Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2007 Cisco Systems, Inc. All rights reserved. |
| 3 | * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved. |
| 4 | * |
| 5 | * This software is available to you under a choice of one of two |
| 6 | * licenses. You may choose to be licensed under the terms of the GNU |
| 7 | * General Public License (GPL) Version 2, available from the file |
| 8 | * COPYING in the main directory of this source tree, or the |
| 9 | * OpenIB.org BSD license below: |
| 10 | * |
| 11 | * Redistribution and use in source and binary forms, with or |
| 12 | * without modification, are permitted provided that the following |
| 13 | * conditions are met: |
| 14 | * |
| 15 | * - Redistributions of source code must retain the above |
| 16 | * copyright notice, this list of conditions and the following |
| 17 | * disclaimer. |
| 18 | * |
| 19 | * - Redistributions in binary form must reproduce the above |
| 20 | * copyright notice, this list of conditions and the following |
| 21 | * disclaimer in the documentation and/or other materials |
| 22 | * provided with the distribution. |
| 23 | * |
| 24 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| 25 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| 26 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| 27 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| 28 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| 29 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| 30 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 31 | * SOFTWARE. |
| 32 | */ |
| 33 | |
| 34 | #include <linux/slab.h> |
| 35 | #include <rdma/ib_user_verbs.h> |
| 36 | |
| 37 | #include "mlx4_ib.h" |
| 38 | |
| 39 | static u32 convert_access(int acc) |
| 40 | { |
| 41 | return (acc & IB_ACCESS_REMOTE_ATOMIC ? MLX4_PERM_ATOMIC : 0) | |
| 42 | (acc & IB_ACCESS_REMOTE_WRITE ? MLX4_PERM_REMOTE_WRITE : 0) | |
| 43 | (acc & IB_ACCESS_REMOTE_READ ? MLX4_PERM_REMOTE_READ : 0) | |
| 44 | (acc & IB_ACCESS_LOCAL_WRITE ? MLX4_PERM_LOCAL_WRITE : 0) | |
| 45 | (acc & IB_ACCESS_MW_BIND ? MLX4_PERM_BIND_MW : 0) | |
| 46 | MLX4_PERM_LOCAL_READ; |
| 47 | } |
| 48 | |
| 49 | static enum mlx4_mw_type to_mlx4_type(enum ib_mw_type type) |
| 50 | { |
| 51 | switch (type) { |
| 52 | case IB_MW_TYPE_1: return MLX4_MW_TYPE_1; |
| 53 | case IB_MW_TYPE_2: return MLX4_MW_TYPE_2; |
| 54 | default: return -1; |
| 55 | } |
| 56 | } |
| 57 | |
| 58 | struct ib_mr *mlx4_ib_get_dma_mr(struct ib_pd *pd, int acc) |
| 59 | { |
| 60 | struct mlx4_ib_mr *mr; |
| 61 | int err; |
| 62 | |
| 63 | mr = kzalloc(sizeof(*mr), GFP_KERNEL); |
| 64 | if (!mr) |
| 65 | return ERR_PTR(-ENOMEM); |
| 66 | |
| 67 | err = mlx4_mr_alloc(to_mdev(pd->device)->dev, to_mpd(pd)->pdn, 0, |
| 68 | ~0ull, convert_access(acc), 0, 0, &mr->mmr); |
| 69 | if (err) |
| 70 | goto err_free; |
| 71 | |
| 72 | err = mlx4_mr_enable(to_mdev(pd->device)->dev, &mr->mmr); |
| 73 | if (err) |
| 74 | goto err_mr; |
| 75 | |
| 76 | mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key; |
| 77 | mr->umem = NULL; |
| 78 | |
| 79 | return &mr->ibmr; |
| 80 | |
| 81 | err_mr: |
| 82 | (void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr); |
| 83 | |
| 84 | err_free: |
| 85 | kfree(mr); |
| 86 | |
| 87 | return ERR_PTR(err); |
| 88 | } |
| 89 | |
| 90 | enum { |
| 91 | MLX4_MAX_MTT_SHIFT = 31 |
| 92 | }; |
| 93 | |
| 94 | static int mlx4_ib_umem_write_mtt_block(struct mlx4_ib_dev *dev, |
| 95 | struct mlx4_mtt *mtt, |
| 96 | u64 mtt_size, u64 mtt_shift, u64 len, |
| 97 | u64 cur_start_addr, u64 *pages, |
| 98 | int *start_index, int *npages) |
| 99 | { |
| 100 | u64 cur_end_addr = cur_start_addr + len; |
| 101 | u64 cur_end_addr_aligned = 0; |
| 102 | u64 mtt_entries; |
| 103 | int err = 0; |
| 104 | int k; |
| 105 | |
| 106 | len += (cur_start_addr & (mtt_size - 1ULL)); |
| 107 | cur_end_addr_aligned = round_up(cur_end_addr, mtt_size); |
| 108 | len += (cur_end_addr_aligned - cur_end_addr); |
| 109 | if (len & (mtt_size - 1ULL)) { |
| 110 | pr_warn("write_block: len %llx is not aligned to mtt_size %llx\n", |
| 111 | len, mtt_size); |
| 112 | return -EINVAL; |
| 113 | } |
| 114 | |
| 115 | mtt_entries = (len >> mtt_shift); |
| 116 | |
| 117 | /* |
| 118 | * Align the MTT start address to the mtt_size. |
| 119 | * Required to handle cases when the MR starts in the middle of an MTT |
| 120 | * record. Was not required in old code since the physical addresses |
| 121 | * provided by the dma subsystem were page aligned, which was also the |
| 122 | * MTT size. |
| 123 | */ |
| 124 | cur_start_addr = round_down(cur_start_addr, mtt_size); |
| 125 | /* A new block is started ... */ |
| 126 | for (k = 0; k < mtt_entries; ++k) { |
| 127 | pages[*npages] = cur_start_addr + (mtt_size * k); |
| 128 | (*npages)++; |
| 129 | /* |
| 130 | * Be friendly to mlx4_write_mtt() and pass it chunks of |
| 131 | * appropriate size. |
| 132 | */ |
| 133 | if (*npages == PAGE_SIZE / sizeof(u64)) { |
| 134 | err = mlx4_write_mtt(dev->dev, mtt, *start_index, |
| 135 | *npages, pages); |
| 136 | if (err) |
| 137 | return err; |
| 138 | |
| 139 | (*start_index) += *npages; |
| 140 | *npages = 0; |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | return 0; |
| 145 | } |
| 146 | |
| 147 | static inline u64 alignment_of(u64 ptr) |
| 148 | { |
| 149 | return ilog2(ptr & (~(ptr - 1))); |
| 150 | } |
| 151 | |
| 152 | static int mlx4_ib_umem_calc_block_mtt(u64 next_block_start, |
| 153 | u64 current_block_end, |
| 154 | u64 block_shift) |
| 155 | { |
| 156 | /* Check whether the alignment of the new block is aligned as well as |
| 157 | * the previous block. |
| 158 | * Block address must start with zeros till size of entity_size. |
| 159 | */ |
| 160 | if ((next_block_start & ((1ULL << block_shift) - 1ULL)) != 0) |
| 161 | /* |
| 162 | * It is not as well aligned as the previous block-reduce the |
| 163 | * mtt size accordingly. Here we take the last right bit which |
| 164 | * is 1. |
| 165 | */ |
| 166 | block_shift = alignment_of(next_block_start); |
| 167 | |
| 168 | /* |
| 169 | * Check whether the alignment of the end of previous block - is it |
| 170 | * aligned as well as the start of the block |
| 171 | */ |
| 172 | if (((current_block_end) & ((1ULL << block_shift) - 1ULL)) != 0) |
| 173 | /* |
| 174 | * It is not as well aligned as the start of the block - |
| 175 | * reduce the mtt size accordingly. |
| 176 | */ |
| 177 | block_shift = alignment_of(current_block_end); |
| 178 | |
| 179 | return block_shift; |
| 180 | } |
| 181 | |
| 182 | int mlx4_ib_umem_write_mtt(struct mlx4_ib_dev *dev, struct mlx4_mtt *mtt, |
| 183 | struct ib_umem *umem) |
| 184 | { |
| 185 | u64 *pages; |
| 186 | u64 len = 0; |
| 187 | int err = 0; |
| 188 | u64 mtt_size; |
| 189 | u64 cur_start_addr = 0; |
| 190 | u64 mtt_shift; |
| 191 | int start_index = 0; |
| 192 | int npages = 0; |
| 193 | struct scatterlist *sg; |
| 194 | int i; |
| 195 | |
| 196 | pages = (u64 *) __get_free_page(GFP_KERNEL); |
| 197 | if (!pages) |
| 198 | return -ENOMEM; |
| 199 | |
| 200 | mtt_shift = mtt->page_shift; |
| 201 | mtt_size = 1ULL << mtt_shift; |
| 202 | |
| 203 | for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i) { |
| 204 | if (cur_start_addr + len == sg_dma_address(sg)) { |
| 205 | /* still the same block */ |
| 206 | len += sg_dma_len(sg); |
| 207 | continue; |
| 208 | } |
| 209 | /* |
| 210 | * A new block is started ... |
| 211 | * If len is malaligned, write an extra mtt entry to cover the |
| 212 | * misaligned area (round up the division) |
| 213 | */ |
| 214 | err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size, |
| 215 | mtt_shift, len, |
| 216 | cur_start_addr, |
| 217 | pages, &start_index, |
| 218 | &npages); |
| 219 | if (err) |
| 220 | goto out; |
| 221 | |
| 222 | cur_start_addr = sg_dma_address(sg); |
| 223 | len = sg_dma_len(sg); |
| 224 | } |
| 225 | |
| 226 | /* Handle the last block */ |
| 227 | if (len > 0) { |
| 228 | /* |
| 229 | * If len is malaligned, write an extra mtt entry to cover |
| 230 | * the misaligned area (round up the division) |
| 231 | */ |
| 232 | err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size, |
| 233 | mtt_shift, len, |
| 234 | cur_start_addr, pages, |
| 235 | &start_index, &npages); |
| 236 | if (err) |
| 237 | goto out; |
| 238 | } |
| 239 | |
| 240 | if (npages) |
| 241 | err = mlx4_write_mtt(dev->dev, mtt, start_index, npages, pages); |
| 242 | |
| 243 | out: |
| 244 | free_page((unsigned long) pages); |
| 245 | return err; |
| 246 | } |
| 247 | |
| 248 | /* |
| 249 | * Calculate optimal mtt size based on contiguous pages. |
| 250 | * Function will return also the number of pages that are not aligned to the |
| 251 | * calculated mtt_size to be added to total number of pages. For that we should |
| 252 | * check the first chunk length & last chunk length and if not aligned to |
| 253 | * mtt_size we should increment the non_aligned_pages number. All chunks in the |
| 254 | * middle already handled as part of mtt shift calculation for both their start |
| 255 | * & end addresses. |
| 256 | */ |
| 257 | int mlx4_ib_umem_calc_optimal_mtt_size(struct ib_umem *umem, u64 start_va, |
| 258 | int *num_of_mtts) |
| 259 | { |
| 260 | u64 block_shift = MLX4_MAX_MTT_SHIFT; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 261 | u64 min_shift = PAGE_SHIFT; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 262 | u64 last_block_aligned_end = 0; |
| 263 | u64 current_block_start = 0; |
| 264 | u64 first_block_start = 0; |
| 265 | u64 current_block_len = 0; |
| 266 | u64 last_block_end = 0; |
| 267 | struct scatterlist *sg; |
| 268 | u64 current_block_end; |
| 269 | u64 misalignment_bits; |
| 270 | u64 next_block_start; |
| 271 | u64 total_len = 0; |
| 272 | int i; |
| 273 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 274 | *num_of_mtts = ib_umem_num_dma_blocks(umem, PAGE_SIZE); |
| 275 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 276 | for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i) { |
| 277 | /* |
| 278 | * Initialization - save the first chunk start as the |
| 279 | * current_block_start - block means contiguous pages. |
| 280 | */ |
| 281 | if (current_block_len == 0 && current_block_start == 0) { |
| 282 | current_block_start = sg_dma_address(sg); |
| 283 | first_block_start = current_block_start; |
| 284 | /* |
| 285 | * Find the bits that are different between the physical |
| 286 | * address and the virtual address for the start of the |
| 287 | * MR. |
| 288 | * umem_get aligned the start_va to a page boundary. |
| 289 | * Therefore, we need to align the start va to the same |
| 290 | * boundary. |
| 291 | * misalignment_bits is needed to handle the case of a |
| 292 | * single memory region. In this case, the rest of the |
| 293 | * logic will not reduce the block size. If we use a |
| 294 | * block size which is bigger than the alignment of the |
| 295 | * misalignment bits, we might use the virtual page |
| 296 | * number instead of the physical page number, resulting |
| 297 | * in access to the wrong data. |
| 298 | */ |
| 299 | misalignment_bits = |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 300 | (start_va & (~(((u64)(PAGE_SIZE)) - 1ULL))) ^ |
| 301 | current_block_start; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 302 | block_shift = min(alignment_of(misalignment_bits), |
| 303 | block_shift); |
| 304 | } |
| 305 | |
| 306 | /* |
| 307 | * Go over the scatter entries and check if they continue the |
| 308 | * previous scatter entry. |
| 309 | */ |
| 310 | next_block_start = sg_dma_address(sg); |
| 311 | current_block_end = current_block_start + current_block_len; |
| 312 | /* If we have a split (non-contig.) between two blocks */ |
| 313 | if (current_block_end != next_block_start) { |
| 314 | block_shift = mlx4_ib_umem_calc_block_mtt |
| 315 | (next_block_start, |
| 316 | current_block_end, |
| 317 | block_shift); |
| 318 | |
| 319 | /* |
| 320 | * If we reached the minimum shift for 4k page we stop |
| 321 | * the loop. |
| 322 | */ |
| 323 | if (block_shift <= min_shift) |
| 324 | goto end; |
| 325 | |
| 326 | /* |
| 327 | * If not saved yet we are in first block - we save the |
| 328 | * length of first block to calculate the |
| 329 | * non_aligned_pages number at the end. |
| 330 | */ |
| 331 | total_len += current_block_len; |
| 332 | |
| 333 | /* Start a new block */ |
| 334 | current_block_start = next_block_start; |
| 335 | current_block_len = sg_dma_len(sg); |
| 336 | continue; |
| 337 | } |
| 338 | /* The scatter entry is another part of the current block, |
| 339 | * increase the block size. |
| 340 | * An entry in the scatter can be larger than 4k (page) as of |
| 341 | * dma mapping which merge some blocks together. |
| 342 | */ |
| 343 | current_block_len += sg_dma_len(sg); |
| 344 | } |
| 345 | |
| 346 | /* Account for the last block in the total len */ |
| 347 | total_len += current_block_len; |
| 348 | /* Add to the first block the misalignment that it suffers from. */ |
| 349 | total_len += (first_block_start & ((1ULL << block_shift) - 1ULL)); |
| 350 | last_block_end = current_block_start + current_block_len; |
| 351 | last_block_aligned_end = round_up(last_block_end, 1ULL << block_shift); |
| 352 | total_len += (last_block_aligned_end - last_block_end); |
| 353 | |
| 354 | if (total_len & ((1ULL << block_shift) - 1ULL)) |
| 355 | pr_warn("misaligned total length detected (%llu, %llu)!", |
| 356 | total_len, block_shift); |
| 357 | |
| 358 | *num_of_mtts = total_len >> block_shift; |
| 359 | end: |
| 360 | if (block_shift < min_shift) { |
| 361 | /* |
| 362 | * If shift is less than the min we set a warning and return the |
| 363 | * min shift. |
| 364 | */ |
| 365 | pr_warn("umem_calc_optimal_mtt_size - unexpected shift %lld\n", block_shift); |
| 366 | |
| 367 | block_shift = min_shift; |
| 368 | } |
| 369 | return block_shift; |
| 370 | } |
| 371 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 372 | static struct ib_umem *mlx4_get_umem_mr(struct ib_device *device, u64 start, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 373 | u64 length, int access_flags) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 374 | { |
| 375 | /* |
| 376 | * Force registering the memory as writable if the underlying pages |
| 377 | * are writable. This is so rereg can change the access permissions |
| 378 | * from readable to writable without having to run through ib_umem_get |
| 379 | * again |
| 380 | */ |
| 381 | if (!ib_access_writable(access_flags)) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 382 | unsigned long untagged_start = untagged_addr(start); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 383 | struct vm_area_struct *vma; |
| 384 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 385 | mmap_read_lock(current->mm); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 386 | /* |
| 387 | * FIXME: Ideally this would iterate over all the vmas that |
| 388 | * cover the memory, but for now it requires a single vma to |
| 389 | * entirely cover the MR to support RO mappings. |
| 390 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 391 | vma = find_vma(current->mm, untagged_start); |
| 392 | if (vma && vma->vm_end >= untagged_start + length && |
| 393 | vma->vm_start <= untagged_start) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 394 | if (vma->vm_flags & VM_WRITE) |
| 395 | access_flags |= IB_ACCESS_LOCAL_WRITE; |
| 396 | } else { |
| 397 | access_flags |= IB_ACCESS_LOCAL_WRITE; |
| 398 | } |
| 399 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 400 | mmap_read_unlock(current->mm); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 401 | } |
| 402 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 403 | return ib_umem_get(device, start, length, access_flags); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 404 | } |
| 405 | |
| 406 | struct ib_mr *mlx4_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, |
| 407 | u64 virt_addr, int access_flags, |
| 408 | struct ib_udata *udata) |
| 409 | { |
| 410 | struct mlx4_ib_dev *dev = to_mdev(pd->device); |
| 411 | struct mlx4_ib_mr *mr; |
| 412 | int shift; |
| 413 | int err; |
| 414 | int n; |
| 415 | |
| 416 | mr = kzalloc(sizeof(*mr), GFP_KERNEL); |
| 417 | if (!mr) |
| 418 | return ERR_PTR(-ENOMEM); |
| 419 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 420 | mr->umem = mlx4_get_umem_mr(pd->device, start, length, access_flags); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 421 | if (IS_ERR(mr->umem)) { |
| 422 | err = PTR_ERR(mr->umem); |
| 423 | goto err_free; |
| 424 | } |
| 425 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 426 | shift = mlx4_ib_umem_calc_optimal_mtt_size(mr->umem, start, &n); |
| 427 | |
| 428 | err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, virt_addr, length, |
| 429 | convert_access(access_flags), n, shift, &mr->mmr); |
| 430 | if (err) |
| 431 | goto err_umem; |
| 432 | |
| 433 | err = mlx4_ib_umem_write_mtt(dev, &mr->mmr.mtt, mr->umem); |
| 434 | if (err) |
| 435 | goto err_mr; |
| 436 | |
| 437 | err = mlx4_mr_enable(dev->dev, &mr->mmr); |
| 438 | if (err) |
| 439 | goto err_mr; |
| 440 | |
| 441 | mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key; |
| 442 | mr->ibmr.length = length; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 443 | mr->ibmr.page_size = 1U << shift; |
| 444 | |
| 445 | return &mr->ibmr; |
| 446 | |
| 447 | err_mr: |
| 448 | (void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr); |
| 449 | |
| 450 | err_umem: |
| 451 | ib_umem_release(mr->umem); |
| 452 | |
| 453 | err_free: |
| 454 | kfree(mr); |
| 455 | |
| 456 | return ERR_PTR(err); |
| 457 | } |
| 458 | |
| 459 | int mlx4_ib_rereg_user_mr(struct ib_mr *mr, int flags, |
| 460 | u64 start, u64 length, u64 virt_addr, |
| 461 | int mr_access_flags, struct ib_pd *pd, |
| 462 | struct ib_udata *udata) |
| 463 | { |
| 464 | struct mlx4_ib_dev *dev = to_mdev(mr->device); |
| 465 | struct mlx4_ib_mr *mmr = to_mmr(mr); |
| 466 | struct mlx4_mpt_entry *mpt_entry; |
| 467 | struct mlx4_mpt_entry **pmpt_entry = &mpt_entry; |
| 468 | int err; |
| 469 | |
| 470 | /* Since we synchronize this call and mlx4_ib_dereg_mr via uverbs, |
| 471 | * we assume that the calls can't run concurrently. Otherwise, a |
| 472 | * race exists. |
| 473 | */ |
| 474 | err = mlx4_mr_hw_get_mpt(dev->dev, &mmr->mmr, &pmpt_entry); |
| 475 | |
| 476 | if (err) |
| 477 | return err; |
| 478 | |
| 479 | if (flags & IB_MR_REREG_PD) { |
| 480 | err = mlx4_mr_hw_change_pd(dev->dev, *pmpt_entry, |
| 481 | to_mpd(pd)->pdn); |
| 482 | |
| 483 | if (err) |
| 484 | goto release_mpt_entry; |
| 485 | } |
| 486 | |
| 487 | if (flags & IB_MR_REREG_ACCESS) { |
| 488 | if (ib_access_writable(mr_access_flags) && |
| 489 | !mmr->umem->writable) { |
| 490 | err = -EPERM; |
| 491 | goto release_mpt_entry; |
| 492 | } |
| 493 | |
| 494 | err = mlx4_mr_hw_change_access(dev->dev, *pmpt_entry, |
| 495 | convert_access(mr_access_flags)); |
| 496 | |
| 497 | if (err) |
| 498 | goto release_mpt_entry; |
| 499 | } |
| 500 | |
| 501 | if (flags & IB_MR_REREG_TRANS) { |
| 502 | int shift; |
| 503 | int n; |
| 504 | |
| 505 | mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr); |
| 506 | ib_umem_release(mmr->umem); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 507 | mmr->umem = mlx4_get_umem_mr(mr->device, start, length, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 508 | mr_access_flags); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 509 | if (IS_ERR(mmr->umem)) { |
| 510 | err = PTR_ERR(mmr->umem); |
| 511 | /* Prevent mlx4_ib_dereg_mr from free'ing invalid pointer */ |
| 512 | mmr->umem = NULL; |
| 513 | goto release_mpt_entry; |
| 514 | } |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 515 | n = ib_umem_num_dma_blocks(mmr->umem, PAGE_SIZE); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 516 | shift = PAGE_SHIFT; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 517 | |
| 518 | err = mlx4_mr_rereg_mem_write(dev->dev, &mmr->mmr, |
| 519 | virt_addr, length, n, shift, |
| 520 | *pmpt_entry); |
| 521 | if (err) { |
| 522 | ib_umem_release(mmr->umem); |
| 523 | goto release_mpt_entry; |
| 524 | } |
| 525 | mmr->mmr.iova = virt_addr; |
| 526 | mmr->mmr.size = length; |
| 527 | |
| 528 | err = mlx4_ib_umem_write_mtt(dev, &mmr->mmr.mtt, mmr->umem); |
| 529 | if (err) { |
| 530 | mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr); |
| 531 | ib_umem_release(mmr->umem); |
| 532 | goto release_mpt_entry; |
| 533 | } |
| 534 | } |
| 535 | |
| 536 | /* If we couldn't transfer the MR to the HCA, just remember to |
| 537 | * return a failure. But dereg_mr will free the resources. |
| 538 | */ |
| 539 | err = mlx4_mr_hw_write_mpt(dev->dev, &mmr->mmr, pmpt_entry); |
| 540 | if (!err && flags & IB_MR_REREG_ACCESS) |
| 541 | mmr->mmr.access = mr_access_flags; |
| 542 | |
| 543 | release_mpt_entry: |
| 544 | mlx4_mr_hw_put_mpt(dev->dev, pmpt_entry); |
| 545 | |
| 546 | return err; |
| 547 | } |
| 548 | |
| 549 | static int |
| 550 | mlx4_alloc_priv_pages(struct ib_device *device, |
| 551 | struct mlx4_ib_mr *mr, |
| 552 | int max_pages) |
| 553 | { |
| 554 | int ret; |
| 555 | |
| 556 | /* Ensure that size is aligned to DMA cacheline |
| 557 | * requirements. |
| 558 | * max_pages is limited to MLX4_MAX_FAST_REG_PAGES |
| 559 | * so page_map_size will never cross PAGE_SIZE. |
| 560 | */ |
| 561 | mr->page_map_size = roundup(max_pages * sizeof(u64), |
| 562 | MLX4_MR_PAGES_ALIGN); |
| 563 | |
| 564 | /* Prevent cross page boundary allocation. */ |
| 565 | mr->pages = (__be64 *)get_zeroed_page(GFP_KERNEL); |
| 566 | if (!mr->pages) |
| 567 | return -ENOMEM; |
| 568 | |
| 569 | mr->page_map = dma_map_single(device->dev.parent, mr->pages, |
| 570 | mr->page_map_size, DMA_TO_DEVICE); |
| 571 | |
| 572 | if (dma_mapping_error(device->dev.parent, mr->page_map)) { |
| 573 | ret = -ENOMEM; |
| 574 | goto err; |
| 575 | } |
| 576 | |
| 577 | return 0; |
| 578 | |
| 579 | err: |
| 580 | free_page((unsigned long)mr->pages); |
| 581 | return ret; |
| 582 | } |
| 583 | |
| 584 | static void |
| 585 | mlx4_free_priv_pages(struct mlx4_ib_mr *mr) |
| 586 | { |
| 587 | if (mr->pages) { |
| 588 | struct ib_device *device = mr->ibmr.device; |
| 589 | |
| 590 | dma_unmap_single(device->dev.parent, mr->page_map, |
| 591 | mr->page_map_size, DMA_TO_DEVICE); |
| 592 | free_page((unsigned long)mr->pages); |
| 593 | mr->pages = NULL; |
| 594 | } |
| 595 | } |
| 596 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 597 | int mlx4_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 598 | { |
| 599 | struct mlx4_ib_mr *mr = to_mmr(ibmr); |
| 600 | int ret; |
| 601 | |
| 602 | mlx4_free_priv_pages(mr); |
| 603 | |
| 604 | ret = mlx4_mr_free(to_mdev(ibmr->device)->dev, &mr->mmr); |
| 605 | if (ret) |
| 606 | return ret; |
| 607 | if (mr->umem) |
| 608 | ib_umem_release(mr->umem); |
| 609 | kfree(mr); |
| 610 | |
| 611 | return 0; |
| 612 | } |
| 613 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 614 | int mlx4_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 615 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 616 | struct mlx4_ib_dev *dev = to_mdev(ibmw->device); |
| 617 | struct mlx4_ib_mw *mw = to_mmw(ibmw); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 618 | int err; |
| 619 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 620 | err = mlx4_mw_alloc(dev->dev, to_mpd(ibmw->pd)->pdn, |
| 621 | to_mlx4_type(ibmw->type), &mw->mmw); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 622 | if (err) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 623 | return err; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 624 | |
| 625 | err = mlx4_mw_enable(dev->dev, &mw->mmw); |
| 626 | if (err) |
| 627 | goto err_mw; |
| 628 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 629 | ibmw->rkey = mw->mmw.key; |
| 630 | return 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 631 | |
| 632 | err_mw: |
| 633 | mlx4_mw_free(dev->dev, &mw->mmw); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 634 | return err; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 635 | } |
| 636 | |
| 637 | int mlx4_ib_dealloc_mw(struct ib_mw *ibmw) |
| 638 | { |
| 639 | struct mlx4_ib_mw *mw = to_mmw(ibmw); |
| 640 | |
| 641 | mlx4_mw_free(to_mdev(ibmw->device)->dev, &mw->mmw); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 642 | return 0; |
| 643 | } |
| 644 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 645 | struct ib_mr *mlx4_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 646 | u32 max_num_sg) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 647 | { |
| 648 | struct mlx4_ib_dev *dev = to_mdev(pd->device); |
| 649 | struct mlx4_ib_mr *mr; |
| 650 | int err; |
| 651 | |
| 652 | if (mr_type != IB_MR_TYPE_MEM_REG || |
| 653 | max_num_sg > MLX4_MAX_FAST_REG_PAGES) |
| 654 | return ERR_PTR(-EINVAL); |
| 655 | |
| 656 | mr = kzalloc(sizeof(*mr), GFP_KERNEL); |
| 657 | if (!mr) |
| 658 | return ERR_PTR(-ENOMEM); |
| 659 | |
| 660 | err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, 0, 0, 0, |
| 661 | max_num_sg, 0, &mr->mmr); |
| 662 | if (err) |
| 663 | goto err_free; |
| 664 | |
| 665 | err = mlx4_alloc_priv_pages(pd->device, mr, max_num_sg); |
| 666 | if (err) |
| 667 | goto err_free_mr; |
| 668 | |
| 669 | mr->max_pages = max_num_sg; |
| 670 | err = mlx4_mr_enable(dev->dev, &mr->mmr); |
| 671 | if (err) |
| 672 | goto err_free_pl; |
| 673 | |
| 674 | mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key; |
| 675 | mr->umem = NULL; |
| 676 | |
| 677 | return &mr->ibmr; |
| 678 | |
| 679 | err_free_pl: |
| 680 | mr->ibmr.device = pd->device; |
| 681 | mlx4_free_priv_pages(mr); |
| 682 | err_free_mr: |
| 683 | (void) mlx4_mr_free(dev->dev, &mr->mmr); |
| 684 | err_free: |
| 685 | kfree(mr); |
| 686 | return ERR_PTR(err); |
| 687 | } |
| 688 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 689 | static int mlx4_set_page(struct ib_mr *ibmr, u64 addr) |
| 690 | { |
| 691 | struct mlx4_ib_mr *mr = to_mmr(ibmr); |
| 692 | |
| 693 | if (unlikely(mr->npages == mr->max_pages)) |
| 694 | return -ENOMEM; |
| 695 | |
| 696 | mr->pages[mr->npages++] = cpu_to_be64(addr | MLX4_MTT_FLAG_PRESENT); |
| 697 | |
| 698 | return 0; |
| 699 | } |
| 700 | |
| 701 | int mlx4_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, |
| 702 | unsigned int *sg_offset) |
| 703 | { |
| 704 | struct mlx4_ib_mr *mr = to_mmr(ibmr); |
| 705 | int rc; |
| 706 | |
| 707 | mr->npages = 0; |
| 708 | |
| 709 | ib_dma_sync_single_for_cpu(ibmr->device, mr->page_map, |
| 710 | mr->page_map_size, DMA_TO_DEVICE); |
| 711 | |
| 712 | rc = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, mlx4_set_page); |
| 713 | |
| 714 | ib_dma_sync_single_for_device(ibmr->device, mr->page_map, |
| 715 | mr->page_map_size, DMA_TO_DEVICE); |
| 716 | |
| 717 | return rc; |
| 718 | } |