blob: a7d626b4cad1c834b5e81c85c673e53f6b9b3fe9 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
9#include <linux/mmdebug.h>
10#include <linux/gfp.h>
11#include <linux/bug.h>
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
15#include <linux/atomic.h>
16#include <linux/debug_locks.h>
17#include <linux/mm_types.h>
18#include <linux/range.h>
19#include <linux/pfn.h>
20#include <linux/percpu-refcount.h>
21#include <linux/bit_spinlock.h>
22#include <linux/shrinker.h>
23#include <linux/resource.h>
24#include <linux/page_ext.h>
25#include <linux/err.h>
26#include <linux/page_ref.h>
27#include <linux/memremap.h>
28#include <linux/overflow.h>
David Brazdil0f672f62019-12-10 10:32:29 +000029#include <linux/sizes.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000030
31struct mempolicy;
32struct anon_vma;
33struct anon_vma_chain;
34struct file_ra_state;
35struct user_struct;
36struct writeback_control;
37struct bdi_writeback;
38
39void init_mm_internals(void);
40
41#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
42extern unsigned long max_mapnr;
43
44static inline void set_max_mapnr(unsigned long limit)
45{
46 max_mapnr = limit;
47}
48#else
49static inline void set_max_mapnr(unsigned long limit) { }
50#endif
51
David Brazdil0f672f62019-12-10 10:32:29 +000052extern atomic_long_t _totalram_pages;
53static inline unsigned long totalram_pages(void)
54{
55 return (unsigned long)atomic_long_read(&_totalram_pages);
56}
57
58static inline void totalram_pages_inc(void)
59{
60 atomic_long_inc(&_totalram_pages);
61}
62
63static inline void totalram_pages_dec(void)
64{
65 atomic_long_dec(&_totalram_pages);
66}
67
68static inline void totalram_pages_add(long count)
69{
70 atomic_long_add(count, &_totalram_pages);
71}
72
73static inline void totalram_pages_set(long val)
74{
75 atomic_long_set(&_totalram_pages, val);
76}
77
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000078extern void * high_memory;
79extern int page_cluster;
80
81#ifdef CONFIG_SYSCTL
82extern int sysctl_legacy_va_layout;
83#else
84#define sysctl_legacy_va_layout 0
85#endif
86
87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88extern const int mmap_rnd_bits_min;
89extern const int mmap_rnd_bits_max;
90extern int mmap_rnd_bits __read_mostly;
91#endif
92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93extern const int mmap_rnd_compat_bits_min;
94extern const int mmap_rnd_compat_bits_max;
95extern int mmap_rnd_compat_bits __read_mostly;
96#endif
97
98#include <asm/page.h>
99#include <asm/pgtable.h>
100#include <asm/processor.h>
101
David Brazdil0f672f62019-12-10 10:32:29 +0000102/*
103 * Architectures that support memory tagging (assigning tags to memory regions,
104 * embedding these tags into addresses that point to these memory regions, and
105 * checking that the memory and the pointer tags match on memory accesses)
106 * redefine this macro to strip tags from pointers.
107 * It's defined as noop for arcitectures that don't support memory tagging.
108 */
109#ifndef untagged_addr
110#define untagged_addr(addr) (addr)
111#endif
112
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000113#ifndef __pa_symbol
114#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
115#endif
116
117#ifndef page_to_virt
118#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
119#endif
120
121#ifndef lm_alias
122#define lm_alias(x) __va(__pa_symbol(x))
123#endif
124
125/*
126 * To prevent common memory management code establishing
127 * a zero page mapping on a read fault.
128 * This macro should be defined within <asm/pgtable.h>.
129 * s390 does this to prevent multiplexing of hardware bits
130 * related to the physical page in case of virtualization.
131 */
132#ifndef mm_forbids_zeropage
133#define mm_forbids_zeropage(X) (0)
134#endif
135
136/*
137 * On some architectures it is expensive to call memset() for small sizes.
David Brazdil0f672f62019-12-10 10:32:29 +0000138 * If an architecture decides to implement their own version of
139 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
140 * define their own version of this macro in <asm/pgtable.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000141 */
David Brazdil0f672f62019-12-10 10:32:29 +0000142#if BITS_PER_LONG == 64
143/* This function must be updated when the size of struct page grows above 80
144 * or reduces below 56. The idea that compiler optimizes out switch()
145 * statement, and only leaves move/store instructions. Also the compiler can
146 * combine write statments if they are both assignments and can be reordered,
147 * this can result in several of the writes here being dropped.
148 */
149#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
150static inline void __mm_zero_struct_page(struct page *page)
151{
152 unsigned long *_pp = (void *)page;
153
154 /* Check that struct page is either 56, 64, 72, or 80 bytes */
155 BUILD_BUG_ON(sizeof(struct page) & 7);
156 BUILD_BUG_ON(sizeof(struct page) < 56);
157 BUILD_BUG_ON(sizeof(struct page) > 80);
158
159 switch (sizeof(struct page)) {
160 case 80:
161 _pp[9] = 0; /* fallthrough */
162 case 72:
163 _pp[8] = 0; /* fallthrough */
164 case 64:
165 _pp[7] = 0; /* fallthrough */
166 case 56:
167 _pp[6] = 0;
168 _pp[5] = 0;
169 _pp[4] = 0;
170 _pp[3] = 0;
171 _pp[2] = 0;
172 _pp[1] = 0;
173 _pp[0] = 0;
174 }
175}
176#else
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000177#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
178#endif
179
180/*
181 * Default maximum number of active map areas, this limits the number of vmas
182 * per mm struct. Users can overwrite this number by sysctl but there is a
183 * problem.
184 *
185 * When a program's coredump is generated as ELF format, a section is created
186 * per a vma. In ELF, the number of sections is represented in unsigned short.
187 * This means the number of sections should be smaller than 65535 at coredump.
188 * Because the kernel adds some informative sections to a image of program at
189 * generating coredump, we need some margin. The number of extra sections is
190 * 1-3 now and depends on arch. We use "5" as safe margin, here.
191 *
192 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
193 * not a hard limit any more. Although some userspace tools can be surprised by
194 * that.
195 */
196#define MAPCOUNT_ELF_CORE_MARGIN (5)
197#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
198
199extern int sysctl_max_map_count;
200
201extern unsigned long sysctl_user_reserve_kbytes;
202extern unsigned long sysctl_admin_reserve_kbytes;
203
204extern int sysctl_overcommit_memory;
205extern int sysctl_overcommit_ratio;
206extern unsigned long sysctl_overcommit_kbytes;
207
208extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
209 size_t *, loff_t *);
210extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
211 size_t *, loff_t *);
212
213#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
214
215/* to align the pointer to the (next) page boundary */
216#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
217
218/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
219#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
220
David Brazdil0f672f62019-12-10 10:32:29 +0000221#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
222
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000223/*
224 * Linux kernel virtual memory manager primitives.
225 * The idea being to have a "virtual" mm in the same way
226 * we have a virtual fs - giving a cleaner interface to the
227 * mm details, and allowing different kinds of memory mappings
228 * (from shared memory to executable loading to arbitrary
229 * mmap() functions).
230 */
231
232struct vm_area_struct *vm_area_alloc(struct mm_struct *);
233struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
234void vm_area_free(struct vm_area_struct *);
235
236#ifndef CONFIG_MMU
237extern struct rb_root nommu_region_tree;
238extern struct rw_semaphore nommu_region_sem;
239
240extern unsigned int kobjsize(const void *objp);
241#endif
242
243/*
244 * vm_flags in vm_area_struct, see mm_types.h.
245 * When changing, update also include/trace/events/mmflags.h
246 */
247#define VM_NONE 0x00000000
248
249#define VM_READ 0x00000001 /* currently active flags */
250#define VM_WRITE 0x00000002
251#define VM_EXEC 0x00000004
252#define VM_SHARED 0x00000008
253
254/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
255#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
256#define VM_MAYWRITE 0x00000020
257#define VM_MAYEXEC 0x00000040
258#define VM_MAYSHARE 0x00000080
259
260#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
261#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
262#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
263#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
264#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
265
266#define VM_LOCKED 0x00002000
267#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
268
269 /* Used by sys_madvise() */
270#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
271#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
272
273#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
274#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
275#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
276#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
277#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
278#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
279#define VM_SYNC 0x00800000 /* Synchronous page faults */
280#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
281#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
282#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
283
284#ifdef CONFIG_MEM_SOFT_DIRTY
285# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
286#else
287# define VM_SOFTDIRTY 0
288#endif
289
290#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
291#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
292#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
293#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
294
295#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
296#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
297#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
298#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
299#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
300#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
301#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
302#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
303#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
304#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
305#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
306#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
307
308#ifdef CONFIG_ARCH_HAS_PKEYS
309# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
310# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
311# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
312# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
313# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
314#ifdef CONFIG_PPC
315# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
316#else
317# define VM_PKEY_BIT4 0
318#endif
319#endif /* CONFIG_ARCH_HAS_PKEYS */
320
321#if defined(CONFIG_X86)
322# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
323#elif defined(CONFIG_PPC)
324# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
325#elif defined(CONFIG_PARISC)
326# define VM_GROWSUP VM_ARCH_1
327#elif defined(CONFIG_IA64)
328# define VM_GROWSUP VM_ARCH_1
329#elif defined(CONFIG_SPARC64)
330# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
331# define VM_ARCH_CLEAR VM_SPARC_ADI
332#elif !defined(CONFIG_MMU)
333# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
334#endif
335
336#if defined(CONFIG_X86_INTEL_MPX)
337/* MPX specific bounds table or bounds directory */
338# define VM_MPX VM_HIGH_ARCH_4
339#else
340# define VM_MPX VM_NONE
341#endif
342
343#ifndef VM_GROWSUP
344# define VM_GROWSUP VM_NONE
345#endif
346
347/* Bits set in the VMA until the stack is in its final location */
348#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
349
350#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
351#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
352#endif
353
354#ifdef CONFIG_STACK_GROWSUP
355#define VM_STACK VM_GROWSUP
356#else
357#define VM_STACK VM_GROWSDOWN
358#endif
359
360#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
361
362/*
363 * Special vmas that are non-mergable, non-mlock()able.
364 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
365 */
366#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
367
368/* This mask defines which mm->def_flags a process can inherit its parent */
369#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
370
371/* This mask is used to clear all the VMA flags used by mlock */
372#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
373
374/* Arch-specific flags to clear when updating VM flags on protection change */
375#ifndef VM_ARCH_CLEAR
376# define VM_ARCH_CLEAR VM_NONE
377#endif
378#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
379
380/*
381 * mapping from the currently active vm_flags protection bits (the
382 * low four bits) to a page protection mask..
383 */
384extern pgprot_t protection_map[16];
385
386#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
387#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
388#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
389#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
390#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
391#define FAULT_FLAG_TRIED 0x20 /* Second try */
392#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
393#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
394#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
395
396#define FAULT_FLAG_TRACE \
397 { FAULT_FLAG_WRITE, "WRITE" }, \
398 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
399 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
400 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
401 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
402 { FAULT_FLAG_TRIED, "TRIED" }, \
403 { FAULT_FLAG_USER, "USER" }, \
404 { FAULT_FLAG_REMOTE, "REMOTE" }, \
405 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
406
407/*
408 * vm_fault is filled by the the pagefault handler and passed to the vma's
409 * ->fault function. The vma's ->fault is responsible for returning a bitmask
410 * of VM_FAULT_xxx flags that give details about how the fault was handled.
411 *
412 * MM layer fills up gfp_mask for page allocations but fault handler might
413 * alter it if its implementation requires a different allocation context.
414 *
415 * pgoff should be used in favour of virtual_address, if possible.
416 */
417struct vm_fault {
418 struct vm_area_struct *vma; /* Target VMA */
419 unsigned int flags; /* FAULT_FLAG_xxx flags */
420 gfp_t gfp_mask; /* gfp mask to be used for allocations */
421 pgoff_t pgoff; /* Logical page offset based on vma */
422 unsigned long address; /* Faulting virtual address */
423 pmd_t *pmd; /* Pointer to pmd entry matching
424 * the 'address' */
425 pud_t *pud; /* Pointer to pud entry matching
426 * the 'address'
427 */
428 pte_t orig_pte; /* Value of PTE at the time of fault */
429
430 struct page *cow_page; /* Page handler may use for COW fault */
431 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
432 struct page *page; /* ->fault handlers should return a
433 * page here, unless VM_FAULT_NOPAGE
434 * is set (which is also implied by
435 * VM_FAULT_ERROR).
436 */
437 /* These three entries are valid only while holding ptl lock */
438 pte_t *pte; /* Pointer to pte entry matching
439 * the 'address'. NULL if the page
440 * table hasn't been allocated.
441 */
442 spinlock_t *ptl; /* Page table lock.
443 * Protects pte page table if 'pte'
444 * is not NULL, otherwise pmd.
445 */
446 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
447 * vm_ops->map_pages() calls
448 * alloc_set_pte() from atomic context.
449 * do_fault_around() pre-allocates
450 * page table to avoid allocation from
451 * atomic context.
452 */
453};
454
455/* page entry size for vm->huge_fault() */
456enum page_entry_size {
457 PE_SIZE_PTE = 0,
458 PE_SIZE_PMD,
459 PE_SIZE_PUD,
460};
461
462/*
463 * These are the virtual MM functions - opening of an area, closing and
464 * unmapping it (needed to keep files on disk up-to-date etc), pointer
465 * to the functions called when a no-page or a wp-page exception occurs.
466 */
467struct vm_operations_struct {
468 void (*open)(struct vm_area_struct * area);
469 void (*close)(struct vm_area_struct * area);
470 int (*split)(struct vm_area_struct * area, unsigned long addr);
471 int (*mremap)(struct vm_area_struct * area);
472 vm_fault_t (*fault)(struct vm_fault *vmf);
473 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
474 enum page_entry_size pe_size);
475 void (*map_pages)(struct vm_fault *vmf,
476 pgoff_t start_pgoff, pgoff_t end_pgoff);
477 unsigned long (*pagesize)(struct vm_area_struct * area);
478
479 /* notification that a previously read-only page is about to become
480 * writable, if an error is returned it will cause a SIGBUS */
481 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
482
483 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
484 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
485
486 /* called by access_process_vm when get_user_pages() fails, typically
487 * for use by special VMAs that can switch between memory and hardware
488 */
489 int (*access)(struct vm_area_struct *vma, unsigned long addr,
490 void *buf, int len, int write);
491
492 /* Called by the /proc/PID/maps code to ask the vma whether it
493 * has a special name. Returning non-NULL will also cause this
494 * vma to be dumped unconditionally. */
495 const char *(*name)(struct vm_area_struct *vma);
496
497#ifdef CONFIG_NUMA
498 /*
499 * set_policy() op must add a reference to any non-NULL @new mempolicy
500 * to hold the policy upon return. Caller should pass NULL @new to
501 * remove a policy and fall back to surrounding context--i.e. do not
502 * install a MPOL_DEFAULT policy, nor the task or system default
503 * mempolicy.
504 */
505 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
506
507 /*
508 * get_policy() op must add reference [mpol_get()] to any policy at
509 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
510 * in mm/mempolicy.c will do this automatically.
511 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
512 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
513 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
514 * must return NULL--i.e., do not "fallback" to task or system default
515 * policy.
516 */
517 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
518 unsigned long addr);
519#endif
520 /*
521 * Called by vm_normal_page() for special PTEs to find the
522 * page for @addr. This is useful if the default behavior
523 * (using pte_page()) would not find the correct page.
524 */
525 struct page *(*find_special_page)(struct vm_area_struct *vma,
526 unsigned long addr);
527};
528
529static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
530{
531 static const struct vm_operations_struct dummy_vm_ops = {};
532
533 memset(vma, 0, sizeof(*vma));
534 vma->vm_mm = mm;
535 vma->vm_ops = &dummy_vm_ops;
536 INIT_LIST_HEAD(&vma->anon_vma_chain);
537}
538
539static inline void vma_set_anonymous(struct vm_area_struct *vma)
540{
541 vma->vm_ops = NULL;
542}
543
David Brazdil0f672f62019-12-10 10:32:29 +0000544static inline bool vma_is_anonymous(struct vm_area_struct *vma)
545{
546 return !vma->vm_ops;
547}
548
549#ifdef CONFIG_SHMEM
550/*
551 * The vma_is_shmem is not inline because it is used only by slow
552 * paths in userfault.
553 */
554bool vma_is_shmem(struct vm_area_struct *vma);
555#else
556static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
557#endif
558
559int vma_is_stack_for_current(struct vm_area_struct *vma);
560
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000561/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
562#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
563
564struct mmu_gather;
565struct inode;
566
David Brazdil0f672f62019-12-10 10:32:29 +0000567#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000568static inline int pmd_devmap(pmd_t pmd)
569{
570 return 0;
571}
572static inline int pud_devmap(pud_t pud)
573{
574 return 0;
575}
576static inline int pgd_devmap(pgd_t pgd)
577{
578 return 0;
579}
580#endif
581
582/*
583 * FIXME: take this include out, include page-flags.h in
584 * files which need it (119 of them)
585 */
586#include <linux/page-flags.h>
587#include <linux/huge_mm.h>
588
589/*
590 * Methods to modify the page usage count.
591 *
592 * What counts for a page usage:
593 * - cache mapping (page->mapping)
594 * - private data (page->private)
595 * - page mapped in a task's page tables, each mapping
596 * is counted separately
597 *
598 * Also, many kernel routines increase the page count before a critical
599 * routine so they can be sure the page doesn't go away from under them.
600 */
601
602/*
603 * Drop a ref, return true if the refcount fell to zero (the page has no users)
604 */
605static inline int put_page_testzero(struct page *page)
606{
607 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
608 return page_ref_dec_and_test(page);
609}
610
611/*
612 * Try to grab a ref unless the page has a refcount of zero, return false if
613 * that is the case.
614 * This can be called when MMU is off so it must not access
615 * any of the virtual mappings.
616 */
617static inline int get_page_unless_zero(struct page *page)
618{
619 return page_ref_add_unless(page, 1, 0);
620}
621
622extern int page_is_ram(unsigned long pfn);
623
624enum {
625 REGION_INTERSECTS,
626 REGION_DISJOINT,
627 REGION_MIXED,
628};
629
630int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
631 unsigned long desc);
632
633/* Support for virtually mapped pages */
634struct page *vmalloc_to_page(const void *addr);
635unsigned long vmalloc_to_pfn(const void *addr);
636
637/*
638 * Determine if an address is within the vmalloc range
639 *
640 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
641 * is no special casing required.
642 */
643static inline bool is_vmalloc_addr(const void *x)
644{
645#ifdef CONFIG_MMU
646 unsigned long addr = (unsigned long)x;
647
648 return addr >= VMALLOC_START && addr < VMALLOC_END;
649#else
650 return false;
651#endif
652}
David Brazdil0f672f62019-12-10 10:32:29 +0000653
654#ifndef is_ioremap_addr
655#define is_ioremap_addr(x) is_vmalloc_addr(x)
656#endif
657
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000658#ifdef CONFIG_MMU
659extern int is_vmalloc_or_module_addr(const void *x);
660#else
661static inline int is_vmalloc_or_module_addr(const void *x)
662{
663 return 0;
664}
665#endif
666
667extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
668static inline void *kvmalloc(size_t size, gfp_t flags)
669{
670 return kvmalloc_node(size, flags, NUMA_NO_NODE);
671}
672static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
673{
674 return kvmalloc_node(size, flags | __GFP_ZERO, node);
675}
676static inline void *kvzalloc(size_t size, gfp_t flags)
677{
678 return kvmalloc(size, flags | __GFP_ZERO);
679}
680
681static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
682{
683 size_t bytes;
684
685 if (unlikely(check_mul_overflow(n, size, &bytes)))
686 return NULL;
687
688 return kvmalloc(bytes, flags);
689}
690
691static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
692{
693 return kvmalloc_array(n, size, flags | __GFP_ZERO);
694}
695
696extern void kvfree(const void *addr);
Olivier Deprez0e641232021-09-23 10:07:05 +0200697extern void kvfree_sensitive(const void *addr, size_t len);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000698
Olivier Deprez0e641232021-09-23 10:07:05 +0200699/*
700 * Mapcount of compound page as a whole, does not include mapped sub-pages.
701 *
702 * Must be called only for compound pages or any their tail sub-pages.
703 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000704static inline int compound_mapcount(struct page *page)
705{
706 VM_BUG_ON_PAGE(!PageCompound(page), page);
707 page = compound_head(page);
708 return atomic_read(compound_mapcount_ptr(page)) + 1;
709}
710
711/*
712 * The atomic page->_mapcount, starts from -1: so that transitions
713 * both from it and to it can be tracked, using atomic_inc_and_test
714 * and atomic_add_negative(-1).
715 */
716static inline void page_mapcount_reset(struct page *page)
717{
718 atomic_set(&(page)->_mapcount, -1);
719}
720
721int __page_mapcount(struct page *page);
722
Olivier Deprez0e641232021-09-23 10:07:05 +0200723/*
724 * Mapcount of 0-order page; when compound sub-page, includes
725 * compound_mapcount().
726 *
727 * Result is undefined for pages which cannot be mapped into userspace.
728 * For example SLAB or special types of pages. See function page_has_type().
729 * They use this place in struct page differently.
730 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000731static inline int page_mapcount(struct page *page)
732{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000733 if (unlikely(PageCompound(page)))
734 return __page_mapcount(page);
735 return atomic_read(&page->_mapcount) + 1;
736}
737
738#ifdef CONFIG_TRANSPARENT_HUGEPAGE
739int total_mapcount(struct page *page);
740int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
741#else
742static inline int total_mapcount(struct page *page)
743{
744 return page_mapcount(page);
745}
746static inline int page_trans_huge_mapcount(struct page *page,
747 int *total_mapcount)
748{
749 int mapcount = page_mapcount(page);
750 if (total_mapcount)
751 *total_mapcount = mapcount;
752 return mapcount;
753}
754#endif
755
756static inline struct page *virt_to_head_page(const void *x)
757{
758 struct page *page = virt_to_page(x);
759
760 return compound_head(page);
761}
762
763void __put_page(struct page *page);
764
765void put_pages_list(struct list_head *pages);
766
767void split_page(struct page *page, unsigned int order);
768
769/*
770 * Compound pages have a destructor function. Provide a
771 * prototype for that function and accessor functions.
772 * These are _only_ valid on the head of a compound page.
773 */
774typedef void compound_page_dtor(struct page *);
775
776/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
777enum compound_dtor_id {
778 NULL_COMPOUND_DTOR,
779 COMPOUND_PAGE_DTOR,
780#ifdef CONFIG_HUGETLB_PAGE
781 HUGETLB_PAGE_DTOR,
782#endif
783#ifdef CONFIG_TRANSPARENT_HUGEPAGE
784 TRANSHUGE_PAGE_DTOR,
785#endif
786 NR_COMPOUND_DTORS,
787};
788extern compound_page_dtor * const compound_page_dtors[];
789
790static inline void set_compound_page_dtor(struct page *page,
791 enum compound_dtor_id compound_dtor)
792{
793 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
794 page[1].compound_dtor = compound_dtor;
795}
796
797static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
798{
799 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
800 return compound_page_dtors[page[1].compound_dtor];
801}
802
803static inline unsigned int compound_order(struct page *page)
804{
805 if (!PageHead(page))
806 return 0;
807 return page[1].compound_order;
808}
809
810static inline void set_compound_order(struct page *page, unsigned int order)
811{
812 page[1].compound_order = order;
813}
814
David Brazdil0f672f62019-12-10 10:32:29 +0000815/* Returns the number of pages in this potentially compound page. */
816static inline unsigned long compound_nr(struct page *page)
817{
818 return 1UL << compound_order(page);
819}
820
821/* Returns the number of bytes in this potentially compound page. */
822static inline unsigned long page_size(struct page *page)
823{
824 return PAGE_SIZE << compound_order(page);
825}
826
827/* Returns the number of bits needed for the number of bytes in a page */
828static inline unsigned int page_shift(struct page *page)
829{
830 return PAGE_SHIFT + compound_order(page);
831}
832
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000833void free_compound_page(struct page *page);
834
835#ifdef CONFIG_MMU
836/*
837 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
838 * servicing faults for write access. In the normal case, do always want
839 * pte_mkwrite. But get_user_pages can cause write faults for mappings
840 * that do not have writing enabled, when used by access_process_vm.
841 */
842static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
843{
844 if (likely(vma->vm_flags & VM_WRITE))
845 pte = pte_mkwrite(pte);
846 return pte;
847}
848
849vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
850 struct page *page);
851vm_fault_t finish_fault(struct vm_fault *vmf);
852vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
853#endif
854
855/*
856 * Multiple processes may "see" the same page. E.g. for untouched
857 * mappings of /dev/null, all processes see the same page full of
858 * zeroes, and text pages of executables and shared libraries have
859 * only one copy in memory, at most, normally.
860 *
861 * For the non-reserved pages, page_count(page) denotes a reference count.
862 * page_count() == 0 means the page is free. page->lru is then used for
863 * freelist management in the buddy allocator.
864 * page_count() > 0 means the page has been allocated.
865 *
866 * Pages are allocated by the slab allocator in order to provide memory
867 * to kmalloc and kmem_cache_alloc. In this case, the management of the
868 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
869 * unless a particular usage is carefully commented. (the responsibility of
870 * freeing the kmalloc memory is the caller's, of course).
871 *
872 * A page may be used by anyone else who does a __get_free_page().
873 * In this case, page_count still tracks the references, and should only
874 * be used through the normal accessor functions. The top bits of page->flags
875 * and page->virtual store page management information, but all other fields
876 * are unused and could be used privately, carefully. The management of this
877 * page is the responsibility of the one who allocated it, and those who have
878 * subsequently been given references to it.
879 *
880 * The other pages (we may call them "pagecache pages") are completely
881 * managed by the Linux memory manager: I/O, buffers, swapping etc.
882 * The following discussion applies only to them.
883 *
884 * A pagecache page contains an opaque `private' member, which belongs to the
885 * page's address_space. Usually, this is the address of a circular list of
886 * the page's disk buffers. PG_private must be set to tell the VM to call
887 * into the filesystem to release these pages.
888 *
889 * A page may belong to an inode's memory mapping. In this case, page->mapping
890 * is the pointer to the inode, and page->index is the file offset of the page,
891 * in units of PAGE_SIZE.
892 *
893 * If pagecache pages are not associated with an inode, they are said to be
894 * anonymous pages. These may become associated with the swapcache, and in that
895 * case PG_swapcache is set, and page->private is an offset into the swapcache.
896 *
897 * In either case (swapcache or inode backed), the pagecache itself holds one
898 * reference to the page. Setting PG_private should also increment the
899 * refcount. The each user mapping also has a reference to the page.
900 *
901 * The pagecache pages are stored in a per-mapping radix tree, which is
902 * rooted at mapping->i_pages, and indexed by offset.
903 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
904 * lists, we instead now tag pages as dirty/writeback in the radix tree.
905 *
906 * All pagecache pages may be subject to I/O:
907 * - inode pages may need to be read from disk,
908 * - inode pages which have been modified and are MAP_SHARED may need
909 * to be written back to the inode on disk,
910 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
911 * modified may need to be swapped out to swap space and (later) to be read
912 * back into memory.
913 */
914
915/*
916 * The zone field is never updated after free_area_init_core()
917 * sets it, so none of the operations on it need to be atomic.
918 */
919
920/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
921#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
922#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
923#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
924#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
David Brazdil0f672f62019-12-10 10:32:29 +0000925#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000926
927/*
928 * Define the bit shifts to access each section. For non-existent
929 * sections we define the shift as 0; that plus a 0 mask ensures
930 * the compiler will optimise away reference to them.
931 */
932#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
933#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
934#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
935#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
David Brazdil0f672f62019-12-10 10:32:29 +0000936#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000937
938/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
939#ifdef NODE_NOT_IN_PAGE_FLAGS
940#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
941#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
942 SECTIONS_PGOFF : ZONES_PGOFF)
943#else
944#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
945#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
946 NODES_PGOFF : ZONES_PGOFF)
947#endif
948
949#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
950
951#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
952#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
953#endif
954
955#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
956#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
957#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
958#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
David Brazdil0f672f62019-12-10 10:32:29 +0000959#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000960#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
961
962static inline enum zone_type page_zonenum(const struct page *page)
963{
964 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
965}
966
967#ifdef CONFIG_ZONE_DEVICE
968static inline bool is_zone_device_page(const struct page *page)
969{
970 return page_zonenum(page) == ZONE_DEVICE;
971}
David Brazdil0f672f62019-12-10 10:32:29 +0000972extern void memmap_init_zone_device(struct zone *, unsigned long,
973 unsigned long, struct dev_pagemap *);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000974#else
975static inline bool is_zone_device_page(const struct page *page)
976{
977 return false;
978}
979#endif
980
981#ifdef CONFIG_DEV_PAGEMAP_OPS
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000982void __put_devmap_managed_page(struct page *page);
983DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
984static inline bool put_devmap_managed_page(struct page *page)
985{
986 if (!static_branch_unlikely(&devmap_managed_key))
987 return false;
988 if (!is_zone_device_page(page))
989 return false;
990 switch (page->pgmap->type) {
991 case MEMORY_DEVICE_PRIVATE:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000992 case MEMORY_DEVICE_FS_DAX:
993 __put_devmap_managed_page(page);
994 return true;
995 default:
996 break;
997 }
998 return false;
999}
1000
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001001#else /* CONFIG_DEV_PAGEMAP_OPS */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001002static inline bool put_devmap_managed_page(struct page *page)
1003{
1004 return false;
1005}
David Brazdil0f672f62019-12-10 10:32:29 +00001006#endif /* CONFIG_DEV_PAGEMAP_OPS */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001007
1008static inline bool is_device_private_page(const struct page *page)
1009{
David Brazdil0f672f62019-12-10 10:32:29 +00001010 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1011 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1012 is_zone_device_page(page) &&
1013 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001014}
1015
David Brazdil0f672f62019-12-10 10:32:29 +00001016static inline bool is_pci_p2pdma_page(const struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001017{
David Brazdil0f672f62019-12-10 10:32:29 +00001018 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1019 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1020 is_zone_device_page(page) &&
1021 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001022}
David Brazdil0f672f62019-12-10 10:32:29 +00001023
1024/* 127: arbitrary random number, small enough to assemble well */
1025#define page_ref_zero_or_close_to_overflow(page) \
1026 ((unsigned int) page_ref_count(page) + 127u <= 127u)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001027
1028static inline void get_page(struct page *page)
1029{
1030 page = compound_head(page);
1031 /*
1032 * Getting a normal page or the head of a compound page
1033 * requires to already have an elevated page->_refcount.
1034 */
David Brazdil0f672f62019-12-10 10:32:29 +00001035 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001036 page_ref_inc(page);
1037}
1038
David Brazdil0f672f62019-12-10 10:32:29 +00001039static inline __must_check bool try_get_page(struct page *page)
1040{
1041 page = compound_head(page);
1042 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1043 return false;
1044 page_ref_inc(page);
1045 return true;
1046}
1047
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001048static inline void put_page(struct page *page)
1049{
1050 page = compound_head(page);
1051
1052 /*
1053 * For devmap managed pages we need to catch refcount transition from
1054 * 2 to 1, when refcount reach one it means the page is free and we
1055 * need to inform the device driver through callback. See
1056 * include/linux/memremap.h and HMM for details.
1057 */
1058 if (put_devmap_managed_page(page))
1059 return;
1060
1061 if (put_page_testzero(page))
1062 __put_page(page);
1063}
1064
David Brazdil0f672f62019-12-10 10:32:29 +00001065/**
1066 * put_user_page() - release a gup-pinned page
1067 * @page: pointer to page to be released
1068 *
1069 * Pages that were pinned via get_user_pages*() must be released via
1070 * either put_user_page(), or one of the put_user_pages*() routines
1071 * below. This is so that eventually, pages that are pinned via
1072 * get_user_pages*() can be separately tracked and uniquely handled. In
1073 * particular, interactions with RDMA and filesystems need special
1074 * handling.
1075 *
1076 * put_user_page() and put_page() are not interchangeable, despite this early
1077 * implementation that makes them look the same. put_user_page() calls must
1078 * be perfectly matched up with get_user_page() calls.
1079 */
1080static inline void put_user_page(struct page *page)
1081{
1082 put_page(page);
1083}
1084
1085void put_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1086 bool make_dirty);
1087
1088void put_user_pages(struct page **pages, unsigned long npages);
1089
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001090#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1091#define SECTION_IN_PAGE_FLAGS
1092#endif
1093
1094/*
1095 * The identification function is mainly used by the buddy allocator for
1096 * determining if two pages could be buddies. We are not really identifying
1097 * the zone since we could be using the section number id if we do not have
1098 * node id available in page flags.
1099 * We only guarantee that it will return the same value for two combinable
1100 * pages in a zone.
1101 */
1102static inline int page_zone_id(struct page *page)
1103{
1104 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1105}
1106
1107#ifdef NODE_NOT_IN_PAGE_FLAGS
1108extern int page_to_nid(const struct page *page);
1109#else
1110static inline int page_to_nid(const struct page *page)
1111{
1112 struct page *p = (struct page *)page;
1113
1114 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1115}
1116#endif
1117
1118#ifdef CONFIG_NUMA_BALANCING
1119static inline int cpu_pid_to_cpupid(int cpu, int pid)
1120{
1121 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1122}
1123
1124static inline int cpupid_to_pid(int cpupid)
1125{
1126 return cpupid & LAST__PID_MASK;
1127}
1128
1129static inline int cpupid_to_cpu(int cpupid)
1130{
1131 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1132}
1133
1134static inline int cpupid_to_nid(int cpupid)
1135{
1136 return cpu_to_node(cpupid_to_cpu(cpupid));
1137}
1138
1139static inline bool cpupid_pid_unset(int cpupid)
1140{
1141 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1142}
1143
1144static inline bool cpupid_cpu_unset(int cpupid)
1145{
1146 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1147}
1148
1149static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1150{
1151 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1152}
1153
1154#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1155#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1156static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1157{
1158 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1159}
1160
1161static inline int page_cpupid_last(struct page *page)
1162{
1163 return page->_last_cpupid;
1164}
1165static inline void page_cpupid_reset_last(struct page *page)
1166{
1167 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1168}
1169#else
1170static inline int page_cpupid_last(struct page *page)
1171{
1172 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1173}
1174
1175extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1176
1177static inline void page_cpupid_reset_last(struct page *page)
1178{
1179 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1180}
1181#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1182#else /* !CONFIG_NUMA_BALANCING */
1183static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1184{
1185 return page_to_nid(page); /* XXX */
1186}
1187
1188static inline int page_cpupid_last(struct page *page)
1189{
1190 return page_to_nid(page); /* XXX */
1191}
1192
1193static inline int cpupid_to_nid(int cpupid)
1194{
1195 return -1;
1196}
1197
1198static inline int cpupid_to_pid(int cpupid)
1199{
1200 return -1;
1201}
1202
1203static inline int cpupid_to_cpu(int cpupid)
1204{
1205 return -1;
1206}
1207
1208static inline int cpu_pid_to_cpupid(int nid, int pid)
1209{
1210 return -1;
1211}
1212
1213static inline bool cpupid_pid_unset(int cpupid)
1214{
1215 return 1;
1216}
1217
1218static inline void page_cpupid_reset_last(struct page *page)
1219{
1220}
1221
1222static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1223{
1224 return false;
1225}
1226#endif /* CONFIG_NUMA_BALANCING */
1227
David Brazdil0f672f62019-12-10 10:32:29 +00001228#ifdef CONFIG_KASAN_SW_TAGS
Olivier Deprez0e641232021-09-23 10:07:05 +02001229
1230/*
1231 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1232 * setting tags for all pages to native kernel tag value 0xff, as the default
1233 * value 0x00 maps to 0xff.
1234 */
1235
David Brazdil0f672f62019-12-10 10:32:29 +00001236static inline u8 page_kasan_tag(const struct page *page)
1237{
Olivier Deprez0e641232021-09-23 10:07:05 +02001238 u8 tag;
1239
1240 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1241 tag ^= 0xff;
1242
1243 return tag;
David Brazdil0f672f62019-12-10 10:32:29 +00001244}
1245
1246static inline void page_kasan_tag_set(struct page *page, u8 tag)
1247{
Olivier Deprez0e641232021-09-23 10:07:05 +02001248 tag ^= 0xff;
David Brazdil0f672f62019-12-10 10:32:29 +00001249 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1250 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1251}
1252
1253static inline void page_kasan_tag_reset(struct page *page)
1254{
1255 page_kasan_tag_set(page, 0xff);
1256}
1257#else
1258static inline u8 page_kasan_tag(const struct page *page)
1259{
1260 return 0xff;
1261}
1262
1263static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1264static inline void page_kasan_tag_reset(struct page *page) { }
1265#endif
1266
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001267static inline struct zone *page_zone(const struct page *page)
1268{
1269 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1270}
1271
1272static inline pg_data_t *page_pgdat(const struct page *page)
1273{
1274 return NODE_DATA(page_to_nid(page));
1275}
1276
1277#ifdef SECTION_IN_PAGE_FLAGS
1278static inline void set_page_section(struct page *page, unsigned long section)
1279{
1280 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1281 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1282}
1283
1284static inline unsigned long page_to_section(const struct page *page)
1285{
1286 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1287}
1288#endif
1289
1290static inline void set_page_zone(struct page *page, enum zone_type zone)
1291{
1292 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1293 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1294}
1295
1296static inline void set_page_node(struct page *page, unsigned long node)
1297{
1298 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1299 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1300}
1301
1302static inline void set_page_links(struct page *page, enum zone_type zone,
1303 unsigned long node, unsigned long pfn)
1304{
1305 set_page_zone(page, zone);
1306 set_page_node(page, node);
1307#ifdef SECTION_IN_PAGE_FLAGS
1308 set_page_section(page, pfn_to_section_nr(pfn));
1309#endif
1310}
1311
1312#ifdef CONFIG_MEMCG
1313static inline struct mem_cgroup *page_memcg(struct page *page)
1314{
1315 return page->mem_cgroup;
1316}
1317static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1318{
1319 WARN_ON_ONCE(!rcu_read_lock_held());
1320 return READ_ONCE(page->mem_cgroup);
1321}
1322#else
1323static inline struct mem_cgroup *page_memcg(struct page *page)
1324{
1325 return NULL;
1326}
1327static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1328{
1329 WARN_ON_ONCE(!rcu_read_lock_held());
1330 return NULL;
1331}
1332#endif
1333
1334/*
1335 * Some inline functions in vmstat.h depend on page_zone()
1336 */
1337#include <linux/vmstat.h>
1338
1339static __always_inline void *lowmem_page_address(const struct page *page)
1340{
1341 return page_to_virt(page);
1342}
1343
1344#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1345#define HASHED_PAGE_VIRTUAL
1346#endif
1347
1348#if defined(WANT_PAGE_VIRTUAL)
1349static inline void *page_address(const struct page *page)
1350{
1351 return page->virtual;
1352}
1353static inline void set_page_address(struct page *page, void *address)
1354{
1355 page->virtual = address;
1356}
1357#define page_address_init() do { } while(0)
1358#endif
1359
1360#if defined(HASHED_PAGE_VIRTUAL)
1361void *page_address(const struct page *page);
1362void set_page_address(struct page *page, void *virtual);
1363void page_address_init(void);
1364#endif
1365
1366#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1367#define page_address(page) lowmem_page_address(page)
1368#define set_page_address(page, address) do { } while(0)
1369#define page_address_init() do { } while(0)
1370#endif
1371
1372extern void *page_rmapping(struct page *page);
1373extern struct anon_vma *page_anon_vma(struct page *page);
1374extern struct address_space *page_mapping(struct page *page);
1375
1376extern struct address_space *__page_file_mapping(struct page *);
1377
1378static inline
1379struct address_space *page_file_mapping(struct page *page)
1380{
1381 if (unlikely(PageSwapCache(page)))
1382 return __page_file_mapping(page);
1383
1384 return page->mapping;
1385}
1386
1387extern pgoff_t __page_file_index(struct page *page);
1388
1389/*
1390 * Return the pagecache index of the passed page. Regular pagecache pages
1391 * use ->index whereas swapcache pages use swp_offset(->private)
1392 */
1393static inline pgoff_t page_index(struct page *page)
1394{
1395 if (unlikely(PageSwapCache(page)))
1396 return __page_file_index(page);
1397 return page->index;
1398}
1399
1400bool page_mapped(struct page *page);
1401struct address_space *page_mapping(struct page *page);
1402struct address_space *page_mapping_file(struct page *page);
1403
1404/*
1405 * Return true only if the page has been allocated with
1406 * ALLOC_NO_WATERMARKS and the low watermark was not
1407 * met implying that the system is under some pressure.
1408 */
1409static inline bool page_is_pfmemalloc(struct page *page)
1410{
1411 /*
1412 * Page index cannot be this large so this must be
1413 * a pfmemalloc page.
1414 */
1415 return page->index == -1UL;
1416}
1417
1418/*
1419 * Only to be called by the page allocator on a freshly allocated
1420 * page.
1421 */
1422static inline void set_page_pfmemalloc(struct page *page)
1423{
1424 page->index = -1UL;
1425}
1426
1427static inline void clear_page_pfmemalloc(struct page *page)
1428{
1429 page->index = 0;
1430}
1431
1432/*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001433 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1434 */
1435extern void pagefault_out_of_memory(void);
1436
1437#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1438
1439/*
1440 * Flags passed to show_mem() and show_free_areas() to suppress output in
1441 * various contexts.
1442 */
1443#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1444
1445extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1446
David Brazdil0f672f62019-12-10 10:32:29 +00001447#ifdef CONFIG_MMU
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001448extern bool can_do_mlock(void);
David Brazdil0f672f62019-12-10 10:32:29 +00001449#else
1450static inline bool can_do_mlock(void) { return false; }
1451#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001452extern int user_shm_lock(size_t, struct user_struct *);
1453extern void user_shm_unlock(size_t, struct user_struct *);
1454
1455/*
1456 * Parameter block passed down to zap_pte_range in exceptional cases.
1457 */
1458struct zap_details {
1459 struct address_space *check_mapping; /* Check page->mapping if set */
1460 pgoff_t first_index; /* Lowest page->index to unmap */
1461 pgoff_t last_index; /* Highest page->index to unmap */
Olivier Deprez0e641232021-09-23 10:07:05 +02001462 struct page *single_page; /* Locked page to be unmapped */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001463};
1464
David Brazdil0f672f62019-12-10 10:32:29 +00001465struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1466 pte_t pte);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001467struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1468 pmd_t pmd);
1469
1470void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1471 unsigned long size);
1472void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1473 unsigned long size);
1474void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1475 unsigned long start, unsigned long end);
1476
David Brazdil0f672f62019-12-10 10:32:29 +00001477struct mmu_notifier_range;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001478
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001479void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1480 unsigned long end, unsigned long floor, unsigned long ceiling);
1481int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1482 struct vm_area_struct *vma);
Olivier Deprez0e641232021-09-23 10:07:05 +02001483int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1484 struct mmu_notifier_range *range, pte_t **ptepp,
1485 pmd_t **pmdpp, spinlock_t **ptlp);
1486int follow_pte(struct mm_struct *mm, unsigned long address,
1487 pte_t **ptepp, spinlock_t **ptlp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001488int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1489 unsigned long *pfn);
1490int follow_phys(struct vm_area_struct *vma, unsigned long address,
1491 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1492int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1493 void *buf, int len, int write);
1494
1495extern void truncate_pagecache(struct inode *inode, loff_t new);
1496extern void truncate_setsize(struct inode *inode, loff_t newsize);
1497void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1498void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1499int truncate_inode_page(struct address_space *mapping, struct page *page);
1500int generic_error_remove_page(struct address_space *mapping, struct page *page);
1501int invalidate_inode_page(struct page *page);
1502
1503#ifdef CONFIG_MMU
1504extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1505 unsigned long address, unsigned int flags);
1506extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1507 unsigned long address, unsigned int fault_flags,
1508 bool *unlocked);
Olivier Deprez0e641232021-09-23 10:07:05 +02001509void unmap_mapping_page(struct page *page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001510void unmap_mapping_pages(struct address_space *mapping,
1511 pgoff_t start, pgoff_t nr, bool even_cows);
1512void unmap_mapping_range(struct address_space *mapping,
1513 loff_t const holebegin, loff_t const holelen, int even_cows);
1514#else
1515static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1516 unsigned long address, unsigned int flags)
1517{
1518 /* should never happen if there's no MMU */
1519 BUG();
1520 return VM_FAULT_SIGBUS;
1521}
1522static inline int fixup_user_fault(struct task_struct *tsk,
1523 struct mm_struct *mm, unsigned long address,
1524 unsigned int fault_flags, bool *unlocked)
1525{
1526 /* should never happen if there's no MMU */
1527 BUG();
1528 return -EFAULT;
1529}
Olivier Deprez0e641232021-09-23 10:07:05 +02001530static inline void unmap_mapping_page(struct page *page) { }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001531static inline void unmap_mapping_pages(struct address_space *mapping,
1532 pgoff_t start, pgoff_t nr, bool even_cows) { }
1533static inline void unmap_mapping_range(struct address_space *mapping,
1534 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1535#endif
1536
1537static inline void unmap_shared_mapping_range(struct address_space *mapping,
1538 loff_t const holebegin, loff_t const holelen)
1539{
1540 unmap_mapping_range(mapping, holebegin, holelen, 0);
1541}
1542
1543extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1544 void *buf, int len, unsigned int gup_flags);
1545extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1546 void *buf, int len, unsigned int gup_flags);
1547extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1548 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1549
1550long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1551 unsigned long start, unsigned long nr_pages,
1552 unsigned int gup_flags, struct page **pages,
1553 struct vm_area_struct **vmas, int *locked);
1554long get_user_pages(unsigned long start, unsigned long nr_pages,
1555 unsigned int gup_flags, struct page **pages,
1556 struct vm_area_struct **vmas);
1557long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1558 unsigned int gup_flags, struct page **pages, int *locked);
1559long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1560 struct page **pages, unsigned int gup_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001561
David Brazdil0f672f62019-12-10 10:32:29 +00001562int get_user_pages_fast(unsigned long start, int nr_pages,
1563 unsigned int gup_flags, struct page **pages);
1564
1565int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1566int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1567 struct task_struct *task, bool bypass_rlim);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001568
1569/* Container for pinned pfns / pages */
1570struct frame_vector {
1571 unsigned int nr_allocated; /* Number of frames we have space for */
1572 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1573 bool got_ref; /* Did we pin pages by getting page ref? */
1574 bool is_pfns; /* Does array contain pages or pfns? */
1575 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1576 * pfns_vector_pages() or pfns_vector_pfns()
1577 * for access */
1578};
1579
1580struct frame_vector *frame_vector_create(unsigned int nr_frames);
1581void frame_vector_destroy(struct frame_vector *vec);
1582int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1583 unsigned int gup_flags, struct frame_vector *vec);
1584void put_vaddr_frames(struct frame_vector *vec);
1585int frame_vector_to_pages(struct frame_vector *vec);
1586void frame_vector_to_pfns(struct frame_vector *vec);
1587
1588static inline unsigned int frame_vector_count(struct frame_vector *vec)
1589{
1590 return vec->nr_frames;
1591}
1592
1593static inline struct page **frame_vector_pages(struct frame_vector *vec)
1594{
1595 if (vec->is_pfns) {
1596 int err = frame_vector_to_pages(vec);
1597
1598 if (err)
1599 return ERR_PTR(err);
1600 }
1601 return (struct page **)(vec->ptrs);
1602}
1603
1604static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1605{
1606 if (!vec->is_pfns)
1607 frame_vector_to_pfns(vec);
1608 return (unsigned long *)(vec->ptrs);
1609}
1610
1611struct kvec;
1612int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1613 struct page **pages);
1614int get_kernel_page(unsigned long start, int write, struct page **pages);
1615struct page *get_dump_page(unsigned long addr);
1616
1617extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1618extern void do_invalidatepage(struct page *page, unsigned int offset,
1619 unsigned int length);
1620
1621void __set_page_dirty(struct page *, struct address_space *, int warn);
1622int __set_page_dirty_nobuffers(struct page *page);
1623int __set_page_dirty_no_writeback(struct page *page);
1624int redirty_page_for_writepage(struct writeback_control *wbc,
1625 struct page *page);
1626void account_page_dirtied(struct page *page, struct address_space *mapping);
1627void account_page_cleaned(struct page *page, struct address_space *mapping,
1628 struct bdi_writeback *wb);
1629int set_page_dirty(struct page *page);
1630int set_page_dirty_lock(struct page *page);
1631void __cancel_dirty_page(struct page *page);
1632static inline void cancel_dirty_page(struct page *page)
1633{
1634 /* Avoid atomic ops, locking, etc. when not actually needed. */
1635 if (PageDirty(page))
1636 __cancel_dirty_page(page);
1637}
1638int clear_page_dirty_for_io(struct page *page);
1639
1640int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1641
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001642extern unsigned long move_page_tables(struct vm_area_struct *vma,
1643 unsigned long old_addr, struct vm_area_struct *new_vma,
1644 unsigned long new_addr, unsigned long len,
1645 bool need_rmap_locks);
1646extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1647 unsigned long end, pgprot_t newprot,
1648 int dirty_accountable, int prot_numa);
1649extern int mprotect_fixup(struct vm_area_struct *vma,
1650 struct vm_area_struct **pprev, unsigned long start,
1651 unsigned long end, unsigned long newflags);
1652
1653/*
1654 * doesn't attempt to fault and will return short.
1655 */
1656int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1657 struct page **pages);
1658/*
1659 * per-process(per-mm_struct) statistics.
1660 */
1661static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1662{
1663 long val = atomic_long_read(&mm->rss_stat.count[member]);
1664
1665#ifdef SPLIT_RSS_COUNTING
1666 /*
1667 * counter is updated in asynchronous manner and may go to minus.
1668 * But it's never be expected number for users.
1669 */
1670 if (val < 0)
1671 val = 0;
1672#endif
1673 return (unsigned long)val;
1674}
1675
1676static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1677{
1678 atomic_long_add(value, &mm->rss_stat.count[member]);
1679}
1680
1681static inline void inc_mm_counter(struct mm_struct *mm, int member)
1682{
1683 atomic_long_inc(&mm->rss_stat.count[member]);
1684}
1685
1686static inline void dec_mm_counter(struct mm_struct *mm, int member)
1687{
1688 atomic_long_dec(&mm->rss_stat.count[member]);
1689}
1690
1691/* Optimized variant when page is already known not to be PageAnon */
1692static inline int mm_counter_file(struct page *page)
1693{
1694 if (PageSwapBacked(page))
1695 return MM_SHMEMPAGES;
1696 return MM_FILEPAGES;
1697}
1698
1699static inline int mm_counter(struct page *page)
1700{
1701 if (PageAnon(page))
1702 return MM_ANONPAGES;
1703 return mm_counter_file(page);
1704}
1705
1706static inline unsigned long get_mm_rss(struct mm_struct *mm)
1707{
1708 return get_mm_counter(mm, MM_FILEPAGES) +
1709 get_mm_counter(mm, MM_ANONPAGES) +
1710 get_mm_counter(mm, MM_SHMEMPAGES);
1711}
1712
1713static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1714{
1715 return max(mm->hiwater_rss, get_mm_rss(mm));
1716}
1717
1718static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1719{
1720 return max(mm->hiwater_vm, mm->total_vm);
1721}
1722
1723static inline void update_hiwater_rss(struct mm_struct *mm)
1724{
1725 unsigned long _rss = get_mm_rss(mm);
1726
1727 if ((mm)->hiwater_rss < _rss)
1728 (mm)->hiwater_rss = _rss;
1729}
1730
1731static inline void update_hiwater_vm(struct mm_struct *mm)
1732{
1733 if (mm->hiwater_vm < mm->total_vm)
1734 mm->hiwater_vm = mm->total_vm;
1735}
1736
1737static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1738{
1739 mm->hiwater_rss = get_mm_rss(mm);
1740}
1741
1742static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1743 struct mm_struct *mm)
1744{
1745 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1746
1747 if (*maxrss < hiwater_rss)
1748 *maxrss = hiwater_rss;
1749}
1750
1751#if defined(SPLIT_RSS_COUNTING)
1752void sync_mm_rss(struct mm_struct *mm);
1753#else
1754static inline void sync_mm_rss(struct mm_struct *mm)
1755{
1756}
1757#endif
1758
David Brazdil0f672f62019-12-10 10:32:29 +00001759#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001760static inline int pte_devmap(pte_t pte)
1761{
1762 return 0;
1763}
1764#endif
1765
1766int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1767
1768extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1769 spinlock_t **ptl);
1770static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1771 spinlock_t **ptl)
1772{
1773 pte_t *ptep;
1774 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1775 return ptep;
1776}
1777
1778#ifdef __PAGETABLE_P4D_FOLDED
1779static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1780 unsigned long address)
1781{
1782 return 0;
1783}
1784#else
1785int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1786#endif
1787
1788#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1789static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1790 unsigned long address)
1791{
1792 return 0;
1793}
1794static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1795static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1796
1797#else
1798int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1799
1800static inline void mm_inc_nr_puds(struct mm_struct *mm)
1801{
1802 if (mm_pud_folded(mm))
1803 return;
1804 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1805}
1806
1807static inline void mm_dec_nr_puds(struct mm_struct *mm)
1808{
1809 if (mm_pud_folded(mm))
1810 return;
1811 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1812}
1813#endif
1814
1815#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1816static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1817 unsigned long address)
1818{
1819 return 0;
1820}
1821
1822static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1823static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1824
1825#else
1826int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1827
1828static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1829{
1830 if (mm_pmd_folded(mm))
1831 return;
1832 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1833}
1834
1835static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1836{
1837 if (mm_pmd_folded(mm))
1838 return;
1839 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1840}
1841#endif
1842
1843#ifdef CONFIG_MMU
1844static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1845{
1846 atomic_long_set(&mm->pgtables_bytes, 0);
1847}
1848
1849static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1850{
1851 return atomic_long_read(&mm->pgtables_bytes);
1852}
1853
1854static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1855{
1856 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1857}
1858
1859static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1860{
1861 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1862}
1863#else
1864
1865static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1866static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1867{
1868 return 0;
1869}
1870
1871static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1872static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1873#endif
1874
David Brazdil0f672f62019-12-10 10:32:29 +00001875int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
1876int __pte_alloc_kernel(pmd_t *pmd);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001877
1878/*
1879 * The following ifdef needed to get the 4level-fixup.h header to work.
1880 * Remove it when 4level-fixup.h has been removed.
1881 */
1882#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1883
1884#ifndef __ARCH_HAS_5LEVEL_HACK
1885static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1886 unsigned long address)
1887{
1888 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1889 NULL : p4d_offset(pgd, address);
1890}
1891
1892static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1893 unsigned long address)
1894{
1895 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1896 NULL : pud_offset(p4d, address);
1897}
1898#endif /* !__ARCH_HAS_5LEVEL_HACK */
1899
1900static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1901{
1902 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1903 NULL: pmd_offset(pud, address);
1904}
1905#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1906
1907#if USE_SPLIT_PTE_PTLOCKS
1908#if ALLOC_SPLIT_PTLOCKS
1909void __init ptlock_cache_init(void);
1910extern bool ptlock_alloc(struct page *page);
1911extern void ptlock_free(struct page *page);
1912
1913static inline spinlock_t *ptlock_ptr(struct page *page)
1914{
1915 return page->ptl;
1916}
1917#else /* ALLOC_SPLIT_PTLOCKS */
1918static inline void ptlock_cache_init(void)
1919{
1920}
1921
1922static inline bool ptlock_alloc(struct page *page)
1923{
1924 return true;
1925}
1926
1927static inline void ptlock_free(struct page *page)
1928{
1929}
1930
1931static inline spinlock_t *ptlock_ptr(struct page *page)
1932{
1933 return &page->ptl;
1934}
1935#endif /* ALLOC_SPLIT_PTLOCKS */
1936
1937static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1938{
1939 return ptlock_ptr(pmd_page(*pmd));
1940}
1941
1942static inline bool ptlock_init(struct page *page)
1943{
1944 /*
1945 * prep_new_page() initialize page->private (and therefore page->ptl)
1946 * with 0. Make sure nobody took it in use in between.
1947 *
1948 * It can happen if arch try to use slab for page table allocation:
1949 * slab code uses page->slab_cache, which share storage with page->ptl.
1950 */
1951 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1952 if (!ptlock_alloc(page))
1953 return false;
1954 spin_lock_init(ptlock_ptr(page));
1955 return true;
1956}
1957
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001958#else /* !USE_SPLIT_PTE_PTLOCKS */
1959/*
1960 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1961 */
1962static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1963{
1964 return &mm->page_table_lock;
1965}
1966static inline void ptlock_cache_init(void) {}
1967static inline bool ptlock_init(struct page *page) { return true; }
David Brazdil0f672f62019-12-10 10:32:29 +00001968static inline void ptlock_free(struct page *page) {}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001969#endif /* USE_SPLIT_PTE_PTLOCKS */
1970
1971static inline void pgtable_init(void)
1972{
1973 ptlock_cache_init();
1974 pgtable_cache_init();
1975}
1976
David Brazdil0f672f62019-12-10 10:32:29 +00001977static inline bool pgtable_pte_page_ctor(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001978{
1979 if (!ptlock_init(page))
1980 return false;
1981 __SetPageTable(page);
1982 inc_zone_page_state(page, NR_PAGETABLE);
1983 return true;
1984}
1985
David Brazdil0f672f62019-12-10 10:32:29 +00001986static inline void pgtable_pte_page_dtor(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001987{
David Brazdil0f672f62019-12-10 10:32:29 +00001988 ptlock_free(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001989 __ClearPageTable(page);
1990 dec_zone_page_state(page, NR_PAGETABLE);
1991}
1992
1993#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1994({ \
1995 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1996 pte_t *__pte = pte_offset_map(pmd, address); \
1997 *(ptlp) = __ptl; \
1998 spin_lock(__ptl); \
1999 __pte; \
2000})
2001
2002#define pte_unmap_unlock(pte, ptl) do { \
2003 spin_unlock(ptl); \
2004 pte_unmap(pte); \
2005} while (0)
2006
David Brazdil0f672f62019-12-10 10:32:29 +00002007#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002008
2009#define pte_alloc_map(mm, pmd, address) \
David Brazdil0f672f62019-12-10 10:32:29 +00002010 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002011
2012#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
David Brazdil0f672f62019-12-10 10:32:29 +00002013 (pte_alloc(mm, pmd) ? \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002014 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2015
2016#define pte_alloc_kernel(pmd, address) \
David Brazdil0f672f62019-12-10 10:32:29 +00002017 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002018 NULL: pte_offset_kernel(pmd, address))
2019
2020#if USE_SPLIT_PMD_PTLOCKS
2021
2022static struct page *pmd_to_page(pmd_t *pmd)
2023{
2024 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2025 return virt_to_page((void *)((unsigned long) pmd & mask));
2026}
2027
2028static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2029{
2030 return ptlock_ptr(pmd_to_page(pmd));
2031}
2032
2033static inline bool pgtable_pmd_page_ctor(struct page *page)
2034{
2035#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2036 page->pmd_huge_pte = NULL;
2037#endif
2038 return ptlock_init(page);
2039}
2040
2041static inline void pgtable_pmd_page_dtor(struct page *page)
2042{
2043#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2044 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2045#endif
2046 ptlock_free(page);
2047}
2048
2049#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2050
2051#else
2052
2053static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2054{
2055 return &mm->page_table_lock;
2056}
2057
2058static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2059static inline void pgtable_pmd_page_dtor(struct page *page) {}
2060
2061#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2062
2063#endif
2064
2065static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2066{
2067 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2068 spin_lock(ptl);
2069 return ptl;
2070}
2071
2072/*
2073 * No scalability reason to split PUD locks yet, but follow the same pattern
2074 * as the PMD locks to make it easier if we decide to. The VM should not be
2075 * considered ready to switch to split PUD locks yet; there may be places
2076 * which need to be converted from page_table_lock.
2077 */
2078static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2079{
2080 return &mm->page_table_lock;
2081}
2082
2083static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2084{
2085 spinlock_t *ptl = pud_lockptr(mm, pud);
2086
2087 spin_lock(ptl);
2088 return ptl;
2089}
2090
2091extern void __init pagecache_init(void);
2092extern void free_area_init(unsigned long * zones_size);
2093extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2094 unsigned long zone_start_pfn, unsigned long *zholes_size);
2095extern void free_initmem(void);
2096
2097/*
2098 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2099 * into the buddy system. The freed pages will be poisoned with pattern
2100 * "poison" if it's within range [0, UCHAR_MAX].
2101 * Return pages freed into the buddy system.
2102 */
2103extern unsigned long free_reserved_area(void *start, void *end,
David Brazdil0f672f62019-12-10 10:32:29 +00002104 int poison, const char *s);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002105
2106#ifdef CONFIG_HIGHMEM
2107/*
2108 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2109 * and totalram_pages.
2110 */
2111extern void free_highmem_page(struct page *page);
2112#endif
2113
2114extern void adjust_managed_page_count(struct page *page, long count);
2115extern void mem_init_print_info(const char *str);
2116
2117extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2118
2119/* Free the reserved page into the buddy system, so it gets managed. */
2120static inline void __free_reserved_page(struct page *page)
2121{
2122 ClearPageReserved(page);
2123 init_page_count(page);
2124 __free_page(page);
2125}
2126
2127static inline void free_reserved_page(struct page *page)
2128{
2129 __free_reserved_page(page);
2130 adjust_managed_page_count(page, 1);
2131}
2132
2133static inline void mark_page_reserved(struct page *page)
2134{
2135 SetPageReserved(page);
2136 adjust_managed_page_count(page, -1);
2137}
2138
2139/*
2140 * Default method to free all the __init memory into the buddy system.
2141 * The freed pages will be poisoned with pattern "poison" if it's within
2142 * range [0, UCHAR_MAX].
2143 * Return pages freed into the buddy system.
2144 */
2145static inline unsigned long free_initmem_default(int poison)
2146{
2147 extern char __init_begin[], __init_end[];
2148
2149 return free_reserved_area(&__init_begin, &__init_end,
2150 poison, "unused kernel");
2151}
2152
2153static inline unsigned long get_num_physpages(void)
2154{
2155 int nid;
2156 unsigned long phys_pages = 0;
2157
2158 for_each_online_node(nid)
2159 phys_pages += node_present_pages(nid);
2160
2161 return phys_pages;
2162}
2163
2164#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2165/*
2166 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2167 * zones, allocate the backing mem_map and account for memory holes in a more
2168 * architecture independent manner. This is a substitute for creating the
2169 * zone_sizes[] and zholes_size[] arrays and passing them to
2170 * free_area_init_node()
2171 *
2172 * An architecture is expected to register range of page frames backed by
2173 * physical memory with memblock_add[_node]() before calling
2174 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2175 * usage, an architecture is expected to do something like
2176 *
2177 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2178 * max_highmem_pfn};
2179 * for_each_valid_physical_page_range()
2180 * memblock_add_node(base, size, nid)
2181 * free_area_init_nodes(max_zone_pfns);
2182 *
2183 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2184 * registered physical page range. Similarly
2185 * sparse_memory_present_with_active_regions() calls memory_present() for
2186 * each range when SPARSEMEM is enabled.
2187 *
2188 * See mm/page_alloc.c for more information on each function exposed by
2189 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2190 */
2191extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2192unsigned long node_map_pfn_alignment(void);
2193unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2194 unsigned long end_pfn);
2195extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2196 unsigned long end_pfn);
2197extern void get_pfn_range_for_nid(unsigned int nid,
2198 unsigned long *start_pfn, unsigned long *end_pfn);
2199extern unsigned long find_min_pfn_with_active_regions(void);
2200extern void free_bootmem_with_active_regions(int nid,
2201 unsigned long max_low_pfn);
2202extern void sparse_memory_present_with_active_regions(int nid);
2203
2204#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2205
2206#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2207 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2208static inline int __early_pfn_to_nid(unsigned long pfn,
2209 struct mminit_pfnnid_cache *state)
2210{
2211 return 0;
2212}
2213#else
2214/* please see mm/page_alloc.c */
2215extern int __meminit early_pfn_to_nid(unsigned long pfn);
2216/* there is a per-arch backend function. */
2217extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2218 struct mminit_pfnnid_cache *state);
2219#endif
2220
David Brazdil0f672f62019-12-10 10:32:29 +00002221#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002222void zero_resv_unavail(void);
2223#else
2224static inline void zero_resv_unavail(void) {}
2225#endif
2226
2227extern void set_dma_reserve(unsigned long new_dma_reserve);
2228extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
Olivier Deprez0e641232021-09-23 10:07:05 +02002229 enum meminit_context, struct vmem_altmap *);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002230extern void setup_per_zone_wmarks(void);
2231extern int __meminit init_per_zone_wmark_min(void);
2232extern void mem_init(void);
2233extern void __init mmap_init(void);
2234extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2235extern long si_mem_available(void);
2236extern void si_meminfo(struct sysinfo * val);
2237extern void si_meminfo_node(struct sysinfo *val, int nid);
2238#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2239extern unsigned long arch_reserved_kernel_pages(void);
2240#endif
2241
2242extern __printf(3, 4)
2243void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2244
2245extern void setup_per_cpu_pageset(void);
2246
2247extern void zone_pcp_update(struct zone *zone);
2248extern void zone_pcp_reset(struct zone *zone);
2249
2250/* page_alloc.c */
2251extern int min_free_kbytes;
David Brazdil0f672f62019-12-10 10:32:29 +00002252extern int watermark_boost_factor;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002253extern int watermark_scale_factor;
2254
2255/* nommu.c */
2256extern atomic_long_t mmap_pages_allocated;
2257extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2258
2259/* interval_tree.c */
2260void vma_interval_tree_insert(struct vm_area_struct *node,
2261 struct rb_root_cached *root);
2262void vma_interval_tree_insert_after(struct vm_area_struct *node,
2263 struct vm_area_struct *prev,
2264 struct rb_root_cached *root);
2265void vma_interval_tree_remove(struct vm_area_struct *node,
2266 struct rb_root_cached *root);
2267struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2268 unsigned long start, unsigned long last);
2269struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2270 unsigned long start, unsigned long last);
2271
2272#define vma_interval_tree_foreach(vma, root, start, last) \
2273 for (vma = vma_interval_tree_iter_first(root, start, last); \
2274 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2275
2276void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2277 struct rb_root_cached *root);
2278void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2279 struct rb_root_cached *root);
2280struct anon_vma_chain *
2281anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2282 unsigned long start, unsigned long last);
2283struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2284 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2285#ifdef CONFIG_DEBUG_VM_RB
2286void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2287#endif
2288
2289#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2290 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2291 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2292
2293/* mmap.c */
2294extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2295extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2296 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2297 struct vm_area_struct *expand);
2298static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2299 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2300{
2301 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2302}
2303extern struct vm_area_struct *vma_merge(struct mm_struct *,
2304 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2305 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2306 struct mempolicy *, struct vm_userfaultfd_ctx);
2307extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2308extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2309 unsigned long addr, int new_below);
2310extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2311 unsigned long addr, int new_below);
2312extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2313extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2314 struct rb_node **, struct rb_node *);
2315extern void unlink_file_vma(struct vm_area_struct *);
2316extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2317 unsigned long addr, unsigned long len, pgoff_t pgoff,
2318 bool *need_rmap_locks);
2319extern void exit_mmap(struct mm_struct *);
2320
2321static inline int check_data_rlimit(unsigned long rlim,
2322 unsigned long new,
2323 unsigned long start,
2324 unsigned long end_data,
2325 unsigned long start_data)
2326{
2327 if (rlim < RLIM_INFINITY) {
2328 if (((new - start) + (end_data - start_data)) > rlim)
2329 return -ENOSPC;
2330 }
2331
2332 return 0;
2333}
2334
2335extern int mm_take_all_locks(struct mm_struct *mm);
2336extern void mm_drop_all_locks(struct mm_struct *mm);
2337
2338extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2339extern struct file *get_mm_exe_file(struct mm_struct *mm);
2340extern struct file *get_task_exe_file(struct task_struct *task);
2341
2342extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2343extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2344
2345extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2346 const struct vm_special_mapping *sm);
2347extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2348 unsigned long addr, unsigned long len,
2349 unsigned long flags,
2350 const struct vm_special_mapping *spec);
2351/* This is an obsolete alternative to _install_special_mapping. */
2352extern int install_special_mapping(struct mm_struct *mm,
2353 unsigned long addr, unsigned long len,
2354 unsigned long flags, struct page **pages);
2355
David Brazdil0f672f62019-12-10 10:32:29 +00002356unsigned long randomize_stack_top(unsigned long stack_top);
2357
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002358extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2359
2360extern unsigned long mmap_region(struct file *file, unsigned long addr,
2361 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2362 struct list_head *uf);
2363extern unsigned long do_mmap(struct file *file, unsigned long addr,
2364 unsigned long len, unsigned long prot, unsigned long flags,
2365 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2366 struct list_head *uf);
David Brazdil0f672f62019-12-10 10:32:29 +00002367extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2368 struct list_head *uf, bool downgrade);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002369extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2370 struct list_head *uf);
2371
2372static inline unsigned long
2373do_mmap_pgoff(struct file *file, unsigned long addr,
2374 unsigned long len, unsigned long prot, unsigned long flags,
2375 unsigned long pgoff, unsigned long *populate,
2376 struct list_head *uf)
2377{
2378 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2379}
2380
2381#ifdef CONFIG_MMU
2382extern int __mm_populate(unsigned long addr, unsigned long len,
2383 int ignore_errors);
2384static inline void mm_populate(unsigned long addr, unsigned long len)
2385{
2386 /* Ignore errors */
2387 (void) __mm_populate(addr, len, 1);
2388}
2389#else
2390static inline void mm_populate(unsigned long addr, unsigned long len) {}
2391#endif
2392
2393/* These take the mm semaphore themselves */
2394extern int __must_check vm_brk(unsigned long, unsigned long);
2395extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2396extern int vm_munmap(unsigned long, size_t);
2397extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2398 unsigned long, unsigned long,
2399 unsigned long, unsigned long);
2400
2401struct vm_unmapped_area_info {
2402#define VM_UNMAPPED_AREA_TOPDOWN 1
2403 unsigned long flags;
2404 unsigned long length;
2405 unsigned long low_limit;
2406 unsigned long high_limit;
2407 unsigned long align_mask;
2408 unsigned long align_offset;
2409};
2410
2411extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2412extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2413
2414/*
2415 * Search for an unmapped address range.
2416 *
2417 * We are looking for a range that:
2418 * - does not intersect with any VMA;
2419 * - is contained within the [low_limit, high_limit) interval;
2420 * - is at least the desired size.
2421 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2422 */
2423static inline unsigned long
2424vm_unmapped_area(struct vm_unmapped_area_info *info)
2425{
2426 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2427 return unmapped_area_topdown(info);
2428 else
2429 return unmapped_area(info);
2430}
2431
2432/* truncate.c */
2433extern void truncate_inode_pages(struct address_space *, loff_t);
2434extern void truncate_inode_pages_range(struct address_space *,
2435 loff_t lstart, loff_t lend);
2436extern void truncate_inode_pages_final(struct address_space *);
2437
2438/* generic vm_area_ops exported for stackable file systems */
2439extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2440extern void filemap_map_pages(struct vm_fault *vmf,
2441 pgoff_t start_pgoff, pgoff_t end_pgoff);
2442extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2443
2444/* mm/page-writeback.c */
2445int __must_check write_one_page(struct page *page);
2446void task_dirty_inc(struct task_struct *tsk);
2447
2448/* readahead.c */
David Brazdil0f672f62019-12-10 10:32:29 +00002449#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002450
2451int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2452 pgoff_t offset, unsigned long nr_to_read);
2453
2454void page_cache_sync_readahead(struct address_space *mapping,
2455 struct file_ra_state *ra,
2456 struct file *filp,
2457 pgoff_t offset,
2458 unsigned long size);
2459
2460void page_cache_async_readahead(struct address_space *mapping,
2461 struct file_ra_state *ra,
2462 struct file *filp,
2463 struct page *pg,
2464 pgoff_t offset,
2465 unsigned long size);
2466
2467extern unsigned long stack_guard_gap;
2468/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2469extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2470
2471/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2472extern int expand_downwards(struct vm_area_struct *vma,
2473 unsigned long address);
2474#if VM_GROWSUP
2475extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2476#else
2477 #define expand_upwards(vma, address) (0)
2478#endif
2479
2480/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2481extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2482extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2483 struct vm_area_struct **pprev);
2484
2485/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2486 NULL if none. Assume start_addr < end_addr. */
2487static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2488{
2489 struct vm_area_struct * vma = find_vma(mm,start_addr);
2490
2491 if (vma && end_addr <= vma->vm_start)
2492 vma = NULL;
2493 return vma;
2494}
2495
2496static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2497{
2498 unsigned long vm_start = vma->vm_start;
2499
2500 if (vma->vm_flags & VM_GROWSDOWN) {
2501 vm_start -= stack_guard_gap;
2502 if (vm_start > vma->vm_start)
2503 vm_start = 0;
2504 }
2505 return vm_start;
2506}
2507
2508static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2509{
2510 unsigned long vm_end = vma->vm_end;
2511
2512 if (vma->vm_flags & VM_GROWSUP) {
2513 vm_end += stack_guard_gap;
2514 if (vm_end < vma->vm_end)
2515 vm_end = -PAGE_SIZE;
2516 }
2517 return vm_end;
2518}
2519
2520static inline unsigned long vma_pages(struct vm_area_struct *vma)
2521{
2522 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2523}
2524
2525/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2526static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2527 unsigned long vm_start, unsigned long vm_end)
2528{
2529 struct vm_area_struct *vma = find_vma(mm, vm_start);
2530
2531 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2532 vma = NULL;
2533
2534 return vma;
2535}
2536
2537static inline bool range_in_vma(struct vm_area_struct *vma,
2538 unsigned long start, unsigned long end)
2539{
2540 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2541}
2542
2543#ifdef CONFIG_MMU
2544pgprot_t vm_get_page_prot(unsigned long vm_flags);
2545void vma_set_page_prot(struct vm_area_struct *vma);
2546#else
2547static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2548{
2549 return __pgprot(0);
2550}
2551static inline void vma_set_page_prot(struct vm_area_struct *vma)
2552{
2553 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2554}
2555#endif
2556
2557#ifdef CONFIG_NUMA_BALANCING
2558unsigned long change_prot_numa(struct vm_area_struct *vma,
2559 unsigned long start, unsigned long end);
2560#endif
2561
2562struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2563int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2564 unsigned long pfn, unsigned long size, pgprot_t);
2565int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
David Brazdil0f672f62019-12-10 10:32:29 +00002566int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2567 unsigned long num);
2568int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2569 unsigned long num);
2570vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002571 unsigned long pfn);
David Brazdil0f672f62019-12-10 10:32:29 +00002572vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002573 unsigned long pfn, pgprot_t pgprot);
David Brazdil0f672f62019-12-10 10:32:29 +00002574vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002575 pfn_t pfn);
2576vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2577 unsigned long addr, pfn_t pfn);
2578int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2579
2580static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2581 unsigned long addr, struct page *page)
2582{
2583 int err = vm_insert_page(vma, addr, page);
2584
2585 if (err == -ENOMEM)
2586 return VM_FAULT_OOM;
2587 if (err < 0 && err != -EBUSY)
2588 return VM_FAULT_SIGBUS;
2589
2590 return VM_FAULT_NOPAGE;
2591}
2592
Olivier Deprez0e641232021-09-23 10:07:05 +02002593#ifndef io_remap_pfn_range
2594static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2595 unsigned long addr, unsigned long pfn,
2596 unsigned long size, pgprot_t prot)
2597{
2598 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2599}
2600#endif
2601
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002602static inline vm_fault_t vmf_error(int err)
2603{
2604 if (err == -ENOMEM)
2605 return VM_FAULT_OOM;
2606 return VM_FAULT_SIGBUS;
2607}
2608
David Brazdil0f672f62019-12-10 10:32:29 +00002609struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2610 unsigned int foll_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002611
2612#define FOLL_WRITE 0x01 /* check pte is writable */
2613#define FOLL_TOUCH 0x02 /* mark page accessed */
2614#define FOLL_GET 0x04 /* do get_page on page */
2615#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2616#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2617#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2618 * and return without waiting upon it */
2619#define FOLL_POPULATE 0x40 /* fault in page */
2620#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2621#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2622#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2623#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2624#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2625#define FOLL_MLOCK 0x1000 /* lock present pages */
2626#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2627#define FOLL_COW 0x4000 /* internal GUP flag */
2628#define FOLL_ANON 0x8000 /* don't do file mappings */
David Brazdil0f672f62019-12-10 10:32:29 +00002629#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2630#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2631
2632/*
2633 * NOTE on FOLL_LONGTERM:
2634 *
2635 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2636 * period _often_ under userspace control. This is contrasted with
2637 * iov_iter_get_pages() where usages which are transient.
2638 *
2639 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2640 * lifetime enforced by the filesystem and we need guarantees that longterm
2641 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2642 * the filesystem. Ideas for this coordination include revoking the longterm
2643 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2644 * added after the problem with filesystems was found FS DAX VMAs are
2645 * specifically failed. Filesystem pages are still subject to bugs and use of
2646 * FOLL_LONGTERM should be avoided on those pages.
2647 *
2648 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2649 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2650 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2651 * is due to an incompatibility with the FS DAX check and
2652 * FAULT_FLAG_ALLOW_RETRY
2653 *
2654 * In the CMA case: longterm pins in a CMA region would unnecessarily fragment
2655 * that region. And so CMA attempts to migrate the page before pinning when
2656 * FOLL_LONGTERM is specified.
2657 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002658
2659static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2660{
2661 if (vm_fault & VM_FAULT_OOM)
2662 return -ENOMEM;
2663 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2664 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2665 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2666 return -EFAULT;
2667 return 0;
2668}
2669
David Brazdil0f672f62019-12-10 10:32:29 +00002670typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002671extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2672 unsigned long size, pte_fn_t fn, void *data);
2673
2674
2675#ifdef CONFIG_PAGE_POISONING
2676extern bool page_poisoning_enabled(void);
2677extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2678#else
2679static inline bool page_poisoning_enabled(void) { return false; }
2680static inline void kernel_poison_pages(struct page *page, int numpages,
2681 int enable) { }
2682#endif
2683
David Brazdil0f672f62019-12-10 10:32:29 +00002684#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2685DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2686#else
2687DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2688#endif
2689static inline bool want_init_on_alloc(gfp_t flags)
2690{
2691 if (static_branch_unlikely(&init_on_alloc) &&
2692 !page_poisoning_enabled())
2693 return true;
2694 return flags & __GFP_ZERO;
2695}
2696
2697#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2698DECLARE_STATIC_KEY_TRUE(init_on_free);
2699#else
2700DECLARE_STATIC_KEY_FALSE(init_on_free);
2701#endif
2702static inline bool want_init_on_free(void)
2703{
2704 return static_branch_unlikely(&init_on_free) &&
2705 !page_poisoning_enabled();
2706}
2707
Olivier Deprez0e641232021-09-23 10:07:05 +02002708#ifdef CONFIG_DEBUG_PAGEALLOC
2709extern void init_debug_pagealloc(void);
David Brazdil0f672f62019-12-10 10:32:29 +00002710#else
Olivier Deprez0e641232021-09-23 10:07:05 +02002711static inline void init_debug_pagealloc(void) {}
David Brazdil0f672f62019-12-10 10:32:29 +00002712#endif
Olivier Deprez0e641232021-09-23 10:07:05 +02002713extern bool _debug_pagealloc_enabled_early;
2714DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002715
2716static inline bool debug_pagealloc_enabled(void)
2717{
Olivier Deprez0e641232021-09-23 10:07:05 +02002718 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2719 _debug_pagealloc_enabled_early;
2720}
2721
2722/*
2723 * For use in fast paths after init_debug_pagealloc() has run, or when a
2724 * false negative result is not harmful when called too early.
2725 */
2726static inline bool debug_pagealloc_enabled_static(void)
2727{
David Brazdil0f672f62019-12-10 10:32:29 +00002728 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2729 return false;
2730
2731 return static_branch_unlikely(&_debug_pagealloc_enabled);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002732}
2733
David Brazdil0f672f62019-12-10 10:32:29 +00002734#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2735extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2736
Olivier Deprez0e641232021-09-23 10:07:05 +02002737/*
2738 * When called in DEBUG_PAGEALLOC context, the call should most likely be
2739 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
2740 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002741static inline void
2742kernel_map_pages(struct page *page, int numpages, int enable)
2743{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002744 __kernel_map_pages(page, numpages, enable);
2745}
2746#ifdef CONFIG_HIBERNATION
2747extern bool kernel_page_present(struct page *page);
2748#endif /* CONFIG_HIBERNATION */
David Brazdil0f672f62019-12-10 10:32:29 +00002749#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002750static inline void
2751kernel_map_pages(struct page *page, int numpages, int enable) {}
2752#ifdef CONFIG_HIBERNATION
2753static inline bool kernel_page_present(struct page *page) { return true; }
2754#endif /* CONFIG_HIBERNATION */
David Brazdil0f672f62019-12-10 10:32:29 +00002755#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002756
2757#ifdef __HAVE_ARCH_GATE_AREA
2758extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2759extern int in_gate_area_no_mm(unsigned long addr);
2760extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2761#else
2762static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2763{
2764 return NULL;
2765}
2766static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2767static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2768{
2769 return 0;
2770}
2771#endif /* __HAVE_ARCH_GATE_AREA */
2772
2773extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2774
2775#ifdef CONFIG_SYSCTL
2776extern int sysctl_drop_caches;
2777int drop_caches_sysctl_handler(struct ctl_table *, int,
2778 void __user *, size_t *, loff_t *);
2779#endif
2780
2781void drop_slab(void);
2782void drop_slab_node(int nid);
2783
2784#ifndef CONFIG_MMU
2785#define randomize_va_space 0
2786#else
2787extern int randomize_va_space;
2788#endif
2789
2790const char * arch_vma_name(struct vm_area_struct *vma);
David Brazdil0f672f62019-12-10 10:32:29 +00002791#ifdef CONFIG_MMU
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002792void print_vma_addr(char *prefix, unsigned long rip);
David Brazdil0f672f62019-12-10 10:32:29 +00002793#else
2794static inline void print_vma_addr(char *prefix, unsigned long rip)
2795{
2796}
2797#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002798
2799void *sparse_buffer_alloc(unsigned long size);
David Brazdil0f672f62019-12-10 10:32:29 +00002800struct page * __populate_section_memmap(unsigned long pfn,
2801 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002802pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2803p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2804pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2805pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2806pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2807void *vmemmap_alloc_block(unsigned long size, int node);
2808struct vmem_altmap;
2809void *vmemmap_alloc_block_buf(unsigned long size, int node);
2810void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2811void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2812int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2813 int node);
2814int vmemmap_populate(unsigned long start, unsigned long end, int node,
2815 struct vmem_altmap *altmap);
2816void vmemmap_populate_print_last(void);
2817#ifdef CONFIG_MEMORY_HOTPLUG
2818void vmemmap_free(unsigned long start, unsigned long end,
2819 struct vmem_altmap *altmap);
2820#endif
2821void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2822 unsigned long nr_pages);
2823
2824enum mf_flags {
2825 MF_COUNT_INCREASED = 1 << 0,
2826 MF_ACTION_REQUIRED = 1 << 1,
2827 MF_MUST_KILL = 1 << 2,
2828 MF_SOFT_OFFLINE = 1 << 3,
2829};
2830extern int memory_failure(unsigned long pfn, int flags);
2831extern void memory_failure_queue(unsigned long pfn, int flags);
2832extern int unpoison_memory(unsigned long pfn);
2833extern int get_hwpoison_page(struct page *page);
2834#define put_hwpoison_page(page) put_page(page)
2835extern int sysctl_memory_failure_early_kill;
2836extern int sysctl_memory_failure_recovery;
2837extern void shake_page(struct page *p, int access);
2838extern atomic_long_t num_poisoned_pages __read_mostly;
2839extern int soft_offline_page(struct page *page, int flags);
2840
2841
2842/*
2843 * Error handlers for various types of pages.
2844 */
2845enum mf_result {
2846 MF_IGNORED, /* Error: cannot be handled */
2847 MF_FAILED, /* Error: handling failed */
2848 MF_DELAYED, /* Will be handled later */
2849 MF_RECOVERED, /* Successfully recovered */
2850};
2851
2852enum mf_action_page_type {
2853 MF_MSG_KERNEL,
2854 MF_MSG_KERNEL_HIGH_ORDER,
2855 MF_MSG_SLAB,
2856 MF_MSG_DIFFERENT_COMPOUND,
2857 MF_MSG_POISONED_HUGE,
2858 MF_MSG_HUGE,
2859 MF_MSG_FREE_HUGE,
2860 MF_MSG_NON_PMD_HUGE,
2861 MF_MSG_UNMAP_FAILED,
2862 MF_MSG_DIRTY_SWAPCACHE,
2863 MF_MSG_CLEAN_SWAPCACHE,
2864 MF_MSG_DIRTY_MLOCKED_LRU,
2865 MF_MSG_CLEAN_MLOCKED_LRU,
2866 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2867 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2868 MF_MSG_DIRTY_LRU,
2869 MF_MSG_CLEAN_LRU,
2870 MF_MSG_TRUNCATED_LRU,
2871 MF_MSG_BUDDY,
2872 MF_MSG_BUDDY_2ND,
2873 MF_MSG_DAX,
2874 MF_MSG_UNKNOWN,
2875};
2876
2877#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2878extern void clear_huge_page(struct page *page,
2879 unsigned long addr_hint,
2880 unsigned int pages_per_huge_page);
2881extern void copy_user_huge_page(struct page *dst, struct page *src,
2882 unsigned long addr_hint,
2883 struct vm_area_struct *vma,
2884 unsigned int pages_per_huge_page);
2885extern long copy_huge_page_from_user(struct page *dst_page,
2886 const void __user *usr_src,
2887 unsigned int pages_per_huge_page,
2888 bool allow_pagefault);
2889#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2890
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002891#ifdef CONFIG_DEBUG_PAGEALLOC
2892extern unsigned int _debug_guardpage_minorder;
David Brazdil0f672f62019-12-10 10:32:29 +00002893DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002894
2895static inline unsigned int debug_guardpage_minorder(void)
2896{
2897 return _debug_guardpage_minorder;
2898}
2899
2900static inline bool debug_guardpage_enabled(void)
2901{
David Brazdil0f672f62019-12-10 10:32:29 +00002902 return static_branch_unlikely(&_debug_guardpage_enabled);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002903}
2904
2905static inline bool page_is_guard(struct page *page)
2906{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002907 if (!debug_guardpage_enabled())
2908 return false;
2909
David Brazdil0f672f62019-12-10 10:32:29 +00002910 return PageGuard(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002911}
2912#else
2913static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2914static inline bool debug_guardpage_enabled(void) { return false; }
2915static inline bool page_is_guard(struct page *page) { return false; }
2916#endif /* CONFIG_DEBUG_PAGEALLOC */
2917
2918#if MAX_NUMNODES > 1
2919void __init setup_nr_node_ids(void);
2920#else
2921static inline void setup_nr_node_ids(void) {}
2922#endif
2923
David Brazdil0f672f62019-12-10 10:32:29 +00002924extern int memcmp_pages(struct page *page1, struct page *page2);
2925
2926static inline int pages_identical(struct page *page1, struct page *page2)
2927{
2928 return !memcmp_pages(page1, page2);
2929}
2930
Olivier Deprez0e641232021-09-23 10:07:05 +02002931/**
2932 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
2933 * @seals: the seals to check
2934 * @vma: the vma to operate on
2935 *
2936 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
2937 * the vma flags. Return 0 if check pass, or <0 for errors.
2938 */
2939static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
2940{
2941 if (seals & F_SEAL_FUTURE_WRITE) {
2942 /*
2943 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2944 * "future write" seal active.
2945 */
2946 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2947 return -EPERM;
2948
2949 /*
2950 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2951 * MAP_SHARED and read-only, take care to not allow mprotect to
2952 * revert protections on such mappings. Do this only for shared
2953 * mappings. For private mappings, don't need to mask
2954 * VM_MAYWRITE as we still want them to be COW-writable.
2955 */
2956 if (vma->vm_flags & VM_SHARED)
2957 vma->vm_flags &= ~(VM_MAYWRITE);
2958 }
2959
2960 return 0;
2961}
2962
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002963#endif /* __KERNEL__ */
2964#endif /* _LINUX_MM_H */