David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* |
| 3 | * SMP support for ppc. |
| 4 | * |
| 5 | * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great |
| 6 | * deal of code from the sparc and intel versions. |
| 7 | * |
| 8 | * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu> |
| 9 | * |
| 10 | * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and |
| 11 | * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 12 | */ |
| 13 | |
| 14 | #undef DEBUG |
| 15 | |
| 16 | #include <linux/kernel.h> |
| 17 | #include <linux/export.h> |
| 18 | #include <linux/sched/mm.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 19 | #include <linux/sched/task_stack.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 20 | #include <linux/sched/topology.h> |
| 21 | #include <linux/smp.h> |
| 22 | #include <linux/interrupt.h> |
| 23 | #include <linux/delay.h> |
| 24 | #include <linux/init.h> |
| 25 | #include <linux/spinlock.h> |
| 26 | #include <linux/cache.h> |
| 27 | #include <linux/err.h> |
| 28 | #include <linux/device.h> |
| 29 | #include <linux/cpu.h> |
| 30 | #include <linux/notifier.h> |
| 31 | #include <linux/topology.h> |
| 32 | #include <linux/profile.h> |
| 33 | #include <linux/processor.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 34 | #include <linux/random.h> |
| 35 | #include <linux/stackprotector.h> |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 36 | #include <linux/pgtable.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 37 | |
| 38 | #include <asm/ptrace.h> |
| 39 | #include <linux/atomic.h> |
| 40 | #include <asm/irq.h> |
| 41 | #include <asm/hw_irq.h> |
| 42 | #include <asm/kvm_ppc.h> |
| 43 | #include <asm/dbell.h> |
| 44 | #include <asm/page.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 45 | #include <asm/prom.h> |
| 46 | #include <asm/smp.h> |
| 47 | #include <asm/time.h> |
| 48 | #include <asm/machdep.h> |
| 49 | #include <asm/cputhreads.h> |
| 50 | #include <asm/cputable.h> |
| 51 | #include <asm/mpic.h> |
| 52 | #include <asm/vdso_datapage.h> |
| 53 | #ifdef CONFIG_PPC64 |
| 54 | #include <asm/paca.h> |
| 55 | #endif |
| 56 | #include <asm/vdso.h> |
| 57 | #include <asm/debug.h> |
| 58 | #include <asm/kexec.h> |
| 59 | #include <asm/asm-prototypes.h> |
| 60 | #include <asm/cpu_has_feature.h> |
| 61 | #include <asm/ftrace.h> |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 62 | #include <asm/kup.h> |
| 63 | #include <asm/fadump.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 64 | |
| 65 | #ifdef DEBUG |
| 66 | #include <asm/udbg.h> |
| 67 | #define DBG(fmt...) udbg_printf(fmt) |
| 68 | #else |
| 69 | #define DBG(fmt...) |
| 70 | #endif |
| 71 | |
| 72 | #ifdef CONFIG_HOTPLUG_CPU |
| 73 | /* State of each CPU during hotplug phases */ |
| 74 | static DEFINE_PER_CPU(int, cpu_state) = { 0 }; |
| 75 | #endif |
| 76 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 77 | struct task_struct *secondary_current; |
| 78 | bool has_big_cores; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 79 | bool coregroup_enabled; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 80 | |
| 81 | DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 82 | DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 83 | DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map); |
| 84 | DEFINE_PER_CPU(cpumask_var_t, cpu_core_map); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 85 | DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 86 | |
| 87 | EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); |
| 88 | EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map); |
| 89 | EXPORT_PER_CPU_SYMBOL(cpu_core_map); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 90 | EXPORT_SYMBOL_GPL(has_big_cores); |
| 91 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 92 | enum { |
| 93 | #ifdef CONFIG_SCHED_SMT |
| 94 | smt_idx, |
| 95 | #endif |
| 96 | cache_idx, |
| 97 | mc_idx, |
| 98 | die_idx, |
| 99 | }; |
| 100 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 101 | #define MAX_THREAD_LIST_SIZE 8 |
| 102 | #define THREAD_GROUP_SHARE_L1 1 |
| 103 | struct thread_groups { |
| 104 | unsigned int property; |
| 105 | unsigned int nr_groups; |
| 106 | unsigned int threads_per_group; |
| 107 | unsigned int thread_list[MAX_THREAD_LIST_SIZE]; |
| 108 | }; |
| 109 | |
| 110 | /* |
| 111 | * On big-cores system, cpu_l1_cache_map for each CPU corresponds to |
| 112 | * the set its siblings that share the L1-cache. |
| 113 | */ |
| 114 | DEFINE_PER_CPU(cpumask_var_t, cpu_l1_cache_map); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 115 | |
| 116 | /* SMP operations for this machine */ |
| 117 | struct smp_ops_t *smp_ops; |
| 118 | |
| 119 | /* Can't be static due to PowerMac hackery */ |
| 120 | volatile unsigned int cpu_callin_map[NR_CPUS]; |
| 121 | |
| 122 | int smt_enabled_at_boot = 1; |
| 123 | |
| 124 | /* |
| 125 | * Returns 1 if the specified cpu should be brought up during boot. |
| 126 | * Used to inhibit booting threads if they've been disabled or |
| 127 | * limited on the command line |
| 128 | */ |
| 129 | int smp_generic_cpu_bootable(unsigned int nr) |
| 130 | { |
| 131 | /* Special case - we inhibit secondary thread startup |
| 132 | * during boot if the user requests it. |
| 133 | */ |
| 134 | if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) { |
| 135 | if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0) |
| 136 | return 0; |
| 137 | if (smt_enabled_at_boot |
| 138 | && cpu_thread_in_core(nr) >= smt_enabled_at_boot) |
| 139 | return 0; |
| 140 | } |
| 141 | |
| 142 | return 1; |
| 143 | } |
| 144 | |
| 145 | |
| 146 | #ifdef CONFIG_PPC64 |
| 147 | int smp_generic_kick_cpu(int nr) |
| 148 | { |
| 149 | if (nr < 0 || nr >= nr_cpu_ids) |
| 150 | return -EINVAL; |
| 151 | |
| 152 | /* |
| 153 | * The processor is currently spinning, waiting for the |
| 154 | * cpu_start field to become non-zero After we set cpu_start, |
| 155 | * the processor will continue on to secondary_start |
| 156 | */ |
| 157 | if (!paca_ptrs[nr]->cpu_start) { |
| 158 | paca_ptrs[nr]->cpu_start = 1; |
| 159 | smp_mb(); |
| 160 | return 0; |
| 161 | } |
| 162 | |
| 163 | #ifdef CONFIG_HOTPLUG_CPU |
| 164 | /* |
| 165 | * Ok it's not there, so it might be soft-unplugged, let's |
| 166 | * try to bring it back |
| 167 | */ |
| 168 | generic_set_cpu_up(nr); |
| 169 | smp_wmb(); |
| 170 | smp_send_reschedule(nr); |
| 171 | #endif /* CONFIG_HOTPLUG_CPU */ |
| 172 | |
| 173 | return 0; |
| 174 | } |
| 175 | #endif /* CONFIG_PPC64 */ |
| 176 | |
| 177 | static irqreturn_t call_function_action(int irq, void *data) |
| 178 | { |
| 179 | generic_smp_call_function_interrupt(); |
| 180 | return IRQ_HANDLED; |
| 181 | } |
| 182 | |
| 183 | static irqreturn_t reschedule_action(int irq, void *data) |
| 184 | { |
| 185 | scheduler_ipi(); |
| 186 | return IRQ_HANDLED; |
| 187 | } |
| 188 | |
| 189 | #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST |
| 190 | static irqreturn_t tick_broadcast_ipi_action(int irq, void *data) |
| 191 | { |
| 192 | timer_broadcast_interrupt(); |
| 193 | return IRQ_HANDLED; |
| 194 | } |
| 195 | #endif |
| 196 | |
| 197 | #ifdef CONFIG_NMI_IPI |
| 198 | static irqreturn_t nmi_ipi_action(int irq, void *data) |
| 199 | { |
| 200 | smp_handle_nmi_ipi(get_irq_regs()); |
| 201 | return IRQ_HANDLED; |
| 202 | } |
| 203 | #endif |
| 204 | |
| 205 | static irq_handler_t smp_ipi_action[] = { |
| 206 | [PPC_MSG_CALL_FUNCTION] = call_function_action, |
| 207 | [PPC_MSG_RESCHEDULE] = reschedule_action, |
| 208 | #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST |
| 209 | [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action, |
| 210 | #endif |
| 211 | #ifdef CONFIG_NMI_IPI |
| 212 | [PPC_MSG_NMI_IPI] = nmi_ipi_action, |
| 213 | #endif |
| 214 | }; |
| 215 | |
| 216 | /* |
| 217 | * The NMI IPI is a fallback and not truly non-maskable. It is simpler |
| 218 | * than going through the call function infrastructure, and strongly |
| 219 | * serialized, so it is more appropriate for debugging. |
| 220 | */ |
| 221 | const char *smp_ipi_name[] = { |
| 222 | [PPC_MSG_CALL_FUNCTION] = "ipi call function", |
| 223 | [PPC_MSG_RESCHEDULE] = "ipi reschedule", |
| 224 | #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST |
| 225 | [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast", |
| 226 | #endif |
| 227 | #ifdef CONFIG_NMI_IPI |
| 228 | [PPC_MSG_NMI_IPI] = "nmi ipi", |
| 229 | #endif |
| 230 | }; |
| 231 | |
| 232 | /* optional function to request ipi, for controllers with >= 4 ipis */ |
| 233 | int smp_request_message_ipi(int virq, int msg) |
| 234 | { |
| 235 | int err; |
| 236 | |
| 237 | if (msg < 0 || msg > PPC_MSG_NMI_IPI) |
| 238 | return -EINVAL; |
| 239 | #ifndef CONFIG_NMI_IPI |
| 240 | if (msg == PPC_MSG_NMI_IPI) |
| 241 | return 1; |
| 242 | #endif |
| 243 | |
| 244 | err = request_irq(virq, smp_ipi_action[msg], |
| 245 | IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND, |
| 246 | smp_ipi_name[msg], NULL); |
| 247 | WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n", |
| 248 | virq, smp_ipi_name[msg], err); |
| 249 | |
| 250 | return err; |
| 251 | } |
| 252 | |
| 253 | #ifdef CONFIG_PPC_SMP_MUXED_IPI |
| 254 | struct cpu_messages { |
| 255 | long messages; /* current messages */ |
| 256 | }; |
| 257 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message); |
| 258 | |
| 259 | void smp_muxed_ipi_set_message(int cpu, int msg) |
| 260 | { |
| 261 | struct cpu_messages *info = &per_cpu(ipi_message, cpu); |
| 262 | char *message = (char *)&info->messages; |
| 263 | |
| 264 | /* |
| 265 | * Order previous accesses before accesses in the IPI handler. |
| 266 | */ |
| 267 | smp_mb(); |
| 268 | message[msg] = 1; |
| 269 | } |
| 270 | |
| 271 | void smp_muxed_ipi_message_pass(int cpu, int msg) |
| 272 | { |
| 273 | smp_muxed_ipi_set_message(cpu, msg); |
| 274 | |
| 275 | /* |
| 276 | * cause_ipi functions are required to include a full barrier |
| 277 | * before doing whatever causes the IPI. |
| 278 | */ |
| 279 | smp_ops->cause_ipi(cpu); |
| 280 | } |
| 281 | |
| 282 | #ifdef __BIG_ENDIAN__ |
| 283 | #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A))) |
| 284 | #else |
| 285 | #define IPI_MESSAGE(A) (1uL << (8 * (A))) |
| 286 | #endif |
| 287 | |
| 288 | irqreturn_t smp_ipi_demux(void) |
| 289 | { |
| 290 | mb(); /* order any irq clear */ |
| 291 | |
| 292 | return smp_ipi_demux_relaxed(); |
| 293 | } |
| 294 | |
| 295 | /* sync-free variant. Callers should ensure synchronization */ |
| 296 | irqreturn_t smp_ipi_demux_relaxed(void) |
| 297 | { |
| 298 | struct cpu_messages *info; |
| 299 | unsigned long all; |
| 300 | |
| 301 | info = this_cpu_ptr(&ipi_message); |
| 302 | do { |
| 303 | all = xchg(&info->messages, 0); |
| 304 | #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) |
| 305 | /* |
| 306 | * Must check for PPC_MSG_RM_HOST_ACTION messages |
| 307 | * before PPC_MSG_CALL_FUNCTION messages because when |
| 308 | * a VM is destroyed, we call kick_all_cpus_sync() |
| 309 | * to ensure that any pending PPC_MSG_RM_HOST_ACTION |
| 310 | * messages have completed before we free any VCPUs. |
| 311 | */ |
| 312 | if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION)) |
| 313 | kvmppc_xics_ipi_action(); |
| 314 | #endif |
| 315 | if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION)) |
| 316 | generic_smp_call_function_interrupt(); |
| 317 | if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE)) |
| 318 | scheduler_ipi(); |
| 319 | #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST |
| 320 | if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST)) |
| 321 | timer_broadcast_interrupt(); |
| 322 | #endif |
| 323 | #ifdef CONFIG_NMI_IPI |
| 324 | if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI)) |
| 325 | nmi_ipi_action(0, NULL); |
| 326 | #endif |
| 327 | } while (info->messages); |
| 328 | |
| 329 | return IRQ_HANDLED; |
| 330 | } |
| 331 | #endif /* CONFIG_PPC_SMP_MUXED_IPI */ |
| 332 | |
| 333 | static inline void do_message_pass(int cpu, int msg) |
| 334 | { |
| 335 | if (smp_ops->message_pass) |
| 336 | smp_ops->message_pass(cpu, msg); |
| 337 | #ifdef CONFIG_PPC_SMP_MUXED_IPI |
| 338 | else |
| 339 | smp_muxed_ipi_message_pass(cpu, msg); |
| 340 | #endif |
| 341 | } |
| 342 | |
| 343 | void smp_send_reschedule(int cpu) |
| 344 | { |
| 345 | if (likely(smp_ops)) |
| 346 | do_message_pass(cpu, PPC_MSG_RESCHEDULE); |
| 347 | } |
| 348 | EXPORT_SYMBOL_GPL(smp_send_reschedule); |
| 349 | |
| 350 | void arch_send_call_function_single_ipi(int cpu) |
| 351 | { |
| 352 | do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); |
| 353 | } |
| 354 | |
| 355 | void arch_send_call_function_ipi_mask(const struct cpumask *mask) |
| 356 | { |
| 357 | unsigned int cpu; |
| 358 | |
| 359 | for_each_cpu(cpu, mask) |
| 360 | do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); |
| 361 | } |
| 362 | |
| 363 | #ifdef CONFIG_NMI_IPI |
| 364 | |
| 365 | /* |
| 366 | * "NMI IPI" system. |
| 367 | * |
| 368 | * NMI IPIs may not be recoverable, so should not be used as ongoing part of |
| 369 | * a running system. They can be used for crash, debug, halt/reboot, etc. |
| 370 | * |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 371 | * The IPI call waits with interrupts disabled until all targets enter the |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 372 | * NMI handler, then returns. Subsequent IPIs can be issued before targets |
| 373 | * have returned from their handlers, so there is no guarantee about |
| 374 | * concurrency or re-entrancy. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 375 | * |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 376 | * A new NMI can be issued before all targets exit the handler. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 377 | * |
| 378 | * The IPI call may time out without all targets entering the NMI handler. |
| 379 | * In that case, there is some logic to recover (and ignore subsequent |
| 380 | * NMI interrupts that may eventually be raised), but the platform interrupt |
| 381 | * handler may not be able to distinguish this from other exception causes, |
| 382 | * which may cause a crash. |
| 383 | */ |
| 384 | |
| 385 | static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0); |
| 386 | static struct cpumask nmi_ipi_pending_mask; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 387 | static bool nmi_ipi_busy = false; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 388 | static void (*nmi_ipi_function)(struct pt_regs *) = NULL; |
| 389 | |
| 390 | static void nmi_ipi_lock_start(unsigned long *flags) |
| 391 | { |
| 392 | raw_local_irq_save(*flags); |
| 393 | hard_irq_disable(); |
| 394 | while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) { |
| 395 | raw_local_irq_restore(*flags); |
| 396 | spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0); |
| 397 | raw_local_irq_save(*flags); |
| 398 | hard_irq_disable(); |
| 399 | } |
| 400 | } |
| 401 | |
| 402 | static void nmi_ipi_lock(void) |
| 403 | { |
| 404 | while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) |
| 405 | spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0); |
| 406 | } |
| 407 | |
| 408 | static void nmi_ipi_unlock(void) |
| 409 | { |
| 410 | smp_mb(); |
| 411 | WARN_ON(atomic_read(&__nmi_ipi_lock) != 1); |
| 412 | atomic_set(&__nmi_ipi_lock, 0); |
| 413 | } |
| 414 | |
| 415 | static void nmi_ipi_unlock_end(unsigned long *flags) |
| 416 | { |
| 417 | nmi_ipi_unlock(); |
| 418 | raw_local_irq_restore(*flags); |
| 419 | } |
| 420 | |
| 421 | /* |
| 422 | * Platform NMI handler calls this to ack |
| 423 | */ |
| 424 | int smp_handle_nmi_ipi(struct pt_regs *regs) |
| 425 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 426 | void (*fn)(struct pt_regs *) = NULL; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 427 | unsigned long flags; |
| 428 | int me = raw_smp_processor_id(); |
| 429 | int ret = 0; |
| 430 | |
| 431 | /* |
| 432 | * Unexpected NMIs are possible here because the interrupt may not |
| 433 | * be able to distinguish NMI IPIs from other types of NMIs, or |
| 434 | * because the caller may have timed out. |
| 435 | */ |
| 436 | nmi_ipi_lock_start(&flags); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 437 | if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) { |
| 438 | cpumask_clear_cpu(me, &nmi_ipi_pending_mask); |
| 439 | fn = READ_ONCE(nmi_ipi_function); |
| 440 | WARN_ON_ONCE(!fn); |
| 441 | ret = 1; |
| 442 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 443 | nmi_ipi_unlock_end(&flags); |
| 444 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 445 | if (fn) |
| 446 | fn(regs); |
| 447 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 448 | return ret; |
| 449 | } |
| 450 | |
| 451 | static void do_smp_send_nmi_ipi(int cpu, bool safe) |
| 452 | { |
| 453 | if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu)) |
| 454 | return; |
| 455 | |
| 456 | if (cpu >= 0) { |
| 457 | do_message_pass(cpu, PPC_MSG_NMI_IPI); |
| 458 | } else { |
| 459 | int c; |
| 460 | |
| 461 | for_each_online_cpu(c) { |
| 462 | if (c == raw_smp_processor_id()) |
| 463 | continue; |
| 464 | do_message_pass(c, PPC_MSG_NMI_IPI); |
| 465 | } |
| 466 | } |
| 467 | } |
| 468 | |
| 469 | /* |
| 470 | * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS. |
| 471 | * - fn is the target callback function. |
| 472 | * - delay_us > 0 is the delay before giving up waiting for targets to |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 473 | * begin executing the handler, == 0 specifies indefinite delay. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 474 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 475 | static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), |
| 476 | u64 delay_us, bool safe) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 477 | { |
| 478 | unsigned long flags; |
| 479 | int me = raw_smp_processor_id(); |
| 480 | int ret = 1; |
| 481 | |
| 482 | BUG_ON(cpu == me); |
| 483 | BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS); |
| 484 | |
| 485 | if (unlikely(!smp_ops)) |
| 486 | return 0; |
| 487 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 488 | nmi_ipi_lock_start(&flags); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 489 | while (nmi_ipi_busy) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 490 | nmi_ipi_unlock_end(&flags); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 491 | spin_until_cond(!nmi_ipi_busy); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 492 | nmi_ipi_lock_start(&flags); |
| 493 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 494 | nmi_ipi_busy = true; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 495 | nmi_ipi_function = fn; |
| 496 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 497 | WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask)); |
| 498 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 499 | if (cpu < 0) { |
| 500 | /* ALL_OTHERS */ |
| 501 | cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask); |
| 502 | cpumask_clear_cpu(me, &nmi_ipi_pending_mask); |
| 503 | } else { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 504 | cpumask_set_cpu(cpu, &nmi_ipi_pending_mask); |
| 505 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 506 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 507 | nmi_ipi_unlock(); |
| 508 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 509 | /* Interrupts remain hard disabled */ |
| 510 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 511 | do_smp_send_nmi_ipi(cpu, safe); |
| 512 | |
| 513 | nmi_ipi_lock(); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 514 | /* nmi_ipi_busy is set here, so unlock/lock is okay */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 515 | while (!cpumask_empty(&nmi_ipi_pending_mask)) { |
| 516 | nmi_ipi_unlock(); |
| 517 | udelay(1); |
| 518 | nmi_ipi_lock(); |
| 519 | if (delay_us) { |
| 520 | delay_us--; |
| 521 | if (!delay_us) |
| 522 | break; |
| 523 | } |
| 524 | } |
| 525 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 526 | if (!cpumask_empty(&nmi_ipi_pending_mask)) { |
| 527 | /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */ |
| 528 | ret = 0; |
| 529 | cpumask_clear(&nmi_ipi_pending_mask); |
| 530 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 531 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 532 | nmi_ipi_function = NULL; |
| 533 | nmi_ipi_busy = false; |
| 534 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 535 | nmi_ipi_unlock_end(&flags); |
| 536 | |
| 537 | return ret; |
| 538 | } |
| 539 | |
| 540 | int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us) |
| 541 | { |
| 542 | return __smp_send_nmi_ipi(cpu, fn, delay_us, false); |
| 543 | } |
| 544 | |
| 545 | int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us) |
| 546 | { |
| 547 | return __smp_send_nmi_ipi(cpu, fn, delay_us, true); |
| 548 | } |
| 549 | #endif /* CONFIG_NMI_IPI */ |
| 550 | |
| 551 | #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST |
| 552 | void tick_broadcast(const struct cpumask *mask) |
| 553 | { |
| 554 | unsigned int cpu; |
| 555 | |
| 556 | for_each_cpu(cpu, mask) |
| 557 | do_message_pass(cpu, PPC_MSG_TICK_BROADCAST); |
| 558 | } |
| 559 | #endif |
| 560 | |
| 561 | #ifdef CONFIG_DEBUGGER |
| 562 | void debugger_ipi_callback(struct pt_regs *regs) |
| 563 | { |
| 564 | debugger_ipi(regs); |
| 565 | } |
| 566 | |
| 567 | void smp_send_debugger_break(void) |
| 568 | { |
| 569 | smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000); |
| 570 | } |
| 571 | #endif |
| 572 | |
| 573 | #ifdef CONFIG_KEXEC_CORE |
| 574 | void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *)) |
| 575 | { |
| 576 | int cpu; |
| 577 | |
| 578 | smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000); |
| 579 | if (kdump_in_progress() && crash_wake_offline) { |
| 580 | for_each_present_cpu(cpu) { |
| 581 | if (cpu_online(cpu)) |
| 582 | continue; |
| 583 | /* |
| 584 | * crash_ipi_callback will wait for |
| 585 | * all cpus, including offline CPUs. |
| 586 | * We don't care about nmi_ipi_function. |
| 587 | * Offline cpus will jump straight into |
| 588 | * crash_ipi_callback, we can skip the |
| 589 | * entire NMI dance and waiting for |
| 590 | * cpus to clear pending mask, etc. |
| 591 | */ |
| 592 | do_smp_send_nmi_ipi(cpu, false); |
| 593 | } |
| 594 | } |
| 595 | } |
| 596 | #endif |
| 597 | |
| 598 | #ifdef CONFIG_NMI_IPI |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 599 | static void crash_stop_this_cpu(struct pt_regs *regs) |
| 600 | #else |
| 601 | static void crash_stop_this_cpu(void *dummy) |
| 602 | #endif |
| 603 | { |
| 604 | /* |
| 605 | * Just busy wait here and avoid marking CPU as offline to ensure |
| 606 | * register data is captured appropriately. |
| 607 | */ |
| 608 | while (1) |
| 609 | cpu_relax(); |
| 610 | } |
| 611 | |
| 612 | void crash_smp_send_stop(void) |
| 613 | { |
| 614 | static bool stopped = false; |
| 615 | |
| 616 | /* |
| 617 | * In case of fadump, register data for all CPUs is captured by f/w |
| 618 | * on ibm,os-term rtas call. Skip IPI callbacks to other CPUs before |
| 619 | * this rtas call to avoid tricky post processing of those CPUs' |
| 620 | * backtraces. |
| 621 | */ |
| 622 | if (should_fadump_crash()) |
| 623 | return; |
| 624 | |
| 625 | if (stopped) |
| 626 | return; |
| 627 | |
| 628 | stopped = true; |
| 629 | |
| 630 | #ifdef CONFIG_NMI_IPI |
| 631 | smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_stop_this_cpu, 1000000); |
| 632 | #else |
| 633 | smp_call_function(crash_stop_this_cpu, NULL, 0); |
| 634 | #endif /* CONFIG_NMI_IPI */ |
| 635 | } |
| 636 | |
| 637 | #ifdef CONFIG_NMI_IPI |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 638 | static void nmi_stop_this_cpu(struct pt_regs *regs) |
| 639 | { |
| 640 | /* |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 641 | * IRQs are already hard disabled by the smp_handle_nmi_ipi. |
| 642 | */ |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 643 | set_cpu_online(smp_processor_id(), false); |
| 644 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 645 | spin_begin(); |
| 646 | while (1) |
| 647 | spin_cpu_relax(); |
| 648 | } |
| 649 | |
| 650 | void smp_send_stop(void) |
| 651 | { |
| 652 | smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000); |
| 653 | } |
| 654 | |
| 655 | #else /* CONFIG_NMI_IPI */ |
| 656 | |
| 657 | static void stop_this_cpu(void *dummy) |
| 658 | { |
| 659 | hard_irq_disable(); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 660 | |
| 661 | /* |
| 662 | * Offlining CPUs in stop_this_cpu can result in scheduler warnings, |
| 663 | * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants |
| 664 | * to know other CPUs are offline before it breaks locks to flush |
| 665 | * printk buffers, in case we panic()ed while holding the lock. |
| 666 | */ |
| 667 | set_cpu_online(smp_processor_id(), false); |
| 668 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 669 | spin_begin(); |
| 670 | while (1) |
| 671 | spin_cpu_relax(); |
| 672 | } |
| 673 | |
| 674 | void smp_send_stop(void) |
| 675 | { |
| 676 | static bool stopped = false; |
| 677 | |
| 678 | /* |
| 679 | * Prevent waiting on csd lock from a previous smp_send_stop. |
| 680 | * This is racy, but in general callers try to do the right |
| 681 | * thing and only fire off one smp_send_stop (e.g., see |
| 682 | * kernel/panic.c) |
| 683 | */ |
| 684 | if (stopped) |
| 685 | return; |
| 686 | |
| 687 | stopped = true; |
| 688 | |
| 689 | smp_call_function(stop_this_cpu, NULL, 0); |
| 690 | } |
| 691 | #endif /* CONFIG_NMI_IPI */ |
| 692 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 693 | struct task_struct *current_set[NR_CPUS]; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 694 | |
| 695 | static void smp_store_cpu_info(int id) |
| 696 | { |
| 697 | per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR); |
| 698 | #ifdef CONFIG_PPC_FSL_BOOK3E |
| 699 | per_cpu(next_tlbcam_idx, id) |
| 700 | = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1; |
| 701 | #endif |
| 702 | } |
| 703 | |
| 704 | /* |
| 705 | * Relationships between CPUs are maintained in a set of per-cpu cpumasks so |
| 706 | * rather than just passing around the cpumask we pass around a function that |
| 707 | * returns the that cpumask for the given CPU. |
| 708 | */ |
| 709 | static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int)) |
| 710 | { |
| 711 | cpumask_set_cpu(i, get_cpumask(j)); |
| 712 | cpumask_set_cpu(j, get_cpumask(i)); |
| 713 | } |
| 714 | |
| 715 | #ifdef CONFIG_HOTPLUG_CPU |
| 716 | static void set_cpus_unrelated(int i, int j, |
| 717 | struct cpumask *(*get_cpumask)(int)) |
| 718 | { |
| 719 | cpumask_clear_cpu(i, get_cpumask(j)); |
| 720 | cpumask_clear_cpu(j, get_cpumask(i)); |
| 721 | } |
| 722 | #endif |
| 723 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 724 | /* |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 725 | * Extends set_cpus_related. Instead of setting one CPU at a time in |
| 726 | * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask. |
| 727 | */ |
| 728 | static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int), |
| 729 | struct cpumask *(*dstmask)(int)) |
| 730 | { |
| 731 | struct cpumask *mask; |
| 732 | int k; |
| 733 | |
| 734 | mask = srcmask(j); |
| 735 | for_each_cpu(k, srcmask(i)) |
| 736 | cpumask_or(dstmask(k), dstmask(k), mask); |
| 737 | |
| 738 | if (i == j) |
| 739 | return; |
| 740 | |
| 741 | mask = srcmask(i); |
| 742 | for_each_cpu(k, srcmask(j)) |
| 743 | cpumask_or(dstmask(k), dstmask(k), mask); |
| 744 | } |
| 745 | |
| 746 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 747 | * parse_thread_groups: Parses the "ibm,thread-groups" device tree |
| 748 | * property for the CPU device node @dn and stores |
| 749 | * the parsed output in the thread_groups |
| 750 | * structure @tg if the ibm,thread-groups[0] |
| 751 | * matches @property. |
| 752 | * |
| 753 | * @dn: The device node of the CPU device. |
| 754 | * @tg: Pointer to a thread group structure into which the parsed |
| 755 | * output of "ibm,thread-groups" is stored. |
| 756 | * @property: The property of the thread-group that the caller is |
| 757 | * interested in. |
| 758 | * |
| 759 | * ibm,thread-groups[0..N-1] array defines which group of threads in |
| 760 | * the CPU-device node can be grouped together based on the property. |
| 761 | * |
| 762 | * ibm,thread-groups[0] tells us the property based on which the |
| 763 | * threads are being grouped together. If this value is 1, it implies |
| 764 | * that the threads in the same group share L1, translation cache. |
| 765 | * |
| 766 | * ibm,thread-groups[1] tells us how many such thread groups exist. |
| 767 | * |
| 768 | * ibm,thread-groups[2] tells us the number of threads in each such |
| 769 | * group. |
| 770 | * |
| 771 | * ibm,thread-groups[3..N-1] is the list of threads identified by |
| 772 | * "ibm,ppc-interrupt-server#s" arranged as per their membership in |
| 773 | * the grouping. |
| 774 | * |
| 775 | * Example: If ibm,thread-groups = [1,2,4,5,6,7,8,9,10,11,12] it |
| 776 | * implies that there are 2 groups of 4 threads each, where each group |
| 777 | * of threads share L1, translation cache. |
| 778 | * |
| 779 | * The "ibm,ppc-interrupt-server#s" of the first group is {5,6,7,8} |
| 780 | * and the "ibm,ppc-interrupt-server#s" of the second group is {9, 10, |
| 781 | * 11, 12} structure |
| 782 | * |
| 783 | * Returns 0 on success, -EINVAL if the property does not exist, |
| 784 | * -ENODATA if property does not have a value, and -EOVERFLOW if the |
| 785 | * property data isn't large enough. |
| 786 | */ |
| 787 | static int parse_thread_groups(struct device_node *dn, |
| 788 | struct thread_groups *tg, |
| 789 | unsigned int property) |
| 790 | { |
| 791 | int i; |
| 792 | u32 thread_group_array[3 + MAX_THREAD_LIST_SIZE]; |
| 793 | u32 *thread_list; |
| 794 | size_t total_threads; |
| 795 | int ret; |
| 796 | |
| 797 | ret = of_property_read_u32_array(dn, "ibm,thread-groups", |
| 798 | thread_group_array, 3); |
| 799 | if (ret) |
| 800 | return ret; |
| 801 | |
| 802 | tg->property = thread_group_array[0]; |
| 803 | tg->nr_groups = thread_group_array[1]; |
| 804 | tg->threads_per_group = thread_group_array[2]; |
| 805 | if (tg->property != property || |
| 806 | tg->nr_groups < 1 || |
| 807 | tg->threads_per_group < 1) |
| 808 | return -ENODATA; |
| 809 | |
| 810 | total_threads = tg->nr_groups * tg->threads_per_group; |
| 811 | |
| 812 | ret = of_property_read_u32_array(dn, "ibm,thread-groups", |
| 813 | thread_group_array, |
| 814 | 3 + total_threads); |
| 815 | if (ret) |
| 816 | return ret; |
| 817 | |
| 818 | thread_list = &thread_group_array[3]; |
| 819 | |
| 820 | for (i = 0 ; i < total_threads; i++) |
| 821 | tg->thread_list[i] = thread_list[i]; |
| 822 | |
| 823 | return 0; |
| 824 | } |
| 825 | |
| 826 | /* |
| 827 | * get_cpu_thread_group_start : Searches the thread group in tg->thread_list |
| 828 | * that @cpu belongs to. |
| 829 | * |
| 830 | * @cpu : The logical CPU whose thread group is being searched. |
| 831 | * @tg : The thread-group structure of the CPU node which @cpu belongs |
| 832 | * to. |
| 833 | * |
| 834 | * Returns the index to tg->thread_list that points to the the start |
| 835 | * of the thread_group that @cpu belongs to. |
| 836 | * |
| 837 | * Returns -1 if cpu doesn't belong to any of the groups pointed to by |
| 838 | * tg->thread_list. |
| 839 | */ |
| 840 | static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg) |
| 841 | { |
| 842 | int hw_cpu_id = get_hard_smp_processor_id(cpu); |
| 843 | int i, j; |
| 844 | |
| 845 | for (i = 0; i < tg->nr_groups; i++) { |
| 846 | int group_start = i * tg->threads_per_group; |
| 847 | |
| 848 | for (j = 0; j < tg->threads_per_group; j++) { |
| 849 | int idx = group_start + j; |
| 850 | |
| 851 | if (tg->thread_list[idx] == hw_cpu_id) |
| 852 | return group_start; |
| 853 | } |
| 854 | } |
| 855 | |
| 856 | return -1; |
| 857 | } |
| 858 | |
| 859 | static int init_cpu_l1_cache_map(int cpu) |
| 860 | |
| 861 | { |
| 862 | struct device_node *dn = of_get_cpu_node(cpu, NULL); |
| 863 | struct thread_groups tg = {.property = 0, |
| 864 | .nr_groups = 0, |
| 865 | .threads_per_group = 0}; |
| 866 | int first_thread = cpu_first_thread_sibling(cpu); |
| 867 | int i, cpu_group_start = -1, err = 0; |
| 868 | |
| 869 | if (!dn) |
| 870 | return -ENODATA; |
| 871 | |
| 872 | err = parse_thread_groups(dn, &tg, THREAD_GROUP_SHARE_L1); |
| 873 | if (err) |
| 874 | goto out; |
| 875 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 876 | cpu_group_start = get_cpu_thread_group_start(cpu, &tg); |
| 877 | |
| 878 | if (unlikely(cpu_group_start == -1)) { |
| 879 | WARN_ON_ONCE(1); |
| 880 | err = -ENODATA; |
| 881 | goto out; |
| 882 | } |
| 883 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 884 | zalloc_cpumask_var_node(&per_cpu(cpu_l1_cache_map, cpu), |
| 885 | GFP_KERNEL, cpu_to_node(cpu)); |
| 886 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 887 | for (i = first_thread; i < first_thread + threads_per_core; i++) { |
| 888 | int i_group_start = get_cpu_thread_group_start(i, &tg); |
| 889 | |
| 890 | if (unlikely(i_group_start == -1)) { |
| 891 | WARN_ON_ONCE(1); |
| 892 | err = -ENODATA; |
| 893 | goto out; |
| 894 | } |
| 895 | |
| 896 | if (i_group_start == cpu_group_start) |
| 897 | cpumask_set_cpu(i, per_cpu(cpu_l1_cache_map, cpu)); |
| 898 | } |
| 899 | |
| 900 | out: |
| 901 | of_node_put(dn); |
| 902 | return err; |
| 903 | } |
| 904 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 905 | static bool shared_caches; |
| 906 | |
| 907 | #ifdef CONFIG_SCHED_SMT |
| 908 | /* cpumask of CPUs with asymmetric SMT dependency */ |
| 909 | static int powerpc_smt_flags(void) |
| 910 | { |
| 911 | int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; |
| 912 | |
| 913 | if (cpu_has_feature(CPU_FTR_ASYM_SMT)) { |
| 914 | printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n"); |
| 915 | flags |= SD_ASYM_PACKING; |
| 916 | } |
| 917 | return flags; |
| 918 | } |
| 919 | #endif |
| 920 | |
| 921 | /* |
| 922 | * P9 has a slightly odd architecture where pairs of cores share an L2 cache. |
| 923 | * This topology makes it *much* cheaper to migrate tasks between adjacent cores |
| 924 | * since the migrated task remains cache hot. We want to take advantage of this |
| 925 | * at the scheduler level so an extra topology level is required. |
| 926 | */ |
| 927 | static int powerpc_shared_cache_flags(void) |
| 928 | { |
| 929 | return SD_SHARE_PKG_RESOURCES; |
| 930 | } |
| 931 | |
| 932 | /* |
| 933 | * We can't just pass cpu_l2_cache_mask() directly because |
| 934 | * returns a non-const pointer and the compiler barfs on that. |
| 935 | */ |
| 936 | static const struct cpumask *shared_cache_mask(int cpu) |
| 937 | { |
| 938 | return per_cpu(cpu_l2_cache_map, cpu); |
| 939 | } |
| 940 | |
| 941 | #ifdef CONFIG_SCHED_SMT |
| 942 | static const struct cpumask *smallcore_smt_mask(int cpu) |
| 943 | { |
| 944 | return cpu_smallcore_mask(cpu); |
| 945 | } |
| 946 | #endif |
| 947 | |
| 948 | static struct cpumask *cpu_coregroup_mask(int cpu) |
| 949 | { |
| 950 | return per_cpu(cpu_coregroup_map, cpu); |
| 951 | } |
| 952 | |
| 953 | static bool has_coregroup_support(void) |
| 954 | { |
| 955 | return coregroup_enabled; |
| 956 | } |
| 957 | |
| 958 | static const struct cpumask *cpu_mc_mask(int cpu) |
| 959 | { |
| 960 | return cpu_coregroup_mask(cpu); |
| 961 | } |
| 962 | |
| 963 | static struct sched_domain_topology_level powerpc_topology[] = { |
| 964 | #ifdef CONFIG_SCHED_SMT |
| 965 | { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) }, |
| 966 | #endif |
| 967 | { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) }, |
| 968 | { cpu_mc_mask, SD_INIT_NAME(MC) }, |
| 969 | { cpu_cpu_mask, SD_INIT_NAME(DIE) }, |
| 970 | { NULL, }, |
| 971 | }; |
| 972 | |
| 973 | static int __init init_big_cores(void) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 974 | { |
| 975 | int cpu; |
| 976 | |
| 977 | for_each_possible_cpu(cpu) { |
| 978 | int err = init_cpu_l1_cache_map(cpu); |
| 979 | |
| 980 | if (err) |
| 981 | return err; |
| 982 | |
| 983 | zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu), |
| 984 | GFP_KERNEL, |
| 985 | cpu_to_node(cpu)); |
| 986 | } |
| 987 | |
| 988 | has_big_cores = true; |
| 989 | return 0; |
| 990 | } |
| 991 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 992 | void __init smp_prepare_cpus(unsigned int max_cpus) |
| 993 | { |
| 994 | unsigned int cpu; |
| 995 | |
| 996 | DBG("smp_prepare_cpus\n"); |
| 997 | |
| 998 | /* |
| 999 | * setup_cpu may need to be called on the boot cpu. We havent |
| 1000 | * spun any cpus up but lets be paranoid. |
| 1001 | */ |
| 1002 | BUG_ON(boot_cpuid != smp_processor_id()); |
| 1003 | |
| 1004 | /* Fixup boot cpu */ |
| 1005 | smp_store_cpu_info(boot_cpuid); |
| 1006 | cpu_callin_map[boot_cpuid] = 1; |
| 1007 | |
| 1008 | for_each_possible_cpu(cpu) { |
| 1009 | zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu), |
| 1010 | GFP_KERNEL, cpu_to_node(cpu)); |
| 1011 | zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu), |
| 1012 | GFP_KERNEL, cpu_to_node(cpu)); |
| 1013 | zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu), |
| 1014 | GFP_KERNEL, cpu_to_node(cpu)); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1015 | if (has_coregroup_support()) |
| 1016 | zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu), |
| 1017 | GFP_KERNEL, cpu_to_node(cpu)); |
| 1018 | |
| 1019 | #ifdef CONFIG_NEED_MULTIPLE_NODES |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1020 | /* |
| 1021 | * numa_node_id() works after this. |
| 1022 | */ |
| 1023 | if (cpu_present(cpu)) { |
| 1024 | set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]); |
| 1025 | set_cpu_numa_mem(cpu, |
| 1026 | local_memory_node(numa_cpu_lookup_table[cpu])); |
| 1027 | } |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1028 | #endif |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1029 | } |
| 1030 | |
| 1031 | /* Init the cpumasks so the boot CPU is related to itself */ |
| 1032 | cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid)); |
| 1033 | cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid)); |
| 1034 | cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid)); |
| 1035 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1036 | if (has_coregroup_support()) |
| 1037 | cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid)); |
| 1038 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1039 | init_big_cores(); |
| 1040 | if (has_big_cores) { |
| 1041 | cpumask_set_cpu(boot_cpuid, |
| 1042 | cpu_smallcore_mask(boot_cpuid)); |
| 1043 | } |
| 1044 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1045 | if (smp_ops && smp_ops->probe) |
| 1046 | smp_ops->probe(); |
| 1047 | } |
| 1048 | |
| 1049 | void smp_prepare_boot_cpu(void) |
| 1050 | { |
| 1051 | BUG_ON(smp_processor_id() != boot_cpuid); |
| 1052 | #ifdef CONFIG_PPC64 |
| 1053 | paca_ptrs[boot_cpuid]->__current = current; |
| 1054 | #endif |
| 1055 | set_numa_node(numa_cpu_lookup_table[boot_cpuid]); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1056 | current_set[boot_cpuid] = current; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1057 | } |
| 1058 | |
| 1059 | #ifdef CONFIG_HOTPLUG_CPU |
| 1060 | |
| 1061 | int generic_cpu_disable(void) |
| 1062 | { |
| 1063 | unsigned int cpu = smp_processor_id(); |
| 1064 | |
| 1065 | if (cpu == boot_cpuid) |
| 1066 | return -EBUSY; |
| 1067 | |
| 1068 | set_cpu_online(cpu, false); |
| 1069 | #ifdef CONFIG_PPC64 |
| 1070 | vdso_data->processorCount--; |
| 1071 | #endif |
| 1072 | /* Update affinity of all IRQs previously aimed at this CPU */ |
| 1073 | irq_migrate_all_off_this_cpu(); |
| 1074 | |
| 1075 | /* |
| 1076 | * Depending on the details of the interrupt controller, it's possible |
| 1077 | * that one of the interrupts we just migrated away from this CPU is |
| 1078 | * actually already pending on this CPU. If we leave it in that state |
| 1079 | * the interrupt will never be EOI'ed, and will never fire again. So |
| 1080 | * temporarily enable interrupts here, to allow any pending interrupt to |
| 1081 | * be received (and EOI'ed), before we take this CPU offline. |
| 1082 | */ |
| 1083 | local_irq_enable(); |
| 1084 | mdelay(1); |
| 1085 | local_irq_disable(); |
| 1086 | |
| 1087 | return 0; |
| 1088 | } |
| 1089 | |
| 1090 | void generic_cpu_die(unsigned int cpu) |
| 1091 | { |
| 1092 | int i; |
| 1093 | |
| 1094 | for (i = 0; i < 100; i++) { |
| 1095 | smp_rmb(); |
| 1096 | if (is_cpu_dead(cpu)) |
| 1097 | return; |
| 1098 | msleep(100); |
| 1099 | } |
| 1100 | printk(KERN_ERR "CPU%d didn't die...\n", cpu); |
| 1101 | } |
| 1102 | |
| 1103 | void generic_set_cpu_dead(unsigned int cpu) |
| 1104 | { |
| 1105 | per_cpu(cpu_state, cpu) = CPU_DEAD; |
| 1106 | } |
| 1107 | |
| 1108 | /* |
| 1109 | * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise |
| 1110 | * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(), |
| 1111 | * which makes the delay in generic_cpu_die() not happen. |
| 1112 | */ |
| 1113 | void generic_set_cpu_up(unsigned int cpu) |
| 1114 | { |
| 1115 | per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; |
| 1116 | } |
| 1117 | |
| 1118 | int generic_check_cpu_restart(unsigned int cpu) |
| 1119 | { |
| 1120 | return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE; |
| 1121 | } |
| 1122 | |
| 1123 | int is_cpu_dead(unsigned int cpu) |
| 1124 | { |
| 1125 | return per_cpu(cpu_state, cpu) == CPU_DEAD; |
| 1126 | } |
| 1127 | |
| 1128 | static bool secondaries_inhibited(void) |
| 1129 | { |
| 1130 | return kvm_hv_mode_active(); |
| 1131 | } |
| 1132 | |
| 1133 | #else /* HOTPLUG_CPU */ |
| 1134 | |
| 1135 | #define secondaries_inhibited() 0 |
| 1136 | |
| 1137 | #endif |
| 1138 | |
| 1139 | static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle) |
| 1140 | { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1141 | #ifdef CONFIG_PPC64 |
| 1142 | paca_ptrs[cpu]->__current = idle; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1143 | paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) + |
| 1144 | THREAD_SIZE - STACK_FRAME_OVERHEAD; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1145 | #endif |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1146 | idle->cpu = cpu; |
| 1147 | secondary_current = current_set[cpu] = idle; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1148 | } |
| 1149 | |
| 1150 | int __cpu_up(unsigned int cpu, struct task_struct *tidle) |
| 1151 | { |
| 1152 | int rc, c; |
| 1153 | |
| 1154 | /* |
| 1155 | * Don't allow secondary threads to come online if inhibited |
| 1156 | */ |
| 1157 | if (threads_per_core > 1 && secondaries_inhibited() && |
| 1158 | cpu_thread_in_subcore(cpu)) |
| 1159 | return -EBUSY; |
| 1160 | |
| 1161 | if (smp_ops == NULL || |
| 1162 | (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu))) |
| 1163 | return -EINVAL; |
| 1164 | |
| 1165 | cpu_idle_thread_init(cpu, tidle); |
| 1166 | |
| 1167 | /* |
| 1168 | * The platform might need to allocate resources prior to bringing |
| 1169 | * up the CPU |
| 1170 | */ |
| 1171 | if (smp_ops->prepare_cpu) { |
| 1172 | rc = smp_ops->prepare_cpu(cpu); |
| 1173 | if (rc) |
| 1174 | return rc; |
| 1175 | } |
| 1176 | |
| 1177 | /* Make sure callin-map entry is 0 (can be leftover a CPU |
| 1178 | * hotplug |
| 1179 | */ |
| 1180 | cpu_callin_map[cpu] = 0; |
| 1181 | |
| 1182 | /* The information for processor bringup must |
| 1183 | * be written out to main store before we release |
| 1184 | * the processor. |
| 1185 | */ |
| 1186 | smp_mb(); |
| 1187 | |
| 1188 | /* wake up cpus */ |
| 1189 | DBG("smp: kicking cpu %d\n", cpu); |
| 1190 | rc = smp_ops->kick_cpu(cpu); |
| 1191 | if (rc) { |
| 1192 | pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc); |
| 1193 | return rc; |
| 1194 | } |
| 1195 | |
| 1196 | /* |
| 1197 | * wait to see if the cpu made a callin (is actually up). |
| 1198 | * use this value that I found through experimentation. |
| 1199 | * -- Cort |
| 1200 | */ |
| 1201 | if (system_state < SYSTEM_RUNNING) |
| 1202 | for (c = 50000; c && !cpu_callin_map[cpu]; c--) |
| 1203 | udelay(100); |
| 1204 | #ifdef CONFIG_HOTPLUG_CPU |
| 1205 | else |
| 1206 | /* |
| 1207 | * CPUs can take much longer to come up in the |
| 1208 | * hotplug case. Wait five seconds. |
| 1209 | */ |
| 1210 | for (c = 5000; c && !cpu_callin_map[cpu]; c--) |
| 1211 | msleep(1); |
| 1212 | #endif |
| 1213 | |
| 1214 | if (!cpu_callin_map[cpu]) { |
| 1215 | printk(KERN_ERR "Processor %u is stuck.\n", cpu); |
| 1216 | return -ENOENT; |
| 1217 | } |
| 1218 | |
| 1219 | DBG("Processor %u found.\n", cpu); |
| 1220 | |
| 1221 | if (smp_ops->give_timebase) |
| 1222 | smp_ops->give_timebase(); |
| 1223 | |
| 1224 | /* Wait until cpu puts itself in the online & active maps */ |
| 1225 | spin_until_cond(cpu_online(cpu)); |
| 1226 | |
| 1227 | return 0; |
| 1228 | } |
| 1229 | |
| 1230 | /* Return the value of the reg property corresponding to the given |
| 1231 | * logical cpu. |
| 1232 | */ |
| 1233 | int cpu_to_core_id(int cpu) |
| 1234 | { |
| 1235 | struct device_node *np; |
| 1236 | const __be32 *reg; |
| 1237 | int id = -1; |
| 1238 | |
| 1239 | np = of_get_cpu_node(cpu, NULL); |
| 1240 | if (!np) |
| 1241 | goto out; |
| 1242 | |
| 1243 | reg = of_get_property(np, "reg", NULL); |
| 1244 | if (!reg) |
| 1245 | goto out; |
| 1246 | |
| 1247 | id = be32_to_cpup(reg); |
| 1248 | out: |
| 1249 | of_node_put(np); |
| 1250 | return id; |
| 1251 | } |
| 1252 | EXPORT_SYMBOL_GPL(cpu_to_core_id); |
| 1253 | |
| 1254 | /* Helper routines for cpu to core mapping */ |
| 1255 | int cpu_core_index_of_thread(int cpu) |
| 1256 | { |
| 1257 | return cpu >> threads_shift; |
| 1258 | } |
| 1259 | EXPORT_SYMBOL_GPL(cpu_core_index_of_thread); |
| 1260 | |
| 1261 | int cpu_first_thread_of_core(int core) |
| 1262 | { |
| 1263 | return core << threads_shift; |
| 1264 | } |
| 1265 | EXPORT_SYMBOL_GPL(cpu_first_thread_of_core); |
| 1266 | |
| 1267 | /* Must be called when no change can occur to cpu_present_mask, |
| 1268 | * i.e. during cpu online or offline. |
| 1269 | */ |
| 1270 | static struct device_node *cpu_to_l2cache(int cpu) |
| 1271 | { |
| 1272 | struct device_node *np; |
| 1273 | struct device_node *cache; |
| 1274 | |
| 1275 | if (!cpu_present(cpu)) |
| 1276 | return NULL; |
| 1277 | |
| 1278 | np = of_get_cpu_node(cpu, NULL); |
| 1279 | if (np == NULL) |
| 1280 | return NULL; |
| 1281 | |
| 1282 | cache = of_find_next_cache_node(np); |
| 1283 | |
| 1284 | of_node_put(np); |
| 1285 | |
| 1286 | return cache; |
| 1287 | } |
| 1288 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1289 | static bool update_mask_by_l2(int cpu, cpumask_var_t *mask) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1290 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1291 | struct cpumask *(*submask_fn)(int) = cpu_sibling_mask; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1292 | struct device_node *l2_cache, *np; |
| 1293 | int i; |
| 1294 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1295 | if (has_big_cores) |
| 1296 | submask_fn = cpu_smallcore_mask; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1297 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1298 | l2_cache = cpu_to_l2cache(cpu); |
| 1299 | if (!l2_cache || !*mask) { |
| 1300 | /* Assume only core siblings share cache with this CPU */ |
| 1301 | for_each_cpu(i, submask_fn(cpu)) |
| 1302 | set_cpus_related(cpu, i, cpu_l2_cache_mask); |
| 1303 | |
| 1304 | return false; |
| 1305 | } |
| 1306 | |
| 1307 | cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu)); |
| 1308 | |
| 1309 | /* Update l2-cache mask with all the CPUs that are part of submask */ |
| 1310 | or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask); |
| 1311 | |
| 1312 | /* Skip all CPUs already part of current CPU l2-cache mask */ |
| 1313 | cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu)); |
| 1314 | |
| 1315 | for_each_cpu(i, *mask) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1316 | /* |
| 1317 | * when updating the marks the current CPU has not been marked |
| 1318 | * online, but we need to update the cache masks |
| 1319 | */ |
| 1320 | np = cpu_to_l2cache(i); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1321 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1322 | /* Skip all CPUs already part of current CPU l2-cache */ |
| 1323 | if (np == l2_cache) { |
| 1324 | or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask); |
| 1325 | cpumask_andnot(*mask, *mask, submask_fn(i)); |
| 1326 | } else { |
| 1327 | cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i)); |
| 1328 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1329 | |
| 1330 | of_node_put(np); |
| 1331 | } |
| 1332 | of_node_put(l2_cache); |
| 1333 | |
| 1334 | return true; |
| 1335 | } |
| 1336 | |
| 1337 | #ifdef CONFIG_HOTPLUG_CPU |
| 1338 | static void remove_cpu_from_masks(int cpu) |
| 1339 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1340 | struct cpumask *(*mask_fn)(int) = cpu_sibling_mask; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1341 | int i; |
| 1342 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1343 | if (shared_caches) |
| 1344 | mask_fn = cpu_l2_cache_mask; |
| 1345 | |
| 1346 | for_each_cpu(i, mask_fn(cpu)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1347 | set_cpus_unrelated(cpu, i, cpu_l2_cache_mask); |
| 1348 | set_cpus_unrelated(cpu, i, cpu_sibling_mask); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1349 | if (has_big_cores) |
| 1350 | set_cpus_unrelated(cpu, i, cpu_smallcore_mask); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1351 | } |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1352 | |
| 1353 | for_each_cpu(i, cpu_core_mask(cpu)) |
| 1354 | set_cpus_unrelated(cpu, i, cpu_core_mask); |
| 1355 | |
| 1356 | if (has_coregroup_support()) { |
| 1357 | for_each_cpu(i, cpu_coregroup_mask(cpu)) |
| 1358 | set_cpus_unrelated(cpu, i, cpu_coregroup_mask); |
| 1359 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1360 | } |
| 1361 | #endif |
| 1362 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1363 | static inline void add_cpu_to_smallcore_masks(int cpu) |
| 1364 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1365 | int i; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1366 | |
| 1367 | if (!has_big_cores) |
| 1368 | return; |
| 1369 | |
| 1370 | cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu)); |
| 1371 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1372 | for_each_cpu(i, per_cpu(cpu_l1_cache_map, cpu)) { |
| 1373 | if (cpu_online(i)) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1374 | set_cpus_related(i, cpu, cpu_smallcore_mask); |
| 1375 | } |
| 1376 | } |
| 1377 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1378 | static void update_coregroup_mask(int cpu, cpumask_var_t *mask) |
| 1379 | { |
| 1380 | struct cpumask *(*submask_fn)(int) = cpu_sibling_mask; |
| 1381 | int coregroup_id = cpu_to_coregroup_id(cpu); |
| 1382 | int i; |
| 1383 | |
| 1384 | if (shared_caches) |
| 1385 | submask_fn = cpu_l2_cache_mask; |
| 1386 | |
| 1387 | if (!*mask) { |
| 1388 | /* Assume only siblings are part of this CPU's coregroup */ |
| 1389 | for_each_cpu(i, submask_fn(cpu)) |
| 1390 | set_cpus_related(cpu, i, cpu_coregroup_mask); |
| 1391 | |
| 1392 | return; |
| 1393 | } |
| 1394 | |
| 1395 | cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu)); |
| 1396 | |
| 1397 | /* Update coregroup mask with all the CPUs that are part of submask */ |
| 1398 | or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask); |
| 1399 | |
| 1400 | /* Skip all CPUs already part of coregroup mask */ |
| 1401 | cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu)); |
| 1402 | |
| 1403 | for_each_cpu(i, *mask) { |
| 1404 | /* Skip all CPUs not part of this coregroup */ |
| 1405 | if (coregroup_id == cpu_to_coregroup_id(i)) { |
| 1406 | or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask); |
| 1407 | cpumask_andnot(*mask, *mask, submask_fn(i)); |
| 1408 | } else { |
| 1409 | cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i)); |
| 1410 | } |
| 1411 | } |
| 1412 | } |
| 1413 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1414 | static void add_cpu_to_masks(int cpu) |
| 1415 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1416 | struct cpumask *(*submask_fn)(int) = cpu_sibling_mask; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1417 | int first_thread = cpu_first_thread_sibling(cpu); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1418 | int chip_id = cpu_to_chip_id(cpu); |
| 1419 | cpumask_var_t mask; |
| 1420 | bool ret; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1421 | int i; |
| 1422 | |
| 1423 | /* |
| 1424 | * This CPU will not be in the online mask yet so we need to manually |
| 1425 | * add it to it's own thread sibling mask. |
| 1426 | */ |
| 1427 | cpumask_set_cpu(cpu, cpu_sibling_mask(cpu)); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1428 | cpumask_set_cpu(cpu, cpu_core_mask(cpu)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1429 | |
| 1430 | for (i = first_thread; i < first_thread + threads_per_core; i++) |
| 1431 | if (cpu_online(i)) |
| 1432 | set_cpus_related(i, cpu, cpu_sibling_mask); |
| 1433 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1434 | add_cpu_to_smallcore_masks(cpu); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1435 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1436 | /* In CPU-hotplug path, hence use GFP_ATOMIC */ |
| 1437 | ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu)); |
| 1438 | update_mask_by_l2(cpu, &mask); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1439 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1440 | if (has_coregroup_support()) |
| 1441 | update_coregroup_mask(cpu, &mask); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1442 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1443 | if (shared_caches) |
| 1444 | submask_fn = cpu_l2_cache_mask; |
| 1445 | |
| 1446 | /* Update core_mask with all the CPUs that are part of submask */ |
| 1447 | or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask); |
| 1448 | |
| 1449 | /* Skip all CPUs already part of current CPU core mask */ |
| 1450 | cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu)); |
| 1451 | |
| 1452 | /* If chip_id is -1; limit the cpu_core_mask to within DIE*/ |
| 1453 | if (chip_id == -1) |
| 1454 | cpumask_and(mask, mask, cpu_cpu_mask(cpu)); |
| 1455 | |
| 1456 | for_each_cpu(i, mask) { |
| 1457 | if (chip_id == cpu_to_chip_id(i)) { |
| 1458 | or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask); |
| 1459 | cpumask_andnot(mask, mask, submask_fn(i)); |
| 1460 | } else { |
| 1461 | cpumask_andnot(mask, mask, cpu_core_mask(i)); |
| 1462 | } |
| 1463 | } |
| 1464 | |
| 1465 | free_cpumask_var(mask); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1466 | } |
| 1467 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1468 | /* Activate a secondary processor. */ |
| 1469 | void start_secondary(void *unused) |
| 1470 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1471 | unsigned int cpu = raw_smp_processor_id(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1472 | |
| 1473 | mmgrab(&init_mm); |
| 1474 | current->active_mm = &init_mm; |
| 1475 | |
| 1476 | smp_store_cpu_info(cpu); |
| 1477 | set_dec(tb_ticks_per_jiffy); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1478 | rcu_cpu_starting(cpu); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1479 | cpu_callin_map[cpu] = 1; |
| 1480 | |
| 1481 | if (smp_ops->setup_cpu) |
| 1482 | smp_ops->setup_cpu(cpu); |
| 1483 | if (smp_ops->take_timebase) |
| 1484 | smp_ops->take_timebase(); |
| 1485 | |
| 1486 | secondary_cpu_time_init(); |
| 1487 | |
| 1488 | #ifdef CONFIG_PPC64 |
| 1489 | if (system_state == SYSTEM_RUNNING) |
| 1490 | vdso_data->processorCount++; |
| 1491 | |
| 1492 | vdso_getcpu_init(); |
| 1493 | #endif |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 1494 | set_numa_node(numa_cpu_lookup_table[cpu]); |
| 1495 | set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu])); |
| 1496 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1497 | /* Update topology CPU masks */ |
| 1498 | add_cpu_to_masks(cpu); |
| 1499 | |
| 1500 | /* |
| 1501 | * Check for any shared caches. Note that this must be done on a |
| 1502 | * per-core basis because one core in the pair might be disabled. |
| 1503 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1504 | if (!shared_caches) { |
| 1505 | struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask; |
| 1506 | struct cpumask *mask = cpu_l2_cache_mask(cpu); |
| 1507 | |
| 1508 | if (has_big_cores) |
| 1509 | sibling_mask = cpu_smallcore_mask; |
| 1510 | |
| 1511 | if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu))) |
| 1512 | shared_caches = true; |
| 1513 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1514 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1515 | smp_wmb(); |
| 1516 | notify_cpu_starting(cpu); |
| 1517 | set_cpu_online(cpu, true); |
| 1518 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1519 | boot_init_stack_canary(); |
| 1520 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1521 | local_irq_enable(); |
| 1522 | |
| 1523 | /* We can enable ftrace for secondary cpus now */ |
| 1524 | this_cpu_enable_ftrace(); |
| 1525 | |
| 1526 | cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); |
| 1527 | |
| 1528 | BUG(); |
| 1529 | } |
| 1530 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1531 | #ifdef CONFIG_PROFILING |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1532 | int setup_profiling_timer(unsigned int multiplier) |
| 1533 | { |
| 1534 | return 0; |
| 1535 | } |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1536 | #endif |
| 1537 | |
| 1538 | static void fixup_topology(void) |
| 1539 | { |
| 1540 | int i; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1541 | |
| 1542 | #ifdef CONFIG_SCHED_SMT |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1543 | if (has_big_cores) { |
| 1544 | pr_info("Big cores detected but using small core scheduling\n"); |
| 1545 | powerpc_topology[smt_idx].mask = smallcore_smt_mask; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1546 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1547 | #endif |
| 1548 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1549 | if (!has_coregroup_support()) |
| 1550 | powerpc_topology[mc_idx].mask = powerpc_topology[cache_idx].mask; |
| 1551 | |
| 1552 | /* |
| 1553 | * Try to consolidate topology levels here instead of |
| 1554 | * allowing scheduler to degenerate. |
| 1555 | * - Dont consolidate if masks are different. |
| 1556 | * - Dont consolidate if sd_flags exists and are different. |
| 1557 | */ |
| 1558 | for (i = 1; i <= die_idx; i++) { |
| 1559 | if (powerpc_topology[i].mask != powerpc_topology[i - 1].mask) |
| 1560 | continue; |
| 1561 | |
| 1562 | if (powerpc_topology[i].sd_flags && powerpc_topology[i - 1].sd_flags && |
| 1563 | powerpc_topology[i].sd_flags != powerpc_topology[i - 1].sd_flags) |
| 1564 | continue; |
| 1565 | |
| 1566 | if (!powerpc_topology[i - 1].sd_flags) |
| 1567 | powerpc_topology[i - 1].sd_flags = powerpc_topology[i].sd_flags; |
| 1568 | |
| 1569 | powerpc_topology[i].mask = powerpc_topology[i + 1].mask; |
| 1570 | powerpc_topology[i].sd_flags = powerpc_topology[i + 1].sd_flags; |
| 1571 | #ifdef CONFIG_SCHED_DEBUG |
| 1572 | powerpc_topology[i].name = powerpc_topology[i + 1].name; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1573 | #endif |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1574 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1575 | } |
| 1576 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1577 | void __init smp_cpus_done(unsigned int max_cpus) |
| 1578 | { |
| 1579 | /* |
| 1580 | * We are running pinned to the boot CPU, see rest_init(). |
| 1581 | */ |
| 1582 | if (smp_ops && smp_ops->setup_cpu) |
| 1583 | smp_ops->setup_cpu(boot_cpuid); |
| 1584 | |
| 1585 | if (smp_ops && smp_ops->bringup_done) |
| 1586 | smp_ops->bringup_done(); |
| 1587 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1588 | dump_numa_cpu_topology(); |
| 1589 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1590 | fixup_topology(); |
| 1591 | set_sched_topology(powerpc_topology); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1592 | } |
| 1593 | |
| 1594 | #ifdef CONFIG_HOTPLUG_CPU |
| 1595 | int __cpu_disable(void) |
| 1596 | { |
| 1597 | int cpu = smp_processor_id(); |
| 1598 | int err; |
| 1599 | |
| 1600 | if (!smp_ops->cpu_disable) |
| 1601 | return -ENOSYS; |
| 1602 | |
| 1603 | this_cpu_disable_ftrace(); |
| 1604 | |
| 1605 | err = smp_ops->cpu_disable(); |
| 1606 | if (err) |
| 1607 | return err; |
| 1608 | |
| 1609 | /* Update sibling maps */ |
| 1610 | remove_cpu_from_masks(cpu); |
| 1611 | |
| 1612 | return 0; |
| 1613 | } |
| 1614 | |
| 1615 | void __cpu_die(unsigned int cpu) |
| 1616 | { |
| 1617 | if (smp_ops->cpu_die) |
| 1618 | smp_ops->cpu_die(cpu); |
| 1619 | } |
| 1620 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1621 | void arch_cpu_idle_dead(void) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1622 | { |
| 1623 | /* |
| 1624 | * Disable on the down path. This will be re-enabled by |
| 1625 | * start_secondary() via start_secondary_resume() below |
| 1626 | */ |
| 1627 | this_cpu_disable_ftrace(); |
| 1628 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1629 | if (smp_ops->cpu_offline_self) |
| 1630 | smp_ops->cpu_offline_self(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1631 | |
| 1632 | /* If we return, we re-enter start_secondary */ |
| 1633 | start_secondary_resume(); |
| 1634 | } |
| 1635 | |
| 1636 | #endif |