blob: 289c26f055cdd7c91beb3e4b034f9d5d2f243aa1 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
9#include <linux/mmdebug.h>
10#include <linux/gfp.h>
11#include <linux/bug.h>
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
15#include <linux/atomic.h>
16#include <linux/debug_locks.h>
17#include <linux/mm_types.h>
Olivier Deprez157378f2022-04-04 15:47:50 +020018#include <linux/mmap_lock.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000019#include <linux/range.h>
20#include <linux/pfn.h>
21#include <linux/percpu-refcount.h>
22#include <linux/bit_spinlock.h>
23#include <linux/shrinker.h>
24#include <linux/resource.h>
25#include <linux/page_ext.h>
26#include <linux/err.h>
Olivier Deprez157378f2022-04-04 15:47:50 +020027#include <linux/page-flags.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000028#include <linux/page_ref.h>
29#include <linux/memremap.h>
30#include <linux/overflow.h>
David Brazdil0f672f62019-12-10 10:32:29 +000031#include <linux/sizes.h>
Olivier Deprez157378f2022-04-04 15:47:50 +020032#include <linux/sched.h>
33#include <linux/pgtable.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000034
35struct mempolicy;
36struct anon_vma;
37struct anon_vma_chain;
38struct file_ra_state;
39struct user_struct;
40struct writeback_control;
41struct bdi_writeback;
Olivier Deprez157378f2022-04-04 15:47:50 +020042struct pt_regs;
43
44extern int sysctl_page_lock_unfairness;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000045
46void init_mm_internals(void);
47
48#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
49extern unsigned long max_mapnr;
50
51static inline void set_max_mapnr(unsigned long limit)
52{
53 max_mapnr = limit;
54}
55#else
56static inline void set_max_mapnr(unsigned long limit) { }
57#endif
58
David Brazdil0f672f62019-12-10 10:32:29 +000059extern atomic_long_t _totalram_pages;
60static inline unsigned long totalram_pages(void)
61{
62 return (unsigned long)atomic_long_read(&_totalram_pages);
63}
64
65static inline void totalram_pages_inc(void)
66{
67 atomic_long_inc(&_totalram_pages);
68}
69
70static inline void totalram_pages_dec(void)
71{
72 atomic_long_dec(&_totalram_pages);
73}
74
75static inline void totalram_pages_add(long count)
76{
77 atomic_long_add(count, &_totalram_pages);
78}
79
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000080extern void * high_memory;
81extern int page_cluster;
82
83#ifdef CONFIG_SYSCTL
84extern int sysctl_legacy_va_layout;
85#else
86#define sysctl_legacy_va_layout 0
87#endif
88
89#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90extern const int mmap_rnd_bits_min;
91extern const int mmap_rnd_bits_max;
92extern int mmap_rnd_bits __read_mostly;
93#endif
94#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95extern const int mmap_rnd_compat_bits_min;
96extern const int mmap_rnd_compat_bits_max;
97extern int mmap_rnd_compat_bits __read_mostly;
98#endif
99
100#include <asm/page.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000101#include <asm/processor.h>
102
David Brazdil0f672f62019-12-10 10:32:29 +0000103/*
104 * Architectures that support memory tagging (assigning tags to memory regions,
105 * embedding these tags into addresses that point to these memory regions, and
106 * checking that the memory and the pointer tags match on memory accesses)
107 * redefine this macro to strip tags from pointers.
108 * It's defined as noop for arcitectures that don't support memory tagging.
109 */
110#ifndef untagged_addr
111#define untagged_addr(addr) (addr)
112#endif
113
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000114#ifndef __pa_symbol
115#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
116#endif
117
118#ifndef page_to_virt
119#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
120#endif
121
122#ifndef lm_alias
123#define lm_alias(x) __va(__pa_symbol(x))
124#endif
125
126/*
127 * To prevent common memory management code establishing
128 * a zero page mapping on a read fault.
129 * This macro should be defined within <asm/pgtable.h>.
130 * s390 does this to prevent multiplexing of hardware bits
131 * related to the physical page in case of virtualization.
132 */
133#ifndef mm_forbids_zeropage
134#define mm_forbids_zeropage(X) (0)
135#endif
136
137/*
138 * On some architectures it is expensive to call memset() for small sizes.
David Brazdil0f672f62019-12-10 10:32:29 +0000139 * If an architecture decides to implement their own version of
140 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
141 * define their own version of this macro in <asm/pgtable.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000142 */
David Brazdil0f672f62019-12-10 10:32:29 +0000143#if BITS_PER_LONG == 64
144/* This function must be updated when the size of struct page grows above 80
145 * or reduces below 56. The idea that compiler optimizes out switch()
146 * statement, and only leaves move/store instructions. Also the compiler can
147 * combine write statments if they are both assignments and can be reordered,
148 * this can result in several of the writes here being dropped.
149 */
150#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
151static inline void __mm_zero_struct_page(struct page *page)
152{
153 unsigned long *_pp = (void *)page;
154
155 /* Check that struct page is either 56, 64, 72, or 80 bytes */
156 BUILD_BUG_ON(sizeof(struct page) & 7);
157 BUILD_BUG_ON(sizeof(struct page) < 56);
158 BUILD_BUG_ON(sizeof(struct page) > 80);
159
160 switch (sizeof(struct page)) {
161 case 80:
Olivier Deprez157378f2022-04-04 15:47:50 +0200162 _pp[9] = 0;
163 fallthrough;
David Brazdil0f672f62019-12-10 10:32:29 +0000164 case 72:
Olivier Deprez157378f2022-04-04 15:47:50 +0200165 _pp[8] = 0;
166 fallthrough;
David Brazdil0f672f62019-12-10 10:32:29 +0000167 case 64:
Olivier Deprez157378f2022-04-04 15:47:50 +0200168 _pp[7] = 0;
169 fallthrough;
David Brazdil0f672f62019-12-10 10:32:29 +0000170 case 56:
171 _pp[6] = 0;
172 _pp[5] = 0;
173 _pp[4] = 0;
174 _pp[3] = 0;
175 _pp[2] = 0;
176 _pp[1] = 0;
177 _pp[0] = 0;
178 }
179}
180#else
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000181#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
182#endif
183
184/*
185 * Default maximum number of active map areas, this limits the number of vmas
186 * per mm struct. Users can overwrite this number by sysctl but there is a
187 * problem.
188 *
189 * When a program's coredump is generated as ELF format, a section is created
190 * per a vma. In ELF, the number of sections is represented in unsigned short.
191 * This means the number of sections should be smaller than 65535 at coredump.
192 * Because the kernel adds some informative sections to a image of program at
193 * generating coredump, we need some margin. The number of extra sections is
194 * 1-3 now and depends on arch. We use "5" as safe margin, here.
195 *
196 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
197 * not a hard limit any more. Although some userspace tools can be surprised by
198 * that.
199 */
200#define MAPCOUNT_ELF_CORE_MARGIN (5)
201#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
202
203extern int sysctl_max_map_count;
204
205extern unsigned long sysctl_user_reserve_kbytes;
206extern unsigned long sysctl_admin_reserve_kbytes;
207
208extern int sysctl_overcommit_memory;
209extern int sysctl_overcommit_ratio;
210extern unsigned long sysctl_overcommit_kbytes;
211
Olivier Deprez157378f2022-04-04 15:47:50 +0200212int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
213 loff_t *);
214int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
215 loff_t *);
216int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
217 loff_t *);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000218
219#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
220
221/* to align the pointer to the (next) page boundary */
222#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
223
224/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
225#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
226
David Brazdil0f672f62019-12-10 10:32:29 +0000227#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
228
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000229/*
230 * Linux kernel virtual memory manager primitives.
231 * The idea being to have a "virtual" mm in the same way
232 * we have a virtual fs - giving a cleaner interface to the
233 * mm details, and allowing different kinds of memory mappings
234 * (from shared memory to executable loading to arbitrary
235 * mmap() functions).
236 */
237
238struct vm_area_struct *vm_area_alloc(struct mm_struct *);
239struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
240void vm_area_free(struct vm_area_struct *);
241
242#ifndef CONFIG_MMU
243extern struct rb_root nommu_region_tree;
244extern struct rw_semaphore nommu_region_sem;
245
246extern unsigned int kobjsize(const void *objp);
247#endif
248
249/*
250 * vm_flags in vm_area_struct, see mm_types.h.
251 * When changing, update also include/trace/events/mmflags.h
252 */
253#define VM_NONE 0x00000000
254
255#define VM_READ 0x00000001 /* currently active flags */
256#define VM_WRITE 0x00000002
257#define VM_EXEC 0x00000004
258#define VM_SHARED 0x00000008
259
260/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
261#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
262#define VM_MAYWRITE 0x00000020
263#define VM_MAYEXEC 0x00000040
264#define VM_MAYSHARE 0x00000080
265
266#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
267#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
268#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
269#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
270#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
271
272#define VM_LOCKED 0x00002000
273#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
274
275 /* Used by sys_madvise() */
276#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
277#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
278
279#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
280#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
281#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
282#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
283#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
284#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
285#define VM_SYNC 0x00800000 /* Synchronous page faults */
286#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
287#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
288#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
289
290#ifdef CONFIG_MEM_SOFT_DIRTY
291# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
292#else
293# define VM_SOFTDIRTY 0
294#endif
295
296#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
297#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
298#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
299#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
300
301#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
302#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
303#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
304#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
305#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
306#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
307#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
308#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
309#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
310#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
311#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
312#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
313
314#ifdef CONFIG_ARCH_HAS_PKEYS
315# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
316# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
317# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
318# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
319# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
320#ifdef CONFIG_PPC
321# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
322#else
323# define VM_PKEY_BIT4 0
324#endif
325#endif /* CONFIG_ARCH_HAS_PKEYS */
326
327#if defined(CONFIG_X86)
328# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
329#elif defined(CONFIG_PPC)
330# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
331#elif defined(CONFIG_PARISC)
332# define VM_GROWSUP VM_ARCH_1
333#elif defined(CONFIG_IA64)
334# define VM_GROWSUP VM_ARCH_1
335#elif defined(CONFIG_SPARC64)
336# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
337# define VM_ARCH_CLEAR VM_SPARC_ADI
Olivier Deprez157378f2022-04-04 15:47:50 +0200338#elif defined(CONFIG_ARM64)
339# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
340# define VM_ARCH_CLEAR VM_ARM64_BTI
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000341#elif !defined(CONFIG_MMU)
342# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
343#endif
344
Olivier Deprez157378f2022-04-04 15:47:50 +0200345#if defined(CONFIG_ARM64_MTE)
346# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
347# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000348#else
Olivier Deprez157378f2022-04-04 15:47:50 +0200349# define VM_MTE VM_NONE
350# define VM_MTE_ALLOWED VM_NONE
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000351#endif
352
353#ifndef VM_GROWSUP
354# define VM_GROWSUP VM_NONE
355#endif
356
357/* Bits set in the VMA until the stack is in its final location */
358#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
359
Olivier Deprez157378f2022-04-04 15:47:50 +0200360#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
361
362/* Common data flag combinations */
363#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
364 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
365#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
366 VM_MAYWRITE | VM_MAYEXEC)
367#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
368 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
369
370#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
371#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
372#endif
373
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000374#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
375#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
376#endif
377
378#ifdef CONFIG_STACK_GROWSUP
379#define VM_STACK VM_GROWSUP
380#else
381#define VM_STACK VM_GROWSDOWN
382#endif
383
384#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
385
Olivier Deprez157378f2022-04-04 15:47:50 +0200386/* VMA basic access permission flags */
387#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
388
389
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000390/*
391 * Special vmas that are non-mergable, non-mlock()able.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000392 */
393#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
394
Olivier Deprez157378f2022-04-04 15:47:50 +0200395/* This mask prevents VMA from being scanned with khugepaged */
396#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
397
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000398/* This mask defines which mm->def_flags a process can inherit its parent */
399#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
400
401/* This mask is used to clear all the VMA flags used by mlock */
402#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
403
404/* Arch-specific flags to clear when updating VM flags on protection change */
405#ifndef VM_ARCH_CLEAR
406# define VM_ARCH_CLEAR VM_NONE
407#endif
408#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
409
410/*
411 * mapping from the currently active vm_flags protection bits (the
412 * low four bits) to a page protection mask..
413 */
414extern pgprot_t protection_map[16];
415
Olivier Deprez157378f2022-04-04 15:47:50 +0200416/**
417 * Fault flag definitions.
418 *
419 * @FAULT_FLAG_WRITE: Fault was a write fault.
420 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
421 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
422 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
423 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
424 * @FAULT_FLAG_TRIED: The fault has been tried once.
425 * @FAULT_FLAG_USER: The fault originated in userspace.
426 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
427 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
428 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
429 *
430 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
431 * whether we would allow page faults to retry by specifying these two
432 * fault flags correctly. Currently there can be three legal combinations:
433 *
434 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
435 * this is the first try
436 *
437 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
438 * we've already tried at least once
439 *
440 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
441 *
442 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
443 * be used. Note that page faults can be allowed to retry for multiple times,
444 * in which case we'll have an initial fault with flags (a) then later on
445 * continuous faults with flags (b). We should always try to detect pending
446 * signals before a retry to make sure the continuous page faults can still be
447 * interrupted if necessary.
448 */
449#define FAULT_FLAG_WRITE 0x01
450#define FAULT_FLAG_MKWRITE 0x02
451#define FAULT_FLAG_ALLOW_RETRY 0x04
452#define FAULT_FLAG_RETRY_NOWAIT 0x08
453#define FAULT_FLAG_KILLABLE 0x10
454#define FAULT_FLAG_TRIED 0x20
455#define FAULT_FLAG_USER 0x40
456#define FAULT_FLAG_REMOTE 0x80
457#define FAULT_FLAG_INSTRUCTION 0x100
458#define FAULT_FLAG_INTERRUPTIBLE 0x200
459
460/*
461 * The default fault flags that should be used by most of the
462 * arch-specific page fault handlers.
463 */
464#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
465 FAULT_FLAG_KILLABLE | \
466 FAULT_FLAG_INTERRUPTIBLE)
467
468/**
469 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
470 *
471 * This is mostly used for places where we want to try to avoid taking
472 * the mmap_lock for too long a time when waiting for another condition
473 * to change, in which case we can try to be polite to release the
474 * mmap_lock in the first round to avoid potential starvation of other
475 * processes that would also want the mmap_lock.
476 *
477 * Return: true if the page fault allows retry and this is the first
478 * attempt of the fault handling; false otherwise.
479 */
480static inline bool fault_flag_allow_retry_first(unsigned int flags)
481{
482 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
483 (!(flags & FAULT_FLAG_TRIED));
484}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000485
486#define FAULT_FLAG_TRACE \
487 { FAULT_FLAG_WRITE, "WRITE" }, \
488 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
489 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
490 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
491 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
492 { FAULT_FLAG_TRIED, "TRIED" }, \
493 { FAULT_FLAG_USER, "USER" }, \
494 { FAULT_FLAG_REMOTE, "REMOTE" }, \
Olivier Deprez157378f2022-04-04 15:47:50 +0200495 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
496 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000497
498/*
Olivier Deprez157378f2022-04-04 15:47:50 +0200499 * vm_fault is filled by the pagefault handler and passed to the vma's
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000500 * ->fault function. The vma's ->fault is responsible for returning a bitmask
501 * of VM_FAULT_xxx flags that give details about how the fault was handled.
502 *
503 * MM layer fills up gfp_mask for page allocations but fault handler might
504 * alter it if its implementation requires a different allocation context.
505 *
506 * pgoff should be used in favour of virtual_address, if possible.
507 */
508struct vm_fault {
509 struct vm_area_struct *vma; /* Target VMA */
510 unsigned int flags; /* FAULT_FLAG_xxx flags */
511 gfp_t gfp_mask; /* gfp mask to be used for allocations */
512 pgoff_t pgoff; /* Logical page offset based on vma */
513 unsigned long address; /* Faulting virtual address */
514 pmd_t *pmd; /* Pointer to pmd entry matching
515 * the 'address' */
516 pud_t *pud; /* Pointer to pud entry matching
517 * the 'address'
518 */
519 pte_t orig_pte; /* Value of PTE at the time of fault */
520
521 struct page *cow_page; /* Page handler may use for COW fault */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000522 struct page *page; /* ->fault handlers should return a
523 * page here, unless VM_FAULT_NOPAGE
524 * is set (which is also implied by
525 * VM_FAULT_ERROR).
526 */
527 /* These three entries are valid only while holding ptl lock */
528 pte_t *pte; /* Pointer to pte entry matching
529 * the 'address'. NULL if the page
530 * table hasn't been allocated.
531 */
532 spinlock_t *ptl; /* Page table lock.
533 * Protects pte page table if 'pte'
534 * is not NULL, otherwise pmd.
535 */
536 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
537 * vm_ops->map_pages() calls
538 * alloc_set_pte() from atomic context.
539 * do_fault_around() pre-allocates
540 * page table to avoid allocation from
541 * atomic context.
542 */
543};
544
545/* page entry size for vm->huge_fault() */
546enum page_entry_size {
547 PE_SIZE_PTE = 0,
548 PE_SIZE_PMD,
549 PE_SIZE_PUD,
550};
551
552/*
553 * These are the virtual MM functions - opening of an area, closing and
554 * unmapping it (needed to keep files on disk up-to-date etc), pointer
555 * to the functions called when a no-page or a wp-page exception occurs.
556 */
557struct vm_operations_struct {
558 void (*open)(struct vm_area_struct * area);
559 void (*close)(struct vm_area_struct * area);
560 int (*split)(struct vm_area_struct * area, unsigned long addr);
561 int (*mremap)(struct vm_area_struct * area);
562 vm_fault_t (*fault)(struct vm_fault *vmf);
563 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
564 enum page_entry_size pe_size);
565 void (*map_pages)(struct vm_fault *vmf,
566 pgoff_t start_pgoff, pgoff_t end_pgoff);
567 unsigned long (*pagesize)(struct vm_area_struct * area);
568
569 /* notification that a previously read-only page is about to become
570 * writable, if an error is returned it will cause a SIGBUS */
571 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
572
573 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
574 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
575
576 /* called by access_process_vm when get_user_pages() fails, typically
577 * for use by special VMAs that can switch between memory and hardware
578 */
579 int (*access)(struct vm_area_struct *vma, unsigned long addr,
580 void *buf, int len, int write);
581
582 /* Called by the /proc/PID/maps code to ask the vma whether it
583 * has a special name. Returning non-NULL will also cause this
584 * vma to be dumped unconditionally. */
585 const char *(*name)(struct vm_area_struct *vma);
586
587#ifdef CONFIG_NUMA
588 /*
589 * set_policy() op must add a reference to any non-NULL @new mempolicy
590 * to hold the policy upon return. Caller should pass NULL @new to
591 * remove a policy and fall back to surrounding context--i.e. do not
592 * install a MPOL_DEFAULT policy, nor the task or system default
593 * mempolicy.
594 */
595 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
596
597 /*
598 * get_policy() op must add reference [mpol_get()] to any policy at
599 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
600 * in mm/mempolicy.c will do this automatically.
601 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
Olivier Deprez157378f2022-04-04 15:47:50 +0200602 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000603 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
604 * must return NULL--i.e., do not "fallback" to task or system default
605 * policy.
606 */
607 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
608 unsigned long addr);
609#endif
610 /*
611 * Called by vm_normal_page() for special PTEs to find the
612 * page for @addr. This is useful if the default behavior
613 * (using pte_page()) would not find the correct page.
614 */
615 struct page *(*find_special_page)(struct vm_area_struct *vma,
616 unsigned long addr);
617};
618
619static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
620{
621 static const struct vm_operations_struct dummy_vm_ops = {};
622
623 memset(vma, 0, sizeof(*vma));
624 vma->vm_mm = mm;
625 vma->vm_ops = &dummy_vm_ops;
626 INIT_LIST_HEAD(&vma->anon_vma_chain);
627}
628
629static inline void vma_set_anonymous(struct vm_area_struct *vma)
630{
631 vma->vm_ops = NULL;
632}
633
David Brazdil0f672f62019-12-10 10:32:29 +0000634static inline bool vma_is_anonymous(struct vm_area_struct *vma)
635{
636 return !vma->vm_ops;
637}
638
Olivier Deprez157378f2022-04-04 15:47:50 +0200639static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
640{
641 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
642
643 if (!maybe_stack)
644 return false;
645
646 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
647 VM_STACK_INCOMPLETE_SETUP)
648 return true;
649
650 return false;
651}
652
653static inline bool vma_is_foreign(struct vm_area_struct *vma)
654{
655 if (!current->mm)
656 return true;
657
658 if (current->mm != vma->vm_mm)
659 return true;
660
661 return false;
662}
663
664static inline bool vma_is_accessible(struct vm_area_struct *vma)
665{
666 return vma->vm_flags & VM_ACCESS_FLAGS;
667}
668
David Brazdil0f672f62019-12-10 10:32:29 +0000669#ifdef CONFIG_SHMEM
670/*
671 * The vma_is_shmem is not inline because it is used only by slow
672 * paths in userfault.
673 */
674bool vma_is_shmem(struct vm_area_struct *vma);
675#else
676static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
677#endif
678
679int vma_is_stack_for_current(struct vm_area_struct *vma);
680
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000681/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
682#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
683
684struct mmu_gather;
685struct inode;
686
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000687#include <linux/huge_mm.h>
688
689/*
690 * Methods to modify the page usage count.
691 *
692 * What counts for a page usage:
693 * - cache mapping (page->mapping)
694 * - private data (page->private)
695 * - page mapped in a task's page tables, each mapping
696 * is counted separately
697 *
698 * Also, many kernel routines increase the page count before a critical
699 * routine so they can be sure the page doesn't go away from under them.
700 */
701
702/*
703 * Drop a ref, return true if the refcount fell to zero (the page has no users)
704 */
705static inline int put_page_testzero(struct page *page)
706{
707 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
708 return page_ref_dec_and_test(page);
709}
710
711/*
712 * Try to grab a ref unless the page has a refcount of zero, return false if
713 * that is the case.
714 * This can be called when MMU is off so it must not access
715 * any of the virtual mappings.
716 */
717static inline int get_page_unless_zero(struct page *page)
718{
719 return page_ref_add_unless(page, 1, 0);
720}
721
722extern int page_is_ram(unsigned long pfn);
723
724enum {
725 REGION_INTERSECTS,
726 REGION_DISJOINT,
727 REGION_MIXED,
728};
729
730int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
731 unsigned long desc);
732
733/* Support for virtually mapped pages */
734struct page *vmalloc_to_page(const void *addr);
735unsigned long vmalloc_to_pfn(const void *addr);
736
737/*
738 * Determine if an address is within the vmalloc range
739 *
740 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
741 * is no special casing required.
742 */
David Brazdil0f672f62019-12-10 10:32:29 +0000743
744#ifndef is_ioremap_addr
745#define is_ioremap_addr(x) is_vmalloc_addr(x)
746#endif
747
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000748#ifdef CONFIG_MMU
Olivier Deprez157378f2022-04-04 15:47:50 +0200749extern bool is_vmalloc_addr(const void *x);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000750extern int is_vmalloc_or_module_addr(const void *x);
751#else
Olivier Deprez157378f2022-04-04 15:47:50 +0200752static inline bool is_vmalloc_addr(const void *x)
753{
754 return false;
755}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000756static inline int is_vmalloc_or_module_addr(const void *x)
757{
758 return 0;
759}
760#endif
761
762extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
763static inline void *kvmalloc(size_t size, gfp_t flags)
764{
765 return kvmalloc_node(size, flags, NUMA_NO_NODE);
766}
767static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
768{
769 return kvmalloc_node(size, flags | __GFP_ZERO, node);
770}
771static inline void *kvzalloc(size_t size, gfp_t flags)
772{
773 return kvmalloc(size, flags | __GFP_ZERO);
774}
775
776static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
777{
778 size_t bytes;
779
780 if (unlikely(check_mul_overflow(n, size, &bytes)))
781 return NULL;
782
783 return kvmalloc(bytes, flags);
784}
785
786static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
787{
788 return kvmalloc_array(n, size, flags | __GFP_ZERO);
789}
790
791extern void kvfree(const void *addr);
Olivier Deprez0e641232021-09-23 10:07:05 +0200792extern void kvfree_sensitive(const void *addr, size_t len);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000793
Olivier Deprez157378f2022-04-04 15:47:50 +0200794static inline int head_compound_mapcount(struct page *head)
795{
796 return atomic_read(compound_mapcount_ptr(head)) + 1;
797}
798
Olivier Deprez0e641232021-09-23 10:07:05 +0200799/*
800 * Mapcount of compound page as a whole, does not include mapped sub-pages.
801 *
802 * Must be called only for compound pages or any their tail sub-pages.
803 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000804static inline int compound_mapcount(struct page *page)
805{
806 VM_BUG_ON_PAGE(!PageCompound(page), page);
807 page = compound_head(page);
Olivier Deprez157378f2022-04-04 15:47:50 +0200808 return head_compound_mapcount(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000809}
810
811/*
812 * The atomic page->_mapcount, starts from -1: so that transitions
813 * both from it and to it can be tracked, using atomic_inc_and_test
814 * and atomic_add_negative(-1).
815 */
816static inline void page_mapcount_reset(struct page *page)
817{
818 atomic_set(&(page)->_mapcount, -1);
819}
820
821int __page_mapcount(struct page *page);
822
Olivier Deprez0e641232021-09-23 10:07:05 +0200823/*
824 * Mapcount of 0-order page; when compound sub-page, includes
825 * compound_mapcount().
826 *
827 * Result is undefined for pages which cannot be mapped into userspace.
828 * For example SLAB or special types of pages. See function page_has_type().
829 * They use this place in struct page differently.
830 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000831static inline int page_mapcount(struct page *page)
832{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000833 if (unlikely(PageCompound(page)))
834 return __page_mapcount(page);
835 return atomic_read(&page->_mapcount) + 1;
836}
837
838#ifdef CONFIG_TRANSPARENT_HUGEPAGE
839int total_mapcount(struct page *page);
840int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
841#else
842static inline int total_mapcount(struct page *page)
843{
844 return page_mapcount(page);
845}
846static inline int page_trans_huge_mapcount(struct page *page,
847 int *total_mapcount)
848{
849 int mapcount = page_mapcount(page);
850 if (total_mapcount)
851 *total_mapcount = mapcount;
852 return mapcount;
853}
854#endif
855
856static inline struct page *virt_to_head_page(const void *x)
857{
858 struct page *page = virt_to_page(x);
859
860 return compound_head(page);
861}
862
863void __put_page(struct page *page);
864
865void put_pages_list(struct list_head *pages);
866
867void split_page(struct page *page, unsigned int order);
868
869/*
870 * Compound pages have a destructor function. Provide a
871 * prototype for that function and accessor functions.
872 * These are _only_ valid on the head of a compound page.
873 */
874typedef void compound_page_dtor(struct page *);
875
876/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
877enum compound_dtor_id {
878 NULL_COMPOUND_DTOR,
879 COMPOUND_PAGE_DTOR,
880#ifdef CONFIG_HUGETLB_PAGE
881 HUGETLB_PAGE_DTOR,
882#endif
883#ifdef CONFIG_TRANSPARENT_HUGEPAGE
884 TRANSHUGE_PAGE_DTOR,
885#endif
886 NR_COMPOUND_DTORS,
887};
Olivier Deprez157378f2022-04-04 15:47:50 +0200888extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000889
890static inline void set_compound_page_dtor(struct page *page,
891 enum compound_dtor_id compound_dtor)
892{
893 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
894 page[1].compound_dtor = compound_dtor;
895}
896
Olivier Deprez157378f2022-04-04 15:47:50 +0200897static inline void destroy_compound_page(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000898{
899 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
Olivier Deprez157378f2022-04-04 15:47:50 +0200900 compound_page_dtors[page[1].compound_dtor](page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000901}
902
903static inline unsigned int compound_order(struct page *page)
904{
905 if (!PageHead(page))
906 return 0;
907 return page[1].compound_order;
908}
909
Olivier Deprez157378f2022-04-04 15:47:50 +0200910static inline bool hpage_pincount_available(struct page *page)
911{
912 /*
913 * Can the page->hpage_pinned_refcount field be used? That field is in
914 * the 3rd page of the compound page, so the smallest (2-page) compound
915 * pages cannot support it.
916 */
917 page = compound_head(page);
918 return PageCompound(page) && compound_order(page) > 1;
919}
920
921static inline int head_compound_pincount(struct page *head)
922{
923 return atomic_read(compound_pincount_ptr(head));
924}
925
926static inline int compound_pincount(struct page *page)
927{
928 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
929 page = compound_head(page);
930 return head_compound_pincount(page);
931}
932
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000933static inline void set_compound_order(struct page *page, unsigned int order)
934{
935 page[1].compound_order = order;
Olivier Deprez157378f2022-04-04 15:47:50 +0200936 page[1].compound_nr = 1U << order;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000937}
938
David Brazdil0f672f62019-12-10 10:32:29 +0000939/* Returns the number of pages in this potentially compound page. */
940static inline unsigned long compound_nr(struct page *page)
941{
Olivier Deprez157378f2022-04-04 15:47:50 +0200942 if (!PageHead(page))
943 return 1;
944 return page[1].compound_nr;
David Brazdil0f672f62019-12-10 10:32:29 +0000945}
946
947/* Returns the number of bytes in this potentially compound page. */
948static inline unsigned long page_size(struct page *page)
949{
950 return PAGE_SIZE << compound_order(page);
951}
952
953/* Returns the number of bits needed for the number of bytes in a page */
954static inline unsigned int page_shift(struct page *page)
955{
956 return PAGE_SHIFT + compound_order(page);
957}
958
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000959void free_compound_page(struct page *page);
960
961#ifdef CONFIG_MMU
962/*
963 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
964 * servicing faults for write access. In the normal case, do always want
965 * pte_mkwrite. But get_user_pages can cause write faults for mappings
966 * that do not have writing enabled, when used by access_process_vm.
967 */
968static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
969{
970 if (likely(vma->vm_flags & VM_WRITE))
971 pte = pte_mkwrite(pte);
972 return pte;
973}
974
Olivier Deprez157378f2022-04-04 15:47:50 +0200975vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000976vm_fault_t finish_fault(struct vm_fault *vmf);
977vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
978#endif
979
980/*
981 * Multiple processes may "see" the same page. E.g. for untouched
982 * mappings of /dev/null, all processes see the same page full of
983 * zeroes, and text pages of executables and shared libraries have
984 * only one copy in memory, at most, normally.
985 *
986 * For the non-reserved pages, page_count(page) denotes a reference count.
987 * page_count() == 0 means the page is free. page->lru is then used for
988 * freelist management in the buddy allocator.
989 * page_count() > 0 means the page has been allocated.
990 *
991 * Pages are allocated by the slab allocator in order to provide memory
992 * to kmalloc and kmem_cache_alloc. In this case, the management of the
993 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
994 * unless a particular usage is carefully commented. (the responsibility of
995 * freeing the kmalloc memory is the caller's, of course).
996 *
997 * A page may be used by anyone else who does a __get_free_page().
998 * In this case, page_count still tracks the references, and should only
999 * be used through the normal accessor functions. The top bits of page->flags
1000 * and page->virtual store page management information, but all other fields
1001 * are unused and could be used privately, carefully. The management of this
1002 * page is the responsibility of the one who allocated it, and those who have
1003 * subsequently been given references to it.
1004 *
1005 * The other pages (we may call them "pagecache pages") are completely
1006 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1007 * The following discussion applies only to them.
1008 *
1009 * A pagecache page contains an opaque `private' member, which belongs to the
1010 * page's address_space. Usually, this is the address of a circular list of
1011 * the page's disk buffers. PG_private must be set to tell the VM to call
1012 * into the filesystem to release these pages.
1013 *
1014 * A page may belong to an inode's memory mapping. In this case, page->mapping
1015 * is the pointer to the inode, and page->index is the file offset of the page,
1016 * in units of PAGE_SIZE.
1017 *
1018 * If pagecache pages are not associated with an inode, they are said to be
1019 * anonymous pages. These may become associated with the swapcache, and in that
1020 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1021 *
1022 * In either case (swapcache or inode backed), the pagecache itself holds one
1023 * reference to the page. Setting PG_private should also increment the
1024 * refcount. The each user mapping also has a reference to the page.
1025 *
1026 * The pagecache pages are stored in a per-mapping radix tree, which is
1027 * rooted at mapping->i_pages, and indexed by offset.
1028 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1029 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1030 *
1031 * All pagecache pages may be subject to I/O:
1032 * - inode pages may need to be read from disk,
1033 * - inode pages which have been modified and are MAP_SHARED may need
1034 * to be written back to the inode on disk,
1035 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1036 * modified may need to be swapped out to swap space and (later) to be read
1037 * back into memory.
1038 */
1039
1040/*
1041 * The zone field is never updated after free_area_init_core()
1042 * sets it, so none of the operations on it need to be atomic.
1043 */
1044
1045/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1046#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1047#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1048#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1049#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
David Brazdil0f672f62019-12-10 10:32:29 +00001050#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001051
1052/*
1053 * Define the bit shifts to access each section. For non-existent
1054 * sections we define the shift as 0; that plus a 0 mask ensures
1055 * the compiler will optimise away reference to them.
1056 */
1057#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1058#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1059#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1060#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
David Brazdil0f672f62019-12-10 10:32:29 +00001061#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001062
1063/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1064#ifdef NODE_NOT_IN_PAGE_FLAGS
1065#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1066#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1067 SECTIONS_PGOFF : ZONES_PGOFF)
1068#else
1069#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1070#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1071 NODES_PGOFF : ZONES_PGOFF)
1072#endif
1073
1074#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1075
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001076#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1077#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1078#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1079#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
David Brazdil0f672f62019-12-10 10:32:29 +00001080#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001081#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1082
1083static inline enum zone_type page_zonenum(const struct page *page)
1084{
Olivier Deprez157378f2022-04-04 15:47:50 +02001085 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001086 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1087}
1088
1089#ifdef CONFIG_ZONE_DEVICE
1090static inline bool is_zone_device_page(const struct page *page)
1091{
1092 return page_zonenum(page) == ZONE_DEVICE;
1093}
David Brazdil0f672f62019-12-10 10:32:29 +00001094extern void memmap_init_zone_device(struct zone *, unsigned long,
1095 unsigned long, struct dev_pagemap *);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001096#else
1097static inline bool is_zone_device_page(const struct page *page)
1098{
1099 return false;
1100}
1101#endif
1102
1103#ifdef CONFIG_DEV_PAGEMAP_OPS
Olivier Deprez157378f2022-04-04 15:47:50 +02001104void free_devmap_managed_page(struct page *page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001105DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
Olivier Deprez157378f2022-04-04 15:47:50 +02001106
1107static inline bool page_is_devmap_managed(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001108{
1109 if (!static_branch_unlikely(&devmap_managed_key))
1110 return false;
1111 if (!is_zone_device_page(page))
1112 return false;
1113 switch (page->pgmap->type) {
1114 case MEMORY_DEVICE_PRIVATE:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001115 case MEMORY_DEVICE_FS_DAX:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001116 return true;
1117 default:
1118 break;
1119 }
1120 return false;
1121}
1122
Olivier Deprez157378f2022-04-04 15:47:50 +02001123void put_devmap_managed_page(struct page *page);
1124
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001125#else /* CONFIG_DEV_PAGEMAP_OPS */
Olivier Deprez157378f2022-04-04 15:47:50 +02001126static inline bool page_is_devmap_managed(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001127{
1128 return false;
1129}
Olivier Deprez157378f2022-04-04 15:47:50 +02001130
1131static inline void put_devmap_managed_page(struct page *page)
1132{
1133}
David Brazdil0f672f62019-12-10 10:32:29 +00001134#endif /* CONFIG_DEV_PAGEMAP_OPS */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001135
1136static inline bool is_device_private_page(const struct page *page)
1137{
David Brazdil0f672f62019-12-10 10:32:29 +00001138 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1139 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1140 is_zone_device_page(page) &&
1141 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001142}
1143
David Brazdil0f672f62019-12-10 10:32:29 +00001144static inline bool is_pci_p2pdma_page(const struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001145{
David Brazdil0f672f62019-12-10 10:32:29 +00001146 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1147 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1148 is_zone_device_page(page) &&
1149 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001150}
David Brazdil0f672f62019-12-10 10:32:29 +00001151
1152/* 127: arbitrary random number, small enough to assemble well */
1153#define page_ref_zero_or_close_to_overflow(page) \
1154 ((unsigned int) page_ref_count(page) + 127u <= 127u)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001155
1156static inline void get_page(struct page *page)
1157{
1158 page = compound_head(page);
1159 /*
1160 * Getting a normal page or the head of a compound page
1161 * requires to already have an elevated page->_refcount.
1162 */
David Brazdil0f672f62019-12-10 10:32:29 +00001163 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001164 page_ref_inc(page);
1165}
1166
Olivier Deprez157378f2022-04-04 15:47:50 +02001167bool __must_check try_grab_page(struct page *page, unsigned int flags);
1168
David Brazdil0f672f62019-12-10 10:32:29 +00001169static inline __must_check bool try_get_page(struct page *page)
1170{
1171 page = compound_head(page);
1172 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1173 return false;
1174 page_ref_inc(page);
1175 return true;
1176}
1177
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001178static inline void put_page(struct page *page)
1179{
1180 page = compound_head(page);
1181
1182 /*
1183 * For devmap managed pages we need to catch refcount transition from
1184 * 2 to 1, when refcount reach one it means the page is free and we
1185 * need to inform the device driver through callback. See
1186 * include/linux/memremap.h and HMM for details.
1187 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001188 if (page_is_devmap_managed(page)) {
1189 put_devmap_managed_page(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001190 return;
Olivier Deprez157378f2022-04-04 15:47:50 +02001191 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001192
1193 if (put_page_testzero(page))
1194 __put_page(page);
1195}
1196
Olivier Deprez157378f2022-04-04 15:47:50 +02001197/*
1198 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1199 * the page's refcount so that two separate items are tracked: the original page
1200 * reference count, and also a new count of how many pin_user_pages() calls were
1201 * made against the page. ("gup-pinned" is another term for the latter).
David Brazdil0f672f62019-12-10 10:32:29 +00001202 *
Olivier Deprez157378f2022-04-04 15:47:50 +02001203 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1204 * distinct from normal pages. As such, the unpin_user_page() call (and its
1205 * variants) must be used in order to release gup-pinned pages.
David Brazdil0f672f62019-12-10 10:32:29 +00001206 *
Olivier Deprez157378f2022-04-04 15:47:50 +02001207 * Choice of value:
1208 *
1209 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1210 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1211 * simpler, due to the fact that adding an even power of two to the page
1212 * refcount has the effect of using only the upper N bits, for the code that
1213 * counts up using the bias value. This means that the lower bits are left for
1214 * the exclusive use of the original code that increments and decrements by one
1215 * (or at least, by much smaller values than the bias value).
1216 *
1217 * Of course, once the lower bits overflow into the upper bits (and this is
1218 * OK, because subtraction recovers the original values), then visual inspection
1219 * no longer suffices to directly view the separate counts. However, for normal
1220 * applications that don't have huge page reference counts, this won't be an
1221 * issue.
1222 *
1223 * Locking: the lockless algorithm described in page_cache_get_speculative()
1224 * and page_cache_gup_pin_speculative() provides safe operation for
1225 * get_user_pages and page_mkclean and other calls that race to set up page
1226 * table entries.
David Brazdil0f672f62019-12-10 10:32:29 +00001227 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001228#define GUP_PIN_COUNTING_BIAS (1U << 10)
1229
1230void unpin_user_page(struct page *page);
1231void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1232 bool make_dirty);
1233void unpin_user_pages(struct page **pages, unsigned long npages);
1234
1235/**
1236 * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1237 *
1238 * This function checks if a page has been pinned via a call to
1239 * pin_user_pages*().
1240 *
1241 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1242 * because it means "definitely not pinned for DMA", but true means "probably
1243 * pinned for DMA, but possibly a false positive due to having at least
1244 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1245 *
1246 * False positives are OK, because: a) it's unlikely for a page to get that many
1247 * refcounts, and b) all the callers of this routine are expected to be able to
1248 * deal gracefully with a false positive.
1249 *
1250 * For huge pages, the result will be exactly correct. That's because we have
1251 * more tracking data available: the 3rd struct page in the compound page is
1252 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1253 * scheme).
1254 *
1255 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1256 *
1257 * @page: pointer to page to be queried.
1258 * @Return: True, if it is likely that the page has been "dma-pinned".
1259 * False, if the page is definitely not dma-pinned.
1260 */
1261static inline bool page_maybe_dma_pinned(struct page *page)
David Brazdil0f672f62019-12-10 10:32:29 +00001262{
Olivier Deprez157378f2022-04-04 15:47:50 +02001263 if (hpage_pincount_available(page))
1264 return compound_pincount(page) > 0;
1265
1266 /*
1267 * page_ref_count() is signed. If that refcount overflows, then
1268 * page_ref_count() returns a negative value, and callers will avoid
1269 * further incrementing the refcount.
1270 *
1271 * Here, for that overflow case, use the signed bit to count a little
1272 * bit higher via unsigned math, and thus still get an accurate result.
1273 */
1274 return ((unsigned int)page_ref_count(compound_head(page))) >=
1275 GUP_PIN_COUNTING_BIAS;
David Brazdil0f672f62019-12-10 10:32:29 +00001276}
1277
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001278#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1279#define SECTION_IN_PAGE_FLAGS
1280#endif
1281
1282/*
1283 * The identification function is mainly used by the buddy allocator for
1284 * determining if two pages could be buddies. We are not really identifying
1285 * the zone since we could be using the section number id if we do not have
1286 * node id available in page flags.
1287 * We only guarantee that it will return the same value for two combinable
1288 * pages in a zone.
1289 */
1290static inline int page_zone_id(struct page *page)
1291{
1292 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1293}
1294
1295#ifdef NODE_NOT_IN_PAGE_FLAGS
1296extern int page_to_nid(const struct page *page);
1297#else
1298static inline int page_to_nid(const struct page *page)
1299{
1300 struct page *p = (struct page *)page;
1301
1302 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1303}
1304#endif
1305
1306#ifdef CONFIG_NUMA_BALANCING
1307static inline int cpu_pid_to_cpupid(int cpu, int pid)
1308{
1309 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1310}
1311
1312static inline int cpupid_to_pid(int cpupid)
1313{
1314 return cpupid & LAST__PID_MASK;
1315}
1316
1317static inline int cpupid_to_cpu(int cpupid)
1318{
1319 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1320}
1321
1322static inline int cpupid_to_nid(int cpupid)
1323{
1324 return cpu_to_node(cpupid_to_cpu(cpupid));
1325}
1326
1327static inline bool cpupid_pid_unset(int cpupid)
1328{
1329 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1330}
1331
1332static inline bool cpupid_cpu_unset(int cpupid)
1333{
1334 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1335}
1336
1337static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1338{
1339 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1340}
1341
1342#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1343#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1344static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1345{
1346 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1347}
1348
1349static inline int page_cpupid_last(struct page *page)
1350{
1351 return page->_last_cpupid;
1352}
1353static inline void page_cpupid_reset_last(struct page *page)
1354{
1355 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1356}
1357#else
1358static inline int page_cpupid_last(struct page *page)
1359{
1360 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1361}
1362
1363extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1364
1365static inline void page_cpupid_reset_last(struct page *page)
1366{
1367 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1368}
1369#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1370#else /* !CONFIG_NUMA_BALANCING */
1371static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1372{
1373 return page_to_nid(page); /* XXX */
1374}
1375
1376static inline int page_cpupid_last(struct page *page)
1377{
1378 return page_to_nid(page); /* XXX */
1379}
1380
1381static inline int cpupid_to_nid(int cpupid)
1382{
1383 return -1;
1384}
1385
1386static inline int cpupid_to_pid(int cpupid)
1387{
1388 return -1;
1389}
1390
1391static inline int cpupid_to_cpu(int cpupid)
1392{
1393 return -1;
1394}
1395
1396static inline int cpu_pid_to_cpupid(int nid, int pid)
1397{
1398 return -1;
1399}
1400
1401static inline bool cpupid_pid_unset(int cpupid)
1402{
Olivier Deprez157378f2022-04-04 15:47:50 +02001403 return true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001404}
1405
1406static inline void page_cpupid_reset_last(struct page *page)
1407{
1408}
1409
1410static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1411{
1412 return false;
1413}
1414#endif /* CONFIG_NUMA_BALANCING */
1415
David Brazdil0f672f62019-12-10 10:32:29 +00001416#ifdef CONFIG_KASAN_SW_TAGS
Olivier Deprez0e641232021-09-23 10:07:05 +02001417
1418/*
1419 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1420 * setting tags for all pages to native kernel tag value 0xff, as the default
1421 * value 0x00 maps to 0xff.
1422 */
1423
David Brazdil0f672f62019-12-10 10:32:29 +00001424static inline u8 page_kasan_tag(const struct page *page)
1425{
Olivier Deprez0e641232021-09-23 10:07:05 +02001426 u8 tag;
1427
1428 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1429 tag ^= 0xff;
1430
1431 return tag;
David Brazdil0f672f62019-12-10 10:32:29 +00001432}
1433
1434static inline void page_kasan_tag_set(struct page *page, u8 tag)
1435{
Olivier Deprez0e641232021-09-23 10:07:05 +02001436 tag ^= 0xff;
David Brazdil0f672f62019-12-10 10:32:29 +00001437 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1438 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1439}
1440
1441static inline void page_kasan_tag_reset(struct page *page)
1442{
1443 page_kasan_tag_set(page, 0xff);
1444}
1445#else
1446static inline u8 page_kasan_tag(const struct page *page)
1447{
1448 return 0xff;
1449}
1450
1451static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1452static inline void page_kasan_tag_reset(struct page *page) { }
1453#endif
1454
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001455static inline struct zone *page_zone(const struct page *page)
1456{
1457 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1458}
1459
1460static inline pg_data_t *page_pgdat(const struct page *page)
1461{
1462 return NODE_DATA(page_to_nid(page));
1463}
1464
1465#ifdef SECTION_IN_PAGE_FLAGS
1466static inline void set_page_section(struct page *page, unsigned long section)
1467{
1468 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1469 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1470}
1471
1472static inline unsigned long page_to_section(const struct page *page)
1473{
1474 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1475}
1476#endif
1477
1478static inline void set_page_zone(struct page *page, enum zone_type zone)
1479{
1480 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1481 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1482}
1483
1484static inline void set_page_node(struct page *page, unsigned long node)
1485{
1486 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1487 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1488}
1489
1490static inline void set_page_links(struct page *page, enum zone_type zone,
1491 unsigned long node, unsigned long pfn)
1492{
1493 set_page_zone(page, zone);
1494 set_page_node(page, node);
1495#ifdef SECTION_IN_PAGE_FLAGS
1496 set_page_section(page, pfn_to_section_nr(pfn));
1497#endif
1498}
1499
1500#ifdef CONFIG_MEMCG
1501static inline struct mem_cgroup *page_memcg(struct page *page)
1502{
1503 return page->mem_cgroup;
1504}
1505static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1506{
1507 WARN_ON_ONCE(!rcu_read_lock_held());
1508 return READ_ONCE(page->mem_cgroup);
1509}
1510#else
1511static inline struct mem_cgroup *page_memcg(struct page *page)
1512{
1513 return NULL;
1514}
1515static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1516{
1517 WARN_ON_ONCE(!rcu_read_lock_held());
1518 return NULL;
1519}
1520#endif
1521
1522/*
1523 * Some inline functions in vmstat.h depend on page_zone()
1524 */
1525#include <linux/vmstat.h>
1526
1527static __always_inline void *lowmem_page_address(const struct page *page)
1528{
1529 return page_to_virt(page);
1530}
1531
1532#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1533#define HASHED_PAGE_VIRTUAL
1534#endif
1535
1536#if defined(WANT_PAGE_VIRTUAL)
1537static inline void *page_address(const struct page *page)
1538{
1539 return page->virtual;
1540}
1541static inline void set_page_address(struct page *page, void *address)
1542{
1543 page->virtual = address;
1544}
1545#define page_address_init() do { } while(0)
1546#endif
1547
1548#if defined(HASHED_PAGE_VIRTUAL)
1549void *page_address(const struct page *page);
1550void set_page_address(struct page *page, void *virtual);
1551void page_address_init(void);
1552#endif
1553
1554#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1555#define page_address(page) lowmem_page_address(page)
1556#define set_page_address(page, address) do { } while(0)
1557#define page_address_init() do { } while(0)
1558#endif
1559
1560extern void *page_rmapping(struct page *page);
1561extern struct anon_vma *page_anon_vma(struct page *page);
1562extern struct address_space *page_mapping(struct page *page);
1563
1564extern struct address_space *__page_file_mapping(struct page *);
1565
1566static inline
1567struct address_space *page_file_mapping(struct page *page)
1568{
1569 if (unlikely(PageSwapCache(page)))
1570 return __page_file_mapping(page);
1571
1572 return page->mapping;
1573}
1574
1575extern pgoff_t __page_file_index(struct page *page);
1576
1577/*
1578 * Return the pagecache index of the passed page. Regular pagecache pages
1579 * use ->index whereas swapcache pages use swp_offset(->private)
1580 */
1581static inline pgoff_t page_index(struct page *page)
1582{
1583 if (unlikely(PageSwapCache(page)))
1584 return __page_file_index(page);
1585 return page->index;
1586}
1587
1588bool page_mapped(struct page *page);
1589struct address_space *page_mapping(struct page *page);
1590struct address_space *page_mapping_file(struct page *page);
1591
1592/*
1593 * Return true only if the page has been allocated with
1594 * ALLOC_NO_WATERMARKS and the low watermark was not
1595 * met implying that the system is under some pressure.
1596 */
1597static inline bool page_is_pfmemalloc(struct page *page)
1598{
1599 /*
1600 * Page index cannot be this large so this must be
1601 * a pfmemalloc page.
1602 */
1603 return page->index == -1UL;
1604}
1605
1606/*
1607 * Only to be called by the page allocator on a freshly allocated
1608 * page.
1609 */
1610static inline void set_page_pfmemalloc(struct page *page)
1611{
1612 page->index = -1UL;
1613}
1614
1615static inline void clear_page_pfmemalloc(struct page *page)
1616{
1617 page->index = 0;
1618}
1619
1620/*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001621 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1622 */
1623extern void pagefault_out_of_memory(void);
1624
1625#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
Olivier Deprez157378f2022-04-04 15:47:50 +02001626#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001627
1628/*
1629 * Flags passed to show_mem() and show_free_areas() to suppress output in
1630 * various contexts.
1631 */
1632#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1633
1634extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1635
David Brazdil0f672f62019-12-10 10:32:29 +00001636#ifdef CONFIG_MMU
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001637extern bool can_do_mlock(void);
David Brazdil0f672f62019-12-10 10:32:29 +00001638#else
1639static inline bool can_do_mlock(void) { return false; }
1640#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001641extern int user_shm_lock(size_t, struct user_struct *);
1642extern void user_shm_unlock(size_t, struct user_struct *);
1643
1644/*
1645 * Parameter block passed down to zap_pte_range in exceptional cases.
1646 */
1647struct zap_details {
1648 struct address_space *check_mapping; /* Check page->mapping if set */
1649 pgoff_t first_index; /* Lowest page->index to unmap */
1650 pgoff_t last_index; /* Highest page->index to unmap */
Olivier Deprez0e641232021-09-23 10:07:05 +02001651 struct page *single_page; /* Locked page to be unmapped */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001652};
1653
David Brazdil0f672f62019-12-10 10:32:29 +00001654struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1655 pte_t pte);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001656struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1657 pmd_t pmd);
1658
1659void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1660 unsigned long size);
1661void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1662 unsigned long size);
1663void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1664 unsigned long start, unsigned long end);
1665
David Brazdil0f672f62019-12-10 10:32:29 +00001666struct mmu_notifier_range;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001667
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001668void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1669 unsigned long end, unsigned long floor, unsigned long ceiling);
Olivier Deprez157378f2022-04-04 15:47:50 +02001670int
1671copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
Olivier Deprez0e641232021-09-23 10:07:05 +02001672int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1673 struct mmu_notifier_range *range, pte_t **ptepp,
1674 pmd_t **pmdpp, spinlock_t **ptlp);
1675int follow_pte(struct mm_struct *mm, unsigned long address,
1676 pte_t **ptepp, spinlock_t **ptlp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001677int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1678 unsigned long *pfn);
1679int follow_phys(struct vm_area_struct *vma, unsigned long address,
1680 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1681int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1682 void *buf, int len, int write);
1683
1684extern void truncate_pagecache(struct inode *inode, loff_t new);
1685extern void truncate_setsize(struct inode *inode, loff_t newsize);
1686void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1687void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1688int truncate_inode_page(struct address_space *mapping, struct page *page);
1689int generic_error_remove_page(struct address_space *mapping, struct page *page);
1690int invalidate_inode_page(struct page *page);
1691
1692#ifdef CONFIG_MMU
1693extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
Olivier Deprez157378f2022-04-04 15:47:50 +02001694 unsigned long address, unsigned int flags,
1695 struct pt_regs *regs);
1696extern int fixup_user_fault(struct mm_struct *mm,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001697 unsigned long address, unsigned int fault_flags,
1698 bool *unlocked);
Olivier Deprez0e641232021-09-23 10:07:05 +02001699void unmap_mapping_page(struct page *page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001700void unmap_mapping_pages(struct address_space *mapping,
1701 pgoff_t start, pgoff_t nr, bool even_cows);
1702void unmap_mapping_range(struct address_space *mapping,
1703 loff_t const holebegin, loff_t const holelen, int even_cows);
1704#else
1705static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
Olivier Deprez157378f2022-04-04 15:47:50 +02001706 unsigned long address, unsigned int flags,
1707 struct pt_regs *regs)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001708{
1709 /* should never happen if there's no MMU */
1710 BUG();
1711 return VM_FAULT_SIGBUS;
1712}
Olivier Deprez157378f2022-04-04 15:47:50 +02001713static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001714 unsigned int fault_flags, bool *unlocked)
1715{
1716 /* should never happen if there's no MMU */
1717 BUG();
1718 return -EFAULT;
1719}
Olivier Deprez0e641232021-09-23 10:07:05 +02001720static inline void unmap_mapping_page(struct page *page) { }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001721static inline void unmap_mapping_pages(struct address_space *mapping,
1722 pgoff_t start, pgoff_t nr, bool even_cows) { }
1723static inline void unmap_mapping_range(struct address_space *mapping,
1724 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1725#endif
1726
1727static inline void unmap_shared_mapping_range(struct address_space *mapping,
1728 loff_t const holebegin, loff_t const holelen)
1729{
1730 unmap_mapping_range(mapping, holebegin, holelen, 0);
1731}
1732
1733extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1734 void *buf, int len, unsigned int gup_flags);
1735extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1736 void *buf, int len, unsigned int gup_flags);
1737extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1738 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1739
Olivier Deprez157378f2022-04-04 15:47:50 +02001740long get_user_pages_remote(struct mm_struct *mm,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001741 unsigned long start, unsigned long nr_pages,
1742 unsigned int gup_flags, struct page **pages,
1743 struct vm_area_struct **vmas, int *locked);
Olivier Deprez157378f2022-04-04 15:47:50 +02001744long pin_user_pages_remote(struct mm_struct *mm,
1745 unsigned long start, unsigned long nr_pages,
1746 unsigned int gup_flags, struct page **pages,
1747 struct vm_area_struct **vmas, int *locked);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001748long get_user_pages(unsigned long start, unsigned long nr_pages,
1749 unsigned int gup_flags, struct page **pages,
1750 struct vm_area_struct **vmas);
Olivier Deprez157378f2022-04-04 15:47:50 +02001751long pin_user_pages(unsigned long start, unsigned long nr_pages,
1752 unsigned int gup_flags, struct page **pages,
1753 struct vm_area_struct **vmas);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001754long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1755 unsigned int gup_flags, struct page **pages, int *locked);
Olivier Deprez157378f2022-04-04 15:47:50 +02001756long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1757 unsigned int gup_flags, struct page **pages, int *locked);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001758long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1759 struct page **pages, unsigned int gup_flags);
Olivier Deprez157378f2022-04-04 15:47:50 +02001760long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1761 struct page **pages, unsigned int gup_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001762
David Brazdil0f672f62019-12-10 10:32:29 +00001763int get_user_pages_fast(unsigned long start, int nr_pages,
1764 unsigned int gup_flags, struct page **pages);
Olivier Deprez157378f2022-04-04 15:47:50 +02001765int pin_user_pages_fast(unsigned long start, int nr_pages,
1766 unsigned int gup_flags, struct page **pages);
David Brazdil0f672f62019-12-10 10:32:29 +00001767
1768int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1769int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1770 struct task_struct *task, bool bypass_rlim);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001771
1772/* Container for pinned pfns / pages */
1773struct frame_vector {
1774 unsigned int nr_allocated; /* Number of frames we have space for */
1775 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1776 bool got_ref; /* Did we pin pages by getting page ref? */
1777 bool is_pfns; /* Does array contain pages or pfns? */
Olivier Deprez157378f2022-04-04 15:47:50 +02001778 void *ptrs[]; /* Array of pinned pfns / pages. Use
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001779 * pfns_vector_pages() or pfns_vector_pfns()
1780 * for access */
1781};
1782
1783struct frame_vector *frame_vector_create(unsigned int nr_frames);
1784void frame_vector_destroy(struct frame_vector *vec);
1785int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1786 unsigned int gup_flags, struct frame_vector *vec);
1787void put_vaddr_frames(struct frame_vector *vec);
1788int frame_vector_to_pages(struct frame_vector *vec);
1789void frame_vector_to_pfns(struct frame_vector *vec);
1790
1791static inline unsigned int frame_vector_count(struct frame_vector *vec)
1792{
1793 return vec->nr_frames;
1794}
1795
1796static inline struct page **frame_vector_pages(struct frame_vector *vec)
1797{
1798 if (vec->is_pfns) {
1799 int err = frame_vector_to_pages(vec);
1800
1801 if (err)
1802 return ERR_PTR(err);
1803 }
1804 return (struct page **)(vec->ptrs);
1805}
1806
1807static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1808{
1809 if (!vec->is_pfns)
1810 frame_vector_to_pfns(vec);
1811 return (unsigned long *)(vec->ptrs);
1812}
1813
1814struct kvec;
1815int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1816 struct page **pages);
1817int get_kernel_page(unsigned long start, int write, struct page **pages);
1818struct page *get_dump_page(unsigned long addr);
1819
1820extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1821extern void do_invalidatepage(struct page *page, unsigned int offset,
1822 unsigned int length);
1823
1824void __set_page_dirty(struct page *, struct address_space *, int warn);
1825int __set_page_dirty_nobuffers(struct page *page);
1826int __set_page_dirty_no_writeback(struct page *page);
1827int redirty_page_for_writepage(struct writeback_control *wbc,
1828 struct page *page);
1829void account_page_dirtied(struct page *page, struct address_space *mapping);
1830void account_page_cleaned(struct page *page, struct address_space *mapping,
1831 struct bdi_writeback *wb);
1832int set_page_dirty(struct page *page);
1833int set_page_dirty_lock(struct page *page);
1834void __cancel_dirty_page(struct page *page);
1835static inline void cancel_dirty_page(struct page *page)
1836{
1837 /* Avoid atomic ops, locking, etc. when not actually needed. */
1838 if (PageDirty(page))
1839 __cancel_dirty_page(page);
1840}
1841int clear_page_dirty_for_io(struct page *page);
1842
1843int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1844
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001845extern unsigned long move_page_tables(struct vm_area_struct *vma,
1846 unsigned long old_addr, struct vm_area_struct *new_vma,
1847 unsigned long new_addr, unsigned long len,
1848 bool need_rmap_locks);
Olivier Deprez157378f2022-04-04 15:47:50 +02001849
1850/*
1851 * Flags used by change_protection(). For now we make it a bitmap so
1852 * that we can pass in multiple flags just like parameters. However
1853 * for now all the callers are only use one of the flags at the same
1854 * time.
1855 */
1856/* Whether we should allow dirty bit accounting */
1857#define MM_CP_DIRTY_ACCT (1UL << 0)
1858/* Whether this protection change is for NUMA hints */
1859#define MM_CP_PROT_NUMA (1UL << 1)
1860/* Whether this change is for write protecting */
1861#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1862#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1863#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1864 MM_CP_UFFD_WP_RESOLVE)
1865
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001866extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1867 unsigned long end, pgprot_t newprot,
Olivier Deprez157378f2022-04-04 15:47:50 +02001868 unsigned long cp_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001869extern int mprotect_fixup(struct vm_area_struct *vma,
1870 struct vm_area_struct **pprev, unsigned long start,
1871 unsigned long end, unsigned long newflags);
1872
1873/*
1874 * doesn't attempt to fault and will return short.
1875 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001876int get_user_pages_fast_only(unsigned long start, int nr_pages,
1877 unsigned int gup_flags, struct page **pages);
1878int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1879 unsigned int gup_flags, struct page **pages);
1880
1881static inline bool get_user_page_fast_only(unsigned long addr,
1882 unsigned int gup_flags, struct page **pagep)
1883{
1884 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1885}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001886/*
1887 * per-process(per-mm_struct) statistics.
1888 */
1889static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1890{
1891 long val = atomic_long_read(&mm->rss_stat.count[member]);
1892
1893#ifdef SPLIT_RSS_COUNTING
1894 /*
1895 * counter is updated in asynchronous manner and may go to minus.
1896 * But it's never be expected number for users.
1897 */
1898 if (val < 0)
1899 val = 0;
1900#endif
1901 return (unsigned long)val;
1902}
1903
Olivier Deprez157378f2022-04-04 15:47:50 +02001904void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1905
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001906static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1907{
Olivier Deprez157378f2022-04-04 15:47:50 +02001908 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1909
1910 mm_trace_rss_stat(mm, member, count);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001911}
1912
1913static inline void inc_mm_counter(struct mm_struct *mm, int member)
1914{
Olivier Deprez157378f2022-04-04 15:47:50 +02001915 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1916
1917 mm_trace_rss_stat(mm, member, count);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001918}
1919
1920static inline void dec_mm_counter(struct mm_struct *mm, int member)
1921{
Olivier Deprez157378f2022-04-04 15:47:50 +02001922 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1923
1924 mm_trace_rss_stat(mm, member, count);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001925}
1926
1927/* Optimized variant when page is already known not to be PageAnon */
1928static inline int mm_counter_file(struct page *page)
1929{
1930 if (PageSwapBacked(page))
1931 return MM_SHMEMPAGES;
1932 return MM_FILEPAGES;
1933}
1934
1935static inline int mm_counter(struct page *page)
1936{
1937 if (PageAnon(page))
1938 return MM_ANONPAGES;
1939 return mm_counter_file(page);
1940}
1941
1942static inline unsigned long get_mm_rss(struct mm_struct *mm)
1943{
1944 return get_mm_counter(mm, MM_FILEPAGES) +
1945 get_mm_counter(mm, MM_ANONPAGES) +
1946 get_mm_counter(mm, MM_SHMEMPAGES);
1947}
1948
1949static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1950{
1951 return max(mm->hiwater_rss, get_mm_rss(mm));
1952}
1953
1954static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1955{
1956 return max(mm->hiwater_vm, mm->total_vm);
1957}
1958
1959static inline void update_hiwater_rss(struct mm_struct *mm)
1960{
1961 unsigned long _rss = get_mm_rss(mm);
1962
1963 if ((mm)->hiwater_rss < _rss)
1964 (mm)->hiwater_rss = _rss;
1965}
1966
1967static inline void update_hiwater_vm(struct mm_struct *mm)
1968{
1969 if (mm->hiwater_vm < mm->total_vm)
1970 mm->hiwater_vm = mm->total_vm;
1971}
1972
1973static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1974{
1975 mm->hiwater_rss = get_mm_rss(mm);
1976}
1977
1978static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1979 struct mm_struct *mm)
1980{
1981 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1982
1983 if (*maxrss < hiwater_rss)
1984 *maxrss = hiwater_rss;
1985}
1986
1987#if defined(SPLIT_RSS_COUNTING)
1988void sync_mm_rss(struct mm_struct *mm);
1989#else
1990static inline void sync_mm_rss(struct mm_struct *mm)
1991{
1992}
1993#endif
1994
Olivier Deprez157378f2022-04-04 15:47:50 +02001995#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1996static inline int pte_special(pte_t pte)
1997{
1998 return 0;
1999}
2000
2001static inline pte_t pte_mkspecial(pte_t pte)
2002{
2003 return pte;
2004}
2005#endif
2006
David Brazdil0f672f62019-12-10 10:32:29 +00002007#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002008static inline int pte_devmap(pte_t pte)
2009{
2010 return 0;
2011}
2012#endif
2013
2014int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2015
2016extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2017 spinlock_t **ptl);
2018static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2019 spinlock_t **ptl)
2020{
2021 pte_t *ptep;
2022 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2023 return ptep;
2024}
2025
2026#ifdef __PAGETABLE_P4D_FOLDED
2027static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2028 unsigned long address)
2029{
2030 return 0;
2031}
2032#else
2033int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2034#endif
2035
2036#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2037static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2038 unsigned long address)
2039{
2040 return 0;
2041}
2042static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2043static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2044
2045#else
2046int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2047
2048static inline void mm_inc_nr_puds(struct mm_struct *mm)
2049{
2050 if (mm_pud_folded(mm))
2051 return;
2052 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2053}
2054
2055static inline void mm_dec_nr_puds(struct mm_struct *mm)
2056{
2057 if (mm_pud_folded(mm))
2058 return;
2059 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2060}
2061#endif
2062
2063#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2064static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2065 unsigned long address)
2066{
2067 return 0;
2068}
2069
2070static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2071static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2072
2073#else
2074int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2075
2076static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2077{
2078 if (mm_pmd_folded(mm))
2079 return;
2080 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2081}
2082
2083static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2084{
2085 if (mm_pmd_folded(mm))
2086 return;
2087 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2088}
2089#endif
2090
2091#ifdef CONFIG_MMU
2092static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2093{
2094 atomic_long_set(&mm->pgtables_bytes, 0);
2095}
2096
2097static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2098{
2099 return atomic_long_read(&mm->pgtables_bytes);
2100}
2101
2102static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2103{
2104 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2105}
2106
2107static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2108{
2109 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2110}
2111#else
2112
2113static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2114static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2115{
2116 return 0;
2117}
2118
2119static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2120static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2121#endif
2122
David Brazdil0f672f62019-12-10 10:32:29 +00002123int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2124int __pte_alloc_kernel(pmd_t *pmd);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002125
Olivier Deprez157378f2022-04-04 15:47:50 +02002126#if defined(CONFIG_MMU)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002127
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002128static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2129 unsigned long address)
2130{
2131 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2132 NULL : p4d_offset(pgd, address);
2133}
2134
2135static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2136 unsigned long address)
2137{
2138 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2139 NULL : pud_offset(p4d, address);
2140}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002141
2142static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2143{
2144 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2145 NULL: pmd_offset(pud, address);
2146}
Olivier Deprez157378f2022-04-04 15:47:50 +02002147#endif /* CONFIG_MMU */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002148
2149#if USE_SPLIT_PTE_PTLOCKS
2150#if ALLOC_SPLIT_PTLOCKS
2151void __init ptlock_cache_init(void);
2152extern bool ptlock_alloc(struct page *page);
2153extern void ptlock_free(struct page *page);
2154
2155static inline spinlock_t *ptlock_ptr(struct page *page)
2156{
2157 return page->ptl;
2158}
2159#else /* ALLOC_SPLIT_PTLOCKS */
2160static inline void ptlock_cache_init(void)
2161{
2162}
2163
2164static inline bool ptlock_alloc(struct page *page)
2165{
2166 return true;
2167}
2168
2169static inline void ptlock_free(struct page *page)
2170{
2171}
2172
2173static inline spinlock_t *ptlock_ptr(struct page *page)
2174{
2175 return &page->ptl;
2176}
2177#endif /* ALLOC_SPLIT_PTLOCKS */
2178
2179static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2180{
2181 return ptlock_ptr(pmd_page(*pmd));
2182}
2183
2184static inline bool ptlock_init(struct page *page)
2185{
2186 /*
2187 * prep_new_page() initialize page->private (and therefore page->ptl)
2188 * with 0. Make sure nobody took it in use in between.
2189 *
2190 * It can happen if arch try to use slab for page table allocation:
2191 * slab code uses page->slab_cache, which share storage with page->ptl.
2192 */
2193 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2194 if (!ptlock_alloc(page))
2195 return false;
2196 spin_lock_init(ptlock_ptr(page));
2197 return true;
2198}
2199
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002200#else /* !USE_SPLIT_PTE_PTLOCKS */
2201/*
2202 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2203 */
2204static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2205{
2206 return &mm->page_table_lock;
2207}
2208static inline void ptlock_cache_init(void) {}
2209static inline bool ptlock_init(struct page *page) { return true; }
David Brazdil0f672f62019-12-10 10:32:29 +00002210static inline void ptlock_free(struct page *page) {}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002211#endif /* USE_SPLIT_PTE_PTLOCKS */
2212
2213static inline void pgtable_init(void)
2214{
2215 ptlock_cache_init();
2216 pgtable_cache_init();
2217}
2218
David Brazdil0f672f62019-12-10 10:32:29 +00002219static inline bool pgtable_pte_page_ctor(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002220{
2221 if (!ptlock_init(page))
2222 return false;
2223 __SetPageTable(page);
2224 inc_zone_page_state(page, NR_PAGETABLE);
2225 return true;
2226}
2227
David Brazdil0f672f62019-12-10 10:32:29 +00002228static inline void pgtable_pte_page_dtor(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002229{
David Brazdil0f672f62019-12-10 10:32:29 +00002230 ptlock_free(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002231 __ClearPageTable(page);
2232 dec_zone_page_state(page, NR_PAGETABLE);
2233}
2234
2235#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2236({ \
2237 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2238 pte_t *__pte = pte_offset_map(pmd, address); \
2239 *(ptlp) = __ptl; \
2240 spin_lock(__ptl); \
2241 __pte; \
2242})
2243
2244#define pte_unmap_unlock(pte, ptl) do { \
2245 spin_unlock(ptl); \
2246 pte_unmap(pte); \
2247} while (0)
2248
David Brazdil0f672f62019-12-10 10:32:29 +00002249#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002250
2251#define pte_alloc_map(mm, pmd, address) \
David Brazdil0f672f62019-12-10 10:32:29 +00002252 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002253
2254#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
David Brazdil0f672f62019-12-10 10:32:29 +00002255 (pte_alloc(mm, pmd) ? \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002256 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2257
2258#define pte_alloc_kernel(pmd, address) \
David Brazdil0f672f62019-12-10 10:32:29 +00002259 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002260 NULL: pte_offset_kernel(pmd, address))
2261
2262#if USE_SPLIT_PMD_PTLOCKS
2263
2264static struct page *pmd_to_page(pmd_t *pmd)
2265{
2266 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2267 return virt_to_page((void *)((unsigned long) pmd & mask));
2268}
2269
2270static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2271{
2272 return ptlock_ptr(pmd_to_page(pmd));
2273}
2274
Olivier Deprez157378f2022-04-04 15:47:50 +02002275static inline bool pmd_ptlock_init(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002276{
2277#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2278 page->pmd_huge_pte = NULL;
2279#endif
2280 return ptlock_init(page);
2281}
2282
Olivier Deprez157378f2022-04-04 15:47:50 +02002283static inline void pmd_ptlock_free(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002284{
2285#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2286 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2287#endif
2288 ptlock_free(page);
2289}
2290
2291#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2292
2293#else
2294
2295static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2296{
2297 return &mm->page_table_lock;
2298}
2299
Olivier Deprez157378f2022-04-04 15:47:50 +02002300static inline bool pmd_ptlock_init(struct page *page) { return true; }
2301static inline void pmd_ptlock_free(struct page *page) {}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002302
2303#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2304
2305#endif
2306
2307static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2308{
2309 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2310 spin_lock(ptl);
2311 return ptl;
2312}
2313
Olivier Deprez157378f2022-04-04 15:47:50 +02002314static inline bool pgtable_pmd_page_ctor(struct page *page)
2315{
2316 if (!pmd_ptlock_init(page))
2317 return false;
2318 __SetPageTable(page);
2319 inc_zone_page_state(page, NR_PAGETABLE);
2320 return true;
2321}
2322
2323static inline void pgtable_pmd_page_dtor(struct page *page)
2324{
2325 pmd_ptlock_free(page);
2326 __ClearPageTable(page);
2327 dec_zone_page_state(page, NR_PAGETABLE);
2328}
2329
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002330/*
2331 * No scalability reason to split PUD locks yet, but follow the same pattern
2332 * as the PMD locks to make it easier if we decide to. The VM should not be
2333 * considered ready to switch to split PUD locks yet; there may be places
2334 * which need to be converted from page_table_lock.
2335 */
2336static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2337{
2338 return &mm->page_table_lock;
2339}
2340
2341static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2342{
2343 spinlock_t *ptl = pud_lockptr(mm, pud);
2344
2345 spin_lock(ptl);
2346 return ptl;
2347}
2348
2349extern void __init pagecache_init(void);
Olivier Deprez157378f2022-04-04 15:47:50 +02002350extern void __init free_area_init_memoryless_node(int nid);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002351extern void free_initmem(void);
2352
2353/*
2354 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2355 * into the buddy system. The freed pages will be poisoned with pattern
2356 * "poison" if it's within range [0, UCHAR_MAX].
2357 * Return pages freed into the buddy system.
2358 */
2359extern unsigned long free_reserved_area(void *start, void *end,
David Brazdil0f672f62019-12-10 10:32:29 +00002360 int poison, const char *s);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002361
2362#ifdef CONFIG_HIGHMEM
2363/*
2364 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2365 * and totalram_pages.
2366 */
2367extern void free_highmem_page(struct page *page);
2368#endif
2369
2370extern void adjust_managed_page_count(struct page *page, long count);
2371extern void mem_init_print_info(const char *str);
2372
2373extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2374
2375/* Free the reserved page into the buddy system, so it gets managed. */
2376static inline void __free_reserved_page(struct page *page)
2377{
2378 ClearPageReserved(page);
2379 init_page_count(page);
2380 __free_page(page);
2381}
2382
2383static inline void free_reserved_page(struct page *page)
2384{
2385 __free_reserved_page(page);
2386 adjust_managed_page_count(page, 1);
2387}
2388
2389static inline void mark_page_reserved(struct page *page)
2390{
2391 SetPageReserved(page);
2392 adjust_managed_page_count(page, -1);
2393}
2394
2395/*
2396 * Default method to free all the __init memory into the buddy system.
2397 * The freed pages will be poisoned with pattern "poison" if it's within
2398 * range [0, UCHAR_MAX].
2399 * Return pages freed into the buddy system.
2400 */
2401static inline unsigned long free_initmem_default(int poison)
2402{
2403 extern char __init_begin[], __init_end[];
2404
2405 return free_reserved_area(&__init_begin, &__init_end,
2406 poison, "unused kernel");
2407}
2408
2409static inline unsigned long get_num_physpages(void)
2410{
2411 int nid;
2412 unsigned long phys_pages = 0;
2413
2414 for_each_online_node(nid)
2415 phys_pages += node_present_pages(nid);
2416
2417 return phys_pages;
2418}
2419
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002420/*
Olivier Deprez157378f2022-04-04 15:47:50 +02002421 * Using memblock node mappings, an architecture may initialise its
2422 * zones, allocate the backing mem_map and account for memory holes in an
2423 * architecture independent manner.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002424 *
2425 * An architecture is expected to register range of page frames backed by
2426 * physical memory with memblock_add[_node]() before calling
Olivier Deprez157378f2022-04-04 15:47:50 +02002427 * free_area_init() passing in the PFN each zone ends at. At a basic
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002428 * usage, an architecture is expected to do something like
2429 *
2430 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2431 * max_highmem_pfn};
2432 * for_each_valid_physical_page_range()
2433 * memblock_add_node(base, size, nid)
Olivier Deprez157378f2022-04-04 15:47:50 +02002434 * free_area_init(max_zone_pfns);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002435 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002436void free_area_init(unsigned long *max_zone_pfn);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002437unsigned long node_map_pfn_alignment(void);
2438unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2439 unsigned long end_pfn);
2440extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2441 unsigned long end_pfn);
2442extern void get_pfn_range_for_nid(unsigned int nid,
2443 unsigned long *start_pfn, unsigned long *end_pfn);
2444extern unsigned long find_min_pfn_with_active_regions(void);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002445
Olivier Deprez157378f2022-04-04 15:47:50 +02002446#ifndef CONFIG_NEED_MULTIPLE_NODES
2447static inline int early_pfn_to_nid(unsigned long pfn)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002448{
2449 return 0;
2450}
2451#else
2452/* please see mm/page_alloc.c */
2453extern int __meminit early_pfn_to_nid(unsigned long pfn);
2454/* there is a per-arch backend function. */
2455extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2456 struct mminit_pfnnid_cache *state);
2457#endif
2458
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002459extern void set_dma_reserve(unsigned long new_dma_reserve);
Olivier Deprez157378f2022-04-04 15:47:50 +02002460extern void memmap_init_zone(unsigned long, int, unsigned long,
2461 unsigned long, unsigned long, enum meminit_context,
2462 struct vmem_altmap *, int migratetype);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002463extern void setup_per_zone_wmarks(void);
2464extern int __meminit init_per_zone_wmark_min(void);
2465extern void mem_init(void);
2466extern void __init mmap_init(void);
2467extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2468extern long si_mem_available(void);
2469extern void si_meminfo(struct sysinfo * val);
2470extern void si_meminfo_node(struct sysinfo *val, int nid);
2471#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2472extern unsigned long arch_reserved_kernel_pages(void);
2473#endif
2474
2475extern __printf(3, 4)
2476void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2477
2478extern void setup_per_cpu_pageset(void);
2479
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002480/* page_alloc.c */
2481extern int min_free_kbytes;
David Brazdil0f672f62019-12-10 10:32:29 +00002482extern int watermark_boost_factor;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002483extern int watermark_scale_factor;
Olivier Deprez157378f2022-04-04 15:47:50 +02002484extern bool arch_has_descending_max_zone_pfns(void);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002485
2486/* nommu.c */
2487extern atomic_long_t mmap_pages_allocated;
2488extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2489
2490/* interval_tree.c */
2491void vma_interval_tree_insert(struct vm_area_struct *node,
2492 struct rb_root_cached *root);
2493void vma_interval_tree_insert_after(struct vm_area_struct *node,
2494 struct vm_area_struct *prev,
2495 struct rb_root_cached *root);
2496void vma_interval_tree_remove(struct vm_area_struct *node,
2497 struct rb_root_cached *root);
2498struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2499 unsigned long start, unsigned long last);
2500struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2501 unsigned long start, unsigned long last);
2502
2503#define vma_interval_tree_foreach(vma, root, start, last) \
2504 for (vma = vma_interval_tree_iter_first(root, start, last); \
2505 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2506
2507void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2508 struct rb_root_cached *root);
2509void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2510 struct rb_root_cached *root);
2511struct anon_vma_chain *
2512anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2513 unsigned long start, unsigned long last);
2514struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2515 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2516#ifdef CONFIG_DEBUG_VM_RB
2517void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2518#endif
2519
2520#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2521 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2522 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2523
2524/* mmap.c */
2525extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2526extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2527 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2528 struct vm_area_struct *expand);
2529static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2530 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2531{
2532 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2533}
2534extern struct vm_area_struct *vma_merge(struct mm_struct *,
2535 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2536 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2537 struct mempolicy *, struct vm_userfaultfd_ctx);
2538extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2539extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2540 unsigned long addr, int new_below);
2541extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2542 unsigned long addr, int new_below);
2543extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2544extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2545 struct rb_node **, struct rb_node *);
2546extern void unlink_file_vma(struct vm_area_struct *);
2547extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2548 unsigned long addr, unsigned long len, pgoff_t pgoff,
2549 bool *need_rmap_locks);
2550extern void exit_mmap(struct mm_struct *);
2551
2552static inline int check_data_rlimit(unsigned long rlim,
2553 unsigned long new,
2554 unsigned long start,
2555 unsigned long end_data,
2556 unsigned long start_data)
2557{
2558 if (rlim < RLIM_INFINITY) {
2559 if (((new - start) + (end_data - start_data)) > rlim)
2560 return -ENOSPC;
2561 }
2562
2563 return 0;
2564}
2565
2566extern int mm_take_all_locks(struct mm_struct *mm);
2567extern void mm_drop_all_locks(struct mm_struct *mm);
2568
2569extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2570extern struct file *get_mm_exe_file(struct mm_struct *mm);
2571extern struct file *get_task_exe_file(struct task_struct *task);
2572
2573extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2574extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2575
2576extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2577 const struct vm_special_mapping *sm);
2578extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2579 unsigned long addr, unsigned long len,
2580 unsigned long flags,
2581 const struct vm_special_mapping *spec);
2582/* This is an obsolete alternative to _install_special_mapping. */
2583extern int install_special_mapping(struct mm_struct *mm,
2584 unsigned long addr, unsigned long len,
2585 unsigned long flags, struct page **pages);
2586
David Brazdil0f672f62019-12-10 10:32:29 +00002587unsigned long randomize_stack_top(unsigned long stack_top);
2588
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002589extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2590
2591extern unsigned long mmap_region(struct file *file, unsigned long addr,
2592 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2593 struct list_head *uf);
2594extern unsigned long do_mmap(struct file *file, unsigned long addr,
2595 unsigned long len, unsigned long prot, unsigned long flags,
Olivier Deprez157378f2022-04-04 15:47:50 +02002596 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
David Brazdil0f672f62019-12-10 10:32:29 +00002597extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2598 struct list_head *uf, bool downgrade);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002599extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2600 struct list_head *uf);
Olivier Deprez157378f2022-04-04 15:47:50 +02002601extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002602
2603#ifdef CONFIG_MMU
2604extern int __mm_populate(unsigned long addr, unsigned long len,
2605 int ignore_errors);
2606static inline void mm_populate(unsigned long addr, unsigned long len)
2607{
2608 /* Ignore errors */
2609 (void) __mm_populate(addr, len, 1);
2610}
2611#else
2612static inline void mm_populate(unsigned long addr, unsigned long len) {}
2613#endif
2614
2615/* These take the mm semaphore themselves */
2616extern int __must_check vm_brk(unsigned long, unsigned long);
2617extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2618extern int vm_munmap(unsigned long, size_t);
2619extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2620 unsigned long, unsigned long,
2621 unsigned long, unsigned long);
2622
2623struct vm_unmapped_area_info {
2624#define VM_UNMAPPED_AREA_TOPDOWN 1
2625 unsigned long flags;
2626 unsigned long length;
2627 unsigned long low_limit;
2628 unsigned long high_limit;
2629 unsigned long align_mask;
2630 unsigned long align_offset;
2631};
2632
Olivier Deprez157378f2022-04-04 15:47:50 +02002633extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002634
2635/* truncate.c */
2636extern void truncate_inode_pages(struct address_space *, loff_t);
2637extern void truncate_inode_pages_range(struct address_space *,
2638 loff_t lstart, loff_t lend);
2639extern void truncate_inode_pages_final(struct address_space *);
2640
2641/* generic vm_area_ops exported for stackable file systems */
2642extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2643extern void filemap_map_pages(struct vm_fault *vmf,
2644 pgoff_t start_pgoff, pgoff_t end_pgoff);
2645extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2646
2647/* mm/page-writeback.c */
2648int __must_check write_one_page(struct page *page);
2649void task_dirty_inc(struct task_struct *tsk);
2650
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002651extern unsigned long stack_guard_gap;
2652/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2653extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2654
Olivier Deprez157378f2022-04-04 15:47:50 +02002655/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002656extern int expand_downwards(struct vm_area_struct *vma,
2657 unsigned long address);
2658#if VM_GROWSUP
2659extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2660#else
2661 #define expand_upwards(vma, address) (0)
2662#endif
2663
2664/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2665extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2666extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2667 struct vm_area_struct **pprev);
2668
2669/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2670 NULL if none. Assume start_addr < end_addr. */
2671static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2672{
2673 struct vm_area_struct * vma = find_vma(mm,start_addr);
2674
2675 if (vma && end_addr <= vma->vm_start)
2676 vma = NULL;
2677 return vma;
2678}
2679
2680static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2681{
2682 unsigned long vm_start = vma->vm_start;
2683
2684 if (vma->vm_flags & VM_GROWSDOWN) {
2685 vm_start -= stack_guard_gap;
2686 if (vm_start > vma->vm_start)
2687 vm_start = 0;
2688 }
2689 return vm_start;
2690}
2691
2692static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2693{
2694 unsigned long vm_end = vma->vm_end;
2695
2696 if (vma->vm_flags & VM_GROWSUP) {
2697 vm_end += stack_guard_gap;
2698 if (vm_end < vma->vm_end)
2699 vm_end = -PAGE_SIZE;
2700 }
2701 return vm_end;
2702}
2703
2704static inline unsigned long vma_pages(struct vm_area_struct *vma)
2705{
2706 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2707}
2708
2709/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2710static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2711 unsigned long vm_start, unsigned long vm_end)
2712{
2713 struct vm_area_struct *vma = find_vma(mm, vm_start);
2714
2715 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2716 vma = NULL;
2717
2718 return vma;
2719}
2720
2721static inline bool range_in_vma(struct vm_area_struct *vma,
2722 unsigned long start, unsigned long end)
2723{
2724 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2725}
2726
2727#ifdef CONFIG_MMU
2728pgprot_t vm_get_page_prot(unsigned long vm_flags);
2729void vma_set_page_prot(struct vm_area_struct *vma);
2730#else
2731static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2732{
2733 return __pgprot(0);
2734}
2735static inline void vma_set_page_prot(struct vm_area_struct *vma)
2736{
2737 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2738}
2739#endif
2740
2741#ifdef CONFIG_NUMA_BALANCING
2742unsigned long change_prot_numa(struct vm_area_struct *vma,
2743 unsigned long start, unsigned long end);
2744#endif
2745
2746struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2747int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2748 unsigned long pfn, unsigned long size, pgprot_t);
2749int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
Olivier Deprez157378f2022-04-04 15:47:50 +02002750int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2751 struct page **pages, unsigned long *num);
David Brazdil0f672f62019-12-10 10:32:29 +00002752int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2753 unsigned long num);
2754int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2755 unsigned long num);
2756vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002757 unsigned long pfn);
David Brazdil0f672f62019-12-10 10:32:29 +00002758vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002759 unsigned long pfn, pgprot_t pgprot);
David Brazdil0f672f62019-12-10 10:32:29 +00002760vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002761 pfn_t pfn);
Olivier Deprez157378f2022-04-04 15:47:50 +02002762vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2763 pfn_t pfn, pgprot_t pgprot);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002764vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2765 unsigned long addr, pfn_t pfn);
2766int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2767
2768static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2769 unsigned long addr, struct page *page)
2770{
2771 int err = vm_insert_page(vma, addr, page);
2772
2773 if (err == -ENOMEM)
2774 return VM_FAULT_OOM;
2775 if (err < 0 && err != -EBUSY)
2776 return VM_FAULT_SIGBUS;
2777
2778 return VM_FAULT_NOPAGE;
2779}
2780
Olivier Deprez0e641232021-09-23 10:07:05 +02002781#ifndef io_remap_pfn_range
2782static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2783 unsigned long addr, unsigned long pfn,
2784 unsigned long size, pgprot_t prot)
2785{
2786 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2787}
2788#endif
2789
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002790static inline vm_fault_t vmf_error(int err)
2791{
2792 if (err == -ENOMEM)
2793 return VM_FAULT_OOM;
2794 return VM_FAULT_SIGBUS;
2795}
2796
David Brazdil0f672f62019-12-10 10:32:29 +00002797struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2798 unsigned int foll_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002799
2800#define FOLL_WRITE 0x01 /* check pte is writable */
2801#define FOLL_TOUCH 0x02 /* mark page accessed */
2802#define FOLL_GET 0x04 /* do get_page on page */
2803#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2804#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2805#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2806 * and return without waiting upon it */
2807#define FOLL_POPULATE 0x40 /* fault in page */
2808#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2809#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2810#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2811#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2812#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2813#define FOLL_MLOCK 0x1000 /* lock present pages */
2814#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2815#define FOLL_COW 0x4000 /* internal GUP flag */
2816#define FOLL_ANON 0x8000 /* don't do file mappings */
David Brazdil0f672f62019-12-10 10:32:29 +00002817#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2818#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
Olivier Deprez157378f2022-04-04 15:47:50 +02002819#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
2820#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
David Brazdil0f672f62019-12-10 10:32:29 +00002821
2822/*
Olivier Deprez157378f2022-04-04 15:47:50 +02002823 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2824 * other. Here is what they mean, and how to use them:
David Brazdil0f672f62019-12-10 10:32:29 +00002825 *
2826 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
Olivier Deprez157378f2022-04-04 15:47:50 +02002827 * period _often_ under userspace control. This is in contrast to
2828 * iov_iter_get_pages(), whose usages are transient.
David Brazdil0f672f62019-12-10 10:32:29 +00002829 *
2830 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2831 * lifetime enforced by the filesystem and we need guarantees that longterm
2832 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2833 * the filesystem. Ideas for this coordination include revoking the longterm
2834 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2835 * added after the problem with filesystems was found FS DAX VMAs are
2836 * specifically failed. Filesystem pages are still subject to bugs and use of
2837 * FOLL_LONGTERM should be avoided on those pages.
2838 *
2839 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2840 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2841 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2842 * is due to an incompatibility with the FS DAX check and
Olivier Deprez157378f2022-04-04 15:47:50 +02002843 * FAULT_FLAG_ALLOW_RETRY.
David Brazdil0f672f62019-12-10 10:32:29 +00002844 *
Olivier Deprez157378f2022-04-04 15:47:50 +02002845 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2846 * that region. And so, CMA attempts to migrate the page before pinning, when
David Brazdil0f672f62019-12-10 10:32:29 +00002847 * FOLL_LONGTERM is specified.
Olivier Deprez157378f2022-04-04 15:47:50 +02002848 *
2849 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2850 * but an additional pin counting system) will be invoked. This is intended for
2851 * anything that gets a page reference and then touches page data (for example,
2852 * Direct IO). This lets the filesystem know that some non-file-system entity is
2853 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2854 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2855 * a call to unpin_user_page().
2856 *
2857 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2858 * and separate refcounting mechanisms, however, and that means that each has
2859 * its own acquire and release mechanisms:
2860 *
2861 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2862 *
2863 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2864 *
2865 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2866 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2867 * calls applied to them, and that's perfectly OK. This is a constraint on the
2868 * callers, not on the pages.)
2869 *
2870 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2871 * directly by the caller. That's in order to help avoid mismatches when
2872 * releasing pages: get_user_pages*() pages must be released via put_page(),
2873 * while pin_user_pages*() pages must be released via unpin_user_page().
2874 *
2875 * Please see Documentation/core-api/pin_user_pages.rst for more information.
David Brazdil0f672f62019-12-10 10:32:29 +00002876 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002877
2878static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2879{
2880 if (vm_fault & VM_FAULT_OOM)
2881 return -ENOMEM;
2882 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2883 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2884 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2885 return -EFAULT;
2886 return 0;
2887}
2888
David Brazdil0f672f62019-12-10 10:32:29 +00002889typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002890extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2891 unsigned long size, pte_fn_t fn, void *data);
Olivier Deprez157378f2022-04-04 15:47:50 +02002892extern int apply_to_existing_page_range(struct mm_struct *mm,
2893 unsigned long address, unsigned long size,
2894 pte_fn_t fn, void *data);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002895
2896#ifdef CONFIG_PAGE_POISONING
2897extern bool page_poisoning_enabled(void);
2898extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2899#else
2900static inline bool page_poisoning_enabled(void) { return false; }
2901static inline void kernel_poison_pages(struct page *page, int numpages,
2902 int enable) { }
2903#endif
2904
David Brazdil0f672f62019-12-10 10:32:29 +00002905#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2906DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2907#else
2908DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2909#endif
2910static inline bool want_init_on_alloc(gfp_t flags)
2911{
2912 if (static_branch_unlikely(&init_on_alloc) &&
2913 !page_poisoning_enabled())
2914 return true;
2915 return flags & __GFP_ZERO;
2916}
2917
2918#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2919DECLARE_STATIC_KEY_TRUE(init_on_free);
2920#else
2921DECLARE_STATIC_KEY_FALSE(init_on_free);
2922#endif
2923static inline bool want_init_on_free(void)
2924{
2925 return static_branch_unlikely(&init_on_free) &&
2926 !page_poisoning_enabled();
2927}
2928
Olivier Deprez0e641232021-09-23 10:07:05 +02002929#ifdef CONFIG_DEBUG_PAGEALLOC
2930extern void init_debug_pagealloc(void);
David Brazdil0f672f62019-12-10 10:32:29 +00002931#else
Olivier Deprez0e641232021-09-23 10:07:05 +02002932static inline void init_debug_pagealloc(void) {}
David Brazdil0f672f62019-12-10 10:32:29 +00002933#endif
Olivier Deprez0e641232021-09-23 10:07:05 +02002934extern bool _debug_pagealloc_enabled_early;
2935DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002936
2937static inline bool debug_pagealloc_enabled(void)
2938{
Olivier Deprez0e641232021-09-23 10:07:05 +02002939 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2940 _debug_pagealloc_enabled_early;
2941}
2942
2943/*
2944 * For use in fast paths after init_debug_pagealloc() has run, or when a
2945 * false negative result is not harmful when called too early.
2946 */
2947static inline bool debug_pagealloc_enabled_static(void)
2948{
David Brazdil0f672f62019-12-10 10:32:29 +00002949 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2950 return false;
2951
2952 return static_branch_unlikely(&_debug_pagealloc_enabled);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002953}
2954
David Brazdil0f672f62019-12-10 10:32:29 +00002955#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2956extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2957
Olivier Deprez0e641232021-09-23 10:07:05 +02002958/*
2959 * When called in DEBUG_PAGEALLOC context, the call should most likely be
2960 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
2961 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002962static inline void
2963kernel_map_pages(struct page *page, int numpages, int enable)
2964{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002965 __kernel_map_pages(page, numpages, enable);
2966}
2967#ifdef CONFIG_HIBERNATION
2968extern bool kernel_page_present(struct page *page);
2969#endif /* CONFIG_HIBERNATION */
David Brazdil0f672f62019-12-10 10:32:29 +00002970#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002971static inline void
2972kernel_map_pages(struct page *page, int numpages, int enable) {}
2973#ifdef CONFIG_HIBERNATION
2974static inline bool kernel_page_present(struct page *page) { return true; }
2975#endif /* CONFIG_HIBERNATION */
David Brazdil0f672f62019-12-10 10:32:29 +00002976#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002977
2978#ifdef __HAVE_ARCH_GATE_AREA
2979extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2980extern int in_gate_area_no_mm(unsigned long addr);
2981extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2982#else
2983static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2984{
2985 return NULL;
2986}
2987static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2988static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2989{
2990 return 0;
2991}
2992#endif /* __HAVE_ARCH_GATE_AREA */
2993
2994extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2995
2996#ifdef CONFIG_SYSCTL
2997extern int sysctl_drop_caches;
Olivier Deprez157378f2022-04-04 15:47:50 +02002998int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2999 loff_t *);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003000#endif
3001
3002void drop_slab(void);
3003void drop_slab_node(int nid);
3004
3005#ifndef CONFIG_MMU
3006#define randomize_va_space 0
3007#else
3008extern int randomize_va_space;
3009#endif
3010
3011const char * arch_vma_name(struct vm_area_struct *vma);
David Brazdil0f672f62019-12-10 10:32:29 +00003012#ifdef CONFIG_MMU
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003013void print_vma_addr(char *prefix, unsigned long rip);
David Brazdil0f672f62019-12-10 10:32:29 +00003014#else
3015static inline void print_vma_addr(char *prefix, unsigned long rip)
3016{
3017}
3018#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003019
3020void *sparse_buffer_alloc(unsigned long size);
David Brazdil0f672f62019-12-10 10:32:29 +00003021struct page * __populate_section_memmap(unsigned long pfn,
3022 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003023pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3024p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3025pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3026pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
Olivier Deprez157378f2022-04-04 15:47:50 +02003027pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3028 struct vmem_altmap *altmap);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003029void *vmemmap_alloc_block(unsigned long size, int node);
3030struct vmem_altmap;
Olivier Deprez157378f2022-04-04 15:47:50 +02003031void *vmemmap_alloc_block_buf(unsigned long size, int node,
3032 struct vmem_altmap *altmap);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003033void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3034int vmemmap_populate_basepages(unsigned long start, unsigned long end,
Olivier Deprez157378f2022-04-04 15:47:50 +02003035 int node, struct vmem_altmap *altmap);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003036int vmemmap_populate(unsigned long start, unsigned long end, int node,
3037 struct vmem_altmap *altmap);
3038void vmemmap_populate_print_last(void);
3039#ifdef CONFIG_MEMORY_HOTPLUG
3040void vmemmap_free(unsigned long start, unsigned long end,
3041 struct vmem_altmap *altmap);
3042#endif
3043void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3044 unsigned long nr_pages);
3045
3046enum mf_flags {
3047 MF_COUNT_INCREASED = 1 << 0,
3048 MF_ACTION_REQUIRED = 1 << 1,
3049 MF_MUST_KILL = 1 << 2,
3050 MF_SOFT_OFFLINE = 1 << 3,
3051};
3052extern int memory_failure(unsigned long pfn, int flags);
3053extern void memory_failure_queue(unsigned long pfn, int flags);
Olivier Deprez157378f2022-04-04 15:47:50 +02003054extern void memory_failure_queue_kick(int cpu);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003055extern int unpoison_memory(unsigned long pfn);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003056extern int sysctl_memory_failure_early_kill;
3057extern int sysctl_memory_failure_recovery;
3058extern void shake_page(struct page *p, int access);
3059extern atomic_long_t num_poisoned_pages __read_mostly;
Olivier Deprez157378f2022-04-04 15:47:50 +02003060extern int soft_offline_page(unsigned long pfn, int flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003061
3062
3063/*
3064 * Error handlers for various types of pages.
3065 */
3066enum mf_result {
3067 MF_IGNORED, /* Error: cannot be handled */
3068 MF_FAILED, /* Error: handling failed */
3069 MF_DELAYED, /* Will be handled later */
3070 MF_RECOVERED, /* Successfully recovered */
3071};
3072
3073enum mf_action_page_type {
3074 MF_MSG_KERNEL,
3075 MF_MSG_KERNEL_HIGH_ORDER,
3076 MF_MSG_SLAB,
3077 MF_MSG_DIFFERENT_COMPOUND,
3078 MF_MSG_POISONED_HUGE,
3079 MF_MSG_HUGE,
3080 MF_MSG_FREE_HUGE,
3081 MF_MSG_NON_PMD_HUGE,
3082 MF_MSG_UNMAP_FAILED,
3083 MF_MSG_DIRTY_SWAPCACHE,
3084 MF_MSG_CLEAN_SWAPCACHE,
3085 MF_MSG_DIRTY_MLOCKED_LRU,
3086 MF_MSG_CLEAN_MLOCKED_LRU,
3087 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3088 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3089 MF_MSG_DIRTY_LRU,
3090 MF_MSG_CLEAN_LRU,
3091 MF_MSG_TRUNCATED_LRU,
3092 MF_MSG_BUDDY,
3093 MF_MSG_BUDDY_2ND,
3094 MF_MSG_DAX,
Olivier Deprez157378f2022-04-04 15:47:50 +02003095 MF_MSG_UNSPLIT_THP,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003096 MF_MSG_UNKNOWN,
3097};
3098
3099#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3100extern void clear_huge_page(struct page *page,
3101 unsigned long addr_hint,
3102 unsigned int pages_per_huge_page);
3103extern void copy_user_huge_page(struct page *dst, struct page *src,
3104 unsigned long addr_hint,
3105 struct vm_area_struct *vma,
3106 unsigned int pages_per_huge_page);
3107extern long copy_huge_page_from_user(struct page *dst_page,
3108 const void __user *usr_src,
3109 unsigned int pages_per_huge_page,
3110 bool allow_pagefault);
Olivier Deprez157378f2022-04-04 15:47:50 +02003111
3112/**
3113 * vma_is_special_huge - Are transhuge page-table entries considered special?
3114 * @vma: Pointer to the struct vm_area_struct to consider
3115 *
3116 * Whether transhuge page-table entries are considered "special" following
3117 * the definition in vm_normal_page().
3118 *
3119 * Return: true if transhuge page-table entries should be considered special,
3120 * false otherwise.
3121 */
3122static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3123{
3124 return vma_is_dax(vma) || (vma->vm_file &&
3125 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3126}
3127
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003128#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3129
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003130#ifdef CONFIG_DEBUG_PAGEALLOC
3131extern unsigned int _debug_guardpage_minorder;
David Brazdil0f672f62019-12-10 10:32:29 +00003132DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003133
3134static inline unsigned int debug_guardpage_minorder(void)
3135{
3136 return _debug_guardpage_minorder;
3137}
3138
3139static inline bool debug_guardpage_enabled(void)
3140{
David Brazdil0f672f62019-12-10 10:32:29 +00003141 return static_branch_unlikely(&_debug_guardpage_enabled);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003142}
3143
3144static inline bool page_is_guard(struct page *page)
3145{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003146 if (!debug_guardpage_enabled())
3147 return false;
3148
David Brazdil0f672f62019-12-10 10:32:29 +00003149 return PageGuard(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003150}
3151#else
3152static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3153static inline bool debug_guardpage_enabled(void) { return false; }
3154static inline bool page_is_guard(struct page *page) { return false; }
3155#endif /* CONFIG_DEBUG_PAGEALLOC */
3156
3157#if MAX_NUMNODES > 1
3158void __init setup_nr_node_ids(void);
3159#else
3160static inline void setup_nr_node_ids(void) {}
3161#endif
3162
David Brazdil0f672f62019-12-10 10:32:29 +00003163extern int memcmp_pages(struct page *page1, struct page *page2);
3164
3165static inline int pages_identical(struct page *page1, struct page *page2)
3166{
3167 return !memcmp_pages(page1, page2);
3168}
3169
Olivier Deprez157378f2022-04-04 15:47:50 +02003170#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3171unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3172 pgoff_t first_index, pgoff_t nr,
3173 pgoff_t bitmap_pgoff,
3174 unsigned long *bitmap,
3175 pgoff_t *start,
3176 pgoff_t *end);
3177
3178unsigned long wp_shared_mapping_range(struct address_space *mapping,
3179 pgoff_t first_index, pgoff_t nr);
3180#endif
3181
3182extern int sysctl_nr_trim_pages;
3183
Olivier Deprez0e641232021-09-23 10:07:05 +02003184/**
3185 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3186 * @seals: the seals to check
3187 * @vma: the vma to operate on
3188 *
3189 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3190 * the vma flags. Return 0 if check pass, or <0 for errors.
3191 */
3192static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3193{
3194 if (seals & F_SEAL_FUTURE_WRITE) {
3195 /*
3196 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3197 * "future write" seal active.
3198 */
3199 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3200 return -EPERM;
3201
3202 /*
3203 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3204 * MAP_SHARED and read-only, take care to not allow mprotect to
3205 * revert protections on such mappings. Do this only for shared
3206 * mappings. For private mappings, don't need to mask
3207 * VM_MAYWRITE as we still want them to be COW-writable.
3208 */
3209 if (vma->vm_flags & VM_SHARED)
3210 vma->vm_flags &= ~(VM_MAYWRITE);
3211 }
3212
3213 return 0;
3214}
3215
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003216#endif /* __KERNEL__ */
3217#endif /* _LINUX_MM_H */