v4.19.13 snapshot.
diff --git a/drivers/infiniband/hw/mlx4/mr.c b/drivers/infiniband/hw/mlx4/mr.c
new file mode 100644
index 0000000..c7c85c2
--- /dev/null
+++ b/drivers/infiniband/hw/mlx4/mr.c
@@ -0,0 +1,826 @@
+/*
+ * Copyright (c) 2007 Cisco Systems, Inc. All rights reserved.
+ * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
+ *
+ * This software is available to you under a choice of one of two
+ * licenses.  You may choose to be licensed under the terms of the GNU
+ * General Public License (GPL) Version 2, available from the file
+ * COPYING in the main directory of this source tree, or the
+ * OpenIB.org BSD license below:
+ *
+ *     Redistribution and use in source and binary forms, with or
+ *     without modification, are permitted provided that the following
+ *     conditions are met:
+ *
+ *      - Redistributions of source code must retain the above
+ *        copyright notice, this list of conditions and the following
+ *        disclaimer.
+ *
+ *      - Redistributions in binary form must reproduce the above
+ *        copyright notice, this list of conditions and the following
+ *        disclaimer in the documentation and/or other materials
+ *        provided with the distribution.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include <linux/slab.h>
+#include <rdma/ib_user_verbs.h>
+
+#include "mlx4_ib.h"
+
+static u32 convert_access(int acc)
+{
+	return (acc & IB_ACCESS_REMOTE_ATOMIC ? MLX4_PERM_ATOMIC       : 0) |
+	       (acc & IB_ACCESS_REMOTE_WRITE  ? MLX4_PERM_REMOTE_WRITE : 0) |
+	       (acc & IB_ACCESS_REMOTE_READ   ? MLX4_PERM_REMOTE_READ  : 0) |
+	       (acc & IB_ACCESS_LOCAL_WRITE   ? MLX4_PERM_LOCAL_WRITE  : 0) |
+	       (acc & IB_ACCESS_MW_BIND	      ? MLX4_PERM_BIND_MW      : 0) |
+	       MLX4_PERM_LOCAL_READ;
+}
+
+static enum mlx4_mw_type to_mlx4_type(enum ib_mw_type type)
+{
+	switch (type) {
+	case IB_MW_TYPE_1:	return MLX4_MW_TYPE_1;
+	case IB_MW_TYPE_2:	return MLX4_MW_TYPE_2;
+	default:		return -1;
+	}
+}
+
+struct ib_mr *mlx4_ib_get_dma_mr(struct ib_pd *pd, int acc)
+{
+	struct mlx4_ib_mr *mr;
+	int err;
+
+	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
+	if (!mr)
+		return ERR_PTR(-ENOMEM);
+
+	err = mlx4_mr_alloc(to_mdev(pd->device)->dev, to_mpd(pd)->pdn, 0,
+			    ~0ull, convert_access(acc), 0, 0, &mr->mmr);
+	if (err)
+		goto err_free;
+
+	err = mlx4_mr_enable(to_mdev(pd->device)->dev, &mr->mmr);
+	if (err)
+		goto err_mr;
+
+	mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
+	mr->umem = NULL;
+
+	return &mr->ibmr;
+
+err_mr:
+	(void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr);
+
+err_free:
+	kfree(mr);
+
+	return ERR_PTR(err);
+}
+
+enum {
+	MLX4_MAX_MTT_SHIFT = 31
+};
+
+static int mlx4_ib_umem_write_mtt_block(struct mlx4_ib_dev *dev,
+					struct mlx4_mtt *mtt,
+					u64 mtt_size, u64 mtt_shift, u64 len,
+					u64 cur_start_addr, u64 *pages,
+					int *start_index, int *npages)
+{
+	u64 cur_end_addr = cur_start_addr + len;
+	u64 cur_end_addr_aligned = 0;
+	u64 mtt_entries;
+	int err = 0;
+	int k;
+
+	len += (cur_start_addr & (mtt_size - 1ULL));
+	cur_end_addr_aligned = round_up(cur_end_addr, mtt_size);
+	len += (cur_end_addr_aligned - cur_end_addr);
+	if (len & (mtt_size - 1ULL)) {
+		pr_warn("write_block: len %llx is not aligned to mtt_size %llx\n",
+			len, mtt_size);
+		return -EINVAL;
+	}
+
+	mtt_entries = (len >> mtt_shift);
+
+	/*
+	 * Align the MTT start address to the mtt_size.
+	 * Required to handle cases when the MR starts in the middle of an MTT
+	 * record. Was not required in old code since the physical addresses
+	 * provided by the dma subsystem were page aligned, which was also the
+	 * MTT size.
+	 */
+	cur_start_addr = round_down(cur_start_addr, mtt_size);
+	/* A new block is started ... */
+	for (k = 0; k < mtt_entries; ++k) {
+		pages[*npages] = cur_start_addr + (mtt_size * k);
+		(*npages)++;
+		/*
+		 * Be friendly to mlx4_write_mtt() and pass it chunks of
+		 * appropriate size.
+		 */
+		if (*npages == PAGE_SIZE / sizeof(u64)) {
+			err = mlx4_write_mtt(dev->dev, mtt, *start_index,
+					     *npages, pages);
+			if (err)
+				return err;
+
+			(*start_index) += *npages;
+			*npages = 0;
+		}
+	}
+
+	return 0;
+}
+
+static inline u64 alignment_of(u64 ptr)
+{
+	return ilog2(ptr & (~(ptr - 1)));
+}
+
+static int mlx4_ib_umem_calc_block_mtt(u64 next_block_start,
+				       u64 current_block_end,
+				       u64 block_shift)
+{
+	/* Check whether the alignment of the new block is aligned as well as
+	 * the previous block.
+	 * Block address must start with zeros till size of entity_size.
+	 */
+	if ((next_block_start & ((1ULL << block_shift) - 1ULL)) != 0)
+		/*
+		 * It is not as well aligned as the previous block-reduce the
+		 * mtt size accordingly. Here we take the last right bit which
+		 * is 1.
+		 */
+		block_shift = alignment_of(next_block_start);
+
+	/*
+	 * Check whether the alignment of the end of previous block - is it
+	 * aligned as well as the start of the block
+	 */
+	if (((current_block_end) & ((1ULL << block_shift) - 1ULL)) != 0)
+		/*
+		 * It is not as well aligned as the start of the block -
+		 * reduce the mtt size accordingly.
+		 */
+		block_shift = alignment_of(current_block_end);
+
+	return block_shift;
+}
+
+int mlx4_ib_umem_write_mtt(struct mlx4_ib_dev *dev, struct mlx4_mtt *mtt,
+			   struct ib_umem *umem)
+{
+	u64 *pages;
+	u64 len = 0;
+	int err = 0;
+	u64 mtt_size;
+	u64 cur_start_addr = 0;
+	u64 mtt_shift;
+	int start_index = 0;
+	int npages = 0;
+	struct scatterlist *sg;
+	int i;
+
+	pages = (u64 *) __get_free_page(GFP_KERNEL);
+	if (!pages)
+		return -ENOMEM;
+
+	mtt_shift = mtt->page_shift;
+	mtt_size = 1ULL << mtt_shift;
+
+	for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i) {
+		if (cur_start_addr + len == sg_dma_address(sg)) {
+			/* still the same block */
+			len += sg_dma_len(sg);
+			continue;
+		}
+		/*
+		 * A new block is started ...
+		 * If len is malaligned, write an extra mtt entry to cover the
+		 * misaligned area (round up the division)
+		 */
+		err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size,
+						   mtt_shift, len,
+						   cur_start_addr,
+						   pages, &start_index,
+						   &npages);
+		if (err)
+			goto out;
+
+		cur_start_addr = sg_dma_address(sg);
+		len = sg_dma_len(sg);
+	}
+
+	/* Handle the last block */
+	if (len > 0) {
+		/*
+		 * If len is malaligned, write an extra mtt entry to cover
+		 * the misaligned area (round up the division)
+		 */
+		err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size,
+						   mtt_shift, len,
+						   cur_start_addr, pages,
+						   &start_index, &npages);
+		if (err)
+			goto out;
+	}
+
+	if (npages)
+		err = mlx4_write_mtt(dev->dev, mtt, start_index, npages, pages);
+
+out:
+	free_page((unsigned long) pages);
+	return err;
+}
+
+/*
+ * Calculate optimal mtt size based on contiguous pages.
+ * Function will return also the number of pages that are not aligned to the
+ * calculated mtt_size to be added to total number of pages. For that we should
+ * check the first chunk length & last chunk length and if not aligned to
+ * mtt_size we should increment the non_aligned_pages number. All chunks in the
+ * middle already handled as part of mtt shift calculation for both their start
+ * & end addresses.
+ */
+int mlx4_ib_umem_calc_optimal_mtt_size(struct ib_umem *umem, u64 start_va,
+				       int *num_of_mtts)
+{
+	u64 block_shift = MLX4_MAX_MTT_SHIFT;
+	u64 min_shift = umem->page_shift;
+	u64 last_block_aligned_end = 0;
+	u64 current_block_start = 0;
+	u64 first_block_start = 0;
+	u64 current_block_len = 0;
+	u64 last_block_end = 0;
+	struct scatterlist *sg;
+	u64 current_block_end;
+	u64 misalignment_bits;
+	u64 next_block_start;
+	u64 total_len = 0;
+	int i;
+
+	for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i) {
+		/*
+		 * Initialization - save the first chunk start as the
+		 * current_block_start - block means contiguous pages.
+		 */
+		if (current_block_len == 0 && current_block_start == 0) {
+			current_block_start = sg_dma_address(sg);
+			first_block_start = current_block_start;
+			/*
+			 * Find the bits that are different between the physical
+			 * address and the virtual address for the start of the
+			 * MR.
+			 * umem_get aligned the start_va to a page boundary.
+			 * Therefore, we need to align the start va to the same
+			 * boundary.
+			 * misalignment_bits is needed to handle the  case of a
+			 * single memory region. In this case, the rest of the
+			 * logic will not reduce the block size.  If we use a
+			 * block size which is bigger than the alignment of the
+			 * misalignment bits, we might use the virtual page
+			 * number instead of the physical page number, resulting
+			 * in access to the wrong data.
+			 */
+			misalignment_bits =
+			(start_va & (~(((u64)(BIT(umem->page_shift))) - 1ULL)))
+			^ current_block_start;
+			block_shift = min(alignment_of(misalignment_bits),
+					  block_shift);
+		}
+
+		/*
+		 * Go over the scatter entries and check if they continue the
+		 * previous scatter entry.
+		 */
+		next_block_start = sg_dma_address(sg);
+		current_block_end = current_block_start	+ current_block_len;
+		/* If we have a split (non-contig.) between two blocks */
+		if (current_block_end != next_block_start) {
+			block_shift = mlx4_ib_umem_calc_block_mtt
+					(next_block_start,
+					 current_block_end,
+					 block_shift);
+
+			/*
+			 * If we reached the minimum shift for 4k page we stop
+			 * the loop.
+			 */
+			if (block_shift <= min_shift)
+				goto end;
+
+			/*
+			 * If not saved yet we are in first block - we save the
+			 * length of first block to calculate the
+			 * non_aligned_pages number at the end.
+			 */
+			total_len += current_block_len;
+
+			/* Start a new block */
+			current_block_start = next_block_start;
+			current_block_len = sg_dma_len(sg);
+			continue;
+		}
+		/* The scatter entry is another part of the current block,
+		 * increase the block size.
+		 * An entry in the scatter can be larger than 4k (page) as of
+		 * dma mapping which merge some blocks together.
+		 */
+		current_block_len += sg_dma_len(sg);
+	}
+
+	/* Account for the last block in the total len */
+	total_len += current_block_len;
+	/* Add to the first block the misalignment that it suffers from. */
+	total_len += (first_block_start & ((1ULL << block_shift) - 1ULL));
+	last_block_end = current_block_start + current_block_len;
+	last_block_aligned_end = round_up(last_block_end, 1ULL << block_shift);
+	total_len += (last_block_aligned_end - last_block_end);
+
+	if (total_len & ((1ULL << block_shift) - 1ULL))
+		pr_warn("misaligned total length detected (%llu, %llu)!",
+			total_len, block_shift);
+
+	*num_of_mtts = total_len >> block_shift;
+end:
+	if (block_shift < min_shift) {
+		/*
+		 * If shift is less than the min we set a warning and return the
+		 * min shift.
+		 */
+		pr_warn("umem_calc_optimal_mtt_size - unexpected shift %lld\n", block_shift);
+
+		block_shift = min_shift;
+	}
+	return block_shift;
+}
+
+static struct ib_umem *mlx4_get_umem_mr(struct ib_ucontext *context, u64 start,
+					u64 length, u64 virt_addr,
+					int access_flags)
+{
+	/*
+	 * Force registering the memory as writable if the underlying pages
+	 * are writable.  This is so rereg can change the access permissions
+	 * from readable to writable without having to run through ib_umem_get
+	 * again
+	 */
+	if (!ib_access_writable(access_flags)) {
+		struct vm_area_struct *vma;
+
+		down_read(&current->mm->mmap_sem);
+		/*
+		 * FIXME: Ideally this would iterate over all the vmas that
+		 * cover the memory, but for now it requires a single vma to
+		 * entirely cover the MR to support RO mappings.
+		 */
+		vma = find_vma(current->mm, start);
+		if (vma && vma->vm_end >= start + length &&
+		    vma->vm_start <= start) {
+			if (vma->vm_flags & VM_WRITE)
+				access_flags |= IB_ACCESS_LOCAL_WRITE;
+		} else {
+			access_flags |= IB_ACCESS_LOCAL_WRITE;
+		}
+
+		up_read(&current->mm->mmap_sem);
+	}
+
+	return ib_umem_get(context, start, length, access_flags, 0);
+}
+
+struct ib_mr *mlx4_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
+				  u64 virt_addr, int access_flags,
+				  struct ib_udata *udata)
+{
+	struct mlx4_ib_dev *dev = to_mdev(pd->device);
+	struct mlx4_ib_mr *mr;
+	int shift;
+	int err;
+	int n;
+
+	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
+	if (!mr)
+		return ERR_PTR(-ENOMEM);
+
+	mr->umem = mlx4_get_umem_mr(pd->uobject->context, start, length,
+				    virt_addr, access_flags);
+	if (IS_ERR(mr->umem)) {
+		err = PTR_ERR(mr->umem);
+		goto err_free;
+	}
+
+	n = ib_umem_page_count(mr->umem);
+	shift = mlx4_ib_umem_calc_optimal_mtt_size(mr->umem, start, &n);
+
+	err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, virt_addr, length,
+			    convert_access(access_flags), n, shift, &mr->mmr);
+	if (err)
+		goto err_umem;
+
+	err = mlx4_ib_umem_write_mtt(dev, &mr->mmr.mtt, mr->umem);
+	if (err)
+		goto err_mr;
+
+	err = mlx4_mr_enable(dev->dev, &mr->mmr);
+	if (err)
+		goto err_mr;
+
+	mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
+	mr->ibmr.length = length;
+	mr->ibmr.iova = virt_addr;
+	mr->ibmr.page_size = 1U << shift;
+
+	return &mr->ibmr;
+
+err_mr:
+	(void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr);
+
+err_umem:
+	ib_umem_release(mr->umem);
+
+err_free:
+	kfree(mr);
+
+	return ERR_PTR(err);
+}
+
+int mlx4_ib_rereg_user_mr(struct ib_mr *mr, int flags,
+			  u64 start, u64 length, u64 virt_addr,
+			  int mr_access_flags, struct ib_pd *pd,
+			  struct ib_udata *udata)
+{
+	struct mlx4_ib_dev *dev = to_mdev(mr->device);
+	struct mlx4_ib_mr *mmr = to_mmr(mr);
+	struct mlx4_mpt_entry *mpt_entry;
+	struct mlx4_mpt_entry **pmpt_entry = &mpt_entry;
+	int err;
+
+	/* Since we synchronize this call and mlx4_ib_dereg_mr via uverbs,
+	 * we assume that the calls can't run concurrently. Otherwise, a
+	 * race exists.
+	 */
+	err =  mlx4_mr_hw_get_mpt(dev->dev, &mmr->mmr, &pmpt_entry);
+
+	if (err)
+		return err;
+
+	if (flags & IB_MR_REREG_PD) {
+		err = mlx4_mr_hw_change_pd(dev->dev, *pmpt_entry,
+					   to_mpd(pd)->pdn);
+
+		if (err)
+			goto release_mpt_entry;
+	}
+
+	if (flags & IB_MR_REREG_ACCESS) {
+		if (ib_access_writable(mr_access_flags) &&
+		    !mmr->umem->writable) {
+			err = -EPERM;
+			goto release_mpt_entry;
+		}
+
+		err = mlx4_mr_hw_change_access(dev->dev, *pmpt_entry,
+					       convert_access(mr_access_flags));
+
+		if (err)
+			goto release_mpt_entry;
+	}
+
+	if (flags & IB_MR_REREG_TRANS) {
+		int shift;
+		int n;
+
+		mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr);
+		ib_umem_release(mmr->umem);
+		mmr->umem =
+			mlx4_get_umem_mr(mr->uobject->context, start, length,
+					 virt_addr, mr_access_flags);
+		if (IS_ERR(mmr->umem)) {
+			err = PTR_ERR(mmr->umem);
+			/* Prevent mlx4_ib_dereg_mr from free'ing invalid pointer */
+			mmr->umem = NULL;
+			goto release_mpt_entry;
+		}
+		n = ib_umem_page_count(mmr->umem);
+		shift = mmr->umem->page_shift;
+
+		err = mlx4_mr_rereg_mem_write(dev->dev, &mmr->mmr,
+					      virt_addr, length, n, shift,
+					      *pmpt_entry);
+		if (err) {
+			ib_umem_release(mmr->umem);
+			goto release_mpt_entry;
+		}
+		mmr->mmr.iova       = virt_addr;
+		mmr->mmr.size       = length;
+
+		err = mlx4_ib_umem_write_mtt(dev, &mmr->mmr.mtt, mmr->umem);
+		if (err) {
+			mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr);
+			ib_umem_release(mmr->umem);
+			goto release_mpt_entry;
+		}
+	}
+
+	/* If we couldn't transfer the MR to the HCA, just remember to
+	 * return a failure. But dereg_mr will free the resources.
+	 */
+	err = mlx4_mr_hw_write_mpt(dev->dev, &mmr->mmr, pmpt_entry);
+	if (!err && flags & IB_MR_REREG_ACCESS)
+		mmr->mmr.access = mr_access_flags;
+
+release_mpt_entry:
+	mlx4_mr_hw_put_mpt(dev->dev, pmpt_entry);
+
+	return err;
+}
+
+static int
+mlx4_alloc_priv_pages(struct ib_device *device,
+		      struct mlx4_ib_mr *mr,
+		      int max_pages)
+{
+	int ret;
+
+	/* Ensure that size is aligned to DMA cacheline
+	 * requirements.
+	 * max_pages is limited to MLX4_MAX_FAST_REG_PAGES
+	 * so page_map_size will never cross PAGE_SIZE.
+	 */
+	mr->page_map_size = roundup(max_pages * sizeof(u64),
+				    MLX4_MR_PAGES_ALIGN);
+
+	/* Prevent cross page boundary allocation. */
+	mr->pages = (__be64 *)get_zeroed_page(GFP_KERNEL);
+	if (!mr->pages)
+		return -ENOMEM;
+
+	mr->page_map = dma_map_single(device->dev.parent, mr->pages,
+				      mr->page_map_size, DMA_TO_DEVICE);
+
+	if (dma_mapping_error(device->dev.parent, mr->page_map)) {
+		ret = -ENOMEM;
+		goto err;
+	}
+
+	return 0;
+
+err:
+	free_page((unsigned long)mr->pages);
+	return ret;
+}
+
+static void
+mlx4_free_priv_pages(struct mlx4_ib_mr *mr)
+{
+	if (mr->pages) {
+		struct ib_device *device = mr->ibmr.device;
+
+		dma_unmap_single(device->dev.parent, mr->page_map,
+				 mr->page_map_size, DMA_TO_DEVICE);
+		free_page((unsigned long)mr->pages);
+		mr->pages = NULL;
+	}
+}
+
+int mlx4_ib_dereg_mr(struct ib_mr *ibmr)
+{
+	struct mlx4_ib_mr *mr = to_mmr(ibmr);
+	int ret;
+
+	mlx4_free_priv_pages(mr);
+
+	ret = mlx4_mr_free(to_mdev(ibmr->device)->dev, &mr->mmr);
+	if (ret)
+		return ret;
+	if (mr->umem)
+		ib_umem_release(mr->umem);
+	kfree(mr);
+
+	return 0;
+}
+
+struct ib_mw *mlx4_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type,
+			       struct ib_udata *udata)
+{
+	struct mlx4_ib_dev *dev = to_mdev(pd->device);
+	struct mlx4_ib_mw *mw;
+	int err;
+
+	mw = kmalloc(sizeof(*mw), GFP_KERNEL);
+	if (!mw)
+		return ERR_PTR(-ENOMEM);
+
+	err = mlx4_mw_alloc(dev->dev, to_mpd(pd)->pdn,
+			    to_mlx4_type(type), &mw->mmw);
+	if (err)
+		goto err_free;
+
+	err = mlx4_mw_enable(dev->dev, &mw->mmw);
+	if (err)
+		goto err_mw;
+
+	mw->ibmw.rkey = mw->mmw.key;
+
+	return &mw->ibmw;
+
+err_mw:
+	mlx4_mw_free(dev->dev, &mw->mmw);
+
+err_free:
+	kfree(mw);
+
+	return ERR_PTR(err);
+}
+
+int mlx4_ib_dealloc_mw(struct ib_mw *ibmw)
+{
+	struct mlx4_ib_mw *mw = to_mmw(ibmw);
+
+	mlx4_mw_free(to_mdev(ibmw->device)->dev, &mw->mmw);
+	kfree(mw);
+
+	return 0;
+}
+
+struct ib_mr *mlx4_ib_alloc_mr(struct ib_pd *pd,
+			       enum ib_mr_type mr_type,
+			       u32 max_num_sg)
+{
+	struct mlx4_ib_dev *dev = to_mdev(pd->device);
+	struct mlx4_ib_mr *mr;
+	int err;
+
+	if (mr_type != IB_MR_TYPE_MEM_REG ||
+	    max_num_sg > MLX4_MAX_FAST_REG_PAGES)
+		return ERR_PTR(-EINVAL);
+
+	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
+	if (!mr)
+		return ERR_PTR(-ENOMEM);
+
+	err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, 0, 0, 0,
+			    max_num_sg, 0, &mr->mmr);
+	if (err)
+		goto err_free;
+
+	err = mlx4_alloc_priv_pages(pd->device, mr, max_num_sg);
+	if (err)
+		goto err_free_mr;
+
+	mr->max_pages = max_num_sg;
+	err = mlx4_mr_enable(dev->dev, &mr->mmr);
+	if (err)
+		goto err_free_pl;
+
+	mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
+	mr->umem = NULL;
+
+	return &mr->ibmr;
+
+err_free_pl:
+	mr->ibmr.device = pd->device;
+	mlx4_free_priv_pages(mr);
+err_free_mr:
+	(void) mlx4_mr_free(dev->dev, &mr->mmr);
+err_free:
+	kfree(mr);
+	return ERR_PTR(err);
+}
+
+struct ib_fmr *mlx4_ib_fmr_alloc(struct ib_pd *pd, int acc,
+				 struct ib_fmr_attr *fmr_attr)
+{
+	struct mlx4_ib_dev *dev = to_mdev(pd->device);
+	struct mlx4_ib_fmr *fmr;
+	int err = -ENOMEM;
+
+	fmr = kmalloc(sizeof *fmr, GFP_KERNEL);
+	if (!fmr)
+		return ERR_PTR(-ENOMEM);
+
+	err = mlx4_fmr_alloc(dev->dev, to_mpd(pd)->pdn, convert_access(acc),
+			     fmr_attr->max_pages, fmr_attr->max_maps,
+			     fmr_attr->page_shift, &fmr->mfmr);
+	if (err)
+		goto err_free;
+
+	err = mlx4_fmr_enable(to_mdev(pd->device)->dev, &fmr->mfmr);
+	if (err)
+		goto err_mr;
+
+	fmr->ibfmr.rkey = fmr->ibfmr.lkey = fmr->mfmr.mr.key;
+
+	return &fmr->ibfmr;
+
+err_mr:
+	(void) mlx4_mr_free(to_mdev(pd->device)->dev, &fmr->mfmr.mr);
+
+err_free:
+	kfree(fmr);
+
+	return ERR_PTR(err);
+}
+
+int mlx4_ib_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list,
+		      int npages, u64 iova)
+{
+	struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr);
+	struct mlx4_ib_dev *dev = to_mdev(ifmr->ibfmr.device);
+
+	return mlx4_map_phys_fmr(dev->dev, &ifmr->mfmr, page_list, npages, iova,
+				 &ifmr->ibfmr.lkey, &ifmr->ibfmr.rkey);
+}
+
+int mlx4_ib_unmap_fmr(struct list_head *fmr_list)
+{
+	struct ib_fmr *ibfmr;
+	int err;
+	struct mlx4_dev *mdev = NULL;
+
+	list_for_each_entry(ibfmr, fmr_list, list) {
+		if (mdev && to_mdev(ibfmr->device)->dev != mdev)
+			return -EINVAL;
+		mdev = to_mdev(ibfmr->device)->dev;
+	}
+
+	if (!mdev)
+		return 0;
+
+	list_for_each_entry(ibfmr, fmr_list, list) {
+		struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr);
+
+		mlx4_fmr_unmap(mdev, &ifmr->mfmr, &ifmr->ibfmr.lkey, &ifmr->ibfmr.rkey);
+	}
+
+	/*
+	 * Make sure all MPT status updates are visible before issuing
+	 * SYNC_TPT firmware command.
+	 */
+	wmb();
+
+	err = mlx4_SYNC_TPT(mdev);
+	if (err)
+		pr_warn("SYNC_TPT error %d when "
+		       "unmapping FMRs\n", err);
+
+	return 0;
+}
+
+int mlx4_ib_fmr_dealloc(struct ib_fmr *ibfmr)
+{
+	struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr);
+	struct mlx4_ib_dev *dev = to_mdev(ibfmr->device);
+	int err;
+
+	err = mlx4_fmr_free(dev->dev, &ifmr->mfmr);
+
+	if (!err)
+		kfree(ifmr);
+
+	return err;
+}
+
+static int mlx4_set_page(struct ib_mr *ibmr, u64 addr)
+{
+	struct mlx4_ib_mr *mr = to_mmr(ibmr);
+
+	if (unlikely(mr->npages == mr->max_pages))
+		return -ENOMEM;
+
+	mr->pages[mr->npages++] = cpu_to_be64(addr | MLX4_MTT_FLAG_PRESENT);
+
+	return 0;
+}
+
+int mlx4_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
+		      unsigned int *sg_offset)
+{
+	struct mlx4_ib_mr *mr = to_mmr(ibmr);
+	int rc;
+
+	mr->npages = 0;
+
+	ib_dma_sync_single_for_cpu(ibmr->device, mr->page_map,
+				   mr->page_map_size, DMA_TO_DEVICE);
+
+	rc = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, mlx4_set_page);
+
+	ib_dma_sync_single_for_device(ibmr->device, mr->page_map,
+				      mr->page_map_size, DMA_TO_DEVICE);
+
+	return rc;
+}