v4.19.13 snapshot.
diff --git a/drivers/crypto/ccp/ccp-ops.c b/drivers/crypto/ccp/ccp-ops.c
new file mode 100644
index 0000000..0ea43cd
--- /dev/null
+++ b/drivers/crypto/ccp/ccp-ops.c
@@ -0,0 +1,2473 @@
+/*
+ * AMD Cryptographic Coprocessor (CCP) driver
+ *
+ * Copyright (C) 2013,2017 Advanced Micro Devices, Inc.
+ *
+ * Author: Tom Lendacky <thomas.lendacky@amd.com>
+ * Author: Gary R Hook <gary.hook@amd.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/pci.h>
+#include <linux/interrupt.h>
+#include <crypto/scatterwalk.h>
+#include <crypto/des.h>
+#include <linux/ccp.h>
+
+#include "ccp-dev.h"
+
+/* SHA initial context values */
+static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = {
+	cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
+	cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
+	cpu_to_be32(SHA1_H4),
+};
+
+static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
+	cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
+	cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
+	cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
+	cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
+};
+
+static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
+	cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
+	cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
+	cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
+	cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
+};
+
+static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
+	cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1),
+	cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3),
+	cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5),
+	cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7),
+};
+
+static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
+	cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1),
+	cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3),
+	cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5),
+	cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7),
+};
+
+#define	CCP_NEW_JOBID(ccp)	((ccp->vdata->version == CCP_VERSION(3, 0)) ? \
+					ccp_gen_jobid(ccp) : 0)
+
+static u32 ccp_gen_jobid(struct ccp_device *ccp)
+{
+	return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
+}
+
+static void ccp_sg_free(struct ccp_sg_workarea *wa)
+{
+	if (wa->dma_count)
+		dma_unmap_sg(wa->dma_dev, wa->dma_sg, wa->nents, wa->dma_dir);
+
+	wa->dma_count = 0;
+}
+
+static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
+				struct scatterlist *sg, u64 len,
+				enum dma_data_direction dma_dir)
+{
+	memset(wa, 0, sizeof(*wa));
+
+	wa->sg = sg;
+	if (!sg)
+		return 0;
+
+	wa->nents = sg_nents_for_len(sg, len);
+	if (wa->nents < 0)
+		return wa->nents;
+
+	wa->bytes_left = len;
+	wa->sg_used = 0;
+
+	if (len == 0)
+		return 0;
+
+	if (dma_dir == DMA_NONE)
+		return 0;
+
+	wa->dma_sg = sg;
+	wa->dma_dev = dev;
+	wa->dma_dir = dma_dir;
+	wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
+	if (!wa->dma_count)
+		return -ENOMEM;
+
+	return 0;
+}
+
+static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
+{
+	unsigned int nbytes = min_t(u64, len, wa->bytes_left);
+
+	if (!wa->sg)
+		return;
+
+	wa->sg_used += nbytes;
+	wa->bytes_left -= nbytes;
+	if (wa->sg_used == wa->sg->length) {
+		wa->sg = sg_next(wa->sg);
+		wa->sg_used = 0;
+	}
+}
+
+static void ccp_dm_free(struct ccp_dm_workarea *wa)
+{
+	if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
+		if (wa->address)
+			dma_pool_free(wa->dma_pool, wa->address,
+				      wa->dma.address);
+	} else {
+		if (wa->dma.address)
+			dma_unmap_single(wa->dev, wa->dma.address, wa->length,
+					 wa->dma.dir);
+		kfree(wa->address);
+	}
+
+	wa->address = NULL;
+	wa->dma.address = 0;
+}
+
+static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
+				struct ccp_cmd_queue *cmd_q,
+				unsigned int len,
+				enum dma_data_direction dir)
+{
+	memset(wa, 0, sizeof(*wa));
+
+	if (!len)
+		return 0;
+
+	wa->dev = cmd_q->ccp->dev;
+	wa->length = len;
+
+	if (len <= CCP_DMAPOOL_MAX_SIZE) {
+		wa->dma_pool = cmd_q->dma_pool;
+
+		wa->address = dma_pool_alloc(wa->dma_pool, GFP_KERNEL,
+					     &wa->dma.address);
+		if (!wa->address)
+			return -ENOMEM;
+
+		wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
+
+		memset(wa->address, 0, CCP_DMAPOOL_MAX_SIZE);
+	} else {
+		wa->address = kzalloc(len, GFP_KERNEL);
+		if (!wa->address)
+			return -ENOMEM;
+
+		wa->dma.address = dma_map_single(wa->dev, wa->address, len,
+						 dir);
+		if (dma_mapping_error(wa->dev, wa->dma.address))
+			return -ENOMEM;
+
+		wa->dma.length = len;
+	}
+	wa->dma.dir = dir;
+
+	return 0;
+}
+
+static int ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
+			   struct scatterlist *sg, unsigned int sg_offset,
+			   unsigned int len)
+{
+	WARN_ON(!wa->address);
+
+	if (len > (wa->length - wa_offset))
+		return -EINVAL;
+
+	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
+				 0);
+	return 0;
+}
+
+static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
+			    struct scatterlist *sg, unsigned int sg_offset,
+			    unsigned int len)
+{
+	WARN_ON(!wa->address);
+
+	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
+				 1);
+}
+
+static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
+				   unsigned int wa_offset,
+				   struct scatterlist *sg,
+				   unsigned int sg_offset,
+				   unsigned int len)
+{
+	u8 *p, *q;
+	int	rc;
+
+	rc = ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len);
+	if (rc)
+		return rc;
+
+	p = wa->address + wa_offset;
+	q = p + len - 1;
+	while (p < q) {
+		*p = *p ^ *q;
+		*q = *p ^ *q;
+		*p = *p ^ *q;
+		p++;
+		q--;
+	}
+	return 0;
+}
+
+static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
+				    unsigned int wa_offset,
+				    struct scatterlist *sg,
+				    unsigned int sg_offset,
+				    unsigned int len)
+{
+	u8 *p, *q;
+
+	p = wa->address + wa_offset;
+	q = p + len - 1;
+	while (p < q) {
+		*p = *p ^ *q;
+		*q = *p ^ *q;
+		*p = *p ^ *q;
+		p++;
+		q--;
+	}
+
+	ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len);
+}
+
+static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
+{
+	ccp_dm_free(&data->dm_wa);
+	ccp_sg_free(&data->sg_wa);
+}
+
+static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
+			 struct scatterlist *sg, u64 sg_len,
+			 unsigned int dm_len,
+			 enum dma_data_direction dir)
+{
+	int ret;
+
+	memset(data, 0, sizeof(*data));
+
+	ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
+				   dir);
+	if (ret)
+		goto e_err;
+
+	ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
+	if (ret)
+		goto e_err;
+
+	return 0;
+
+e_err:
+	ccp_free_data(data, cmd_q);
+
+	return ret;
+}
+
+static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
+{
+	struct ccp_sg_workarea *sg_wa = &data->sg_wa;
+	struct ccp_dm_workarea *dm_wa = &data->dm_wa;
+	unsigned int buf_count, nbytes;
+
+	/* Clear the buffer if setting it */
+	if (!from)
+		memset(dm_wa->address, 0, dm_wa->length);
+
+	if (!sg_wa->sg)
+		return 0;
+
+	/* Perform the copy operation
+	 *   nbytes will always be <= UINT_MAX because dm_wa->length is
+	 *   an unsigned int
+	 */
+	nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
+	scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
+				 nbytes, from);
+
+	/* Update the structures and generate the count */
+	buf_count = 0;
+	while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
+		nbytes = min(sg_wa->sg->length - sg_wa->sg_used,
+			     dm_wa->length - buf_count);
+		nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
+
+		buf_count += nbytes;
+		ccp_update_sg_workarea(sg_wa, nbytes);
+	}
+
+	return buf_count;
+}
+
+static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
+{
+	return ccp_queue_buf(data, 0);
+}
+
+static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
+{
+	return ccp_queue_buf(data, 1);
+}
+
+static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
+			     struct ccp_op *op, unsigned int block_size,
+			     bool blocksize_op)
+{
+	unsigned int sg_src_len, sg_dst_len, op_len;
+
+	/* The CCP can only DMA from/to one address each per operation. This
+	 * requires that we find the smallest DMA area between the source
+	 * and destination. The resulting len values will always be <= UINT_MAX
+	 * because the dma length is an unsigned int.
+	 */
+	sg_src_len = sg_dma_len(src->sg_wa.sg) - src->sg_wa.sg_used;
+	sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
+
+	if (dst) {
+		sg_dst_len = sg_dma_len(dst->sg_wa.sg) - dst->sg_wa.sg_used;
+		sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
+		op_len = min(sg_src_len, sg_dst_len);
+	} else {
+		op_len = sg_src_len;
+	}
+
+	/* The data operation length will be at least block_size in length
+	 * or the smaller of available sg room remaining for the source or
+	 * the destination
+	 */
+	op_len = max(op_len, block_size);
+
+	/* Unless we have to buffer data, there's no reason to wait */
+	op->soc = 0;
+
+	if (sg_src_len < block_size) {
+		/* Not enough data in the sg element, so it
+		 * needs to be buffered into a blocksize chunk
+		 */
+		int cp_len = ccp_fill_queue_buf(src);
+
+		op->soc = 1;
+		op->src.u.dma.address = src->dm_wa.dma.address;
+		op->src.u.dma.offset = 0;
+		op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
+	} else {
+		/* Enough data in the sg element, but we need to
+		 * adjust for any previously copied data
+		 */
+		op->src.u.dma.address = sg_dma_address(src->sg_wa.sg);
+		op->src.u.dma.offset = src->sg_wa.sg_used;
+		op->src.u.dma.length = op_len & ~(block_size - 1);
+
+		ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
+	}
+
+	if (dst) {
+		if (sg_dst_len < block_size) {
+			/* Not enough room in the sg element or we're on the
+			 * last piece of data (when using padding), so the
+			 * output needs to be buffered into a blocksize chunk
+			 */
+			op->soc = 1;
+			op->dst.u.dma.address = dst->dm_wa.dma.address;
+			op->dst.u.dma.offset = 0;
+			op->dst.u.dma.length = op->src.u.dma.length;
+		} else {
+			/* Enough room in the sg element, but we need to
+			 * adjust for any previously used area
+			 */
+			op->dst.u.dma.address = sg_dma_address(dst->sg_wa.sg);
+			op->dst.u.dma.offset = dst->sg_wa.sg_used;
+			op->dst.u.dma.length = op->src.u.dma.length;
+		}
+	}
+}
+
+static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
+			     struct ccp_op *op)
+{
+	op->init = 0;
+
+	if (dst) {
+		if (op->dst.u.dma.address == dst->dm_wa.dma.address)
+			ccp_empty_queue_buf(dst);
+		else
+			ccp_update_sg_workarea(&dst->sg_wa,
+					       op->dst.u.dma.length);
+	}
+}
+
+static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q,
+			       struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
+			       u32 byte_swap, bool from)
+{
+	struct ccp_op op;
+
+	memset(&op, 0, sizeof(op));
+
+	op.cmd_q = cmd_q;
+	op.jobid = jobid;
+	op.eom = 1;
+
+	if (from) {
+		op.soc = 1;
+		op.src.type = CCP_MEMTYPE_SB;
+		op.src.u.sb = sb;
+		op.dst.type = CCP_MEMTYPE_SYSTEM;
+		op.dst.u.dma.address = wa->dma.address;
+		op.dst.u.dma.length = wa->length;
+	} else {
+		op.src.type = CCP_MEMTYPE_SYSTEM;
+		op.src.u.dma.address = wa->dma.address;
+		op.src.u.dma.length = wa->length;
+		op.dst.type = CCP_MEMTYPE_SB;
+		op.dst.u.sb = sb;
+	}
+
+	op.u.passthru.byte_swap = byte_swap;
+
+	return cmd_q->ccp->vdata->perform->passthru(&op);
+}
+
+static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q,
+			  struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
+			  u32 byte_swap)
+{
+	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false);
+}
+
+static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q,
+			    struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
+			    u32 byte_swap)
+{
+	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true);
+}
+
+static int ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q,
+				struct ccp_cmd *cmd)
+{
+	struct ccp_aes_engine *aes = &cmd->u.aes;
+	struct ccp_dm_workarea key, ctx;
+	struct ccp_data src;
+	struct ccp_op op;
+	unsigned int dm_offset;
+	int ret;
+
+	if (!((aes->key_len == AES_KEYSIZE_128) ||
+	      (aes->key_len == AES_KEYSIZE_192) ||
+	      (aes->key_len == AES_KEYSIZE_256)))
+		return -EINVAL;
+
+	if (aes->src_len & (AES_BLOCK_SIZE - 1))
+		return -EINVAL;
+
+	if (aes->iv_len != AES_BLOCK_SIZE)
+		return -EINVAL;
+
+	if (!aes->key || !aes->iv || !aes->src)
+		return -EINVAL;
+
+	if (aes->cmac_final) {
+		if (aes->cmac_key_len != AES_BLOCK_SIZE)
+			return -EINVAL;
+
+		if (!aes->cmac_key)
+			return -EINVAL;
+	}
+
+	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
+	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
+
+	ret = -EIO;
+	memset(&op, 0, sizeof(op));
+	op.cmd_q = cmd_q;
+	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
+	op.sb_key = cmd_q->sb_key;
+	op.sb_ctx = cmd_q->sb_ctx;
+	op.init = 1;
+	op.u.aes.type = aes->type;
+	op.u.aes.mode = aes->mode;
+	op.u.aes.action = aes->action;
+
+	/* All supported key sizes fit in a single (32-byte) SB entry
+	 * and must be in little endian format. Use the 256-bit byte
+	 * swap passthru option to convert from big endian to little
+	 * endian.
+	 */
+	ret = ccp_init_dm_workarea(&key, cmd_q,
+				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
+				   DMA_TO_DEVICE);
+	if (ret)
+		return ret;
+
+	dm_offset = CCP_SB_BYTES - aes->key_len;
+	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
+	if (ret)
+		goto e_key;
+	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
+			     CCP_PASSTHRU_BYTESWAP_256BIT);
+	if (ret) {
+		cmd->engine_error = cmd_q->cmd_error;
+		goto e_key;
+	}
+
+	/* The AES context fits in a single (32-byte) SB entry and
+	 * must be in little endian format. Use the 256-bit byte swap
+	 * passthru option to convert from big endian to little endian.
+	 */
+	ret = ccp_init_dm_workarea(&ctx, cmd_q,
+				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
+				   DMA_BIDIRECTIONAL);
+	if (ret)
+		goto e_key;
+
+	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
+	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
+	if (ret)
+		goto e_ctx;
+	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+			     CCP_PASSTHRU_BYTESWAP_256BIT);
+	if (ret) {
+		cmd->engine_error = cmd_q->cmd_error;
+		goto e_ctx;
+	}
+
+	/* Send data to the CCP AES engine */
+	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
+			    AES_BLOCK_SIZE, DMA_TO_DEVICE);
+	if (ret)
+		goto e_ctx;
+
+	while (src.sg_wa.bytes_left) {
+		ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
+		if (aes->cmac_final && !src.sg_wa.bytes_left) {
+			op.eom = 1;
+
+			/* Push the K1/K2 key to the CCP now */
+			ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid,
+					       op.sb_ctx,
+					       CCP_PASSTHRU_BYTESWAP_256BIT);
+			if (ret) {
+				cmd->engine_error = cmd_q->cmd_error;
+				goto e_src;
+			}
+
+			ret = ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
+					      aes->cmac_key_len);
+			if (ret)
+				goto e_src;
+			ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+					     CCP_PASSTHRU_BYTESWAP_256BIT);
+			if (ret) {
+				cmd->engine_error = cmd_q->cmd_error;
+				goto e_src;
+			}
+		}
+
+		ret = cmd_q->ccp->vdata->perform->aes(&op);
+		if (ret) {
+			cmd->engine_error = cmd_q->cmd_error;
+			goto e_src;
+		}
+
+		ccp_process_data(&src, NULL, &op);
+	}
+
+	/* Retrieve the AES context - convert from LE to BE using
+	 * 32-byte (256-bit) byteswapping
+	 */
+	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+			       CCP_PASSTHRU_BYTESWAP_256BIT);
+	if (ret) {
+		cmd->engine_error = cmd_q->cmd_error;
+		goto e_src;
+	}
+
+	/* ...but we only need AES_BLOCK_SIZE bytes */
+	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
+	ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
+
+e_src:
+	ccp_free_data(&src, cmd_q);
+
+e_ctx:
+	ccp_dm_free(&ctx);
+
+e_key:
+	ccp_dm_free(&key);
+
+	return ret;
+}
+
+static int ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q,
+			       struct ccp_cmd *cmd)
+{
+	struct ccp_aes_engine *aes = &cmd->u.aes;
+	struct ccp_dm_workarea key, ctx, final_wa, tag;
+	struct ccp_data src, dst;
+	struct ccp_data aad;
+	struct ccp_op op;
+
+	unsigned long long *final;
+	unsigned int dm_offset;
+	unsigned int ilen;
+	bool in_place = true; /* Default value */
+	int ret;
+
+	struct scatterlist *p_inp, sg_inp[2];
+	struct scatterlist *p_tag, sg_tag[2];
+	struct scatterlist *p_outp, sg_outp[2];
+	struct scatterlist *p_aad;
+
+	if (!aes->iv)
+		return -EINVAL;
+
+	if (!((aes->key_len == AES_KEYSIZE_128) ||
+		(aes->key_len == AES_KEYSIZE_192) ||
+		(aes->key_len == AES_KEYSIZE_256)))
+		return -EINVAL;
+
+	if (!aes->key) /* Gotta have a key SGL */
+		return -EINVAL;
+
+	/* First, decompose the source buffer into AAD & PT,
+	 * and the destination buffer into AAD, CT & tag, or
+	 * the input into CT & tag.
+	 * It is expected that the input and output SGs will
+	 * be valid, even if the AAD and input lengths are 0.
+	 */
+	p_aad = aes->src;
+	p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len);
+	p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len);
+	if (aes->action == CCP_AES_ACTION_ENCRYPT) {
+		ilen = aes->src_len;
+		p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen);
+	} else {
+		/* Input length for decryption includes tag */
+		ilen = aes->src_len - AES_BLOCK_SIZE;
+		p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen);
+	}
+
+	memset(&op, 0, sizeof(op));
+	op.cmd_q = cmd_q;
+	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
+	op.sb_key = cmd_q->sb_key; /* Pre-allocated */
+	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
+	op.init = 1;
+	op.u.aes.type = aes->type;
+
+	/* Copy the key to the LSB */
+	ret = ccp_init_dm_workarea(&key, cmd_q,
+				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
+				   DMA_TO_DEVICE);
+	if (ret)
+		return ret;
+
+	dm_offset = CCP_SB_BYTES - aes->key_len;
+	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
+	if (ret)
+		goto e_key;
+	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
+			     CCP_PASSTHRU_BYTESWAP_256BIT);
+	if (ret) {
+		cmd->engine_error = cmd_q->cmd_error;
+		goto e_key;
+	}
+
+	/* Copy the context (IV) to the LSB.
+	 * There is an assumption here that the IV is 96 bits in length, plus
+	 * a nonce of 32 bits. If no IV is present, use a zeroed buffer.
+	 */
+	ret = ccp_init_dm_workarea(&ctx, cmd_q,
+				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
+				   DMA_BIDIRECTIONAL);
+	if (ret)
+		goto e_key;
+
+	dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len;
+	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
+	if (ret)
+		goto e_ctx;
+
+	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+			     CCP_PASSTHRU_BYTESWAP_256BIT);
+	if (ret) {
+		cmd->engine_error = cmd_q->cmd_error;
+		goto e_ctx;
+	}
+
+	op.init = 1;
+	if (aes->aad_len > 0) {
+		/* Step 1: Run a GHASH over the Additional Authenticated Data */
+		ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len,
+				    AES_BLOCK_SIZE,
+				    DMA_TO_DEVICE);
+		if (ret)
+			goto e_ctx;
+
+		op.u.aes.mode = CCP_AES_MODE_GHASH;
+		op.u.aes.action = CCP_AES_GHASHAAD;
+
+		while (aad.sg_wa.bytes_left) {
+			ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true);
+
+			ret = cmd_q->ccp->vdata->perform->aes(&op);
+			if (ret) {
+				cmd->engine_error = cmd_q->cmd_error;
+				goto e_aad;
+			}
+
+			ccp_process_data(&aad, NULL, &op);
+			op.init = 0;
+		}
+	}
+
+	op.u.aes.mode = CCP_AES_MODE_GCTR;
+	op.u.aes.action = aes->action;
+
+	if (ilen > 0) {
+		/* Step 2: Run a GCTR over the plaintext */
+		in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false;
+
+		ret = ccp_init_data(&src, cmd_q, p_inp, ilen,
+				    AES_BLOCK_SIZE,
+				    in_place ? DMA_BIDIRECTIONAL
+					     : DMA_TO_DEVICE);
+		if (ret)
+			goto e_ctx;
+
+		if (in_place) {
+			dst = src;
+		} else {
+			ret = ccp_init_data(&dst, cmd_q, p_outp, ilen,
+					    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
+			if (ret)
+				goto e_src;
+		}
+
+		op.soc = 0;
+		op.eom = 0;
+		op.init = 1;
+		while (src.sg_wa.bytes_left) {
+			ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
+			if (!src.sg_wa.bytes_left) {
+				unsigned int nbytes = aes->src_len
+						      % AES_BLOCK_SIZE;
+
+				if (nbytes) {
+					op.eom = 1;
+					op.u.aes.size = (nbytes * 8) - 1;
+				}
+			}
+
+			ret = cmd_q->ccp->vdata->perform->aes(&op);
+			if (ret) {
+				cmd->engine_error = cmd_q->cmd_error;
+				goto e_dst;
+			}
+
+			ccp_process_data(&src, &dst, &op);
+			op.init = 0;
+		}
+	}
+
+	/* Step 3: Update the IV portion of the context with the original IV */
+	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+			       CCP_PASSTHRU_BYTESWAP_256BIT);
+	if (ret) {
+		cmd->engine_error = cmd_q->cmd_error;
+		goto e_dst;
+	}
+
+	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
+	if (ret)
+		goto e_dst;
+
+	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+			     CCP_PASSTHRU_BYTESWAP_256BIT);
+	if (ret) {
+		cmd->engine_error = cmd_q->cmd_error;
+		goto e_dst;
+	}
+
+	/* Step 4: Concatenate the lengths of the AAD and source, and
+	 * hash that 16 byte buffer.
+	 */
+	ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE,
+				   DMA_BIDIRECTIONAL);
+	if (ret)
+		goto e_dst;
+	final = (unsigned long long *) final_wa.address;
+	final[0] = cpu_to_be64(aes->aad_len * 8);
+	final[1] = cpu_to_be64(ilen * 8);
+
+	op.u.aes.mode = CCP_AES_MODE_GHASH;
+	op.u.aes.action = CCP_AES_GHASHFINAL;
+	op.src.type = CCP_MEMTYPE_SYSTEM;
+	op.src.u.dma.address = final_wa.dma.address;
+	op.src.u.dma.length = AES_BLOCK_SIZE;
+	op.dst.type = CCP_MEMTYPE_SYSTEM;
+	op.dst.u.dma.address = final_wa.dma.address;
+	op.dst.u.dma.length = AES_BLOCK_SIZE;
+	op.eom = 1;
+	op.u.aes.size = 0;
+	ret = cmd_q->ccp->vdata->perform->aes(&op);
+	if (ret)
+		goto e_dst;
+
+	if (aes->action == CCP_AES_ACTION_ENCRYPT) {
+		/* Put the ciphered tag after the ciphertext. */
+		ccp_get_dm_area(&final_wa, 0, p_tag, 0, AES_BLOCK_SIZE);
+	} else {
+		/* Does this ciphered tag match the input? */
+		ret = ccp_init_dm_workarea(&tag, cmd_q, AES_BLOCK_SIZE,
+					   DMA_BIDIRECTIONAL);
+		if (ret)
+			goto e_tag;
+		ret = ccp_set_dm_area(&tag, 0, p_tag, 0, AES_BLOCK_SIZE);
+		if (ret)
+			goto e_tag;
+
+		ret = memcmp(tag.address, final_wa.address, AES_BLOCK_SIZE);
+		ccp_dm_free(&tag);
+	}
+
+e_tag:
+	ccp_dm_free(&final_wa);
+
+e_dst:
+	if (aes->src_len && !in_place)
+		ccp_free_data(&dst, cmd_q);
+
+e_src:
+	if (aes->src_len)
+		ccp_free_data(&src, cmd_q);
+
+e_aad:
+	if (aes->aad_len)
+		ccp_free_data(&aad, cmd_q);
+
+e_ctx:
+	ccp_dm_free(&ctx);
+
+e_key:
+	ccp_dm_free(&key);
+
+	return ret;
+}
+
+static int ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+	struct ccp_aes_engine *aes = &cmd->u.aes;
+	struct ccp_dm_workarea key, ctx;
+	struct ccp_data src, dst;
+	struct ccp_op op;
+	unsigned int dm_offset;
+	bool in_place = false;
+	int ret;
+
+	if (aes->mode == CCP_AES_MODE_CMAC)
+		return ccp_run_aes_cmac_cmd(cmd_q, cmd);
+
+	if (aes->mode == CCP_AES_MODE_GCM)
+		return ccp_run_aes_gcm_cmd(cmd_q, cmd);
+
+	if (!((aes->key_len == AES_KEYSIZE_128) ||
+	      (aes->key_len == AES_KEYSIZE_192) ||
+	      (aes->key_len == AES_KEYSIZE_256)))
+		return -EINVAL;
+
+	if (((aes->mode == CCP_AES_MODE_ECB) ||
+	     (aes->mode == CCP_AES_MODE_CBC) ||
+	     (aes->mode == CCP_AES_MODE_CFB)) &&
+	    (aes->src_len & (AES_BLOCK_SIZE - 1)))
+		return -EINVAL;
+
+	if (!aes->key || !aes->src || !aes->dst)
+		return -EINVAL;
+
+	if (aes->mode != CCP_AES_MODE_ECB) {
+		if (aes->iv_len != AES_BLOCK_SIZE)
+			return -EINVAL;
+
+		if (!aes->iv)
+			return -EINVAL;
+	}
+
+	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
+	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
+
+	ret = -EIO;
+	memset(&op, 0, sizeof(op));
+	op.cmd_q = cmd_q;
+	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
+	op.sb_key = cmd_q->sb_key;
+	op.sb_ctx = cmd_q->sb_ctx;
+	op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
+	op.u.aes.type = aes->type;
+	op.u.aes.mode = aes->mode;
+	op.u.aes.action = aes->action;
+
+	/* All supported key sizes fit in a single (32-byte) SB entry
+	 * and must be in little endian format. Use the 256-bit byte
+	 * swap passthru option to convert from big endian to little
+	 * endian.
+	 */
+	ret = ccp_init_dm_workarea(&key, cmd_q,
+				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
+				   DMA_TO_DEVICE);
+	if (ret)
+		return ret;
+
+	dm_offset = CCP_SB_BYTES - aes->key_len;
+	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
+	if (ret)
+		goto e_key;
+	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
+			     CCP_PASSTHRU_BYTESWAP_256BIT);
+	if (ret) {
+		cmd->engine_error = cmd_q->cmd_error;
+		goto e_key;
+	}
+
+	/* The AES context fits in a single (32-byte) SB entry and
+	 * must be in little endian format. Use the 256-bit byte swap
+	 * passthru option to convert from big endian to little endian.
+	 */
+	ret = ccp_init_dm_workarea(&ctx, cmd_q,
+				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
+				   DMA_BIDIRECTIONAL);
+	if (ret)
+		goto e_key;
+
+	if (aes->mode != CCP_AES_MODE_ECB) {
+		/* Load the AES context - convert to LE */
+		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
+		ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
+		if (ret)
+			goto e_ctx;
+		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+				     CCP_PASSTHRU_BYTESWAP_256BIT);
+		if (ret) {
+			cmd->engine_error = cmd_q->cmd_error;
+			goto e_ctx;
+		}
+	}
+	switch (aes->mode) {
+	case CCP_AES_MODE_CFB: /* CFB128 only */
+	case CCP_AES_MODE_CTR:
+		op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1;
+		break;
+	default:
+		op.u.aes.size = 0;
+	}
+
+	/* Prepare the input and output data workareas. For in-place
+	 * operations we need to set the dma direction to BIDIRECTIONAL
+	 * and copy the src workarea to the dst workarea.
+	 */
+	if (sg_virt(aes->src) == sg_virt(aes->dst))
+		in_place = true;
+
+	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
+			    AES_BLOCK_SIZE,
+			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
+	if (ret)
+		goto e_ctx;
+
+	if (in_place) {
+		dst = src;
+	} else {
+		ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
+				    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
+		if (ret)
+			goto e_src;
+	}
+
+	/* Send data to the CCP AES engine */
+	while (src.sg_wa.bytes_left) {
+		ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
+		if (!src.sg_wa.bytes_left) {
+			op.eom = 1;
+
+			/* Since we don't retrieve the AES context in ECB
+			 * mode we have to wait for the operation to complete
+			 * on the last piece of data
+			 */
+			if (aes->mode == CCP_AES_MODE_ECB)
+				op.soc = 1;
+		}
+
+		ret = cmd_q->ccp->vdata->perform->aes(&op);
+		if (ret) {
+			cmd->engine_error = cmd_q->cmd_error;
+			goto e_dst;
+		}
+
+		ccp_process_data(&src, &dst, &op);
+	}
+
+	if (aes->mode != CCP_AES_MODE_ECB) {
+		/* Retrieve the AES context - convert from LE to BE using
+		 * 32-byte (256-bit) byteswapping
+		 */
+		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+				       CCP_PASSTHRU_BYTESWAP_256BIT);
+		if (ret) {
+			cmd->engine_error = cmd_q->cmd_error;
+			goto e_dst;
+		}
+
+		/* ...but we only need AES_BLOCK_SIZE bytes */
+		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
+		ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
+	}
+
+e_dst:
+	if (!in_place)
+		ccp_free_data(&dst, cmd_q);
+
+e_src:
+	ccp_free_data(&src, cmd_q);
+
+e_ctx:
+	ccp_dm_free(&ctx);
+
+e_key:
+	ccp_dm_free(&key);
+
+	return ret;
+}
+
+static int ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q,
+			       struct ccp_cmd *cmd)
+{
+	struct ccp_xts_aes_engine *xts = &cmd->u.xts;
+	struct ccp_dm_workarea key, ctx;
+	struct ccp_data src, dst;
+	struct ccp_op op;
+	unsigned int unit_size, dm_offset;
+	bool in_place = false;
+	unsigned int sb_count;
+	enum ccp_aes_type aestype;
+	int ret;
+
+	switch (xts->unit_size) {
+	case CCP_XTS_AES_UNIT_SIZE_16:
+		unit_size = 16;
+		break;
+	case CCP_XTS_AES_UNIT_SIZE_512:
+		unit_size = 512;
+		break;
+	case CCP_XTS_AES_UNIT_SIZE_1024:
+		unit_size = 1024;
+		break;
+	case CCP_XTS_AES_UNIT_SIZE_2048:
+		unit_size = 2048;
+		break;
+	case CCP_XTS_AES_UNIT_SIZE_4096:
+		unit_size = 4096;
+		break;
+
+	default:
+		return -EINVAL;
+	}
+
+	if (xts->key_len == AES_KEYSIZE_128)
+		aestype = CCP_AES_TYPE_128;
+	else if (xts->key_len == AES_KEYSIZE_256)
+		aestype = CCP_AES_TYPE_256;
+	else
+		return -EINVAL;
+
+	if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
+		return -EINVAL;
+
+	if (xts->iv_len != AES_BLOCK_SIZE)
+		return -EINVAL;
+
+	if (!xts->key || !xts->iv || !xts->src || !xts->dst)
+		return -EINVAL;
+
+	BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1);
+	BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1);
+
+	ret = -EIO;
+	memset(&op, 0, sizeof(op));
+	op.cmd_q = cmd_q;
+	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
+	op.sb_key = cmd_q->sb_key;
+	op.sb_ctx = cmd_q->sb_ctx;
+	op.init = 1;
+	op.u.xts.type = aestype;
+	op.u.xts.action = xts->action;
+	op.u.xts.unit_size = xts->unit_size;
+
+	/* A version 3 device only supports 128-bit keys, which fits into a
+	 * single SB entry. A version 5 device uses a 512-bit vector, so two
+	 * SB entries.
+	 */
+	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
+		sb_count = CCP_XTS_AES_KEY_SB_COUNT;
+	else
+		sb_count = CCP5_XTS_AES_KEY_SB_COUNT;
+	ret = ccp_init_dm_workarea(&key, cmd_q,
+				   sb_count * CCP_SB_BYTES,
+				   DMA_TO_DEVICE);
+	if (ret)
+		return ret;
+
+	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
+		/* All supported key sizes must be in little endian format.
+		 * Use the 256-bit byte swap passthru option to convert from
+		 * big endian to little endian.
+		 */
+		dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
+		ret = ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
+		if (ret)
+			goto e_key;
+		ret = ccp_set_dm_area(&key, 0, xts->key, xts->key_len, xts->key_len);
+		if (ret)
+			goto e_key;
+	} else {
+		/* Version 5 CCPs use a 512-bit space for the key: each portion
+		 * occupies 256 bits, or one entire slot, and is zero-padded.
+		 */
+		unsigned int pad;
+
+		dm_offset = CCP_SB_BYTES;
+		pad = dm_offset - xts->key_len;
+		ret = ccp_set_dm_area(&key, pad, xts->key, 0, xts->key_len);
+		if (ret)
+			goto e_key;
+		ret = ccp_set_dm_area(&key, dm_offset + pad, xts->key,
+				      xts->key_len, xts->key_len);
+		if (ret)
+			goto e_key;
+	}
+	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
+			     CCP_PASSTHRU_BYTESWAP_256BIT);
+	if (ret) {
+		cmd->engine_error = cmd_q->cmd_error;
+		goto e_key;
+	}
+
+	/* The AES context fits in a single (32-byte) SB entry and
+	 * for XTS is already in little endian format so no byte swapping
+	 * is needed.
+	 */
+	ret = ccp_init_dm_workarea(&ctx, cmd_q,
+				   CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES,
+				   DMA_BIDIRECTIONAL);
+	if (ret)
+		goto e_key;
+
+	ret = ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
+	if (ret)
+		goto e_ctx;
+	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+			     CCP_PASSTHRU_BYTESWAP_NOOP);
+	if (ret) {
+		cmd->engine_error = cmd_q->cmd_error;
+		goto e_ctx;
+	}
+
+	/* Prepare the input and output data workareas. For in-place
+	 * operations we need to set the dma direction to BIDIRECTIONAL
+	 * and copy the src workarea to the dst workarea.
+	 */
+	if (sg_virt(xts->src) == sg_virt(xts->dst))
+		in_place = true;
+
+	ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
+			    unit_size,
+			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
+	if (ret)
+		goto e_ctx;
+
+	if (in_place) {
+		dst = src;
+	} else {
+		ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
+				    unit_size, DMA_FROM_DEVICE);
+		if (ret)
+			goto e_src;
+	}
+
+	/* Send data to the CCP AES engine */
+	while (src.sg_wa.bytes_left) {
+		ccp_prepare_data(&src, &dst, &op, unit_size, true);
+		if (!src.sg_wa.bytes_left)
+			op.eom = 1;
+
+		ret = cmd_q->ccp->vdata->perform->xts_aes(&op);
+		if (ret) {
+			cmd->engine_error = cmd_q->cmd_error;
+			goto e_dst;
+		}
+
+		ccp_process_data(&src, &dst, &op);
+	}
+
+	/* Retrieve the AES context - convert from LE to BE using
+	 * 32-byte (256-bit) byteswapping
+	 */
+	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+			       CCP_PASSTHRU_BYTESWAP_256BIT);
+	if (ret) {
+		cmd->engine_error = cmd_q->cmd_error;
+		goto e_dst;
+	}
+
+	/* ...but we only need AES_BLOCK_SIZE bytes */
+	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
+	ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
+
+e_dst:
+	if (!in_place)
+		ccp_free_data(&dst, cmd_q);
+
+e_src:
+	ccp_free_data(&src, cmd_q);
+
+e_ctx:
+	ccp_dm_free(&ctx);
+
+e_key:
+	ccp_dm_free(&key);
+
+	return ret;
+}
+
+static int ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+	struct ccp_des3_engine *des3 = &cmd->u.des3;
+
+	struct ccp_dm_workarea key, ctx;
+	struct ccp_data src, dst;
+	struct ccp_op op;
+	unsigned int dm_offset;
+	unsigned int len_singlekey;
+	bool in_place = false;
+	int ret;
+
+	/* Error checks */
+	if (!cmd_q->ccp->vdata->perform->des3)
+		return -EINVAL;
+
+	if (des3->key_len != DES3_EDE_KEY_SIZE)
+		return -EINVAL;
+
+	if (((des3->mode == CCP_DES3_MODE_ECB) ||
+		(des3->mode == CCP_DES3_MODE_CBC)) &&
+		(des3->src_len & (DES3_EDE_BLOCK_SIZE - 1)))
+		return -EINVAL;
+
+	if (!des3->key || !des3->src || !des3->dst)
+		return -EINVAL;
+
+	if (des3->mode != CCP_DES3_MODE_ECB) {
+		if (des3->iv_len != DES3_EDE_BLOCK_SIZE)
+			return -EINVAL;
+
+		if (!des3->iv)
+			return -EINVAL;
+	}
+
+	ret = -EIO;
+	/* Zero out all the fields of the command desc */
+	memset(&op, 0, sizeof(op));
+
+	/* Set up the Function field */
+	op.cmd_q = cmd_q;
+	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
+	op.sb_key = cmd_q->sb_key;
+
+	op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1;
+	op.u.des3.type = des3->type;
+	op.u.des3.mode = des3->mode;
+	op.u.des3.action = des3->action;
+
+	/*
+	 * All supported key sizes fit in a single (32-byte) KSB entry and
+	 * (like AES) must be in little endian format. Use the 256-bit byte
+	 * swap passthru option to convert from big endian to little endian.
+	 */
+	ret = ccp_init_dm_workarea(&key, cmd_q,
+				   CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES,
+				   DMA_TO_DEVICE);
+	if (ret)
+		return ret;
+
+	/*
+	 * The contents of the key triplet are in the reverse order of what
+	 * is required by the engine. Copy the 3 pieces individually to put
+	 * them where they belong.
+	 */
+	dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */
+
+	len_singlekey = des3->key_len / 3;
+	ret = ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey,
+			      des3->key, 0, len_singlekey);
+	if (ret)
+		goto e_key;
+	ret = ccp_set_dm_area(&key, dm_offset + len_singlekey,
+			      des3->key, len_singlekey, len_singlekey);
+	if (ret)
+		goto e_key;
+	ret = ccp_set_dm_area(&key, dm_offset,
+			      des3->key, 2 * len_singlekey, len_singlekey);
+	if (ret)
+		goto e_key;
+
+	/* Copy the key to the SB */
+	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
+			     CCP_PASSTHRU_BYTESWAP_256BIT);
+	if (ret) {
+		cmd->engine_error = cmd_q->cmd_error;
+		goto e_key;
+	}
+
+	/*
+	 * The DES3 context fits in a single (32-byte) KSB entry and
+	 * must be in little endian format. Use the 256-bit byte swap
+	 * passthru option to convert from big endian to little endian.
+	 */
+	if (des3->mode != CCP_DES3_MODE_ECB) {
+		u32 load_mode;
+
+		op.sb_ctx = cmd_q->sb_ctx;
+
+		ret = ccp_init_dm_workarea(&ctx, cmd_q,
+					   CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES,
+					   DMA_BIDIRECTIONAL);
+		if (ret)
+			goto e_key;
+
+		/* Load the context into the LSB */
+		dm_offset = CCP_SB_BYTES - des3->iv_len;
+		ret = ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0,
+				      des3->iv_len);
+		if (ret)
+			goto e_ctx;
+
+		if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
+			load_mode = CCP_PASSTHRU_BYTESWAP_NOOP;
+		else
+			load_mode = CCP_PASSTHRU_BYTESWAP_256BIT;
+		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+				     load_mode);
+		if (ret) {
+			cmd->engine_error = cmd_q->cmd_error;
+			goto e_ctx;
+		}
+	}
+
+	/*
+	 * Prepare the input and output data workareas. For in-place
+	 * operations we need to set the dma direction to BIDIRECTIONAL
+	 * and copy the src workarea to the dst workarea.
+	 */
+	if (sg_virt(des3->src) == sg_virt(des3->dst))
+		in_place = true;
+
+	ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len,
+			DES3_EDE_BLOCK_SIZE,
+			in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
+	if (ret)
+		goto e_ctx;
+
+	if (in_place)
+		dst = src;
+	else {
+		ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len,
+				DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE);
+		if (ret)
+			goto e_src;
+	}
+
+	/* Send data to the CCP DES3 engine */
+	while (src.sg_wa.bytes_left) {
+		ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true);
+		if (!src.sg_wa.bytes_left) {
+			op.eom = 1;
+
+			/* Since we don't retrieve the context in ECB mode
+			 * we have to wait for the operation to complete
+			 * on the last piece of data
+			 */
+			op.soc = 0;
+		}
+
+		ret = cmd_q->ccp->vdata->perform->des3(&op);
+		if (ret) {
+			cmd->engine_error = cmd_q->cmd_error;
+			goto e_dst;
+		}
+
+		ccp_process_data(&src, &dst, &op);
+	}
+
+	if (des3->mode != CCP_DES3_MODE_ECB) {
+		/* Retrieve the context and make BE */
+		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+				       CCP_PASSTHRU_BYTESWAP_256BIT);
+		if (ret) {
+			cmd->engine_error = cmd_q->cmd_error;
+			goto e_dst;
+		}
+
+		/* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */
+		if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
+			dm_offset = CCP_SB_BYTES - des3->iv_len;
+		else
+			dm_offset = 0;
+		ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0,
+				DES3_EDE_BLOCK_SIZE);
+	}
+e_dst:
+	if (!in_place)
+		ccp_free_data(&dst, cmd_q);
+
+e_src:
+	ccp_free_data(&src, cmd_q);
+
+e_ctx:
+	if (des3->mode != CCP_DES3_MODE_ECB)
+		ccp_dm_free(&ctx);
+
+e_key:
+	ccp_dm_free(&key);
+
+	return ret;
+}
+
+static int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+	struct ccp_sha_engine *sha = &cmd->u.sha;
+	struct ccp_dm_workarea ctx;
+	struct ccp_data src;
+	struct ccp_op op;
+	unsigned int ioffset, ooffset;
+	unsigned int digest_size;
+	int sb_count;
+	const void *init;
+	u64 block_size;
+	int ctx_size;
+	int ret;
+
+	switch (sha->type) {
+	case CCP_SHA_TYPE_1:
+		if (sha->ctx_len < SHA1_DIGEST_SIZE)
+			return -EINVAL;
+		block_size = SHA1_BLOCK_SIZE;
+		break;
+	case CCP_SHA_TYPE_224:
+		if (sha->ctx_len < SHA224_DIGEST_SIZE)
+			return -EINVAL;
+		block_size = SHA224_BLOCK_SIZE;
+		break;
+	case CCP_SHA_TYPE_256:
+		if (sha->ctx_len < SHA256_DIGEST_SIZE)
+			return -EINVAL;
+		block_size = SHA256_BLOCK_SIZE;
+		break;
+	case CCP_SHA_TYPE_384:
+		if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
+		    || sha->ctx_len < SHA384_DIGEST_SIZE)
+			return -EINVAL;
+		block_size = SHA384_BLOCK_SIZE;
+		break;
+	case CCP_SHA_TYPE_512:
+		if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
+		    || sha->ctx_len < SHA512_DIGEST_SIZE)
+			return -EINVAL;
+		block_size = SHA512_BLOCK_SIZE;
+		break;
+	default:
+		return -EINVAL;
+	}
+
+	if (!sha->ctx)
+		return -EINVAL;
+
+	if (!sha->final && (sha->src_len & (block_size - 1)))
+		return -EINVAL;
+
+	/* The version 3 device can't handle zero-length input */
+	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
+
+		if (!sha->src_len) {
+			unsigned int digest_len;
+			const u8 *sha_zero;
+
+			/* Not final, just return */
+			if (!sha->final)
+				return 0;
+
+			/* CCP can't do a zero length sha operation so the
+			 * caller must buffer the data.
+			 */
+			if (sha->msg_bits)
+				return -EINVAL;
+
+			/* The CCP cannot perform zero-length sha operations
+			 * so the caller is required to buffer data for the
+			 * final operation. However, a sha operation for a
+			 * message with a total length of zero is valid so
+			 * known values are required to supply the result.
+			 */
+			switch (sha->type) {
+			case CCP_SHA_TYPE_1:
+				sha_zero = sha1_zero_message_hash;
+				digest_len = SHA1_DIGEST_SIZE;
+				break;
+			case CCP_SHA_TYPE_224:
+				sha_zero = sha224_zero_message_hash;
+				digest_len = SHA224_DIGEST_SIZE;
+				break;
+			case CCP_SHA_TYPE_256:
+				sha_zero = sha256_zero_message_hash;
+				digest_len = SHA256_DIGEST_SIZE;
+				break;
+			default:
+				return -EINVAL;
+			}
+
+			scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
+						 digest_len, 1);
+
+			return 0;
+		}
+	}
+
+	/* Set variables used throughout */
+	switch (sha->type) {
+	case CCP_SHA_TYPE_1:
+		digest_size = SHA1_DIGEST_SIZE;
+		init = (void *) ccp_sha1_init;
+		ctx_size = SHA1_DIGEST_SIZE;
+		sb_count = 1;
+		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
+			ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE;
+		else
+			ooffset = ioffset = 0;
+		break;
+	case CCP_SHA_TYPE_224:
+		digest_size = SHA224_DIGEST_SIZE;
+		init = (void *) ccp_sha224_init;
+		ctx_size = SHA256_DIGEST_SIZE;
+		sb_count = 1;
+		ioffset = 0;
+		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
+			ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE;
+		else
+			ooffset = 0;
+		break;
+	case CCP_SHA_TYPE_256:
+		digest_size = SHA256_DIGEST_SIZE;
+		init = (void *) ccp_sha256_init;
+		ctx_size = SHA256_DIGEST_SIZE;
+		sb_count = 1;
+		ooffset = ioffset = 0;
+		break;
+	case CCP_SHA_TYPE_384:
+		digest_size = SHA384_DIGEST_SIZE;
+		init = (void *) ccp_sha384_init;
+		ctx_size = SHA512_DIGEST_SIZE;
+		sb_count = 2;
+		ioffset = 0;
+		ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE;
+		break;
+	case CCP_SHA_TYPE_512:
+		digest_size = SHA512_DIGEST_SIZE;
+		init = (void *) ccp_sha512_init;
+		ctx_size = SHA512_DIGEST_SIZE;
+		sb_count = 2;
+		ooffset = ioffset = 0;
+		break;
+	default:
+		ret = -EINVAL;
+		goto e_data;
+	}
+
+	/* For zero-length plaintext the src pointer is ignored;
+	 * otherwise both parts must be valid
+	 */
+	if (sha->src_len && !sha->src)
+		return -EINVAL;
+
+	memset(&op, 0, sizeof(op));
+	op.cmd_q = cmd_q;
+	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
+	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
+	op.u.sha.type = sha->type;
+	op.u.sha.msg_bits = sha->msg_bits;
+
+	/* For SHA1/224/256 the context fits in a single (32-byte) SB entry;
+	 * SHA384/512 require 2 adjacent SB slots, with the right half in the
+	 * first slot, and the left half in the second. Each portion must then
+	 * be in little endian format: use the 256-bit byte swap option.
+	 */
+	ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES,
+				   DMA_BIDIRECTIONAL);
+	if (ret)
+		return ret;
+	if (sha->first) {
+		switch (sha->type) {
+		case CCP_SHA_TYPE_1:
+		case CCP_SHA_TYPE_224:
+		case CCP_SHA_TYPE_256:
+			memcpy(ctx.address + ioffset, init, ctx_size);
+			break;
+		case CCP_SHA_TYPE_384:
+		case CCP_SHA_TYPE_512:
+			memcpy(ctx.address + ctx_size / 2, init,
+			       ctx_size / 2);
+			memcpy(ctx.address, init + ctx_size / 2,
+			       ctx_size / 2);
+			break;
+		default:
+			ret = -EINVAL;
+			goto e_ctx;
+		}
+	} else {
+		/* Restore the context */
+		ret = ccp_set_dm_area(&ctx, 0, sha->ctx, 0,
+				      sb_count * CCP_SB_BYTES);
+		if (ret)
+			goto e_ctx;
+	}
+
+	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+			     CCP_PASSTHRU_BYTESWAP_256BIT);
+	if (ret) {
+		cmd->engine_error = cmd_q->cmd_error;
+		goto e_ctx;
+	}
+
+	if (sha->src) {
+		/* Send data to the CCP SHA engine; block_size is set above */
+		ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
+				    block_size, DMA_TO_DEVICE);
+		if (ret)
+			goto e_ctx;
+
+		while (src.sg_wa.bytes_left) {
+			ccp_prepare_data(&src, NULL, &op, block_size, false);
+			if (sha->final && !src.sg_wa.bytes_left)
+				op.eom = 1;
+
+			ret = cmd_q->ccp->vdata->perform->sha(&op);
+			if (ret) {
+				cmd->engine_error = cmd_q->cmd_error;
+				goto e_data;
+			}
+
+			ccp_process_data(&src, NULL, &op);
+		}
+	} else {
+		op.eom = 1;
+		ret = cmd_q->ccp->vdata->perform->sha(&op);
+		if (ret) {
+			cmd->engine_error = cmd_q->cmd_error;
+			goto e_data;
+		}
+	}
+
+	/* Retrieve the SHA context - convert from LE to BE using
+	 * 32-byte (256-bit) byteswapping to BE
+	 */
+	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+			       CCP_PASSTHRU_BYTESWAP_256BIT);
+	if (ret) {
+		cmd->engine_error = cmd_q->cmd_error;
+		goto e_data;
+	}
+
+	if (sha->final) {
+		/* Finishing up, so get the digest */
+		switch (sha->type) {
+		case CCP_SHA_TYPE_1:
+		case CCP_SHA_TYPE_224:
+		case CCP_SHA_TYPE_256:
+			ccp_get_dm_area(&ctx, ooffset,
+					sha->ctx, 0,
+					digest_size);
+			break;
+		case CCP_SHA_TYPE_384:
+		case CCP_SHA_TYPE_512:
+			ccp_get_dm_area(&ctx, 0,
+					sha->ctx, LSB_ITEM_SIZE - ooffset,
+					LSB_ITEM_SIZE);
+			ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset,
+					sha->ctx, 0,
+					LSB_ITEM_SIZE - ooffset);
+			break;
+		default:
+			ret = -EINVAL;
+			goto e_ctx;
+		}
+	} else {
+		/* Stash the context */
+		ccp_get_dm_area(&ctx, 0, sha->ctx, 0,
+				sb_count * CCP_SB_BYTES);
+	}
+
+	if (sha->final && sha->opad) {
+		/* HMAC operation, recursively perform final SHA */
+		struct ccp_cmd hmac_cmd;
+		struct scatterlist sg;
+		u8 *hmac_buf;
+
+		if (sha->opad_len != block_size) {
+			ret = -EINVAL;
+			goto e_data;
+		}
+
+		hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
+		if (!hmac_buf) {
+			ret = -ENOMEM;
+			goto e_data;
+		}
+		sg_init_one(&sg, hmac_buf, block_size + digest_size);
+
+		scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
+		switch (sha->type) {
+		case CCP_SHA_TYPE_1:
+		case CCP_SHA_TYPE_224:
+		case CCP_SHA_TYPE_256:
+			memcpy(hmac_buf + block_size,
+			       ctx.address + ooffset,
+			       digest_size);
+			break;
+		case CCP_SHA_TYPE_384:
+		case CCP_SHA_TYPE_512:
+			memcpy(hmac_buf + block_size,
+			       ctx.address + LSB_ITEM_SIZE + ooffset,
+			       LSB_ITEM_SIZE);
+			memcpy(hmac_buf + block_size +
+			       (LSB_ITEM_SIZE - ooffset),
+			       ctx.address,
+			       LSB_ITEM_SIZE);
+			break;
+		default:
+			ret = -EINVAL;
+			goto e_ctx;
+		}
+
+		memset(&hmac_cmd, 0, sizeof(hmac_cmd));
+		hmac_cmd.engine = CCP_ENGINE_SHA;
+		hmac_cmd.u.sha.type = sha->type;
+		hmac_cmd.u.sha.ctx = sha->ctx;
+		hmac_cmd.u.sha.ctx_len = sha->ctx_len;
+		hmac_cmd.u.sha.src = &sg;
+		hmac_cmd.u.sha.src_len = block_size + digest_size;
+		hmac_cmd.u.sha.opad = NULL;
+		hmac_cmd.u.sha.opad_len = 0;
+		hmac_cmd.u.sha.first = 1;
+		hmac_cmd.u.sha.final = 1;
+		hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
+
+		ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
+		if (ret)
+			cmd->engine_error = hmac_cmd.engine_error;
+
+		kfree(hmac_buf);
+	}
+
+e_data:
+	if (sha->src)
+		ccp_free_data(&src, cmd_q);
+
+e_ctx:
+	ccp_dm_free(&ctx);
+
+	return ret;
+}
+
+static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+	struct ccp_rsa_engine *rsa = &cmd->u.rsa;
+	struct ccp_dm_workarea exp, src, dst;
+	struct ccp_op op;
+	unsigned int sb_count, i_len, o_len;
+	int ret;
+
+	/* Check against the maximum allowable size, in bits */
+	if (rsa->key_size > cmd_q->ccp->vdata->rsamax)
+		return -EINVAL;
+
+	if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
+		return -EINVAL;
+
+	memset(&op, 0, sizeof(op));
+	op.cmd_q = cmd_q;
+	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
+
+	/* The RSA modulus must precede the message being acted upon, so
+	 * it must be copied to a DMA area where the message and the
+	 * modulus can be concatenated.  Therefore the input buffer
+	 * length required is twice the output buffer length (which
+	 * must be a multiple of 256-bits).  Compute o_len, i_len in bytes.
+	 * Buffer sizes must be a multiple of 32 bytes; rounding up may be
+	 * required.
+	 */
+	o_len = 32 * ((rsa->key_size + 255) / 256);
+	i_len = o_len * 2;
+
+	sb_count = 0;
+	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
+		/* sb_count is the number of storage block slots required
+		 * for the modulus.
+		 */
+		sb_count = o_len / CCP_SB_BYTES;
+		op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q,
+								sb_count);
+		if (!op.sb_key)
+			return -EIO;
+	} else {
+		/* A version 5 device allows a modulus size that will not fit
+		 * in the LSB, so the command will transfer it from memory.
+		 * Set the sb key to the default, even though it's not used.
+		 */
+		op.sb_key = cmd_q->sb_key;
+	}
+
+	/* The RSA exponent must be in little endian format. Reverse its
+	 * byte order.
+	 */
+	ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
+	if (ret)
+		goto e_sb;
+
+	ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len);
+	if (ret)
+		goto e_exp;
+
+	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
+		/* Copy the exponent to the local storage block, using
+		 * as many 32-byte blocks as were allocated above. It's
+		 * already little endian, so no further change is required.
+		 */
+		ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
+				     CCP_PASSTHRU_BYTESWAP_NOOP);
+		if (ret) {
+			cmd->engine_error = cmd_q->cmd_error;
+			goto e_exp;
+		}
+	} else {
+		/* The exponent can be retrieved from memory via DMA. */
+		op.exp.u.dma.address = exp.dma.address;
+		op.exp.u.dma.offset = 0;
+	}
+
+	/* Concatenate the modulus and the message. Both the modulus and
+	 * the operands must be in little endian format.  Since the input
+	 * is in big endian format it must be converted.
+	 */
+	ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
+	if (ret)
+		goto e_exp;
+
+	ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len);
+	if (ret)
+		goto e_src;
+	ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len);
+	if (ret)
+		goto e_src;
+
+	/* Prepare the output area for the operation */
+	ret = ccp_init_dm_workarea(&dst, cmd_q, o_len, DMA_FROM_DEVICE);
+	if (ret)
+		goto e_src;
+
+	op.soc = 1;
+	op.src.u.dma.address = src.dma.address;
+	op.src.u.dma.offset = 0;
+	op.src.u.dma.length = i_len;
+	op.dst.u.dma.address = dst.dma.address;
+	op.dst.u.dma.offset = 0;
+	op.dst.u.dma.length = o_len;
+
+	op.u.rsa.mod_size = rsa->key_size;
+	op.u.rsa.input_len = i_len;
+
+	ret = cmd_q->ccp->vdata->perform->rsa(&op);
+	if (ret) {
+		cmd->engine_error = cmd_q->cmd_error;
+		goto e_dst;
+	}
+
+	ccp_reverse_get_dm_area(&dst, 0, rsa->dst, 0, rsa->mod_len);
+
+e_dst:
+	ccp_dm_free(&dst);
+
+e_src:
+	ccp_dm_free(&src);
+
+e_exp:
+	ccp_dm_free(&exp);
+
+e_sb:
+	if (sb_count)
+		cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
+
+	return ret;
+}
+
+static int ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q,
+				struct ccp_cmd *cmd)
+{
+	struct ccp_passthru_engine *pt = &cmd->u.passthru;
+	struct ccp_dm_workarea mask;
+	struct ccp_data src, dst;
+	struct ccp_op op;
+	bool in_place = false;
+	unsigned int i;
+	int ret = 0;
+
+	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
+		return -EINVAL;
+
+	if (!pt->src || !pt->dst)
+		return -EINVAL;
+
+	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
+		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
+			return -EINVAL;
+		if (!pt->mask)
+			return -EINVAL;
+	}
+
+	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
+
+	memset(&op, 0, sizeof(op));
+	op.cmd_q = cmd_q;
+	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
+
+	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
+		/* Load the mask */
+		op.sb_key = cmd_q->sb_key;
+
+		ret = ccp_init_dm_workarea(&mask, cmd_q,
+					   CCP_PASSTHRU_SB_COUNT *
+					   CCP_SB_BYTES,
+					   DMA_TO_DEVICE);
+		if (ret)
+			return ret;
+
+		ret = ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
+		if (ret)
+			goto e_mask;
+		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
+				     CCP_PASSTHRU_BYTESWAP_NOOP);
+		if (ret) {
+			cmd->engine_error = cmd_q->cmd_error;
+			goto e_mask;
+		}
+	}
+
+	/* Prepare the input and output data workareas. For in-place
+	 * operations we need to set the dma direction to BIDIRECTIONAL
+	 * and copy the src workarea to the dst workarea.
+	 */
+	if (sg_virt(pt->src) == sg_virt(pt->dst))
+		in_place = true;
+
+	ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
+			    CCP_PASSTHRU_MASKSIZE,
+			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
+	if (ret)
+		goto e_mask;
+
+	if (in_place) {
+		dst = src;
+	} else {
+		ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
+				    CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
+		if (ret)
+			goto e_src;
+	}
+
+	/* Send data to the CCP Passthru engine
+	 *   Because the CCP engine works on a single source and destination
+	 *   dma address at a time, each entry in the source scatterlist
+	 *   (after the dma_map_sg call) must be less than or equal to the
+	 *   (remaining) length in the destination scatterlist entry and the
+	 *   length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
+	 */
+	dst.sg_wa.sg_used = 0;
+	for (i = 1; i <= src.sg_wa.dma_count; i++) {
+		if (!dst.sg_wa.sg ||
+		    (dst.sg_wa.sg->length < src.sg_wa.sg->length)) {
+			ret = -EINVAL;
+			goto e_dst;
+		}
+
+		if (i == src.sg_wa.dma_count) {
+			op.eom = 1;
+			op.soc = 1;
+		}
+
+		op.src.type = CCP_MEMTYPE_SYSTEM;
+		op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
+		op.src.u.dma.offset = 0;
+		op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
+
+		op.dst.type = CCP_MEMTYPE_SYSTEM;
+		op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
+		op.dst.u.dma.offset = dst.sg_wa.sg_used;
+		op.dst.u.dma.length = op.src.u.dma.length;
+
+		ret = cmd_q->ccp->vdata->perform->passthru(&op);
+		if (ret) {
+			cmd->engine_error = cmd_q->cmd_error;
+			goto e_dst;
+		}
+
+		dst.sg_wa.sg_used += src.sg_wa.sg->length;
+		if (dst.sg_wa.sg_used == dst.sg_wa.sg->length) {
+			dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
+			dst.sg_wa.sg_used = 0;
+		}
+		src.sg_wa.sg = sg_next(src.sg_wa.sg);
+	}
+
+e_dst:
+	if (!in_place)
+		ccp_free_data(&dst, cmd_q);
+
+e_src:
+	ccp_free_data(&src, cmd_q);
+
+e_mask:
+	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
+		ccp_dm_free(&mask);
+
+	return ret;
+}
+
+static int ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
+				      struct ccp_cmd *cmd)
+{
+	struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap;
+	struct ccp_dm_workarea mask;
+	struct ccp_op op;
+	int ret;
+
+	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
+		return -EINVAL;
+
+	if (!pt->src_dma || !pt->dst_dma)
+		return -EINVAL;
+
+	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
+		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
+			return -EINVAL;
+		if (!pt->mask)
+			return -EINVAL;
+	}
+
+	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
+
+	memset(&op, 0, sizeof(op));
+	op.cmd_q = cmd_q;
+	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
+
+	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
+		/* Load the mask */
+		op.sb_key = cmd_q->sb_key;
+
+		mask.length = pt->mask_len;
+		mask.dma.address = pt->mask;
+		mask.dma.length = pt->mask_len;
+
+		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
+				     CCP_PASSTHRU_BYTESWAP_NOOP);
+		if (ret) {
+			cmd->engine_error = cmd_q->cmd_error;
+			return ret;
+		}
+	}
+
+	/* Send data to the CCP Passthru engine */
+	op.eom = 1;
+	op.soc = 1;
+
+	op.src.type = CCP_MEMTYPE_SYSTEM;
+	op.src.u.dma.address = pt->src_dma;
+	op.src.u.dma.offset = 0;
+	op.src.u.dma.length = pt->src_len;
+
+	op.dst.type = CCP_MEMTYPE_SYSTEM;
+	op.dst.u.dma.address = pt->dst_dma;
+	op.dst.u.dma.offset = 0;
+	op.dst.u.dma.length = pt->src_len;
+
+	ret = cmd_q->ccp->vdata->perform->passthru(&op);
+	if (ret)
+		cmd->engine_error = cmd_q->cmd_error;
+
+	return ret;
+}
+
+static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
+	struct ccp_dm_workarea src, dst;
+	struct ccp_op op;
+	int ret;
+	u8 *save;
+
+	if (!ecc->u.mm.operand_1 ||
+	    (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
+		return -EINVAL;
+
+	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
+		if (!ecc->u.mm.operand_2 ||
+		    (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
+			return -EINVAL;
+
+	if (!ecc->u.mm.result ||
+	    (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
+		return -EINVAL;
+
+	memset(&op, 0, sizeof(op));
+	op.cmd_q = cmd_q;
+	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
+
+	/* Concatenate the modulus and the operands. Both the modulus and
+	 * the operands must be in little endian format.  Since the input
+	 * is in big endian format it must be converted and placed in a
+	 * fixed length buffer.
+	 */
+	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
+				   DMA_TO_DEVICE);
+	if (ret)
+		return ret;
+
+	/* Save the workarea address since it is updated in order to perform
+	 * the concatenation
+	 */
+	save = src.address;
+
+	/* Copy the ECC modulus */
+	ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
+	if (ret)
+		goto e_src;
+	src.address += CCP_ECC_OPERAND_SIZE;
+
+	/* Copy the first operand */
+	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0,
+				      ecc->u.mm.operand_1_len);
+	if (ret)
+		goto e_src;
+	src.address += CCP_ECC_OPERAND_SIZE;
+
+	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
+		/* Copy the second operand */
+		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0,
+					      ecc->u.mm.operand_2_len);
+		if (ret)
+			goto e_src;
+		src.address += CCP_ECC_OPERAND_SIZE;
+	}
+
+	/* Restore the workarea address */
+	src.address = save;
+
+	/* Prepare the output area for the operation */
+	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
+				   DMA_FROM_DEVICE);
+	if (ret)
+		goto e_src;
+
+	op.soc = 1;
+	op.src.u.dma.address = src.dma.address;
+	op.src.u.dma.offset = 0;
+	op.src.u.dma.length = src.length;
+	op.dst.u.dma.address = dst.dma.address;
+	op.dst.u.dma.offset = 0;
+	op.dst.u.dma.length = dst.length;
+
+	op.u.ecc.function = cmd->u.ecc.function;
+
+	ret = cmd_q->ccp->vdata->perform->ecc(&op);
+	if (ret) {
+		cmd->engine_error = cmd_q->cmd_error;
+		goto e_dst;
+	}
+
+	ecc->ecc_result = le16_to_cpup(
+		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
+	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
+		ret = -EIO;
+		goto e_dst;
+	}
+
+	/* Save the ECC result */
+	ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0,
+				CCP_ECC_MODULUS_BYTES);
+
+e_dst:
+	ccp_dm_free(&dst);
+
+e_src:
+	ccp_dm_free(&src);
+
+	return ret;
+}
+
+static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
+	struct ccp_dm_workarea src, dst;
+	struct ccp_op op;
+	int ret;
+	u8 *save;
+
+	if (!ecc->u.pm.point_1.x ||
+	    (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
+	    !ecc->u.pm.point_1.y ||
+	    (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
+		return -EINVAL;
+
+	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
+		if (!ecc->u.pm.point_2.x ||
+		    (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
+		    !ecc->u.pm.point_2.y ||
+		    (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
+			return -EINVAL;
+	} else {
+		if (!ecc->u.pm.domain_a ||
+		    (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
+			return -EINVAL;
+
+		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
+			if (!ecc->u.pm.scalar ||
+			    (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
+				return -EINVAL;
+	}
+
+	if (!ecc->u.pm.result.x ||
+	    (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
+	    !ecc->u.pm.result.y ||
+	    (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
+		return -EINVAL;
+
+	memset(&op, 0, sizeof(op));
+	op.cmd_q = cmd_q;
+	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
+
+	/* Concatenate the modulus and the operands. Both the modulus and
+	 * the operands must be in little endian format.  Since the input
+	 * is in big endian format it must be converted and placed in a
+	 * fixed length buffer.
+	 */
+	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
+				   DMA_TO_DEVICE);
+	if (ret)
+		return ret;
+
+	/* Save the workarea address since it is updated in order to perform
+	 * the concatenation
+	 */
+	save = src.address;
+
+	/* Copy the ECC modulus */
+	ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
+	if (ret)
+		goto e_src;
+	src.address += CCP_ECC_OPERAND_SIZE;
+
+	/* Copy the first point X and Y coordinate */
+	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0,
+				      ecc->u.pm.point_1.x_len);
+	if (ret)
+		goto e_src;
+	src.address += CCP_ECC_OPERAND_SIZE;
+	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0,
+				      ecc->u.pm.point_1.y_len);
+	if (ret)
+		goto e_src;
+	src.address += CCP_ECC_OPERAND_SIZE;
+
+	/* Set the first point Z coordinate to 1 */
+	*src.address = 0x01;
+	src.address += CCP_ECC_OPERAND_SIZE;
+
+	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
+		/* Copy the second point X and Y coordinate */
+		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0,
+					      ecc->u.pm.point_2.x_len);
+		if (ret)
+			goto e_src;
+		src.address += CCP_ECC_OPERAND_SIZE;
+		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0,
+					      ecc->u.pm.point_2.y_len);
+		if (ret)
+			goto e_src;
+		src.address += CCP_ECC_OPERAND_SIZE;
+
+		/* Set the second point Z coordinate to 1 */
+		*src.address = 0x01;
+		src.address += CCP_ECC_OPERAND_SIZE;
+	} else {
+		/* Copy the Domain "a" parameter */
+		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0,
+					      ecc->u.pm.domain_a_len);
+		if (ret)
+			goto e_src;
+		src.address += CCP_ECC_OPERAND_SIZE;
+
+		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
+			/* Copy the scalar value */
+			ret = ccp_reverse_set_dm_area(&src, 0,
+						      ecc->u.pm.scalar, 0,
+						      ecc->u.pm.scalar_len);
+			if (ret)
+				goto e_src;
+			src.address += CCP_ECC_OPERAND_SIZE;
+		}
+	}
+
+	/* Restore the workarea address */
+	src.address = save;
+
+	/* Prepare the output area for the operation */
+	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
+				   DMA_FROM_DEVICE);
+	if (ret)
+		goto e_src;
+
+	op.soc = 1;
+	op.src.u.dma.address = src.dma.address;
+	op.src.u.dma.offset = 0;
+	op.src.u.dma.length = src.length;
+	op.dst.u.dma.address = dst.dma.address;
+	op.dst.u.dma.offset = 0;
+	op.dst.u.dma.length = dst.length;
+
+	op.u.ecc.function = cmd->u.ecc.function;
+
+	ret = cmd_q->ccp->vdata->perform->ecc(&op);
+	if (ret) {
+		cmd->engine_error = cmd_q->cmd_error;
+		goto e_dst;
+	}
+
+	ecc->ecc_result = le16_to_cpup(
+		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
+	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
+		ret = -EIO;
+		goto e_dst;
+	}
+
+	/* Save the workarea address since it is updated as we walk through
+	 * to copy the point math result
+	 */
+	save = dst.address;
+
+	/* Save the ECC result X and Y coordinates */
+	ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0,
+				CCP_ECC_MODULUS_BYTES);
+	dst.address += CCP_ECC_OUTPUT_SIZE;
+	ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0,
+				CCP_ECC_MODULUS_BYTES);
+	dst.address += CCP_ECC_OUTPUT_SIZE;
+
+	/* Restore the workarea address */
+	dst.address = save;
+
+e_dst:
+	ccp_dm_free(&dst);
+
+e_src:
+	ccp_dm_free(&src);
+
+	return ret;
+}
+
+static int ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
+
+	ecc->ecc_result = 0;
+
+	if (!ecc->mod ||
+	    (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
+		return -EINVAL;
+
+	switch (ecc->function) {
+	case CCP_ECC_FUNCTION_MMUL_384BIT:
+	case CCP_ECC_FUNCTION_MADD_384BIT:
+	case CCP_ECC_FUNCTION_MINV_384BIT:
+		return ccp_run_ecc_mm_cmd(cmd_q, cmd);
+
+	case CCP_ECC_FUNCTION_PADD_384BIT:
+	case CCP_ECC_FUNCTION_PMUL_384BIT:
+	case CCP_ECC_FUNCTION_PDBL_384BIT:
+		return ccp_run_ecc_pm_cmd(cmd_q, cmd);
+
+	default:
+		return -EINVAL;
+	}
+}
+
+int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+	int ret;
+
+	cmd->engine_error = 0;
+	cmd_q->cmd_error = 0;
+	cmd_q->int_rcvd = 0;
+	cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q);
+
+	switch (cmd->engine) {
+	case CCP_ENGINE_AES:
+		ret = ccp_run_aes_cmd(cmd_q, cmd);
+		break;
+	case CCP_ENGINE_XTS_AES_128:
+		ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
+		break;
+	case CCP_ENGINE_DES3:
+		ret = ccp_run_des3_cmd(cmd_q, cmd);
+		break;
+	case CCP_ENGINE_SHA:
+		ret = ccp_run_sha_cmd(cmd_q, cmd);
+		break;
+	case CCP_ENGINE_RSA:
+		ret = ccp_run_rsa_cmd(cmd_q, cmd);
+		break;
+	case CCP_ENGINE_PASSTHRU:
+		if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP)
+			ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd);
+		else
+			ret = ccp_run_passthru_cmd(cmd_q, cmd);
+		break;
+	case CCP_ENGINE_ECC:
+		ret = ccp_run_ecc_cmd(cmd_q, cmd);
+		break;
+	default:
+		ret = -EINVAL;
+	}
+
+	return ret;
+}