the page table lock
- * for anonymous pages, under the page lock for page and swap cache.
- *
- * In addition, the page must not be on the LRU during the commit, to
- * prevent racing with task migration. If it might be, use @lrucare.
- *
- * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
- */
-void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
- bool lrucare, bool compound)
-{
- unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
-
- VM_BUG_ON_PAGE(!page->mapping, page);
- VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
-
- if (mem_cgroup_disabled())
- return;
- /*
- * Swap faults will attempt to charge the same page multiple
- * times. But reuse_swap_page() might have removed the page
- * from swapcache already, so we can't check PageSwapCache().
- */
- if (!memcg)
- return;
-
- commit_charge(page, memcg, lrucare);
+ css_get(&memcg->css);
+ commit_charge(page, memcg);
local_irq_disable();
- mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
+ mem_cgroup_charge_statistics(memcg, page, nr_pages);
memcg_check_events(memcg, page);
local_irq_enable();
+ /*
+ * Cgroup1's unified memory+swap counter has been charged with the
+ * new swapcache page, finish the transfer by uncharging the swap
+ * slot. The swap slot would also get uncharged when it dies, but
+ * it can stick around indefinitely and we'd count the page twice
+ * the entire time.
+ *
+ * Cgroup2 has separate resource counters for memory and swap,
+ * so this is a non-issue here. Memory and swap charge lifetimes
+ * correspond 1:1 to page and swap slot lifetimes: we charge the
+ * page to memory here, and uncharge swap when the slot is freed.
+ */
if (do_memsw_account() && PageSwapCache(page)) {
swp_entry_t entry = { .val = page_private(page) };
/*
@@ -6640,42 +6829,18 @@
*/
mem_cgroup_uncharge_swap(entry, nr_pages);
}
-}
-/**
- * mem_cgroup_cancel_charge - cancel a page charge
- * @page: page to charge
- * @memcg: memcg to charge the page to
- * @compound: charge the page as compound or small page
- *
- * Cancel a charge transaction started by mem_cgroup_try_charge().
- */
-void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
- bool compound)
-{
- unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
-
- if (mem_cgroup_disabled())
- return;
- /*
- * Swap faults will attempt to charge the same page multiple
- * times. But reuse_swap_page() might have removed the page
- * from swapcache already, so we can't check PageSwapCache().
- */
- if (!memcg)
- return;
-
- cancel_charge(memcg, nr_pages);
+out_put:
+ css_put(&memcg->css);
+out:
+ return ret;
}
struct uncharge_gather {
struct mem_cgroup *memcg;
+ unsigned long nr_pages;
unsigned long pgpgout;
- unsigned long nr_anon;
- unsigned long nr_file;
unsigned long nr_kmem;
- unsigned long nr_huge;
- unsigned long nr_shmem;
struct page *dummy_page;
};
@@ -6686,37 +6851,32 @@
static void uncharge_batch(const struct uncharge_gather *ug)
{
- unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
unsigned long flags;
if (!mem_cgroup_is_root(ug->memcg)) {
- page_counter_uncharge(&ug->memcg->memory, nr_pages);
+ page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
if (do_memsw_account())
- page_counter_uncharge(&ug->memcg->memsw, nr_pages);
+ page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
memcg_oom_recover(ug->memcg);
}
local_irq_save(flags);
- __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
- __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
- __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
- __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
- __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
+ __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
memcg_check_events(ug->memcg, ug->dummy_page);
local_irq_restore(flags);
- if (!mem_cgroup_is_root(ug->memcg))
- css_put_many(&ug->memcg->css, nr_pages);
+ /* drop reference from uncharge_page */
+ css_put(&ug->memcg->css);
}
static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
+ unsigned long nr_pages;
+
VM_BUG_ON_PAGE(PageLRU(page), page);
- VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
- !PageHWPoison(page) , page);
if (!page->mem_cgroup)
return;
@@ -6733,30 +6893,24 @@
uncharge_gather_clear(ug);
}
ug->memcg = page->mem_cgroup;
+
+ /* pairs with css_put in uncharge_batch */
+ css_get(&ug->memcg->css);
}
- if (!PageKmemcg(page)) {
- unsigned int nr_pages = 1;
+ nr_pages = compound_nr(page);
+ ug->nr_pages += nr_pages;
- if (PageTransHuge(page)) {
- nr_pages = compound_nr(page);
- ug->nr_huge += nr_pages;
- }
- if (PageAnon(page))
- ug->nr_anon += nr_pages;
- else {
- ug->nr_file += nr_pages;
- if (PageSwapBacked(page))
- ug->nr_shmem += nr_pages;
- }
+ if (!PageKmemcg(page)) {
ug->pgpgout++;
} else {
- ug->nr_kmem += compound_nr(page);
+ ug->nr_kmem += nr_pages;
__ClearPageKmemcg(page);
}
ug->dummy_page = page;
page->mem_cgroup = NULL;
+ css_put(&ug->memcg->css);
}
static void uncharge_list(struct list_head *page_list)
@@ -6788,8 +6942,7 @@
* mem_cgroup_uncharge - uncharge a page
* @page: page to uncharge
*
- * Uncharge a page previously charged with mem_cgroup_try_charge() and
- * mem_cgroup_commit_charge().
+ * Uncharge a page previously charged with mem_cgroup_charge().
*/
void mem_cgroup_uncharge(struct page *page)
{
@@ -6812,7 +6965,7 @@
* @page_list: list of pages to uncharge
*
* Uncharge a list of pages previously charged with
- * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
+ * mem_cgroup_charge().
*/
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
@@ -6837,7 +6990,6 @@
{
struct mem_cgroup *memcg;
unsigned int nr_pages;
- bool compound;
unsigned long flags;
VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
@@ -6859,18 +7011,17 @@
return;
/* Force-charge the new page. The old one will be freed soon */
- compound = PageTransHuge(newpage);
- nr_pages = compound ? hpage_nr_pages(newpage) : 1;
+ nr_pages = thp_nr_pages(newpage);
page_counter_charge(&memcg->memory, nr_pages);
if (do_memsw_account())
page_counter_charge(&memcg->memsw, nr_pages);
- css_get_many(&memcg->css, nr_pages);
- commit_charge(newpage, memcg, false);
+ css_get(&memcg->css);
+ commit_charge(newpage, memcg);
local_irq_save(flags);
- mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
+ mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
memcg_check_events(memcg, newpage);
local_irq_restore(flags);
}
@@ -6895,7 +7046,7 @@
goto out;
if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
goto out;
- if (css_tryget_online(&memcg->css))
+ if (css_tryget(&memcg->css))
sk->sk_memcg = memcg;
out:
rcu_read_unlock();
@@ -6989,17 +7140,6 @@
{
int cpu, node;
-#ifdef CONFIG_MEMCG_KMEM
- /*
- * Kmem cache creation is mostly done with the slab_mutex held,
- * so use a workqueue with limited concurrency to avoid stalling
- * all worker threads in case lots of cgroups are created and
- * destroyed simultaneously.
- */
- memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
- BUG_ON(!memcg_kmem_cache_wq);
-#endif
-
cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
memcg_hotplug_cpu_dead);
@@ -7058,7 +7198,7 @@
VM_BUG_ON_PAGE(PageLRU(page), page);
VM_BUG_ON_PAGE(page_count(page), page);
- if (!do_memsw_account())
+ if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
return;
memcg = page->mem_cgroup;
@@ -7073,7 +7213,7 @@
* ancestor for the swap instead and transfer the memory+swap charge.
*/
swap_memcg = mem_cgroup_id_get_online(memcg);
- nr_entries = hpage_nr_pages(page);
+ nr_entries = thp_nr_pages(page);
/* Get references for the tail pages, too */
if (nr_entries > 1)
mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
@@ -7087,7 +7227,7 @@
if (!mem_cgroup_is_root(memcg))
page_counter_uncharge(&memcg->memory, nr_entries);
- if (memcg != swap_memcg) {
+ if (!cgroup_memory_noswap && memcg != swap_memcg) {
if (!mem_cgroup_is_root(swap_memcg))
page_counter_charge(&swap_memcg->memsw, nr_entries);
page_counter_uncharge(&memcg->memsw, nr_entries);
@@ -7100,12 +7240,10 @@
* only synchronisation we have for updating the per-CPU variables.
*/
VM_BUG_ON(!irqs_disabled());
- mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
- -nr_entries);
+ mem_cgroup_charge_statistics(memcg, page, -nr_entries);
memcg_check_events(memcg, page);
- if (!mem_cgroup_is_root(memcg))
- css_put_many(&memcg->css, nr_entries);
+ css_put(&memcg->css);
}
/**
@@ -7119,12 +7257,12 @@
*/
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
- unsigned int nr_pages = hpage_nr_pages(page);
+ unsigned int nr_pages = thp_nr_pages(page);
struct page_counter *counter;
struct mem_cgroup *memcg;
unsigned short oldid;
- if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
+ if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
return 0;
memcg = page->mem_cgroup;
@@ -7140,7 +7278,7 @@
memcg = mem_cgroup_id_get_online(memcg);
- if (!mem_cgroup_is_root(memcg) &&
+ if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
!page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
memcg_memory_event(memcg, MEMCG_SWAP_MAX);
memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
@@ -7168,14 +7306,11 @@
struct mem_cgroup *memcg;
unsigned short id;
- if (!do_swap_account)
- return;
-
id = swap_cgroup_record(entry, 0, nr_pages);
rcu_read_lock();
memcg = mem_cgroup_from_id(id);
if (memcg) {
- if (!mem_cgroup_is_root(memcg)) {
+ if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
page_counter_uncharge(&memcg->swap, nr_pages);
else
@@ -7191,7 +7326,7 @@
{
long nr_swap_pages = get_nr_swap_pages();
- if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
return nr_swap_pages;
for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
nr_swap_pages = min_t(long, nr_swap_pages,
@@ -7208,36 +7343,33 @@
if (vm_swap_full())
return true;
- if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
return false;
memcg = page->mem_cgroup;
if (!memcg)
return false;
- for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
- if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
+ for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
+ unsigned long usage = page_counter_read(&memcg->swap);
+
+ if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
+ usage * 2 >= READ_ONCE(memcg->swap.max))
return true;
+ }
return false;
}
-/* for remember boot option*/
-#ifdef CONFIG_MEMCG_SWAP_ENABLED
-static int really_do_swap_account __initdata = 1;
-#else
-static int really_do_swap_account __initdata;
-#endif
-
-static int __init enable_swap_account(char *s)
+static int __init setup_swap_account(char *s)
{
if (!strcmp(s, "1"))
- really_do_swap_account = 1;
+ cgroup_memory_noswap = 0;
else if (!strcmp(s, "0"))
- really_do_swap_account = 0;
+ cgroup_memory_noswap = 1;
return 1;
}
-__setup("swapaccount=", enable_swap_account);
+__setup("swapaccount=", setup_swap_account);
static u64 swap_current_read(struct cgroup_subsys_state *css,
struct cftype *cft)
@@ -7247,6 +7379,29 @@
return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}
+static int swap_high_show(struct seq_file *m, void *v)
+{
+ return seq_puts_memcg_tunable(m,
+ READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
+}
+
+static ssize_t swap_high_write(struct kernfs_open_file *of,
+ char *buf, size_t nbytes, loff_t off)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+ unsigned long high;
+ int err;
+
+ buf = strstrip(buf);
+ err = page_counter_memparse(buf, "max", &high);
+ if (err)
+ return err;
+
+ page_counter_set_high(&memcg->swap, high);
+
+ return nbytes;
+}
+
static int swap_max_show(struct seq_file *m, void *v)
{
return seq_puts_memcg_tunable(m,
@@ -7274,6 +7429,8 @@
{
struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
+ seq_printf(m, "high %lu\n",
+ atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
seq_printf(m, "max %lu\n",
atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
seq_printf(m, "fail %lu\n",
@@ -7289,6 +7446,12 @@
.read_u64 = swap_current_read,
},
{
+ .name = "swap.high",
+ .flags = CFTYPE_NOT_ON_ROOT,
+ .seq_show = swap_high_show,
+ .write = swap_high_write,
+ },
+ {
.name = "swap.max",
.flags = CFTYPE_NOT_ON_ROOT,
.seq_show = swap_max_show,
@@ -7303,7 +7466,7 @@
{ } /* terminate */
};
-static struct cftype memsw_cgroup_files[] = {
+static struct cftype memsw_files[] = {
{
.name = "memsw.usage_in_bytes",
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
@@ -7330,17 +7493,27 @@
{ }, /* terminate */
};
+/*
+ * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
+ * instead of a core_initcall(), this could mean cgroup_memory_noswap still
+ * remains set to false even when memcg is disabled via "cgroup_disable=memory"
+ * boot parameter. This may result in premature OOPS inside
+ * mem_cgroup_get_nr_swap_pages() function in corner cases.
+ */
static int __init mem_cgroup_swap_init(void)
{
- if (!mem_cgroup_disabled() && really_do_swap_account) {
- do_swap_account = 1;
- WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
- swap_files));
- WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
- memsw_cgroup_files));
- }
+ /* No memory control -> no swap control */
+ if (mem_cgroup_disabled())
+ cgroup_memory_noswap = true;
+
+ if (cgroup_memory_noswap)
+ return 0;
+
+ WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
+ WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
+
return 0;
}
-subsys_initcall(mem_cgroup_swap_init);
+core_initcall(mem_cgroup_swap_init);
#endif /* CONFIG_MEMCG_SWAP */