Update Linux to v5.4.2

Change-Id: Idf6911045d9d382da2cfe01b1edff026404ac8fd
diff --git a/drivers/base/arch_topology.c b/drivers/base/arch_topology.c
index e7cb0c6..1eb81f1 100644
--- a/drivers/base/arch_topology.c
+++ b/drivers/base/arch_topology.c
@@ -7,7 +7,6 @@
  */
 
 #include <linux/acpi.h>
-#include <linux/arch_topology.h>
 #include <linux/cpu.h>
 #include <linux/cpufreq.h>
 #include <linux/device.h>
@@ -15,6 +14,12 @@
 #include <linux/slab.h>
 #include <linux/string.h>
 #include <linux/sched/topology.h>
+#include <linux/cpuset.h>
+#include <linux/cpumask.h>
+#include <linux/init.h>
+#include <linux/percpu.h>
+#include <linux/sched.h>
+#include <linux/smp.h>
 
 DEFINE_PER_CPU(unsigned long, freq_scale) = SCHED_CAPACITY_SCALE;
 
@@ -30,7 +35,6 @@
 		per_cpu(freq_scale, i) = scale;
 }
 
-static DEFINE_MUTEX(cpu_scale_mutex);
 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
 
 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
@@ -44,38 +48,13 @@
 {
 	struct cpu *cpu = container_of(dev, struct cpu, dev);
 
-	return sprintf(buf, "%lu\n", topology_get_cpu_scale(NULL, cpu->dev.id));
+	return sprintf(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
 }
 
-static ssize_t cpu_capacity_store(struct device *dev,
-				  struct device_attribute *attr,
-				  const char *buf,
-				  size_t count)
-{
-	struct cpu *cpu = container_of(dev, struct cpu, dev);
-	int this_cpu = cpu->dev.id;
-	int i;
-	unsigned long new_capacity;
-	ssize_t ret;
+static void update_topology_flags_workfn(struct work_struct *work);
+static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
 
-	if (!count)
-		return 0;
-
-	ret = kstrtoul(buf, 0, &new_capacity);
-	if (ret)
-		return ret;
-	if (new_capacity > SCHED_CAPACITY_SCALE)
-		return -EINVAL;
-
-	mutex_lock(&cpu_scale_mutex);
-	for_each_cpu(i, &cpu_topology[this_cpu].core_sibling)
-		topology_set_cpu_scale(i, new_capacity);
-	mutex_unlock(&cpu_scale_mutex);
-
-	return count;
-}
-
-static DEVICE_ATTR_RW(cpu_capacity);
+static DEVICE_ATTR_RO(cpu_capacity);
 
 static int register_cpu_capacity_sysctl(void)
 {
@@ -96,6 +75,25 @@
 }
 subsys_initcall(register_cpu_capacity_sysctl);
 
+static int update_topology;
+
+int topology_update_cpu_topology(void)
+{
+	return update_topology;
+}
+
+/*
+ * Updating the sched_domains can't be done directly from cpufreq callbacks
+ * due to locking, so queue the work for later.
+ */
+static void update_topology_flags_workfn(struct work_struct *work)
+{
+	update_topology = 1;
+	rebuild_sched_domains();
+	pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
+	update_topology = 0;
+}
+
 static u32 capacity_scale;
 static u32 *raw_capacity;
 
@@ -116,7 +114,6 @@
 		return;
 
 	pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale);
-	mutex_lock(&cpu_scale_mutex);
 	for_each_possible_cpu(cpu) {
 		pr_debug("cpu_capacity: cpu=%d raw_capacity=%u\n",
 			 cpu, raw_capacity[cpu]);
@@ -124,9 +121,8 @@
 			/ capacity_scale;
 		topology_set_cpu_scale(cpu, capacity);
 		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
-			cpu, topology_get_cpu_scale(NULL, cpu));
+			cpu, topology_get_cpu_scale(cpu));
 	}
-	mutex_unlock(&cpu_scale_mutex);
 }
 
 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
@@ -146,7 +142,6 @@
 					       sizeof(*raw_capacity),
 					       GFP_KERNEL);
 			if (!raw_capacity) {
-				pr_err("cpu_capacity: failed to allocate memory for raw capacities\n");
 				cap_parsing_failed = true;
 				return false;
 			}
@@ -184,7 +179,7 @@
 	if (!raw_capacity)
 		return 0;
 
-	if (val != CPUFREQ_NOTIFY)
+	if (val != CPUFREQ_CREATE_POLICY)
 		return 0;
 
 	pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
@@ -194,13 +189,14 @@
 	cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
 
 	for_each_cpu(cpu, policy->related_cpus) {
-		raw_capacity[cpu] = topology_get_cpu_scale(NULL, cpu) *
+		raw_capacity[cpu] = topology_get_cpu_scale(cpu) *
 				    policy->cpuinfo.max_freq / 1000UL;
 		capacity_scale = max(raw_capacity[cpu], capacity_scale);
 	}
 
 	if (cpumask_empty(cpus_to_visit)) {
 		topology_normalize_cpu_scale();
+		schedule_work(&update_topology_flags_work);
 		free_raw_capacity();
 		pr_debug("cpu_capacity: parsing done\n");
 		schedule_work(&parsing_done_work);
@@ -225,10 +221,8 @@
 	if (!acpi_disabled || !raw_capacity)
 		return -EINVAL;
 
-	if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) {
-		pr_err("cpu_capacity: failed to allocate memory for cpus_to_visit\n");
+	if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
 		return -ENOMEM;
-	}
 
 	cpumask_copy(cpus_to_visit, cpu_possible_mask);
 
@@ -252,3 +246,296 @@
 #else
 core_initcall(free_raw_capacity);
 #endif
+
+#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
+static int __init get_cpu_for_node(struct device_node *node)
+{
+	struct device_node *cpu_node;
+	int cpu;
+
+	cpu_node = of_parse_phandle(node, "cpu", 0);
+	if (!cpu_node)
+		return -1;
+
+	cpu = of_cpu_node_to_id(cpu_node);
+	if (cpu >= 0)
+		topology_parse_cpu_capacity(cpu_node, cpu);
+	else
+		pr_crit("Unable to find CPU node for %pOF\n", cpu_node);
+
+	of_node_put(cpu_node);
+	return cpu;
+}
+
+static int __init parse_core(struct device_node *core, int package_id,
+			     int core_id)
+{
+	char name[10];
+	bool leaf = true;
+	int i = 0;
+	int cpu;
+	struct device_node *t;
+
+	do {
+		snprintf(name, sizeof(name), "thread%d", i);
+		t = of_get_child_by_name(core, name);
+		if (t) {
+			leaf = false;
+			cpu = get_cpu_for_node(t);
+			if (cpu >= 0) {
+				cpu_topology[cpu].package_id = package_id;
+				cpu_topology[cpu].core_id = core_id;
+				cpu_topology[cpu].thread_id = i;
+			} else {
+				pr_err("%pOF: Can't get CPU for thread\n",
+				       t);
+				of_node_put(t);
+				return -EINVAL;
+			}
+			of_node_put(t);
+		}
+		i++;
+	} while (t);
+
+	cpu = get_cpu_for_node(core);
+	if (cpu >= 0) {
+		if (!leaf) {
+			pr_err("%pOF: Core has both threads and CPU\n",
+			       core);
+			return -EINVAL;
+		}
+
+		cpu_topology[cpu].package_id = package_id;
+		cpu_topology[cpu].core_id = core_id;
+	} else if (leaf) {
+		pr_err("%pOF: Can't get CPU for leaf core\n", core);
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+static int __init parse_cluster(struct device_node *cluster, int depth)
+{
+	char name[10];
+	bool leaf = true;
+	bool has_cores = false;
+	struct device_node *c;
+	static int package_id __initdata;
+	int core_id = 0;
+	int i, ret;
+
+	/*
+	 * First check for child clusters; we currently ignore any
+	 * information about the nesting of clusters and present the
+	 * scheduler with a flat list of them.
+	 */
+	i = 0;
+	do {
+		snprintf(name, sizeof(name), "cluster%d", i);
+		c = of_get_child_by_name(cluster, name);
+		if (c) {
+			leaf = false;
+			ret = parse_cluster(c, depth + 1);
+			of_node_put(c);
+			if (ret != 0)
+				return ret;
+		}
+		i++;
+	} while (c);
+
+	/* Now check for cores */
+	i = 0;
+	do {
+		snprintf(name, sizeof(name), "core%d", i);
+		c = of_get_child_by_name(cluster, name);
+		if (c) {
+			has_cores = true;
+
+			if (depth == 0) {
+				pr_err("%pOF: cpu-map children should be clusters\n",
+				       c);
+				of_node_put(c);
+				return -EINVAL;
+			}
+
+			if (leaf) {
+				ret = parse_core(c, package_id, core_id++);
+			} else {
+				pr_err("%pOF: Non-leaf cluster with core %s\n",
+				       cluster, name);
+				ret = -EINVAL;
+			}
+
+			of_node_put(c);
+			if (ret != 0)
+				return ret;
+		}
+		i++;
+	} while (c);
+
+	if (leaf && !has_cores)
+		pr_warn("%pOF: empty cluster\n", cluster);
+
+	if (leaf)
+		package_id++;
+
+	return 0;
+}
+
+static int __init parse_dt_topology(void)
+{
+	struct device_node *cn, *map;
+	int ret = 0;
+	int cpu;
+
+	cn = of_find_node_by_path("/cpus");
+	if (!cn) {
+		pr_err("No CPU information found in DT\n");
+		return 0;
+	}
+
+	/*
+	 * When topology is provided cpu-map is essentially a root
+	 * cluster with restricted subnodes.
+	 */
+	map = of_get_child_by_name(cn, "cpu-map");
+	if (!map)
+		goto out;
+
+	ret = parse_cluster(map, 0);
+	if (ret != 0)
+		goto out_map;
+
+	topology_normalize_cpu_scale();
+
+	/*
+	 * Check that all cores are in the topology; the SMP code will
+	 * only mark cores described in the DT as possible.
+	 */
+	for_each_possible_cpu(cpu)
+		if (cpu_topology[cpu].package_id == -1)
+			ret = -EINVAL;
+
+out_map:
+	of_node_put(map);
+out:
+	of_node_put(cn);
+	return ret;
+}
+#endif
+
+/*
+ * cpu topology table
+ */
+struct cpu_topology cpu_topology[NR_CPUS];
+EXPORT_SYMBOL_GPL(cpu_topology);
+
+const struct cpumask *cpu_coregroup_mask(int cpu)
+{
+	const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
+
+	/* Find the smaller of NUMA, core or LLC siblings */
+	if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
+		/* not numa in package, lets use the package siblings */
+		core_mask = &cpu_topology[cpu].core_sibling;
+	}
+	if (cpu_topology[cpu].llc_id != -1) {
+		if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
+			core_mask = &cpu_topology[cpu].llc_sibling;
+	}
+
+	return core_mask;
+}
+
+void update_siblings_masks(unsigned int cpuid)
+{
+	struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
+	int cpu;
+
+	/* update core and thread sibling masks */
+	for_each_online_cpu(cpu) {
+		cpu_topo = &cpu_topology[cpu];
+
+		if (cpuid_topo->llc_id == cpu_topo->llc_id) {
+			cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
+			cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
+		}
+
+		if (cpuid_topo->package_id != cpu_topo->package_id)
+			continue;
+
+		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
+		cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
+
+		if (cpuid_topo->core_id != cpu_topo->core_id)
+			continue;
+
+		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
+		cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
+	}
+}
+
+static void clear_cpu_topology(int cpu)
+{
+	struct cpu_topology *cpu_topo = &cpu_topology[cpu];
+
+	cpumask_clear(&cpu_topo->llc_sibling);
+	cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
+
+	cpumask_clear(&cpu_topo->core_sibling);
+	cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
+	cpumask_clear(&cpu_topo->thread_sibling);
+	cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
+}
+
+void __init reset_cpu_topology(void)
+{
+	unsigned int cpu;
+
+	for_each_possible_cpu(cpu) {
+		struct cpu_topology *cpu_topo = &cpu_topology[cpu];
+
+		cpu_topo->thread_id = -1;
+		cpu_topo->core_id = -1;
+		cpu_topo->package_id = -1;
+		cpu_topo->llc_id = -1;
+
+		clear_cpu_topology(cpu);
+	}
+}
+
+void remove_cpu_topology(unsigned int cpu)
+{
+	int sibling;
+
+	for_each_cpu(sibling, topology_core_cpumask(cpu))
+		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
+	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
+		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
+	for_each_cpu(sibling, topology_llc_cpumask(cpu))
+		cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
+
+	clear_cpu_topology(cpu);
+}
+
+__weak int __init parse_acpi_topology(void)
+{
+	return 0;
+}
+
+#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
+void __init init_cpu_topology(void)
+{
+	reset_cpu_topology();
+
+	/*
+	 * Discard anything that was parsed if we hit an error so we
+	 * don't use partial information.
+	 */
+	if (parse_acpi_topology())
+		reset_cpu_topology();
+	else if (of_have_populated_dt() && parse_dt_topology())
+		reset_cpu_topology();
+}
+#endif