David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* |
| 3 | * AMD Cryptographic Coprocessor (CCP) driver |
| 4 | * |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 5 | * Copyright (C) 2013-2019 Advanced Micro Devices, Inc. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 6 | * |
| 7 | * Author: Tom Lendacky <thomas.lendacky@amd.com> |
| 8 | * Author: Gary R Hook <gary.hook@amd.com> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 9 | */ |
| 10 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 11 | #include <linux/dma-mapping.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 12 | #include <linux/module.h> |
| 13 | #include <linux/kernel.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 14 | #include <linux/interrupt.h> |
| 15 | #include <crypto/scatterwalk.h> |
| 16 | #include <crypto/des.h> |
| 17 | #include <linux/ccp.h> |
| 18 | |
| 19 | #include "ccp-dev.h" |
| 20 | |
| 21 | /* SHA initial context values */ |
| 22 | static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = { |
| 23 | cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1), |
| 24 | cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3), |
| 25 | cpu_to_be32(SHA1_H4), |
| 26 | }; |
| 27 | |
| 28 | static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = { |
| 29 | cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1), |
| 30 | cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3), |
| 31 | cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5), |
| 32 | cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7), |
| 33 | }; |
| 34 | |
| 35 | static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = { |
| 36 | cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1), |
| 37 | cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3), |
| 38 | cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5), |
| 39 | cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7), |
| 40 | }; |
| 41 | |
| 42 | static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = { |
| 43 | cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1), |
| 44 | cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3), |
| 45 | cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5), |
| 46 | cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7), |
| 47 | }; |
| 48 | |
| 49 | static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = { |
| 50 | cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1), |
| 51 | cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3), |
| 52 | cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5), |
| 53 | cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7), |
| 54 | }; |
| 55 | |
| 56 | #define CCP_NEW_JOBID(ccp) ((ccp->vdata->version == CCP_VERSION(3, 0)) ? \ |
| 57 | ccp_gen_jobid(ccp) : 0) |
| 58 | |
| 59 | static u32 ccp_gen_jobid(struct ccp_device *ccp) |
| 60 | { |
| 61 | return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK; |
| 62 | } |
| 63 | |
| 64 | static void ccp_sg_free(struct ccp_sg_workarea *wa) |
| 65 | { |
| 66 | if (wa->dma_count) |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 67 | dma_unmap_sg(wa->dma_dev, wa->dma_sg_head, wa->nents, wa->dma_dir); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 68 | |
| 69 | wa->dma_count = 0; |
| 70 | } |
| 71 | |
| 72 | static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev, |
| 73 | struct scatterlist *sg, u64 len, |
| 74 | enum dma_data_direction dma_dir) |
| 75 | { |
| 76 | memset(wa, 0, sizeof(*wa)); |
| 77 | |
| 78 | wa->sg = sg; |
| 79 | if (!sg) |
| 80 | return 0; |
| 81 | |
| 82 | wa->nents = sg_nents_for_len(sg, len); |
| 83 | if (wa->nents < 0) |
| 84 | return wa->nents; |
| 85 | |
| 86 | wa->bytes_left = len; |
| 87 | wa->sg_used = 0; |
| 88 | |
| 89 | if (len == 0) |
| 90 | return 0; |
| 91 | |
| 92 | if (dma_dir == DMA_NONE) |
| 93 | return 0; |
| 94 | |
| 95 | wa->dma_sg = sg; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 96 | wa->dma_sg_head = sg; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 97 | wa->dma_dev = dev; |
| 98 | wa->dma_dir = dma_dir; |
| 99 | wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir); |
| 100 | if (!wa->dma_count) |
| 101 | return -ENOMEM; |
| 102 | |
| 103 | return 0; |
| 104 | } |
| 105 | |
| 106 | static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len) |
| 107 | { |
| 108 | unsigned int nbytes = min_t(u64, len, wa->bytes_left); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 109 | unsigned int sg_combined_len = 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 110 | |
| 111 | if (!wa->sg) |
| 112 | return; |
| 113 | |
| 114 | wa->sg_used += nbytes; |
| 115 | wa->bytes_left -= nbytes; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 116 | if (wa->sg_used == sg_dma_len(wa->dma_sg)) { |
| 117 | /* Advance to the next DMA scatterlist entry */ |
| 118 | wa->dma_sg = sg_next(wa->dma_sg); |
| 119 | |
| 120 | /* In the case that the DMA mapped scatterlist has entries |
| 121 | * that have been merged, the non-DMA mapped scatterlist |
| 122 | * must be advanced multiple times for each merged entry. |
| 123 | * This ensures that the current non-DMA mapped entry |
| 124 | * corresponds to the current DMA mapped entry. |
| 125 | */ |
| 126 | do { |
| 127 | sg_combined_len += wa->sg->length; |
| 128 | wa->sg = sg_next(wa->sg); |
| 129 | } while (wa->sg_used > sg_combined_len); |
| 130 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 131 | wa->sg_used = 0; |
| 132 | } |
| 133 | } |
| 134 | |
| 135 | static void ccp_dm_free(struct ccp_dm_workarea *wa) |
| 136 | { |
| 137 | if (wa->length <= CCP_DMAPOOL_MAX_SIZE) { |
| 138 | if (wa->address) |
| 139 | dma_pool_free(wa->dma_pool, wa->address, |
| 140 | wa->dma.address); |
| 141 | } else { |
| 142 | if (wa->dma.address) |
| 143 | dma_unmap_single(wa->dev, wa->dma.address, wa->length, |
| 144 | wa->dma.dir); |
| 145 | kfree(wa->address); |
| 146 | } |
| 147 | |
| 148 | wa->address = NULL; |
| 149 | wa->dma.address = 0; |
| 150 | } |
| 151 | |
| 152 | static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa, |
| 153 | struct ccp_cmd_queue *cmd_q, |
| 154 | unsigned int len, |
| 155 | enum dma_data_direction dir) |
| 156 | { |
| 157 | memset(wa, 0, sizeof(*wa)); |
| 158 | |
| 159 | if (!len) |
| 160 | return 0; |
| 161 | |
| 162 | wa->dev = cmd_q->ccp->dev; |
| 163 | wa->length = len; |
| 164 | |
| 165 | if (len <= CCP_DMAPOOL_MAX_SIZE) { |
| 166 | wa->dma_pool = cmd_q->dma_pool; |
| 167 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 168 | wa->address = dma_pool_zalloc(wa->dma_pool, GFP_KERNEL, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 169 | &wa->dma.address); |
| 170 | if (!wa->address) |
| 171 | return -ENOMEM; |
| 172 | |
| 173 | wa->dma.length = CCP_DMAPOOL_MAX_SIZE; |
| 174 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 175 | } else { |
| 176 | wa->address = kzalloc(len, GFP_KERNEL); |
| 177 | if (!wa->address) |
| 178 | return -ENOMEM; |
| 179 | |
| 180 | wa->dma.address = dma_map_single(wa->dev, wa->address, len, |
| 181 | dir); |
| 182 | if (dma_mapping_error(wa->dev, wa->dma.address)) |
| 183 | return -ENOMEM; |
| 184 | |
| 185 | wa->dma.length = len; |
| 186 | } |
| 187 | wa->dma.dir = dir; |
| 188 | |
| 189 | return 0; |
| 190 | } |
| 191 | |
| 192 | static int ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset, |
| 193 | struct scatterlist *sg, unsigned int sg_offset, |
| 194 | unsigned int len) |
| 195 | { |
| 196 | WARN_ON(!wa->address); |
| 197 | |
| 198 | if (len > (wa->length - wa_offset)) |
| 199 | return -EINVAL; |
| 200 | |
| 201 | scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len, |
| 202 | 0); |
| 203 | return 0; |
| 204 | } |
| 205 | |
| 206 | static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset, |
| 207 | struct scatterlist *sg, unsigned int sg_offset, |
| 208 | unsigned int len) |
| 209 | { |
| 210 | WARN_ON(!wa->address); |
| 211 | |
| 212 | scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len, |
| 213 | 1); |
| 214 | } |
| 215 | |
| 216 | static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa, |
| 217 | unsigned int wa_offset, |
| 218 | struct scatterlist *sg, |
| 219 | unsigned int sg_offset, |
| 220 | unsigned int len) |
| 221 | { |
| 222 | u8 *p, *q; |
| 223 | int rc; |
| 224 | |
| 225 | rc = ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len); |
| 226 | if (rc) |
| 227 | return rc; |
| 228 | |
| 229 | p = wa->address + wa_offset; |
| 230 | q = p + len - 1; |
| 231 | while (p < q) { |
| 232 | *p = *p ^ *q; |
| 233 | *q = *p ^ *q; |
| 234 | *p = *p ^ *q; |
| 235 | p++; |
| 236 | q--; |
| 237 | } |
| 238 | return 0; |
| 239 | } |
| 240 | |
| 241 | static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa, |
| 242 | unsigned int wa_offset, |
| 243 | struct scatterlist *sg, |
| 244 | unsigned int sg_offset, |
| 245 | unsigned int len) |
| 246 | { |
| 247 | u8 *p, *q; |
| 248 | |
| 249 | p = wa->address + wa_offset; |
| 250 | q = p + len - 1; |
| 251 | while (p < q) { |
| 252 | *p = *p ^ *q; |
| 253 | *q = *p ^ *q; |
| 254 | *p = *p ^ *q; |
| 255 | p++; |
| 256 | q--; |
| 257 | } |
| 258 | |
| 259 | ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len); |
| 260 | } |
| 261 | |
| 262 | static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q) |
| 263 | { |
| 264 | ccp_dm_free(&data->dm_wa); |
| 265 | ccp_sg_free(&data->sg_wa); |
| 266 | } |
| 267 | |
| 268 | static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q, |
| 269 | struct scatterlist *sg, u64 sg_len, |
| 270 | unsigned int dm_len, |
| 271 | enum dma_data_direction dir) |
| 272 | { |
| 273 | int ret; |
| 274 | |
| 275 | memset(data, 0, sizeof(*data)); |
| 276 | |
| 277 | ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len, |
| 278 | dir); |
| 279 | if (ret) |
| 280 | goto e_err; |
| 281 | |
| 282 | ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir); |
| 283 | if (ret) |
| 284 | goto e_err; |
| 285 | |
| 286 | return 0; |
| 287 | |
| 288 | e_err: |
| 289 | ccp_free_data(data, cmd_q); |
| 290 | |
| 291 | return ret; |
| 292 | } |
| 293 | |
| 294 | static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from) |
| 295 | { |
| 296 | struct ccp_sg_workarea *sg_wa = &data->sg_wa; |
| 297 | struct ccp_dm_workarea *dm_wa = &data->dm_wa; |
| 298 | unsigned int buf_count, nbytes; |
| 299 | |
| 300 | /* Clear the buffer if setting it */ |
| 301 | if (!from) |
| 302 | memset(dm_wa->address, 0, dm_wa->length); |
| 303 | |
| 304 | if (!sg_wa->sg) |
| 305 | return 0; |
| 306 | |
| 307 | /* Perform the copy operation |
| 308 | * nbytes will always be <= UINT_MAX because dm_wa->length is |
| 309 | * an unsigned int |
| 310 | */ |
| 311 | nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length); |
| 312 | scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used, |
| 313 | nbytes, from); |
| 314 | |
| 315 | /* Update the structures and generate the count */ |
| 316 | buf_count = 0; |
| 317 | while (sg_wa->bytes_left && (buf_count < dm_wa->length)) { |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 318 | nbytes = min(sg_dma_len(sg_wa->dma_sg) - sg_wa->sg_used, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 319 | dm_wa->length - buf_count); |
| 320 | nbytes = min_t(u64, sg_wa->bytes_left, nbytes); |
| 321 | |
| 322 | buf_count += nbytes; |
| 323 | ccp_update_sg_workarea(sg_wa, nbytes); |
| 324 | } |
| 325 | |
| 326 | return buf_count; |
| 327 | } |
| 328 | |
| 329 | static unsigned int ccp_fill_queue_buf(struct ccp_data *data) |
| 330 | { |
| 331 | return ccp_queue_buf(data, 0); |
| 332 | } |
| 333 | |
| 334 | static unsigned int ccp_empty_queue_buf(struct ccp_data *data) |
| 335 | { |
| 336 | return ccp_queue_buf(data, 1); |
| 337 | } |
| 338 | |
| 339 | static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst, |
| 340 | struct ccp_op *op, unsigned int block_size, |
| 341 | bool blocksize_op) |
| 342 | { |
| 343 | unsigned int sg_src_len, sg_dst_len, op_len; |
| 344 | |
| 345 | /* The CCP can only DMA from/to one address each per operation. This |
| 346 | * requires that we find the smallest DMA area between the source |
| 347 | * and destination. The resulting len values will always be <= UINT_MAX |
| 348 | * because the dma length is an unsigned int. |
| 349 | */ |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 350 | sg_src_len = sg_dma_len(src->sg_wa.dma_sg) - src->sg_wa.sg_used; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 351 | sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len); |
| 352 | |
| 353 | if (dst) { |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 354 | sg_dst_len = sg_dma_len(dst->sg_wa.dma_sg) - dst->sg_wa.sg_used; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 355 | sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len); |
| 356 | op_len = min(sg_src_len, sg_dst_len); |
| 357 | } else { |
| 358 | op_len = sg_src_len; |
| 359 | } |
| 360 | |
| 361 | /* The data operation length will be at least block_size in length |
| 362 | * or the smaller of available sg room remaining for the source or |
| 363 | * the destination |
| 364 | */ |
| 365 | op_len = max(op_len, block_size); |
| 366 | |
| 367 | /* Unless we have to buffer data, there's no reason to wait */ |
| 368 | op->soc = 0; |
| 369 | |
| 370 | if (sg_src_len < block_size) { |
| 371 | /* Not enough data in the sg element, so it |
| 372 | * needs to be buffered into a blocksize chunk |
| 373 | */ |
| 374 | int cp_len = ccp_fill_queue_buf(src); |
| 375 | |
| 376 | op->soc = 1; |
| 377 | op->src.u.dma.address = src->dm_wa.dma.address; |
| 378 | op->src.u.dma.offset = 0; |
| 379 | op->src.u.dma.length = (blocksize_op) ? block_size : cp_len; |
| 380 | } else { |
| 381 | /* Enough data in the sg element, but we need to |
| 382 | * adjust for any previously copied data |
| 383 | */ |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 384 | op->src.u.dma.address = sg_dma_address(src->sg_wa.dma_sg); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 385 | op->src.u.dma.offset = src->sg_wa.sg_used; |
| 386 | op->src.u.dma.length = op_len & ~(block_size - 1); |
| 387 | |
| 388 | ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length); |
| 389 | } |
| 390 | |
| 391 | if (dst) { |
| 392 | if (sg_dst_len < block_size) { |
| 393 | /* Not enough room in the sg element or we're on the |
| 394 | * last piece of data (when using padding), so the |
| 395 | * output needs to be buffered into a blocksize chunk |
| 396 | */ |
| 397 | op->soc = 1; |
| 398 | op->dst.u.dma.address = dst->dm_wa.dma.address; |
| 399 | op->dst.u.dma.offset = 0; |
| 400 | op->dst.u.dma.length = op->src.u.dma.length; |
| 401 | } else { |
| 402 | /* Enough room in the sg element, but we need to |
| 403 | * adjust for any previously used area |
| 404 | */ |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 405 | op->dst.u.dma.address = sg_dma_address(dst->sg_wa.dma_sg); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 406 | op->dst.u.dma.offset = dst->sg_wa.sg_used; |
| 407 | op->dst.u.dma.length = op->src.u.dma.length; |
| 408 | } |
| 409 | } |
| 410 | } |
| 411 | |
| 412 | static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst, |
| 413 | struct ccp_op *op) |
| 414 | { |
| 415 | op->init = 0; |
| 416 | |
| 417 | if (dst) { |
| 418 | if (op->dst.u.dma.address == dst->dm_wa.dma.address) |
| 419 | ccp_empty_queue_buf(dst); |
| 420 | else |
| 421 | ccp_update_sg_workarea(&dst->sg_wa, |
| 422 | op->dst.u.dma.length); |
| 423 | } |
| 424 | } |
| 425 | |
| 426 | static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q, |
| 427 | struct ccp_dm_workarea *wa, u32 jobid, u32 sb, |
| 428 | u32 byte_swap, bool from) |
| 429 | { |
| 430 | struct ccp_op op; |
| 431 | |
| 432 | memset(&op, 0, sizeof(op)); |
| 433 | |
| 434 | op.cmd_q = cmd_q; |
| 435 | op.jobid = jobid; |
| 436 | op.eom = 1; |
| 437 | |
| 438 | if (from) { |
| 439 | op.soc = 1; |
| 440 | op.src.type = CCP_MEMTYPE_SB; |
| 441 | op.src.u.sb = sb; |
| 442 | op.dst.type = CCP_MEMTYPE_SYSTEM; |
| 443 | op.dst.u.dma.address = wa->dma.address; |
| 444 | op.dst.u.dma.length = wa->length; |
| 445 | } else { |
| 446 | op.src.type = CCP_MEMTYPE_SYSTEM; |
| 447 | op.src.u.dma.address = wa->dma.address; |
| 448 | op.src.u.dma.length = wa->length; |
| 449 | op.dst.type = CCP_MEMTYPE_SB; |
| 450 | op.dst.u.sb = sb; |
| 451 | } |
| 452 | |
| 453 | op.u.passthru.byte_swap = byte_swap; |
| 454 | |
| 455 | return cmd_q->ccp->vdata->perform->passthru(&op); |
| 456 | } |
| 457 | |
| 458 | static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q, |
| 459 | struct ccp_dm_workarea *wa, u32 jobid, u32 sb, |
| 460 | u32 byte_swap) |
| 461 | { |
| 462 | return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false); |
| 463 | } |
| 464 | |
| 465 | static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q, |
| 466 | struct ccp_dm_workarea *wa, u32 jobid, u32 sb, |
| 467 | u32 byte_swap) |
| 468 | { |
| 469 | return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true); |
| 470 | } |
| 471 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 472 | static noinline_for_stack int |
| 473 | ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 474 | { |
| 475 | struct ccp_aes_engine *aes = &cmd->u.aes; |
| 476 | struct ccp_dm_workarea key, ctx; |
| 477 | struct ccp_data src; |
| 478 | struct ccp_op op; |
| 479 | unsigned int dm_offset; |
| 480 | int ret; |
| 481 | |
| 482 | if (!((aes->key_len == AES_KEYSIZE_128) || |
| 483 | (aes->key_len == AES_KEYSIZE_192) || |
| 484 | (aes->key_len == AES_KEYSIZE_256))) |
| 485 | return -EINVAL; |
| 486 | |
| 487 | if (aes->src_len & (AES_BLOCK_SIZE - 1)) |
| 488 | return -EINVAL; |
| 489 | |
| 490 | if (aes->iv_len != AES_BLOCK_SIZE) |
| 491 | return -EINVAL; |
| 492 | |
| 493 | if (!aes->key || !aes->iv || !aes->src) |
| 494 | return -EINVAL; |
| 495 | |
| 496 | if (aes->cmac_final) { |
| 497 | if (aes->cmac_key_len != AES_BLOCK_SIZE) |
| 498 | return -EINVAL; |
| 499 | |
| 500 | if (!aes->cmac_key) |
| 501 | return -EINVAL; |
| 502 | } |
| 503 | |
| 504 | BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1); |
| 505 | BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1); |
| 506 | |
| 507 | ret = -EIO; |
| 508 | memset(&op, 0, sizeof(op)); |
| 509 | op.cmd_q = cmd_q; |
| 510 | op.jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| 511 | op.sb_key = cmd_q->sb_key; |
| 512 | op.sb_ctx = cmd_q->sb_ctx; |
| 513 | op.init = 1; |
| 514 | op.u.aes.type = aes->type; |
| 515 | op.u.aes.mode = aes->mode; |
| 516 | op.u.aes.action = aes->action; |
| 517 | |
| 518 | /* All supported key sizes fit in a single (32-byte) SB entry |
| 519 | * and must be in little endian format. Use the 256-bit byte |
| 520 | * swap passthru option to convert from big endian to little |
| 521 | * endian. |
| 522 | */ |
| 523 | ret = ccp_init_dm_workarea(&key, cmd_q, |
| 524 | CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES, |
| 525 | DMA_TO_DEVICE); |
| 526 | if (ret) |
| 527 | return ret; |
| 528 | |
| 529 | dm_offset = CCP_SB_BYTES - aes->key_len; |
| 530 | ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len); |
| 531 | if (ret) |
| 532 | goto e_key; |
| 533 | ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, |
| 534 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 535 | if (ret) { |
| 536 | cmd->engine_error = cmd_q->cmd_error; |
| 537 | goto e_key; |
| 538 | } |
| 539 | |
| 540 | /* The AES context fits in a single (32-byte) SB entry and |
| 541 | * must be in little endian format. Use the 256-bit byte swap |
| 542 | * passthru option to convert from big endian to little endian. |
| 543 | */ |
| 544 | ret = ccp_init_dm_workarea(&ctx, cmd_q, |
| 545 | CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES, |
| 546 | DMA_BIDIRECTIONAL); |
| 547 | if (ret) |
| 548 | goto e_key; |
| 549 | |
| 550 | dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; |
| 551 | ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); |
| 552 | if (ret) |
| 553 | goto e_ctx; |
| 554 | ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| 555 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 556 | if (ret) { |
| 557 | cmd->engine_error = cmd_q->cmd_error; |
| 558 | goto e_ctx; |
| 559 | } |
| 560 | |
| 561 | /* Send data to the CCP AES engine */ |
| 562 | ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len, |
| 563 | AES_BLOCK_SIZE, DMA_TO_DEVICE); |
| 564 | if (ret) |
| 565 | goto e_ctx; |
| 566 | |
| 567 | while (src.sg_wa.bytes_left) { |
| 568 | ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true); |
| 569 | if (aes->cmac_final && !src.sg_wa.bytes_left) { |
| 570 | op.eom = 1; |
| 571 | |
| 572 | /* Push the K1/K2 key to the CCP now */ |
| 573 | ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, |
| 574 | op.sb_ctx, |
| 575 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 576 | if (ret) { |
| 577 | cmd->engine_error = cmd_q->cmd_error; |
| 578 | goto e_src; |
| 579 | } |
| 580 | |
| 581 | ret = ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0, |
| 582 | aes->cmac_key_len); |
| 583 | if (ret) |
| 584 | goto e_src; |
| 585 | ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| 586 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 587 | if (ret) { |
| 588 | cmd->engine_error = cmd_q->cmd_error; |
| 589 | goto e_src; |
| 590 | } |
| 591 | } |
| 592 | |
| 593 | ret = cmd_q->ccp->vdata->perform->aes(&op); |
| 594 | if (ret) { |
| 595 | cmd->engine_error = cmd_q->cmd_error; |
| 596 | goto e_src; |
| 597 | } |
| 598 | |
| 599 | ccp_process_data(&src, NULL, &op); |
| 600 | } |
| 601 | |
| 602 | /* Retrieve the AES context - convert from LE to BE using |
| 603 | * 32-byte (256-bit) byteswapping |
| 604 | */ |
| 605 | ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| 606 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 607 | if (ret) { |
| 608 | cmd->engine_error = cmd_q->cmd_error; |
| 609 | goto e_src; |
| 610 | } |
| 611 | |
| 612 | /* ...but we only need AES_BLOCK_SIZE bytes */ |
| 613 | dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; |
| 614 | ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); |
| 615 | |
| 616 | e_src: |
| 617 | ccp_free_data(&src, cmd_q); |
| 618 | |
| 619 | e_ctx: |
| 620 | ccp_dm_free(&ctx); |
| 621 | |
| 622 | e_key: |
| 623 | ccp_dm_free(&key); |
| 624 | |
| 625 | return ret; |
| 626 | } |
| 627 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 628 | static noinline_for_stack int |
| 629 | ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 630 | { |
| 631 | struct ccp_aes_engine *aes = &cmd->u.aes; |
| 632 | struct ccp_dm_workarea key, ctx, final_wa, tag; |
| 633 | struct ccp_data src, dst; |
| 634 | struct ccp_data aad; |
| 635 | struct ccp_op op; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 636 | unsigned int dm_offset; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 637 | unsigned int authsize; |
| 638 | unsigned int jobid; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 639 | unsigned int ilen; |
| 640 | bool in_place = true; /* Default value */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 641 | __be64 *final; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 642 | int ret; |
| 643 | |
| 644 | struct scatterlist *p_inp, sg_inp[2]; |
| 645 | struct scatterlist *p_tag, sg_tag[2]; |
| 646 | struct scatterlist *p_outp, sg_outp[2]; |
| 647 | struct scatterlist *p_aad; |
| 648 | |
| 649 | if (!aes->iv) |
| 650 | return -EINVAL; |
| 651 | |
| 652 | if (!((aes->key_len == AES_KEYSIZE_128) || |
| 653 | (aes->key_len == AES_KEYSIZE_192) || |
| 654 | (aes->key_len == AES_KEYSIZE_256))) |
| 655 | return -EINVAL; |
| 656 | |
| 657 | if (!aes->key) /* Gotta have a key SGL */ |
| 658 | return -EINVAL; |
| 659 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 660 | /* Zero defaults to 16 bytes, the maximum size */ |
| 661 | authsize = aes->authsize ? aes->authsize : AES_BLOCK_SIZE; |
| 662 | switch (authsize) { |
| 663 | case 16: |
| 664 | case 15: |
| 665 | case 14: |
| 666 | case 13: |
| 667 | case 12: |
| 668 | case 8: |
| 669 | case 4: |
| 670 | break; |
| 671 | default: |
| 672 | return -EINVAL; |
| 673 | } |
| 674 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 675 | /* First, decompose the source buffer into AAD & PT, |
| 676 | * and the destination buffer into AAD, CT & tag, or |
| 677 | * the input into CT & tag. |
| 678 | * It is expected that the input and output SGs will |
| 679 | * be valid, even if the AAD and input lengths are 0. |
| 680 | */ |
| 681 | p_aad = aes->src; |
| 682 | p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len); |
| 683 | p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len); |
| 684 | if (aes->action == CCP_AES_ACTION_ENCRYPT) { |
| 685 | ilen = aes->src_len; |
| 686 | p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen); |
| 687 | } else { |
| 688 | /* Input length for decryption includes tag */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 689 | ilen = aes->src_len - authsize; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 690 | p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen); |
| 691 | } |
| 692 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 693 | jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| 694 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 695 | memset(&op, 0, sizeof(op)); |
| 696 | op.cmd_q = cmd_q; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 697 | op.jobid = jobid; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 698 | op.sb_key = cmd_q->sb_key; /* Pre-allocated */ |
| 699 | op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */ |
| 700 | op.init = 1; |
| 701 | op.u.aes.type = aes->type; |
| 702 | |
| 703 | /* Copy the key to the LSB */ |
| 704 | ret = ccp_init_dm_workarea(&key, cmd_q, |
| 705 | CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES, |
| 706 | DMA_TO_DEVICE); |
| 707 | if (ret) |
| 708 | return ret; |
| 709 | |
| 710 | dm_offset = CCP_SB_BYTES - aes->key_len; |
| 711 | ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len); |
| 712 | if (ret) |
| 713 | goto e_key; |
| 714 | ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, |
| 715 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 716 | if (ret) { |
| 717 | cmd->engine_error = cmd_q->cmd_error; |
| 718 | goto e_key; |
| 719 | } |
| 720 | |
| 721 | /* Copy the context (IV) to the LSB. |
| 722 | * There is an assumption here that the IV is 96 bits in length, plus |
| 723 | * a nonce of 32 bits. If no IV is present, use a zeroed buffer. |
| 724 | */ |
| 725 | ret = ccp_init_dm_workarea(&ctx, cmd_q, |
| 726 | CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES, |
| 727 | DMA_BIDIRECTIONAL); |
| 728 | if (ret) |
| 729 | goto e_key; |
| 730 | |
| 731 | dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len; |
| 732 | ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); |
| 733 | if (ret) |
| 734 | goto e_ctx; |
| 735 | |
| 736 | ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| 737 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 738 | if (ret) { |
| 739 | cmd->engine_error = cmd_q->cmd_error; |
| 740 | goto e_ctx; |
| 741 | } |
| 742 | |
| 743 | op.init = 1; |
| 744 | if (aes->aad_len > 0) { |
| 745 | /* Step 1: Run a GHASH over the Additional Authenticated Data */ |
| 746 | ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len, |
| 747 | AES_BLOCK_SIZE, |
| 748 | DMA_TO_DEVICE); |
| 749 | if (ret) |
| 750 | goto e_ctx; |
| 751 | |
| 752 | op.u.aes.mode = CCP_AES_MODE_GHASH; |
| 753 | op.u.aes.action = CCP_AES_GHASHAAD; |
| 754 | |
| 755 | while (aad.sg_wa.bytes_left) { |
| 756 | ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true); |
| 757 | |
| 758 | ret = cmd_q->ccp->vdata->perform->aes(&op); |
| 759 | if (ret) { |
| 760 | cmd->engine_error = cmd_q->cmd_error; |
| 761 | goto e_aad; |
| 762 | } |
| 763 | |
| 764 | ccp_process_data(&aad, NULL, &op); |
| 765 | op.init = 0; |
| 766 | } |
| 767 | } |
| 768 | |
| 769 | op.u.aes.mode = CCP_AES_MODE_GCTR; |
| 770 | op.u.aes.action = aes->action; |
| 771 | |
| 772 | if (ilen > 0) { |
| 773 | /* Step 2: Run a GCTR over the plaintext */ |
| 774 | in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false; |
| 775 | |
| 776 | ret = ccp_init_data(&src, cmd_q, p_inp, ilen, |
| 777 | AES_BLOCK_SIZE, |
| 778 | in_place ? DMA_BIDIRECTIONAL |
| 779 | : DMA_TO_DEVICE); |
| 780 | if (ret) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 781 | goto e_aad; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 782 | |
| 783 | if (in_place) { |
| 784 | dst = src; |
| 785 | } else { |
| 786 | ret = ccp_init_data(&dst, cmd_q, p_outp, ilen, |
| 787 | AES_BLOCK_SIZE, DMA_FROM_DEVICE); |
| 788 | if (ret) |
| 789 | goto e_src; |
| 790 | } |
| 791 | |
| 792 | op.soc = 0; |
| 793 | op.eom = 0; |
| 794 | op.init = 1; |
| 795 | while (src.sg_wa.bytes_left) { |
| 796 | ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true); |
| 797 | if (!src.sg_wa.bytes_left) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 798 | unsigned int nbytes = ilen % AES_BLOCK_SIZE; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 799 | |
| 800 | if (nbytes) { |
| 801 | op.eom = 1; |
| 802 | op.u.aes.size = (nbytes * 8) - 1; |
| 803 | } |
| 804 | } |
| 805 | |
| 806 | ret = cmd_q->ccp->vdata->perform->aes(&op); |
| 807 | if (ret) { |
| 808 | cmd->engine_error = cmd_q->cmd_error; |
| 809 | goto e_dst; |
| 810 | } |
| 811 | |
| 812 | ccp_process_data(&src, &dst, &op); |
| 813 | op.init = 0; |
| 814 | } |
| 815 | } |
| 816 | |
| 817 | /* Step 3: Update the IV portion of the context with the original IV */ |
| 818 | ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| 819 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 820 | if (ret) { |
| 821 | cmd->engine_error = cmd_q->cmd_error; |
| 822 | goto e_dst; |
| 823 | } |
| 824 | |
| 825 | ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); |
| 826 | if (ret) |
| 827 | goto e_dst; |
| 828 | |
| 829 | ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| 830 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 831 | if (ret) { |
| 832 | cmd->engine_error = cmd_q->cmd_error; |
| 833 | goto e_dst; |
| 834 | } |
| 835 | |
| 836 | /* Step 4: Concatenate the lengths of the AAD and source, and |
| 837 | * hash that 16 byte buffer. |
| 838 | */ |
| 839 | ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE, |
| 840 | DMA_BIDIRECTIONAL); |
| 841 | if (ret) |
| 842 | goto e_dst; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 843 | final = (__be64 *)final_wa.address; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 844 | final[0] = cpu_to_be64(aes->aad_len * 8); |
| 845 | final[1] = cpu_to_be64(ilen * 8); |
| 846 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 847 | memset(&op, 0, sizeof(op)); |
| 848 | op.cmd_q = cmd_q; |
| 849 | op.jobid = jobid; |
| 850 | op.sb_key = cmd_q->sb_key; /* Pre-allocated */ |
| 851 | op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */ |
| 852 | op.init = 1; |
| 853 | op.u.aes.type = aes->type; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 854 | op.u.aes.mode = CCP_AES_MODE_GHASH; |
| 855 | op.u.aes.action = CCP_AES_GHASHFINAL; |
| 856 | op.src.type = CCP_MEMTYPE_SYSTEM; |
| 857 | op.src.u.dma.address = final_wa.dma.address; |
| 858 | op.src.u.dma.length = AES_BLOCK_SIZE; |
| 859 | op.dst.type = CCP_MEMTYPE_SYSTEM; |
| 860 | op.dst.u.dma.address = final_wa.dma.address; |
| 861 | op.dst.u.dma.length = AES_BLOCK_SIZE; |
| 862 | op.eom = 1; |
| 863 | op.u.aes.size = 0; |
| 864 | ret = cmd_q->ccp->vdata->perform->aes(&op); |
| 865 | if (ret) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 866 | goto e_final_wa; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 867 | |
| 868 | if (aes->action == CCP_AES_ACTION_ENCRYPT) { |
| 869 | /* Put the ciphered tag after the ciphertext. */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 870 | ccp_get_dm_area(&final_wa, 0, p_tag, 0, authsize); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 871 | } else { |
| 872 | /* Does this ciphered tag match the input? */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 873 | ret = ccp_init_dm_workarea(&tag, cmd_q, authsize, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 874 | DMA_BIDIRECTIONAL); |
| 875 | if (ret) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 876 | goto e_final_wa; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 877 | ret = ccp_set_dm_area(&tag, 0, p_tag, 0, authsize); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 878 | if (ret) { |
| 879 | ccp_dm_free(&tag); |
| 880 | goto e_final_wa; |
| 881 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 882 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 883 | ret = crypto_memneq(tag.address, final_wa.address, |
| 884 | authsize) ? -EBADMSG : 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 885 | ccp_dm_free(&tag); |
| 886 | } |
| 887 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 888 | e_final_wa: |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 889 | ccp_dm_free(&final_wa); |
| 890 | |
| 891 | e_dst: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 892 | if (ilen > 0 && !in_place) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 893 | ccp_free_data(&dst, cmd_q); |
| 894 | |
| 895 | e_src: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 896 | if (ilen > 0) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 897 | ccp_free_data(&src, cmd_q); |
| 898 | |
| 899 | e_aad: |
| 900 | if (aes->aad_len) |
| 901 | ccp_free_data(&aad, cmd_q); |
| 902 | |
| 903 | e_ctx: |
| 904 | ccp_dm_free(&ctx); |
| 905 | |
| 906 | e_key: |
| 907 | ccp_dm_free(&key); |
| 908 | |
| 909 | return ret; |
| 910 | } |
| 911 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 912 | static noinline_for_stack int |
| 913 | ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 914 | { |
| 915 | struct ccp_aes_engine *aes = &cmd->u.aes; |
| 916 | struct ccp_dm_workarea key, ctx; |
| 917 | struct ccp_data src, dst; |
| 918 | struct ccp_op op; |
| 919 | unsigned int dm_offset; |
| 920 | bool in_place = false; |
| 921 | int ret; |
| 922 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 923 | if (!((aes->key_len == AES_KEYSIZE_128) || |
| 924 | (aes->key_len == AES_KEYSIZE_192) || |
| 925 | (aes->key_len == AES_KEYSIZE_256))) |
| 926 | return -EINVAL; |
| 927 | |
| 928 | if (((aes->mode == CCP_AES_MODE_ECB) || |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 929 | (aes->mode == CCP_AES_MODE_CBC)) && |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 930 | (aes->src_len & (AES_BLOCK_SIZE - 1))) |
| 931 | return -EINVAL; |
| 932 | |
| 933 | if (!aes->key || !aes->src || !aes->dst) |
| 934 | return -EINVAL; |
| 935 | |
| 936 | if (aes->mode != CCP_AES_MODE_ECB) { |
| 937 | if (aes->iv_len != AES_BLOCK_SIZE) |
| 938 | return -EINVAL; |
| 939 | |
| 940 | if (!aes->iv) |
| 941 | return -EINVAL; |
| 942 | } |
| 943 | |
| 944 | BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1); |
| 945 | BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1); |
| 946 | |
| 947 | ret = -EIO; |
| 948 | memset(&op, 0, sizeof(op)); |
| 949 | op.cmd_q = cmd_q; |
| 950 | op.jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| 951 | op.sb_key = cmd_q->sb_key; |
| 952 | op.sb_ctx = cmd_q->sb_ctx; |
| 953 | op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1; |
| 954 | op.u.aes.type = aes->type; |
| 955 | op.u.aes.mode = aes->mode; |
| 956 | op.u.aes.action = aes->action; |
| 957 | |
| 958 | /* All supported key sizes fit in a single (32-byte) SB entry |
| 959 | * and must be in little endian format. Use the 256-bit byte |
| 960 | * swap passthru option to convert from big endian to little |
| 961 | * endian. |
| 962 | */ |
| 963 | ret = ccp_init_dm_workarea(&key, cmd_q, |
| 964 | CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES, |
| 965 | DMA_TO_DEVICE); |
| 966 | if (ret) |
| 967 | return ret; |
| 968 | |
| 969 | dm_offset = CCP_SB_BYTES - aes->key_len; |
| 970 | ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len); |
| 971 | if (ret) |
| 972 | goto e_key; |
| 973 | ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, |
| 974 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 975 | if (ret) { |
| 976 | cmd->engine_error = cmd_q->cmd_error; |
| 977 | goto e_key; |
| 978 | } |
| 979 | |
| 980 | /* The AES context fits in a single (32-byte) SB entry and |
| 981 | * must be in little endian format. Use the 256-bit byte swap |
| 982 | * passthru option to convert from big endian to little endian. |
| 983 | */ |
| 984 | ret = ccp_init_dm_workarea(&ctx, cmd_q, |
| 985 | CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES, |
| 986 | DMA_BIDIRECTIONAL); |
| 987 | if (ret) |
| 988 | goto e_key; |
| 989 | |
| 990 | if (aes->mode != CCP_AES_MODE_ECB) { |
| 991 | /* Load the AES context - convert to LE */ |
| 992 | dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; |
| 993 | ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); |
| 994 | if (ret) |
| 995 | goto e_ctx; |
| 996 | ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| 997 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 998 | if (ret) { |
| 999 | cmd->engine_error = cmd_q->cmd_error; |
| 1000 | goto e_ctx; |
| 1001 | } |
| 1002 | } |
| 1003 | switch (aes->mode) { |
| 1004 | case CCP_AES_MODE_CFB: /* CFB128 only */ |
| 1005 | case CCP_AES_MODE_CTR: |
| 1006 | op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1; |
| 1007 | break; |
| 1008 | default: |
| 1009 | op.u.aes.size = 0; |
| 1010 | } |
| 1011 | |
| 1012 | /* Prepare the input and output data workareas. For in-place |
| 1013 | * operations we need to set the dma direction to BIDIRECTIONAL |
| 1014 | * and copy the src workarea to the dst workarea. |
| 1015 | */ |
| 1016 | if (sg_virt(aes->src) == sg_virt(aes->dst)) |
| 1017 | in_place = true; |
| 1018 | |
| 1019 | ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len, |
| 1020 | AES_BLOCK_SIZE, |
| 1021 | in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
| 1022 | if (ret) |
| 1023 | goto e_ctx; |
| 1024 | |
| 1025 | if (in_place) { |
| 1026 | dst = src; |
| 1027 | } else { |
| 1028 | ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len, |
| 1029 | AES_BLOCK_SIZE, DMA_FROM_DEVICE); |
| 1030 | if (ret) |
| 1031 | goto e_src; |
| 1032 | } |
| 1033 | |
| 1034 | /* Send data to the CCP AES engine */ |
| 1035 | while (src.sg_wa.bytes_left) { |
| 1036 | ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true); |
| 1037 | if (!src.sg_wa.bytes_left) { |
| 1038 | op.eom = 1; |
| 1039 | |
| 1040 | /* Since we don't retrieve the AES context in ECB |
| 1041 | * mode we have to wait for the operation to complete |
| 1042 | * on the last piece of data |
| 1043 | */ |
| 1044 | if (aes->mode == CCP_AES_MODE_ECB) |
| 1045 | op.soc = 1; |
| 1046 | } |
| 1047 | |
| 1048 | ret = cmd_q->ccp->vdata->perform->aes(&op); |
| 1049 | if (ret) { |
| 1050 | cmd->engine_error = cmd_q->cmd_error; |
| 1051 | goto e_dst; |
| 1052 | } |
| 1053 | |
| 1054 | ccp_process_data(&src, &dst, &op); |
| 1055 | } |
| 1056 | |
| 1057 | if (aes->mode != CCP_AES_MODE_ECB) { |
| 1058 | /* Retrieve the AES context - convert from LE to BE using |
| 1059 | * 32-byte (256-bit) byteswapping |
| 1060 | */ |
| 1061 | ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| 1062 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 1063 | if (ret) { |
| 1064 | cmd->engine_error = cmd_q->cmd_error; |
| 1065 | goto e_dst; |
| 1066 | } |
| 1067 | |
| 1068 | /* ...but we only need AES_BLOCK_SIZE bytes */ |
| 1069 | dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; |
| 1070 | ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); |
| 1071 | } |
| 1072 | |
| 1073 | e_dst: |
| 1074 | if (!in_place) |
| 1075 | ccp_free_data(&dst, cmd_q); |
| 1076 | |
| 1077 | e_src: |
| 1078 | ccp_free_data(&src, cmd_q); |
| 1079 | |
| 1080 | e_ctx: |
| 1081 | ccp_dm_free(&ctx); |
| 1082 | |
| 1083 | e_key: |
| 1084 | ccp_dm_free(&key); |
| 1085 | |
| 1086 | return ret; |
| 1087 | } |
| 1088 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1089 | static noinline_for_stack int |
| 1090 | ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1091 | { |
| 1092 | struct ccp_xts_aes_engine *xts = &cmd->u.xts; |
| 1093 | struct ccp_dm_workarea key, ctx; |
| 1094 | struct ccp_data src, dst; |
| 1095 | struct ccp_op op; |
| 1096 | unsigned int unit_size, dm_offset; |
| 1097 | bool in_place = false; |
| 1098 | unsigned int sb_count; |
| 1099 | enum ccp_aes_type aestype; |
| 1100 | int ret; |
| 1101 | |
| 1102 | switch (xts->unit_size) { |
| 1103 | case CCP_XTS_AES_UNIT_SIZE_16: |
| 1104 | unit_size = 16; |
| 1105 | break; |
| 1106 | case CCP_XTS_AES_UNIT_SIZE_512: |
| 1107 | unit_size = 512; |
| 1108 | break; |
| 1109 | case CCP_XTS_AES_UNIT_SIZE_1024: |
| 1110 | unit_size = 1024; |
| 1111 | break; |
| 1112 | case CCP_XTS_AES_UNIT_SIZE_2048: |
| 1113 | unit_size = 2048; |
| 1114 | break; |
| 1115 | case CCP_XTS_AES_UNIT_SIZE_4096: |
| 1116 | unit_size = 4096; |
| 1117 | break; |
| 1118 | |
| 1119 | default: |
| 1120 | return -EINVAL; |
| 1121 | } |
| 1122 | |
| 1123 | if (xts->key_len == AES_KEYSIZE_128) |
| 1124 | aestype = CCP_AES_TYPE_128; |
| 1125 | else if (xts->key_len == AES_KEYSIZE_256) |
| 1126 | aestype = CCP_AES_TYPE_256; |
| 1127 | else |
| 1128 | return -EINVAL; |
| 1129 | |
| 1130 | if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1))) |
| 1131 | return -EINVAL; |
| 1132 | |
| 1133 | if (xts->iv_len != AES_BLOCK_SIZE) |
| 1134 | return -EINVAL; |
| 1135 | |
| 1136 | if (!xts->key || !xts->iv || !xts->src || !xts->dst) |
| 1137 | return -EINVAL; |
| 1138 | |
| 1139 | BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1); |
| 1140 | BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1); |
| 1141 | |
| 1142 | ret = -EIO; |
| 1143 | memset(&op, 0, sizeof(op)); |
| 1144 | op.cmd_q = cmd_q; |
| 1145 | op.jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| 1146 | op.sb_key = cmd_q->sb_key; |
| 1147 | op.sb_ctx = cmd_q->sb_ctx; |
| 1148 | op.init = 1; |
| 1149 | op.u.xts.type = aestype; |
| 1150 | op.u.xts.action = xts->action; |
| 1151 | op.u.xts.unit_size = xts->unit_size; |
| 1152 | |
| 1153 | /* A version 3 device only supports 128-bit keys, which fits into a |
| 1154 | * single SB entry. A version 5 device uses a 512-bit vector, so two |
| 1155 | * SB entries. |
| 1156 | */ |
| 1157 | if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) |
| 1158 | sb_count = CCP_XTS_AES_KEY_SB_COUNT; |
| 1159 | else |
| 1160 | sb_count = CCP5_XTS_AES_KEY_SB_COUNT; |
| 1161 | ret = ccp_init_dm_workarea(&key, cmd_q, |
| 1162 | sb_count * CCP_SB_BYTES, |
| 1163 | DMA_TO_DEVICE); |
| 1164 | if (ret) |
| 1165 | return ret; |
| 1166 | |
| 1167 | if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) { |
| 1168 | /* All supported key sizes must be in little endian format. |
| 1169 | * Use the 256-bit byte swap passthru option to convert from |
| 1170 | * big endian to little endian. |
| 1171 | */ |
| 1172 | dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128; |
| 1173 | ret = ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len); |
| 1174 | if (ret) |
| 1175 | goto e_key; |
| 1176 | ret = ccp_set_dm_area(&key, 0, xts->key, xts->key_len, xts->key_len); |
| 1177 | if (ret) |
| 1178 | goto e_key; |
| 1179 | } else { |
| 1180 | /* Version 5 CCPs use a 512-bit space for the key: each portion |
| 1181 | * occupies 256 bits, or one entire slot, and is zero-padded. |
| 1182 | */ |
| 1183 | unsigned int pad; |
| 1184 | |
| 1185 | dm_offset = CCP_SB_BYTES; |
| 1186 | pad = dm_offset - xts->key_len; |
| 1187 | ret = ccp_set_dm_area(&key, pad, xts->key, 0, xts->key_len); |
| 1188 | if (ret) |
| 1189 | goto e_key; |
| 1190 | ret = ccp_set_dm_area(&key, dm_offset + pad, xts->key, |
| 1191 | xts->key_len, xts->key_len); |
| 1192 | if (ret) |
| 1193 | goto e_key; |
| 1194 | } |
| 1195 | ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, |
| 1196 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 1197 | if (ret) { |
| 1198 | cmd->engine_error = cmd_q->cmd_error; |
| 1199 | goto e_key; |
| 1200 | } |
| 1201 | |
| 1202 | /* The AES context fits in a single (32-byte) SB entry and |
| 1203 | * for XTS is already in little endian format so no byte swapping |
| 1204 | * is needed. |
| 1205 | */ |
| 1206 | ret = ccp_init_dm_workarea(&ctx, cmd_q, |
| 1207 | CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES, |
| 1208 | DMA_BIDIRECTIONAL); |
| 1209 | if (ret) |
| 1210 | goto e_key; |
| 1211 | |
| 1212 | ret = ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len); |
| 1213 | if (ret) |
| 1214 | goto e_ctx; |
| 1215 | ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| 1216 | CCP_PASSTHRU_BYTESWAP_NOOP); |
| 1217 | if (ret) { |
| 1218 | cmd->engine_error = cmd_q->cmd_error; |
| 1219 | goto e_ctx; |
| 1220 | } |
| 1221 | |
| 1222 | /* Prepare the input and output data workareas. For in-place |
| 1223 | * operations we need to set the dma direction to BIDIRECTIONAL |
| 1224 | * and copy the src workarea to the dst workarea. |
| 1225 | */ |
| 1226 | if (sg_virt(xts->src) == sg_virt(xts->dst)) |
| 1227 | in_place = true; |
| 1228 | |
| 1229 | ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len, |
| 1230 | unit_size, |
| 1231 | in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
| 1232 | if (ret) |
| 1233 | goto e_ctx; |
| 1234 | |
| 1235 | if (in_place) { |
| 1236 | dst = src; |
| 1237 | } else { |
| 1238 | ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len, |
| 1239 | unit_size, DMA_FROM_DEVICE); |
| 1240 | if (ret) |
| 1241 | goto e_src; |
| 1242 | } |
| 1243 | |
| 1244 | /* Send data to the CCP AES engine */ |
| 1245 | while (src.sg_wa.bytes_left) { |
| 1246 | ccp_prepare_data(&src, &dst, &op, unit_size, true); |
| 1247 | if (!src.sg_wa.bytes_left) |
| 1248 | op.eom = 1; |
| 1249 | |
| 1250 | ret = cmd_q->ccp->vdata->perform->xts_aes(&op); |
| 1251 | if (ret) { |
| 1252 | cmd->engine_error = cmd_q->cmd_error; |
| 1253 | goto e_dst; |
| 1254 | } |
| 1255 | |
| 1256 | ccp_process_data(&src, &dst, &op); |
| 1257 | } |
| 1258 | |
| 1259 | /* Retrieve the AES context - convert from LE to BE using |
| 1260 | * 32-byte (256-bit) byteswapping |
| 1261 | */ |
| 1262 | ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| 1263 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 1264 | if (ret) { |
| 1265 | cmd->engine_error = cmd_q->cmd_error; |
| 1266 | goto e_dst; |
| 1267 | } |
| 1268 | |
| 1269 | /* ...but we only need AES_BLOCK_SIZE bytes */ |
| 1270 | dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; |
| 1271 | ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len); |
| 1272 | |
| 1273 | e_dst: |
| 1274 | if (!in_place) |
| 1275 | ccp_free_data(&dst, cmd_q); |
| 1276 | |
| 1277 | e_src: |
| 1278 | ccp_free_data(&src, cmd_q); |
| 1279 | |
| 1280 | e_ctx: |
| 1281 | ccp_dm_free(&ctx); |
| 1282 | |
| 1283 | e_key: |
| 1284 | ccp_dm_free(&key); |
| 1285 | |
| 1286 | return ret; |
| 1287 | } |
| 1288 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1289 | static noinline_for_stack int |
| 1290 | ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1291 | { |
| 1292 | struct ccp_des3_engine *des3 = &cmd->u.des3; |
| 1293 | |
| 1294 | struct ccp_dm_workarea key, ctx; |
| 1295 | struct ccp_data src, dst; |
| 1296 | struct ccp_op op; |
| 1297 | unsigned int dm_offset; |
| 1298 | unsigned int len_singlekey; |
| 1299 | bool in_place = false; |
| 1300 | int ret; |
| 1301 | |
| 1302 | /* Error checks */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1303 | if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) |
| 1304 | return -EINVAL; |
| 1305 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1306 | if (!cmd_q->ccp->vdata->perform->des3) |
| 1307 | return -EINVAL; |
| 1308 | |
| 1309 | if (des3->key_len != DES3_EDE_KEY_SIZE) |
| 1310 | return -EINVAL; |
| 1311 | |
| 1312 | if (((des3->mode == CCP_DES3_MODE_ECB) || |
| 1313 | (des3->mode == CCP_DES3_MODE_CBC)) && |
| 1314 | (des3->src_len & (DES3_EDE_BLOCK_SIZE - 1))) |
| 1315 | return -EINVAL; |
| 1316 | |
| 1317 | if (!des3->key || !des3->src || !des3->dst) |
| 1318 | return -EINVAL; |
| 1319 | |
| 1320 | if (des3->mode != CCP_DES3_MODE_ECB) { |
| 1321 | if (des3->iv_len != DES3_EDE_BLOCK_SIZE) |
| 1322 | return -EINVAL; |
| 1323 | |
| 1324 | if (!des3->iv) |
| 1325 | return -EINVAL; |
| 1326 | } |
| 1327 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1328 | /* Zero out all the fields of the command desc */ |
| 1329 | memset(&op, 0, sizeof(op)); |
| 1330 | |
| 1331 | /* Set up the Function field */ |
| 1332 | op.cmd_q = cmd_q; |
| 1333 | op.jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| 1334 | op.sb_key = cmd_q->sb_key; |
| 1335 | |
| 1336 | op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1; |
| 1337 | op.u.des3.type = des3->type; |
| 1338 | op.u.des3.mode = des3->mode; |
| 1339 | op.u.des3.action = des3->action; |
| 1340 | |
| 1341 | /* |
| 1342 | * All supported key sizes fit in a single (32-byte) KSB entry and |
| 1343 | * (like AES) must be in little endian format. Use the 256-bit byte |
| 1344 | * swap passthru option to convert from big endian to little endian. |
| 1345 | */ |
| 1346 | ret = ccp_init_dm_workarea(&key, cmd_q, |
| 1347 | CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES, |
| 1348 | DMA_TO_DEVICE); |
| 1349 | if (ret) |
| 1350 | return ret; |
| 1351 | |
| 1352 | /* |
| 1353 | * The contents of the key triplet are in the reverse order of what |
| 1354 | * is required by the engine. Copy the 3 pieces individually to put |
| 1355 | * them where they belong. |
| 1356 | */ |
| 1357 | dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */ |
| 1358 | |
| 1359 | len_singlekey = des3->key_len / 3; |
| 1360 | ret = ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey, |
| 1361 | des3->key, 0, len_singlekey); |
| 1362 | if (ret) |
| 1363 | goto e_key; |
| 1364 | ret = ccp_set_dm_area(&key, dm_offset + len_singlekey, |
| 1365 | des3->key, len_singlekey, len_singlekey); |
| 1366 | if (ret) |
| 1367 | goto e_key; |
| 1368 | ret = ccp_set_dm_area(&key, dm_offset, |
| 1369 | des3->key, 2 * len_singlekey, len_singlekey); |
| 1370 | if (ret) |
| 1371 | goto e_key; |
| 1372 | |
| 1373 | /* Copy the key to the SB */ |
| 1374 | ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, |
| 1375 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 1376 | if (ret) { |
| 1377 | cmd->engine_error = cmd_q->cmd_error; |
| 1378 | goto e_key; |
| 1379 | } |
| 1380 | |
| 1381 | /* |
| 1382 | * The DES3 context fits in a single (32-byte) KSB entry and |
| 1383 | * must be in little endian format. Use the 256-bit byte swap |
| 1384 | * passthru option to convert from big endian to little endian. |
| 1385 | */ |
| 1386 | if (des3->mode != CCP_DES3_MODE_ECB) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1387 | op.sb_ctx = cmd_q->sb_ctx; |
| 1388 | |
| 1389 | ret = ccp_init_dm_workarea(&ctx, cmd_q, |
| 1390 | CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES, |
| 1391 | DMA_BIDIRECTIONAL); |
| 1392 | if (ret) |
| 1393 | goto e_key; |
| 1394 | |
| 1395 | /* Load the context into the LSB */ |
| 1396 | dm_offset = CCP_SB_BYTES - des3->iv_len; |
| 1397 | ret = ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0, |
| 1398 | des3->iv_len); |
| 1399 | if (ret) |
| 1400 | goto e_ctx; |
| 1401 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1402 | ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1403 | CCP_PASSTHRU_BYTESWAP_256BIT); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1404 | if (ret) { |
| 1405 | cmd->engine_error = cmd_q->cmd_error; |
| 1406 | goto e_ctx; |
| 1407 | } |
| 1408 | } |
| 1409 | |
| 1410 | /* |
| 1411 | * Prepare the input and output data workareas. For in-place |
| 1412 | * operations we need to set the dma direction to BIDIRECTIONAL |
| 1413 | * and copy the src workarea to the dst workarea. |
| 1414 | */ |
| 1415 | if (sg_virt(des3->src) == sg_virt(des3->dst)) |
| 1416 | in_place = true; |
| 1417 | |
| 1418 | ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len, |
| 1419 | DES3_EDE_BLOCK_SIZE, |
| 1420 | in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
| 1421 | if (ret) |
| 1422 | goto e_ctx; |
| 1423 | |
| 1424 | if (in_place) |
| 1425 | dst = src; |
| 1426 | else { |
| 1427 | ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len, |
| 1428 | DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE); |
| 1429 | if (ret) |
| 1430 | goto e_src; |
| 1431 | } |
| 1432 | |
| 1433 | /* Send data to the CCP DES3 engine */ |
| 1434 | while (src.sg_wa.bytes_left) { |
| 1435 | ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true); |
| 1436 | if (!src.sg_wa.bytes_left) { |
| 1437 | op.eom = 1; |
| 1438 | |
| 1439 | /* Since we don't retrieve the context in ECB mode |
| 1440 | * we have to wait for the operation to complete |
| 1441 | * on the last piece of data |
| 1442 | */ |
| 1443 | op.soc = 0; |
| 1444 | } |
| 1445 | |
| 1446 | ret = cmd_q->ccp->vdata->perform->des3(&op); |
| 1447 | if (ret) { |
| 1448 | cmd->engine_error = cmd_q->cmd_error; |
| 1449 | goto e_dst; |
| 1450 | } |
| 1451 | |
| 1452 | ccp_process_data(&src, &dst, &op); |
| 1453 | } |
| 1454 | |
| 1455 | if (des3->mode != CCP_DES3_MODE_ECB) { |
| 1456 | /* Retrieve the context and make BE */ |
| 1457 | ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| 1458 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 1459 | if (ret) { |
| 1460 | cmd->engine_error = cmd_q->cmd_error; |
| 1461 | goto e_dst; |
| 1462 | } |
| 1463 | |
| 1464 | /* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1465 | ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0, |
| 1466 | DES3_EDE_BLOCK_SIZE); |
| 1467 | } |
| 1468 | e_dst: |
| 1469 | if (!in_place) |
| 1470 | ccp_free_data(&dst, cmd_q); |
| 1471 | |
| 1472 | e_src: |
| 1473 | ccp_free_data(&src, cmd_q); |
| 1474 | |
| 1475 | e_ctx: |
| 1476 | if (des3->mode != CCP_DES3_MODE_ECB) |
| 1477 | ccp_dm_free(&ctx); |
| 1478 | |
| 1479 | e_key: |
| 1480 | ccp_dm_free(&key); |
| 1481 | |
| 1482 | return ret; |
| 1483 | } |
| 1484 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1485 | static noinline_for_stack int |
| 1486 | ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1487 | { |
| 1488 | struct ccp_sha_engine *sha = &cmd->u.sha; |
| 1489 | struct ccp_dm_workarea ctx; |
| 1490 | struct ccp_data src; |
| 1491 | struct ccp_op op; |
| 1492 | unsigned int ioffset, ooffset; |
| 1493 | unsigned int digest_size; |
| 1494 | int sb_count; |
| 1495 | const void *init; |
| 1496 | u64 block_size; |
| 1497 | int ctx_size; |
| 1498 | int ret; |
| 1499 | |
| 1500 | switch (sha->type) { |
| 1501 | case CCP_SHA_TYPE_1: |
| 1502 | if (sha->ctx_len < SHA1_DIGEST_SIZE) |
| 1503 | return -EINVAL; |
| 1504 | block_size = SHA1_BLOCK_SIZE; |
| 1505 | break; |
| 1506 | case CCP_SHA_TYPE_224: |
| 1507 | if (sha->ctx_len < SHA224_DIGEST_SIZE) |
| 1508 | return -EINVAL; |
| 1509 | block_size = SHA224_BLOCK_SIZE; |
| 1510 | break; |
| 1511 | case CCP_SHA_TYPE_256: |
| 1512 | if (sha->ctx_len < SHA256_DIGEST_SIZE) |
| 1513 | return -EINVAL; |
| 1514 | block_size = SHA256_BLOCK_SIZE; |
| 1515 | break; |
| 1516 | case CCP_SHA_TYPE_384: |
| 1517 | if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0) |
| 1518 | || sha->ctx_len < SHA384_DIGEST_SIZE) |
| 1519 | return -EINVAL; |
| 1520 | block_size = SHA384_BLOCK_SIZE; |
| 1521 | break; |
| 1522 | case CCP_SHA_TYPE_512: |
| 1523 | if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0) |
| 1524 | || sha->ctx_len < SHA512_DIGEST_SIZE) |
| 1525 | return -EINVAL; |
| 1526 | block_size = SHA512_BLOCK_SIZE; |
| 1527 | break; |
| 1528 | default: |
| 1529 | return -EINVAL; |
| 1530 | } |
| 1531 | |
| 1532 | if (!sha->ctx) |
| 1533 | return -EINVAL; |
| 1534 | |
| 1535 | if (!sha->final && (sha->src_len & (block_size - 1))) |
| 1536 | return -EINVAL; |
| 1537 | |
| 1538 | /* The version 3 device can't handle zero-length input */ |
| 1539 | if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) { |
| 1540 | |
| 1541 | if (!sha->src_len) { |
| 1542 | unsigned int digest_len; |
| 1543 | const u8 *sha_zero; |
| 1544 | |
| 1545 | /* Not final, just return */ |
| 1546 | if (!sha->final) |
| 1547 | return 0; |
| 1548 | |
| 1549 | /* CCP can't do a zero length sha operation so the |
| 1550 | * caller must buffer the data. |
| 1551 | */ |
| 1552 | if (sha->msg_bits) |
| 1553 | return -EINVAL; |
| 1554 | |
| 1555 | /* The CCP cannot perform zero-length sha operations |
| 1556 | * so the caller is required to buffer data for the |
| 1557 | * final operation. However, a sha operation for a |
| 1558 | * message with a total length of zero is valid so |
| 1559 | * known values are required to supply the result. |
| 1560 | */ |
| 1561 | switch (sha->type) { |
| 1562 | case CCP_SHA_TYPE_1: |
| 1563 | sha_zero = sha1_zero_message_hash; |
| 1564 | digest_len = SHA1_DIGEST_SIZE; |
| 1565 | break; |
| 1566 | case CCP_SHA_TYPE_224: |
| 1567 | sha_zero = sha224_zero_message_hash; |
| 1568 | digest_len = SHA224_DIGEST_SIZE; |
| 1569 | break; |
| 1570 | case CCP_SHA_TYPE_256: |
| 1571 | sha_zero = sha256_zero_message_hash; |
| 1572 | digest_len = SHA256_DIGEST_SIZE; |
| 1573 | break; |
| 1574 | default: |
| 1575 | return -EINVAL; |
| 1576 | } |
| 1577 | |
| 1578 | scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0, |
| 1579 | digest_len, 1); |
| 1580 | |
| 1581 | return 0; |
| 1582 | } |
| 1583 | } |
| 1584 | |
| 1585 | /* Set variables used throughout */ |
| 1586 | switch (sha->type) { |
| 1587 | case CCP_SHA_TYPE_1: |
| 1588 | digest_size = SHA1_DIGEST_SIZE; |
| 1589 | init = (void *) ccp_sha1_init; |
| 1590 | ctx_size = SHA1_DIGEST_SIZE; |
| 1591 | sb_count = 1; |
| 1592 | if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0)) |
| 1593 | ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE; |
| 1594 | else |
| 1595 | ooffset = ioffset = 0; |
| 1596 | break; |
| 1597 | case CCP_SHA_TYPE_224: |
| 1598 | digest_size = SHA224_DIGEST_SIZE; |
| 1599 | init = (void *) ccp_sha224_init; |
| 1600 | ctx_size = SHA256_DIGEST_SIZE; |
| 1601 | sb_count = 1; |
| 1602 | ioffset = 0; |
| 1603 | if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0)) |
| 1604 | ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE; |
| 1605 | else |
| 1606 | ooffset = 0; |
| 1607 | break; |
| 1608 | case CCP_SHA_TYPE_256: |
| 1609 | digest_size = SHA256_DIGEST_SIZE; |
| 1610 | init = (void *) ccp_sha256_init; |
| 1611 | ctx_size = SHA256_DIGEST_SIZE; |
| 1612 | sb_count = 1; |
| 1613 | ooffset = ioffset = 0; |
| 1614 | break; |
| 1615 | case CCP_SHA_TYPE_384: |
| 1616 | digest_size = SHA384_DIGEST_SIZE; |
| 1617 | init = (void *) ccp_sha384_init; |
| 1618 | ctx_size = SHA512_DIGEST_SIZE; |
| 1619 | sb_count = 2; |
| 1620 | ioffset = 0; |
| 1621 | ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE; |
| 1622 | break; |
| 1623 | case CCP_SHA_TYPE_512: |
| 1624 | digest_size = SHA512_DIGEST_SIZE; |
| 1625 | init = (void *) ccp_sha512_init; |
| 1626 | ctx_size = SHA512_DIGEST_SIZE; |
| 1627 | sb_count = 2; |
| 1628 | ooffset = ioffset = 0; |
| 1629 | break; |
| 1630 | default: |
| 1631 | ret = -EINVAL; |
| 1632 | goto e_data; |
| 1633 | } |
| 1634 | |
| 1635 | /* For zero-length plaintext the src pointer is ignored; |
| 1636 | * otherwise both parts must be valid |
| 1637 | */ |
| 1638 | if (sha->src_len && !sha->src) |
| 1639 | return -EINVAL; |
| 1640 | |
| 1641 | memset(&op, 0, sizeof(op)); |
| 1642 | op.cmd_q = cmd_q; |
| 1643 | op.jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| 1644 | op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */ |
| 1645 | op.u.sha.type = sha->type; |
| 1646 | op.u.sha.msg_bits = sha->msg_bits; |
| 1647 | |
| 1648 | /* For SHA1/224/256 the context fits in a single (32-byte) SB entry; |
| 1649 | * SHA384/512 require 2 adjacent SB slots, with the right half in the |
| 1650 | * first slot, and the left half in the second. Each portion must then |
| 1651 | * be in little endian format: use the 256-bit byte swap option. |
| 1652 | */ |
| 1653 | ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES, |
| 1654 | DMA_BIDIRECTIONAL); |
| 1655 | if (ret) |
| 1656 | return ret; |
| 1657 | if (sha->first) { |
| 1658 | switch (sha->type) { |
| 1659 | case CCP_SHA_TYPE_1: |
| 1660 | case CCP_SHA_TYPE_224: |
| 1661 | case CCP_SHA_TYPE_256: |
| 1662 | memcpy(ctx.address + ioffset, init, ctx_size); |
| 1663 | break; |
| 1664 | case CCP_SHA_TYPE_384: |
| 1665 | case CCP_SHA_TYPE_512: |
| 1666 | memcpy(ctx.address + ctx_size / 2, init, |
| 1667 | ctx_size / 2); |
| 1668 | memcpy(ctx.address, init + ctx_size / 2, |
| 1669 | ctx_size / 2); |
| 1670 | break; |
| 1671 | default: |
| 1672 | ret = -EINVAL; |
| 1673 | goto e_ctx; |
| 1674 | } |
| 1675 | } else { |
| 1676 | /* Restore the context */ |
| 1677 | ret = ccp_set_dm_area(&ctx, 0, sha->ctx, 0, |
| 1678 | sb_count * CCP_SB_BYTES); |
| 1679 | if (ret) |
| 1680 | goto e_ctx; |
| 1681 | } |
| 1682 | |
| 1683 | ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| 1684 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 1685 | if (ret) { |
| 1686 | cmd->engine_error = cmd_q->cmd_error; |
| 1687 | goto e_ctx; |
| 1688 | } |
| 1689 | |
| 1690 | if (sha->src) { |
| 1691 | /* Send data to the CCP SHA engine; block_size is set above */ |
| 1692 | ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len, |
| 1693 | block_size, DMA_TO_DEVICE); |
| 1694 | if (ret) |
| 1695 | goto e_ctx; |
| 1696 | |
| 1697 | while (src.sg_wa.bytes_left) { |
| 1698 | ccp_prepare_data(&src, NULL, &op, block_size, false); |
| 1699 | if (sha->final && !src.sg_wa.bytes_left) |
| 1700 | op.eom = 1; |
| 1701 | |
| 1702 | ret = cmd_q->ccp->vdata->perform->sha(&op); |
| 1703 | if (ret) { |
| 1704 | cmd->engine_error = cmd_q->cmd_error; |
| 1705 | goto e_data; |
| 1706 | } |
| 1707 | |
| 1708 | ccp_process_data(&src, NULL, &op); |
| 1709 | } |
| 1710 | } else { |
| 1711 | op.eom = 1; |
| 1712 | ret = cmd_q->ccp->vdata->perform->sha(&op); |
| 1713 | if (ret) { |
| 1714 | cmd->engine_error = cmd_q->cmd_error; |
| 1715 | goto e_data; |
| 1716 | } |
| 1717 | } |
| 1718 | |
| 1719 | /* Retrieve the SHA context - convert from LE to BE using |
| 1720 | * 32-byte (256-bit) byteswapping to BE |
| 1721 | */ |
| 1722 | ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| 1723 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 1724 | if (ret) { |
| 1725 | cmd->engine_error = cmd_q->cmd_error; |
| 1726 | goto e_data; |
| 1727 | } |
| 1728 | |
| 1729 | if (sha->final) { |
| 1730 | /* Finishing up, so get the digest */ |
| 1731 | switch (sha->type) { |
| 1732 | case CCP_SHA_TYPE_1: |
| 1733 | case CCP_SHA_TYPE_224: |
| 1734 | case CCP_SHA_TYPE_256: |
| 1735 | ccp_get_dm_area(&ctx, ooffset, |
| 1736 | sha->ctx, 0, |
| 1737 | digest_size); |
| 1738 | break; |
| 1739 | case CCP_SHA_TYPE_384: |
| 1740 | case CCP_SHA_TYPE_512: |
| 1741 | ccp_get_dm_area(&ctx, 0, |
| 1742 | sha->ctx, LSB_ITEM_SIZE - ooffset, |
| 1743 | LSB_ITEM_SIZE); |
| 1744 | ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset, |
| 1745 | sha->ctx, 0, |
| 1746 | LSB_ITEM_SIZE - ooffset); |
| 1747 | break; |
| 1748 | default: |
| 1749 | ret = -EINVAL; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 1750 | goto e_data; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1751 | } |
| 1752 | } else { |
| 1753 | /* Stash the context */ |
| 1754 | ccp_get_dm_area(&ctx, 0, sha->ctx, 0, |
| 1755 | sb_count * CCP_SB_BYTES); |
| 1756 | } |
| 1757 | |
| 1758 | if (sha->final && sha->opad) { |
| 1759 | /* HMAC operation, recursively perform final SHA */ |
| 1760 | struct ccp_cmd hmac_cmd; |
| 1761 | struct scatterlist sg; |
| 1762 | u8 *hmac_buf; |
| 1763 | |
| 1764 | if (sha->opad_len != block_size) { |
| 1765 | ret = -EINVAL; |
| 1766 | goto e_data; |
| 1767 | } |
| 1768 | |
| 1769 | hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL); |
| 1770 | if (!hmac_buf) { |
| 1771 | ret = -ENOMEM; |
| 1772 | goto e_data; |
| 1773 | } |
| 1774 | sg_init_one(&sg, hmac_buf, block_size + digest_size); |
| 1775 | |
| 1776 | scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0); |
| 1777 | switch (sha->type) { |
| 1778 | case CCP_SHA_TYPE_1: |
| 1779 | case CCP_SHA_TYPE_224: |
| 1780 | case CCP_SHA_TYPE_256: |
| 1781 | memcpy(hmac_buf + block_size, |
| 1782 | ctx.address + ooffset, |
| 1783 | digest_size); |
| 1784 | break; |
| 1785 | case CCP_SHA_TYPE_384: |
| 1786 | case CCP_SHA_TYPE_512: |
| 1787 | memcpy(hmac_buf + block_size, |
| 1788 | ctx.address + LSB_ITEM_SIZE + ooffset, |
| 1789 | LSB_ITEM_SIZE); |
| 1790 | memcpy(hmac_buf + block_size + |
| 1791 | (LSB_ITEM_SIZE - ooffset), |
| 1792 | ctx.address, |
| 1793 | LSB_ITEM_SIZE); |
| 1794 | break; |
| 1795 | default: |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 1796 | kfree(hmac_buf); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1797 | ret = -EINVAL; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 1798 | goto e_data; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1799 | } |
| 1800 | |
| 1801 | memset(&hmac_cmd, 0, sizeof(hmac_cmd)); |
| 1802 | hmac_cmd.engine = CCP_ENGINE_SHA; |
| 1803 | hmac_cmd.u.sha.type = sha->type; |
| 1804 | hmac_cmd.u.sha.ctx = sha->ctx; |
| 1805 | hmac_cmd.u.sha.ctx_len = sha->ctx_len; |
| 1806 | hmac_cmd.u.sha.src = &sg; |
| 1807 | hmac_cmd.u.sha.src_len = block_size + digest_size; |
| 1808 | hmac_cmd.u.sha.opad = NULL; |
| 1809 | hmac_cmd.u.sha.opad_len = 0; |
| 1810 | hmac_cmd.u.sha.first = 1; |
| 1811 | hmac_cmd.u.sha.final = 1; |
| 1812 | hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3; |
| 1813 | |
| 1814 | ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd); |
| 1815 | if (ret) |
| 1816 | cmd->engine_error = hmac_cmd.engine_error; |
| 1817 | |
| 1818 | kfree(hmac_buf); |
| 1819 | } |
| 1820 | |
| 1821 | e_data: |
| 1822 | if (sha->src) |
| 1823 | ccp_free_data(&src, cmd_q); |
| 1824 | |
| 1825 | e_ctx: |
| 1826 | ccp_dm_free(&ctx); |
| 1827 | |
| 1828 | return ret; |
| 1829 | } |
| 1830 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1831 | static noinline_for_stack int |
| 1832 | ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1833 | { |
| 1834 | struct ccp_rsa_engine *rsa = &cmd->u.rsa; |
| 1835 | struct ccp_dm_workarea exp, src, dst; |
| 1836 | struct ccp_op op; |
| 1837 | unsigned int sb_count, i_len, o_len; |
| 1838 | int ret; |
| 1839 | |
| 1840 | /* Check against the maximum allowable size, in bits */ |
| 1841 | if (rsa->key_size > cmd_q->ccp->vdata->rsamax) |
| 1842 | return -EINVAL; |
| 1843 | |
| 1844 | if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst) |
| 1845 | return -EINVAL; |
| 1846 | |
| 1847 | memset(&op, 0, sizeof(op)); |
| 1848 | op.cmd_q = cmd_q; |
| 1849 | op.jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| 1850 | |
| 1851 | /* The RSA modulus must precede the message being acted upon, so |
| 1852 | * it must be copied to a DMA area where the message and the |
| 1853 | * modulus can be concatenated. Therefore the input buffer |
| 1854 | * length required is twice the output buffer length (which |
| 1855 | * must be a multiple of 256-bits). Compute o_len, i_len in bytes. |
| 1856 | * Buffer sizes must be a multiple of 32 bytes; rounding up may be |
| 1857 | * required. |
| 1858 | */ |
| 1859 | o_len = 32 * ((rsa->key_size + 255) / 256); |
| 1860 | i_len = o_len * 2; |
| 1861 | |
| 1862 | sb_count = 0; |
| 1863 | if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) { |
| 1864 | /* sb_count is the number of storage block slots required |
| 1865 | * for the modulus. |
| 1866 | */ |
| 1867 | sb_count = o_len / CCP_SB_BYTES; |
| 1868 | op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q, |
| 1869 | sb_count); |
| 1870 | if (!op.sb_key) |
| 1871 | return -EIO; |
| 1872 | } else { |
| 1873 | /* A version 5 device allows a modulus size that will not fit |
| 1874 | * in the LSB, so the command will transfer it from memory. |
| 1875 | * Set the sb key to the default, even though it's not used. |
| 1876 | */ |
| 1877 | op.sb_key = cmd_q->sb_key; |
| 1878 | } |
| 1879 | |
| 1880 | /* The RSA exponent must be in little endian format. Reverse its |
| 1881 | * byte order. |
| 1882 | */ |
| 1883 | ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE); |
| 1884 | if (ret) |
| 1885 | goto e_sb; |
| 1886 | |
| 1887 | ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len); |
| 1888 | if (ret) |
| 1889 | goto e_exp; |
| 1890 | |
| 1891 | if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) { |
| 1892 | /* Copy the exponent to the local storage block, using |
| 1893 | * as many 32-byte blocks as were allocated above. It's |
| 1894 | * already little endian, so no further change is required. |
| 1895 | */ |
| 1896 | ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key, |
| 1897 | CCP_PASSTHRU_BYTESWAP_NOOP); |
| 1898 | if (ret) { |
| 1899 | cmd->engine_error = cmd_q->cmd_error; |
| 1900 | goto e_exp; |
| 1901 | } |
| 1902 | } else { |
| 1903 | /* The exponent can be retrieved from memory via DMA. */ |
| 1904 | op.exp.u.dma.address = exp.dma.address; |
| 1905 | op.exp.u.dma.offset = 0; |
| 1906 | } |
| 1907 | |
| 1908 | /* Concatenate the modulus and the message. Both the modulus and |
| 1909 | * the operands must be in little endian format. Since the input |
| 1910 | * is in big endian format it must be converted. |
| 1911 | */ |
| 1912 | ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE); |
| 1913 | if (ret) |
| 1914 | goto e_exp; |
| 1915 | |
| 1916 | ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len); |
| 1917 | if (ret) |
| 1918 | goto e_src; |
| 1919 | ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len); |
| 1920 | if (ret) |
| 1921 | goto e_src; |
| 1922 | |
| 1923 | /* Prepare the output area for the operation */ |
| 1924 | ret = ccp_init_dm_workarea(&dst, cmd_q, o_len, DMA_FROM_DEVICE); |
| 1925 | if (ret) |
| 1926 | goto e_src; |
| 1927 | |
| 1928 | op.soc = 1; |
| 1929 | op.src.u.dma.address = src.dma.address; |
| 1930 | op.src.u.dma.offset = 0; |
| 1931 | op.src.u.dma.length = i_len; |
| 1932 | op.dst.u.dma.address = dst.dma.address; |
| 1933 | op.dst.u.dma.offset = 0; |
| 1934 | op.dst.u.dma.length = o_len; |
| 1935 | |
| 1936 | op.u.rsa.mod_size = rsa->key_size; |
| 1937 | op.u.rsa.input_len = i_len; |
| 1938 | |
| 1939 | ret = cmd_q->ccp->vdata->perform->rsa(&op); |
| 1940 | if (ret) { |
| 1941 | cmd->engine_error = cmd_q->cmd_error; |
| 1942 | goto e_dst; |
| 1943 | } |
| 1944 | |
| 1945 | ccp_reverse_get_dm_area(&dst, 0, rsa->dst, 0, rsa->mod_len); |
| 1946 | |
| 1947 | e_dst: |
| 1948 | ccp_dm_free(&dst); |
| 1949 | |
| 1950 | e_src: |
| 1951 | ccp_dm_free(&src); |
| 1952 | |
| 1953 | e_exp: |
| 1954 | ccp_dm_free(&exp); |
| 1955 | |
| 1956 | e_sb: |
| 1957 | if (sb_count) |
| 1958 | cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count); |
| 1959 | |
| 1960 | return ret; |
| 1961 | } |
| 1962 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1963 | static noinline_for_stack int |
| 1964 | ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1965 | { |
| 1966 | struct ccp_passthru_engine *pt = &cmd->u.passthru; |
| 1967 | struct ccp_dm_workarea mask; |
| 1968 | struct ccp_data src, dst; |
| 1969 | struct ccp_op op; |
| 1970 | bool in_place = false; |
| 1971 | unsigned int i; |
| 1972 | int ret = 0; |
| 1973 | |
| 1974 | if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1))) |
| 1975 | return -EINVAL; |
| 1976 | |
| 1977 | if (!pt->src || !pt->dst) |
| 1978 | return -EINVAL; |
| 1979 | |
| 1980 | if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) { |
| 1981 | if (pt->mask_len != CCP_PASSTHRU_MASKSIZE) |
| 1982 | return -EINVAL; |
| 1983 | if (!pt->mask) |
| 1984 | return -EINVAL; |
| 1985 | } |
| 1986 | |
| 1987 | BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1); |
| 1988 | |
| 1989 | memset(&op, 0, sizeof(op)); |
| 1990 | op.cmd_q = cmd_q; |
| 1991 | op.jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| 1992 | |
| 1993 | if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) { |
| 1994 | /* Load the mask */ |
| 1995 | op.sb_key = cmd_q->sb_key; |
| 1996 | |
| 1997 | ret = ccp_init_dm_workarea(&mask, cmd_q, |
| 1998 | CCP_PASSTHRU_SB_COUNT * |
| 1999 | CCP_SB_BYTES, |
| 2000 | DMA_TO_DEVICE); |
| 2001 | if (ret) |
| 2002 | return ret; |
| 2003 | |
| 2004 | ret = ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len); |
| 2005 | if (ret) |
| 2006 | goto e_mask; |
| 2007 | ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key, |
| 2008 | CCP_PASSTHRU_BYTESWAP_NOOP); |
| 2009 | if (ret) { |
| 2010 | cmd->engine_error = cmd_q->cmd_error; |
| 2011 | goto e_mask; |
| 2012 | } |
| 2013 | } |
| 2014 | |
| 2015 | /* Prepare the input and output data workareas. For in-place |
| 2016 | * operations we need to set the dma direction to BIDIRECTIONAL |
| 2017 | * and copy the src workarea to the dst workarea. |
| 2018 | */ |
| 2019 | if (sg_virt(pt->src) == sg_virt(pt->dst)) |
| 2020 | in_place = true; |
| 2021 | |
| 2022 | ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len, |
| 2023 | CCP_PASSTHRU_MASKSIZE, |
| 2024 | in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
| 2025 | if (ret) |
| 2026 | goto e_mask; |
| 2027 | |
| 2028 | if (in_place) { |
| 2029 | dst = src; |
| 2030 | } else { |
| 2031 | ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len, |
| 2032 | CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE); |
| 2033 | if (ret) |
| 2034 | goto e_src; |
| 2035 | } |
| 2036 | |
| 2037 | /* Send data to the CCP Passthru engine |
| 2038 | * Because the CCP engine works on a single source and destination |
| 2039 | * dma address at a time, each entry in the source scatterlist |
| 2040 | * (after the dma_map_sg call) must be less than or equal to the |
| 2041 | * (remaining) length in the destination scatterlist entry and the |
| 2042 | * length must be a multiple of CCP_PASSTHRU_BLOCKSIZE |
| 2043 | */ |
| 2044 | dst.sg_wa.sg_used = 0; |
| 2045 | for (i = 1; i <= src.sg_wa.dma_count; i++) { |
| 2046 | if (!dst.sg_wa.sg || |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 2047 | (sg_dma_len(dst.sg_wa.sg) < sg_dma_len(src.sg_wa.sg))) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2048 | ret = -EINVAL; |
| 2049 | goto e_dst; |
| 2050 | } |
| 2051 | |
| 2052 | if (i == src.sg_wa.dma_count) { |
| 2053 | op.eom = 1; |
| 2054 | op.soc = 1; |
| 2055 | } |
| 2056 | |
| 2057 | op.src.type = CCP_MEMTYPE_SYSTEM; |
| 2058 | op.src.u.dma.address = sg_dma_address(src.sg_wa.sg); |
| 2059 | op.src.u.dma.offset = 0; |
| 2060 | op.src.u.dma.length = sg_dma_len(src.sg_wa.sg); |
| 2061 | |
| 2062 | op.dst.type = CCP_MEMTYPE_SYSTEM; |
| 2063 | op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg); |
| 2064 | op.dst.u.dma.offset = dst.sg_wa.sg_used; |
| 2065 | op.dst.u.dma.length = op.src.u.dma.length; |
| 2066 | |
| 2067 | ret = cmd_q->ccp->vdata->perform->passthru(&op); |
| 2068 | if (ret) { |
| 2069 | cmd->engine_error = cmd_q->cmd_error; |
| 2070 | goto e_dst; |
| 2071 | } |
| 2072 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 2073 | dst.sg_wa.sg_used += sg_dma_len(src.sg_wa.sg); |
| 2074 | if (dst.sg_wa.sg_used == sg_dma_len(dst.sg_wa.sg)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2075 | dst.sg_wa.sg = sg_next(dst.sg_wa.sg); |
| 2076 | dst.sg_wa.sg_used = 0; |
| 2077 | } |
| 2078 | src.sg_wa.sg = sg_next(src.sg_wa.sg); |
| 2079 | } |
| 2080 | |
| 2081 | e_dst: |
| 2082 | if (!in_place) |
| 2083 | ccp_free_data(&dst, cmd_q); |
| 2084 | |
| 2085 | e_src: |
| 2086 | ccp_free_data(&src, cmd_q); |
| 2087 | |
| 2088 | e_mask: |
| 2089 | if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) |
| 2090 | ccp_dm_free(&mask); |
| 2091 | |
| 2092 | return ret; |
| 2093 | } |
| 2094 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2095 | static noinline_for_stack int |
| 2096 | ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2097 | struct ccp_cmd *cmd) |
| 2098 | { |
| 2099 | struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap; |
| 2100 | struct ccp_dm_workarea mask; |
| 2101 | struct ccp_op op; |
| 2102 | int ret; |
| 2103 | |
| 2104 | if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1))) |
| 2105 | return -EINVAL; |
| 2106 | |
| 2107 | if (!pt->src_dma || !pt->dst_dma) |
| 2108 | return -EINVAL; |
| 2109 | |
| 2110 | if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) { |
| 2111 | if (pt->mask_len != CCP_PASSTHRU_MASKSIZE) |
| 2112 | return -EINVAL; |
| 2113 | if (!pt->mask) |
| 2114 | return -EINVAL; |
| 2115 | } |
| 2116 | |
| 2117 | BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1); |
| 2118 | |
| 2119 | memset(&op, 0, sizeof(op)); |
| 2120 | op.cmd_q = cmd_q; |
| 2121 | op.jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| 2122 | |
| 2123 | if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) { |
| 2124 | /* Load the mask */ |
| 2125 | op.sb_key = cmd_q->sb_key; |
| 2126 | |
| 2127 | mask.length = pt->mask_len; |
| 2128 | mask.dma.address = pt->mask; |
| 2129 | mask.dma.length = pt->mask_len; |
| 2130 | |
| 2131 | ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key, |
| 2132 | CCP_PASSTHRU_BYTESWAP_NOOP); |
| 2133 | if (ret) { |
| 2134 | cmd->engine_error = cmd_q->cmd_error; |
| 2135 | return ret; |
| 2136 | } |
| 2137 | } |
| 2138 | |
| 2139 | /* Send data to the CCP Passthru engine */ |
| 2140 | op.eom = 1; |
| 2141 | op.soc = 1; |
| 2142 | |
| 2143 | op.src.type = CCP_MEMTYPE_SYSTEM; |
| 2144 | op.src.u.dma.address = pt->src_dma; |
| 2145 | op.src.u.dma.offset = 0; |
| 2146 | op.src.u.dma.length = pt->src_len; |
| 2147 | |
| 2148 | op.dst.type = CCP_MEMTYPE_SYSTEM; |
| 2149 | op.dst.u.dma.address = pt->dst_dma; |
| 2150 | op.dst.u.dma.offset = 0; |
| 2151 | op.dst.u.dma.length = pt->src_len; |
| 2152 | |
| 2153 | ret = cmd_q->ccp->vdata->perform->passthru(&op); |
| 2154 | if (ret) |
| 2155 | cmd->engine_error = cmd_q->cmd_error; |
| 2156 | |
| 2157 | return ret; |
| 2158 | } |
| 2159 | |
| 2160 | static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| 2161 | { |
| 2162 | struct ccp_ecc_engine *ecc = &cmd->u.ecc; |
| 2163 | struct ccp_dm_workarea src, dst; |
| 2164 | struct ccp_op op; |
| 2165 | int ret; |
| 2166 | u8 *save; |
| 2167 | |
| 2168 | if (!ecc->u.mm.operand_1 || |
| 2169 | (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES)) |
| 2170 | return -EINVAL; |
| 2171 | |
| 2172 | if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) |
| 2173 | if (!ecc->u.mm.operand_2 || |
| 2174 | (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES)) |
| 2175 | return -EINVAL; |
| 2176 | |
| 2177 | if (!ecc->u.mm.result || |
| 2178 | (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES)) |
| 2179 | return -EINVAL; |
| 2180 | |
| 2181 | memset(&op, 0, sizeof(op)); |
| 2182 | op.cmd_q = cmd_q; |
| 2183 | op.jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| 2184 | |
| 2185 | /* Concatenate the modulus and the operands. Both the modulus and |
| 2186 | * the operands must be in little endian format. Since the input |
| 2187 | * is in big endian format it must be converted and placed in a |
| 2188 | * fixed length buffer. |
| 2189 | */ |
| 2190 | ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE, |
| 2191 | DMA_TO_DEVICE); |
| 2192 | if (ret) |
| 2193 | return ret; |
| 2194 | |
| 2195 | /* Save the workarea address since it is updated in order to perform |
| 2196 | * the concatenation |
| 2197 | */ |
| 2198 | save = src.address; |
| 2199 | |
| 2200 | /* Copy the ECC modulus */ |
| 2201 | ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len); |
| 2202 | if (ret) |
| 2203 | goto e_src; |
| 2204 | src.address += CCP_ECC_OPERAND_SIZE; |
| 2205 | |
| 2206 | /* Copy the first operand */ |
| 2207 | ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0, |
| 2208 | ecc->u.mm.operand_1_len); |
| 2209 | if (ret) |
| 2210 | goto e_src; |
| 2211 | src.address += CCP_ECC_OPERAND_SIZE; |
| 2212 | |
| 2213 | if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) { |
| 2214 | /* Copy the second operand */ |
| 2215 | ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0, |
| 2216 | ecc->u.mm.operand_2_len); |
| 2217 | if (ret) |
| 2218 | goto e_src; |
| 2219 | src.address += CCP_ECC_OPERAND_SIZE; |
| 2220 | } |
| 2221 | |
| 2222 | /* Restore the workarea address */ |
| 2223 | src.address = save; |
| 2224 | |
| 2225 | /* Prepare the output area for the operation */ |
| 2226 | ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE, |
| 2227 | DMA_FROM_DEVICE); |
| 2228 | if (ret) |
| 2229 | goto e_src; |
| 2230 | |
| 2231 | op.soc = 1; |
| 2232 | op.src.u.dma.address = src.dma.address; |
| 2233 | op.src.u.dma.offset = 0; |
| 2234 | op.src.u.dma.length = src.length; |
| 2235 | op.dst.u.dma.address = dst.dma.address; |
| 2236 | op.dst.u.dma.offset = 0; |
| 2237 | op.dst.u.dma.length = dst.length; |
| 2238 | |
| 2239 | op.u.ecc.function = cmd->u.ecc.function; |
| 2240 | |
| 2241 | ret = cmd_q->ccp->vdata->perform->ecc(&op); |
| 2242 | if (ret) { |
| 2243 | cmd->engine_error = cmd_q->cmd_error; |
| 2244 | goto e_dst; |
| 2245 | } |
| 2246 | |
| 2247 | ecc->ecc_result = le16_to_cpup( |
| 2248 | (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET)); |
| 2249 | if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) { |
| 2250 | ret = -EIO; |
| 2251 | goto e_dst; |
| 2252 | } |
| 2253 | |
| 2254 | /* Save the ECC result */ |
| 2255 | ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0, |
| 2256 | CCP_ECC_MODULUS_BYTES); |
| 2257 | |
| 2258 | e_dst: |
| 2259 | ccp_dm_free(&dst); |
| 2260 | |
| 2261 | e_src: |
| 2262 | ccp_dm_free(&src); |
| 2263 | |
| 2264 | return ret; |
| 2265 | } |
| 2266 | |
| 2267 | static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| 2268 | { |
| 2269 | struct ccp_ecc_engine *ecc = &cmd->u.ecc; |
| 2270 | struct ccp_dm_workarea src, dst; |
| 2271 | struct ccp_op op; |
| 2272 | int ret; |
| 2273 | u8 *save; |
| 2274 | |
| 2275 | if (!ecc->u.pm.point_1.x || |
| 2276 | (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) || |
| 2277 | !ecc->u.pm.point_1.y || |
| 2278 | (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES)) |
| 2279 | return -EINVAL; |
| 2280 | |
| 2281 | if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) { |
| 2282 | if (!ecc->u.pm.point_2.x || |
| 2283 | (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) || |
| 2284 | !ecc->u.pm.point_2.y || |
| 2285 | (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES)) |
| 2286 | return -EINVAL; |
| 2287 | } else { |
| 2288 | if (!ecc->u.pm.domain_a || |
| 2289 | (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES)) |
| 2290 | return -EINVAL; |
| 2291 | |
| 2292 | if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) |
| 2293 | if (!ecc->u.pm.scalar || |
| 2294 | (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES)) |
| 2295 | return -EINVAL; |
| 2296 | } |
| 2297 | |
| 2298 | if (!ecc->u.pm.result.x || |
| 2299 | (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) || |
| 2300 | !ecc->u.pm.result.y || |
| 2301 | (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES)) |
| 2302 | return -EINVAL; |
| 2303 | |
| 2304 | memset(&op, 0, sizeof(op)); |
| 2305 | op.cmd_q = cmd_q; |
| 2306 | op.jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| 2307 | |
| 2308 | /* Concatenate the modulus and the operands. Both the modulus and |
| 2309 | * the operands must be in little endian format. Since the input |
| 2310 | * is in big endian format it must be converted and placed in a |
| 2311 | * fixed length buffer. |
| 2312 | */ |
| 2313 | ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE, |
| 2314 | DMA_TO_DEVICE); |
| 2315 | if (ret) |
| 2316 | return ret; |
| 2317 | |
| 2318 | /* Save the workarea address since it is updated in order to perform |
| 2319 | * the concatenation |
| 2320 | */ |
| 2321 | save = src.address; |
| 2322 | |
| 2323 | /* Copy the ECC modulus */ |
| 2324 | ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len); |
| 2325 | if (ret) |
| 2326 | goto e_src; |
| 2327 | src.address += CCP_ECC_OPERAND_SIZE; |
| 2328 | |
| 2329 | /* Copy the first point X and Y coordinate */ |
| 2330 | ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0, |
| 2331 | ecc->u.pm.point_1.x_len); |
| 2332 | if (ret) |
| 2333 | goto e_src; |
| 2334 | src.address += CCP_ECC_OPERAND_SIZE; |
| 2335 | ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0, |
| 2336 | ecc->u.pm.point_1.y_len); |
| 2337 | if (ret) |
| 2338 | goto e_src; |
| 2339 | src.address += CCP_ECC_OPERAND_SIZE; |
| 2340 | |
| 2341 | /* Set the first point Z coordinate to 1 */ |
| 2342 | *src.address = 0x01; |
| 2343 | src.address += CCP_ECC_OPERAND_SIZE; |
| 2344 | |
| 2345 | if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) { |
| 2346 | /* Copy the second point X and Y coordinate */ |
| 2347 | ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0, |
| 2348 | ecc->u.pm.point_2.x_len); |
| 2349 | if (ret) |
| 2350 | goto e_src; |
| 2351 | src.address += CCP_ECC_OPERAND_SIZE; |
| 2352 | ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0, |
| 2353 | ecc->u.pm.point_2.y_len); |
| 2354 | if (ret) |
| 2355 | goto e_src; |
| 2356 | src.address += CCP_ECC_OPERAND_SIZE; |
| 2357 | |
| 2358 | /* Set the second point Z coordinate to 1 */ |
| 2359 | *src.address = 0x01; |
| 2360 | src.address += CCP_ECC_OPERAND_SIZE; |
| 2361 | } else { |
| 2362 | /* Copy the Domain "a" parameter */ |
| 2363 | ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0, |
| 2364 | ecc->u.pm.domain_a_len); |
| 2365 | if (ret) |
| 2366 | goto e_src; |
| 2367 | src.address += CCP_ECC_OPERAND_SIZE; |
| 2368 | |
| 2369 | if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) { |
| 2370 | /* Copy the scalar value */ |
| 2371 | ret = ccp_reverse_set_dm_area(&src, 0, |
| 2372 | ecc->u.pm.scalar, 0, |
| 2373 | ecc->u.pm.scalar_len); |
| 2374 | if (ret) |
| 2375 | goto e_src; |
| 2376 | src.address += CCP_ECC_OPERAND_SIZE; |
| 2377 | } |
| 2378 | } |
| 2379 | |
| 2380 | /* Restore the workarea address */ |
| 2381 | src.address = save; |
| 2382 | |
| 2383 | /* Prepare the output area for the operation */ |
| 2384 | ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE, |
| 2385 | DMA_FROM_DEVICE); |
| 2386 | if (ret) |
| 2387 | goto e_src; |
| 2388 | |
| 2389 | op.soc = 1; |
| 2390 | op.src.u.dma.address = src.dma.address; |
| 2391 | op.src.u.dma.offset = 0; |
| 2392 | op.src.u.dma.length = src.length; |
| 2393 | op.dst.u.dma.address = dst.dma.address; |
| 2394 | op.dst.u.dma.offset = 0; |
| 2395 | op.dst.u.dma.length = dst.length; |
| 2396 | |
| 2397 | op.u.ecc.function = cmd->u.ecc.function; |
| 2398 | |
| 2399 | ret = cmd_q->ccp->vdata->perform->ecc(&op); |
| 2400 | if (ret) { |
| 2401 | cmd->engine_error = cmd_q->cmd_error; |
| 2402 | goto e_dst; |
| 2403 | } |
| 2404 | |
| 2405 | ecc->ecc_result = le16_to_cpup( |
| 2406 | (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET)); |
| 2407 | if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) { |
| 2408 | ret = -EIO; |
| 2409 | goto e_dst; |
| 2410 | } |
| 2411 | |
| 2412 | /* Save the workarea address since it is updated as we walk through |
| 2413 | * to copy the point math result |
| 2414 | */ |
| 2415 | save = dst.address; |
| 2416 | |
| 2417 | /* Save the ECC result X and Y coordinates */ |
| 2418 | ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0, |
| 2419 | CCP_ECC_MODULUS_BYTES); |
| 2420 | dst.address += CCP_ECC_OUTPUT_SIZE; |
| 2421 | ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0, |
| 2422 | CCP_ECC_MODULUS_BYTES); |
| 2423 | dst.address += CCP_ECC_OUTPUT_SIZE; |
| 2424 | |
| 2425 | /* Restore the workarea address */ |
| 2426 | dst.address = save; |
| 2427 | |
| 2428 | e_dst: |
| 2429 | ccp_dm_free(&dst); |
| 2430 | |
| 2431 | e_src: |
| 2432 | ccp_dm_free(&src); |
| 2433 | |
| 2434 | return ret; |
| 2435 | } |
| 2436 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2437 | static noinline_for_stack int |
| 2438 | ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2439 | { |
| 2440 | struct ccp_ecc_engine *ecc = &cmd->u.ecc; |
| 2441 | |
| 2442 | ecc->ecc_result = 0; |
| 2443 | |
| 2444 | if (!ecc->mod || |
| 2445 | (ecc->mod_len > CCP_ECC_MODULUS_BYTES)) |
| 2446 | return -EINVAL; |
| 2447 | |
| 2448 | switch (ecc->function) { |
| 2449 | case CCP_ECC_FUNCTION_MMUL_384BIT: |
| 2450 | case CCP_ECC_FUNCTION_MADD_384BIT: |
| 2451 | case CCP_ECC_FUNCTION_MINV_384BIT: |
| 2452 | return ccp_run_ecc_mm_cmd(cmd_q, cmd); |
| 2453 | |
| 2454 | case CCP_ECC_FUNCTION_PADD_384BIT: |
| 2455 | case CCP_ECC_FUNCTION_PMUL_384BIT: |
| 2456 | case CCP_ECC_FUNCTION_PDBL_384BIT: |
| 2457 | return ccp_run_ecc_pm_cmd(cmd_q, cmd); |
| 2458 | |
| 2459 | default: |
| 2460 | return -EINVAL; |
| 2461 | } |
| 2462 | } |
| 2463 | |
| 2464 | int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| 2465 | { |
| 2466 | int ret; |
| 2467 | |
| 2468 | cmd->engine_error = 0; |
| 2469 | cmd_q->cmd_error = 0; |
| 2470 | cmd_q->int_rcvd = 0; |
| 2471 | cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q); |
| 2472 | |
| 2473 | switch (cmd->engine) { |
| 2474 | case CCP_ENGINE_AES: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2475 | switch (cmd->u.aes.mode) { |
| 2476 | case CCP_AES_MODE_CMAC: |
| 2477 | ret = ccp_run_aes_cmac_cmd(cmd_q, cmd); |
| 2478 | break; |
| 2479 | case CCP_AES_MODE_GCM: |
| 2480 | ret = ccp_run_aes_gcm_cmd(cmd_q, cmd); |
| 2481 | break; |
| 2482 | default: |
| 2483 | ret = ccp_run_aes_cmd(cmd_q, cmd); |
| 2484 | break; |
| 2485 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2486 | break; |
| 2487 | case CCP_ENGINE_XTS_AES_128: |
| 2488 | ret = ccp_run_xts_aes_cmd(cmd_q, cmd); |
| 2489 | break; |
| 2490 | case CCP_ENGINE_DES3: |
| 2491 | ret = ccp_run_des3_cmd(cmd_q, cmd); |
| 2492 | break; |
| 2493 | case CCP_ENGINE_SHA: |
| 2494 | ret = ccp_run_sha_cmd(cmd_q, cmd); |
| 2495 | break; |
| 2496 | case CCP_ENGINE_RSA: |
| 2497 | ret = ccp_run_rsa_cmd(cmd_q, cmd); |
| 2498 | break; |
| 2499 | case CCP_ENGINE_PASSTHRU: |
| 2500 | if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP) |
| 2501 | ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd); |
| 2502 | else |
| 2503 | ret = ccp_run_passthru_cmd(cmd_q, cmd); |
| 2504 | break; |
| 2505 | case CCP_ENGINE_ECC: |
| 2506 | ret = ccp_run_ecc_cmd(cmd_q, cmd); |
| 2507 | break; |
| 2508 | default: |
| 2509 | ret = -EINVAL; |
| 2510 | } |
| 2511 | |
| 2512 | return ret; |
| 2513 | } |