blob: a2adf95b3f9c5e1e026a3d1db1cb7136c992ca83 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
9#include <linux/mmdebug.h>
10#include <linux/gfp.h>
11#include <linux/bug.h>
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
15#include <linux/atomic.h>
16#include <linux/debug_locks.h>
17#include <linux/mm_types.h>
18#include <linux/range.h>
19#include <linux/pfn.h>
20#include <linux/percpu-refcount.h>
21#include <linux/bit_spinlock.h>
22#include <linux/shrinker.h>
23#include <linux/resource.h>
24#include <linux/page_ext.h>
25#include <linux/err.h>
26#include <linux/page_ref.h>
27#include <linux/memremap.h>
28#include <linux/overflow.h>
David Brazdil0f672f62019-12-10 10:32:29 +000029#include <linux/sizes.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000030
31struct mempolicy;
32struct anon_vma;
33struct anon_vma_chain;
34struct file_ra_state;
35struct user_struct;
36struct writeback_control;
37struct bdi_writeback;
38
39void init_mm_internals(void);
40
41#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
42extern unsigned long max_mapnr;
43
44static inline void set_max_mapnr(unsigned long limit)
45{
46 max_mapnr = limit;
47}
48#else
49static inline void set_max_mapnr(unsigned long limit) { }
50#endif
51
David Brazdil0f672f62019-12-10 10:32:29 +000052extern atomic_long_t _totalram_pages;
53static inline unsigned long totalram_pages(void)
54{
55 return (unsigned long)atomic_long_read(&_totalram_pages);
56}
57
58static inline void totalram_pages_inc(void)
59{
60 atomic_long_inc(&_totalram_pages);
61}
62
63static inline void totalram_pages_dec(void)
64{
65 atomic_long_dec(&_totalram_pages);
66}
67
68static inline void totalram_pages_add(long count)
69{
70 atomic_long_add(count, &_totalram_pages);
71}
72
73static inline void totalram_pages_set(long val)
74{
75 atomic_long_set(&_totalram_pages, val);
76}
77
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000078extern void * high_memory;
79extern int page_cluster;
80
81#ifdef CONFIG_SYSCTL
82extern int sysctl_legacy_va_layout;
83#else
84#define sysctl_legacy_va_layout 0
85#endif
86
87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88extern const int mmap_rnd_bits_min;
89extern const int mmap_rnd_bits_max;
90extern int mmap_rnd_bits __read_mostly;
91#endif
92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93extern const int mmap_rnd_compat_bits_min;
94extern const int mmap_rnd_compat_bits_max;
95extern int mmap_rnd_compat_bits __read_mostly;
96#endif
97
98#include <asm/page.h>
99#include <asm/pgtable.h>
100#include <asm/processor.h>
101
David Brazdil0f672f62019-12-10 10:32:29 +0000102/*
103 * Architectures that support memory tagging (assigning tags to memory regions,
104 * embedding these tags into addresses that point to these memory regions, and
105 * checking that the memory and the pointer tags match on memory accesses)
106 * redefine this macro to strip tags from pointers.
107 * It's defined as noop for arcitectures that don't support memory tagging.
108 */
109#ifndef untagged_addr
110#define untagged_addr(addr) (addr)
111#endif
112
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000113#ifndef __pa_symbol
114#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
115#endif
116
117#ifndef page_to_virt
118#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
119#endif
120
121#ifndef lm_alias
122#define lm_alias(x) __va(__pa_symbol(x))
123#endif
124
125/*
126 * To prevent common memory management code establishing
127 * a zero page mapping on a read fault.
128 * This macro should be defined within <asm/pgtable.h>.
129 * s390 does this to prevent multiplexing of hardware bits
130 * related to the physical page in case of virtualization.
131 */
132#ifndef mm_forbids_zeropage
133#define mm_forbids_zeropage(X) (0)
134#endif
135
136/*
137 * On some architectures it is expensive to call memset() for small sizes.
David Brazdil0f672f62019-12-10 10:32:29 +0000138 * If an architecture decides to implement their own version of
139 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
140 * define their own version of this macro in <asm/pgtable.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000141 */
David Brazdil0f672f62019-12-10 10:32:29 +0000142#if BITS_PER_LONG == 64
143/* This function must be updated when the size of struct page grows above 80
144 * or reduces below 56. The idea that compiler optimizes out switch()
145 * statement, and only leaves move/store instructions. Also the compiler can
146 * combine write statments if they are both assignments and can be reordered,
147 * this can result in several of the writes here being dropped.
148 */
149#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
150static inline void __mm_zero_struct_page(struct page *page)
151{
152 unsigned long *_pp = (void *)page;
153
154 /* Check that struct page is either 56, 64, 72, or 80 bytes */
155 BUILD_BUG_ON(sizeof(struct page) & 7);
156 BUILD_BUG_ON(sizeof(struct page) < 56);
157 BUILD_BUG_ON(sizeof(struct page) > 80);
158
159 switch (sizeof(struct page)) {
160 case 80:
161 _pp[9] = 0; /* fallthrough */
162 case 72:
163 _pp[8] = 0; /* fallthrough */
164 case 64:
165 _pp[7] = 0; /* fallthrough */
166 case 56:
167 _pp[6] = 0;
168 _pp[5] = 0;
169 _pp[4] = 0;
170 _pp[3] = 0;
171 _pp[2] = 0;
172 _pp[1] = 0;
173 _pp[0] = 0;
174 }
175}
176#else
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000177#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
178#endif
179
180/*
181 * Default maximum number of active map areas, this limits the number of vmas
182 * per mm struct. Users can overwrite this number by sysctl but there is a
183 * problem.
184 *
185 * When a program's coredump is generated as ELF format, a section is created
186 * per a vma. In ELF, the number of sections is represented in unsigned short.
187 * This means the number of sections should be smaller than 65535 at coredump.
188 * Because the kernel adds some informative sections to a image of program at
189 * generating coredump, we need some margin. The number of extra sections is
190 * 1-3 now and depends on arch. We use "5" as safe margin, here.
191 *
192 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
193 * not a hard limit any more. Although some userspace tools can be surprised by
194 * that.
195 */
196#define MAPCOUNT_ELF_CORE_MARGIN (5)
197#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
198
199extern int sysctl_max_map_count;
200
201extern unsigned long sysctl_user_reserve_kbytes;
202extern unsigned long sysctl_admin_reserve_kbytes;
203
204extern int sysctl_overcommit_memory;
205extern int sysctl_overcommit_ratio;
206extern unsigned long sysctl_overcommit_kbytes;
207
208extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
209 size_t *, loff_t *);
210extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
211 size_t *, loff_t *);
212
213#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
214
215/* to align the pointer to the (next) page boundary */
216#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
217
218/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
219#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
220
David Brazdil0f672f62019-12-10 10:32:29 +0000221#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
222
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000223/*
224 * Linux kernel virtual memory manager primitives.
225 * The idea being to have a "virtual" mm in the same way
226 * we have a virtual fs - giving a cleaner interface to the
227 * mm details, and allowing different kinds of memory mappings
228 * (from shared memory to executable loading to arbitrary
229 * mmap() functions).
230 */
231
232struct vm_area_struct *vm_area_alloc(struct mm_struct *);
233struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
234void vm_area_free(struct vm_area_struct *);
235
236#ifndef CONFIG_MMU
237extern struct rb_root nommu_region_tree;
238extern struct rw_semaphore nommu_region_sem;
239
240extern unsigned int kobjsize(const void *objp);
241#endif
242
243/*
244 * vm_flags in vm_area_struct, see mm_types.h.
245 * When changing, update also include/trace/events/mmflags.h
246 */
247#define VM_NONE 0x00000000
248
249#define VM_READ 0x00000001 /* currently active flags */
250#define VM_WRITE 0x00000002
251#define VM_EXEC 0x00000004
252#define VM_SHARED 0x00000008
253
254/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
255#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
256#define VM_MAYWRITE 0x00000020
257#define VM_MAYEXEC 0x00000040
258#define VM_MAYSHARE 0x00000080
259
260#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
261#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
262#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
263#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
264#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
265
266#define VM_LOCKED 0x00002000
267#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
268
269 /* Used by sys_madvise() */
270#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
271#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
272
273#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
274#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
275#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
276#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
277#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
278#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
279#define VM_SYNC 0x00800000 /* Synchronous page faults */
280#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
281#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
282#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
283
284#ifdef CONFIG_MEM_SOFT_DIRTY
285# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
286#else
287# define VM_SOFTDIRTY 0
288#endif
289
290#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
291#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
292#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
293#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
294
295#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
296#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
297#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
298#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
299#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
300#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
301#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
302#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
303#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
304#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
305#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
306#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
307
308#ifdef CONFIG_ARCH_HAS_PKEYS
309# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
310# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
311# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
312# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
313# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
314#ifdef CONFIG_PPC
315# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
316#else
317# define VM_PKEY_BIT4 0
318#endif
319#endif /* CONFIG_ARCH_HAS_PKEYS */
320
321#if defined(CONFIG_X86)
322# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
323#elif defined(CONFIG_PPC)
324# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
325#elif defined(CONFIG_PARISC)
326# define VM_GROWSUP VM_ARCH_1
327#elif defined(CONFIG_IA64)
328# define VM_GROWSUP VM_ARCH_1
329#elif defined(CONFIG_SPARC64)
330# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
331# define VM_ARCH_CLEAR VM_SPARC_ADI
332#elif !defined(CONFIG_MMU)
333# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
334#endif
335
336#if defined(CONFIG_X86_INTEL_MPX)
337/* MPX specific bounds table or bounds directory */
338# define VM_MPX VM_HIGH_ARCH_4
339#else
340# define VM_MPX VM_NONE
341#endif
342
343#ifndef VM_GROWSUP
344# define VM_GROWSUP VM_NONE
345#endif
346
347/* Bits set in the VMA until the stack is in its final location */
348#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
349
350#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
351#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
352#endif
353
354#ifdef CONFIG_STACK_GROWSUP
355#define VM_STACK VM_GROWSUP
356#else
357#define VM_STACK VM_GROWSDOWN
358#endif
359
360#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
361
362/*
363 * Special vmas that are non-mergable, non-mlock()able.
364 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
365 */
366#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
367
368/* This mask defines which mm->def_flags a process can inherit its parent */
369#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
370
371/* This mask is used to clear all the VMA flags used by mlock */
372#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
373
374/* Arch-specific flags to clear when updating VM flags on protection change */
375#ifndef VM_ARCH_CLEAR
376# define VM_ARCH_CLEAR VM_NONE
377#endif
378#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
379
380/*
381 * mapping from the currently active vm_flags protection bits (the
382 * low four bits) to a page protection mask..
383 */
384extern pgprot_t protection_map[16];
385
386#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
387#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
388#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
389#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
390#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
391#define FAULT_FLAG_TRIED 0x20 /* Second try */
392#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
393#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
394#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
395
396#define FAULT_FLAG_TRACE \
397 { FAULT_FLAG_WRITE, "WRITE" }, \
398 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
399 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
400 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
401 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
402 { FAULT_FLAG_TRIED, "TRIED" }, \
403 { FAULT_FLAG_USER, "USER" }, \
404 { FAULT_FLAG_REMOTE, "REMOTE" }, \
405 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
406
407/*
408 * vm_fault is filled by the the pagefault handler and passed to the vma's
409 * ->fault function. The vma's ->fault is responsible for returning a bitmask
410 * of VM_FAULT_xxx flags that give details about how the fault was handled.
411 *
412 * MM layer fills up gfp_mask for page allocations but fault handler might
413 * alter it if its implementation requires a different allocation context.
414 *
415 * pgoff should be used in favour of virtual_address, if possible.
416 */
417struct vm_fault {
418 struct vm_area_struct *vma; /* Target VMA */
419 unsigned int flags; /* FAULT_FLAG_xxx flags */
420 gfp_t gfp_mask; /* gfp mask to be used for allocations */
421 pgoff_t pgoff; /* Logical page offset based on vma */
422 unsigned long address; /* Faulting virtual address */
423 pmd_t *pmd; /* Pointer to pmd entry matching
424 * the 'address' */
425 pud_t *pud; /* Pointer to pud entry matching
426 * the 'address'
427 */
428 pte_t orig_pte; /* Value of PTE at the time of fault */
429
430 struct page *cow_page; /* Page handler may use for COW fault */
431 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
432 struct page *page; /* ->fault handlers should return a
433 * page here, unless VM_FAULT_NOPAGE
434 * is set (which is also implied by
435 * VM_FAULT_ERROR).
436 */
437 /* These three entries are valid only while holding ptl lock */
438 pte_t *pte; /* Pointer to pte entry matching
439 * the 'address'. NULL if the page
440 * table hasn't been allocated.
441 */
442 spinlock_t *ptl; /* Page table lock.
443 * Protects pte page table if 'pte'
444 * is not NULL, otherwise pmd.
445 */
446 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
447 * vm_ops->map_pages() calls
448 * alloc_set_pte() from atomic context.
449 * do_fault_around() pre-allocates
450 * page table to avoid allocation from
451 * atomic context.
452 */
453};
454
455/* page entry size for vm->huge_fault() */
456enum page_entry_size {
457 PE_SIZE_PTE = 0,
458 PE_SIZE_PMD,
459 PE_SIZE_PUD,
460};
461
462/*
463 * These are the virtual MM functions - opening of an area, closing and
464 * unmapping it (needed to keep files on disk up-to-date etc), pointer
465 * to the functions called when a no-page or a wp-page exception occurs.
466 */
467struct vm_operations_struct {
468 void (*open)(struct vm_area_struct * area);
469 void (*close)(struct vm_area_struct * area);
470 int (*split)(struct vm_area_struct * area, unsigned long addr);
471 int (*mremap)(struct vm_area_struct * area);
472 vm_fault_t (*fault)(struct vm_fault *vmf);
473 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
474 enum page_entry_size pe_size);
475 void (*map_pages)(struct vm_fault *vmf,
476 pgoff_t start_pgoff, pgoff_t end_pgoff);
477 unsigned long (*pagesize)(struct vm_area_struct * area);
478
479 /* notification that a previously read-only page is about to become
480 * writable, if an error is returned it will cause a SIGBUS */
481 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
482
483 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
484 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
485
486 /* called by access_process_vm when get_user_pages() fails, typically
487 * for use by special VMAs that can switch between memory and hardware
488 */
489 int (*access)(struct vm_area_struct *vma, unsigned long addr,
490 void *buf, int len, int write);
491
492 /* Called by the /proc/PID/maps code to ask the vma whether it
493 * has a special name. Returning non-NULL will also cause this
494 * vma to be dumped unconditionally. */
495 const char *(*name)(struct vm_area_struct *vma);
496
497#ifdef CONFIG_NUMA
498 /*
499 * set_policy() op must add a reference to any non-NULL @new mempolicy
500 * to hold the policy upon return. Caller should pass NULL @new to
501 * remove a policy and fall back to surrounding context--i.e. do not
502 * install a MPOL_DEFAULT policy, nor the task or system default
503 * mempolicy.
504 */
505 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
506
507 /*
508 * get_policy() op must add reference [mpol_get()] to any policy at
509 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
510 * in mm/mempolicy.c will do this automatically.
511 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
512 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
513 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
514 * must return NULL--i.e., do not "fallback" to task or system default
515 * policy.
516 */
517 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
518 unsigned long addr);
519#endif
520 /*
521 * Called by vm_normal_page() for special PTEs to find the
522 * page for @addr. This is useful if the default behavior
523 * (using pte_page()) would not find the correct page.
524 */
525 struct page *(*find_special_page)(struct vm_area_struct *vma,
526 unsigned long addr);
527};
528
529static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
530{
531 static const struct vm_operations_struct dummy_vm_ops = {};
532
533 memset(vma, 0, sizeof(*vma));
534 vma->vm_mm = mm;
535 vma->vm_ops = &dummy_vm_ops;
536 INIT_LIST_HEAD(&vma->anon_vma_chain);
537}
538
539static inline void vma_set_anonymous(struct vm_area_struct *vma)
540{
541 vma->vm_ops = NULL;
542}
543
David Brazdil0f672f62019-12-10 10:32:29 +0000544static inline bool vma_is_anonymous(struct vm_area_struct *vma)
545{
546 return !vma->vm_ops;
547}
548
549#ifdef CONFIG_SHMEM
550/*
551 * The vma_is_shmem is not inline because it is used only by slow
552 * paths in userfault.
553 */
554bool vma_is_shmem(struct vm_area_struct *vma);
555#else
556static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
557#endif
558
559int vma_is_stack_for_current(struct vm_area_struct *vma);
560
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000561/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
562#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
563
564struct mmu_gather;
565struct inode;
566
David Brazdil0f672f62019-12-10 10:32:29 +0000567#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000568static inline int pmd_devmap(pmd_t pmd)
569{
570 return 0;
571}
572static inline int pud_devmap(pud_t pud)
573{
574 return 0;
575}
576static inline int pgd_devmap(pgd_t pgd)
577{
578 return 0;
579}
580#endif
581
582/*
583 * FIXME: take this include out, include page-flags.h in
584 * files which need it (119 of them)
585 */
586#include <linux/page-flags.h>
587#include <linux/huge_mm.h>
588
589/*
590 * Methods to modify the page usage count.
591 *
592 * What counts for a page usage:
593 * - cache mapping (page->mapping)
594 * - private data (page->private)
595 * - page mapped in a task's page tables, each mapping
596 * is counted separately
597 *
598 * Also, many kernel routines increase the page count before a critical
599 * routine so they can be sure the page doesn't go away from under them.
600 */
601
602/*
603 * Drop a ref, return true if the refcount fell to zero (the page has no users)
604 */
605static inline int put_page_testzero(struct page *page)
606{
607 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
608 return page_ref_dec_and_test(page);
609}
610
611/*
612 * Try to grab a ref unless the page has a refcount of zero, return false if
613 * that is the case.
614 * This can be called when MMU is off so it must not access
615 * any of the virtual mappings.
616 */
617static inline int get_page_unless_zero(struct page *page)
618{
619 return page_ref_add_unless(page, 1, 0);
620}
621
622extern int page_is_ram(unsigned long pfn);
623
624enum {
625 REGION_INTERSECTS,
626 REGION_DISJOINT,
627 REGION_MIXED,
628};
629
630int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
631 unsigned long desc);
632
633/* Support for virtually mapped pages */
634struct page *vmalloc_to_page(const void *addr);
635unsigned long vmalloc_to_pfn(const void *addr);
636
637/*
638 * Determine if an address is within the vmalloc range
639 *
640 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
641 * is no special casing required.
642 */
643static inline bool is_vmalloc_addr(const void *x)
644{
645#ifdef CONFIG_MMU
646 unsigned long addr = (unsigned long)x;
647
648 return addr >= VMALLOC_START && addr < VMALLOC_END;
649#else
650 return false;
651#endif
652}
David Brazdil0f672f62019-12-10 10:32:29 +0000653
654#ifndef is_ioremap_addr
655#define is_ioremap_addr(x) is_vmalloc_addr(x)
656#endif
657
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000658#ifdef CONFIG_MMU
659extern int is_vmalloc_or_module_addr(const void *x);
660#else
661static inline int is_vmalloc_or_module_addr(const void *x)
662{
663 return 0;
664}
665#endif
666
667extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
668static inline void *kvmalloc(size_t size, gfp_t flags)
669{
670 return kvmalloc_node(size, flags, NUMA_NO_NODE);
671}
672static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
673{
674 return kvmalloc_node(size, flags | __GFP_ZERO, node);
675}
676static inline void *kvzalloc(size_t size, gfp_t flags)
677{
678 return kvmalloc(size, flags | __GFP_ZERO);
679}
680
681static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
682{
683 size_t bytes;
684
685 if (unlikely(check_mul_overflow(n, size, &bytes)))
686 return NULL;
687
688 return kvmalloc(bytes, flags);
689}
690
691static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
692{
693 return kvmalloc_array(n, size, flags | __GFP_ZERO);
694}
695
696extern void kvfree(const void *addr);
697
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000698static inline int compound_mapcount(struct page *page)
699{
700 VM_BUG_ON_PAGE(!PageCompound(page), page);
701 page = compound_head(page);
702 return atomic_read(compound_mapcount_ptr(page)) + 1;
703}
704
705/*
706 * The atomic page->_mapcount, starts from -1: so that transitions
707 * both from it and to it can be tracked, using atomic_inc_and_test
708 * and atomic_add_negative(-1).
709 */
710static inline void page_mapcount_reset(struct page *page)
711{
712 atomic_set(&(page)->_mapcount, -1);
713}
714
715int __page_mapcount(struct page *page);
716
717static inline int page_mapcount(struct page *page)
718{
719 VM_BUG_ON_PAGE(PageSlab(page), page);
720
721 if (unlikely(PageCompound(page)))
722 return __page_mapcount(page);
723 return atomic_read(&page->_mapcount) + 1;
724}
725
726#ifdef CONFIG_TRANSPARENT_HUGEPAGE
727int total_mapcount(struct page *page);
728int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
729#else
730static inline int total_mapcount(struct page *page)
731{
732 return page_mapcount(page);
733}
734static inline int page_trans_huge_mapcount(struct page *page,
735 int *total_mapcount)
736{
737 int mapcount = page_mapcount(page);
738 if (total_mapcount)
739 *total_mapcount = mapcount;
740 return mapcount;
741}
742#endif
743
744static inline struct page *virt_to_head_page(const void *x)
745{
746 struct page *page = virt_to_page(x);
747
748 return compound_head(page);
749}
750
751void __put_page(struct page *page);
752
753void put_pages_list(struct list_head *pages);
754
755void split_page(struct page *page, unsigned int order);
756
757/*
758 * Compound pages have a destructor function. Provide a
759 * prototype for that function and accessor functions.
760 * These are _only_ valid on the head of a compound page.
761 */
762typedef void compound_page_dtor(struct page *);
763
764/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
765enum compound_dtor_id {
766 NULL_COMPOUND_DTOR,
767 COMPOUND_PAGE_DTOR,
768#ifdef CONFIG_HUGETLB_PAGE
769 HUGETLB_PAGE_DTOR,
770#endif
771#ifdef CONFIG_TRANSPARENT_HUGEPAGE
772 TRANSHUGE_PAGE_DTOR,
773#endif
774 NR_COMPOUND_DTORS,
775};
776extern compound_page_dtor * const compound_page_dtors[];
777
778static inline void set_compound_page_dtor(struct page *page,
779 enum compound_dtor_id compound_dtor)
780{
781 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
782 page[1].compound_dtor = compound_dtor;
783}
784
785static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
786{
787 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
788 return compound_page_dtors[page[1].compound_dtor];
789}
790
791static inline unsigned int compound_order(struct page *page)
792{
793 if (!PageHead(page))
794 return 0;
795 return page[1].compound_order;
796}
797
798static inline void set_compound_order(struct page *page, unsigned int order)
799{
800 page[1].compound_order = order;
801}
802
David Brazdil0f672f62019-12-10 10:32:29 +0000803/* Returns the number of pages in this potentially compound page. */
804static inline unsigned long compound_nr(struct page *page)
805{
806 return 1UL << compound_order(page);
807}
808
809/* Returns the number of bytes in this potentially compound page. */
810static inline unsigned long page_size(struct page *page)
811{
812 return PAGE_SIZE << compound_order(page);
813}
814
815/* Returns the number of bits needed for the number of bytes in a page */
816static inline unsigned int page_shift(struct page *page)
817{
818 return PAGE_SHIFT + compound_order(page);
819}
820
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000821void free_compound_page(struct page *page);
822
823#ifdef CONFIG_MMU
824/*
825 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
826 * servicing faults for write access. In the normal case, do always want
827 * pte_mkwrite. But get_user_pages can cause write faults for mappings
828 * that do not have writing enabled, when used by access_process_vm.
829 */
830static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
831{
832 if (likely(vma->vm_flags & VM_WRITE))
833 pte = pte_mkwrite(pte);
834 return pte;
835}
836
837vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
838 struct page *page);
839vm_fault_t finish_fault(struct vm_fault *vmf);
840vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
841#endif
842
843/*
844 * Multiple processes may "see" the same page. E.g. for untouched
845 * mappings of /dev/null, all processes see the same page full of
846 * zeroes, and text pages of executables and shared libraries have
847 * only one copy in memory, at most, normally.
848 *
849 * For the non-reserved pages, page_count(page) denotes a reference count.
850 * page_count() == 0 means the page is free. page->lru is then used for
851 * freelist management in the buddy allocator.
852 * page_count() > 0 means the page has been allocated.
853 *
854 * Pages are allocated by the slab allocator in order to provide memory
855 * to kmalloc and kmem_cache_alloc. In this case, the management of the
856 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
857 * unless a particular usage is carefully commented. (the responsibility of
858 * freeing the kmalloc memory is the caller's, of course).
859 *
860 * A page may be used by anyone else who does a __get_free_page().
861 * In this case, page_count still tracks the references, and should only
862 * be used through the normal accessor functions. The top bits of page->flags
863 * and page->virtual store page management information, but all other fields
864 * are unused and could be used privately, carefully. The management of this
865 * page is the responsibility of the one who allocated it, and those who have
866 * subsequently been given references to it.
867 *
868 * The other pages (we may call them "pagecache pages") are completely
869 * managed by the Linux memory manager: I/O, buffers, swapping etc.
870 * The following discussion applies only to them.
871 *
872 * A pagecache page contains an opaque `private' member, which belongs to the
873 * page's address_space. Usually, this is the address of a circular list of
874 * the page's disk buffers. PG_private must be set to tell the VM to call
875 * into the filesystem to release these pages.
876 *
877 * A page may belong to an inode's memory mapping. In this case, page->mapping
878 * is the pointer to the inode, and page->index is the file offset of the page,
879 * in units of PAGE_SIZE.
880 *
881 * If pagecache pages are not associated with an inode, they are said to be
882 * anonymous pages. These may become associated with the swapcache, and in that
883 * case PG_swapcache is set, and page->private is an offset into the swapcache.
884 *
885 * In either case (swapcache or inode backed), the pagecache itself holds one
886 * reference to the page. Setting PG_private should also increment the
887 * refcount. The each user mapping also has a reference to the page.
888 *
889 * The pagecache pages are stored in a per-mapping radix tree, which is
890 * rooted at mapping->i_pages, and indexed by offset.
891 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
892 * lists, we instead now tag pages as dirty/writeback in the radix tree.
893 *
894 * All pagecache pages may be subject to I/O:
895 * - inode pages may need to be read from disk,
896 * - inode pages which have been modified and are MAP_SHARED may need
897 * to be written back to the inode on disk,
898 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
899 * modified may need to be swapped out to swap space and (later) to be read
900 * back into memory.
901 */
902
903/*
904 * The zone field is never updated after free_area_init_core()
905 * sets it, so none of the operations on it need to be atomic.
906 */
907
908/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
909#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
910#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
911#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
912#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
David Brazdil0f672f62019-12-10 10:32:29 +0000913#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000914
915/*
916 * Define the bit shifts to access each section. For non-existent
917 * sections we define the shift as 0; that plus a 0 mask ensures
918 * the compiler will optimise away reference to them.
919 */
920#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
921#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
922#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
923#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
David Brazdil0f672f62019-12-10 10:32:29 +0000924#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000925
926/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
927#ifdef NODE_NOT_IN_PAGE_FLAGS
928#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
929#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
930 SECTIONS_PGOFF : ZONES_PGOFF)
931#else
932#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
933#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
934 NODES_PGOFF : ZONES_PGOFF)
935#endif
936
937#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
938
939#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
940#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
941#endif
942
943#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
944#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
945#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
946#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
David Brazdil0f672f62019-12-10 10:32:29 +0000947#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000948#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
949
950static inline enum zone_type page_zonenum(const struct page *page)
951{
952 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
953}
954
955#ifdef CONFIG_ZONE_DEVICE
956static inline bool is_zone_device_page(const struct page *page)
957{
958 return page_zonenum(page) == ZONE_DEVICE;
959}
David Brazdil0f672f62019-12-10 10:32:29 +0000960extern void memmap_init_zone_device(struct zone *, unsigned long,
961 unsigned long, struct dev_pagemap *);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000962#else
963static inline bool is_zone_device_page(const struct page *page)
964{
965 return false;
966}
967#endif
968
969#ifdef CONFIG_DEV_PAGEMAP_OPS
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000970void __put_devmap_managed_page(struct page *page);
971DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
972static inline bool put_devmap_managed_page(struct page *page)
973{
974 if (!static_branch_unlikely(&devmap_managed_key))
975 return false;
976 if (!is_zone_device_page(page))
977 return false;
978 switch (page->pgmap->type) {
979 case MEMORY_DEVICE_PRIVATE:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000980 case MEMORY_DEVICE_FS_DAX:
981 __put_devmap_managed_page(page);
982 return true;
983 default:
984 break;
985 }
986 return false;
987}
988
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000989#else /* CONFIG_DEV_PAGEMAP_OPS */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000990static inline bool put_devmap_managed_page(struct page *page)
991{
992 return false;
993}
David Brazdil0f672f62019-12-10 10:32:29 +0000994#endif /* CONFIG_DEV_PAGEMAP_OPS */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000995
996static inline bool is_device_private_page(const struct page *page)
997{
David Brazdil0f672f62019-12-10 10:32:29 +0000998 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
999 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1000 is_zone_device_page(page) &&
1001 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001002}
1003
David Brazdil0f672f62019-12-10 10:32:29 +00001004static inline bool is_pci_p2pdma_page(const struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001005{
David Brazdil0f672f62019-12-10 10:32:29 +00001006 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1007 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1008 is_zone_device_page(page) &&
1009 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001010}
David Brazdil0f672f62019-12-10 10:32:29 +00001011
1012/* 127: arbitrary random number, small enough to assemble well */
1013#define page_ref_zero_or_close_to_overflow(page) \
1014 ((unsigned int) page_ref_count(page) + 127u <= 127u)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001015
1016static inline void get_page(struct page *page)
1017{
1018 page = compound_head(page);
1019 /*
1020 * Getting a normal page or the head of a compound page
1021 * requires to already have an elevated page->_refcount.
1022 */
David Brazdil0f672f62019-12-10 10:32:29 +00001023 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001024 page_ref_inc(page);
1025}
1026
David Brazdil0f672f62019-12-10 10:32:29 +00001027static inline __must_check bool try_get_page(struct page *page)
1028{
1029 page = compound_head(page);
1030 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1031 return false;
1032 page_ref_inc(page);
1033 return true;
1034}
1035
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001036static inline void put_page(struct page *page)
1037{
1038 page = compound_head(page);
1039
1040 /*
1041 * For devmap managed pages we need to catch refcount transition from
1042 * 2 to 1, when refcount reach one it means the page is free and we
1043 * need to inform the device driver through callback. See
1044 * include/linux/memremap.h and HMM for details.
1045 */
1046 if (put_devmap_managed_page(page))
1047 return;
1048
1049 if (put_page_testzero(page))
1050 __put_page(page);
1051}
1052
David Brazdil0f672f62019-12-10 10:32:29 +00001053/**
1054 * put_user_page() - release a gup-pinned page
1055 * @page: pointer to page to be released
1056 *
1057 * Pages that were pinned via get_user_pages*() must be released via
1058 * either put_user_page(), or one of the put_user_pages*() routines
1059 * below. This is so that eventually, pages that are pinned via
1060 * get_user_pages*() can be separately tracked and uniquely handled. In
1061 * particular, interactions with RDMA and filesystems need special
1062 * handling.
1063 *
1064 * put_user_page() and put_page() are not interchangeable, despite this early
1065 * implementation that makes them look the same. put_user_page() calls must
1066 * be perfectly matched up with get_user_page() calls.
1067 */
1068static inline void put_user_page(struct page *page)
1069{
1070 put_page(page);
1071}
1072
1073void put_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1074 bool make_dirty);
1075
1076void put_user_pages(struct page **pages, unsigned long npages);
1077
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001078#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1079#define SECTION_IN_PAGE_FLAGS
1080#endif
1081
1082/*
1083 * The identification function is mainly used by the buddy allocator for
1084 * determining if two pages could be buddies. We are not really identifying
1085 * the zone since we could be using the section number id if we do not have
1086 * node id available in page flags.
1087 * We only guarantee that it will return the same value for two combinable
1088 * pages in a zone.
1089 */
1090static inline int page_zone_id(struct page *page)
1091{
1092 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1093}
1094
1095#ifdef NODE_NOT_IN_PAGE_FLAGS
1096extern int page_to_nid(const struct page *page);
1097#else
1098static inline int page_to_nid(const struct page *page)
1099{
1100 struct page *p = (struct page *)page;
1101
1102 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1103}
1104#endif
1105
1106#ifdef CONFIG_NUMA_BALANCING
1107static inline int cpu_pid_to_cpupid(int cpu, int pid)
1108{
1109 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1110}
1111
1112static inline int cpupid_to_pid(int cpupid)
1113{
1114 return cpupid & LAST__PID_MASK;
1115}
1116
1117static inline int cpupid_to_cpu(int cpupid)
1118{
1119 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1120}
1121
1122static inline int cpupid_to_nid(int cpupid)
1123{
1124 return cpu_to_node(cpupid_to_cpu(cpupid));
1125}
1126
1127static inline bool cpupid_pid_unset(int cpupid)
1128{
1129 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1130}
1131
1132static inline bool cpupid_cpu_unset(int cpupid)
1133{
1134 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1135}
1136
1137static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1138{
1139 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1140}
1141
1142#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1143#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1144static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1145{
1146 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1147}
1148
1149static inline int page_cpupid_last(struct page *page)
1150{
1151 return page->_last_cpupid;
1152}
1153static inline void page_cpupid_reset_last(struct page *page)
1154{
1155 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1156}
1157#else
1158static inline int page_cpupid_last(struct page *page)
1159{
1160 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1161}
1162
1163extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1164
1165static inline void page_cpupid_reset_last(struct page *page)
1166{
1167 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1168}
1169#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1170#else /* !CONFIG_NUMA_BALANCING */
1171static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1172{
1173 return page_to_nid(page); /* XXX */
1174}
1175
1176static inline int page_cpupid_last(struct page *page)
1177{
1178 return page_to_nid(page); /* XXX */
1179}
1180
1181static inline int cpupid_to_nid(int cpupid)
1182{
1183 return -1;
1184}
1185
1186static inline int cpupid_to_pid(int cpupid)
1187{
1188 return -1;
1189}
1190
1191static inline int cpupid_to_cpu(int cpupid)
1192{
1193 return -1;
1194}
1195
1196static inline int cpu_pid_to_cpupid(int nid, int pid)
1197{
1198 return -1;
1199}
1200
1201static inline bool cpupid_pid_unset(int cpupid)
1202{
1203 return 1;
1204}
1205
1206static inline void page_cpupid_reset_last(struct page *page)
1207{
1208}
1209
1210static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1211{
1212 return false;
1213}
1214#endif /* CONFIG_NUMA_BALANCING */
1215
David Brazdil0f672f62019-12-10 10:32:29 +00001216#ifdef CONFIG_KASAN_SW_TAGS
1217static inline u8 page_kasan_tag(const struct page *page)
1218{
1219 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1220}
1221
1222static inline void page_kasan_tag_set(struct page *page, u8 tag)
1223{
1224 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1225 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1226}
1227
1228static inline void page_kasan_tag_reset(struct page *page)
1229{
1230 page_kasan_tag_set(page, 0xff);
1231}
1232#else
1233static inline u8 page_kasan_tag(const struct page *page)
1234{
1235 return 0xff;
1236}
1237
1238static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1239static inline void page_kasan_tag_reset(struct page *page) { }
1240#endif
1241
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001242static inline struct zone *page_zone(const struct page *page)
1243{
1244 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1245}
1246
1247static inline pg_data_t *page_pgdat(const struct page *page)
1248{
1249 return NODE_DATA(page_to_nid(page));
1250}
1251
1252#ifdef SECTION_IN_PAGE_FLAGS
1253static inline void set_page_section(struct page *page, unsigned long section)
1254{
1255 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1256 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1257}
1258
1259static inline unsigned long page_to_section(const struct page *page)
1260{
1261 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1262}
1263#endif
1264
1265static inline void set_page_zone(struct page *page, enum zone_type zone)
1266{
1267 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1268 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1269}
1270
1271static inline void set_page_node(struct page *page, unsigned long node)
1272{
1273 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1274 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1275}
1276
1277static inline void set_page_links(struct page *page, enum zone_type zone,
1278 unsigned long node, unsigned long pfn)
1279{
1280 set_page_zone(page, zone);
1281 set_page_node(page, node);
1282#ifdef SECTION_IN_PAGE_FLAGS
1283 set_page_section(page, pfn_to_section_nr(pfn));
1284#endif
1285}
1286
1287#ifdef CONFIG_MEMCG
1288static inline struct mem_cgroup *page_memcg(struct page *page)
1289{
1290 return page->mem_cgroup;
1291}
1292static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1293{
1294 WARN_ON_ONCE(!rcu_read_lock_held());
1295 return READ_ONCE(page->mem_cgroup);
1296}
1297#else
1298static inline struct mem_cgroup *page_memcg(struct page *page)
1299{
1300 return NULL;
1301}
1302static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1303{
1304 WARN_ON_ONCE(!rcu_read_lock_held());
1305 return NULL;
1306}
1307#endif
1308
1309/*
1310 * Some inline functions in vmstat.h depend on page_zone()
1311 */
1312#include <linux/vmstat.h>
1313
1314static __always_inline void *lowmem_page_address(const struct page *page)
1315{
1316 return page_to_virt(page);
1317}
1318
1319#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1320#define HASHED_PAGE_VIRTUAL
1321#endif
1322
1323#if defined(WANT_PAGE_VIRTUAL)
1324static inline void *page_address(const struct page *page)
1325{
1326 return page->virtual;
1327}
1328static inline void set_page_address(struct page *page, void *address)
1329{
1330 page->virtual = address;
1331}
1332#define page_address_init() do { } while(0)
1333#endif
1334
1335#if defined(HASHED_PAGE_VIRTUAL)
1336void *page_address(const struct page *page);
1337void set_page_address(struct page *page, void *virtual);
1338void page_address_init(void);
1339#endif
1340
1341#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1342#define page_address(page) lowmem_page_address(page)
1343#define set_page_address(page, address) do { } while(0)
1344#define page_address_init() do { } while(0)
1345#endif
1346
1347extern void *page_rmapping(struct page *page);
1348extern struct anon_vma *page_anon_vma(struct page *page);
1349extern struct address_space *page_mapping(struct page *page);
1350
1351extern struct address_space *__page_file_mapping(struct page *);
1352
1353static inline
1354struct address_space *page_file_mapping(struct page *page)
1355{
1356 if (unlikely(PageSwapCache(page)))
1357 return __page_file_mapping(page);
1358
1359 return page->mapping;
1360}
1361
1362extern pgoff_t __page_file_index(struct page *page);
1363
1364/*
1365 * Return the pagecache index of the passed page. Regular pagecache pages
1366 * use ->index whereas swapcache pages use swp_offset(->private)
1367 */
1368static inline pgoff_t page_index(struct page *page)
1369{
1370 if (unlikely(PageSwapCache(page)))
1371 return __page_file_index(page);
1372 return page->index;
1373}
1374
1375bool page_mapped(struct page *page);
1376struct address_space *page_mapping(struct page *page);
1377struct address_space *page_mapping_file(struct page *page);
1378
1379/*
1380 * Return true only if the page has been allocated with
1381 * ALLOC_NO_WATERMARKS and the low watermark was not
1382 * met implying that the system is under some pressure.
1383 */
1384static inline bool page_is_pfmemalloc(struct page *page)
1385{
1386 /*
1387 * Page index cannot be this large so this must be
1388 * a pfmemalloc page.
1389 */
1390 return page->index == -1UL;
1391}
1392
1393/*
1394 * Only to be called by the page allocator on a freshly allocated
1395 * page.
1396 */
1397static inline void set_page_pfmemalloc(struct page *page)
1398{
1399 page->index = -1UL;
1400}
1401
1402static inline void clear_page_pfmemalloc(struct page *page)
1403{
1404 page->index = 0;
1405}
1406
1407/*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001408 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1409 */
1410extern void pagefault_out_of_memory(void);
1411
1412#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1413
1414/*
1415 * Flags passed to show_mem() and show_free_areas() to suppress output in
1416 * various contexts.
1417 */
1418#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1419
1420extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1421
David Brazdil0f672f62019-12-10 10:32:29 +00001422#ifdef CONFIG_MMU
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001423extern bool can_do_mlock(void);
David Brazdil0f672f62019-12-10 10:32:29 +00001424#else
1425static inline bool can_do_mlock(void) { return false; }
1426#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001427extern int user_shm_lock(size_t, struct user_struct *);
1428extern void user_shm_unlock(size_t, struct user_struct *);
1429
1430/*
1431 * Parameter block passed down to zap_pte_range in exceptional cases.
1432 */
1433struct zap_details {
1434 struct address_space *check_mapping; /* Check page->mapping if set */
1435 pgoff_t first_index; /* Lowest page->index to unmap */
1436 pgoff_t last_index; /* Highest page->index to unmap */
1437};
1438
David Brazdil0f672f62019-12-10 10:32:29 +00001439struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1440 pte_t pte);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001441struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1442 pmd_t pmd);
1443
1444void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1445 unsigned long size);
1446void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1447 unsigned long size);
1448void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1449 unsigned long start, unsigned long end);
1450
David Brazdil0f672f62019-12-10 10:32:29 +00001451struct mmu_notifier_range;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001452
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001453void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1454 unsigned long end, unsigned long floor, unsigned long ceiling);
1455int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1456 struct vm_area_struct *vma);
1457int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
David Brazdil0f672f62019-12-10 10:32:29 +00001458 struct mmu_notifier_range *range,
1459 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001460int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1461 unsigned long *pfn);
1462int follow_phys(struct vm_area_struct *vma, unsigned long address,
1463 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1464int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1465 void *buf, int len, int write);
1466
1467extern void truncate_pagecache(struct inode *inode, loff_t new);
1468extern void truncate_setsize(struct inode *inode, loff_t newsize);
1469void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1470void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1471int truncate_inode_page(struct address_space *mapping, struct page *page);
1472int generic_error_remove_page(struct address_space *mapping, struct page *page);
1473int invalidate_inode_page(struct page *page);
1474
1475#ifdef CONFIG_MMU
1476extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1477 unsigned long address, unsigned int flags);
1478extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1479 unsigned long address, unsigned int fault_flags,
1480 bool *unlocked);
1481void unmap_mapping_pages(struct address_space *mapping,
1482 pgoff_t start, pgoff_t nr, bool even_cows);
1483void unmap_mapping_range(struct address_space *mapping,
1484 loff_t const holebegin, loff_t const holelen, int even_cows);
1485#else
1486static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1487 unsigned long address, unsigned int flags)
1488{
1489 /* should never happen if there's no MMU */
1490 BUG();
1491 return VM_FAULT_SIGBUS;
1492}
1493static inline int fixup_user_fault(struct task_struct *tsk,
1494 struct mm_struct *mm, unsigned long address,
1495 unsigned int fault_flags, bool *unlocked)
1496{
1497 /* should never happen if there's no MMU */
1498 BUG();
1499 return -EFAULT;
1500}
1501static inline void unmap_mapping_pages(struct address_space *mapping,
1502 pgoff_t start, pgoff_t nr, bool even_cows) { }
1503static inline void unmap_mapping_range(struct address_space *mapping,
1504 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1505#endif
1506
1507static inline void unmap_shared_mapping_range(struct address_space *mapping,
1508 loff_t const holebegin, loff_t const holelen)
1509{
1510 unmap_mapping_range(mapping, holebegin, holelen, 0);
1511}
1512
1513extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1514 void *buf, int len, unsigned int gup_flags);
1515extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1516 void *buf, int len, unsigned int gup_flags);
1517extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1518 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1519
1520long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1521 unsigned long start, unsigned long nr_pages,
1522 unsigned int gup_flags, struct page **pages,
1523 struct vm_area_struct **vmas, int *locked);
1524long get_user_pages(unsigned long start, unsigned long nr_pages,
1525 unsigned int gup_flags, struct page **pages,
1526 struct vm_area_struct **vmas);
1527long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1528 unsigned int gup_flags, struct page **pages, int *locked);
1529long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1530 struct page **pages, unsigned int gup_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001531
David Brazdil0f672f62019-12-10 10:32:29 +00001532int get_user_pages_fast(unsigned long start, int nr_pages,
1533 unsigned int gup_flags, struct page **pages);
1534
1535int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1536int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1537 struct task_struct *task, bool bypass_rlim);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001538
1539/* Container for pinned pfns / pages */
1540struct frame_vector {
1541 unsigned int nr_allocated; /* Number of frames we have space for */
1542 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1543 bool got_ref; /* Did we pin pages by getting page ref? */
1544 bool is_pfns; /* Does array contain pages or pfns? */
1545 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1546 * pfns_vector_pages() or pfns_vector_pfns()
1547 * for access */
1548};
1549
1550struct frame_vector *frame_vector_create(unsigned int nr_frames);
1551void frame_vector_destroy(struct frame_vector *vec);
1552int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1553 unsigned int gup_flags, struct frame_vector *vec);
1554void put_vaddr_frames(struct frame_vector *vec);
1555int frame_vector_to_pages(struct frame_vector *vec);
1556void frame_vector_to_pfns(struct frame_vector *vec);
1557
1558static inline unsigned int frame_vector_count(struct frame_vector *vec)
1559{
1560 return vec->nr_frames;
1561}
1562
1563static inline struct page **frame_vector_pages(struct frame_vector *vec)
1564{
1565 if (vec->is_pfns) {
1566 int err = frame_vector_to_pages(vec);
1567
1568 if (err)
1569 return ERR_PTR(err);
1570 }
1571 return (struct page **)(vec->ptrs);
1572}
1573
1574static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1575{
1576 if (!vec->is_pfns)
1577 frame_vector_to_pfns(vec);
1578 return (unsigned long *)(vec->ptrs);
1579}
1580
1581struct kvec;
1582int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1583 struct page **pages);
1584int get_kernel_page(unsigned long start, int write, struct page **pages);
1585struct page *get_dump_page(unsigned long addr);
1586
1587extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1588extern void do_invalidatepage(struct page *page, unsigned int offset,
1589 unsigned int length);
1590
1591void __set_page_dirty(struct page *, struct address_space *, int warn);
1592int __set_page_dirty_nobuffers(struct page *page);
1593int __set_page_dirty_no_writeback(struct page *page);
1594int redirty_page_for_writepage(struct writeback_control *wbc,
1595 struct page *page);
1596void account_page_dirtied(struct page *page, struct address_space *mapping);
1597void account_page_cleaned(struct page *page, struct address_space *mapping,
1598 struct bdi_writeback *wb);
1599int set_page_dirty(struct page *page);
1600int set_page_dirty_lock(struct page *page);
1601void __cancel_dirty_page(struct page *page);
1602static inline void cancel_dirty_page(struct page *page)
1603{
1604 /* Avoid atomic ops, locking, etc. when not actually needed. */
1605 if (PageDirty(page))
1606 __cancel_dirty_page(page);
1607}
1608int clear_page_dirty_for_io(struct page *page);
1609
1610int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1611
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001612extern unsigned long move_page_tables(struct vm_area_struct *vma,
1613 unsigned long old_addr, struct vm_area_struct *new_vma,
1614 unsigned long new_addr, unsigned long len,
1615 bool need_rmap_locks);
1616extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1617 unsigned long end, pgprot_t newprot,
1618 int dirty_accountable, int prot_numa);
1619extern int mprotect_fixup(struct vm_area_struct *vma,
1620 struct vm_area_struct **pprev, unsigned long start,
1621 unsigned long end, unsigned long newflags);
1622
1623/*
1624 * doesn't attempt to fault and will return short.
1625 */
1626int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1627 struct page **pages);
1628/*
1629 * per-process(per-mm_struct) statistics.
1630 */
1631static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1632{
1633 long val = atomic_long_read(&mm->rss_stat.count[member]);
1634
1635#ifdef SPLIT_RSS_COUNTING
1636 /*
1637 * counter is updated in asynchronous manner and may go to minus.
1638 * But it's never be expected number for users.
1639 */
1640 if (val < 0)
1641 val = 0;
1642#endif
1643 return (unsigned long)val;
1644}
1645
1646static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1647{
1648 atomic_long_add(value, &mm->rss_stat.count[member]);
1649}
1650
1651static inline void inc_mm_counter(struct mm_struct *mm, int member)
1652{
1653 atomic_long_inc(&mm->rss_stat.count[member]);
1654}
1655
1656static inline void dec_mm_counter(struct mm_struct *mm, int member)
1657{
1658 atomic_long_dec(&mm->rss_stat.count[member]);
1659}
1660
1661/* Optimized variant when page is already known not to be PageAnon */
1662static inline int mm_counter_file(struct page *page)
1663{
1664 if (PageSwapBacked(page))
1665 return MM_SHMEMPAGES;
1666 return MM_FILEPAGES;
1667}
1668
1669static inline int mm_counter(struct page *page)
1670{
1671 if (PageAnon(page))
1672 return MM_ANONPAGES;
1673 return mm_counter_file(page);
1674}
1675
1676static inline unsigned long get_mm_rss(struct mm_struct *mm)
1677{
1678 return get_mm_counter(mm, MM_FILEPAGES) +
1679 get_mm_counter(mm, MM_ANONPAGES) +
1680 get_mm_counter(mm, MM_SHMEMPAGES);
1681}
1682
1683static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1684{
1685 return max(mm->hiwater_rss, get_mm_rss(mm));
1686}
1687
1688static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1689{
1690 return max(mm->hiwater_vm, mm->total_vm);
1691}
1692
1693static inline void update_hiwater_rss(struct mm_struct *mm)
1694{
1695 unsigned long _rss = get_mm_rss(mm);
1696
1697 if ((mm)->hiwater_rss < _rss)
1698 (mm)->hiwater_rss = _rss;
1699}
1700
1701static inline void update_hiwater_vm(struct mm_struct *mm)
1702{
1703 if (mm->hiwater_vm < mm->total_vm)
1704 mm->hiwater_vm = mm->total_vm;
1705}
1706
1707static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1708{
1709 mm->hiwater_rss = get_mm_rss(mm);
1710}
1711
1712static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1713 struct mm_struct *mm)
1714{
1715 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1716
1717 if (*maxrss < hiwater_rss)
1718 *maxrss = hiwater_rss;
1719}
1720
1721#if defined(SPLIT_RSS_COUNTING)
1722void sync_mm_rss(struct mm_struct *mm);
1723#else
1724static inline void sync_mm_rss(struct mm_struct *mm)
1725{
1726}
1727#endif
1728
David Brazdil0f672f62019-12-10 10:32:29 +00001729#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001730static inline int pte_devmap(pte_t pte)
1731{
1732 return 0;
1733}
1734#endif
1735
1736int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1737
1738extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1739 spinlock_t **ptl);
1740static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1741 spinlock_t **ptl)
1742{
1743 pte_t *ptep;
1744 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1745 return ptep;
1746}
1747
1748#ifdef __PAGETABLE_P4D_FOLDED
1749static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1750 unsigned long address)
1751{
1752 return 0;
1753}
1754#else
1755int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1756#endif
1757
1758#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1759static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1760 unsigned long address)
1761{
1762 return 0;
1763}
1764static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1765static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1766
1767#else
1768int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1769
1770static inline void mm_inc_nr_puds(struct mm_struct *mm)
1771{
1772 if (mm_pud_folded(mm))
1773 return;
1774 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1775}
1776
1777static inline void mm_dec_nr_puds(struct mm_struct *mm)
1778{
1779 if (mm_pud_folded(mm))
1780 return;
1781 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1782}
1783#endif
1784
1785#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1786static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1787 unsigned long address)
1788{
1789 return 0;
1790}
1791
1792static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1793static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1794
1795#else
1796int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1797
1798static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1799{
1800 if (mm_pmd_folded(mm))
1801 return;
1802 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1803}
1804
1805static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1806{
1807 if (mm_pmd_folded(mm))
1808 return;
1809 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1810}
1811#endif
1812
1813#ifdef CONFIG_MMU
1814static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1815{
1816 atomic_long_set(&mm->pgtables_bytes, 0);
1817}
1818
1819static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1820{
1821 return atomic_long_read(&mm->pgtables_bytes);
1822}
1823
1824static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1825{
1826 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1827}
1828
1829static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1830{
1831 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1832}
1833#else
1834
1835static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1836static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1837{
1838 return 0;
1839}
1840
1841static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1842static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1843#endif
1844
David Brazdil0f672f62019-12-10 10:32:29 +00001845int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
1846int __pte_alloc_kernel(pmd_t *pmd);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001847
1848/*
1849 * The following ifdef needed to get the 4level-fixup.h header to work.
1850 * Remove it when 4level-fixup.h has been removed.
1851 */
1852#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1853
1854#ifndef __ARCH_HAS_5LEVEL_HACK
1855static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1856 unsigned long address)
1857{
1858 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1859 NULL : p4d_offset(pgd, address);
1860}
1861
1862static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1863 unsigned long address)
1864{
1865 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1866 NULL : pud_offset(p4d, address);
1867}
1868#endif /* !__ARCH_HAS_5LEVEL_HACK */
1869
1870static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1871{
1872 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1873 NULL: pmd_offset(pud, address);
1874}
1875#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1876
1877#if USE_SPLIT_PTE_PTLOCKS
1878#if ALLOC_SPLIT_PTLOCKS
1879void __init ptlock_cache_init(void);
1880extern bool ptlock_alloc(struct page *page);
1881extern void ptlock_free(struct page *page);
1882
1883static inline spinlock_t *ptlock_ptr(struct page *page)
1884{
1885 return page->ptl;
1886}
1887#else /* ALLOC_SPLIT_PTLOCKS */
1888static inline void ptlock_cache_init(void)
1889{
1890}
1891
1892static inline bool ptlock_alloc(struct page *page)
1893{
1894 return true;
1895}
1896
1897static inline void ptlock_free(struct page *page)
1898{
1899}
1900
1901static inline spinlock_t *ptlock_ptr(struct page *page)
1902{
1903 return &page->ptl;
1904}
1905#endif /* ALLOC_SPLIT_PTLOCKS */
1906
1907static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1908{
1909 return ptlock_ptr(pmd_page(*pmd));
1910}
1911
1912static inline bool ptlock_init(struct page *page)
1913{
1914 /*
1915 * prep_new_page() initialize page->private (and therefore page->ptl)
1916 * with 0. Make sure nobody took it in use in between.
1917 *
1918 * It can happen if arch try to use slab for page table allocation:
1919 * slab code uses page->slab_cache, which share storage with page->ptl.
1920 */
1921 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1922 if (!ptlock_alloc(page))
1923 return false;
1924 spin_lock_init(ptlock_ptr(page));
1925 return true;
1926}
1927
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001928#else /* !USE_SPLIT_PTE_PTLOCKS */
1929/*
1930 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1931 */
1932static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1933{
1934 return &mm->page_table_lock;
1935}
1936static inline void ptlock_cache_init(void) {}
1937static inline bool ptlock_init(struct page *page) { return true; }
David Brazdil0f672f62019-12-10 10:32:29 +00001938static inline void ptlock_free(struct page *page) {}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001939#endif /* USE_SPLIT_PTE_PTLOCKS */
1940
1941static inline void pgtable_init(void)
1942{
1943 ptlock_cache_init();
1944 pgtable_cache_init();
1945}
1946
David Brazdil0f672f62019-12-10 10:32:29 +00001947static inline bool pgtable_pte_page_ctor(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001948{
1949 if (!ptlock_init(page))
1950 return false;
1951 __SetPageTable(page);
1952 inc_zone_page_state(page, NR_PAGETABLE);
1953 return true;
1954}
1955
David Brazdil0f672f62019-12-10 10:32:29 +00001956static inline void pgtable_pte_page_dtor(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001957{
David Brazdil0f672f62019-12-10 10:32:29 +00001958 ptlock_free(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001959 __ClearPageTable(page);
1960 dec_zone_page_state(page, NR_PAGETABLE);
1961}
1962
1963#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1964({ \
1965 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1966 pte_t *__pte = pte_offset_map(pmd, address); \
1967 *(ptlp) = __ptl; \
1968 spin_lock(__ptl); \
1969 __pte; \
1970})
1971
1972#define pte_unmap_unlock(pte, ptl) do { \
1973 spin_unlock(ptl); \
1974 pte_unmap(pte); \
1975} while (0)
1976
David Brazdil0f672f62019-12-10 10:32:29 +00001977#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001978
1979#define pte_alloc_map(mm, pmd, address) \
David Brazdil0f672f62019-12-10 10:32:29 +00001980 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001981
1982#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
David Brazdil0f672f62019-12-10 10:32:29 +00001983 (pte_alloc(mm, pmd) ? \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001984 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1985
1986#define pte_alloc_kernel(pmd, address) \
David Brazdil0f672f62019-12-10 10:32:29 +00001987 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001988 NULL: pte_offset_kernel(pmd, address))
1989
1990#if USE_SPLIT_PMD_PTLOCKS
1991
1992static struct page *pmd_to_page(pmd_t *pmd)
1993{
1994 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1995 return virt_to_page((void *)((unsigned long) pmd & mask));
1996}
1997
1998static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1999{
2000 return ptlock_ptr(pmd_to_page(pmd));
2001}
2002
2003static inline bool pgtable_pmd_page_ctor(struct page *page)
2004{
2005#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2006 page->pmd_huge_pte = NULL;
2007#endif
2008 return ptlock_init(page);
2009}
2010
2011static inline void pgtable_pmd_page_dtor(struct page *page)
2012{
2013#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2014 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2015#endif
2016 ptlock_free(page);
2017}
2018
2019#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2020
2021#else
2022
2023static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2024{
2025 return &mm->page_table_lock;
2026}
2027
2028static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2029static inline void pgtable_pmd_page_dtor(struct page *page) {}
2030
2031#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2032
2033#endif
2034
2035static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2036{
2037 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2038 spin_lock(ptl);
2039 return ptl;
2040}
2041
2042/*
2043 * No scalability reason to split PUD locks yet, but follow the same pattern
2044 * as the PMD locks to make it easier if we decide to. The VM should not be
2045 * considered ready to switch to split PUD locks yet; there may be places
2046 * which need to be converted from page_table_lock.
2047 */
2048static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2049{
2050 return &mm->page_table_lock;
2051}
2052
2053static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2054{
2055 spinlock_t *ptl = pud_lockptr(mm, pud);
2056
2057 spin_lock(ptl);
2058 return ptl;
2059}
2060
2061extern void __init pagecache_init(void);
2062extern void free_area_init(unsigned long * zones_size);
2063extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2064 unsigned long zone_start_pfn, unsigned long *zholes_size);
2065extern void free_initmem(void);
2066
2067/*
2068 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2069 * into the buddy system. The freed pages will be poisoned with pattern
2070 * "poison" if it's within range [0, UCHAR_MAX].
2071 * Return pages freed into the buddy system.
2072 */
2073extern unsigned long free_reserved_area(void *start, void *end,
David Brazdil0f672f62019-12-10 10:32:29 +00002074 int poison, const char *s);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002075
2076#ifdef CONFIG_HIGHMEM
2077/*
2078 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2079 * and totalram_pages.
2080 */
2081extern void free_highmem_page(struct page *page);
2082#endif
2083
2084extern void adjust_managed_page_count(struct page *page, long count);
2085extern void mem_init_print_info(const char *str);
2086
2087extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2088
2089/* Free the reserved page into the buddy system, so it gets managed. */
2090static inline void __free_reserved_page(struct page *page)
2091{
2092 ClearPageReserved(page);
2093 init_page_count(page);
2094 __free_page(page);
2095}
2096
2097static inline void free_reserved_page(struct page *page)
2098{
2099 __free_reserved_page(page);
2100 adjust_managed_page_count(page, 1);
2101}
2102
2103static inline void mark_page_reserved(struct page *page)
2104{
2105 SetPageReserved(page);
2106 adjust_managed_page_count(page, -1);
2107}
2108
2109/*
2110 * Default method to free all the __init memory into the buddy system.
2111 * The freed pages will be poisoned with pattern "poison" if it's within
2112 * range [0, UCHAR_MAX].
2113 * Return pages freed into the buddy system.
2114 */
2115static inline unsigned long free_initmem_default(int poison)
2116{
2117 extern char __init_begin[], __init_end[];
2118
2119 return free_reserved_area(&__init_begin, &__init_end,
2120 poison, "unused kernel");
2121}
2122
2123static inline unsigned long get_num_physpages(void)
2124{
2125 int nid;
2126 unsigned long phys_pages = 0;
2127
2128 for_each_online_node(nid)
2129 phys_pages += node_present_pages(nid);
2130
2131 return phys_pages;
2132}
2133
2134#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2135/*
2136 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2137 * zones, allocate the backing mem_map and account for memory holes in a more
2138 * architecture independent manner. This is a substitute for creating the
2139 * zone_sizes[] and zholes_size[] arrays and passing them to
2140 * free_area_init_node()
2141 *
2142 * An architecture is expected to register range of page frames backed by
2143 * physical memory with memblock_add[_node]() before calling
2144 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2145 * usage, an architecture is expected to do something like
2146 *
2147 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2148 * max_highmem_pfn};
2149 * for_each_valid_physical_page_range()
2150 * memblock_add_node(base, size, nid)
2151 * free_area_init_nodes(max_zone_pfns);
2152 *
2153 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2154 * registered physical page range. Similarly
2155 * sparse_memory_present_with_active_regions() calls memory_present() for
2156 * each range when SPARSEMEM is enabled.
2157 *
2158 * See mm/page_alloc.c for more information on each function exposed by
2159 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2160 */
2161extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2162unsigned long node_map_pfn_alignment(void);
2163unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2164 unsigned long end_pfn);
2165extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2166 unsigned long end_pfn);
2167extern void get_pfn_range_for_nid(unsigned int nid,
2168 unsigned long *start_pfn, unsigned long *end_pfn);
2169extern unsigned long find_min_pfn_with_active_regions(void);
2170extern void free_bootmem_with_active_regions(int nid,
2171 unsigned long max_low_pfn);
2172extern void sparse_memory_present_with_active_regions(int nid);
2173
2174#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2175
2176#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2177 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2178static inline int __early_pfn_to_nid(unsigned long pfn,
2179 struct mminit_pfnnid_cache *state)
2180{
2181 return 0;
2182}
2183#else
2184/* please see mm/page_alloc.c */
2185extern int __meminit early_pfn_to_nid(unsigned long pfn);
2186/* there is a per-arch backend function. */
2187extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2188 struct mminit_pfnnid_cache *state);
2189#endif
2190
David Brazdil0f672f62019-12-10 10:32:29 +00002191#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002192void zero_resv_unavail(void);
2193#else
2194static inline void zero_resv_unavail(void) {}
2195#endif
2196
2197extern void set_dma_reserve(unsigned long new_dma_reserve);
2198extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2199 enum memmap_context, struct vmem_altmap *);
2200extern void setup_per_zone_wmarks(void);
2201extern int __meminit init_per_zone_wmark_min(void);
2202extern void mem_init(void);
2203extern void __init mmap_init(void);
2204extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2205extern long si_mem_available(void);
2206extern void si_meminfo(struct sysinfo * val);
2207extern void si_meminfo_node(struct sysinfo *val, int nid);
2208#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2209extern unsigned long arch_reserved_kernel_pages(void);
2210#endif
2211
2212extern __printf(3, 4)
2213void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2214
2215extern void setup_per_cpu_pageset(void);
2216
2217extern void zone_pcp_update(struct zone *zone);
2218extern void zone_pcp_reset(struct zone *zone);
2219
2220/* page_alloc.c */
2221extern int min_free_kbytes;
David Brazdil0f672f62019-12-10 10:32:29 +00002222extern int watermark_boost_factor;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002223extern int watermark_scale_factor;
2224
2225/* nommu.c */
2226extern atomic_long_t mmap_pages_allocated;
2227extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2228
2229/* interval_tree.c */
2230void vma_interval_tree_insert(struct vm_area_struct *node,
2231 struct rb_root_cached *root);
2232void vma_interval_tree_insert_after(struct vm_area_struct *node,
2233 struct vm_area_struct *prev,
2234 struct rb_root_cached *root);
2235void vma_interval_tree_remove(struct vm_area_struct *node,
2236 struct rb_root_cached *root);
2237struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2238 unsigned long start, unsigned long last);
2239struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2240 unsigned long start, unsigned long last);
2241
2242#define vma_interval_tree_foreach(vma, root, start, last) \
2243 for (vma = vma_interval_tree_iter_first(root, start, last); \
2244 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2245
2246void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2247 struct rb_root_cached *root);
2248void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2249 struct rb_root_cached *root);
2250struct anon_vma_chain *
2251anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2252 unsigned long start, unsigned long last);
2253struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2254 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2255#ifdef CONFIG_DEBUG_VM_RB
2256void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2257#endif
2258
2259#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2260 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2261 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2262
2263/* mmap.c */
2264extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2265extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2266 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2267 struct vm_area_struct *expand);
2268static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2269 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2270{
2271 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2272}
2273extern struct vm_area_struct *vma_merge(struct mm_struct *,
2274 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2275 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2276 struct mempolicy *, struct vm_userfaultfd_ctx);
2277extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2278extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2279 unsigned long addr, int new_below);
2280extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2281 unsigned long addr, int new_below);
2282extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2283extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2284 struct rb_node **, struct rb_node *);
2285extern void unlink_file_vma(struct vm_area_struct *);
2286extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2287 unsigned long addr, unsigned long len, pgoff_t pgoff,
2288 bool *need_rmap_locks);
2289extern void exit_mmap(struct mm_struct *);
2290
2291static inline int check_data_rlimit(unsigned long rlim,
2292 unsigned long new,
2293 unsigned long start,
2294 unsigned long end_data,
2295 unsigned long start_data)
2296{
2297 if (rlim < RLIM_INFINITY) {
2298 if (((new - start) + (end_data - start_data)) > rlim)
2299 return -ENOSPC;
2300 }
2301
2302 return 0;
2303}
2304
2305extern int mm_take_all_locks(struct mm_struct *mm);
2306extern void mm_drop_all_locks(struct mm_struct *mm);
2307
2308extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2309extern struct file *get_mm_exe_file(struct mm_struct *mm);
2310extern struct file *get_task_exe_file(struct task_struct *task);
2311
2312extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2313extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2314
2315extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2316 const struct vm_special_mapping *sm);
2317extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2318 unsigned long addr, unsigned long len,
2319 unsigned long flags,
2320 const struct vm_special_mapping *spec);
2321/* This is an obsolete alternative to _install_special_mapping. */
2322extern int install_special_mapping(struct mm_struct *mm,
2323 unsigned long addr, unsigned long len,
2324 unsigned long flags, struct page **pages);
2325
David Brazdil0f672f62019-12-10 10:32:29 +00002326unsigned long randomize_stack_top(unsigned long stack_top);
2327
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002328extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2329
2330extern unsigned long mmap_region(struct file *file, unsigned long addr,
2331 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2332 struct list_head *uf);
2333extern unsigned long do_mmap(struct file *file, unsigned long addr,
2334 unsigned long len, unsigned long prot, unsigned long flags,
2335 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2336 struct list_head *uf);
David Brazdil0f672f62019-12-10 10:32:29 +00002337extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2338 struct list_head *uf, bool downgrade);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002339extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2340 struct list_head *uf);
2341
2342static inline unsigned long
2343do_mmap_pgoff(struct file *file, unsigned long addr,
2344 unsigned long len, unsigned long prot, unsigned long flags,
2345 unsigned long pgoff, unsigned long *populate,
2346 struct list_head *uf)
2347{
2348 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2349}
2350
2351#ifdef CONFIG_MMU
2352extern int __mm_populate(unsigned long addr, unsigned long len,
2353 int ignore_errors);
2354static inline void mm_populate(unsigned long addr, unsigned long len)
2355{
2356 /* Ignore errors */
2357 (void) __mm_populate(addr, len, 1);
2358}
2359#else
2360static inline void mm_populate(unsigned long addr, unsigned long len) {}
2361#endif
2362
2363/* These take the mm semaphore themselves */
2364extern int __must_check vm_brk(unsigned long, unsigned long);
2365extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2366extern int vm_munmap(unsigned long, size_t);
2367extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2368 unsigned long, unsigned long,
2369 unsigned long, unsigned long);
2370
2371struct vm_unmapped_area_info {
2372#define VM_UNMAPPED_AREA_TOPDOWN 1
2373 unsigned long flags;
2374 unsigned long length;
2375 unsigned long low_limit;
2376 unsigned long high_limit;
2377 unsigned long align_mask;
2378 unsigned long align_offset;
2379};
2380
2381extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2382extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2383
2384/*
2385 * Search for an unmapped address range.
2386 *
2387 * We are looking for a range that:
2388 * - does not intersect with any VMA;
2389 * - is contained within the [low_limit, high_limit) interval;
2390 * - is at least the desired size.
2391 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2392 */
2393static inline unsigned long
2394vm_unmapped_area(struct vm_unmapped_area_info *info)
2395{
2396 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2397 return unmapped_area_topdown(info);
2398 else
2399 return unmapped_area(info);
2400}
2401
2402/* truncate.c */
2403extern void truncate_inode_pages(struct address_space *, loff_t);
2404extern void truncate_inode_pages_range(struct address_space *,
2405 loff_t lstart, loff_t lend);
2406extern void truncate_inode_pages_final(struct address_space *);
2407
2408/* generic vm_area_ops exported for stackable file systems */
2409extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2410extern void filemap_map_pages(struct vm_fault *vmf,
2411 pgoff_t start_pgoff, pgoff_t end_pgoff);
2412extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2413
2414/* mm/page-writeback.c */
2415int __must_check write_one_page(struct page *page);
2416void task_dirty_inc(struct task_struct *tsk);
2417
2418/* readahead.c */
David Brazdil0f672f62019-12-10 10:32:29 +00002419#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002420
2421int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2422 pgoff_t offset, unsigned long nr_to_read);
2423
2424void page_cache_sync_readahead(struct address_space *mapping,
2425 struct file_ra_state *ra,
2426 struct file *filp,
2427 pgoff_t offset,
2428 unsigned long size);
2429
2430void page_cache_async_readahead(struct address_space *mapping,
2431 struct file_ra_state *ra,
2432 struct file *filp,
2433 struct page *pg,
2434 pgoff_t offset,
2435 unsigned long size);
2436
2437extern unsigned long stack_guard_gap;
2438/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2439extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2440
2441/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2442extern int expand_downwards(struct vm_area_struct *vma,
2443 unsigned long address);
2444#if VM_GROWSUP
2445extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2446#else
2447 #define expand_upwards(vma, address) (0)
2448#endif
2449
2450/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2451extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2452extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2453 struct vm_area_struct **pprev);
2454
2455/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2456 NULL if none. Assume start_addr < end_addr. */
2457static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2458{
2459 struct vm_area_struct * vma = find_vma(mm,start_addr);
2460
2461 if (vma && end_addr <= vma->vm_start)
2462 vma = NULL;
2463 return vma;
2464}
2465
2466static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2467{
2468 unsigned long vm_start = vma->vm_start;
2469
2470 if (vma->vm_flags & VM_GROWSDOWN) {
2471 vm_start -= stack_guard_gap;
2472 if (vm_start > vma->vm_start)
2473 vm_start = 0;
2474 }
2475 return vm_start;
2476}
2477
2478static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2479{
2480 unsigned long vm_end = vma->vm_end;
2481
2482 if (vma->vm_flags & VM_GROWSUP) {
2483 vm_end += stack_guard_gap;
2484 if (vm_end < vma->vm_end)
2485 vm_end = -PAGE_SIZE;
2486 }
2487 return vm_end;
2488}
2489
2490static inline unsigned long vma_pages(struct vm_area_struct *vma)
2491{
2492 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2493}
2494
2495/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2496static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2497 unsigned long vm_start, unsigned long vm_end)
2498{
2499 struct vm_area_struct *vma = find_vma(mm, vm_start);
2500
2501 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2502 vma = NULL;
2503
2504 return vma;
2505}
2506
2507static inline bool range_in_vma(struct vm_area_struct *vma,
2508 unsigned long start, unsigned long end)
2509{
2510 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2511}
2512
2513#ifdef CONFIG_MMU
2514pgprot_t vm_get_page_prot(unsigned long vm_flags);
2515void vma_set_page_prot(struct vm_area_struct *vma);
2516#else
2517static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2518{
2519 return __pgprot(0);
2520}
2521static inline void vma_set_page_prot(struct vm_area_struct *vma)
2522{
2523 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2524}
2525#endif
2526
2527#ifdef CONFIG_NUMA_BALANCING
2528unsigned long change_prot_numa(struct vm_area_struct *vma,
2529 unsigned long start, unsigned long end);
2530#endif
2531
2532struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2533int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2534 unsigned long pfn, unsigned long size, pgprot_t);
2535int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
David Brazdil0f672f62019-12-10 10:32:29 +00002536int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2537 unsigned long num);
2538int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2539 unsigned long num);
2540vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002541 unsigned long pfn);
David Brazdil0f672f62019-12-10 10:32:29 +00002542vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002543 unsigned long pfn, pgprot_t pgprot);
David Brazdil0f672f62019-12-10 10:32:29 +00002544vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002545 pfn_t pfn);
2546vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2547 unsigned long addr, pfn_t pfn);
2548int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2549
2550static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2551 unsigned long addr, struct page *page)
2552{
2553 int err = vm_insert_page(vma, addr, page);
2554
2555 if (err == -ENOMEM)
2556 return VM_FAULT_OOM;
2557 if (err < 0 && err != -EBUSY)
2558 return VM_FAULT_SIGBUS;
2559
2560 return VM_FAULT_NOPAGE;
2561}
2562
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002563static inline vm_fault_t vmf_error(int err)
2564{
2565 if (err == -ENOMEM)
2566 return VM_FAULT_OOM;
2567 return VM_FAULT_SIGBUS;
2568}
2569
David Brazdil0f672f62019-12-10 10:32:29 +00002570struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2571 unsigned int foll_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002572
2573#define FOLL_WRITE 0x01 /* check pte is writable */
2574#define FOLL_TOUCH 0x02 /* mark page accessed */
2575#define FOLL_GET 0x04 /* do get_page on page */
2576#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2577#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2578#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2579 * and return without waiting upon it */
2580#define FOLL_POPULATE 0x40 /* fault in page */
2581#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2582#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2583#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2584#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2585#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2586#define FOLL_MLOCK 0x1000 /* lock present pages */
2587#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2588#define FOLL_COW 0x4000 /* internal GUP flag */
2589#define FOLL_ANON 0x8000 /* don't do file mappings */
David Brazdil0f672f62019-12-10 10:32:29 +00002590#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2591#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2592
2593/*
2594 * NOTE on FOLL_LONGTERM:
2595 *
2596 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2597 * period _often_ under userspace control. This is contrasted with
2598 * iov_iter_get_pages() where usages which are transient.
2599 *
2600 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2601 * lifetime enforced by the filesystem and we need guarantees that longterm
2602 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2603 * the filesystem. Ideas for this coordination include revoking the longterm
2604 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2605 * added after the problem with filesystems was found FS DAX VMAs are
2606 * specifically failed. Filesystem pages are still subject to bugs and use of
2607 * FOLL_LONGTERM should be avoided on those pages.
2608 *
2609 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2610 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2611 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2612 * is due to an incompatibility with the FS DAX check and
2613 * FAULT_FLAG_ALLOW_RETRY
2614 *
2615 * In the CMA case: longterm pins in a CMA region would unnecessarily fragment
2616 * that region. And so CMA attempts to migrate the page before pinning when
2617 * FOLL_LONGTERM is specified.
2618 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002619
2620static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2621{
2622 if (vm_fault & VM_FAULT_OOM)
2623 return -ENOMEM;
2624 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2625 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2626 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2627 return -EFAULT;
2628 return 0;
2629}
2630
David Brazdil0f672f62019-12-10 10:32:29 +00002631typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002632extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2633 unsigned long size, pte_fn_t fn, void *data);
2634
2635
2636#ifdef CONFIG_PAGE_POISONING
2637extern bool page_poisoning_enabled(void);
2638extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2639#else
2640static inline bool page_poisoning_enabled(void) { return false; }
2641static inline void kernel_poison_pages(struct page *page, int numpages,
2642 int enable) { }
2643#endif
2644
David Brazdil0f672f62019-12-10 10:32:29 +00002645#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2646DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2647#else
2648DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2649#endif
2650static inline bool want_init_on_alloc(gfp_t flags)
2651{
2652 if (static_branch_unlikely(&init_on_alloc) &&
2653 !page_poisoning_enabled())
2654 return true;
2655 return flags & __GFP_ZERO;
2656}
2657
2658#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2659DECLARE_STATIC_KEY_TRUE(init_on_free);
2660#else
2661DECLARE_STATIC_KEY_FALSE(init_on_free);
2662#endif
2663static inline bool want_init_on_free(void)
2664{
2665 return static_branch_unlikely(&init_on_free) &&
2666 !page_poisoning_enabled();
2667}
2668
2669#ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
2670DECLARE_STATIC_KEY_TRUE(_debug_pagealloc_enabled);
2671#else
2672DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2673#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002674
2675static inline bool debug_pagealloc_enabled(void)
2676{
David Brazdil0f672f62019-12-10 10:32:29 +00002677 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2678 return false;
2679
2680 return static_branch_unlikely(&_debug_pagealloc_enabled);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002681}
2682
David Brazdil0f672f62019-12-10 10:32:29 +00002683#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2684extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2685
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002686static inline void
2687kernel_map_pages(struct page *page, int numpages, int enable)
2688{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002689 __kernel_map_pages(page, numpages, enable);
2690}
2691#ifdef CONFIG_HIBERNATION
2692extern bool kernel_page_present(struct page *page);
2693#endif /* CONFIG_HIBERNATION */
David Brazdil0f672f62019-12-10 10:32:29 +00002694#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002695static inline void
2696kernel_map_pages(struct page *page, int numpages, int enable) {}
2697#ifdef CONFIG_HIBERNATION
2698static inline bool kernel_page_present(struct page *page) { return true; }
2699#endif /* CONFIG_HIBERNATION */
David Brazdil0f672f62019-12-10 10:32:29 +00002700#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002701
2702#ifdef __HAVE_ARCH_GATE_AREA
2703extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2704extern int in_gate_area_no_mm(unsigned long addr);
2705extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2706#else
2707static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2708{
2709 return NULL;
2710}
2711static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2712static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2713{
2714 return 0;
2715}
2716#endif /* __HAVE_ARCH_GATE_AREA */
2717
2718extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2719
2720#ifdef CONFIG_SYSCTL
2721extern int sysctl_drop_caches;
2722int drop_caches_sysctl_handler(struct ctl_table *, int,
2723 void __user *, size_t *, loff_t *);
2724#endif
2725
2726void drop_slab(void);
2727void drop_slab_node(int nid);
2728
2729#ifndef CONFIG_MMU
2730#define randomize_va_space 0
2731#else
2732extern int randomize_va_space;
2733#endif
2734
2735const char * arch_vma_name(struct vm_area_struct *vma);
David Brazdil0f672f62019-12-10 10:32:29 +00002736#ifdef CONFIG_MMU
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002737void print_vma_addr(char *prefix, unsigned long rip);
David Brazdil0f672f62019-12-10 10:32:29 +00002738#else
2739static inline void print_vma_addr(char *prefix, unsigned long rip)
2740{
2741}
2742#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002743
2744void *sparse_buffer_alloc(unsigned long size);
David Brazdil0f672f62019-12-10 10:32:29 +00002745struct page * __populate_section_memmap(unsigned long pfn,
2746 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002747pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2748p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2749pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2750pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2751pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2752void *vmemmap_alloc_block(unsigned long size, int node);
2753struct vmem_altmap;
2754void *vmemmap_alloc_block_buf(unsigned long size, int node);
2755void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2756void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2757int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2758 int node);
2759int vmemmap_populate(unsigned long start, unsigned long end, int node,
2760 struct vmem_altmap *altmap);
2761void vmemmap_populate_print_last(void);
2762#ifdef CONFIG_MEMORY_HOTPLUG
2763void vmemmap_free(unsigned long start, unsigned long end,
2764 struct vmem_altmap *altmap);
2765#endif
2766void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2767 unsigned long nr_pages);
2768
2769enum mf_flags {
2770 MF_COUNT_INCREASED = 1 << 0,
2771 MF_ACTION_REQUIRED = 1 << 1,
2772 MF_MUST_KILL = 1 << 2,
2773 MF_SOFT_OFFLINE = 1 << 3,
2774};
2775extern int memory_failure(unsigned long pfn, int flags);
2776extern void memory_failure_queue(unsigned long pfn, int flags);
2777extern int unpoison_memory(unsigned long pfn);
2778extern int get_hwpoison_page(struct page *page);
2779#define put_hwpoison_page(page) put_page(page)
2780extern int sysctl_memory_failure_early_kill;
2781extern int sysctl_memory_failure_recovery;
2782extern void shake_page(struct page *p, int access);
2783extern atomic_long_t num_poisoned_pages __read_mostly;
2784extern int soft_offline_page(struct page *page, int flags);
2785
2786
2787/*
2788 * Error handlers for various types of pages.
2789 */
2790enum mf_result {
2791 MF_IGNORED, /* Error: cannot be handled */
2792 MF_FAILED, /* Error: handling failed */
2793 MF_DELAYED, /* Will be handled later */
2794 MF_RECOVERED, /* Successfully recovered */
2795};
2796
2797enum mf_action_page_type {
2798 MF_MSG_KERNEL,
2799 MF_MSG_KERNEL_HIGH_ORDER,
2800 MF_MSG_SLAB,
2801 MF_MSG_DIFFERENT_COMPOUND,
2802 MF_MSG_POISONED_HUGE,
2803 MF_MSG_HUGE,
2804 MF_MSG_FREE_HUGE,
2805 MF_MSG_NON_PMD_HUGE,
2806 MF_MSG_UNMAP_FAILED,
2807 MF_MSG_DIRTY_SWAPCACHE,
2808 MF_MSG_CLEAN_SWAPCACHE,
2809 MF_MSG_DIRTY_MLOCKED_LRU,
2810 MF_MSG_CLEAN_MLOCKED_LRU,
2811 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2812 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2813 MF_MSG_DIRTY_LRU,
2814 MF_MSG_CLEAN_LRU,
2815 MF_MSG_TRUNCATED_LRU,
2816 MF_MSG_BUDDY,
2817 MF_MSG_BUDDY_2ND,
2818 MF_MSG_DAX,
2819 MF_MSG_UNKNOWN,
2820};
2821
2822#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2823extern void clear_huge_page(struct page *page,
2824 unsigned long addr_hint,
2825 unsigned int pages_per_huge_page);
2826extern void copy_user_huge_page(struct page *dst, struct page *src,
2827 unsigned long addr_hint,
2828 struct vm_area_struct *vma,
2829 unsigned int pages_per_huge_page);
2830extern long copy_huge_page_from_user(struct page *dst_page,
2831 const void __user *usr_src,
2832 unsigned int pages_per_huge_page,
2833 bool allow_pagefault);
2834#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2835
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002836#ifdef CONFIG_DEBUG_PAGEALLOC
2837extern unsigned int _debug_guardpage_minorder;
David Brazdil0f672f62019-12-10 10:32:29 +00002838DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002839
2840static inline unsigned int debug_guardpage_minorder(void)
2841{
2842 return _debug_guardpage_minorder;
2843}
2844
2845static inline bool debug_guardpage_enabled(void)
2846{
David Brazdil0f672f62019-12-10 10:32:29 +00002847 return static_branch_unlikely(&_debug_guardpage_enabled);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002848}
2849
2850static inline bool page_is_guard(struct page *page)
2851{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002852 if (!debug_guardpage_enabled())
2853 return false;
2854
David Brazdil0f672f62019-12-10 10:32:29 +00002855 return PageGuard(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002856}
2857#else
2858static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2859static inline bool debug_guardpage_enabled(void) { return false; }
2860static inline bool page_is_guard(struct page *page) { return false; }
2861#endif /* CONFIG_DEBUG_PAGEALLOC */
2862
2863#if MAX_NUMNODES > 1
2864void __init setup_nr_node_ids(void);
2865#else
2866static inline void setup_nr_node_ids(void) {}
2867#endif
2868
David Brazdil0f672f62019-12-10 10:32:29 +00002869extern int memcmp_pages(struct page *page1, struct page *page2);
2870
2871static inline int pages_identical(struct page *page1, struct page *page2)
2872{
2873 return !memcmp_pages(page1, page2);
2874}
2875
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002876#endif /* __KERNEL__ */
2877#endif /* _LINUX_MM_H */