blob: c06cac543f188dbef9077e5014aba4fd84f172f7 [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0-or-later
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * SMP support for ppc.
4 *
5 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
6 * deal of code from the sparc and intel versions.
7 *
8 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
9 *
10 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
11 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012 */
13
14#undef DEBUG
15
16#include <linux/kernel.h>
17#include <linux/export.h>
18#include <linux/sched/mm.h>
David Brazdil0f672f62019-12-10 10:32:29 +000019#include <linux/sched/task_stack.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000020#include <linux/sched/topology.h>
21#include <linux/smp.h>
22#include <linux/interrupt.h>
23#include <linux/delay.h>
24#include <linux/init.h>
25#include <linux/spinlock.h>
26#include <linux/cache.h>
27#include <linux/err.h>
28#include <linux/device.h>
29#include <linux/cpu.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/profile.h>
33#include <linux/processor.h>
David Brazdil0f672f62019-12-10 10:32:29 +000034#include <linux/random.h>
35#include <linux/stackprotector.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000036
37#include <asm/ptrace.h>
38#include <linux/atomic.h>
39#include <asm/irq.h>
40#include <asm/hw_irq.h>
41#include <asm/kvm_ppc.h>
42#include <asm/dbell.h>
43#include <asm/page.h>
44#include <asm/pgtable.h>
45#include <asm/prom.h>
46#include <asm/smp.h>
47#include <asm/time.h>
48#include <asm/machdep.h>
49#include <asm/cputhreads.h>
50#include <asm/cputable.h>
51#include <asm/mpic.h>
52#include <asm/vdso_datapage.h>
53#ifdef CONFIG_PPC64
54#include <asm/paca.h>
55#endif
56#include <asm/vdso.h>
57#include <asm/debug.h>
58#include <asm/kexec.h>
59#include <asm/asm-prototypes.h>
60#include <asm/cpu_has_feature.h>
61#include <asm/ftrace.h>
62
63#ifdef DEBUG
64#include <asm/udbg.h>
65#define DBG(fmt...) udbg_printf(fmt)
66#else
67#define DBG(fmt...)
68#endif
69
70#ifdef CONFIG_HOTPLUG_CPU
71/* State of each CPU during hotplug phases */
72static DEFINE_PER_CPU(int, cpu_state) = { 0 };
73#endif
74
David Brazdil0f672f62019-12-10 10:32:29 +000075struct task_struct *secondary_current;
76bool has_big_cores;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000077
78DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
David Brazdil0f672f62019-12-10 10:32:29 +000079DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000080DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
81DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
82
83EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
84EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
85EXPORT_PER_CPU_SYMBOL(cpu_core_map);
David Brazdil0f672f62019-12-10 10:32:29 +000086EXPORT_SYMBOL_GPL(has_big_cores);
87
88#define MAX_THREAD_LIST_SIZE 8
89#define THREAD_GROUP_SHARE_L1 1
90struct thread_groups {
91 unsigned int property;
92 unsigned int nr_groups;
93 unsigned int threads_per_group;
94 unsigned int thread_list[MAX_THREAD_LIST_SIZE];
95};
96
97/*
98 * On big-cores system, cpu_l1_cache_map for each CPU corresponds to
99 * the set its siblings that share the L1-cache.
100 */
101DEFINE_PER_CPU(cpumask_var_t, cpu_l1_cache_map);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000102
103/* SMP operations for this machine */
104struct smp_ops_t *smp_ops;
105
106/* Can't be static due to PowerMac hackery */
107volatile unsigned int cpu_callin_map[NR_CPUS];
108
109int smt_enabled_at_boot = 1;
110
111/*
112 * Returns 1 if the specified cpu should be brought up during boot.
113 * Used to inhibit booting threads if they've been disabled or
114 * limited on the command line
115 */
116int smp_generic_cpu_bootable(unsigned int nr)
117{
118 /* Special case - we inhibit secondary thread startup
119 * during boot if the user requests it.
120 */
121 if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
122 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
123 return 0;
124 if (smt_enabled_at_boot
125 && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
126 return 0;
127 }
128
129 return 1;
130}
131
132
133#ifdef CONFIG_PPC64
134int smp_generic_kick_cpu(int nr)
135{
136 if (nr < 0 || nr >= nr_cpu_ids)
137 return -EINVAL;
138
139 /*
140 * The processor is currently spinning, waiting for the
141 * cpu_start field to become non-zero After we set cpu_start,
142 * the processor will continue on to secondary_start
143 */
144 if (!paca_ptrs[nr]->cpu_start) {
145 paca_ptrs[nr]->cpu_start = 1;
146 smp_mb();
147 return 0;
148 }
149
150#ifdef CONFIG_HOTPLUG_CPU
151 /*
152 * Ok it's not there, so it might be soft-unplugged, let's
153 * try to bring it back
154 */
155 generic_set_cpu_up(nr);
156 smp_wmb();
157 smp_send_reschedule(nr);
158#endif /* CONFIG_HOTPLUG_CPU */
159
160 return 0;
161}
162#endif /* CONFIG_PPC64 */
163
164static irqreturn_t call_function_action(int irq, void *data)
165{
166 generic_smp_call_function_interrupt();
167 return IRQ_HANDLED;
168}
169
170static irqreturn_t reschedule_action(int irq, void *data)
171{
172 scheduler_ipi();
173 return IRQ_HANDLED;
174}
175
176#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
177static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
178{
179 timer_broadcast_interrupt();
180 return IRQ_HANDLED;
181}
182#endif
183
184#ifdef CONFIG_NMI_IPI
185static irqreturn_t nmi_ipi_action(int irq, void *data)
186{
187 smp_handle_nmi_ipi(get_irq_regs());
188 return IRQ_HANDLED;
189}
190#endif
191
192static irq_handler_t smp_ipi_action[] = {
193 [PPC_MSG_CALL_FUNCTION] = call_function_action,
194 [PPC_MSG_RESCHEDULE] = reschedule_action,
195#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
196 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
197#endif
198#ifdef CONFIG_NMI_IPI
199 [PPC_MSG_NMI_IPI] = nmi_ipi_action,
200#endif
201};
202
203/*
204 * The NMI IPI is a fallback and not truly non-maskable. It is simpler
205 * than going through the call function infrastructure, and strongly
206 * serialized, so it is more appropriate for debugging.
207 */
208const char *smp_ipi_name[] = {
209 [PPC_MSG_CALL_FUNCTION] = "ipi call function",
210 [PPC_MSG_RESCHEDULE] = "ipi reschedule",
211#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
212 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
213#endif
214#ifdef CONFIG_NMI_IPI
215 [PPC_MSG_NMI_IPI] = "nmi ipi",
216#endif
217};
218
219/* optional function to request ipi, for controllers with >= 4 ipis */
220int smp_request_message_ipi(int virq, int msg)
221{
222 int err;
223
224 if (msg < 0 || msg > PPC_MSG_NMI_IPI)
225 return -EINVAL;
226#ifndef CONFIG_NMI_IPI
227 if (msg == PPC_MSG_NMI_IPI)
228 return 1;
229#endif
230
231 err = request_irq(virq, smp_ipi_action[msg],
232 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
233 smp_ipi_name[msg], NULL);
234 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
235 virq, smp_ipi_name[msg], err);
236
237 return err;
238}
239
240#ifdef CONFIG_PPC_SMP_MUXED_IPI
241struct cpu_messages {
242 long messages; /* current messages */
243};
244static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
245
246void smp_muxed_ipi_set_message(int cpu, int msg)
247{
248 struct cpu_messages *info = &per_cpu(ipi_message, cpu);
249 char *message = (char *)&info->messages;
250
251 /*
252 * Order previous accesses before accesses in the IPI handler.
253 */
254 smp_mb();
255 message[msg] = 1;
256}
257
258void smp_muxed_ipi_message_pass(int cpu, int msg)
259{
260 smp_muxed_ipi_set_message(cpu, msg);
261
262 /*
263 * cause_ipi functions are required to include a full barrier
264 * before doing whatever causes the IPI.
265 */
266 smp_ops->cause_ipi(cpu);
267}
268
269#ifdef __BIG_ENDIAN__
270#define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
271#else
272#define IPI_MESSAGE(A) (1uL << (8 * (A)))
273#endif
274
275irqreturn_t smp_ipi_demux(void)
276{
277 mb(); /* order any irq clear */
278
279 return smp_ipi_demux_relaxed();
280}
281
282/* sync-free variant. Callers should ensure synchronization */
283irqreturn_t smp_ipi_demux_relaxed(void)
284{
285 struct cpu_messages *info;
286 unsigned long all;
287
288 info = this_cpu_ptr(&ipi_message);
289 do {
290 all = xchg(&info->messages, 0);
291#if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
292 /*
293 * Must check for PPC_MSG_RM_HOST_ACTION messages
294 * before PPC_MSG_CALL_FUNCTION messages because when
295 * a VM is destroyed, we call kick_all_cpus_sync()
296 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
297 * messages have completed before we free any VCPUs.
298 */
299 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
300 kvmppc_xics_ipi_action();
301#endif
302 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
303 generic_smp_call_function_interrupt();
304 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
305 scheduler_ipi();
306#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
307 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
308 timer_broadcast_interrupt();
309#endif
310#ifdef CONFIG_NMI_IPI
311 if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
312 nmi_ipi_action(0, NULL);
313#endif
314 } while (info->messages);
315
316 return IRQ_HANDLED;
317}
318#endif /* CONFIG_PPC_SMP_MUXED_IPI */
319
320static inline void do_message_pass(int cpu, int msg)
321{
322 if (smp_ops->message_pass)
323 smp_ops->message_pass(cpu, msg);
324#ifdef CONFIG_PPC_SMP_MUXED_IPI
325 else
326 smp_muxed_ipi_message_pass(cpu, msg);
327#endif
328}
329
330void smp_send_reschedule(int cpu)
331{
332 if (likely(smp_ops))
333 do_message_pass(cpu, PPC_MSG_RESCHEDULE);
334}
335EXPORT_SYMBOL_GPL(smp_send_reschedule);
336
337void arch_send_call_function_single_ipi(int cpu)
338{
339 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
340}
341
342void arch_send_call_function_ipi_mask(const struct cpumask *mask)
343{
344 unsigned int cpu;
345
346 for_each_cpu(cpu, mask)
347 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
348}
349
350#ifdef CONFIG_NMI_IPI
351
352/*
353 * "NMI IPI" system.
354 *
355 * NMI IPIs may not be recoverable, so should not be used as ongoing part of
356 * a running system. They can be used for crash, debug, halt/reboot, etc.
357 *
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000358 * The IPI call waits with interrupts disabled until all targets enter the
David Brazdil0f672f62019-12-10 10:32:29 +0000359 * NMI handler, then returns. Subsequent IPIs can be issued before targets
360 * have returned from their handlers, so there is no guarantee about
361 * concurrency or re-entrancy.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000362 *
David Brazdil0f672f62019-12-10 10:32:29 +0000363 * A new NMI can be issued before all targets exit the handler.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000364 *
365 * The IPI call may time out without all targets entering the NMI handler.
366 * In that case, there is some logic to recover (and ignore subsequent
367 * NMI interrupts that may eventually be raised), but the platform interrupt
368 * handler may not be able to distinguish this from other exception causes,
369 * which may cause a crash.
370 */
371
372static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
373static struct cpumask nmi_ipi_pending_mask;
David Brazdil0f672f62019-12-10 10:32:29 +0000374static bool nmi_ipi_busy = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000375static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
376
377static void nmi_ipi_lock_start(unsigned long *flags)
378{
379 raw_local_irq_save(*flags);
380 hard_irq_disable();
381 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
382 raw_local_irq_restore(*flags);
383 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
384 raw_local_irq_save(*flags);
385 hard_irq_disable();
386 }
387}
388
389static void nmi_ipi_lock(void)
390{
391 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
392 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
393}
394
395static void nmi_ipi_unlock(void)
396{
397 smp_mb();
398 WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
399 atomic_set(&__nmi_ipi_lock, 0);
400}
401
402static void nmi_ipi_unlock_end(unsigned long *flags)
403{
404 nmi_ipi_unlock();
405 raw_local_irq_restore(*flags);
406}
407
408/*
409 * Platform NMI handler calls this to ack
410 */
411int smp_handle_nmi_ipi(struct pt_regs *regs)
412{
David Brazdil0f672f62019-12-10 10:32:29 +0000413 void (*fn)(struct pt_regs *) = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000414 unsigned long flags;
415 int me = raw_smp_processor_id();
416 int ret = 0;
417
418 /*
419 * Unexpected NMIs are possible here because the interrupt may not
420 * be able to distinguish NMI IPIs from other types of NMIs, or
421 * because the caller may have timed out.
422 */
423 nmi_ipi_lock_start(&flags);
David Brazdil0f672f62019-12-10 10:32:29 +0000424 if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
425 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
426 fn = READ_ONCE(nmi_ipi_function);
427 WARN_ON_ONCE(!fn);
428 ret = 1;
429 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000430 nmi_ipi_unlock_end(&flags);
431
David Brazdil0f672f62019-12-10 10:32:29 +0000432 if (fn)
433 fn(regs);
434
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000435 return ret;
436}
437
438static void do_smp_send_nmi_ipi(int cpu, bool safe)
439{
440 if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
441 return;
442
443 if (cpu >= 0) {
444 do_message_pass(cpu, PPC_MSG_NMI_IPI);
445 } else {
446 int c;
447
448 for_each_online_cpu(c) {
449 if (c == raw_smp_processor_id())
450 continue;
451 do_message_pass(c, PPC_MSG_NMI_IPI);
452 }
453 }
454}
455
456/*
457 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
458 * - fn is the target callback function.
459 * - delay_us > 0 is the delay before giving up waiting for targets to
David Brazdil0f672f62019-12-10 10:32:29 +0000460 * begin executing the handler, == 0 specifies indefinite delay.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000461 */
David Brazdil0f672f62019-12-10 10:32:29 +0000462static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
463 u64 delay_us, bool safe)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000464{
465 unsigned long flags;
466 int me = raw_smp_processor_id();
467 int ret = 1;
468
469 BUG_ON(cpu == me);
470 BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
471
472 if (unlikely(!smp_ops))
473 return 0;
474
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000475 nmi_ipi_lock_start(&flags);
David Brazdil0f672f62019-12-10 10:32:29 +0000476 while (nmi_ipi_busy) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000477 nmi_ipi_unlock_end(&flags);
David Brazdil0f672f62019-12-10 10:32:29 +0000478 spin_until_cond(!nmi_ipi_busy);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000479 nmi_ipi_lock_start(&flags);
480 }
David Brazdil0f672f62019-12-10 10:32:29 +0000481 nmi_ipi_busy = true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000482 nmi_ipi_function = fn;
483
David Brazdil0f672f62019-12-10 10:32:29 +0000484 WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
485
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000486 if (cpu < 0) {
487 /* ALL_OTHERS */
488 cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
489 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
490 } else {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000491 cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
492 }
David Brazdil0f672f62019-12-10 10:32:29 +0000493
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000494 nmi_ipi_unlock();
495
David Brazdil0f672f62019-12-10 10:32:29 +0000496 /* Interrupts remain hard disabled */
497
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000498 do_smp_send_nmi_ipi(cpu, safe);
499
500 nmi_ipi_lock();
David Brazdil0f672f62019-12-10 10:32:29 +0000501 /* nmi_ipi_busy is set here, so unlock/lock is okay */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000502 while (!cpumask_empty(&nmi_ipi_pending_mask)) {
503 nmi_ipi_unlock();
504 udelay(1);
505 nmi_ipi_lock();
506 if (delay_us) {
507 delay_us--;
508 if (!delay_us)
509 break;
510 }
511 }
512
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000513 if (!cpumask_empty(&nmi_ipi_pending_mask)) {
514 /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
515 ret = 0;
516 cpumask_clear(&nmi_ipi_pending_mask);
517 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000518
David Brazdil0f672f62019-12-10 10:32:29 +0000519 nmi_ipi_function = NULL;
520 nmi_ipi_busy = false;
521
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000522 nmi_ipi_unlock_end(&flags);
523
524 return ret;
525}
526
527int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
528{
529 return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
530}
531
532int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
533{
534 return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
535}
536#endif /* CONFIG_NMI_IPI */
537
538#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
539void tick_broadcast(const struct cpumask *mask)
540{
541 unsigned int cpu;
542
543 for_each_cpu(cpu, mask)
544 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
545}
546#endif
547
548#ifdef CONFIG_DEBUGGER
549void debugger_ipi_callback(struct pt_regs *regs)
550{
551 debugger_ipi(regs);
552}
553
554void smp_send_debugger_break(void)
555{
556 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
557}
558#endif
559
560#ifdef CONFIG_KEXEC_CORE
561void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
562{
563 int cpu;
564
565 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
566 if (kdump_in_progress() && crash_wake_offline) {
567 for_each_present_cpu(cpu) {
568 if (cpu_online(cpu))
569 continue;
570 /*
571 * crash_ipi_callback will wait for
572 * all cpus, including offline CPUs.
573 * We don't care about nmi_ipi_function.
574 * Offline cpus will jump straight into
575 * crash_ipi_callback, we can skip the
576 * entire NMI dance and waiting for
577 * cpus to clear pending mask, etc.
578 */
579 do_smp_send_nmi_ipi(cpu, false);
580 }
581 }
582}
583#endif
584
585#ifdef CONFIG_NMI_IPI
586static void nmi_stop_this_cpu(struct pt_regs *regs)
587{
588 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000589 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
590 */
Olivier Deprez0e641232021-09-23 10:07:05 +0200591 set_cpu_online(smp_processor_id(), false);
592
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000593 spin_begin();
594 while (1)
595 spin_cpu_relax();
596}
597
598void smp_send_stop(void)
599{
600 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
601}
602
603#else /* CONFIG_NMI_IPI */
604
605static void stop_this_cpu(void *dummy)
606{
607 hard_irq_disable();
Olivier Deprez0e641232021-09-23 10:07:05 +0200608
609 /*
610 * Offlining CPUs in stop_this_cpu can result in scheduler warnings,
611 * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants
612 * to know other CPUs are offline before it breaks locks to flush
613 * printk buffers, in case we panic()ed while holding the lock.
614 */
615 set_cpu_online(smp_processor_id(), false);
616
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000617 spin_begin();
618 while (1)
619 spin_cpu_relax();
620}
621
622void smp_send_stop(void)
623{
624 static bool stopped = false;
625
626 /*
627 * Prevent waiting on csd lock from a previous smp_send_stop.
628 * This is racy, but in general callers try to do the right
629 * thing and only fire off one smp_send_stop (e.g., see
630 * kernel/panic.c)
631 */
632 if (stopped)
633 return;
634
635 stopped = true;
636
637 smp_call_function(stop_this_cpu, NULL, 0);
638}
639#endif /* CONFIG_NMI_IPI */
640
David Brazdil0f672f62019-12-10 10:32:29 +0000641struct task_struct *current_set[NR_CPUS];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000642
643static void smp_store_cpu_info(int id)
644{
645 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
646#ifdef CONFIG_PPC_FSL_BOOK3E
647 per_cpu(next_tlbcam_idx, id)
648 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
649#endif
650}
651
652/*
653 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
654 * rather than just passing around the cpumask we pass around a function that
655 * returns the that cpumask for the given CPU.
656 */
657static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
658{
659 cpumask_set_cpu(i, get_cpumask(j));
660 cpumask_set_cpu(j, get_cpumask(i));
661}
662
663#ifdef CONFIG_HOTPLUG_CPU
664static void set_cpus_unrelated(int i, int j,
665 struct cpumask *(*get_cpumask)(int))
666{
667 cpumask_clear_cpu(i, get_cpumask(j));
668 cpumask_clear_cpu(j, get_cpumask(i));
669}
670#endif
671
David Brazdil0f672f62019-12-10 10:32:29 +0000672/*
673 * parse_thread_groups: Parses the "ibm,thread-groups" device tree
674 * property for the CPU device node @dn and stores
675 * the parsed output in the thread_groups
676 * structure @tg if the ibm,thread-groups[0]
677 * matches @property.
678 *
679 * @dn: The device node of the CPU device.
680 * @tg: Pointer to a thread group structure into which the parsed
681 * output of "ibm,thread-groups" is stored.
682 * @property: The property of the thread-group that the caller is
683 * interested in.
684 *
685 * ibm,thread-groups[0..N-1] array defines which group of threads in
686 * the CPU-device node can be grouped together based on the property.
687 *
688 * ibm,thread-groups[0] tells us the property based on which the
689 * threads are being grouped together. If this value is 1, it implies
690 * that the threads in the same group share L1, translation cache.
691 *
692 * ibm,thread-groups[1] tells us how many such thread groups exist.
693 *
694 * ibm,thread-groups[2] tells us the number of threads in each such
695 * group.
696 *
697 * ibm,thread-groups[3..N-1] is the list of threads identified by
698 * "ibm,ppc-interrupt-server#s" arranged as per their membership in
699 * the grouping.
700 *
701 * Example: If ibm,thread-groups = [1,2,4,5,6,7,8,9,10,11,12] it
702 * implies that there are 2 groups of 4 threads each, where each group
703 * of threads share L1, translation cache.
704 *
705 * The "ibm,ppc-interrupt-server#s" of the first group is {5,6,7,8}
706 * and the "ibm,ppc-interrupt-server#s" of the second group is {9, 10,
707 * 11, 12} structure
708 *
709 * Returns 0 on success, -EINVAL if the property does not exist,
710 * -ENODATA if property does not have a value, and -EOVERFLOW if the
711 * property data isn't large enough.
712 */
713static int parse_thread_groups(struct device_node *dn,
714 struct thread_groups *tg,
715 unsigned int property)
716{
717 int i;
718 u32 thread_group_array[3 + MAX_THREAD_LIST_SIZE];
719 u32 *thread_list;
720 size_t total_threads;
721 int ret;
722
723 ret = of_property_read_u32_array(dn, "ibm,thread-groups",
724 thread_group_array, 3);
725 if (ret)
726 return ret;
727
728 tg->property = thread_group_array[0];
729 tg->nr_groups = thread_group_array[1];
730 tg->threads_per_group = thread_group_array[2];
731 if (tg->property != property ||
732 tg->nr_groups < 1 ||
733 tg->threads_per_group < 1)
734 return -ENODATA;
735
736 total_threads = tg->nr_groups * tg->threads_per_group;
737
738 ret = of_property_read_u32_array(dn, "ibm,thread-groups",
739 thread_group_array,
740 3 + total_threads);
741 if (ret)
742 return ret;
743
744 thread_list = &thread_group_array[3];
745
746 for (i = 0 ; i < total_threads; i++)
747 tg->thread_list[i] = thread_list[i];
748
749 return 0;
750}
751
752/*
753 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
754 * that @cpu belongs to.
755 *
756 * @cpu : The logical CPU whose thread group is being searched.
757 * @tg : The thread-group structure of the CPU node which @cpu belongs
758 * to.
759 *
760 * Returns the index to tg->thread_list that points to the the start
761 * of the thread_group that @cpu belongs to.
762 *
763 * Returns -1 if cpu doesn't belong to any of the groups pointed to by
764 * tg->thread_list.
765 */
766static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
767{
768 int hw_cpu_id = get_hard_smp_processor_id(cpu);
769 int i, j;
770
771 for (i = 0; i < tg->nr_groups; i++) {
772 int group_start = i * tg->threads_per_group;
773
774 for (j = 0; j < tg->threads_per_group; j++) {
775 int idx = group_start + j;
776
777 if (tg->thread_list[idx] == hw_cpu_id)
778 return group_start;
779 }
780 }
781
782 return -1;
783}
784
785static int init_cpu_l1_cache_map(int cpu)
786
787{
788 struct device_node *dn = of_get_cpu_node(cpu, NULL);
789 struct thread_groups tg = {.property = 0,
790 .nr_groups = 0,
791 .threads_per_group = 0};
792 int first_thread = cpu_first_thread_sibling(cpu);
793 int i, cpu_group_start = -1, err = 0;
794
795 if (!dn)
796 return -ENODATA;
797
798 err = parse_thread_groups(dn, &tg, THREAD_GROUP_SHARE_L1);
799 if (err)
800 goto out;
801
802 zalloc_cpumask_var_node(&per_cpu(cpu_l1_cache_map, cpu),
803 GFP_KERNEL,
804 cpu_to_node(cpu));
805
806 cpu_group_start = get_cpu_thread_group_start(cpu, &tg);
807
808 if (unlikely(cpu_group_start == -1)) {
809 WARN_ON_ONCE(1);
810 err = -ENODATA;
811 goto out;
812 }
813
814 for (i = first_thread; i < first_thread + threads_per_core; i++) {
815 int i_group_start = get_cpu_thread_group_start(i, &tg);
816
817 if (unlikely(i_group_start == -1)) {
818 WARN_ON_ONCE(1);
819 err = -ENODATA;
820 goto out;
821 }
822
823 if (i_group_start == cpu_group_start)
824 cpumask_set_cpu(i, per_cpu(cpu_l1_cache_map, cpu));
825 }
826
827out:
828 of_node_put(dn);
829 return err;
830}
831
832static int init_big_cores(void)
833{
834 int cpu;
835
836 for_each_possible_cpu(cpu) {
837 int err = init_cpu_l1_cache_map(cpu);
838
839 if (err)
840 return err;
841
842 zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
843 GFP_KERNEL,
844 cpu_to_node(cpu));
845 }
846
847 has_big_cores = true;
848 return 0;
849}
850
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000851void __init smp_prepare_cpus(unsigned int max_cpus)
852{
853 unsigned int cpu;
854
855 DBG("smp_prepare_cpus\n");
856
857 /*
858 * setup_cpu may need to be called on the boot cpu. We havent
859 * spun any cpus up but lets be paranoid.
860 */
861 BUG_ON(boot_cpuid != smp_processor_id());
862
863 /* Fixup boot cpu */
864 smp_store_cpu_info(boot_cpuid);
865 cpu_callin_map[boot_cpuid] = 1;
866
867 for_each_possible_cpu(cpu) {
868 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
869 GFP_KERNEL, cpu_to_node(cpu));
870 zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
871 GFP_KERNEL, cpu_to_node(cpu));
872 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
873 GFP_KERNEL, cpu_to_node(cpu));
874 /*
875 * numa_node_id() works after this.
876 */
877 if (cpu_present(cpu)) {
878 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
879 set_cpu_numa_mem(cpu,
880 local_memory_node(numa_cpu_lookup_table[cpu]));
881 }
882 }
883
884 /* Init the cpumasks so the boot CPU is related to itself */
885 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
886 cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
887 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
888
David Brazdil0f672f62019-12-10 10:32:29 +0000889 init_big_cores();
890 if (has_big_cores) {
891 cpumask_set_cpu(boot_cpuid,
892 cpu_smallcore_mask(boot_cpuid));
893 }
894
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000895 if (smp_ops && smp_ops->probe)
896 smp_ops->probe();
897}
898
899void smp_prepare_boot_cpu(void)
900{
901 BUG_ON(smp_processor_id() != boot_cpuid);
902#ifdef CONFIG_PPC64
903 paca_ptrs[boot_cpuid]->__current = current;
904#endif
905 set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
David Brazdil0f672f62019-12-10 10:32:29 +0000906 current_set[boot_cpuid] = current;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000907}
908
909#ifdef CONFIG_HOTPLUG_CPU
910
911int generic_cpu_disable(void)
912{
913 unsigned int cpu = smp_processor_id();
914
915 if (cpu == boot_cpuid)
916 return -EBUSY;
917
918 set_cpu_online(cpu, false);
919#ifdef CONFIG_PPC64
920 vdso_data->processorCount--;
921#endif
922 /* Update affinity of all IRQs previously aimed at this CPU */
923 irq_migrate_all_off_this_cpu();
924
925 /*
926 * Depending on the details of the interrupt controller, it's possible
927 * that one of the interrupts we just migrated away from this CPU is
928 * actually already pending on this CPU. If we leave it in that state
929 * the interrupt will never be EOI'ed, and will never fire again. So
930 * temporarily enable interrupts here, to allow any pending interrupt to
931 * be received (and EOI'ed), before we take this CPU offline.
932 */
933 local_irq_enable();
934 mdelay(1);
935 local_irq_disable();
936
937 return 0;
938}
939
940void generic_cpu_die(unsigned int cpu)
941{
942 int i;
943
944 for (i = 0; i < 100; i++) {
945 smp_rmb();
946 if (is_cpu_dead(cpu))
947 return;
948 msleep(100);
949 }
950 printk(KERN_ERR "CPU%d didn't die...\n", cpu);
951}
952
953void generic_set_cpu_dead(unsigned int cpu)
954{
955 per_cpu(cpu_state, cpu) = CPU_DEAD;
956}
957
958/*
959 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
960 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
961 * which makes the delay in generic_cpu_die() not happen.
962 */
963void generic_set_cpu_up(unsigned int cpu)
964{
965 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
966}
967
968int generic_check_cpu_restart(unsigned int cpu)
969{
970 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
971}
972
973int is_cpu_dead(unsigned int cpu)
974{
975 return per_cpu(cpu_state, cpu) == CPU_DEAD;
976}
977
978static bool secondaries_inhibited(void)
979{
980 return kvm_hv_mode_active();
981}
982
983#else /* HOTPLUG_CPU */
984
985#define secondaries_inhibited() 0
986
987#endif
988
989static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
990{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000991#ifdef CONFIG_PPC64
992 paca_ptrs[cpu]->__current = idle;
David Brazdil0f672f62019-12-10 10:32:29 +0000993 paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
994 THREAD_SIZE - STACK_FRAME_OVERHEAD;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000995#endif
David Brazdil0f672f62019-12-10 10:32:29 +0000996 idle->cpu = cpu;
997 secondary_current = current_set[cpu] = idle;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000998}
999
1000int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1001{
1002 int rc, c;
1003
1004 /*
1005 * Don't allow secondary threads to come online if inhibited
1006 */
1007 if (threads_per_core > 1 && secondaries_inhibited() &&
1008 cpu_thread_in_subcore(cpu))
1009 return -EBUSY;
1010
1011 if (smp_ops == NULL ||
1012 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1013 return -EINVAL;
1014
1015 cpu_idle_thread_init(cpu, tidle);
1016
1017 /*
1018 * The platform might need to allocate resources prior to bringing
1019 * up the CPU
1020 */
1021 if (smp_ops->prepare_cpu) {
1022 rc = smp_ops->prepare_cpu(cpu);
1023 if (rc)
1024 return rc;
1025 }
1026
1027 /* Make sure callin-map entry is 0 (can be leftover a CPU
1028 * hotplug
1029 */
1030 cpu_callin_map[cpu] = 0;
1031
1032 /* The information for processor bringup must
1033 * be written out to main store before we release
1034 * the processor.
1035 */
1036 smp_mb();
1037
1038 /* wake up cpus */
1039 DBG("smp: kicking cpu %d\n", cpu);
1040 rc = smp_ops->kick_cpu(cpu);
1041 if (rc) {
1042 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
1043 return rc;
1044 }
1045
1046 /*
1047 * wait to see if the cpu made a callin (is actually up).
1048 * use this value that I found through experimentation.
1049 * -- Cort
1050 */
1051 if (system_state < SYSTEM_RUNNING)
1052 for (c = 50000; c && !cpu_callin_map[cpu]; c--)
1053 udelay(100);
1054#ifdef CONFIG_HOTPLUG_CPU
1055 else
1056 /*
1057 * CPUs can take much longer to come up in the
1058 * hotplug case. Wait five seconds.
1059 */
1060 for (c = 5000; c && !cpu_callin_map[cpu]; c--)
1061 msleep(1);
1062#endif
1063
1064 if (!cpu_callin_map[cpu]) {
1065 printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1066 return -ENOENT;
1067 }
1068
1069 DBG("Processor %u found.\n", cpu);
1070
1071 if (smp_ops->give_timebase)
1072 smp_ops->give_timebase();
1073
1074 /* Wait until cpu puts itself in the online & active maps */
1075 spin_until_cond(cpu_online(cpu));
1076
1077 return 0;
1078}
1079
1080/* Return the value of the reg property corresponding to the given
1081 * logical cpu.
1082 */
1083int cpu_to_core_id(int cpu)
1084{
1085 struct device_node *np;
1086 const __be32 *reg;
1087 int id = -1;
1088
1089 np = of_get_cpu_node(cpu, NULL);
1090 if (!np)
1091 goto out;
1092
1093 reg = of_get_property(np, "reg", NULL);
1094 if (!reg)
1095 goto out;
1096
1097 id = be32_to_cpup(reg);
1098out:
1099 of_node_put(np);
1100 return id;
1101}
1102EXPORT_SYMBOL_GPL(cpu_to_core_id);
1103
1104/* Helper routines for cpu to core mapping */
1105int cpu_core_index_of_thread(int cpu)
1106{
1107 return cpu >> threads_shift;
1108}
1109EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
1110
1111int cpu_first_thread_of_core(int core)
1112{
1113 return core << threads_shift;
1114}
1115EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
1116
1117/* Must be called when no change can occur to cpu_present_mask,
1118 * i.e. during cpu online or offline.
1119 */
1120static struct device_node *cpu_to_l2cache(int cpu)
1121{
1122 struct device_node *np;
1123 struct device_node *cache;
1124
1125 if (!cpu_present(cpu))
1126 return NULL;
1127
1128 np = of_get_cpu_node(cpu, NULL);
1129 if (np == NULL)
1130 return NULL;
1131
1132 cache = of_find_next_cache_node(np);
1133
1134 of_node_put(np);
1135
1136 return cache;
1137}
1138
1139static bool update_mask_by_l2(int cpu, struct cpumask *(*mask_fn)(int))
1140{
1141 struct device_node *l2_cache, *np;
1142 int i;
1143
1144 l2_cache = cpu_to_l2cache(cpu);
1145 if (!l2_cache)
1146 return false;
1147
1148 for_each_cpu(i, cpu_online_mask) {
1149 /*
1150 * when updating the marks the current CPU has not been marked
1151 * online, but we need to update the cache masks
1152 */
1153 np = cpu_to_l2cache(i);
1154 if (!np)
1155 continue;
1156
1157 if (np == l2_cache)
1158 set_cpus_related(cpu, i, mask_fn);
1159
1160 of_node_put(np);
1161 }
1162 of_node_put(l2_cache);
1163
1164 return true;
1165}
1166
1167#ifdef CONFIG_HOTPLUG_CPU
1168static void remove_cpu_from_masks(int cpu)
1169{
1170 int i;
1171
1172 /* NB: cpu_core_mask is a superset of the others */
1173 for_each_cpu(i, cpu_core_mask(cpu)) {
1174 set_cpus_unrelated(cpu, i, cpu_core_mask);
1175 set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
1176 set_cpus_unrelated(cpu, i, cpu_sibling_mask);
David Brazdil0f672f62019-12-10 10:32:29 +00001177 if (has_big_cores)
1178 set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001179 }
1180}
1181#endif
1182
David Brazdil0f672f62019-12-10 10:32:29 +00001183static inline void add_cpu_to_smallcore_masks(int cpu)
1184{
1185 struct cpumask *this_l1_cache_map = per_cpu(cpu_l1_cache_map, cpu);
1186 int i, first_thread = cpu_first_thread_sibling(cpu);
1187
1188 if (!has_big_cores)
1189 return;
1190
1191 cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
1192
1193 for (i = first_thread; i < first_thread + threads_per_core; i++) {
1194 if (cpu_online(i) && cpumask_test_cpu(i, this_l1_cache_map))
1195 set_cpus_related(i, cpu, cpu_smallcore_mask);
1196 }
1197}
1198
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001199static void add_cpu_to_masks(int cpu)
1200{
1201 int first_thread = cpu_first_thread_sibling(cpu);
1202 int chipid = cpu_to_chip_id(cpu);
1203 int i;
1204
1205 /*
1206 * This CPU will not be in the online mask yet so we need to manually
1207 * add it to it's own thread sibling mask.
1208 */
1209 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
1210
1211 for (i = first_thread; i < first_thread + threads_per_core; i++)
1212 if (cpu_online(i))
1213 set_cpus_related(i, cpu, cpu_sibling_mask);
1214
David Brazdil0f672f62019-12-10 10:32:29 +00001215 add_cpu_to_smallcore_masks(cpu);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001216 /*
1217 * Copy the thread sibling mask into the cache sibling mask
1218 * and mark any CPUs that share an L2 with this CPU.
1219 */
1220 for_each_cpu(i, cpu_sibling_mask(cpu))
1221 set_cpus_related(cpu, i, cpu_l2_cache_mask);
1222 update_mask_by_l2(cpu, cpu_l2_cache_mask);
1223
1224 /*
1225 * Copy the cache sibling mask into core sibling mask and mark
1226 * any CPUs on the same chip as this CPU.
1227 */
1228 for_each_cpu(i, cpu_l2_cache_mask(cpu))
1229 set_cpus_related(cpu, i, cpu_core_mask);
1230
1231 if (chipid == -1)
1232 return;
1233
1234 for_each_cpu(i, cpu_online_mask)
1235 if (cpu_to_chip_id(i) == chipid)
1236 set_cpus_related(cpu, i, cpu_core_mask);
1237}
1238
1239static bool shared_caches;
1240
1241/* Activate a secondary processor. */
1242void start_secondary(void *unused)
1243{
1244 unsigned int cpu = smp_processor_id();
David Brazdil0f672f62019-12-10 10:32:29 +00001245 struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001246
1247 mmgrab(&init_mm);
1248 current->active_mm = &init_mm;
1249
1250 smp_store_cpu_info(cpu);
1251 set_dec(tb_ticks_per_jiffy);
1252 preempt_disable();
1253 cpu_callin_map[cpu] = 1;
1254
1255 if (smp_ops->setup_cpu)
1256 smp_ops->setup_cpu(cpu);
1257 if (smp_ops->take_timebase)
1258 smp_ops->take_timebase();
1259
1260 secondary_cpu_time_init();
1261
1262#ifdef CONFIG_PPC64
1263 if (system_state == SYSTEM_RUNNING)
1264 vdso_data->processorCount++;
1265
1266 vdso_getcpu_init();
1267#endif
Olivier Deprez0e641232021-09-23 10:07:05 +02001268 set_numa_node(numa_cpu_lookup_table[cpu]);
1269 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1270
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001271 /* Update topology CPU masks */
1272 add_cpu_to_masks(cpu);
1273
David Brazdil0f672f62019-12-10 10:32:29 +00001274 if (has_big_cores)
1275 sibling_mask = cpu_smallcore_mask;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001276 /*
1277 * Check for any shared caches. Note that this must be done on a
1278 * per-core basis because one core in the pair might be disabled.
1279 */
David Brazdil0f672f62019-12-10 10:32:29 +00001280 if (!cpumask_equal(cpu_l2_cache_mask(cpu), sibling_mask(cpu)))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001281 shared_caches = true;
1282
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001283 smp_wmb();
1284 notify_cpu_starting(cpu);
1285 set_cpu_online(cpu, true);
1286
David Brazdil0f672f62019-12-10 10:32:29 +00001287 boot_init_stack_canary();
1288
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001289 local_irq_enable();
1290
1291 /* We can enable ftrace for secondary cpus now */
1292 this_cpu_enable_ftrace();
1293
1294 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1295
1296 BUG();
1297}
1298
1299int setup_profiling_timer(unsigned int multiplier)
1300{
1301 return 0;
1302}
1303
1304#ifdef CONFIG_SCHED_SMT
1305/* cpumask of CPUs with asymetric SMT dependancy */
1306static int powerpc_smt_flags(void)
1307{
1308 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1309
1310 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
1311 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
1312 flags |= SD_ASYM_PACKING;
1313 }
1314 return flags;
1315}
1316#endif
1317
1318static struct sched_domain_topology_level powerpc_topology[] = {
1319#ifdef CONFIG_SCHED_SMT
1320 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1321#endif
1322 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1323 { NULL, },
1324};
1325
1326/*
1327 * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1328 * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1329 * since the migrated task remains cache hot. We want to take advantage of this
1330 * at the scheduler level so an extra topology level is required.
1331 */
1332static int powerpc_shared_cache_flags(void)
1333{
1334 return SD_SHARE_PKG_RESOURCES;
1335}
1336
1337/*
1338 * We can't just pass cpu_l2_cache_mask() directly because
1339 * returns a non-const pointer and the compiler barfs on that.
1340 */
1341static const struct cpumask *shared_cache_mask(int cpu)
1342{
1343 return cpu_l2_cache_mask(cpu);
1344}
1345
David Brazdil0f672f62019-12-10 10:32:29 +00001346#ifdef CONFIG_SCHED_SMT
1347static const struct cpumask *smallcore_smt_mask(int cpu)
1348{
1349 return cpu_smallcore_mask(cpu);
1350}
1351#endif
1352
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001353static struct sched_domain_topology_level power9_topology[] = {
1354#ifdef CONFIG_SCHED_SMT
1355 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1356#endif
1357 { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
1358 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1359 { NULL, },
1360};
1361
1362void __init smp_cpus_done(unsigned int max_cpus)
1363{
1364 /*
1365 * We are running pinned to the boot CPU, see rest_init().
1366 */
1367 if (smp_ops && smp_ops->setup_cpu)
1368 smp_ops->setup_cpu(boot_cpuid);
1369
1370 if (smp_ops && smp_ops->bringup_done)
1371 smp_ops->bringup_done();
1372
1373 /*
1374 * On a shared LPAR, associativity needs to be requested.
1375 * Hence, get numa topology before dumping cpu topology
1376 */
1377 shared_proc_topology_init();
1378 dump_numa_cpu_topology();
1379
David Brazdil0f672f62019-12-10 10:32:29 +00001380#ifdef CONFIG_SCHED_SMT
1381 if (has_big_cores) {
1382 pr_info("Using small cores at SMT level\n");
1383 power9_topology[0].mask = smallcore_smt_mask;
1384 powerpc_topology[0].mask = smallcore_smt_mask;
1385 }
1386#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001387 /*
1388 * If any CPU detects that it's sharing a cache with another CPU then
1389 * use the deeper topology that is aware of this sharing.
1390 */
1391 if (shared_caches) {
1392 pr_info("Using shared cache scheduler topology\n");
1393 set_sched_topology(power9_topology);
1394 } else {
1395 pr_info("Using standard scheduler topology\n");
1396 set_sched_topology(powerpc_topology);
1397 }
1398}
1399
1400#ifdef CONFIG_HOTPLUG_CPU
1401int __cpu_disable(void)
1402{
1403 int cpu = smp_processor_id();
1404 int err;
1405
1406 if (!smp_ops->cpu_disable)
1407 return -ENOSYS;
1408
1409 this_cpu_disable_ftrace();
1410
1411 err = smp_ops->cpu_disable();
1412 if (err)
1413 return err;
1414
1415 /* Update sibling maps */
1416 remove_cpu_from_masks(cpu);
1417
1418 return 0;
1419}
1420
1421void __cpu_die(unsigned int cpu)
1422{
1423 if (smp_ops->cpu_die)
1424 smp_ops->cpu_die(cpu);
1425}
1426
1427void cpu_die(void)
1428{
1429 /*
1430 * Disable on the down path. This will be re-enabled by
1431 * start_secondary() via start_secondary_resume() below
1432 */
1433 this_cpu_disable_ftrace();
1434
1435 if (ppc_md.cpu_die)
1436 ppc_md.cpu_die();
1437
1438 /* If we return, we re-enter start_secondary */
1439 start_secondary_resume();
1440}
1441
1442#endif