David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | #include <linux/init.h> |
| 3 | |
| 4 | #include <linux/mm.h> |
| 5 | #include <linux/spinlock.h> |
| 6 | #include <linux/smp.h> |
| 7 | #include <linux/interrupt.h> |
| 8 | #include <linux/export.h> |
| 9 | #include <linux/cpu.h> |
| 10 | #include <linux/debugfs.h> |
| 11 | |
| 12 | #include <asm/tlbflush.h> |
| 13 | #include <asm/mmu_context.h> |
| 14 | #include <asm/nospec-branch.h> |
| 15 | #include <asm/cache.h> |
| 16 | #include <asm/apic.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 17 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 18 | #include "mm_internal.h" |
| 19 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 20 | #ifdef CONFIG_PARAVIRT |
| 21 | # define STATIC_NOPV |
| 22 | #else |
| 23 | # define STATIC_NOPV static |
| 24 | # define __flush_tlb_local native_flush_tlb_local |
| 25 | # define __flush_tlb_global native_flush_tlb_global |
| 26 | # define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr) |
| 27 | # define __flush_tlb_others(msk, info) native_flush_tlb_others(msk, info) |
| 28 | #endif |
| 29 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 30 | /* |
| 31 | * TLB flushing, formerly SMP-only |
| 32 | * c/o Linus Torvalds. |
| 33 | * |
| 34 | * These mean you can really definitely utterly forget about |
| 35 | * writing to user space from interrupts. (Its not allowed anyway). |
| 36 | * |
| 37 | * Optimizations Manfred Spraul <manfred@colorfullife.com> |
| 38 | * |
| 39 | * More scalable flush, from Andi Kleen |
| 40 | * |
| 41 | * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi |
| 42 | */ |
| 43 | |
| 44 | /* |
| 45 | * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is |
| 46 | * stored in cpu_tlb_state.last_user_mm_ibpb. |
| 47 | */ |
| 48 | #define LAST_USER_MM_IBPB 0x1UL |
| 49 | |
| 50 | /* |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 51 | * The x86 feature is called PCID (Process Context IDentifier). It is similar |
| 52 | * to what is traditionally called ASID on the RISC processors. |
| 53 | * |
| 54 | * We don't use the traditional ASID implementation, where each process/mm gets |
| 55 | * its own ASID and flush/restart when we run out of ASID space. |
| 56 | * |
| 57 | * Instead we have a small per-cpu array of ASIDs and cache the last few mm's |
| 58 | * that came by on this CPU, allowing cheaper switch_mm between processes on |
| 59 | * this CPU. |
| 60 | * |
| 61 | * We end up with different spaces for different things. To avoid confusion we |
| 62 | * use different names for each of them: |
| 63 | * |
| 64 | * ASID - [0, TLB_NR_DYN_ASIDS-1] |
| 65 | * the canonical identifier for an mm |
| 66 | * |
| 67 | * kPCID - [1, TLB_NR_DYN_ASIDS] |
| 68 | * the value we write into the PCID part of CR3; corresponds to the |
| 69 | * ASID+1, because PCID 0 is special. |
| 70 | * |
| 71 | * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS] |
| 72 | * for KPTI each mm has two address spaces and thus needs two |
| 73 | * PCID values, but we can still do with a single ASID denomination |
| 74 | * for each mm. Corresponds to kPCID + 2048. |
| 75 | * |
| 76 | */ |
| 77 | |
| 78 | /* There are 12 bits of space for ASIDS in CR3 */ |
| 79 | #define CR3_HW_ASID_BITS 12 |
| 80 | |
| 81 | /* |
| 82 | * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for |
| 83 | * user/kernel switches |
| 84 | */ |
| 85 | #ifdef CONFIG_PAGE_TABLE_ISOLATION |
| 86 | # define PTI_CONSUMED_PCID_BITS 1 |
| 87 | #else |
| 88 | # define PTI_CONSUMED_PCID_BITS 0 |
| 89 | #endif |
| 90 | |
| 91 | #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS) |
| 92 | |
| 93 | /* |
| 94 | * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account |
| 95 | * for them being zero-based. Another -1 is because PCID 0 is reserved for |
| 96 | * use by non-PCID-aware users. |
| 97 | */ |
| 98 | #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2) |
| 99 | |
| 100 | /* |
| 101 | * Given @asid, compute kPCID |
| 102 | */ |
| 103 | static inline u16 kern_pcid(u16 asid) |
| 104 | { |
| 105 | VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); |
| 106 | |
| 107 | #ifdef CONFIG_PAGE_TABLE_ISOLATION |
| 108 | /* |
| 109 | * Make sure that the dynamic ASID space does not confict with the |
| 110 | * bit we are using to switch between user and kernel ASIDs. |
| 111 | */ |
| 112 | BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT)); |
| 113 | |
| 114 | /* |
| 115 | * The ASID being passed in here should have respected the |
| 116 | * MAX_ASID_AVAILABLE and thus never have the switch bit set. |
| 117 | */ |
| 118 | VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT)); |
| 119 | #endif |
| 120 | /* |
| 121 | * The dynamically-assigned ASIDs that get passed in are small |
| 122 | * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set, |
| 123 | * so do not bother to clear it. |
| 124 | * |
| 125 | * If PCID is on, ASID-aware code paths put the ASID+1 into the |
| 126 | * PCID bits. This serves two purposes. It prevents a nasty |
| 127 | * situation in which PCID-unaware code saves CR3, loads some other |
| 128 | * value (with PCID == 0), and then restores CR3, thus corrupting |
| 129 | * the TLB for ASID 0 if the saved ASID was nonzero. It also means |
| 130 | * that any bugs involving loading a PCID-enabled CR3 with |
| 131 | * CR4.PCIDE off will trigger deterministically. |
| 132 | */ |
| 133 | return asid + 1; |
| 134 | } |
| 135 | |
| 136 | /* |
| 137 | * Given @asid, compute uPCID |
| 138 | */ |
| 139 | static inline u16 user_pcid(u16 asid) |
| 140 | { |
| 141 | u16 ret = kern_pcid(asid); |
| 142 | #ifdef CONFIG_PAGE_TABLE_ISOLATION |
| 143 | ret |= 1 << X86_CR3_PTI_PCID_USER_BIT; |
| 144 | #endif |
| 145 | return ret; |
| 146 | } |
| 147 | |
| 148 | static inline unsigned long build_cr3(pgd_t *pgd, u16 asid) |
| 149 | { |
| 150 | if (static_cpu_has(X86_FEATURE_PCID)) { |
| 151 | return __sme_pa(pgd) | kern_pcid(asid); |
| 152 | } else { |
| 153 | VM_WARN_ON_ONCE(asid != 0); |
| 154 | return __sme_pa(pgd); |
| 155 | } |
| 156 | } |
| 157 | |
| 158 | static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid) |
| 159 | { |
| 160 | VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); |
| 161 | /* |
| 162 | * Use boot_cpu_has() instead of this_cpu_has() as this function |
| 163 | * might be called during early boot. This should work even after |
| 164 | * boot because all CPU's the have same capabilities: |
| 165 | */ |
| 166 | VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID)); |
| 167 | return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH; |
| 168 | } |
| 169 | |
| 170 | /* |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 171 | * We get here when we do something requiring a TLB invalidation |
| 172 | * but could not go invalidate all of the contexts. We do the |
| 173 | * necessary invalidation by clearing out the 'ctx_id' which |
| 174 | * forces a TLB flush when the context is loaded. |
| 175 | */ |
| 176 | static void clear_asid_other(void) |
| 177 | { |
| 178 | u16 asid; |
| 179 | |
| 180 | /* |
| 181 | * This is only expected to be set if we have disabled |
| 182 | * kernel _PAGE_GLOBAL pages. |
| 183 | */ |
| 184 | if (!static_cpu_has(X86_FEATURE_PTI)) { |
| 185 | WARN_ON_ONCE(1); |
| 186 | return; |
| 187 | } |
| 188 | |
| 189 | for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { |
| 190 | /* Do not need to flush the current asid */ |
| 191 | if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid)) |
| 192 | continue; |
| 193 | /* |
| 194 | * Make sure the next time we go to switch to |
| 195 | * this asid, we do a flush: |
| 196 | */ |
| 197 | this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0); |
| 198 | } |
| 199 | this_cpu_write(cpu_tlbstate.invalidate_other, false); |
| 200 | } |
| 201 | |
| 202 | atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1); |
| 203 | |
| 204 | |
| 205 | static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen, |
| 206 | u16 *new_asid, bool *need_flush) |
| 207 | { |
| 208 | u16 asid; |
| 209 | |
| 210 | if (!static_cpu_has(X86_FEATURE_PCID)) { |
| 211 | *new_asid = 0; |
| 212 | *need_flush = true; |
| 213 | return; |
| 214 | } |
| 215 | |
| 216 | if (this_cpu_read(cpu_tlbstate.invalidate_other)) |
| 217 | clear_asid_other(); |
| 218 | |
| 219 | for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { |
| 220 | if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) != |
| 221 | next->context.ctx_id) |
| 222 | continue; |
| 223 | |
| 224 | *new_asid = asid; |
| 225 | *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) < |
| 226 | next_tlb_gen); |
| 227 | return; |
| 228 | } |
| 229 | |
| 230 | /* |
| 231 | * We don't currently own an ASID slot on this CPU. |
| 232 | * Allocate a slot. |
| 233 | */ |
| 234 | *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1; |
| 235 | if (*new_asid >= TLB_NR_DYN_ASIDS) { |
| 236 | *new_asid = 0; |
| 237 | this_cpu_write(cpu_tlbstate.next_asid, 1); |
| 238 | } |
| 239 | *need_flush = true; |
| 240 | } |
| 241 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 242 | /* |
| 243 | * Given an ASID, flush the corresponding user ASID. We can delay this |
| 244 | * until the next time we switch to it. |
| 245 | * |
| 246 | * See SWITCH_TO_USER_CR3. |
| 247 | */ |
| 248 | static inline void invalidate_user_asid(u16 asid) |
| 249 | { |
| 250 | /* There is no user ASID if address space separation is off */ |
| 251 | if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) |
| 252 | return; |
| 253 | |
| 254 | /* |
| 255 | * We only have a single ASID if PCID is off and the CR3 |
| 256 | * write will have flushed it. |
| 257 | */ |
| 258 | if (!cpu_feature_enabled(X86_FEATURE_PCID)) |
| 259 | return; |
| 260 | |
| 261 | if (!static_cpu_has(X86_FEATURE_PTI)) |
| 262 | return; |
| 263 | |
| 264 | __set_bit(kern_pcid(asid), |
| 265 | (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask)); |
| 266 | } |
| 267 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 268 | static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush) |
| 269 | { |
| 270 | unsigned long new_mm_cr3; |
| 271 | |
| 272 | if (need_flush) { |
| 273 | invalidate_user_asid(new_asid); |
| 274 | new_mm_cr3 = build_cr3(pgdir, new_asid); |
| 275 | } else { |
| 276 | new_mm_cr3 = build_cr3_noflush(pgdir, new_asid); |
| 277 | } |
| 278 | |
| 279 | /* |
| 280 | * Caution: many callers of this function expect |
| 281 | * that load_cr3() is serializing and orders TLB |
| 282 | * fills with respect to the mm_cpumask writes. |
| 283 | */ |
| 284 | write_cr3(new_mm_cr3); |
| 285 | } |
| 286 | |
| 287 | void leave_mm(int cpu) |
| 288 | { |
| 289 | struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); |
| 290 | |
| 291 | /* |
| 292 | * It's plausible that we're in lazy TLB mode while our mm is init_mm. |
| 293 | * If so, our callers still expect us to flush the TLB, but there |
| 294 | * aren't any user TLB entries in init_mm to worry about. |
| 295 | * |
| 296 | * This needs to happen before any other sanity checks due to |
| 297 | * intel_idle's shenanigans. |
| 298 | */ |
| 299 | if (loaded_mm == &init_mm) |
| 300 | return; |
| 301 | |
| 302 | /* Warn if we're not lazy. */ |
| 303 | WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy)); |
| 304 | |
| 305 | switch_mm(NULL, &init_mm, NULL); |
| 306 | } |
| 307 | EXPORT_SYMBOL_GPL(leave_mm); |
| 308 | |
| 309 | void switch_mm(struct mm_struct *prev, struct mm_struct *next, |
| 310 | struct task_struct *tsk) |
| 311 | { |
| 312 | unsigned long flags; |
| 313 | |
| 314 | local_irq_save(flags); |
| 315 | switch_mm_irqs_off(prev, next, tsk); |
| 316 | local_irq_restore(flags); |
| 317 | } |
| 318 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 319 | static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next) |
| 320 | { |
| 321 | unsigned long next_tif = task_thread_info(next)->flags; |
| 322 | unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB; |
| 323 | |
| 324 | return (unsigned long)next->mm | ibpb; |
| 325 | } |
| 326 | |
| 327 | static void cond_ibpb(struct task_struct *next) |
| 328 | { |
| 329 | if (!next || !next->mm) |
| 330 | return; |
| 331 | |
| 332 | /* |
| 333 | * Both, the conditional and the always IBPB mode use the mm |
| 334 | * pointer to avoid the IBPB when switching between tasks of the |
| 335 | * same process. Using the mm pointer instead of mm->context.ctx_id |
| 336 | * opens a hypothetical hole vs. mm_struct reuse, which is more or |
| 337 | * less impossible to control by an attacker. Aside of that it |
| 338 | * would only affect the first schedule so the theoretically |
| 339 | * exposed data is not really interesting. |
| 340 | */ |
| 341 | if (static_branch_likely(&switch_mm_cond_ibpb)) { |
| 342 | unsigned long prev_mm, next_mm; |
| 343 | |
| 344 | /* |
| 345 | * This is a bit more complex than the always mode because |
| 346 | * it has to handle two cases: |
| 347 | * |
| 348 | * 1) Switch from a user space task (potential attacker) |
| 349 | * which has TIF_SPEC_IB set to a user space task |
| 350 | * (potential victim) which has TIF_SPEC_IB not set. |
| 351 | * |
| 352 | * 2) Switch from a user space task (potential attacker) |
| 353 | * which has TIF_SPEC_IB not set to a user space task |
| 354 | * (potential victim) which has TIF_SPEC_IB set. |
| 355 | * |
| 356 | * This could be done by unconditionally issuing IBPB when |
| 357 | * a task which has TIF_SPEC_IB set is either scheduled in |
| 358 | * or out. Though that results in two flushes when: |
| 359 | * |
| 360 | * - the same user space task is scheduled out and later |
| 361 | * scheduled in again and only a kernel thread ran in |
| 362 | * between. |
| 363 | * |
| 364 | * - a user space task belonging to the same process is |
| 365 | * scheduled in after a kernel thread ran in between |
| 366 | * |
| 367 | * - a user space task belonging to the same process is |
| 368 | * scheduled in immediately. |
| 369 | * |
| 370 | * Optimize this with reasonably small overhead for the |
| 371 | * above cases. Mangle the TIF_SPEC_IB bit into the mm |
| 372 | * pointer of the incoming task which is stored in |
| 373 | * cpu_tlbstate.last_user_mm_ibpb for comparison. |
| 374 | */ |
| 375 | next_mm = mm_mangle_tif_spec_ib(next); |
| 376 | prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb); |
| 377 | |
| 378 | /* |
| 379 | * Issue IBPB only if the mm's are different and one or |
| 380 | * both have the IBPB bit set. |
| 381 | */ |
| 382 | if (next_mm != prev_mm && |
| 383 | (next_mm | prev_mm) & LAST_USER_MM_IBPB) |
| 384 | indirect_branch_prediction_barrier(); |
| 385 | |
| 386 | this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm); |
| 387 | } |
| 388 | |
| 389 | if (static_branch_unlikely(&switch_mm_always_ibpb)) { |
| 390 | /* |
| 391 | * Only flush when switching to a user space task with a |
| 392 | * different context than the user space task which ran |
| 393 | * last on this CPU. |
| 394 | */ |
| 395 | if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) { |
| 396 | indirect_branch_prediction_barrier(); |
| 397 | this_cpu_write(cpu_tlbstate.last_user_mm, next->mm); |
| 398 | } |
| 399 | } |
| 400 | } |
| 401 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 402 | #ifdef CONFIG_PERF_EVENTS |
| 403 | static inline void cr4_update_pce_mm(struct mm_struct *mm) |
| 404 | { |
| 405 | if (static_branch_unlikely(&rdpmc_always_available_key) || |
| 406 | (!static_branch_unlikely(&rdpmc_never_available_key) && |
| 407 | atomic_read(&mm->context.perf_rdpmc_allowed))) |
| 408 | cr4_set_bits_irqsoff(X86_CR4_PCE); |
| 409 | else |
| 410 | cr4_clear_bits_irqsoff(X86_CR4_PCE); |
| 411 | } |
| 412 | |
| 413 | void cr4_update_pce(void *ignored) |
| 414 | { |
| 415 | cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm)); |
| 416 | } |
| 417 | |
| 418 | #else |
| 419 | static inline void cr4_update_pce_mm(struct mm_struct *mm) { } |
| 420 | #endif |
| 421 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 422 | void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, |
| 423 | struct task_struct *tsk) |
| 424 | { |
| 425 | struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm); |
| 426 | u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 427 | bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 428 | unsigned cpu = smp_processor_id(); |
| 429 | u64 next_tlb_gen; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 430 | bool need_flush; |
| 431 | u16 new_asid; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 432 | |
| 433 | /* |
| 434 | * NB: The scheduler will call us with prev == next when switching |
| 435 | * from lazy TLB mode to normal mode if active_mm isn't changing. |
| 436 | * When this happens, we don't assume that CR3 (and hence |
| 437 | * cpu_tlbstate.loaded_mm) matches next. |
| 438 | * |
| 439 | * NB: leave_mm() calls us with prev == NULL and tsk == NULL. |
| 440 | */ |
| 441 | |
| 442 | /* We don't want flush_tlb_func_* to run concurrently with us. */ |
| 443 | if (IS_ENABLED(CONFIG_PROVE_LOCKING)) |
| 444 | WARN_ON_ONCE(!irqs_disabled()); |
| 445 | |
| 446 | /* |
| 447 | * Verify that CR3 is what we think it is. This will catch |
| 448 | * hypothetical buggy code that directly switches to swapper_pg_dir |
| 449 | * without going through leave_mm() / switch_mm_irqs_off() or that |
| 450 | * does something like write_cr3(read_cr3_pa()). |
| 451 | * |
| 452 | * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3() |
| 453 | * isn't free. |
| 454 | */ |
| 455 | #ifdef CONFIG_DEBUG_VM |
| 456 | if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) { |
| 457 | /* |
| 458 | * If we were to BUG here, we'd be very likely to kill |
| 459 | * the system so hard that we don't see the call trace. |
| 460 | * Try to recover instead by ignoring the error and doing |
| 461 | * a global flush to minimize the chance of corruption. |
| 462 | * |
| 463 | * (This is far from being a fully correct recovery. |
| 464 | * Architecturally, the CPU could prefetch something |
| 465 | * back into an incorrect ASID slot and leave it there |
| 466 | * to cause trouble down the road. It's better than |
| 467 | * nothing, though.) |
| 468 | */ |
| 469 | __flush_tlb_all(); |
| 470 | } |
| 471 | #endif |
| 472 | this_cpu_write(cpu_tlbstate.is_lazy, false); |
| 473 | |
| 474 | /* |
| 475 | * The membarrier system call requires a full memory barrier and |
| 476 | * core serialization before returning to user-space, after |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 477 | * storing to rq->curr, when changing mm. This is because |
| 478 | * membarrier() sends IPIs to all CPUs that are in the target mm |
| 479 | * to make them issue memory barriers. However, if another CPU |
| 480 | * switches to/from the target mm concurrently with |
| 481 | * membarrier(), it can cause that CPU not to receive an IPI |
| 482 | * when it really should issue a memory barrier. Writing to CR3 |
| 483 | * provides that full memory barrier and core serializing |
| 484 | * instruction. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 485 | */ |
| 486 | if (real_prev == next) { |
| 487 | VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) != |
| 488 | next->context.ctx_id); |
| 489 | |
| 490 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 491 | * Even in lazy TLB mode, the CPU should stay set in the |
| 492 | * mm_cpumask. The TLB shootdown code can figure out from |
| 493 | * from cpu_tlbstate.is_lazy whether or not to send an IPI. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 494 | */ |
| 495 | if (WARN_ON_ONCE(real_prev != &init_mm && |
| 496 | !cpumask_test_cpu(cpu, mm_cpumask(next)))) |
| 497 | cpumask_set_cpu(cpu, mm_cpumask(next)); |
| 498 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 499 | /* |
| 500 | * If the CPU is not in lazy TLB mode, we are just switching |
| 501 | * from one thread in a process to another thread in the same |
| 502 | * process. No TLB flush required. |
| 503 | */ |
| 504 | if (!was_lazy) |
| 505 | return; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 506 | |
| 507 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 508 | * Read the tlb_gen to check whether a flush is needed. |
| 509 | * If the TLB is up to date, just use it. |
| 510 | * The barrier synchronizes with the tlb_gen increment in |
| 511 | * the TLB shootdown code. |
| 512 | */ |
| 513 | smp_mb(); |
| 514 | next_tlb_gen = atomic64_read(&next->context.tlb_gen); |
| 515 | if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) == |
| 516 | next_tlb_gen) |
| 517 | return; |
| 518 | |
| 519 | /* |
| 520 | * TLB contents went out of date while we were in lazy |
| 521 | * mode. Fall through to the TLB switching code below. |
| 522 | */ |
| 523 | new_asid = prev_asid; |
| 524 | need_flush = true; |
| 525 | } else { |
| 526 | /* |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 527 | * Avoid user/user BTB poisoning by flushing the branch |
| 528 | * predictor when switching between processes. This stops |
| 529 | * one process from doing Spectre-v2 attacks on another. |
| 530 | */ |
| 531 | cond_ibpb(tsk); |
| 532 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 533 | /* |
| 534 | * Stop remote flushes for the previous mm. |
| 535 | * Skip kernel threads; we never send init_mm TLB flushing IPIs, |
| 536 | * but the bitmap manipulation can cause cache line contention. |
| 537 | */ |
| 538 | if (real_prev != &init_mm) { |
| 539 | VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, |
| 540 | mm_cpumask(real_prev))); |
| 541 | cpumask_clear_cpu(cpu, mm_cpumask(real_prev)); |
| 542 | } |
| 543 | |
| 544 | /* |
| 545 | * Start remote flushes and then read tlb_gen. |
| 546 | */ |
| 547 | if (next != &init_mm) |
| 548 | cpumask_set_cpu(cpu, mm_cpumask(next)); |
| 549 | next_tlb_gen = atomic64_read(&next->context.tlb_gen); |
| 550 | |
| 551 | choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush); |
| 552 | |
| 553 | /* Let nmi_uaccess_okay() know that we're changing CR3. */ |
| 554 | this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING); |
| 555 | barrier(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 556 | } |
| 557 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 558 | if (need_flush) { |
| 559 | this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id); |
| 560 | this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen); |
| 561 | load_new_mm_cr3(next->pgd, new_asid, true); |
| 562 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 563 | trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 564 | } else { |
| 565 | /* The new ASID is already up to date. */ |
| 566 | load_new_mm_cr3(next->pgd, new_asid, false); |
| 567 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 568 | trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 569 | } |
| 570 | |
| 571 | /* Make sure we write CR3 before loaded_mm. */ |
| 572 | barrier(); |
| 573 | |
| 574 | this_cpu_write(cpu_tlbstate.loaded_mm, next); |
| 575 | this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid); |
| 576 | |
| 577 | if (next != real_prev) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 578 | cr4_update_pce_mm(next); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 579 | switch_ldt(real_prev, next); |
| 580 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 581 | } |
| 582 | |
| 583 | /* |
| 584 | * Please ignore the name of this function. It should be called |
| 585 | * switch_to_kernel_thread(). |
| 586 | * |
| 587 | * enter_lazy_tlb() is a hint from the scheduler that we are entering a |
| 588 | * kernel thread or other context without an mm. Acceptable implementations |
| 589 | * include doing nothing whatsoever, switching to init_mm, or various clever |
| 590 | * lazy tricks to try to minimize TLB flushes. |
| 591 | * |
| 592 | * The scheduler reserves the right to call enter_lazy_tlb() several times |
| 593 | * in a row. It will notify us that we're going back to a real mm by |
| 594 | * calling switch_mm_irqs_off(). |
| 595 | */ |
| 596 | void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) |
| 597 | { |
| 598 | if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm) |
| 599 | return; |
| 600 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 601 | this_cpu_write(cpu_tlbstate.is_lazy, true); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 602 | } |
| 603 | |
| 604 | /* |
| 605 | * Call this when reinitializing a CPU. It fixes the following potential |
| 606 | * problems: |
| 607 | * |
| 608 | * - The ASID changed from what cpu_tlbstate thinks it is (most likely |
| 609 | * because the CPU was taken down and came back up with CR3's PCID |
| 610 | * bits clear. CPU hotplug can do this. |
| 611 | * |
| 612 | * - The TLB contains junk in slots corresponding to inactive ASIDs. |
| 613 | * |
| 614 | * - The CPU went so far out to lunch that it may have missed a TLB |
| 615 | * flush. |
| 616 | */ |
| 617 | void initialize_tlbstate_and_flush(void) |
| 618 | { |
| 619 | int i; |
| 620 | struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm); |
| 621 | u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen); |
| 622 | unsigned long cr3 = __read_cr3(); |
| 623 | |
| 624 | /* Assert that CR3 already references the right mm. */ |
| 625 | WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd)); |
| 626 | |
| 627 | /* |
| 628 | * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization |
| 629 | * doesn't work like other CR4 bits because it can only be set from |
| 630 | * long mode.) |
| 631 | */ |
| 632 | WARN_ON(boot_cpu_has(X86_FEATURE_PCID) && |
| 633 | !(cr4_read_shadow() & X86_CR4_PCIDE)); |
| 634 | |
| 635 | /* Force ASID 0 and force a TLB flush. */ |
| 636 | write_cr3(build_cr3(mm->pgd, 0)); |
| 637 | |
| 638 | /* Reinitialize tlbstate. */ |
| 639 | this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB); |
| 640 | this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0); |
| 641 | this_cpu_write(cpu_tlbstate.next_asid, 1); |
| 642 | this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id); |
| 643 | this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen); |
| 644 | |
| 645 | for (i = 1; i < TLB_NR_DYN_ASIDS; i++) |
| 646 | this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0); |
| 647 | } |
| 648 | |
| 649 | /* |
| 650 | * flush_tlb_func_common()'s memory ordering requirement is that any |
| 651 | * TLB fills that happen after we flush the TLB are ordered after we |
| 652 | * read active_mm's tlb_gen. We don't need any explicit barriers |
| 653 | * because all x86 flush operations are serializing and the |
| 654 | * atomic64_read operation won't be reordered by the compiler. |
| 655 | */ |
| 656 | static void flush_tlb_func_common(const struct flush_tlb_info *f, |
| 657 | bool local, enum tlb_flush_reason reason) |
| 658 | { |
| 659 | /* |
| 660 | * We have three different tlb_gen values in here. They are: |
| 661 | * |
| 662 | * - mm_tlb_gen: the latest generation. |
| 663 | * - local_tlb_gen: the generation that this CPU has already caught |
| 664 | * up to. |
| 665 | * - f->new_tlb_gen: the generation that the requester of the flush |
| 666 | * wants us to catch up to. |
| 667 | */ |
| 668 | struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); |
| 669 | u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); |
| 670 | u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen); |
| 671 | u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen); |
| 672 | |
| 673 | /* This code cannot presently handle being reentered. */ |
| 674 | VM_WARN_ON(!irqs_disabled()); |
| 675 | |
| 676 | if (unlikely(loaded_mm == &init_mm)) |
| 677 | return; |
| 678 | |
| 679 | VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) != |
| 680 | loaded_mm->context.ctx_id); |
| 681 | |
| 682 | if (this_cpu_read(cpu_tlbstate.is_lazy)) { |
| 683 | /* |
| 684 | * We're in lazy mode. We need to at least flush our |
| 685 | * paging-structure cache to avoid speculatively reading |
| 686 | * garbage into our TLB. Since switching to init_mm is barely |
| 687 | * slower than a minimal flush, just switch to init_mm. |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 688 | * |
| 689 | * This should be rare, with native_flush_tlb_others skipping |
| 690 | * IPIs to lazy TLB mode CPUs. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 691 | */ |
| 692 | switch_mm_irqs_off(NULL, &init_mm, NULL); |
| 693 | return; |
| 694 | } |
| 695 | |
| 696 | if (unlikely(local_tlb_gen == mm_tlb_gen)) { |
| 697 | /* |
| 698 | * There's nothing to do: we're already up to date. This can |
| 699 | * happen if two concurrent flushes happen -- the first flush to |
| 700 | * be handled can catch us all the way up, leaving no work for |
| 701 | * the second flush. |
| 702 | */ |
| 703 | trace_tlb_flush(reason, 0); |
| 704 | return; |
| 705 | } |
| 706 | |
| 707 | WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen); |
| 708 | WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen); |
| 709 | |
| 710 | /* |
| 711 | * If we get to this point, we know that our TLB is out of date. |
| 712 | * This does not strictly imply that we need to flush (it's |
| 713 | * possible that f->new_tlb_gen <= local_tlb_gen), but we're |
| 714 | * going to need to flush in the very near future, so we might |
| 715 | * as well get it over with. |
| 716 | * |
| 717 | * The only question is whether to do a full or partial flush. |
| 718 | * |
| 719 | * We do a partial flush if requested and two extra conditions |
| 720 | * are met: |
| 721 | * |
| 722 | * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that |
| 723 | * we've always done all needed flushes to catch up to |
| 724 | * local_tlb_gen. If, for example, local_tlb_gen == 2 and |
| 725 | * f->new_tlb_gen == 3, then we know that the flush needed to bring |
| 726 | * us up to date for tlb_gen 3 is the partial flush we're |
| 727 | * processing. |
| 728 | * |
| 729 | * As an example of why this check is needed, suppose that there |
| 730 | * are two concurrent flushes. The first is a full flush that |
| 731 | * changes context.tlb_gen from 1 to 2. The second is a partial |
| 732 | * flush that changes context.tlb_gen from 2 to 3. If they get |
| 733 | * processed on this CPU in reverse order, we'll see |
| 734 | * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL. |
| 735 | * If we were to use __flush_tlb_one_user() and set local_tlb_gen to |
| 736 | * 3, we'd be break the invariant: we'd update local_tlb_gen above |
| 737 | * 1 without the full flush that's needed for tlb_gen 2. |
| 738 | * |
| 739 | * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimiation. |
| 740 | * Partial TLB flushes are not all that much cheaper than full TLB |
| 741 | * flushes, so it seems unlikely that it would be a performance win |
| 742 | * to do a partial flush if that won't bring our TLB fully up to |
| 743 | * date. By doing a full flush instead, we can increase |
| 744 | * local_tlb_gen all the way to mm_tlb_gen and we can probably |
| 745 | * avoid another flush in the very near future. |
| 746 | */ |
| 747 | if (f->end != TLB_FLUSH_ALL && |
| 748 | f->new_tlb_gen == local_tlb_gen + 1 && |
| 749 | f->new_tlb_gen == mm_tlb_gen) { |
| 750 | /* Partial flush */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 751 | unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift; |
| 752 | unsigned long addr = f->start; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 753 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 754 | while (addr < f->end) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 755 | flush_tlb_one_user(addr); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 756 | addr += 1UL << f->stride_shift; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 757 | } |
| 758 | if (local) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 759 | count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate); |
| 760 | trace_tlb_flush(reason, nr_invalidate); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 761 | } else { |
| 762 | /* Full flush. */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 763 | flush_tlb_local(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 764 | if (local) |
| 765 | count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); |
| 766 | trace_tlb_flush(reason, TLB_FLUSH_ALL); |
| 767 | } |
| 768 | |
| 769 | /* Both paths above update our state to mm_tlb_gen. */ |
| 770 | this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen); |
| 771 | } |
| 772 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 773 | static void flush_tlb_func_local(const void *info, enum tlb_flush_reason reason) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 774 | { |
| 775 | const struct flush_tlb_info *f = info; |
| 776 | |
| 777 | flush_tlb_func_common(f, true, reason); |
| 778 | } |
| 779 | |
| 780 | static void flush_tlb_func_remote(void *info) |
| 781 | { |
| 782 | const struct flush_tlb_info *f = info; |
| 783 | |
| 784 | inc_irq_stat(irq_tlb_count); |
| 785 | |
| 786 | if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm)) |
| 787 | return; |
| 788 | |
| 789 | count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); |
| 790 | flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN); |
| 791 | } |
| 792 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 793 | static bool tlb_is_not_lazy(int cpu, void *data) |
| 794 | { |
| 795 | return !per_cpu(cpu_tlbstate.is_lazy, cpu); |
| 796 | } |
| 797 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 798 | STATIC_NOPV void native_flush_tlb_others(const struct cpumask *cpumask, |
| 799 | const struct flush_tlb_info *info) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 800 | { |
| 801 | count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); |
| 802 | if (info->end == TLB_FLUSH_ALL) |
| 803 | trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL); |
| 804 | else |
| 805 | trace_tlb_flush(TLB_REMOTE_SEND_IPI, |
| 806 | (info->end - info->start) >> PAGE_SHIFT); |
| 807 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 808 | /* |
| 809 | * If no page tables were freed, we can skip sending IPIs to |
| 810 | * CPUs in lazy TLB mode. They will flush the CPU themselves |
| 811 | * at the next context switch. |
| 812 | * |
| 813 | * However, if page tables are getting freed, we need to send the |
| 814 | * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping |
| 815 | * up on the new contents of what used to be page tables, while |
| 816 | * doing a speculative memory access. |
| 817 | */ |
| 818 | if (info->freed_tables) |
| 819 | smp_call_function_many(cpumask, flush_tlb_func_remote, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 820 | (void *)info, 1); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 821 | else |
| 822 | on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote, |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 823 | (void *)info, 1, cpumask); |
| 824 | } |
| 825 | |
| 826 | void flush_tlb_others(const struct cpumask *cpumask, |
| 827 | const struct flush_tlb_info *info) |
| 828 | { |
| 829 | __flush_tlb_others(cpumask, info); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 830 | } |
| 831 | |
| 832 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 833 | * See Documentation/x86/tlb.rst for details. We choose 33 |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 834 | * because it is large enough to cover the vast majority (at |
| 835 | * least 95%) of allocations, and is small enough that we are |
| 836 | * confident it will not cause too much overhead. Each single |
| 837 | * flush is about 100 ns, so this caps the maximum overhead at |
| 838 | * _about_ 3,000 ns. |
| 839 | * |
| 840 | * This is in units of pages. |
| 841 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 842 | unsigned long tlb_single_page_flush_ceiling __read_mostly = 33; |
| 843 | |
| 844 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info); |
| 845 | |
| 846 | #ifdef CONFIG_DEBUG_VM |
| 847 | static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx); |
| 848 | #endif |
| 849 | |
| 850 | static inline struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm, |
| 851 | unsigned long start, unsigned long end, |
| 852 | unsigned int stride_shift, bool freed_tables, |
| 853 | u64 new_tlb_gen) |
| 854 | { |
| 855 | struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info); |
| 856 | |
| 857 | #ifdef CONFIG_DEBUG_VM |
| 858 | /* |
| 859 | * Ensure that the following code is non-reentrant and flush_tlb_info |
| 860 | * is not overwritten. This means no TLB flushing is initiated by |
| 861 | * interrupt handlers and machine-check exception handlers. |
| 862 | */ |
| 863 | BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1); |
| 864 | #endif |
| 865 | |
| 866 | info->start = start; |
| 867 | info->end = end; |
| 868 | info->mm = mm; |
| 869 | info->stride_shift = stride_shift; |
| 870 | info->freed_tables = freed_tables; |
| 871 | info->new_tlb_gen = new_tlb_gen; |
| 872 | |
| 873 | return info; |
| 874 | } |
| 875 | |
| 876 | static inline void put_flush_tlb_info(void) |
| 877 | { |
| 878 | #ifdef CONFIG_DEBUG_VM |
| 879 | /* Complete reentrency prevention checks */ |
| 880 | barrier(); |
| 881 | this_cpu_dec(flush_tlb_info_idx); |
| 882 | #endif |
| 883 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 884 | |
| 885 | void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 886 | unsigned long end, unsigned int stride_shift, |
| 887 | bool freed_tables) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 888 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 889 | struct flush_tlb_info *info; |
| 890 | u64 new_tlb_gen; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 891 | int cpu; |
| 892 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 893 | cpu = get_cpu(); |
| 894 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 895 | /* Should we flush just the requested range? */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 896 | if ((end == TLB_FLUSH_ALL) || |
| 897 | ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) { |
| 898 | start = 0; |
| 899 | end = TLB_FLUSH_ALL; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 900 | } |
| 901 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 902 | /* This is also a barrier that synchronizes with switch_mm(). */ |
| 903 | new_tlb_gen = inc_mm_tlb_gen(mm); |
| 904 | |
| 905 | info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables, |
| 906 | new_tlb_gen); |
| 907 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 908 | if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 909 | lockdep_assert_irqs_enabled(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 910 | local_irq_disable(); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 911 | flush_tlb_func_local(info, TLB_LOCAL_MM_SHOOTDOWN); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 912 | local_irq_enable(); |
| 913 | } |
| 914 | |
| 915 | if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 916 | flush_tlb_others(mm_cpumask(mm), info); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 917 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 918 | put_flush_tlb_info(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 919 | put_cpu(); |
| 920 | } |
| 921 | |
| 922 | |
| 923 | static void do_flush_tlb_all(void *info) |
| 924 | { |
| 925 | count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); |
| 926 | __flush_tlb_all(); |
| 927 | } |
| 928 | |
| 929 | void flush_tlb_all(void) |
| 930 | { |
| 931 | count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); |
| 932 | on_each_cpu(do_flush_tlb_all, NULL, 1); |
| 933 | } |
| 934 | |
| 935 | static void do_kernel_range_flush(void *info) |
| 936 | { |
| 937 | struct flush_tlb_info *f = info; |
| 938 | unsigned long addr; |
| 939 | |
| 940 | /* flush range by one by one 'invlpg' */ |
| 941 | for (addr = f->start; addr < f->end; addr += PAGE_SIZE) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 942 | flush_tlb_one_kernel(addr); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 943 | } |
| 944 | |
| 945 | void flush_tlb_kernel_range(unsigned long start, unsigned long end) |
| 946 | { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 947 | /* Balance as user space task's flush, a bit conservative */ |
| 948 | if (end == TLB_FLUSH_ALL || |
| 949 | (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) { |
| 950 | on_each_cpu(do_flush_tlb_all, NULL, 1); |
| 951 | } else { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 952 | struct flush_tlb_info *info; |
| 953 | |
| 954 | preempt_disable(); |
| 955 | info = get_flush_tlb_info(NULL, start, end, 0, false, 0); |
| 956 | |
| 957 | on_each_cpu(do_kernel_range_flush, info, 1); |
| 958 | |
| 959 | put_flush_tlb_info(); |
| 960 | preempt_enable(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 961 | } |
| 962 | } |
| 963 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 964 | /* |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 965 | * This can be used from process context to figure out what the value of |
| 966 | * CR3 is without needing to do a (slow) __read_cr3(). |
| 967 | * |
| 968 | * It's intended to be used for code like KVM that sneakily changes CR3 |
| 969 | * and needs to restore it. It needs to be used very carefully. |
| 970 | */ |
| 971 | unsigned long __get_current_cr3_fast(void) |
| 972 | { |
| 973 | unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd, |
| 974 | this_cpu_read(cpu_tlbstate.loaded_mm_asid)); |
| 975 | |
| 976 | /* For now, be very restrictive about when this can be called. */ |
| 977 | VM_WARN_ON(in_nmi() || preemptible()); |
| 978 | |
| 979 | VM_BUG_ON(cr3 != __read_cr3()); |
| 980 | return cr3; |
| 981 | } |
| 982 | EXPORT_SYMBOL_GPL(__get_current_cr3_fast); |
| 983 | |
| 984 | /* |
| 985 | * Flush one page in the kernel mapping |
| 986 | */ |
| 987 | void flush_tlb_one_kernel(unsigned long addr) |
| 988 | { |
| 989 | count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE); |
| 990 | |
| 991 | /* |
| 992 | * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its |
| 993 | * paravirt equivalent. Even with PCID, this is sufficient: we only |
| 994 | * use PCID if we also use global PTEs for the kernel mapping, and |
| 995 | * INVLPG flushes global translations across all address spaces. |
| 996 | * |
| 997 | * If PTI is on, then the kernel is mapped with non-global PTEs, and |
| 998 | * __flush_tlb_one_user() will flush the given address for the current |
| 999 | * kernel address space and for its usermode counterpart, but it does |
| 1000 | * not flush it for other address spaces. |
| 1001 | */ |
| 1002 | flush_tlb_one_user(addr); |
| 1003 | |
| 1004 | if (!static_cpu_has(X86_FEATURE_PTI)) |
| 1005 | return; |
| 1006 | |
| 1007 | /* |
| 1008 | * See above. We need to propagate the flush to all other address |
| 1009 | * spaces. In principle, we only need to propagate it to kernelmode |
| 1010 | * address spaces, but the extra bookkeeping we would need is not |
| 1011 | * worth it. |
| 1012 | */ |
| 1013 | this_cpu_write(cpu_tlbstate.invalidate_other, true); |
| 1014 | } |
| 1015 | |
| 1016 | /* |
| 1017 | * Flush one page in the user mapping |
| 1018 | */ |
| 1019 | STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr) |
| 1020 | { |
| 1021 | u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); |
| 1022 | |
| 1023 | asm volatile("invlpg (%0)" ::"r" (addr) : "memory"); |
| 1024 | |
| 1025 | if (!static_cpu_has(X86_FEATURE_PTI)) |
| 1026 | return; |
| 1027 | |
| 1028 | /* |
| 1029 | * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1. |
| 1030 | * Just use invalidate_user_asid() in case we are called early. |
| 1031 | */ |
| 1032 | if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE)) |
| 1033 | invalidate_user_asid(loaded_mm_asid); |
| 1034 | else |
| 1035 | invpcid_flush_one(user_pcid(loaded_mm_asid), addr); |
| 1036 | } |
| 1037 | |
| 1038 | void flush_tlb_one_user(unsigned long addr) |
| 1039 | { |
| 1040 | __flush_tlb_one_user(addr); |
| 1041 | } |
| 1042 | |
| 1043 | /* |
| 1044 | * Flush everything |
| 1045 | */ |
| 1046 | STATIC_NOPV void native_flush_tlb_global(void) |
| 1047 | { |
| 1048 | unsigned long cr4, flags; |
| 1049 | |
| 1050 | if (static_cpu_has(X86_FEATURE_INVPCID)) { |
| 1051 | /* |
| 1052 | * Using INVPCID is considerably faster than a pair of writes |
| 1053 | * to CR4 sandwiched inside an IRQ flag save/restore. |
| 1054 | * |
| 1055 | * Note, this works with CR4.PCIDE=0 or 1. |
| 1056 | */ |
| 1057 | invpcid_flush_all(); |
| 1058 | return; |
| 1059 | } |
| 1060 | |
| 1061 | /* |
| 1062 | * Read-modify-write to CR4 - protect it from preemption and |
| 1063 | * from interrupts. (Use the raw variant because this code can |
| 1064 | * be called from deep inside debugging code.) |
| 1065 | */ |
| 1066 | raw_local_irq_save(flags); |
| 1067 | |
| 1068 | cr4 = this_cpu_read(cpu_tlbstate.cr4); |
| 1069 | /* toggle PGE */ |
| 1070 | native_write_cr4(cr4 ^ X86_CR4_PGE); |
| 1071 | /* write old PGE again and flush TLBs */ |
| 1072 | native_write_cr4(cr4); |
| 1073 | |
| 1074 | raw_local_irq_restore(flags); |
| 1075 | } |
| 1076 | |
| 1077 | /* |
| 1078 | * Flush the entire current user mapping |
| 1079 | */ |
| 1080 | STATIC_NOPV void native_flush_tlb_local(void) |
| 1081 | { |
| 1082 | /* |
| 1083 | * Preemption or interrupts must be disabled to protect the access |
| 1084 | * to the per CPU variable and to prevent being preempted between |
| 1085 | * read_cr3() and write_cr3(). |
| 1086 | */ |
| 1087 | WARN_ON_ONCE(preemptible()); |
| 1088 | |
| 1089 | invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid)); |
| 1090 | |
| 1091 | /* If current->mm == NULL then the read_cr3() "borrows" an mm */ |
| 1092 | native_write_cr3(__native_read_cr3()); |
| 1093 | } |
| 1094 | |
| 1095 | void flush_tlb_local(void) |
| 1096 | { |
| 1097 | __flush_tlb_local(); |
| 1098 | } |
| 1099 | |
| 1100 | /* |
| 1101 | * Flush everything |
| 1102 | */ |
| 1103 | void __flush_tlb_all(void) |
| 1104 | { |
| 1105 | /* |
| 1106 | * This is to catch users with enabled preemption and the PGE feature |
| 1107 | * and don't trigger the warning in __native_flush_tlb(). |
| 1108 | */ |
| 1109 | VM_WARN_ON_ONCE(preemptible()); |
| 1110 | |
| 1111 | if (boot_cpu_has(X86_FEATURE_PGE)) { |
| 1112 | __flush_tlb_global(); |
| 1113 | } else { |
| 1114 | /* |
| 1115 | * !PGE -> !PCID (setup_pcid()), thus every flush is total. |
| 1116 | */ |
| 1117 | flush_tlb_local(); |
| 1118 | } |
| 1119 | } |
| 1120 | EXPORT_SYMBOL_GPL(__flush_tlb_all); |
| 1121 | |
| 1122 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1123 | * arch_tlbbatch_flush() performs a full TLB flush regardless of the active mm. |
| 1124 | * This means that the 'struct flush_tlb_info' that describes which mappings to |
| 1125 | * flush is actually fixed. We therefore set a single fixed struct and use it in |
| 1126 | * arch_tlbbatch_flush(). |
| 1127 | */ |
| 1128 | static const struct flush_tlb_info full_flush_tlb_info = { |
| 1129 | .mm = NULL, |
| 1130 | .start = 0, |
| 1131 | .end = TLB_FLUSH_ALL, |
| 1132 | }; |
| 1133 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1134 | void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch) |
| 1135 | { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1136 | int cpu = get_cpu(); |
| 1137 | |
| 1138 | if (cpumask_test_cpu(cpu, &batch->cpumask)) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1139 | lockdep_assert_irqs_enabled(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1140 | local_irq_disable(); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1141 | flush_tlb_func_local(&full_flush_tlb_info, TLB_LOCAL_SHOOTDOWN); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1142 | local_irq_enable(); |
| 1143 | } |
| 1144 | |
| 1145 | if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1146 | flush_tlb_others(&batch->cpumask, &full_flush_tlb_info); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1147 | |
| 1148 | cpumask_clear(&batch->cpumask); |
| 1149 | |
| 1150 | put_cpu(); |
| 1151 | } |
| 1152 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1153 | /* |
| 1154 | * Blindly accessing user memory from NMI context can be dangerous |
| 1155 | * if we're in the middle of switching the current user task or |
| 1156 | * switching the loaded mm. It can also be dangerous if we |
| 1157 | * interrupted some kernel code that was temporarily using a |
| 1158 | * different mm. |
| 1159 | */ |
| 1160 | bool nmi_uaccess_okay(void) |
| 1161 | { |
| 1162 | struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); |
| 1163 | struct mm_struct *current_mm = current->mm; |
| 1164 | |
| 1165 | VM_WARN_ON_ONCE(!loaded_mm); |
| 1166 | |
| 1167 | /* |
| 1168 | * The condition we want to check is |
| 1169 | * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though, |
| 1170 | * if we're running in a VM with shadow paging, and nmi_uaccess_okay() |
| 1171 | * is supposed to be reasonably fast. |
| 1172 | * |
| 1173 | * Instead, we check the almost equivalent but somewhat conservative |
| 1174 | * condition below, and we rely on the fact that switch_mm_irqs_off() |
| 1175 | * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3. |
| 1176 | */ |
| 1177 | if (loaded_mm != current_mm) |
| 1178 | return false; |
| 1179 | |
| 1180 | VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa())); |
| 1181 | |
| 1182 | return true; |
| 1183 | } |
| 1184 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1185 | static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf, |
| 1186 | size_t count, loff_t *ppos) |
| 1187 | { |
| 1188 | char buf[32]; |
| 1189 | unsigned int len; |
| 1190 | |
| 1191 | len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling); |
| 1192 | return simple_read_from_buffer(user_buf, count, ppos, buf, len); |
| 1193 | } |
| 1194 | |
| 1195 | static ssize_t tlbflush_write_file(struct file *file, |
| 1196 | const char __user *user_buf, size_t count, loff_t *ppos) |
| 1197 | { |
| 1198 | char buf[32]; |
| 1199 | ssize_t len; |
| 1200 | int ceiling; |
| 1201 | |
| 1202 | len = min(count, sizeof(buf) - 1); |
| 1203 | if (copy_from_user(buf, user_buf, len)) |
| 1204 | return -EFAULT; |
| 1205 | |
| 1206 | buf[len] = '\0'; |
| 1207 | if (kstrtoint(buf, 0, &ceiling)) |
| 1208 | return -EINVAL; |
| 1209 | |
| 1210 | if (ceiling < 0) |
| 1211 | return -EINVAL; |
| 1212 | |
| 1213 | tlb_single_page_flush_ceiling = ceiling; |
| 1214 | return count; |
| 1215 | } |
| 1216 | |
| 1217 | static const struct file_operations fops_tlbflush = { |
| 1218 | .read = tlbflush_read_file, |
| 1219 | .write = tlbflush_write_file, |
| 1220 | .llseek = default_llseek, |
| 1221 | }; |
| 1222 | |
| 1223 | static int __init create_tlb_single_page_flush_ceiling(void) |
| 1224 | { |
| 1225 | debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR, |
| 1226 | arch_debugfs_dir, NULL, &fops_tlbflush); |
| 1227 | return 0; |
| 1228 | } |
| 1229 | late_initcall(create_tlb_single_page_flush_ceiling); |