Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Arch specific cpu topology information |
| 4 | * |
| 5 | * Copyright (C) 2016, ARM Ltd. |
| 6 | * Written by: Juri Lelli, ARM Ltd. |
| 7 | */ |
| 8 | |
| 9 | #include <linux/acpi.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 10 | #include <linux/cpu.h> |
| 11 | #include <linux/cpufreq.h> |
| 12 | #include <linux/device.h> |
| 13 | #include <linux/of.h> |
| 14 | #include <linux/slab.h> |
| 15 | #include <linux/string.h> |
| 16 | #include <linux/sched/topology.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 17 | #include <linux/cpuset.h> |
| 18 | #include <linux/cpumask.h> |
| 19 | #include <linux/init.h> |
| 20 | #include <linux/percpu.h> |
| 21 | #include <linux/sched.h> |
| 22 | #include <linux/smp.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 23 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 24 | bool topology_scale_freq_invariant(void) |
| 25 | { |
| 26 | return cpufreq_supports_freq_invariance() || |
| 27 | arch_freq_counters_available(cpu_online_mask); |
| 28 | } |
| 29 | |
| 30 | __weak bool arch_freq_counters_available(const struct cpumask *cpus) |
| 31 | { |
| 32 | return false; |
| 33 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 34 | DEFINE_PER_CPU(unsigned long, freq_scale) = SCHED_CAPACITY_SCALE; |
| 35 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 36 | void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq, |
| 37 | unsigned long max_freq) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 38 | { |
| 39 | unsigned long scale; |
| 40 | int i; |
| 41 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 42 | if (WARN_ON_ONCE(!cur_freq || !max_freq)) |
| 43 | return; |
| 44 | |
| 45 | /* |
| 46 | * If the use of counters for FIE is enabled, just return as we don't |
| 47 | * want to update the scale factor with information from CPUFREQ. |
| 48 | * Instead the scale factor will be updated from arch_scale_freq_tick. |
| 49 | */ |
| 50 | if (arch_freq_counters_available(cpus)) |
| 51 | return; |
| 52 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 53 | scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq; |
| 54 | |
| 55 | for_each_cpu(i, cpus) |
| 56 | per_cpu(freq_scale, i) = scale; |
| 57 | } |
| 58 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 59 | DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE; |
| 60 | |
| 61 | void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity) |
| 62 | { |
| 63 | per_cpu(cpu_scale, cpu) = capacity; |
| 64 | } |
| 65 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 66 | DEFINE_PER_CPU(unsigned long, thermal_pressure); |
| 67 | |
| 68 | void topology_set_thermal_pressure(const struct cpumask *cpus, |
| 69 | unsigned long th_pressure) |
| 70 | { |
| 71 | int cpu; |
| 72 | |
| 73 | for_each_cpu(cpu, cpus) |
| 74 | WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure); |
| 75 | } |
| 76 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 77 | static ssize_t cpu_capacity_show(struct device *dev, |
| 78 | struct device_attribute *attr, |
| 79 | char *buf) |
| 80 | { |
| 81 | struct cpu *cpu = container_of(dev, struct cpu, dev); |
| 82 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 83 | return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 84 | } |
| 85 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 86 | static void update_topology_flags_workfn(struct work_struct *work); |
| 87 | static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 88 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 89 | static DEVICE_ATTR_RO(cpu_capacity); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 90 | |
| 91 | static int register_cpu_capacity_sysctl(void) |
| 92 | { |
| 93 | int i; |
| 94 | struct device *cpu; |
| 95 | |
| 96 | for_each_possible_cpu(i) { |
| 97 | cpu = get_cpu_device(i); |
| 98 | if (!cpu) { |
| 99 | pr_err("%s: too early to get CPU%d device!\n", |
| 100 | __func__, i); |
| 101 | continue; |
| 102 | } |
| 103 | device_create_file(cpu, &dev_attr_cpu_capacity); |
| 104 | } |
| 105 | |
| 106 | return 0; |
| 107 | } |
| 108 | subsys_initcall(register_cpu_capacity_sysctl); |
| 109 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 110 | static int update_topology; |
| 111 | |
| 112 | int topology_update_cpu_topology(void) |
| 113 | { |
| 114 | return update_topology; |
| 115 | } |
| 116 | |
| 117 | /* |
| 118 | * Updating the sched_domains can't be done directly from cpufreq callbacks |
| 119 | * due to locking, so queue the work for later. |
| 120 | */ |
| 121 | static void update_topology_flags_workfn(struct work_struct *work) |
| 122 | { |
| 123 | update_topology = 1; |
| 124 | rebuild_sched_domains(); |
| 125 | pr_debug("sched_domain hierarchy rebuilt, flags updated\n"); |
| 126 | update_topology = 0; |
| 127 | } |
| 128 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 129 | static DEFINE_PER_CPU(u32, freq_factor) = 1; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 130 | static u32 *raw_capacity; |
| 131 | |
| 132 | static int free_raw_capacity(void) |
| 133 | { |
| 134 | kfree(raw_capacity); |
| 135 | raw_capacity = NULL; |
| 136 | |
| 137 | return 0; |
| 138 | } |
| 139 | |
| 140 | void topology_normalize_cpu_scale(void) |
| 141 | { |
| 142 | u64 capacity; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 143 | u64 capacity_scale; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 144 | int cpu; |
| 145 | |
| 146 | if (!raw_capacity) |
| 147 | return; |
| 148 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 149 | capacity_scale = 1; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 150 | for_each_possible_cpu(cpu) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 151 | capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu); |
| 152 | capacity_scale = max(capacity, capacity_scale); |
| 153 | } |
| 154 | |
| 155 | pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale); |
| 156 | for_each_possible_cpu(cpu) { |
| 157 | capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu); |
| 158 | capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT, |
| 159 | capacity_scale); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 160 | topology_set_cpu_scale(cpu, capacity); |
| 161 | pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n", |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 162 | cpu, topology_get_cpu_scale(cpu)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 163 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 164 | } |
| 165 | |
| 166 | bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu) |
| 167 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 168 | struct clk *cpu_clk; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 169 | static bool cap_parsing_failed; |
| 170 | int ret; |
| 171 | u32 cpu_capacity; |
| 172 | |
| 173 | if (cap_parsing_failed) |
| 174 | return false; |
| 175 | |
| 176 | ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz", |
| 177 | &cpu_capacity); |
| 178 | if (!ret) { |
| 179 | if (!raw_capacity) { |
| 180 | raw_capacity = kcalloc(num_possible_cpus(), |
| 181 | sizeof(*raw_capacity), |
| 182 | GFP_KERNEL); |
| 183 | if (!raw_capacity) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 184 | cap_parsing_failed = true; |
| 185 | return false; |
| 186 | } |
| 187 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 188 | raw_capacity[cpu] = cpu_capacity; |
| 189 | pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n", |
| 190 | cpu_node, raw_capacity[cpu]); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 191 | |
| 192 | /* |
| 193 | * Update freq_factor for calculating early boot cpu capacities. |
| 194 | * For non-clk CPU DVFS mechanism, there's no way to get the |
| 195 | * frequency value now, assuming they are running at the same |
| 196 | * frequency (by keeping the initial freq_factor value). |
| 197 | */ |
| 198 | cpu_clk = of_clk_get(cpu_node, 0); |
| 199 | if (!PTR_ERR_OR_ZERO(cpu_clk)) { |
| 200 | per_cpu(freq_factor, cpu) = |
| 201 | clk_get_rate(cpu_clk) / 1000; |
| 202 | clk_put(cpu_clk); |
| 203 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 204 | } else { |
| 205 | if (raw_capacity) { |
| 206 | pr_err("cpu_capacity: missing %pOF raw capacity\n", |
| 207 | cpu_node); |
| 208 | pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n"); |
| 209 | } |
| 210 | cap_parsing_failed = true; |
| 211 | free_raw_capacity(); |
| 212 | } |
| 213 | |
| 214 | return !ret; |
| 215 | } |
| 216 | |
| 217 | #ifdef CONFIG_CPU_FREQ |
| 218 | static cpumask_var_t cpus_to_visit; |
| 219 | static void parsing_done_workfn(struct work_struct *work); |
| 220 | static DECLARE_WORK(parsing_done_work, parsing_done_workfn); |
| 221 | |
| 222 | static int |
| 223 | init_cpu_capacity_callback(struct notifier_block *nb, |
| 224 | unsigned long val, |
| 225 | void *data) |
| 226 | { |
| 227 | struct cpufreq_policy *policy = data; |
| 228 | int cpu; |
| 229 | |
| 230 | if (!raw_capacity) |
| 231 | return 0; |
| 232 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 233 | if (val != CPUFREQ_CREATE_POLICY) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 234 | return 0; |
| 235 | |
| 236 | pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n", |
| 237 | cpumask_pr_args(policy->related_cpus), |
| 238 | cpumask_pr_args(cpus_to_visit)); |
| 239 | |
| 240 | cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus); |
| 241 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 242 | for_each_cpu(cpu, policy->related_cpus) |
| 243 | per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 244 | |
| 245 | if (cpumask_empty(cpus_to_visit)) { |
| 246 | topology_normalize_cpu_scale(); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 247 | schedule_work(&update_topology_flags_work); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 248 | free_raw_capacity(); |
| 249 | pr_debug("cpu_capacity: parsing done\n"); |
| 250 | schedule_work(&parsing_done_work); |
| 251 | } |
| 252 | |
| 253 | return 0; |
| 254 | } |
| 255 | |
| 256 | static struct notifier_block init_cpu_capacity_notifier = { |
| 257 | .notifier_call = init_cpu_capacity_callback, |
| 258 | }; |
| 259 | |
| 260 | static int __init register_cpufreq_notifier(void) |
| 261 | { |
| 262 | int ret; |
| 263 | |
| 264 | /* |
| 265 | * on ACPI-based systems we need to use the default cpu capacity |
| 266 | * until we have the necessary code to parse the cpu capacity, so |
| 267 | * skip registering cpufreq notifier. |
| 268 | */ |
| 269 | if (!acpi_disabled || !raw_capacity) |
| 270 | return -EINVAL; |
| 271 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 272 | if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 273 | return -ENOMEM; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 274 | |
| 275 | cpumask_copy(cpus_to_visit, cpu_possible_mask); |
| 276 | |
| 277 | ret = cpufreq_register_notifier(&init_cpu_capacity_notifier, |
| 278 | CPUFREQ_POLICY_NOTIFIER); |
| 279 | |
| 280 | if (ret) |
| 281 | free_cpumask_var(cpus_to_visit); |
| 282 | |
| 283 | return ret; |
| 284 | } |
| 285 | core_initcall(register_cpufreq_notifier); |
| 286 | |
| 287 | static void parsing_done_workfn(struct work_struct *work) |
| 288 | { |
| 289 | cpufreq_unregister_notifier(&init_cpu_capacity_notifier, |
| 290 | CPUFREQ_POLICY_NOTIFIER); |
| 291 | free_cpumask_var(cpus_to_visit); |
| 292 | } |
| 293 | |
| 294 | #else |
| 295 | core_initcall(free_raw_capacity); |
| 296 | #endif |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 297 | |
| 298 | #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 299 | /* |
| 300 | * This function returns the logic cpu number of the node. |
| 301 | * There are basically three kinds of return values: |
| 302 | * (1) logic cpu number which is > 0. |
| 303 | * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but |
| 304 | * there is no possible logical CPU in the kernel to match. This happens |
| 305 | * when CONFIG_NR_CPUS is configure to be smaller than the number of |
| 306 | * CPU nodes in DT. We need to just ignore this case. |
| 307 | * (3) -1 if the node does not exist in the device tree |
| 308 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 309 | static int __init get_cpu_for_node(struct device_node *node) |
| 310 | { |
| 311 | struct device_node *cpu_node; |
| 312 | int cpu; |
| 313 | |
| 314 | cpu_node = of_parse_phandle(node, "cpu", 0); |
| 315 | if (!cpu_node) |
| 316 | return -1; |
| 317 | |
| 318 | cpu = of_cpu_node_to_id(cpu_node); |
| 319 | if (cpu >= 0) |
| 320 | topology_parse_cpu_capacity(cpu_node, cpu); |
| 321 | else |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 322 | pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n", |
| 323 | cpu_node, cpumask_pr_args(cpu_possible_mask)); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 324 | |
| 325 | of_node_put(cpu_node); |
| 326 | return cpu; |
| 327 | } |
| 328 | |
| 329 | static int __init parse_core(struct device_node *core, int package_id, |
| 330 | int core_id) |
| 331 | { |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 332 | char name[20]; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 333 | bool leaf = true; |
| 334 | int i = 0; |
| 335 | int cpu; |
| 336 | struct device_node *t; |
| 337 | |
| 338 | do { |
| 339 | snprintf(name, sizeof(name), "thread%d", i); |
| 340 | t = of_get_child_by_name(core, name); |
| 341 | if (t) { |
| 342 | leaf = false; |
| 343 | cpu = get_cpu_for_node(t); |
| 344 | if (cpu >= 0) { |
| 345 | cpu_topology[cpu].package_id = package_id; |
| 346 | cpu_topology[cpu].core_id = core_id; |
| 347 | cpu_topology[cpu].thread_id = i; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 348 | } else if (cpu != -ENODEV) { |
| 349 | pr_err("%pOF: Can't get CPU for thread\n", t); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 350 | of_node_put(t); |
| 351 | return -EINVAL; |
| 352 | } |
| 353 | of_node_put(t); |
| 354 | } |
| 355 | i++; |
| 356 | } while (t); |
| 357 | |
| 358 | cpu = get_cpu_for_node(core); |
| 359 | if (cpu >= 0) { |
| 360 | if (!leaf) { |
| 361 | pr_err("%pOF: Core has both threads and CPU\n", |
| 362 | core); |
| 363 | return -EINVAL; |
| 364 | } |
| 365 | |
| 366 | cpu_topology[cpu].package_id = package_id; |
| 367 | cpu_topology[cpu].core_id = core_id; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 368 | } else if (leaf && cpu != -ENODEV) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 369 | pr_err("%pOF: Can't get CPU for leaf core\n", core); |
| 370 | return -EINVAL; |
| 371 | } |
| 372 | |
| 373 | return 0; |
| 374 | } |
| 375 | |
| 376 | static int __init parse_cluster(struct device_node *cluster, int depth) |
| 377 | { |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 378 | char name[20]; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 379 | bool leaf = true; |
| 380 | bool has_cores = false; |
| 381 | struct device_node *c; |
| 382 | static int package_id __initdata; |
| 383 | int core_id = 0; |
| 384 | int i, ret; |
| 385 | |
| 386 | /* |
| 387 | * First check for child clusters; we currently ignore any |
| 388 | * information about the nesting of clusters and present the |
| 389 | * scheduler with a flat list of them. |
| 390 | */ |
| 391 | i = 0; |
| 392 | do { |
| 393 | snprintf(name, sizeof(name), "cluster%d", i); |
| 394 | c = of_get_child_by_name(cluster, name); |
| 395 | if (c) { |
| 396 | leaf = false; |
| 397 | ret = parse_cluster(c, depth + 1); |
| 398 | of_node_put(c); |
| 399 | if (ret != 0) |
| 400 | return ret; |
| 401 | } |
| 402 | i++; |
| 403 | } while (c); |
| 404 | |
| 405 | /* Now check for cores */ |
| 406 | i = 0; |
| 407 | do { |
| 408 | snprintf(name, sizeof(name), "core%d", i); |
| 409 | c = of_get_child_by_name(cluster, name); |
| 410 | if (c) { |
| 411 | has_cores = true; |
| 412 | |
| 413 | if (depth == 0) { |
| 414 | pr_err("%pOF: cpu-map children should be clusters\n", |
| 415 | c); |
| 416 | of_node_put(c); |
| 417 | return -EINVAL; |
| 418 | } |
| 419 | |
| 420 | if (leaf) { |
| 421 | ret = parse_core(c, package_id, core_id++); |
| 422 | } else { |
| 423 | pr_err("%pOF: Non-leaf cluster with core %s\n", |
| 424 | cluster, name); |
| 425 | ret = -EINVAL; |
| 426 | } |
| 427 | |
| 428 | of_node_put(c); |
| 429 | if (ret != 0) |
| 430 | return ret; |
| 431 | } |
| 432 | i++; |
| 433 | } while (c); |
| 434 | |
| 435 | if (leaf && !has_cores) |
| 436 | pr_warn("%pOF: empty cluster\n", cluster); |
| 437 | |
| 438 | if (leaf) |
| 439 | package_id++; |
| 440 | |
| 441 | return 0; |
| 442 | } |
| 443 | |
| 444 | static int __init parse_dt_topology(void) |
| 445 | { |
| 446 | struct device_node *cn, *map; |
| 447 | int ret = 0; |
| 448 | int cpu; |
| 449 | |
| 450 | cn = of_find_node_by_path("/cpus"); |
| 451 | if (!cn) { |
| 452 | pr_err("No CPU information found in DT\n"); |
| 453 | return 0; |
| 454 | } |
| 455 | |
| 456 | /* |
| 457 | * When topology is provided cpu-map is essentially a root |
| 458 | * cluster with restricted subnodes. |
| 459 | */ |
| 460 | map = of_get_child_by_name(cn, "cpu-map"); |
| 461 | if (!map) |
| 462 | goto out; |
| 463 | |
| 464 | ret = parse_cluster(map, 0); |
| 465 | if (ret != 0) |
| 466 | goto out_map; |
| 467 | |
| 468 | topology_normalize_cpu_scale(); |
| 469 | |
| 470 | /* |
| 471 | * Check that all cores are in the topology; the SMP code will |
| 472 | * only mark cores described in the DT as possible. |
| 473 | */ |
| 474 | for_each_possible_cpu(cpu) |
| 475 | if (cpu_topology[cpu].package_id == -1) |
| 476 | ret = -EINVAL; |
| 477 | |
| 478 | out_map: |
| 479 | of_node_put(map); |
| 480 | out: |
| 481 | of_node_put(cn); |
| 482 | return ret; |
| 483 | } |
| 484 | #endif |
| 485 | |
| 486 | /* |
| 487 | * cpu topology table |
| 488 | */ |
| 489 | struct cpu_topology cpu_topology[NR_CPUS]; |
| 490 | EXPORT_SYMBOL_GPL(cpu_topology); |
| 491 | |
| 492 | const struct cpumask *cpu_coregroup_mask(int cpu) |
| 493 | { |
| 494 | const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu)); |
| 495 | |
| 496 | /* Find the smaller of NUMA, core or LLC siblings */ |
| 497 | if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) { |
| 498 | /* not numa in package, lets use the package siblings */ |
| 499 | core_mask = &cpu_topology[cpu].core_sibling; |
| 500 | } |
| 501 | if (cpu_topology[cpu].llc_id != -1) { |
| 502 | if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask)) |
| 503 | core_mask = &cpu_topology[cpu].llc_sibling; |
| 504 | } |
| 505 | |
| 506 | return core_mask; |
| 507 | } |
| 508 | |
| 509 | void update_siblings_masks(unsigned int cpuid) |
| 510 | { |
| 511 | struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid]; |
| 512 | int cpu; |
| 513 | |
| 514 | /* update core and thread sibling masks */ |
| 515 | for_each_online_cpu(cpu) { |
| 516 | cpu_topo = &cpu_topology[cpu]; |
| 517 | |
| 518 | if (cpuid_topo->llc_id == cpu_topo->llc_id) { |
| 519 | cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling); |
| 520 | cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling); |
| 521 | } |
| 522 | |
| 523 | if (cpuid_topo->package_id != cpu_topo->package_id) |
| 524 | continue; |
| 525 | |
| 526 | cpumask_set_cpu(cpuid, &cpu_topo->core_sibling); |
| 527 | cpumask_set_cpu(cpu, &cpuid_topo->core_sibling); |
| 528 | |
| 529 | if (cpuid_topo->core_id != cpu_topo->core_id) |
| 530 | continue; |
| 531 | |
| 532 | cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling); |
| 533 | cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling); |
| 534 | } |
| 535 | } |
| 536 | |
| 537 | static void clear_cpu_topology(int cpu) |
| 538 | { |
| 539 | struct cpu_topology *cpu_topo = &cpu_topology[cpu]; |
| 540 | |
| 541 | cpumask_clear(&cpu_topo->llc_sibling); |
| 542 | cpumask_set_cpu(cpu, &cpu_topo->llc_sibling); |
| 543 | |
| 544 | cpumask_clear(&cpu_topo->core_sibling); |
| 545 | cpumask_set_cpu(cpu, &cpu_topo->core_sibling); |
| 546 | cpumask_clear(&cpu_topo->thread_sibling); |
| 547 | cpumask_set_cpu(cpu, &cpu_topo->thread_sibling); |
| 548 | } |
| 549 | |
| 550 | void __init reset_cpu_topology(void) |
| 551 | { |
| 552 | unsigned int cpu; |
| 553 | |
| 554 | for_each_possible_cpu(cpu) { |
| 555 | struct cpu_topology *cpu_topo = &cpu_topology[cpu]; |
| 556 | |
| 557 | cpu_topo->thread_id = -1; |
| 558 | cpu_topo->core_id = -1; |
| 559 | cpu_topo->package_id = -1; |
| 560 | cpu_topo->llc_id = -1; |
| 561 | |
| 562 | clear_cpu_topology(cpu); |
| 563 | } |
| 564 | } |
| 565 | |
| 566 | void remove_cpu_topology(unsigned int cpu) |
| 567 | { |
| 568 | int sibling; |
| 569 | |
| 570 | for_each_cpu(sibling, topology_core_cpumask(cpu)) |
| 571 | cpumask_clear_cpu(cpu, topology_core_cpumask(sibling)); |
| 572 | for_each_cpu(sibling, topology_sibling_cpumask(cpu)) |
| 573 | cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling)); |
| 574 | for_each_cpu(sibling, topology_llc_cpumask(cpu)) |
| 575 | cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling)); |
| 576 | |
| 577 | clear_cpu_topology(cpu); |
| 578 | } |
| 579 | |
| 580 | __weak int __init parse_acpi_topology(void) |
| 581 | { |
| 582 | return 0; |
| 583 | } |
| 584 | |
| 585 | #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV) |
| 586 | void __init init_cpu_topology(void) |
| 587 | { |
| 588 | reset_cpu_topology(); |
| 589 | |
| 590 | /* |
| 591 | * Discard anything that was parsed if we hit an error so we |
| 592 | * don't use partial information. |
| 593 | */ |
| 594 | if (parse_acpi_topology()) |
| 595 | reset_cpu_topology(); |
| 596 | else if (of_have_populated_dt() && parse_dt_topology()) |
| 597 | reset_cpu_topology(); |
| 598 | } |
| 599 | #endif |