Update Linux to v5.10.109

Sourced from [1]

[1] https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.10.109.tar.xz

Change-Id: I19bca9fc6762d4e63bcf3e4cba88bbe560d9c76c
Signed-off-by: Olivier Deprez <olivier.deprez@arm.com>
diff --git a/arch/x86/mm/tlb.c b/arch/x86/mm/tlb.c
index 851359b..569ac1d 100644
--- a/arch/x86/mm/tlb.c
+++ b/arch/x86/mm/tlb.c
@@ -14,10 +14,19 @@
 #include <asm/nospec-branch.h>
 #include <asm/cache.h>
 #include <asm/apic.h>
-#include <asm/uv/uv.h>
 
 #include "mm_internal.h"
 
+#ifdef CONFIG_PARAVIRT
+# define STATIC_NOPV
+#else
+# define STATIC_NOPV			static
+# define __flush_tlb_local		native_flush_tlb_local
+# define __flush_tlb_global		native_flush_tlb_global
+# define __flush_tlb_one_user(addr)	native_flush_tlb_one_user(addr)
+# define __flush_tlb_others(msk, info)	native_flush_tlb_others(msk, info)
+#endif
+
 /*
  *	TLB flushing, formerly SMP-only
  *		c/o Linus Torvalds.
@@ -39,6 +48,126 @@
 #define LAST_USER_MM_IBPB	0x1UL
 
 /*
+ * The x86 feature is called PCID (Process Context IDentifier). It is similar
+ * to what is traditionally called ASID on the RISC processors.
+ *
+ * We don't use the traditional ASID implementation, where each process/mm gets
+ * its own ASID and flush/restart when we run out of ASID space.
+ *
+ * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
+ * that came by on this CPU, allowing cheaper switch_mm between processes on
+ * this CPU.
+ *
+ * We end up with different spaces for different things. To avoid confusion we
+ * use different names for each of them:
+ *
+ * ASID  - [0, TLB_NR_DYN_ASIDS-1]
+ *         the canonical identifier for an mm
+ *
+ * kPCID - [1, TLB_NR_DYN_ASIDS]
+ *         the value we write into the PCID part of CR3; corresponds to the
+ *         ASID+1, because PCID 0 is special.
+ *
+ * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
+ *         for KPTI each mm has two address spaces and thus needs two
+ *         PCID values, but we can still do with a single ASID denomination
+ *         for each mm. Corresponds to kPCID + 2048.
+ *
+ */
+
+/* There are 12 bits of space for ASIDS in CR3 */
+#define CR3_HW_ASID_BITS		12
+
+/*
+ * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
+ * user/kernel switches
+ */
+#ifdef CONFIG_PAGE_TABLE_ISOLATION
+# define PTI_CONSUMED_PCID_BITS	1
+#else
+# define PTI_CONSUMED_PCID_BITS	0
+#endif
+
+#define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
+
+/*
+ * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
+ * for them being zero-based.  Another -1 is because PCID 0 is reserved for
+ * use by non-PCID-aware users.
+ */
+#define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
+
+/*
+ * Given @asid, compute kPCID
+ */
+static inline u16 kern_pcid(u16 asid)
+{
+	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
+
+#ifdef CONFIG_PAGE_TABLE_ISOLATION
+	/*
+	 * Make sure that the dynamic ASID space does not confict with the
+	 * bit we are using to switch between user and kernel ASIDs.
+	 */
+	BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
+
+	/*
+	 * The ASID being passed in here should have respected the
+	 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
+	 */
+	VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
+#endif
+	/*
+	 * The dynamically-assigned ASIDs that get passed in are small
+	 * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
+	 * so do not bother to clear it.
+	 *
+	 * If PCID is on, ASID-aware code paths put the ASID+1 into the
+	 * PCID bits.  This serves two purposes.  It prevents a nasty
+	 * situation in which PCID-unaware code saves CR3, loads some other
+	 * value (with PCID == 0), and then restores CR3, thus corrupting
+	 * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
+	 * that any bugs involving loading a PCID-enabled CR3 with
+	 * CR4.PCIDE off will trigger deterministically.
+	 */
+	return asid + 1;
+}
+
+/*
+ * Given @asid, compute uPCID
+ */
+static inline u16 user_pcid(u16 asid)
+{
+	u16 ret = kern_pcid(asid);
+#ifdef CONFIG_PAGE_TABLE_ISOLATION
+	ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
+#endif
+	return ret;
+}
+
+static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
+{
+	if (static_cpu_has(X86_FEATURE_PCID)) {
+		return __sme_pa(pgd) | kern_pcid(asid);
+	} else {
+		VM_WARN_ON_ONCE(asid != 0);
+		return __sme_pa(pgd);
+	}
+}
+
+static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
+{
+	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
+	/*
+	 * Use boot_cpu_has() instead of this_cpu_has() as this function
+	 * might be called during early boot. This should work even after
+	 * boot because all CPU's the have same capabilities:
+	 */
+	VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
+	return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
+}
+
+/*
  * We get here when we do something requiring a TLB invalidation
  * but could not go invalidate all of the contexts.  We do the
  * necessary invalidation by clearing out the 'ctx_id' which
@@ -110,6 +239,32 @@
 	*need_flush = true;
 }
 
+/*
+ * Given an ASID, flush the corresponding user ASID.  We can delay this
+ * until the next time we switch to it.
+ *
+ * See SWITCH_TO_USER_CR3.
+ */
+static inline void invalidate_user_asid(u16 asid)
+{
+	/* There is no user ASID if address space separation is off */
+	if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
+		return;
+
+	/*
+	 * We only have a single ASID if PCID is off and the CR3
+	 * write will have flushed it.
+	 */
+	if (!cpu_feature_enabled(X86_FEATURE_PCID))
+		return;
+
+	if (!static_cpu_has(X86_FEATURE_PTI))
+		return;
+
+	__set_bit(kern_pcid(asid),
+		  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
+}
+
 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
 {
 	unsigned long new_mm_cr3;
@@ -161,34 +316,6 @@
 	local_irq_restore(flags);
 }
 
-static void sync_current_stack_to_mm(struct mm_struct *mm)
-{
-	unsigned long sp = current_stack_pointer;
-	pgd_t *pgd = pgd_offset(mm, sp);
-
-	if (pgtable_l5_enabled()) {
-		if (unlikely(pgd_none(*pgd))) {
-			pgd_t *pgd_ref = pgd_offset_k(sp);
-
-			set_pgd(pgd, *pgd_ref);
-		}
-	} else {
-		/*
-		 * "pgd" is faked.  The top level entries are "p4d"s, so sync
-		 * the p4d.  This compiles to approximately the same code as
-		 * the 5-level case.
-		 */
-		p4d_t *p4d = p4d_offset(pgd, sp);
-
-		if (unlikely(p4d_none(*p4d))) {
-			pgd_t *pgd_ref = pgd_offset_k(sp);
-			p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
-
-			set_p4d(p4d, *p4d_ref);
-		}
-	}
-}
-
 static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
 {
 	unsigned long next_tif = task_thread_info(next)->flags;
@@ -272,6 +399,26 @@
 	}
 }
 
+#ifdef CONFIG_PERF_EVENTS
+static inline void cr4_update_pce_mm(struct mm_struct *mm)
+{
+	if (static_branch_unlikely(&rdpmc_always_available_key) ||
+	    (!static_branch_unlikely(&rdpmc_never_available_key) &&
+	     atomic_read(&mm->context.perf_rdpmc_allowed)))
+		cr4_set_bits_irqsoff(X86_CR4_PCE);
+	else
+		cr4_clear_bits_irqsoff(X86_CR4_PCE);
+}
+
+void cr4_update_pce(void *ignored)
+{
+	cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
+}
+
+#else
+static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
+#endif
+
 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
 			struct task_struct *tsk)
 {
@@ -383,15 +530,6 @@
 		 */
 		cond_ibpb(tsk);
 
-		if (IS_ENABLED(CONFIG_VMAP_STACK)) {
-			/*
-			 * If our current stack is in vmalloc space and isn't
-			 * mapped in the new pgd, we'll double-fault.  Forcibly
-			 * map it.
-			 */
-			sync_current_stack_to_mm(next);
-		}
-
 		/*
 		 * Stop remote flushes for the previous mm.
 		 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
@@ -422,21 +560,12 @@
 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
 		load_new_mm_cr3(next->pgd, new_asid, true);
 
-		/*
-		 * NB: This gets called via leave_mm() in the idle path
-		 * where RCU functions differently.  Tracing normally
-		 * uses RCU, so we need to use the _rcuidle variant.
-		 *
-		 * (There is no good reason for this.  The idle code should
-		 *  be rearranged to call this before rcu_idle_enter().)
-		 */
-		trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
+		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
 	} else {
 		/* The new ASID is already up to date. */
 		load_new_mm_cr3(next->pgd, new_asid, false);
 
-		/* See above wrt _rcuidle. */
-		trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
+		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
 	}
 
 	/* Make sure we write CR3 before loaded_mm. */
@@ -446,7 +575,7 @@
 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
 
 	if (next != real_prev) {
-		load_mm_cr4_irqsoff(next);
+		cr4_update_pce_mm(next);
 		switch_ldt(real_prev, next);
 	}
 }
@@ -623,7 +752,7 @@
 		unsigned long addr = f->start;
 
 		while (addr < f->end) {
-			__flush_tlb_one_user(addr);
+			flush_tlb_one_user(addr);
 			addr += 1UL << f->stride_shift;
 		}
 		if (local)
@@ -631,7 +760,7 @@
 		trace_tlb_flush(reason, nr_invalidate);
 	} else {
 		/* Full flush. */
-		local_flush_tlb();
+		flush_tlb_local();
 		if (local)
 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
 		trace_tlb_flush(reason, TLB_FLUSH_ALL);
@@ -666,8 +795,8 @@
 	return !per_cpu(cpu_tlbstate.is_lazy, cpu);
 }
 
-void native_flush_tlb_others(const struct cpumask *cpumask,
-			     const struct flush_tlb_info *info)
+STATIC_NOPV void native_flush_tlb_others(const struct cpumask *cpumask,
+					 const struct flush_tlb_info *info)
 {
 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
 	if (info->end == TLB_FLUSH_ALL)
@@ -676,29 +805,6 @@
 		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
 				(info->end - info->start) >> PAGE_SHIFT);
 
-	if (is_uv_system()) {
-		/*
-		 * This whole special case is confused.  UV has a "Broadcast
-		 * Assist Unit", which seems to be a fancy way to send IPIs.
-		 * Back when x86 used an explicit TLB flush IPI, UV was
-		 * optimized to use its own mechanism.  These days, x86 uses
-		 * smp_call_function_many(), but UV still uses a manual IPI,
-		 * and that IPI's action is out of date -- it does a manual
-		 * flush instead of calling flush_tlb_func_remote().  This
-		 * means that the percpu tlb_gen variables won't be updated
-		 * and we'll do pointless flushes on future context switches.
-		 *
-		 * Rather than hooking native_flush_tlb_others() here, I think
-		 * that UV should be updated so that smp_call_function_many(),
-		 * etc, are optimal on UV.
-		 */
-		cpumask = uv_flush_tlb_others(cpumask, info);
-		if (cpumask)
-			smp_call_function_many(cpumask, flush_tlb_func_remote,
-					       (void *)info, 1);
-		return;
-	}
-
 	/*
 	 * If no page tables were freed, we can skip sending IPIs to
 	 * CPUs in lazy TLB mode. They will flush the CPU themselves
@@ -714,7 +820,13 @@
 			       (void *)info, 1);
 	else
 		on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote,
-				(void *)info, 1, GFP_ATOMIC, cpumask);
+				(void *)info, 1, cpumask);
+}
+
+void flush_tlb_others(const struct cpumask *cpumask,
+		      const struct flush_tlb_info *info)
+{
+	__flush_tlb_others(cpumask, info);
 }
 
 /*
@@ -827,7 +939,7 @@
 
 	/* flush range by one by one 'invlpg' */
 	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
-		__flush_tlb_one_kernel(addr);
+		flush_tlb_one_kernel(addr);
 }
 
 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
@@ -850,6 +962,164 @@
 }
 
 /*
+ * This can be used from process context to figure out what the value of
+ * CR3 is without needing to do a (slow) __read_cr3().
+ *
+ * It's intended to be used for code like KVM that sneakily changes CR3
+ * and needs to restore it.  It needs to be used very carefully.
+ */
+unsigned long __get_current_cr3_fast(void)
+{
+	unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
+		this_cpu_read(cpu_tlbstate.loaded_mm_asid));
+
+	/* For now, be very restrictive about when this can be called. */
+	VM_WARN_ON(in_nmi() || preemptible());
+
+	VM_BUG_ON(cr3 != __read_cr3());
+	return cr3;
+}
+EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
+
+/*
+ * Flush one page in the kernel mapping
+ */
+void flush_tlb_one_kernel(unsigned long addr)
+{
+	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
+
+	/*
+	 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
+	 * paravirt equivalent.  Even with PCID, this is sufficient: we only
+	 * use PCID if we also use global PTEs for the kernel mapping, and
+	 * INVLPG flushes global translations across all address spaces.
+	 *
+	 * If PTI is on, then the kernel is mapped with non-global PTEs, and
+	 * __flush_tlb_one_user() will flush the given address for the current
+	 * kernel address space and for its usermode counterpart, but it does
+	 * not flush it for other address spaces.
+	 */
+	flush_tlb_one_user(addr);
+
+	if (!static_cpu_has(X86_FEATURE_PTI))
+		return;
+
+	/*
+	 * See above.  We need to propagate the flush to all other address
+	 * spaces.  In principle, we only need to propagate it to kernelmode
+	 * address spaces, but the extra bookkeeping we would need is not
+	 * worth it.
+	 */
+	this_cpu_write(cpu_tlbstate.invalidate_other, true);
+}
+
+/*
+ * Flush one page in the user mapping
+ */
+STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
+{
+	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
+
+	asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
+
+	if (!static_cpu_has(X86_FEATURE_PTI))
+		return;
+
+	/*
+	 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
+	 * Just use invalidate_user_asid() in case we are called early.
+	 */
+	if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
+		invalidate_user_asid(loaded_mm_asid);
+	else
+		invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
+}
+
+void flush_tlb_one_user(unsigned long addr)
+{
+	__flush_tlb_one_user(addr);
+}
+
+/*
+ * Flush everything
+ */
+STATIC_NOPV void native_flush_tlb_global(void)
+{
+	unsigned long cr4, flags;
+
+	if (static_cpu_has(X86_FEATURE_INVPCID)) {
+		/*
+		 * Using INVPCID is considerably faster than a pair of writes
+		 * to CR4 sandwiched inside an IRQ flag save/restore.
+		 *
+		 * Note, this works with CR4.PCIDE=0 or 1.
+		 */
+		invpcid_flush_all();
+		return;
+	}
+
+	/*
+	 * Read-modify-write to CR4 - protect it from preemption and
+	 * from interrupts. (Use the raw variant because this code can
+	 * be called from deep inside debugging code.)
+	 */
+	raw_local_irq_save(flags);
+
+	cr4 = this_cpu_read(cpu_tlbstate.cr4);
+	/* toggle PGE */
+	native_write_cr4(cr4 ^ X86_CR4_PGE);
+	/* write old PGE again and flush TLBs */
+	native_write_cr4(cr4);
+
+	raw_local_irq_restore(flags);
+}
+
+/*
+ * Flush the entire current user mapping
+ */
+STATIC_NOPV void native_flush_tlb_local(void)
+{
+	/*
+	 * Preemption or interrupts must be disabled to protect the access
+	 * to the per CPU variable and to prevent being preempted between
+	 * read_cr3() and write_cr3().
+	 */
+	WARN_ON_ONCE(preemptible());
+
+	invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
+
+	/* If current->mm == NULL then the read_cr3() "borrows" an mm */
+	native_write_cr3(__native_read_cr3());
+}
+
+void flush_tlb_local(void)
+{
+	__flush_tlb_local();
+}
+
+/*
+ * Flush everything
+ */
+void __flush_tlb_all(void)
+{
+	/*
+	 * This is to catch users with enabled preemption and the PGE feature
+	 * and don't trigger the warning in __native_flush_tlb().
+	 */
+	VM_WARN_ON_ONCE(preemptible());
+
+	if (boot_cpu_has(X86_FEATURE_PGE)) {
+		__flush_tlb_global();
+	} else {
+		/*
+		 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
+		 */
+		flush_tlb_local();
+	}
+}
+EXPORT_SYMBOL_GPL(__flush_tlb_all);
+
+/*
  * arch_tlbbatch_flush() performs a full TLB flush regardless of the active mm.
  * This means that the 'struct flush_tlb_info' that describes which mappings to
  * flush is actually fixed. We therefore set a single fixed struct and use it in
@@ -880,6 +1150,38 @@
 	put_cpu();
 }
 
+/*
+ * Blindly accessing user memory from NMI context can be dangerous
+ * if we're in the middle of switching the current user task or
+ * switching the loaded mm.  It can also be dangerous if we
+ * interrupted some kernel code that was temporarily using a
+ * different mm.
+ */
+bool nmi_uaccess_okay(void)
+{
+	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
+	struct mm_struct *current_mm = current->mm;
+
+	VM_WARN_ON_ONCE(!loaded_mm);
+
+	/*
+	 * The condition we want to check is
+	 * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
+	 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
+	 * is supposed to be reasonably fast.
+	 *
+	 * Instead, we check the almost equivalent but somewhat conservative
+	 * condition below, and we rely on the fact that switch_mm_irqs_off()
+	 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
+	 */
+	if (loaded_mm != current_mm)
+		return false;
+
+	VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
+
+	return true;
+}
+
 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
 			     size_t count, loff_t *ppos)
 {