Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) 2011, 2012 STRATO. All rights reserved. |
| 4 | */ |
| 5 | |
| 6 | #include <linux/blkdev.h> |
| 7 | #include <linux/ratelimit.h> |
| 8 | #include <linux/sched/mm.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 9 | #include <crypto/hash.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 10 | #include "ctree.h" |
| 11 | #include "volumes.h" |
| 12 | #include "disk-io.h" |
| 13 | #include "ordered-data.h" |
| 14 | #include "transaction.h" |
| 15 | #include "backref.h" |
| 16 | #include "extent_io.h" |
| 17 | #include "dev-replace.h" |
| 18 | #include "check-integrity.h" |
| 19 | #include "rcu-string.h" |
| 20 | #include "raid56.h" |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 21 | #include "block-group.h" |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 22 | |
| 23 | /* |
| 24 | * This is only the first step towards a full-features scrub. It reads all |
| 25 | * extent and super block and verifies the checksums. In case a bad checksum |
| 26 | * is found or the extent cannot be read, good data will be written back if |
| 27 | * any can be found. |
| 28 | * |
| 29 | * Future enhancements: |
| 30 | * - In case an unrepairable extent is encountered, track which files are |
| 31 | * affected and report them |
| 32 | * - track and record media errors, throw out bad devices |
| 33 | * - add a mode to also read unallocated space |
| 34 | */ |
| 35 | |
| 36 | struct scrub_block; |
| 37 | struct scrub_ctx; |
| 38 | |
| 39 | /* |
| 40 | * the following three values only influence the performance. |
| 41 | * The last one configures the number of parallel and outstanding I/O |
| 42 | * operations. The first two values configure an upper limit for the number |
| 43 | * of (dynamically allocated) pages that are added to a bio. |
| 44 | */ |
| 45 | #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */ |
| 46 | #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */ |
| 47 | #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */ |
| 48 | |
| 49 | /* |
| 50 | * the following value times PAGE_SIZE needs to be large enough to match the |
| 51 | * largest node/leaf/sector size that shall be supported. |
| 52 | * Values larger than BTRFS_STRIPE_LEN are not supported. |
| 53 | */ |
| 54 | #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */ |
| 55 | |
| 56 | struct scrub_recover { |
| 57 | refcount_t refs; |
| 58 | struct btrfs_bio *bbio; |
| 59 | u64 map_length; |
| 60 | }; |
| 61 | |
| 62 | struct scrub_page { |
| 63 | struct scrub_block *sblock; |
| 64 | struct page *page; |
| 65 | struct btrfs_device *dev; |
| 66 | struct list_head list; |
| 67 | u64 flags; /* extent flags */ |
| 68 | u64 generation; |
| 69 | u64 logical; |
| 70 | u64 physical; |
| 71 | u64 physical_for_dev_replace; |
| 72 | atomic_t refs; |
| 73 | struct { |
| 74 | unsigned int mirror_num:8; |
| 75 | unsigned int have_csum:1; |
| 76 | unsigned int io_error:1; |
| 77 | }; |
| 78 | u8 csum[BTRFS_CSUM_SIZE]; |
| 79 | |
| 80 | struct scrub_recover *recover; |
| 81 | }; |
| 82 | |
| 83 | struct scrub_bio { |
| 84 | int index; |
| 85 | struct scrub_ctx *sctx; |
| 86 | struct btrfs_device *dev; |
| 87 | struct bio *bio; |
| 88 | blk_status_t status; |
| 89 | u64 logical; |
| 90 | u64 physical; |
| 91 | #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO |
| 92 | struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO]; |
| 93 | #else |
| 94 | struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO]; |
| 95 | #endif |
| 96 | int page_count; |
| 97 | int next_free; |
| 98 | struct btrfs_work work; |
| 99 | }; |
| 100 | |
| 101 | struct scrub_block { |
| 102 | struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK]; |
| 103 | int page_count; |
| 104 | atomic_t outstanding_pages; |
| 105 | refcount_t refs; /* free mem on transition to zero */ |
| 106 | struct scrub_ctx *sctx; |
| 107 | struct scrub_parity *sparity; |
| 108 | struct { |
| 109 | unsigned int header_error:1; |
| 110 | unsigned int checksum_error:1; |
| 111 | unsigned int no_io_error_seen:1; |
| 112 | unsigned int generation_error:1; /* also sets header_error */ |
| 113 | |
| 114 | /* The following is for the data used to check parity */ |
| 115 | /* It is for the data with checksum */ |
| 116 | unsigned int data_corrected:1; |
| 117 | }; |
| 118 | struct btrfs_work work; |
| 119 | }; |
| 120 | |
| 121 | /* Used for the chunks with parity stripe such RAID5/6 */ |
| 122 | struct scrub_parity { |
| 123 | struct scrub_ctx *sctx; |
| 124 | |
| 125 | struct btrfs_device *scrub_dev; |
| 126 | |
| 127 | u64 logic_start; |
| 128 | |
| 129 | u64 logic_end; |
| 130 | |
| 131 | int nsectors; |
| 132 | |
| 133 | u64 stripe_len; |
| 134 | |
| 135 | refcount_t refs; |
| 136 | |
| 137 | struct list_head spages; |
| 138 | |
| 139 | /* Work of parity check and repair */ |
| 140 | struct btrfs_work work; |
| 141 | |
| 142 | /* Mark the parity blocks which have data */ |
| 143 | unsigned long *dbitmap; |
| 144 | |
| 145 | /* |
| 146 | * Mark the parity blocks which have data, but errors happen when |
| 147 | * read data or check data |
| 148 | */ |
| 149 | unsigned long *ebitmap; |
| 150 | |
| 151 | unsigned long bitmap[0]; |
| 152 | }; |
| 153 | |
| 154 | struct scrub_ctx { |
| 155 | struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; |
| 156 | struct btrfs_fs_info *fs_info; |
| 157 | int first_free; |
| 158 | int curr; |
| 159 | atomic_t bios_in_flight; |
| 160 | atomic_t workers_pending; |
| 161 | spinlock_t list_lock; |
| 162 | wait_queue_head_t list_wait; |
| 163 | u16 csum_size; |
| 164 | struct list_head csum_list; |
| 165 | atomic_t cancel_req; |
| 166 | int readonly; |
| 167 | int pages_per_rd_bio; |
| 168 | |
| 169 | int is_dev_replace; |
| 170 | |
| 171 | struct scrub_bio *wr_curr_bio; |
| 172 | struct mutex wr_lock; |
| 173 | int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */ |
| 174 | struct btrfs_device *wr_tgtdev; |
| 175 | bool flush_all_writes; |
| 176 | |
| 177 | /* |
| 178 | * statistics |
| 179 | */ |
| 180 | struct btrfs_scrub_progress stat; |
| 181 | spinlock_t stat_lock; |
| 182 | |
| 183 | /* |
| 184 | * Use a ref counter to avoid use-after-free issues. Scrub workers |
| 185 | * decrement bios_in_flight and workers_pending and then do a wakeup |
| 186 | * on the list_wait wait queue. We must ensure the main scrub task |
| 187 | * doesn't free the scrub context before or while the workers are |
| 188 | * doing the wakeup() call. |
| 189 | */ |
| 190 | refcount_t refs; |
| 191 | }; |
| 192 | |
| 193 | struct scrub_warning { |
| 194 | struct btrfs_path *path; |
| 195 | u64 extent_item_size; |
| 196 | const char *errstr; |
| 197 | u64 physical; |
| 198 | u64 logical; |
| 199 | struct btrfs_device *dev; |
| 200 | }; |
| 201 | |
| 202 | struct full_stripe_lock { |
| 203 | struct rb_node node; |
| 204 | u64 logical; |
| 205 | u64 refs; |
| 206 | struct mutex mutex; |
| 207 | }; |
| 208 | |
| 209 | static void scrub_pending_bio_inc(struct scrub_ctx *sctx); |
| 210 | static void scrub_pending_bio_dec(struct scrub_ctx *sctx); |
| 211 | static int scrub_handle_errored_block(struct scrub_block *sblock_to_check); |
| 212 | static int scrub_setup_recheck_block(struct scrub_block *original_sblock, |
| 213 | struct scrub_block *sblocks_for_recheck); |
| 214 | static void scrub_recheck_block(struct btrfs_fs_info *fs_info, |
| 215 | struct scrub_block *sblock, |
| 216 | int retry_failed_mirror); |
| 217 | static void scrub_recheck_block_checksum(struct scrub_block *sblock); |
| 218 | static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, |
| 219 | struct scrub_block *sblock_good); |
| 220 | static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, |
| 221 | struct scrub_block *sblock_good, |
| 222 | int page_num, int force_write); |
| 223 | static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); |
| 224 | static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, |
| 225 | int page_num); |
| 226 | static int scrub_checksum_data(struct scrub_block *sblock); |
| 227 | static int scrub_checksum_tree_block(struct scrub_block *sblock); |
| 228 | static int scrub_checksum_super(struct scrub_block *sblock); |
| 229 | static void scrub_block_get(struct scrub_block *sblock); |
| 230 | static void scrub_block_put(struct scrub_block *sblock); |
| 231 | static void scrub_page_get(struct scrub_page *spage); |
| 232 | static void scrub_page_put(struct scrub_page *spage); |
| 233 | static void scrub_parity_get(struct scrub_parity *sparity); |
| 234 | static void scrub_parity_put(struct scrub_parity *sparity); |
| 235 | static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, |
| 236 | struct scrub_page *spage); |
| 237 | static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, |
| 238 | u64 physical, struct btrfs_device *dev, u64 flags, |
| 239 | u64 gen, int mirror_num, u8 *csum, int force, |
| 240 | u64 physical_for_dev_replace); |
| 241 | static void scrub_bio_end_io(struct bio *bio); |
| 242 | static void scrub_bio_end_io_worker(struct btrfs_work *work); |
| 243 | static void scrub_block_complete(struct scrub_block *sblock); |
| 244 | static void scrub_remap_extent(struct btrfs_fs_info *fs_info, |
| 245 | u64 extent_logical, u64 extent_len, |
| 246 | u64 *extent_physical, |
| 247 | struct btrfs_device **extent_dev, |
| 248 | int *extent_mirror_num); |
| 249 | static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, |
| 250 | struct scrub_page *spage); |
| 251 | static void scrub_wr_submit(struct scrub_ctx *sctx); |
| 252 | static void scrub_wr_bio_end_io(struct bio *bio); |
| 253 | static void scrub_wr_bio_end_io_worker(struct btrfs_work *work); |
| 254 | static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); |
| 255 | static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); |
| 256 | static void scrub_put_ctx(struct scrub_ctx *sctx); |
| 257 | |
| 258 | static inline int scrub_is_page_on_raid56(struct scrub_page *page) |
| 259 | { |
| 260 | return page->recover && |
| 261 | (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK); |
| 262 | } |
| 263 | |
| 264 | static void scrub_pending_bio_inc(struct scrub_ctx *sctx) |
| 265 | { |
| 266 | refcount_inc(&sctx->refs); |
| 267 | atomic_inc(&sctx->bios_in_flight); |
| 268 | } |
| 269 | |
| 270 | static void scrub_pending_bio_dec(struct scrub_ctx *sctx) |
| 271 | { |
| 272 | atomic_dec(&sctx->bios_in_flight); |
| 273 | wake_up(&sctx->list_wait); |
| 274 | scrub_put_ctx(sctx); |
| 275 | } |
| 276 | |
| 277 | static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) |
| 278 | { |
| 279 | while (atomic_read(&fs_info->scrub_pause_req)) { |
| 280 | mutex_unlock(&fs_info->scrub_lock); |
| 281 | wait_event(fs_info->scrub_pause_wait, |
| 282 | atomic_read(&fs_info->scrub_pause_req) == 0); |
| 283 | mutex_lock(&fs_info->scrub_lock); |
| 284 | } |
| 285 | } |
| 286 | |
| 287 | static void scrub_pause_on(struct btrfs_fs_info *fs_info) |
| 288 | { |
| 289 | atomic_inc(&fs_info->scrubs_paused); |
| 290 | wake_up(&fs_info->scrub_pause_wait); |
| 291 | } |
| 292 | |
| 293 | static void scrub_pause_off(struct btrfs_fs_info *fs_info) |
| 294 | { |
| 295 | mutex_lock(&fs_info->scrub_lock); |
| 296 | __scrub_blocked_if_needed(fs_info); |
| 297 | atomic_dec(&fs_info->scrubs_paused); |
| 298 | mutex_unlock(&fs_info->scrub_lock); |
| 299 | |
| 300 | wake_up(&fs_info->scrub_pause_wait); |
| 301 | } |
| 302 | |
| 303 | static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) |
| 304 | { |
| 305 | scrub_pause_on(fs_info); |
| 306 | scrub_pause_off(fs_info); |
| 307 | } |
| 308 | |
| 309 | /* |
| 310 | * Insert new full stripe lock into full stripe locks tree |
| 311 | * |
| 312 | * Return pointer to existing or newly inserted full_stripe_lock structure if |
| 313 | * everything works well. |
| 314 | * Return ERR_PTR(-ENOMEM) if we failed to allocate memory |
| 315 | * |
| 316 | * NOTE: caller must hold full_stripe_locks_root->lock before calling this |
| 317 | * function |
| 318 | */ |
| 319 | static struct full_stripe_lock *insert_full_stripe_lock( |
| 320 | struct btrfs_full_stripe_locks_tree *locks_root, |
| 321 | u64 fstripe_logical) |
| 322 | { |
| 323 | struct rb_node **p; |
| 324 | struct rb_node *parent = NULL; |
| 325 | struct full_stripe_lock *entry; |
| 326 | struct full_stripe_lock *ret; |
| 327 | |
| 328 | lockdep_assert_held(&locks_root->lock); |
| 329 | |
| 330 | p = &locks_root->root.rb_node; |
| 331 | while (*p) { |
| 332 | parent = *p; |
| 333 | entry = rb_entry(parent, struct full_stripe_lock, node); |
| 334 | if (fstripe_logical < entry->logical) { |
| 335 | p = &(*p)->rb_left; |
| 336 | } else if (fstripe_logical > entry->logical) { |
| 337 | p = &(*p)->rb_right; |
| 338 | } else { |
| 339 | entry->refs++; |
| 340 | return entry; |
| 341 | } |
| 342 | } |
| 343 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 344 | /* |
| 345 | * Insert new lock. |
| 346 | */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 347 | ret = kmalloc(sizeof(*ret), GFP_KERNEL); |
| 348 | if (!ret) |
| 349 | return ERR_PTR(-ENOMEM); |
| 350 | ret->logical = fstripe_logical; |
| 351 | ret->refs = 1; |
| 352 | mutex_init(&ret->mutex); |
| 353 | |
| 354 | rb_link_node(&ret->node, parent, p); |
| 355 | rb_insert_color(&ret->node, &locks_root->root); |
| 356 | return ret; |
| 357 | } |
| 358 | |
| 359 | /* |
| 360 | * Search for a full stripe lock of a block group |
| 361 | * |
| 362 | * Return pointer to existing full stripe lock if found |
| 363 | * Return NULL if not found |
| 364 | */ |
| 365 | static struct full_stripe_lock *search_full_stripe_lock( |
| 366 | struct btrfs_full_stripe_locks_tree *locks_root, |
| 367 | u64 fstripe_logical) |
| 368 | { |
| 369 | struct rb_node *node; |
| 370 | struct full_stripe_lock *entry; |
| 371 | |
| 372 | lockdep_assert_held(&locks_root->lock); |
| 373 | |
| 374 | node = locks_root->root.rb_node; |
| 375 | while (node) { |
| 376 | entry = rb_entry(node, struct full_stripe_lock, node); |
| 377 | if (fstripe_logical < entry->logical) |
| 378 | node = node->rb_left; |
| 379 | else if (fstripe_logical > entry->logical) |
| 380 | node = node->rb_right; |
| 381 | else |
| 382 | return entry; |
| 383 | } |
| 384 | return NULL; |
| 385 | } |
| 386 | |
| 387 | /* |
| 388 | * Helper to get full stripe logical from a normal bytenr. |
| 389 | * |
| 390 | * Caller must ensure @cache is a RAID56 block group. |
| 391 | */ |
| 392 | static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache, |
| 393 | u64 bytenr) |
| 394 | { |
| 395 | u64 ret; |
| 396 | |
| 397 | /* |
| 398 | * Due to chunk item size limit, full stripe length should not be |
| 399 | * larger than U32_MAX. Just a sanity check here. |
| 400 | */ |
| 401 | WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX); |
| 402 | |
| 403 | /* |
| 404 | * round_down() can only handle power of 2, while RAID56 full |
| 405 | * stripe length can be 64KiB * n, so we need to manually round down. |
| 406 | */ |
| 407 | ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) * |
| 408 | cache->full_stripe_len + cache->key.objectid; |
| 409 | return ret; |
| 410 | } |
| 411 | |
| 412 | /* |
| 413 | * Lock a full stripe to avoid concurrency of recovery and read |
| 414 | * |
| 415 | * It's only used for profiles with parities (RAID5/6), for other profiles it |
| 416 | * does nothing. |
| 417 | * |
| 418 | * Return 0 if we locked full stripe covering @bytenr, with a mutex held. |
| 419 | * So caller must call unlock_full_stripe() at the same context. |
| 420 | * |
| 421 | * Return <0 if encounters error. |
| 422 | */ |
| 423 | static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, |
| 424 | bool *locked_ret) |
| 425 | { |
| 426 | struct btrfs_block_group_cache *bg_cache; |
| 427 | struct btrfs_full_stripe_locks_tree *locks_root; |
| 428 | struct full_stripe_lock *existing; |
| 429 | u64 fstripe_start; |
| 430 | int ret = 0; |
| 431 | |
| 432 | *locked_ret = false; |
| 433 | bg_cache = btrfs_lookup_block_group(fs_info, bytenr); |
| 434 | if (!bg_cache) { |
| 435 | ASSERT(0); |
| 436 | return -ENOENT; |
| 437 | } |
| 438 | |
| 439 | /* Profiles not based on parity don't need full stripe lock */ |
| 440 | if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) |
| 441 | goto out; |
| 442 | locks_root = &bg_cache->full_stripe_locks_root; |
| 443 | |
| 444 | fstripe_start = get_full_stripe_logical(bg_cache, bytenr); |
| 445 | |
| 446 | /* Now insert the full stripe lock */ |
| 447 | mutex_lock(&locks_root->lock); |
| 448 | existing = insert_full_stripe_lock(locks_root, fstripe_start); |
| 449 | mutex_unlock(&locks_root->lock); |
| 450 | if (IS_ERR(existing)) { |
| 451 | ret = PTR_ERR(existing); |
| 452 | goto out; |
| 453 | } |
| 454 | mutex_lock(&existing->mutex); |
| 455 | *locked_ret = true; |
| 456 | out: |
| 457 | btrfs_put_block_group(bg_cache); |
| 458 | return ret; |
| 459 | } |
| 460 | |
| 461 | /* |
| 462 | * Unlock a full stripe. |
| 463 | * |
| 464 | * NOTE: Caller must ensure it's the same context calling corresponding |
| 465 | * lock_full_stripe(). |
| 466 | * |
| 467 | * Return 0 if we unlock full stripe without problem. |
| 468 | * Return <0 for error |
| 469 | */ |
| 470 | static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, |
| 471 | bool locked) |
| 472 | { |
| 473 | struct btrfs_block_group_cache *bg_cache; |
| 474 | struct btrfs_full_stripe_locks_tree *locks_root; |
| 475 | struct full_stripe_lock *fstripe_lock; |
| 476 | u64 fstripe_start; |
| 477 | bool freeit = false; |
| 478 | int ret = 0; |
| 479 | |
| 480 | /* If we didn't acquire full stripe lock, no need to continue */ |
| 481 | if (!locked) |
| 482 | return 0; |
| 483 | |
| 484 | bg_cache = btrfs_lookup_block_group(fs_info, bytenr); |
| 485 | if (!bg_cache) { |
| 486 | ASSERT(0); |
| 487 | return -ENOENT; |
| 488 | } |
| 489 | if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) |
| 490 | goto out; |
| 491 | |
| 492 | locks_root = &bg_cache->full_stripe_locks_root; |
| 493 | fstripe_start = get_full_stripe_logical(bg_cache, bytenr); |
| 494 | |
| 495 | mutex_lock(&locks_root->lock); |
| 496 | fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start); |
| 497 | /* Unpaired unlock_full_stripe() detected */ |
| 498 | if (!fstripe_lock) { |
| 499 | WARN_ON(1); |
| 500 | ret = -ENOENT; |
| 501 | mutex_unlock(&locks_root->lock); |
| 502 | goto out; |
| 503 | } |
| 504 | |
| 505 | if (fstripe_lock->refs == 0) { |
| 506 | WARN_ON(1); |
| 507 | btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow", |
| 508 | fstripe_lock->logical); |
| 509 | } else { |
| 510 | fstripe_lock->refs--; |
| 511 | } |
| 512 | |
| 513 | if (fstripe_lock->refs == 0) { |
| 514 | rb_erase(&fstripe_lock->node, &locks_root->root); |
| 515 | freeit = true; |
| 516 | } |
| 517 | mutex_unlock(&locks_root->lock); |
| 518 | |
| 519 | mutex_unlock(&fstripe_lock->mutex); |
| 520 | if (freeit) |
| 521 | kfree(fstripe_lock); |
| 522 | out: |
| 523 | btrfs_put_block_group(bg_cache); |
| 524 | return ret; |
| 525 | } |
| 526 | |
| 527 | static void scrub_free_csums(struct scrub_ctx *sctx) |
| 528 | { |
| 529 | while (!list_empty(&sctx->csum_list)) { |
| 530 | struct btrfs_ordered_sum *sum; |
| 531 | sum = list_first_entry(&sctx->csum_list, |
| 532 | struct btrfs_ordered_sum, list); |
| 533 | list_del(&sum->list); |
| 534 | kfree(sum); |
| 535 | } |
| 536 | } |
| 537 | |
| 538 | static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) |
| 539 | { |
| 540 | int i; |
| 541 | |
| 542 | if (!sctx) |
| 543 | return; |
| 544 | |
| 545 | /* this can happen when scrub is cancelled */ |
| 546 | if (sctx->curr != -1) { |
| 547 | struct scrub_bio *sbio = sctx->bios[sctx->curr]; |
| 548 | |
| 549 | for (i = 0; i < sbio->page_count; i++) { |
| 550 | WARN_ON(!sbio->pagev[i]->page); |
| 551 | scrub_block_put(sbio->pagev[i]->sblock); |
| 552 | } |
| 553 | bio_put(sbio->bio); |
| 554 | } |
| 555 | |
| 556 | for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { |
| 557 | struct scrub_bio *sbio = sctx->bios[i]; |
| 558 | |
| 559 | if (!sbio) |
| 560 | break; |
| 561 | kfree(sbio); |
| 562 | } |
| 563 | |
| 564 | kfree(sctx->wr_curr_bio); |
| 565 | scrub_free_csums(sctx); |
| 566 | kfree(sctx); |
| 567 | } |
| 568 | |
| 569 | static void scrub_put_ctx(struct scrub_ctx *sctx) |
| 570 | { |
| 571 | if (refcount_dec_and_test(&sctx->refs)) |
| 572 | scrub_free_ctx(sctx); |
| 573 | } |
| 574 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 575 | static noinline_for_stack struct scrub_ctx *scrub_setup_ctx( |
| 576 | struct btrfs_fs_info *fs_info, int is_dev_replace) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 577 | { |
| 578 | struct scrub_ctx *sctx; |
| 579 | int i; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 580 | |
| 581 | sctx = kzalloc(sizeof(*sctx), GFP_KERNEL); |
| 582 | if (!sctx) |
| 583 | goto nomem; |
| 584 | refcount_set(&sctx->refs, 1); |
| 585 | sctx->is_dev_replace = is_dev_replace; |
| 586 | sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO; |
| 587 | sctx->curr = -1; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 588 | sctx->fs_info = fs_info; |
| 589 | INIT_LIST_HEAD(&sctx->csum_list); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 590 | for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { |
| 591 | struct scrub_bio *sbio; |
| 592 | |
| 593 | sbio = kzalloc(sizeof(*sbio), GFP_KERNEL); |
| 594 | if (!sbio) |
| 595 | goto nomem; |
| 596 | sctx->bios[i] = sbio; |
| 597 | |
| 598 | sbio->index = i; |
| 599 | sbio->sctx = sctx; |
| 600 | sbio->page_count = 0; |
| 601 | btrfs_init_work(&sbio->work, btrfs_scrub_helper, |
| 602 | scrub_bio_end_io_worker, NULL, NULL); |
| 603 | |
| 604 | if (i != SCRUB_BIOS_PER_SCTX - 1) |
| 605 | sctx->bios[i]->next_free = i + 1; |
| 606 | else |
| 607 | sctx->bios[i]->next_free = -1; |
| 608 | } |
| 609 | sctx->first_free = 0; |
| 610 | atomic_set(&sctx->bios_in_flight, 0); |
| 611 | atomic_set(&sctx->workers_pending, 0); |
| 612 | atomic_set(&sctx->cancel_req, 0); |
| 613 | sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 614 | |
| 615 | spin_lock_init(&sctx->list_lock); |
| 616 | spin_lock_init(&sctx->stat_lock); |
| 617 | init_waitqueue_head(&sctx->list_wait); |
| 618 | |
| 619 | WARN_ON(sctx->wr_curr_bio != NULL); |
| 620 | mutex_init(&sctx->wr_lock); |
| 621 | sctx->wr_curr_bio = NULL; |
| 622 | if (is_dev_replace) { |
| 623 | WARN_ON(!fs_info->dev_replace.tgtdev); |
| 624 | sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO; |
| 625 | sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; |
| 626 | sctx->flush_all_writes = false; |
| 627 | } |
| 628 | |
| 629 | return sctx; |
| 630 | |
| 631 | nomem: |
| 632 | scrub_free_ctx(sctx); |
| 633 | return ERR_PTR(-ENOMEM); |
| 634 | } |
| 635 | |
| 636 | static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, |
| 637 | void *warn_ctx) |
| 638 | { |
| 639 | u64 isize; |
| 640 | u32 nlink; |
| 641 | int ret; |
| 642 | int i; |
| 643 | unsigned nofs_flag; |
| 644 | struct extent_buffer *eb; |
| 645 | struct btrfs_inode_item *inode_item; |
| 646 | struct scrub_warning *swarn = warn_ctx; |
| 647 | struct btrfs_fs_info *fs_info = swarn->dev->fs_info; |
| 648 | struct inode_fs_paths *ipath = NULL; |
| 649 | struct btrfs_root *local_root; |
| 650 | struct btrfs_key root_key; |
| 651 | struct btrfs_key key; |
| 652 | |
| 653 | root_key.objectid = root; |
| 654 | root_key.type = BTRFS_ROOT_ITEM_KEY; |
| 655 | root_key.offset = (u64)-1; |
| 656 | local_root = btrfs_read_fs_root_no_name(fs_info, &root_key); |
| 657 | if (IS_ERR(local_root)) { |
| 658 | ret = PTR_ERR(local_root); |
| 659 | goto err; |
| 660 | } |
| 661 | |
| 662 | /* |
| 663 | * this makes the path point to (inum INODE_ITEM ioff) |
| 664 | */ |
| 665 | key.objectid = inum; |
| 666 | key.type = BTRFS_INODE_ITEM_KEY; |
| 667 | key.offset = 0; |
| 668 | |
| 669 | ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); |
| 670 | if (ret) { |
| 671 | btrfs_release_path(swarn->path); |
| 672 | goto err; |
| 673 | } |
| 674 | |
| 675 | eb = swarn->path->nodes[0]; |
| 676 | inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], |
| 677 | struct btrfs_inode_item); |
| 678 | isize = btrfs_inode_size(eb, inode_item); |
| 679 | nlink = btrfs_inode_nlink(eb, inode_item); |
| 680 | btrfs_release_path(swarn->path); |
| 681 | |
| 682 | /* |
| 683 | * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub |
| 684 | * uses GFP_NOFS in this context, so we keep it consistent but it does |
| 685 | * not seem to be strictly necessary. |
| 686 | */ |
| 687 | nofs_flag = memalloc_nofs_save(); |
| 688 | ipath = init_ipath(4096, local_root, swarn->path); |
| 689 | memalloc_nofs_restore(nofs_flag); |
| 690 | if (IS_ERR(ipath)) { |
| 691 | ret = PTR_ERR(ipath); |
| 692 | ipath = NULL; |
| 693 | goto err; |
| 694 | } |
| 695 | ret = paths_from_inode(inum, ipath); |
| 696 | |
| 697 | if (ret < 0) |
| 698 | goto err; |
| 699 | |
| 700 | /* |
| 701 | * we deliberately ignore the bit ipath might have been too small to |
| 702 | * hold all of the paths here |
| 703 | */ |
| 704 | for (i = 0; i < ipath->fspath->elem_cnt; ++i) |
| 705 | btrfs_warn_in_rcu(fs_info, |
| 706 | "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)", |
| 707 | swarn->errstr, swarn->logical, |
| 708 | rcu_str_deref(swarn->dev->name), |
| 709 | swarn->physical, |
| 710 | root, inum, offset, |
| 711 | min(isize - offset, (u64)PAGE_SIZE), nlink, |
| 712 | (char *)(unsigned long)ipath->fspath->val[i]); |
| 713 | |
| 714 | free_ipath(ipath); |
| 715 | return 0; |
| 716 | |
| 717 | err: |
| 718 | btrfs_warn_in_rcu(fs_info, |
| 719 | "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", |
| 720 | swarn->errstr, swarn->logical, |
| 721 | rcu_str_deref(swarn->dev->name), |
| 722 | swarn->physical, |
| 723 | root, inum, offset, ret); |
| 724 | |
| 725 | free_ipath(ipath); |
| 726 | return 0; |
| 727 | } |
| 728 | |
| 729 | static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) |
| 730 | { |
| 731 | struct btrfs_device *dev; |
| 732 | struct btrfs_fs_info *fs_info; |
| 733 | struct btrfs_path *path; |
| 734 | struct btrfs_key found_key; |
| 735 | struct extent_buffer *eb; |
| 736 | struct btrfs_extent_item *ei; |
| 737 | struct scrub_warning swarn; |
| 738 | unsigned long ptr = 0; |
| 739 | u64 extent_item_pos; |
| 740 | u64 flags = 0; |
| 741 | u64 ref_root; |
| 742 | u32 item_size; |
| 743 | u8 ref_level = 0; |
| 744 | int ret; |
| 745 | |
| 746 | WARN_ON(sblock->page_count < 1); |
| 747 | dev = sblock->pagev[0]->dev; |
| 748 | fs_info = sblock->sctx->fs_info; |
| 749 | |
| 750 | path = btrfs_alloc_path(); |
| 751 | if (!path) |
| 752 | return; |
| 753 | |
| 754 | swarn.physical = sblock->pagev[0]->physical; |
| 755 | swarn.logical = sblock->pagev[0]->logical; |
| 756 | swarn.errstr = errstr; |
| 757 | swarn.dev = NULL; |
| 758 | |
| 759 | ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, |
| 760 | &flags); |
| 761 | if (ret < 0) |
| 762 | goto out; |
| 763 | |
| 764 | extent_item_pos = swarn.logical - found_key.objectid; |
| 765 | swarn.extent_item_size = found_key.offset; |
| 766 | |
| 767 | eb = path->nodes[0]; |
| 768 | ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); |
| 769 | item_size = btrfs_item_size_nr(eb, path->slots[0]); |
| 770 | |
| 771 | if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
| 772 | do { |
| 773 | ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, |
| 774 | item_size, &ref_root, |
| 775 | &ref_level); |
| 776 | btrfs_warn_in_rcu(fs_info, |
| 777 | "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", |
| 778 | errstr, swarn.logical, |
| 779 | rcu_str_deref(dev->name), |
| 780 | swarn.physical, |
| 781 | ref_level ? "node" : "leaf", |
| 782 | ret < 0 ? -1 : ref_level, |
| 783 | ret < 0 ? -1 : ref_root); |
| 784 | } while (ret != 1); |
| 785 | btrfs_release_path(path); |
| 786 | } else { |
| 787 | btrfs_release_path(path); |
| 788 | swarn.path = path; |
| 789 | swarn.dev = dev; |
| 790 | iterate_extent_inodes(fs_info, found_key.objectid, |
| 791 | extent_item_pos, 1, |
| 792 | scrub_print_warning_inode, &swarn, false); |
| 793 | } |
| 794 | |
| 795 | out: |
| 796 | btrfs_free_path(path); |
| 797 | } |
| 798 | |
| 799 | static inline void scrub_get_recover(struct scrub_recover *recover) |
| 800 | { |
| 801 | refcount_inc(&recover->refs); |
| 802 | } |
| 803 | |
| 804 | static inline void scrub_put_recover(struct btrfs_fs_info *fs_info, |
| 805 | struct scrub_recover *recover) |
| 806 | { |
| 807 | if (refcount_dec_and_test(&recover->refs)) { |
| 808 | btrfs_bio_counter_dec(fs_info); |
| 809 | btrfs_put_bbio(recover->bbio); |
| 810 | kfree(recover); |
| 811 | } |
| 812 | } |
| 813 | |
| 814 | /* |
| 815 | * scrub_handle_errored_block gets called when either verification of the |
| 816 | * pages failed or the bio failed to read, e.g. with EIO. In the latter |
| 817 | * case, this function handles all pages in the bio, even though only one |
| 818 | * may be bad. |
| 819 | * The goal of this function is to repair the errored block by using the |
| 820 | * contents of one of the mirrors. |
| 821 | */ |
| 822 | static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) |
| 823 | { |
| 824 | struct scrub_ctx *sctx = sblock_to_check->sctx; |
| 825 | struct btrfs_device *dev; |
| 826 | struct btrfs_fs_info *fs_info; |
| 827 | u64 logical; |
| 828 | unsigned int failed_mirror_index; |
| 829 | unsigned int is_metadata; |
| 830 | unsigned int have_csum; |
| 831 | struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ |
| 832 | struct scrub_block *sblock_bad; |
| 833 | int ret; |
| 834 | int mirror_index; |
| 835 | int page_num; |
| 836 | int success; |
| 837 | bool full_stripe_locked; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 838 | unsigned int nofs_flag; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 839 | static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, |
| 840 | DEFAULT_RATELIMIT_BURST); |
| 841 | |
| 842 | BUG_ON(sblock_to_check->page_count < 1); |
| 843 | fs_info = sctx->fs_info; |
| 844 | if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { |
| 845 | /* |
| 846 | * if we find an error in a super block, we just report it. |
| 847 | * They will get written with the next transaction commit |
| 848 | * anyway |
| 849 | */ |
| 850 | spin_lock(&sctx->stat_lock); |
| 851 | ++sctx->stat.super_errors; |
| 852 | spin_unlock(&sctx->stat_lock); |
| 853 | return 0; |
| 854 | } |
| 855 | logical = sblock_to_check->pagev[0]->logical; |
| 856 | BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1); |
| 857 | failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1; |
| 858 | is_metadata = !(sblock_to_check->pagev[0]->flags & |
| 859 | BTRFS_EXTENT_FLAG_DATA); |
| 860 | have_csum = sblock_to_check->pagev[0]->have_csum; |
| 861 | dev = sblock_to_check->pagev[0]->dev; |
| 862 | |
| 863 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 864 | * We must use GFP_NOFS because the scrub task might be waiting for a |
| 865 | * worker task executing this function and in turn a transaction commit |
| 866 | * might be waiting the scrub task to pause (which needs to wait for all |
| 867 | * the worker tasks to complete before pausing). |
| 868 | * We do allocations in the workers through insert_full_stripe_lock() |
| 869 | * and scrub_add_page_to_wr_bio(), which happens down the call chain of |
| 870 | * this function. |
| 871 | */ |
| 872 | nofs_flag = memalloc_nofs_save(); |
| 873 | /* |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 874 | * For RAID5/6, race can happen for a different device scrub thread. |
| 875 | * For data corruption, Parity and Data threads will both try |
| 876 | * to recovery the data. |
| 877 | * Race can lead to doubly added csum error, or even unrecoverable |
| 878 | * error. |
| 879 | */ |
| 880 | ret = lock_full_stripe(fs_info, logical, &full_stripe_locked); |
| 881 | if (ret < 0) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 882 | memalloc_nofs_restore(nofs_flag); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 883 | spin_lock(&sctx->stat_lock); |
| 884 | if (ret == -ENOMEM) |
| 885 | sctx->stat.malloc_errors++; |
| 886 | sctx->stat.read_errors++; |
| 887 | sctx->stat.uncorrectable_errors++; |
| 888 | spin_unlock(&sctx->stat_lock); |
| 889 | return ret; |
| 890 | } |
| 891 | |
| 892 | /* |
| 893 | * read all mirrors one after the other. This includes to |
| 894 | * re-read the extent or metadata block that failed (that was |
| 895 | * the cause that this fixup code is called) another time, |
| 896 | * page by page this time in order to know which pages |
| 897 | * caused I/O errors and which ones are good (for all mirrors). |
| 898 | * It is the goal to handle the situation when more than one |
| 899 | * mirror contains I/O errors, but the errors do not |
| 900 | * overlap, i.e. the data can be repaired by selecting the |
| 901 | * pages from those mirrors without I/O error on the |
| 902 | * particular pages. One example (with blocks >= 2 * PAGE_SIZE) |
| 903 | * would be that mirror #1 has an I/O error on the first page, |
| 904 | * the second page is good, and mirror #2 has an I/O error on |
| 905 | * the second page, but the first page is good. |
| 906 | * Then the first page of the first mirror can be repaired by |
| 907 | * taking the first page of the second mirror, and the |
| 908 | * second page of the second mirror can be repaired by |
| 909 | * copying the contents of the 2nd page of the 1st mirror. |
| 910 | * One more note: if the pages of one mirror contain I/O |
| 911 | * errors, the checksum cannot be verified. In order to get |
| 912 | * the best data for repairing, the first attempt is to find |
| 913 | * a mirror without I/O errors and with a validated checksum. |
| 914 | * Only if this is not possible, the pages are picked from |
| 915 | * mirrors with I/O errors without considering the checksum. |
| 916 | * If the latter is the case, at the end, the checksum of the |
| 917 | * repaired area is verified in order to correctly maintain |
| 918 | * the statistics. |
| 919 | */ |
| 920 | |
| 921 | sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 922 | sizeof(*sblocks_for_recheck), GFP_KERNEL); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 923 | if (!sblocks_for_recheck) { |
| 924 | spin_lock(&sctx->stat_lock); |
| 925 | sctx->stat.malloc_errors++; |
| 926 | sctx->stat.read_errors++; |
| 927 | sctx->stat.uncorrectable_errors++; |
| 928 | spin_unlock(&sctx->stat_lock); |
| 929 | btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); |
| 930 | goto out; |
| 931 | } |
| 932 | |
| 933 | /* setup the context, map the logical blocks and alloc the pages */ |
| 934 | ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck); |
| 935 | if (ret) { |
| 936 | spin_lock(&sctx->stat_lock); |
| 937 | sctx->stat.read_errors++; |
| 938 | sctx->stat.uncorrectable_errors++; |
| 939 | spin_unlock(&sctx->stat_lock); |
| 940 | btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); |
| 941 | goto out; |
| 942 | } |
| 943 | BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); |
| 944 | sblock_bad = sblocks_for_recheck + failed_mirror_index; |
| 945 | |
| 946 | /* build and submit the bios for the failed mirror, check checksums */ |
| 947 | scrub_recheck_block(fs_info, sblock_bad, 1); |
| 948 | |
| 949 | if (!sblock_bad->header_error && !sblock_bad->checksum_error && |
| 950 | sblock_bad->no_io_error_seen) { |
| 951 | /* |
| 952 | * the error disappeared after reading page by page, or |
| 953 | * the area was part of a huge bio and other parts of the |
| 954 | * bio caused I/O errors, or the block layer merged several |
| 955 | * read requests into one and the error is caused by a |
| 956 | * different bio (usually one of the two latter cases is |
| 957 | * the cause) |
| 958 | */ |
| 959 | spin_lock(&sctx->stat_lock); |
| 960 | sctx->stat.unverified_errors++; |
| 961 | sblock_to_check->data_corrected = 1; |
| 962 | spin_unlock(&sctx->stat_lock); |
| 963 | |
| 964 | if (sctx->is_dev_replace) |
| 965 | scrub_write_block_to_dev_replace(sblock_bad); |
| 966 | goto out; |
| 967 | } |
| 968 | |
| 969 | if (!sblock_bad->no_io_error_seen) { |
| 970 | spin_lock(&sctx->stat_lock); |
| 971 | sctx->stat.read_errors++; |
| 972 | spin_unlock(&sctx->stat_lock); |
| 973 | if (__ratelimit(&_rs)) |
| 974 | scrub_print_warning("i/o error", sblock_to_check); |
| 975 | btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); |
| 976 | } else if (sblock_bad->checksum_error) { |
| 977 | spin_lock(&sctx->stat_lock); |
| 978 | sctx->stat.csum_errors++; |
| 979 | spin_unlock(&sctx->stat_lock); |
| 980 | if (__ratelimit(&_rs)) |
| 981 | scrub_print_warning("checksum error", sblock_to_check); |
| 982 | btrfs_dev_stat_inc_and_print(dev, |
| 983 | BTRFS_DEV_STAT_CORRUPTION_ERRS); |
| 984 | } else if (sblock_bad->header_error) { |
| 985 | spin_lock(&sctx->stat_lock); |
| 986 | sctx->stat.verify_errors++; |
| 987 | spin_unlock(&sctx->stat_lock); |
| 988 | if (__ratelimit(&_rs)) |
| 989 | scrub_print_warning("checksum/header error", |
| 990 | sblock_to_check); |
| 991 | if (sblock_bad->generation_error) |
| 992 | btrfs_dev_stat_inc_and_print(dev, |
| 993 | BTRFS_DEV_STAT_GENERATION_ERRS); |
| 994 | else |
| 995 | btrfs_dev_stat_inc_and_print(dev, |
| 996 | BTRFS_DEV_STAT_CORRUPTION_ERRS); |
| 997 | } |
| 998 | |
| 999 | if (sctx->readonly) { |
| 1000 | ASSERT(!sctx->is_dev_replace); |
| 1001 | goto out; |
| 1002 | } |
| 1003 | |
| 1004 | /* |
| 1005 | * now build and submit the bios for the other mirrors, check |
| 1006 | * checksums. |
| 1007 | * First try to pick the mirror which is completely without I/O |
| 1008 | * errors and also does not have a checksum error. |
| 1009 | * If one is found, and if a checksum is present, the full block |
| 1010 | * that is known to contain an error is rewritten. Afterwards |
| 1011 | * the block is known to be corrected. |
| 1012 | * If a mirror is found which is completely correct, and no |
| 1013 | * checksum is present, only those pages are rewritten that had |
| 1014 | * an I/O error in the block to be repaired, since it cannot be |
| 1015 | * determined, which copy of the other pages is better (and it |
| 1016 | * could happen otherwise that a correct page would be |
| 1017 | * overwritten by a bad one). |
| 1018 | */ |
| 1019 | for (mirror_index = 0; ;mirror_index++) { |
| 1020 | struct scrub_block *sblock_other; |
| 1021 | |
| 1022 | if (mirror_index == failed_mirror_index) |
| 1023 | continue; |
| 1024 | |
| 1025 | /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */ |
| 1026 | if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) { |
| 1027 | if (mirror_index >= BTRFS_MAX_MIRRORS) |
| 1028 | break; |
| 1029 | if (!sblocks_for_recheck[mirror_index].page_count) |
| 1030 | break; |
| 1031 | |
| 1032 | sblock_other = sblocks_for_recheck + mirror_index; |
| 1033 | } else { |
| 1034 | struct scrub_recover *r = sblock_bad->pagev[0]->recover; |
| 1035 | int max_allowed = r->bbio->num_stripes - |
| 1036 | r->bbio->num_tgtdevs; |
| 1037 | |
| 1038 | if (mirror_index >= max_allowed) |
| 1039 | break; |
| 1040 | if (!sblocks_for_recheck[1].page_count) |
| 1041 | break; |
| 1042 | |
| 1043 | ASSERT(failed_mirror_index == 0); |
| 1044 | sblock_other = sblocks_for_recheck + 1; |
| 1045 | sblock_other->pagev[0]->mirror_num = 1 + mirror_index; |
| 1046 | } |
| 1047 | |
| 1048 | /* build and submit the bios, check checksums */ |
| 1049 | scrub_recheck_block(fs_info, sblock_other, 0); |
| 1050 | |
| 1051 | if (!sblock_other->header_error && |
| 1052 | !sblock_other->checksum_error && |
| 1053 | sblock_other->no_io_error_seen) { |
| 1054 | if (sctx->is_dev_replace) { |
| 1055 | scrub_write_block_to_dev_replace(sblock_other); |
| 1056 | goto corrected_error; |
| 1057 | } else { |
| 1058 | ret = scrub_repair_block_from_good_copy( |
| 1059 | sblock_bad, sblock_other); |
| 1060 | if (!ret) |
| 1061 | goto corrected_error; |
| 1062 | } |
| 1063 | } |
| 1064 | } |
| 1065 | |
| 1066 | if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace) |
| 1067 | goto did_not_correct_error; |
| 1068 | |
| 1069 | /* |
| 1070 | * In case of I/O errors in the area that is supposed to be |
| 1071 | * repaired, continue by picking good copies of those pages. |
| 1072 | * Select the good pages from mirrors to rewrite bad pages from |
| 1073 | * the area to fix. Afterwards verify the checksum of the block |
| 1074 | * that is supposed to be repaired. This verification step is |
| 1075 | * only done for the purpose of statistic counting and for the |
| 1076 | * final scrub report, whether errors remain. |
| 1077 | * A perfect algorithm could make use of the checksum and try |
| 1078 | * all possible combinations of pages from the different mirrors |
| 1079 | * until the checksum verification succeeds. For example, when |
| 1080 | * the 2nd page of mirror #1 faces I/O errors, and the 2nd page |
| 1081 | * of mirror #2 is readable but the final checksum test fails, |
| 1082 | * then the 2nd page of mirror #3 could be tried, whether now |
| 1083 | * the final checksum succeeds. But this would be a rare |
| 1084 | * exception and is therefore not implemented. At least it is |
| 1085 | * avoided that the good copy is overwritten. |
| 1086 | * A more useful improvement would be to pick the sectors |
| 1087 | * without I/O error based on sector sizes (512 bytes on legacy |
| 1088 | * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one |
| 1089 | * mirror could be repaired by taking 512 byte of a different |
| 1090 | * mirror, even if other 512 byte sectors in the same PAGE_SIZE |
| 1091 | * area are unreadable. |
| 1092 | */ |
| 1093 | success = 1; |
| 1094 | for (page_num = 0; page_num < sblock_bad->page_count; |
| 1095 | page_num++) { |
| 1096 | struct scrub_page *page_bad = sblock_bad->pagev[page_num]; |
| 1097 | struct scrub_block *sblock_other = NULL; |
| 1098 | |
| 1099 | /* skip no-io-error page in scrub */ |
| 1100 | if (!page_bad->io_error && !sctx->is_dev_replace) |
| 1101 | continue; |
| 1102 | |
| 1103 | if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) { |
| 1104 | /* |
| 1105 | * In case of dev replace, if raid56 rebuild process |
| 1106 | * didn't work out correct data, then copy the content |
| 1107 | * in sblock_bad to make sure target device is identical |
| 1108 | * to source device, instead of writing garbage data in |
| 1109 | * sblock_for_recheck array to target device. |
| 1110 | */ |
| 1111 | sblock_other = NULL; |
| 1112 | } else if (page_bad->io_error) { |
| 1113 | /* try to find no-io-error page in mirrors */ |
| 1114 | for (mirror_index = 0; |
| 1115 | mirror_index < BTRFS_MAX_MIRRORS && |
| 1116 | sblocks_for_recheck[mirror_index].page_count > 0; |
| 1117 | mirror_index++) { |
| 1118 | if (!sblocks_for_recheck[mirror_index]. |
| 1119 | pagev[page_num]->io_error) { |
| 1120 | sblock_other = sblocks_for_recheck + |
| 1121 | mirror_index; |
| 1122 | break; |
| 1123 | } |
| 1124 | } |
| 1125 | if (!sblock_other) |
| 1126 | success = 0; |
| 1127 | } |
| 1128 | |
| 1129 | if (sctx->is_dev_replace) { |
| 1130 | /* |
| 1131 | * did not find a mirror to fetch the page |
| 1132 | * from. scrub_write_page_to_dev_replace() |
| 1133 | * handles this case (page->io_error), by |
| 1134 | * filling the block with zeros before |
| 1135 | * submitting the write request |
| 1136 | */ |
| 1137 | if (!sblock_other) |
| 1138 | sblock_other = sblock_bad; |
| 1139 | |
| 1140 | if (scrub_write_page_to_dev_replace(sblock_other, |
| 1141 | page_num) != 0) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1142 | atomic64_inc( |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1143 | &fs_info->dev_replace.num_write_errors); |
| 1144 | success = 0; |
| 1145 | } |
| 1146 | } else if (sblock_other) { |
| 1147 | ret = scrub_repair_page_from_good_copy(sblock_bad, |
| 1148 | sblock_other, |
| 1149 | page_num, 0); |
| 1150 | if (0 == ret) |
| 1151 | page_bad->io_error = 0; |
| 1152 | else |
| 1153 | success = 0; |
| 1154 | } |
| 1155 | } |
| 1156 | |
| 1157 | if (success && !sctx->is_dev_replace) { |
| 1158 | if (is_metadata || have_csum) { |
| 1159 | /* |
| 1160 | * need to verify the checksum now that all |
| 1161 | * sectors on disk are repaired (the write |
| 1162 | * request for data to be repaired is on its way). |
| 1163 | * Just be lazy and use scrub_recheck_block() |
| 1164 | * which re-reads the data before the checksum |
| 1165 | * is verified, but most likely the data comes out |
| 1166 | * of the page cache. |
| 1167 | */ |
| 1168 | scrub_recheck_block(fs_info, sblock_bad, 1); |
| 1169 | if (!sblock_bad->header_error && |
| 1170 | !sblock_bad->checksum_error && |
| 1171 | sblock_bad->no_io_error_seen) |
| 1172 | goto corrected_error; |
| 1173 | else |
| 1174 | goto did_not_correct_error; |
| 1175 | } else { |
| 1176 | corrected_error: |
| 1177 | spin_lock(&sctx->stat_lock); |
| 1178 | sctx->stat.corrected_errors++; |
| 1179 | sblock_to_check->data_corrected = 1; |
| 1180 | spin_unlock(&sctx->stat_lock); |
| 1181 | btrfs_err_rl_in_rcu(fs_info, |
| 1182 | "fixed up error at logical %llu on dev %s", |
| 1183 | logical, rcu_str_deref(dev->name)); |
| 1184 | } |
| 1185 | } else { |
| 1186 | did_not_correct_error: |
| 1187 | spin_lock(&sctx->stat_lock); |
| 1188 | sctx->stat.uncorrectable_errors++; |
| 1189 | spin_unlock(&sctx->stat_lock); |
| 1190 | btrfs_err_rl_in_rcu(fs_info, |
| 1191 | "unable to fixup (regular) error at logical %llu on dev %s", |
| 1192 | logical, rcu_str_deref(dev->name)); |
| 1193 | } |
| 1194 | |
| 1195 | out: |
| 1196 | if (sblocks_for_recheck) { |
| 1197 | for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; |
| 1198 | mirror_index++) { |
| 1199 | struct scrub_block *sblock = sblocks_for_recheck + |
| 1200 | mirror_index; |
| 1201 | struct scrub_recover *recover; |
| 1202 | int page_index; |
| 1203 | |
| 1204 | for (page_index = 0; page_index < sblock->page_count; |
| 1205 | page_index++) { |
| 1206 | sblock->pagev[page_index]->sblock = NULL; |
| 1207 | recover = sblock->pagev[page_index]->recover; |
| 1208 | if (recover) { |
| 1209 | scrub_put_recover(fs_info, recover); |
| 1210 | sblock->pagev[page_index]->recover = |
| 1211 | NULL; |
| 1212 | } |
| 1213 | scrub_page_put(sblock->pagev[page_index]); |
| 1214 | } |
| 1215 | } |
| 1216 | kfree(sblocks_for_recheck); |
| 1217 | } |
| 1218 | |
| 1219 | ret = unlock_full_stripe(fs_info, logical, full_stripe_locked); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1220 | memalloc_nofs_restore(nofs_flag); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1221 | if (ret < 0) |
| 1222 | return ret; |
| 1223 | return 0; |
| 1224 | } |
| 1225 | |
| 1226 | static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio) |
| 1227 | { |
| 1228 | if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) |
| 1229 | return 2; |
| 1230 | else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) |
| 1231 | return 3; |
| 1232 | else |
| 1233 | return (int)bbio->num_stripes; |
| 1234 | } |
| 1235 | |
| 1236 | static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, |
| 1237 | u64 *raid_map, |
| 1238 | u64 mapped_length, |
| 1239 | int nstripes, int mirror, |
| 1240 | int *stripe_index, |
| 1241 | u64 *stripe_offset) |
| 1242 | { |
| 1243 | int i; |
| 1244 | |
| 1245 | if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { |
| 1246 | /* RAID5/6 */ |
| 1247 | for (i = 0; i < nstripes; i++) { |
| 1248 | if (raid_map[i] == RAID6_Q_STRIPE || |
| 1249 | raid_map[i] == RAID5_P_STRIPE) |
| 1250 | continue; |
| 1251 | |
| 1252 | if (logical >= raid_map[i] && |
| 1253 | logical < raid_map[i] + mapped_length) |
| 1254 | break; |
| 1255 | } |
| 1256 | |
| 1257 | *stripe_index = i; |
| 1258 | *stripe_offset = logical - raid_map[i]; |
| 1259 | } else { |
| 1260 | /* The other RAID type */ |
| 1261 | *stripe_index = mirror; |
| 1262 | *stripe_offset = 0; |
| 1263 | } |
| 1264 | } |
| 1265 | |
| 1266 | static int scrub_setup_recheck_block(struct scrub_block *original_sblock, |
| 1267 | struct scrub_block *sblocks_for_recheck) |
| 1268 | { |
| 1269 | struct scrub_ctx *sctx = original_sblock->sctx; |
| 1270 | struct btrfs_fs_info *fs_info = sctx->fs_info; |
| 1271 | u64 length = original_sblock->page_count * PAGE_SIZE; |
| 1272 | u64 logical = original_sblock->pagev[0]->logical; |
| 1273 | u64 generation = original_sblock->pagev[0]->generation; |
| 1274 | u64 flags = original_sblock->pagev[0]->flags; |
| 1275 | u64 have_csum = original_sblock->pagev[0]->have_csum; |
| 1276 | struct scrub_recover *recover; |
| 1277 | struct btrfs_bio *bbio; |
| 1278 | u64 sublen; |
| 1279 | u64 mapped_length; |
| 1280 | u64 stripe_offset; |
| 1281 | int stripe_index; |
| 1282 | int page_index = 0; |
| 1283 | int mirror_index; |
| 1284 | int nmirrors; |
| 1285 | int ret; |
| 1286 | |
| 1287 | /* |
| 1288 | * note: the two members refs and outstanding_pages |
| 1289 | * are not used (and not set) in the blocks that are used for |
| 1290 | * the recheck procedure |
| 1291 | */ |
| 1292 | |
| 1293 | while (length > 0) { |
| 1294 | sublen = min_t(u64, length, PAGE_SIZE); |
| 1295 | mapped_length = sublen; |
| 1296 | bbio = NULL; |
| 1297 | |
| 1298 | /* |
| 1299 | * with a length of PAGE_SIZE, each returned stripe |
| 1300 | * represents one mirror |
| 1301 | */ |
| 1302 | btrfs_bio_counter_inc_blocked(fs_info); |
| 1303 | ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, |
| 1304 | logical, &mapped_length, &bbio); |
| 1305 | if (ret || !bbio || mapped_length < sublen) { |
| 1306 | btrfs_put_bbio(bbio); |
| 1307 | btrfs_bio_counter_dec(fs_info); |
| 1308 | return -EIO; |
| 1309 | } |
| 1310 | |
| 1311 | recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS); |
| 1312 | if (!recover) { |
| 1313 | btrfs_put_bbio(bbio); |
| 1314 | btrfs_bio_counter_dec(fs_info); |
| 1315 | return -ENOMEM; |
| 1316 | } |
| 1317 | |
| 1318 | refcount_set(&recover->refs, 1); |
| 1319 | recover->bbio = bbio; |
| 1320 | recover->map_length = mapped_length; |
| 1321 | |
| 1322 | BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK); |
| 1323 | |
| 1324 | nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS); |
| 1325 | |
| 1326 | for (mirror_index = 0; mirror_index < nmirrors; |
| 1327 | mirror_index++) { |
| 1328 | struct scrub_block *sblock; |
| 1329 | struct scrub_page *page; |
| 1330 | |
| 1331 | sblock = sblocks_for_recheck + mirror_index; |
| 1332 | sblock->sctx = sctx; |
| 1333 | |
| 1334 | page = kzalloc(sizeof(*page), GFP_NOFS); |
| 1335 | if (!page) { |
| 1336 | leave_nomem: |
| 1337 | spin_lock(&sctx->stat_lock); |
| 1338 | sctx->stat.malloc_errors++; |
| 1339 | spin_unlock(&sctx->stat_lock); |
| 1340 | scrub_put_recover(fs_info, recover); |
| 1341 | return -ENOMEM; |
| 1342 | } |
| 1343 | scrub_page_get(page); |
| 1344 | sblock->pagev[page_index] = page; |
| 1345 | page->sblock = sblock; |
| 1346 | page->flags = flags; |
| 1347 | page->generation = generation; |
| 1348 | page->logical = logical; |
| 1349 | page->have_csum = have_csum; |
| 1350 | if (have_csum) |
| 1351 | memcpy(page->csum, |
| 1352 | original_sblock->pagev[0]->csum, |
| 1353 | sctx->csum_size); |
| 1354 | |
| 1355 | scrub_stripe_index_and_offset(logical, |
| 1356 | bbio->map_type, |
| 1357 | bbio->raid_map, |
| 1358 | mapped_length, |
| 1359 | bbio->num_stripes - |
| 1360 | bbio->num_tgtdevs, |
| 1361 | mirror_index, |
| 1362 | &stripe_index, |
| 1363 | &stripe_offset); |
| 1364 | page->physical = bbio->stripes[stripe_index].physical + |
| 1365 | stripe_offset; |
| 1366 | page->dev = bbio->stripes[stripe_index].dev; |
| 1367 | |
| 1368 | BUG_ON(page_index >= original_sblock->page_count); |
| 1369 | page->physical_for_dev_replace = |
| 1370 | original_sblock->pagev[page_index]-> |
| 1371 | physical_for_dev_replace; |
| 1372 | /* for missing devices, dev->bdev is NULL */ |
| 1373 | page->mirror_num = mirror_index + 1; |
| 1374 | sblock->page_count++; |
| 1375 | page->page = alloc_page(GFP_NOFS); |
| 1376 | if (!page->page) |
| 1377 | goto leave_nomem; |
| 1378 | |
| 1379 | scrub_get_recover(recover); |
| 1380 | page->recover = recover; |
| 1381 | } |
| 1382 | scrub_put_recover(fs_info, recover); |
| 1383 | length -= sublen; |
| 1384 | logical += sublen; |
| 1385 | page_index++; |
| 1386 | } |
| 1387 | |
| 1388 | return 0; |
| 1389 | } |
| 1390 | |
| 1391 | static void scrub_bio_wait_endio(struct bio *bio) |
| 1392 | { |
| 1393 | complete(bio->bi_private); |
| 1394 | } |
| 1395 | |
| 1396 | static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info, |
| 1397 | struct bio *bio, |
| 1398 | struct scrub_page *page) |
| 1399 | { |
| 1400 | DECLARE_COMPLETION_ONSTACK(done); |
| 1401 | int ret; |
| 1402 | int mirror_num; |
| 1403 | |
| 1404 | bio->bi_iter.bi_sector = page->logical >> 9; |
| 1405 | bio->bi_private = &done; |
| 1406 | bio->bi_end_io = scrub_bio_wait_endio; |
| 1407 | |
| 1408 | mirror_num = page->sblock->pagev[0]->mirror_num; |
| 1409 | ret = raid56_parity_recover(fs_info, bio, page->recover->bbio, |
| 1410 | page->recover->map_length, |
| 1411 | mirror_num, 0); |
| 1412 | if (ret) |
| 1413 | return ret; |
| 1414 | |
| 1415 | wait_for_completion_io(&done); |
| 1416 | return blk_status_to_errno(bio->bi_status); |
| 1417 | } |
| 1418 | |
| 1419 | static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info, |
| 1420 | struct scrub_block *sblock) |
| 1421 | { |
| 1422 | struct scrub_page *first_page = sblock->pagev[0]; |
| 1423 | struct bio *bio; |
| 1424 | int page_num; |
| 1425 | |
| 1426 | /* All pages in sblock belong to the same stripe on the same device. */ |
| 1427 | ASSERT(first_page->dev); |
| 1428 | if (!first_page->dev->bdev) |
| 1429 | goto out; |
| 1430 | |
| 1431 | bio = btrfs_io_bio_alloc(BIO_MAX_PAGES); |
| 1432 | bio_set_dev(bio, first_page->dev->bdev); |
| 1433 | |
| 1434 | for (page_num = 0; page_num < sblock->page_count; page_num++) { |
| 1435 | struct scrub_page *page = sblock->pagev[page_num]; |
| 1436 | |
| 1437 | WARN_ON(!page->page); |
| 1438 | bio_add_page(bio, page->page, PAGE_SIZE, 0); |
| 1439 | } |
| 1440 | |
| 1441 | if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) { |
| 1442 | bio_put(bio); |
| 1443 | goto out; |
| 1444 | } |
| 1445 | |
| 1446 | bio_put(bio); |
| 1447 | |
| 1448 | scrub_recheck_block_checksum(sblock); |
| 1449 | |
| 1450 | return; |
| 1451 | out: |
| 1452 | for (page_num = 0; page_num < sblock->page_count; page_num++) |
| 1453 | sblock->pagev[page_num]->io_error = 1; |
| 1454 | |
| 1455 | sblock->no_io_error_seen = 0; |
| 1456 | } |
| 1457 | |
| 1458 | /* |
| 1459 | * this function will check the on disk data for checksum errors, header |
| 1460 | * errors and read I/O errors. If any I/O errors happen, the exact pages |
| 1461 | * which are errored are marked as being bad. The goal is to enable scrub |
| 1462 | * to take those pages that are not errored from all the mirrors so that |
| 1463 | * the pages that are errored in the just handled mirror can be repaired. |
| 1464 | */ |
| 1465 | static void scrub_recheck_block(struct btrfs_fs_info *fs_info, |
| 1466 | struct scrub_block *sblock, |
| 1467 | int retry_failed_mirror) |
| 1468 | { |
| 1469 | int page_num; |
| 1470 | |
| 1471 | sblock->no_io_error_seen = 1; |
| 1472 | |
| 1473 | /* short cut for raid56 */ |
| 1474 | if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0])) |
| 1475 | return scrub_recheck_block_on_raid56(fs_info, sblock); |
| 1476 | |
| 1477 | for (page_num = 0; page_num < sblock->page_count; page_num++) { |
| 1478 | struct bio *bio; |
| 1479 | struct scrub_page *page = sblock->pagev[page_num]; |
| 1480 | |
| 1481 | if (page->dev->bdev == NULL) { |
| 1482 | page->io_error = 1; |
| 1483 | sblock->no_io_error_seen = 0; |
| 1484 | continue; |
| 1485 | } |
| 1486 | |
| 1487 | WARN_ON(!page->page); |
| 1488 | bio = btrfs_io_bio_alloc(1); |
| 1489 | bio_set_dev(bio, page->dev->bdev); |
| 1490 | |
| 1491 | bio_add_page(bio, page->page, PAGE_SIZE, 0); |
| 1492 | bio->bi_iter.bi_sector = page->physical >> 9; |
| 1493 | bio->bi_opf = REQ_OP_READ; |
| 1494 | |
| 1495 | if (btrfsic_submit_bio_wait(bio)) { |
| 1496 | page->io_error = 1; |
| 1497 | sblock->no_io_error_seen = 0; |
| 1498 | } |
| 1499 | |
| 1500 | bio_put(bio); |
| 1501 | } |
| 1502 | |
| 1503 | if (sblock->no_io_error_seen) |
| 1504 | scrub_recheck_block_checksum(sblock); |
| 1505 | } |
| 1506 | |
| 1507 | static inline int scrub_check_fsid(u8 fsid[], |
| 1508 | struct scrub_page *spage) |
| 1509 | { |
| 1510 | struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices; |
| 1511 | int ret; |
| 1512 | |
| 1513 | ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE); |
| 1514 | return !ret; |
| 1515 | } |
| 1516 | |
| 1517 | static void scrub_recheck_block_checksum(struct scrub_block *sblock) |
| 1518 | { |
| 1519 | sblock->header_error = 0; |
| 1520 | sblock->checksum_error = 0; |
| 1521 | sblock->generation_error = 0; |
| 1522 | |
| 1523 | if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA) |
| 1524 | scrub_checksum_data(sblock); |
| 1525 | else |
| 1526 | scrub_checksum_tree_block(sblock); |
| 1527 | } |
| 1528 | |
| 1529 | static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, |
| 1530 | struct scrub_block *sblock_good) |
| 1531 | { |
| 1532 | int page_num; |
| 1533 | int ret = 0; |
| 1534 | |
| 1535 | for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { |
| 1536 | int ret_sub; |
| 1537 | |
| 1538 | ret_sub = scrub_repair_page_from_good_copy(sblock_bad, |
| 1539 | sblock_good, |
| 1540 | page_num, 1); |
| 1541 | if (ret_sub) |
| 1542 | ret = ret_sub; |
| 1543 | } |
| 1544 | |
| 1545 | return ret; |
| 1546 | } |
| 1547 | |
| 1548 | static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, |
| 1549 | struct scrub_block *sblock_good, |
| 1550 | int page_num, int force_write) |
| 1551 | { |
| 1552 | struct scrub_page *page_bad = sblock_bad->pagev[page_num]; |
| 1553 | struct scrub_page *page_good = sblock_good->pagev[page_num]; |
| 1554 | struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info; |
| 1555 | |
| 1556 | BUG_ON(page_bad->page == NULL); |
| 1557 | BUG_ON(page_good->page == NULL); |
| 1558 | if (force_write || sblock_bad->header_error || |
| 1559 | sblock_bad->checksum_error || page_bad->io_error) { |
| 1560 | struct bio *bio; |
| 1561 | int ret; |
| 1562 | |
| 1563 | if (!page_bad->dev->bdev) { |
| 1564 | btrfs_warn_rl(fs_info, |
| 1565 | "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected"); |
| 1566 | return -EIO; |
| 1567 | } |
| 1568 | |
| 1569 | bio = btrfs_io_bio_alloc(1); |
| 1570 | bio_set_dev(bio, page_bad->dev->bdev); |
| 1571 | bio->bi_iter.bi_sector = page_bad->physical >> 9; |
| 1572 | bio->bi_opf = REQ_OP_WRITE; |
| 1573 | |
| 1574 | ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0); |
| 1575 | if (PAGE_SIZE != ret) { |
| 1576 | bio_put(bio); |
| 1577 | return -EIO; |
| 1578 | } |
| 1579 | |
| 1580 | if (btrfsic_submit_bio_wait(bio)) { |
| 1581 | btrfs_dev_stat_inc_and_print(page_bad->dev, |
| 1582 | BTRFS_DEV_STAT_WRITE_ERRS); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1583 | atomic64_inc(&fs_info->dev_replace.num_write_errors); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1584 | bio_put(bio); |
| 1585 | return -EIO; |
| 1586 | } |
| 1587 | bio_put(bio); |
| 1588 | } |
| 1589 | |
| 1590 | return 0; |
| 1591 | } |
| 1592 | |
| 1593 | static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) |
| 1594 | { |
| 1595 | struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; |
| 1596 | int page_num; |
| 1597 | |
| 1598 | /* |
| 1599 | * This block is used for the check of the parity on the source device, |
| 1600 | * so the data needn't be written into the destination device. |
| 1601 | */ |
| 1602 | if (sblock->sparity) |
| 1603 | return; |
| 1604 | |
| 1605 | for (page_num = 0; page_num < sblock->page_count; page_num++) { |
| 1606 | int ret; |
| 1607 | |
| 1608 | ret = scrub_write_page_to_dev_replace(sblock, page_num); |
| 1609 | if (ret) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1610 | atomic64_inc(&fs_info->dev_replace.num_write_errors); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1611 | } |
| 1612 | } |
| 1613 | |
| 1614 | static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, |
| 1615 | int page_num) |
| 1616 | { |
| 1617 | struct scrub_page *spage = sblock->pagev[page_num]; |
| 1618 | |
| 1619 | BUG_ON(spage->page == NULL); |
| 1620 | if (spage->io_error) { |
| 1621 | void *mapped_buffer = kmap_atomic(spage->page); |
| 1622 | |
| 1623 | clear_page(mapped_buffer); |
| 1624 | flush_dcache_page(spage->page); |
| 1625 | kunmap_atomic(mapped_buffer); |
| 1626 | } |
| 1627 | return scrub_add_page_to_wr_bio(sblock->sctx, spage); |
| 1628 | } |
| 1629 | |
| 1630 | static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, |
| 1631 | struct scrub_page *spage) |
| 1632 | { |
| 1633 | struct scrub_bio *sbio; |
| 1634 | int ret; |
| 1635 | |
| 1636 | mutex_lock(&sctx->wr_lock); |
| 1637 | again: |
| 1638 | if (!sctx->wr_curr_bio) { |
| 1639 | sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio), |
| 1640 | GFP_KERNEL); |
| 1641 | if (!sctx->wr_curr_bio) { |
| 1642 | mutex_unlock(&sctx->wr_lock); |
| 1643 | return -ENOMEM; |
| 1644 | } |
| 1645 | sctx->wr_curr_bio->sctx = sctx; |
| 1646 | sctx->wr_curr_bio->page_count = 0; |
| 1647 | } |
| 1648 | sbio = sctx->wr_curr_bio; |
| 1649 | if (sbio->page_count == 0) { |
| 1650 | struct bio *bio; |
| 1651 | |
| 1652 | sbio->physical = spage->physical_for_dev_replace; |
| 1653 | sbio->logical = spage->logical; |
| 1654 | sbio->dev = sctx->wr_tgtdev; |
| 1655 | bio = sbio->bio; |
| 1656 | if (!bio) { |
| 1657 | bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio); |
| 1658 | sbio->bio = bio; |
| 1659 | } |
| 1660 | |
| 1661 | bio->bi_private = sbio; |
| 1662 | bio->bi_end_io = scrub_wr_bio_end_io; |
| 1663 | bio_set_dev(bio, sbio->dev->bdev); |
| 1664 | bio->bi_iter.bi_sector = sbio->physical >> 9; |
| 1665 | bio->bi_opf = REQ_OP_WRITE; |
| 1666 | sbio->status = 0; |
| 1667 | } else if (sbio->physical + sbio->page_count * PAGE_SIZE != |
| 1668 | spage->physical_for_dev_replace || |
| 1669 | sbio->logical + sbio->page_count * PAGE_SIZE != |
| 1670 | spage->logical) { |
| 1671 | scrub_wr_submit(sctx); |
| 1672 | goto again; |
| 1673 | } |
| 1674 | |
| 1675 | ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); |
| 1676 | if (ret != PAGE_SIZE) { |
| 1677 | if (sbio->page_count < 1) { |
| 1678 | bio_put(sbio->bio); |
| 1679 | sbio->bio = NULL; |
| 1680 | mutex_unlock(&sctx->wr_lock); |
| 1681 | return -EIO; |
| 1682 | } |
| 1683 | scrub_wr_submit(sctx); |
| 1684 | goto again; |
| 1685 | } |
| 1686 | |
| 1687 | sbio->pagev[sbio->page_count] = spage; |
| 1688 | scrub_page_get(spage); |
| 1689 | sbio->page_count++; |
| 1690 | if (sbio->page_count == sctx->pages_per_wr_bio) |
| 1691 | scrub_wr_submit(sctx); |
| 1692 | mutex_unlock(&sctx->wr_lock); |
| 1693 | |
| 1694 | return 0; |
| 1695 | } |
| 1696 | |
| 1697 | static void scrub_wr_submit(struct scrub_ctx *sctx) |
| 1698 | { |
| 1699 | struct scrub_bio *sbio; |
| 1700 | |
| 1701 | if (!sctx->wr_curr_bio) |
| 1702 | return; |
| 1703 | |
| 1704 | sbio = sctx->wr_curr_bio; |
| 1705 | sctx->wr_curr_bio = NULL; |
| 1706 | WARN_ON(!sbio->bio->bi_disk); |
| 1707 | scrub_pending_bio_inc(sctx); |
| 1708 | /* process all writes in a single worker thread. Then the block layer |
| 1709 | * orders the requests before sending them to the driver which |
| 1710 | * doubled the write performance on spinning disks when measured |
| 1711 | * with Linux 3.5 */ |
| 1712 | btrfsic_submit_bio(sbio->bio); |
| 1713 | } |
| 1714 | |
| 1715 | static void scrub_wr_bio_end_io(struct bio *bio) |
| 1716 | { |
| 1717 | struct scrub_bio *sbio = bio->bi_private; |
| 1718 | struct btrfs_fs_info *fs_info = sbio->dev->fs_info; |
| 1719 | |
| 1720 | sbio->status = bio->bi_status; |
| 1721 | sbio->bio = bio; |
| 1722 | |
| 1723 | btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper, |
| 1724 | scrub_wr_bio_end_io_worker, NULL, NULL); |
| 1725 | btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); |
| 1726 | } |
| 1727 | |
| 1728 | static void scrub_wr_bio_end_io_worker(struct btrfs_work *work) |
| 1729 | { |
| 1730 | struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); |
| 1731 | struct scrub_ctx *sctx = sbio->sctx; |
| 1732 | int i; |
| 1733 | |
| 1734 | WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO); |
| 1735 | if (sbio->status) { |
| 1736 | struct btrfs_dev_replace *dev_replace = |
| 1737 | &sbio->sctx->fs_info->dev_replace; |
| 1738 | |
| 1739 | for (i = 0; i < sbio->page_count; i++) { |
| 1740 | struct scrub_page *spage = sbio->pagev[i]; |
| 1741 | |
| 1742 | spage->io_error = 1; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1743 | atomic64_inc(&dev_replace->num_write_errors); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1744 | } |
| 1745 | } |
| 1746 | |
| 1747 | for (i = 0; i < sbio->page_count; i++) |
| 1748 | scrub_page_put(sbio->pagev[i]); |
| 1749 | |
| 1750 | bio_put(sbio->bio); |
| 1751 | kfree(sbio); |
| 1752 | scrub_pending_bio_dec(sctx); |
| 1753 | } |
| 1754 | |
| 1755 | static int scrub_checksum(struct scrub_block *sblock) |
| 1756 | { |
| 1757 | u64 flags; |
| 1758 | int ret; |
| 1759 | |
| 1760 | /* |
| 1761 | * No need to initialize these stats currently, |
| 1762 | * because this function only use return value |
| 1763 | * instead of these stats value. |
| 1764 | * |
| 1765 | * Todo: |
| 1766 | * always use stats |
| 1767 | */ |
| 1768 | sblock->header_error = 0; |
| 1769 | sblock->generation_error = 0; |
| 1770 | sblock->checksum_error = 0; |
| 1771 | |
| 1772 | WARN_ON(sblock->page_count < 1); |
| 1773 | flags = sblock->pagev[0]->flags; |
| 1774 | ret = 0; |
| 1775 | if (flags & BTRFS_EXTENT_FLAG_DATA) |
| 1776 | ret = scrub_checksum_data(sblock); |
| 1777 | else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) |
| 1778 | ret = scrub_checksum_tree_block(sblock); |
| 1779 | else if (flags & BTRFS_EXTENT_FLAG_SUPER) |
| 1780 | (void)scrub_checksum_super(sblock); |
| 1781 | else |
| 1782 | WARN_ON(1); |
| 1783 | if (ret) |
| 1784 | scrub_handle_errored_block(sblock); |
| 1785 | |
| 1786 | return ret; |
| 1787 | } |
| 1788 | |
| 1789 | static int scrub_checksum_data(struct scrub_block *sblock) |
| 1790 | { |
| 1791 | struct scrub_ctx *sctx = sblock->sctx; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1792 | struct btrfs_fs_info *fs_info = sctx->fs_info; |
| 1793 | SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1794 | u8 csum[BTRFS_CSUM_SIZE]; |
| 1795 | u8 *on_disk_csum; |
| 1796 | struct page *page; |
| 1797 | void *buffer; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1798 | u64 len; |
| 1799 | int index; |
| 1800 | |
| 1801 | BUG_ON(sblock->page_count < 1); |
| 1802 | if (!sblock->pagev[0]->have_csum) |
| 1803 | return 0; |
| 1804 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1805 | shash->tfm = fs_info->csum_shash; |
| 1806 | crypto_shash_init(shash); |
| 1807 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1808 | on_disk_csum = sblock->pagev[0]->csum; |
| 1809 | page = sblock->pagev[0]->page; |
| 1810 | buffer = kmap_atomic(page); |
| 1811 | |
| 1812 | len = sctx->fs_info->sectorsize; |
| 1813 | index = 0; |
| 1814 | for (;;) { |
| 1815 | u64 l = min_t(u64, len, PAGE_SIZE); |
| 1816 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1817 | crypto_shash_update(shash, buffer, l); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1818 | kunmap_atomic(buffer); |
| 1819 | len -= l; |
| 1820 | if (len == 0) |
| 1821 | break; |
| 1822 | index++; |
| 1823 | BUG_ON(index >= sblock->page_count); |
| 1824 | BUG_ON(!sblock->pagev[index]->page); |
| 1825 | page = sblock->pagev[index]->page; |
| 1826 | buffer = kmap_atomic(page); |
| 1827 | } |
| 1828 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1829 | crypto_shash_final(shash, csum); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1830 | if (memcmp(csum, on_disk_csum, sctx->csum_size)) |
| 1831 | sblock->checksum_error = 1; |
| 1832 | |
| 1833 | return sblock->checksum_error; |
| 1834 | } |
| 1835 | |
| 1836 | static int scrub_checksum_tree_block(struct scrub_block *sblock) |
| 1837 | { |
| 1838 | struct scrub_ctx *sctx = sblock->sctx; |
| 1839 | struct btrfs_header *h; |
| 1840 | struct btrfs_fs_info *fs_info = sctx->fs_info; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1841 | SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1842 | u8 calculated_csum[BTRFS_CSUM_SIZE]; |
| 1843 | u8 on_disk_csum[BTRFS_CSUM_SIZE]; |
| 1844 | struct page *page; |
| 1845 | void *mapped_buffer; |
| 1846 | u64 mapped_size; |
| 1847 | void *p; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1848 | u64 len; |
| 1849 | int index; |
| 1850 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1851 | shash->tfm = fs_info->csum_shash; |
| 1852 | crypto_shash_init(shash); |
| 1853 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1854 | BUG_ON(sblock->page_count < 1); |
| 1855 | page = sblock->pagev[0]->page; |
| 1856 | mapped_buffer = kmap_atomic(page); |
| 1857 | h = (struct btrfs_header *)mapped_buffer; |
| 1858 | memcpy(on_disk_csum, h->csum, sctx->csum_size); |
| 1859 | |
| 1860 | /* |
| 1861 | * we don't use the getter functions here, as we |
| 1862 | * a) don't have an extent buffer and |
| 1863 | * b) the page is already kmapped |
| 1864 | */ |
| 1865 | if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h)) |
| 1866 | sblock->header_error = 1; |
| 1867 | |
| 1868 | if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) { |
| 1869 | sblock->header_error = 1; |
| 1870 | sblock->generation_error = 1; |
| 1871 | } |
| 1872 | |
| 1873 | if (!scrub_check_fsid(h->fsid, sblock->pagev[0])) |
| 1874 | sblock->header_error = 1; |
| 1875 | |
| 1876 | if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, |
| 1877 | BTRFS_UUID_SIZE)) |
| 1878 | sblock->header_error = 1; |
| 1879 | |
| 1880 | len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE; |
| 1881 | mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; |
| 1882 | p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; |
| 1883 | index = 0; |
| 1884 | for (;;) { |
| 1885 | u64 l = min_t(u64, len, mapped_size); |
| 1886 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1887 | crypto_shash_update(shash, p, l); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1888 | kunmap_atomic(mapped_buffer); |
| 1889 | len -= l; |
| 1890 | if (len == 0) |
| 1891 | break; |
| 1892 | index++; |
| 1893 | BUG_ON(index >= sblock->page_count); |
| 1894 | BUG_ON(!sblock->pagev[index]->page); |
| 1895 | page = sblock->pagev[index]->page; |
| 1896 | mapped_buffer = kmap_atomic(page); |
| 1897 | mapped_size = PAGE_SIZE; |
| 1898 | p = mapped_buffer; |
| 1899 | } |
| 1900 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1901 | crypto_shash_final(shash, calculated_csum); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1902 | if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) |
| 1903 | sblock->checksum_error = 1; |
| 1904 | |
| 1905 | return sblock->header_error || sblock->checksum_error; |
| 1906 | } |
| 1907 | |
| 1908 | static int scrub_checksum_super(struct scrub_block *sblock) |
| 1909 | { |
| 1910 | struct btrfs_super_block *s; |
| 1911 | struct scrub_ctx *sctx = sblock->sctx; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1912 | struct btrfs_fs_info *fs_info = sctx->fs_info; |
| 1913 | SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1914 | u8 calculated_csum[BTRFS_CSUM_SIZE]; |
| 1915 | u8 on_disk_csum[BTRFS_CSUM_SIZE]; |
| 1916 | struct page *page; |
| 1917 | void *mapped_buffer; |
| 1918 | u64 mapped_size; |
| 1919 | void *p; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1920 | int fail_gen = 0; |
| 1921 | int fail_cor = 0; |
| 1922 | u64 len; |
| 1923 | int index; |
| 1924 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1925 | shash->tfm = fs_info->csum_shash; |
| 1926 | crypto_shash_init(shash); |
| 1927 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1928 | BUG_ON(sblock->page_count < 1); |
| 1929 | page = sblock->pagev[0]->page; |
| 1930 | mapped_buffer = kmap_atomic(page); |
| 1931 | s = (struct btrfs_super_block *)mapped_buffer; |
| 1932 | memcpy(on_disk_csum, s->csum, sctx->csum_size); |
| 1933 | |
| 1934 | if (sblock->pagev[0]->logical != btrfs_super_bytenr(s)) |
| 1935 | ++fail_cor; |
| 1936 | |
| 1937 | if (sblock->pagev[0]->generation != btrfs_super_generation(s)) |
| 1938 | ++fail_gen; |
| 1939 | |
| 1940 | if (!scrub_check_fsid(s->fsid, sblock->pagev[0])) |
| 1941 | ++fail_cor; |
| 1942 | |
| 1943 | len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE; |
| 1944 | mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; |
| 1945 | p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; |
| 1946 | index = 0; |
| 1947 | for (;;) { |
| 1948 | u64 l = min_t(u64, len, mapped_size); |
| 1949 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1950 | crypto_shash_update(shash, p, l); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1951 | kunmap_atomic(mapped_buffer); |
| 1952 | len -= l; |
| 1953 | if (len == 0) |
| 1954 | break; |
| 1955 | index++; |
| 1956 | BUG_ON(index >= sblock->page_count); |
| 1957 | BUG_ON(!sblock->pagev[index]->page); |
| 1958 | page = sblock->pagev[index]->page; |
| 1959 | mapped_buffer = kmap_atomic(page); |
| 1960 | mapped_size = PAGE_SIZE; |
| 1961 | p = mapped_buffer; |
| 1962 | } |
| 1963 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1964 | crypto_shash_final(shash, calculated_csum); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1965 | if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) |
| 1966 | ++fail_cor; |
| 1967 | |
| 1968 | if (fail_cor + fail_gen) { |
| 1969 | /* |
| 1970 | * if we find an error in a super block, we just report it. |
| 1971 | * They will get written with the next transaction commit |
| 1972 | * anyway |
| 1973 | */ |
| 1974 | spin_lock(&sctx->stat_lock); |
| 1975 | ++sctx->stat.super_errors; |
| 1976 | spin_unlock(&sctx->stat_lock); |
| 1977 | if (fail_cor) |
| 1978 | btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, |
| 1979 | BTRFS_DEV_STAT_CORRUPTION_ERRS); |
| 1980 | else |
| 1981 | btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, |
| 1982 | BTRFS_DEV_STAT_GENERATION_ERRS); |
| 1983 | } |
| 1984 | |
| 1985 | return fail_cor + fail_gen; |
| 1986 | } |
| 1987 | |
| 1988 | static void scrub_block_get(struct scrub_block *sblock) |
| 1989 | { |
| 1990 | refcount_inc(&sblock->refs); |
| 1991 | } |
| 1992 | |
| 1993 | static void scrub_block_put(struct scrub_block *sblock) |
| 1994 | { |
| 1995 | if (refcount_dec_and_test(&sblock->refs)) { |
| 1996 | int i; |
| 1997 | |
| 1998 | if (sblock->sparity) |
| 1999 | scrub_parity_put(sblock->sparity); |
| 2000 | |
| 2001 | for (i = 0; i < sblock->page_count; i++) |
| 2002 | scrub_page_put(sblock->pagev[i]); |
| 2003 | kfree(sblock); |
| 2004 | } |
| 2005 | } |
| 2006 | |
| 2007 | static void scrub_page_get(struct scrub_page *spage) |
| 2008 | { |
| 2009 | atomic_inc(&spage->refs); |
| 2010 | } |
| 2011 | |
| 2012 | static void scrub_page_put(struct scrub_page *spage) |
| 2013 | { |
| 2014 | if (atomic_dec_and_test(&spage->refs)) { |
| 2015 | if (spage->page) |
| 2016 | __free_page(spage->page); |
| 2017 | kfree(spage); |
| 2018 | } |
| 2019 | } |
| 2020 | |
| 2021 | static void scrub_submit(struct scrub_ctx *sctx) |
| 2022 | { |
| 2023 | struct scrub_bio *sbio; |
| 2024 | |
| 2025 | if (sctx->curr == -1) |
| 2026 | return; |
| 2027 | |
| 2028 | sbio = sctx->bios[sctx->curr]; |
| 2029 | sctx->curr = -1; |
| 2030 | scrub_pending_bio_inc(sctx); |
| 2031 | btrfsic_submit_bio(sbio->bio); |
| 2032 | } |
| 2033 | |
| 2034 | static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, |
| 2035 | struct scrub_page *spage) |
| 2036 | { |
| 2037 | struct scrub_block *sblock = spage->sblock; |
| 2038 | struct scrub_bio *sbio; |
| 2039 | int ret; |
| 2040 | |
| 2041 | again: |
| 2042 | /* |
| 2043 | * grab a fresh bio or wait for one to become available |
| 2044 | */ |
| 2045 | while (sctx->curr == -1) { |
| 2046 | spin_lock(&sctx->list_lock); |
| 2047 | sctx->curr = sctx->first_free; |
| 2048 | if (sctx->curr != -1) { |
| 2049 | sctx->first_free = sctx->bios[sctx->curr]->next_free; |
| 2050 | sctx->bios[sctx->curr]->next_free = -1; |
| 2051 | sctx->bios[sctx->curr]->page_count = 0; |
| 2052 | spin_unlock(&sctx->list_lock); |
| 2053 | } else { |
| 2054 | spin_unlock(&sctx->list_lock); |
| 2055 | wait_event(sctx->list_wait, sctx->first_free != -1); |
| 2056 | } |
| 2057 | } |
| 2058 | sbio = sctx->bios[sctx->curr]; |
| 2059 | if (sbio->page_count == 0) { |
| 2060 | struct bio *bio; |
| 2061 | |
| 2062 | sbio->physical = spage->physical; |
| 2063 | sbio->logical = spage->logical; |
| 2064 | sbio->dev = spage->dev; |
| 2065 | bio = sbio->bio; |
| 2066 | if (!bio) { |
| 2067 | bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio); |
| 2068 | sbio->bio = bio; |
| 2069 | } |
| 2070 | |
| 2071 | bio->bi_private = sbio; |
| 2072 | bio->bi_end_io = scrub_bio_end_io; |
| 2073 | bio_set_dev(bio, sbio->dev->bdev); |
| 2074 | bio->bi_iter.bi_sector = sbio->physical >> 9; |
| 2075 | bio->bi_opf = REQ_OP_READ; |
| 2076 | sbio->status = 0; |
| 2077 | } else if (sbio->physical + sbio->page_count * PAGE_SIZE != |
| 2078 | spage->physical || |
| 2079 | sbio->logical + sbio->page_count * PAGE_SIZE != |
| 2080 | spage->logical || |
| 2081 | sbio->dev != spage->dev) { |
| 2082 | scrub_submit(sctx); |
| 2083 | goto again; |
| 2084 | } |
| 2085 | |
| 2086 | sbio->pagev[sbio->page_count] = spage; |
| 2087 | ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); |
| 2088 | if (ret != PAGE_SIZE) { |
| 2089 | if (sbio->page_count < 1) { |
| 2090 | bio_put(sbio->bio); |
| 2091 | sbio->bio = NULL; |
| 2092 | return -EIO; |
| 2093 | } |
| 2094 | scrub_submit(sctx); |
| 2095 | goto again; |
| 2096 | } |
| 2097 | |
| 2098 | scrub_block_get(sblock); /* one for the page added to the bio */ |
| 2099 | atomic_inc(&sblock->outstanding_pages); |
| 2100 | sbio->page_count++; |
| 2101 | if (sbio->page_count == sctx->pages_per_rd_bio) |
| 2102 | scrub_submit(sctx); |
| 2103 | |
| 2104 | return 0; |
| 2105 | } |
| 2106 | |
| 2107 | static void scrub_missing_raid56_end_io(struct bio *bio) |
| 2108 | { |
| 2109 | struct scrub_block *sblock = bio->bi_private; |
| 2110 | struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; |
| 2111 | |
| 2112 | if (bio->bi_status) |
| 2113 | sblock->no_io_error_seen = 0; |
| 2114 | |
| 2115 | bio_put(bio); |
| 2116 | |
| 2117 | btrfs_queue_work(fs_info->scrub_workers, &sblock->work); |
| 2118 | } |
| 2119 | |
| 2120 | static void scrub_missing_raid56_worker(struct btrfs_work *work) |
| 2121 | { |
| 2122 | struct scrub_block *sblock = container_of(work, struct scrub_block, work); |
| 2123 | struct scrub_ctx *sctx = sblock->sctx; |
| 2124 | struct btrfs_fs_info *fs_info = sctx->fs_info; |
| 2125 | u64 logical; |
| 2126 | struct btrfs_device *dev; |
| 2127 | |
| 2128 | logical = sblock->pagev[0]->logical; |
| 2129 | dev = sblock->pagev[0]->dev; |
| 2130 | |
| 2131 | if (sblock->no_io_error_seen) |
| 2132 | scrub_recheck_block_checksum(sblock); |
| 2133 | |
| 2134 | if (!sblock->no_io_error_seen) { |
| 2135 | spin_lock(&sctx->stat_lock); |
| 2136 | sctx->stat.read_errors++; |
| 2137 | spin_unlock(&sctx->stat_lock); |
| 2138 | btrfs_err_rl_in_rcu(fs_info, |
| 2139 | "IO error rebuilding logical %llu for dev %s", |
| 2140 | logical, rcu_str_deref(dev->name)); |
| 2141 | } else if (sblock->header_error || sblock->checksum_error) { |
| 2142 | spin_lock(&sctx->stat_lock); |
| 2143 | sctx->stat.uncorrectable_errors++; |
| 2144 | spin_unlock(&sctx->stat_lock); |
| 2145 | btrfs_err_rl_in_rcu(fs_info, |
| 2146 | "failed to rebuild valid logical %llu for dev %s", |
| 2147 | logical, rcu_str_deref(dev->name)); |
| 2148 | } else { |
| 2149 | scrub_write_block_to_dev_replace(sblock); |
| 2150 | } |
| 2151 | |
| 2152 | scrub_block_put(sblock); |
| 2153 | |
| 2154 | if (sctx->is_dev_replace && sctx->flush_all_writes) { |
| 2155 | mutex_lock(&sctx->wr_lock); |
| 2156 | scrub_wr_submit(sctx); |
| 2157 | mutex_unlock(&sctx->wr_lock); |
| 2158 | } |
| 2159 | |
| 2160 | scrub_pending_bio_dec(sctx); |
| 2161 | } |
| 2162 | |
| 2163 | static void scrub_missing_raid56_pages(struct scrub_block *sblock) |
| 2164 | { |
| 2165 | struct scrub_ctx *sctx = sblock->sctx; |
| 2166 | struct btrfs_fs_info *fs_info = sctx->fs_info; |
| 2167 | u64 length = sblock->page_count * PAGE_SIZE; |
| 2168 | u64 logical = sblock->pagev[0]->logical; |
| 2169 | struct btrfs_bio *bbio = NULL; |
| 2170 | struct bio *bio; |
| 2171 | struct btrfs_raid_bio *rbio; |
| 2172 | int ret; |
| 2173 | int i; |
| 2174 | |
| 2175 | btrfs_bio_counter_inc_blocked(fs_info); |
| 2176 | ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, |
| 2177 | &length, &bbio); |
| 2178 | if (ret || !bbio || !bbio->raid_map) |
| 2179 | goto bbio_out; |
| 2180 | |
| 2181 | if (WARN_ON(!sctx->is_dev_replace || |
| 2182 | !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) { |
| 2183 | /* |
| 2184 | * We shouldn't be scrubbing a missing device. Even for dev |
| 2185 | * replace, we should only get here for RAID 5/6. We either |
| 2186 | * managed to mount something with no mirrors remaining or |
| 2187 | * there's a bug in scrub_remap_extent()/btrfs_map_block(). |
| 2188 | */ |
| 2189 | goto bbio_out; |
| 2190 | } |
| 2191 | |
| 2192 | bio = btrfs_io_bio_alloc(0); |
| 2193 | bio->bi_iter.bi_sector = logical >> 9; |
| 2194 | bio->bi_private = sblock; |
| 2195 | bio->bi_end_io = scrub_missing_raid56_end_io; |
| 2196 | |
| 2197 | rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length); |
| 2198 | if (!rbio) |
| 2199 | goto rbio_out; |
| 2200 | |
| 2201 | for (i = 0; i < sblock->page_count; i++) { |
| 2202 | struct scrub_page *spage = sblock->pagev[i]; |
| 2203 | |
| 2204 | raid56_add_scrub_pages(rbio, spage->page, spage->logical); |
| 2205 | } |
| 2206 | |
| 2207 | btrfs_init_work(&sblock->work, btrfs_scrub_helper, |
| 2208 | scrub_missing_raid56_worker, NULL, NULL); |
| 2209 | scrub_block_get(sblock); |
| 2210 | scrub_pending_bio_inc(sctx); |
| 2211 | raid56_submit_missing_rbio(rbio); |
| 2212 | return; |
| 2213 | |
| 2214 | rbio_out: |
| 2215 | bio_put(bio); |
| 2216 | bbio_out: |
| 2217 | btrfs_bio_counter_dec(fs_info); |
| 2218 | btrfs_put_bbio(bbio); |
| 2219 | spin_lock(&sctx->stat_lock); |
| 2220 | sctx->stat.malloc_errors++; |
| 2221 | spin_unlock(&sctx->stat_lock); |
| 2222 | } |
| 2223 | |
| 2224 | static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, |
| 2225 | u64 physical, struct btrfs_device *dev, u64 flags, |
| 2226 | u64 gen, int mirror_num, u8 *csum, int force, |
| 2227 | u64 physical_for_dev_replace) |
| 2228 | { |
| 2229 | struct scrub_block *sblock; |
| 2230 | int index; |
| 2231 | |
| 2232 | sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); |
| 2233 | if (!sblock) { |
| 2234 | spin_lock(&sctx->stat_lock); |
| 2235 | sctx->stat.malloc_errors++; |
| 2236 | spin_unlock(&sctx->stat_lock); |
| 2237 | return -ENOMEM; |
| 2238 | } |
| 2239 | |
| 2240 | /* one ref inside this function, plus one for each page added to |
| 2241 | * a bio later on */ |
| 2242 | refcount_set(&sblock->refs, 1); |
| 2243 | sblock->sctx = sctx; |
| 2244 | sblock->no_io_error_seen = 1; |
| 2245 | |
| 2246 | for (index = 0; len > 0; index++) { |
| 2247 | struct scrub_page *spage; |
| 2248 | u64 l = min_t(u64, len, PAGE_SIZE); |
| 2249 | |
| 2250 | spage = kzalloc(sizeof(*spage), GFP_KERNEL); |
| 2251 | if (!spage) { |
| 2252 | leave_nomem: |
| 2253 | spin_lock(&sctx->stat_lock); |
| 2254 | sctx->stat.malloc_errors++; |
| 2255 | spin_unlock(&sctx->stat_lock); |
| 2256 | scrub_block_put(sblock); |
| 2257 | return -ENOMEM; |
| 2258 | } |
| 2259 | BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); |
| 2260 | scrub_page_get(spage); |
| 2261 | sblock->pagev[index] = spage; |
| 2262 | spage->sblock = sblock; |
| 2263 | spage->dev = dev; |
| 2264 | spage->flags = flags; |
| 2265 | spage->generation = gen; |
| 2266 | spage->logical = logical; |
| 2267 | spage->physical = physical; |
| 2268 | spage->physical_for_dev_replace = physical_for_dev_replace; |
| 2269 | spage->mirror_num = mirror_num; |
| 2270 | if (csum) { |
| 2271 | spage->have_csum = 1; |
| 2272 | memcpy(spage->csum, csum, sctx->csum_size); |
| 2273 | } else { |
| 2274 | spage->have_csum = 0; |
| 2275 | } |
| 2276 | sblock->page_count++; |
| 2277 | spage->page = alloc_page(GFP_KERNEL); |
| 2278 | if (!spage->page) |
| 2279 | goto leave_nomem; |
| 2280 | len -= l; |
| 2281 | logical += l; |
| 2282 | physical += l; |
| 2283 | physical_for_dev_replace += l; |
| 2284 | } |
| 2285 | |
| 2286 | WARN_ON(sblock->page_count == 0); |
| 2287 | if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { |
| 2288 | /* |
| 2289 | * This case should only be hit for RAID 5/6 device replace. See |
| 2290 | * the comment in scrub_missing_raid56_pages() for details. |
| 2291 | */ |
| 2292 | scrub_missing_raid56_pages(sblock); |
| 2293 | } else { |
| 2294 | for (index = 0; index < sblock->page_count; index++) { |
| 2295 | struct scrub_page *spage = sblock->pagev[index]; |
| 2296 | int ret; |
| 2297 | |
| 2298 | ret = scrub_add_page_to_rd_bio(sctx, spage); |
| 2299 | if (ret) { |
| 2300 | scrub_block_put(sblock); |
| 2301 | return ret; |
| 2302 | } |
| 2303 | } |
| 2304 | |
| 2305 | if (force) |
| 2306 | scrub_submit(sctx); |
| 2307 | } |
| 2308 | |
| 2309 | /* last one frees, either here or in bio completion for last page */ |
| 2310 | scrub_block_put(sblock); |
| 2311 | return 0; |
| 2312 | } |
| 2313 | |
| 2314 | static void scrub_bio_end_io(struct bio *bio) |
| 2315 | { |
| 2316 | struct scrub_bio *sbio = bio->bi_private; |
| 2317 | struct btrfs_fs_info *fs_info = sbio->dev->fs_info; |
| 2318 | |
| 2319 | sbio->status = bio->bi_status; |
| 2320 | sbio->bio = bio; |
| 2321 | |
| 2322 | btrfs_queue_work(fs_info->scrub_workers, &sbio->work); |
| 2323 | } |
| 2324 | |
| 2325 | static void scrub_bio_end_io_worker(struct btrfs_work *work) |
| 2326 | { |
| 2327 | struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); |
| 2328 | struct scrub_ctx *sctx = sbio->sctx; |
| 2329 | int i; |
| 2330 | |
| 2331 | BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO); |
| 2332 | if (sbio->status) { |
| 2333 | for (i = 0; i < sbio->page_count; i++) { |
| 2334 | struct scrub_page *spage = sbio->pagev[i]; |
| 2335 | |
| 2336 | spage->io_error = 1; |
| 2337 | spage->sblock->no_io_error_seen = 0; |
| 2338 | } |
| 2339 | } |
| 2340 | |
| 2341 | /* now complete the scrub_block items that have all pages completed */ |
| 2342 | for (i = 0; i < sbio->page_count; i++) { |
| 2343 | struct scrub_page *spage = sbio->pagev[i]; |
| 2344 | struct scrub_block *sblock = spage->sblock; |
| 2345 | |
| 2346 | if (atomic_dec_and_test(&sblock->outstanding_pages)) |
| 2347 | scrub_block_complete(sblock); |
| 2348 | scrub_block_put(sblock); |
| 2349 | } |
| 2350 | |
| 2351 | bio_put(sbio->bio); |
| 2352 | sbio->bio = NULL; |
| 2353 | spin_lock(&sctx->list_lock); |
| 2354 | sbio->next_free = sctx->first_free; |
| 2355 | sctx->first_free = sbio->index; |
| 2356 | spin_unlock(&sctx->list_lock); |
| 2357 | |
| 2358 | if (sctx->is_dev_replace && sctx->flush_all_writes) { |
| 2359 | mutex_lock(&sctx->wr_lock); |
| 2360 | scrub_wr_submit(sctx); |
| 2361 | mutex_unlock(&sctx->wr_lock); |
| 2362 | } |
| 2363 | |
| 2364 | scrub_pending_bio_dec(sctx); |
| 2365 | } |
| 2366 | |
| 2367 | static inline void __scrub_mark_bitmap(struct scrub_parity *sparity, |
| 2368 | unsigned long *bitmap, |
| 2369 | u64 start, u64 len) |
| 2370 | { |
| 2371 | u64 offset; |
| 2372 | u64 nsectors64; |
| 2373 | u32 nsectors; |
| 2374 | int sectorsize = sparity->sctx->fs_info->sectorsize; |
| 2375 | |
| 2376 | if (len >= sparity->stripe_len) { |
| 2377 | bitmap_set(bitmap, 0, sparity->nsectors); |
| 2378 | return; |
| 2379 | } |
| 2380 | |
| 2381 | start -= sparity->logic_start; |
| 2382 | start = div64_u64_rem(start, sparity->stripe_len, &offset); |
| 2383 | offset = div_u64(offset, sectorsize); |
| 2384 | nsectors64 = div_u64(len, sectorsize); |
| 2385 | |
| 2386 | ASSERT(nsectors64 < UINT_MAX); |
| 2387 | nsectors = (u32)nsectors64; |
| 2388 | |
| 2389 | if (offset + nsectors <= sparity->nsectors) { |
| 2390 | bitmap_set(bitmap, offset, nsectors); |
| 2391 | return; |
| 2392 | } |
| 2393 | |
| 2394 | bitmap_set(bitmap, offset, sparity->nsectors - offset); |
| 2395 | bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset)); |
| 2396 | } |
| 2397 | |
| 2398 | static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity, |
| 2399 | u64 start, u64 len) |
| 2400 | { |
| 2401 | __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len); |
| 2402 | } |
| 2403 | |
| 2404 | static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity, |
| 2405 | u64 start, u64 len) |
| 2406 | { |
| 2407 | __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len); |
| 2408 | } |
| 2409 | |
| 2410 | static void scrub_block_complete(struct scrub_block *sblock) |
| 2411 | { |
| 2412 | int corrupted = 0; |
| 2413 | |
| 2414 | if (!sblock->no_io_error_seen) { |
| 2415 | corrupted = 1; |
| 2416 | scrub_handle_errored_block(sblock); |
| 2417 | } else { |
| 2418 | /* |
| 2419 | * if has checksum error, write via repair mechanism in |
| 2420 | * dev replace case, otherwise write here in dev replace |
| 2421 | * case. |
| 2422 | */ |
| 2423 | corrupted = scrub_checksum(sblock); |
| 2424 | if (!corrupted && sblock->sctx->is_dev_replace) |
| 2425 | scrub_write_block_to_dev_replace(sblock); |
| 2426 | } |
| 2427 | |
| 2428 | if (sblock->sparity && corrupted && !sblock->data_corrected) { |
| 2429 | u64 start = sblock->pagev[0]->logical; |
| 2430 | u64 end = sblock->pagev[sblock->page_count - 1]->logical + |
| 2431 | PAGE_SIZE; |
| 2432 | |
| 2433 | scrub_parity_mark_sectors_error(sblock->sparity, |
| 2434 | start, end - start); |
| 2435 | } |
| 2436 | } |
| 2437 | |
| 2438 | static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum) |
| 2439 | { |
| 2440 | struct btrfs_ordered_sum *sum = NULL; |
| 2441 | unsigned long index; |
| 2442 | unsigned long num_sectors; |
| 2443 | |
| 2444 | while (!list_empty(&sctx->csum_list)) { |
| 2445 | sum = list_first_entry(&sctx->csum_list, |
| 2446 | struct btrfs_ordered_sum, list); |
| 2447 | if (sum->bytenr > logical) |
| 2448 | return 0; |
| 2449 | if (sum->bytenr + sum->len > logical) |
| 2450 | break; |
| 2451 | |
| 2452 | ++sctx->stat.csum_discards; |
| 2453 | list_del(&sum->list); |
| 2454 | kfree(sum); |
| 2455 | sum = NULL; |
| 2456 | } |
| 2457 | if (!sum) |
| 2458 | return 0; |
| 2459 | |
| 2460 | index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize); |
| 2461 | ASSERT(index < UINT_MAX); |
| 2462 | |
| 2463 | num_sectors = sum->len / sctx->fs_info->sectorsize; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2464 | memcpy(csum, sum->sums + index * sctx->csum_size, sctx->csum_size); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2465 | if (index == num_sectors - 1) { |
| 2466 | list_del(&sum->list); |
| 2467 | kfree(sum); |
| 2468 | } |
| 2469 | return 1; |
| 2470 | } |
| 2471 | |
| 2472 | /* scrub extent tries to collect up to 64 kB for each bio */ |
| 2473 | static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map, |
| 2474 | u64 logical, u64 len, |
| 2475 | u64 physical, struct btrfs_device *dev, u64 flags, |
| 2476 | u64 gen, int mirror_num, u64 physical_for_dev_replace) |
| 2477 | { |
| 2478 | int ret; |
| 2479 | u8 csum[BTRFS_CSUM_SIZE]; |
| 2480 | u32 blocksize; |
| 2481 | |
| 2482 | if (flags & BTRFS_EXTENT_FLAG_DATA) { |
| 2483 | if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) |
| 2484 | blocksize = map->stripe_len; |
| 2485 | else |
| 2486 | blocksize = sctx->fs_info->sectorsize; |
| 2487 | spin_lock(&sctx->stat_lock); |
| 2488 | sctx->stat.data_extents_scrubbed++; |
| 2489 | sctx->stat.data_bytes_scrubbed += len; |
| 2490 | spin_unlock(&sctx->stat_lock); |
| 2491 | } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
| 2492 | if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) |
| 2493 | blocksize = map->stripe_len; |
| 2494 | else |
| 2495 | blocksize = sctx->fs_info->nodesize; |
| 2496 | spin_lock(&sctx->stat_lock); |
| 2497 | sctx->stat.tree_extents_scrubbed++; |
| 2498 | sctx->stat.tree_bytes_scrubbed += len; |
| 2499 | spin_unlock(&sctx->stat_lock); |
| 2500 | } else { |
| 2501 | blocksize = sctx->fs_info->sectorsize; |
| 2502 | WARN_ON(1); |
| 2503 | } |
| 2504 | |
| 2505 | while (len) { |
| 2506 | u64 l = min_t(u64, len, blocksize); |
| 2507 | int have_csum = 0; |
| 2508 | |
| 2509 | if (flags & BTRFS_EXTENT_FLAG_DATA) { |
| 2510 | /* push csums to sbio */ |
| 2511 | have_csum = scrub_find_csum(sctx, logical, csum); |
| 2512 | if (have_csum == 0) |
| 2513 | ++sctx->stat.no_csum; |
| 2514 | } |
| 2515 | ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen, |
| 2516 | mirror_num, have_csum ? csum : NULL, 0, |
| 2517 | physical_for_dev_replace); |
| 2518 | if (ret) |
| 2519 | return ret; |
| 2520 | len -= l; |
| 2521 | logical += l; |
| 2522 | physical += l; |
| 2523 | physical_for_dev_replace += l; |
| 2524 | } |
| 2525 | return 0; |
| 2526 | } |
| 2527 | |
| 2528 | static int scrub_pages_for_parity(struct scrub_parity *sparity, |
| 2529 | u64 logical, u64 len, |
| 2530 | u64 physical, struct btrfs_device *dev, |
| 2531 | u64 flags, u64 gen, int mirror_num, u8 *csum) |
| 2532 | { |
| 2533 | struct scrub_ctx *sctx = sparity->sctx; |
| 2534 | struct scrub_block *sblock; |
| 2535 | int index; |
| 2536 | |
| 2537 | sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); |
| 2538 | if (!sblock) { |
| 2539 | spin_lock(&sctx->stat_lock); |
| 2540 | sctx->stat.malloc_errors++; |
| 2541 | spin_unlock(&sctx->stat_lock); |
| 2542 | return -ENOMEM; |
| 2543 | } |
| 2544 | |
| 2545 | /* one ref inside this function, plus one for each page added to |
| 2546 | * a bio later on */ |
| 2547 | refcount_set(&sblock->refs, 1); |
| 2548 | sblock->sctx = sctx; |
| 2549 | sblock->no_io_error_seen = 1; |
| 2550 | sblock->sparity = sparity; |
| 2551 | scrub_parity_get(sparity); |
| 2552 | |
| 2553 | for (index = 0; len > 0; index++) { |
| 2554 | struct scrub_page *spage; |
| 2555 | u64 l = min_t(u64, len, PAGE_SIZE); |
| 2556 | |
| 2557 | spage = kzalloc(sizeof(*spage), GFP_KERNEL); |
| 2558 | if (!spage) { |
| 2559 | leave_nomem: |
| 2560 | spin_lock(&sctx->stat_lock); |
| 2561 | sctx->stat.malloc_errors++; |
| 2562 | spin_unlock(&sctx->stat_lock); |
| 2563 | scrub_block_put(sblock); |
| 2564 | return -ENOMEM; |
| 2565 | } |
| 2566 | BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); |
| 2567 | /* For scrub block */ |
| 2568 | scrub_page_get(spage); |
| 2569 | sblock->pagev[index] = spage; |
| 2570 | /* For scrub parity */ |
| 2571 | scrub_page_get(spage); |
| 2572 | list_add_tail(&spage->list, &sparity->spages); |
| 2573 | spage->sblock = sblock; |
| 2574 | spage->dev = dev; |
| 2575 | spage->flags = flags; |
| 2576 | spage->generation = gen; |
| 2577 | spage->logical = logical; |
| 2578 | spage->physical = physical; |
| 2579 | spage->mirror_num = mirror_num; |
| 2580 | if (csum) { |
| 2581 | spage->have_csum = 1; |
| 2582 | memcpy(spage->csum, csum, sctx->csum_size); |
| 2583 | } else { |
| 2584 | spage->have_csum = 0; |
| 2585 | } |
| 2586 | sblock->page_count++; |
| 2587 | spage->page = alloc_page(GFP_KERNEL); |
| 2588 | if (!spage->page) |
| 2589 | goto leave_nomem; |
| 2590 | len -= l; |
| 2591 | logical += l; |
| 2592 | physical += l; |
| 2593 | } |
| 2594 | |
| 2595 | WARN_ON(sblock->page_count == 0); |
| 2596 | for (index = 0; index < sblock->page_count; index++) { |
| 2597 | struct scrub_page *spage = sblock->pagev[index]; |
| 2598 | int ret; |
| 2599 | |
| 2600 | ret = scrub_add_page_to_rd_bio(sctx, spage); |
| 2601 | if (ret) { |
| 2602 | scrub_block_put(sblock); |
| 2603 | return ret; |
| 2604 | } |
| 2605 | } |
| 2606 | |
| 2607 | /* last one frees, either here or in bio completion for last page */ |
| 2608 | scrub_block_put(sblock); |
| 2609 | return 0; |
| 2610 | } |
| 2611 | |
| 2612 | static int scrub_extent_for_parity(struct scrub_parity *sparity, |
| 2613 | u64 logical, u64 len, |
| 2614 | u64 physical, struct btrfs_device *dev, |
| 2615 | u64 flags, u64 gen, int mirror_num) |
| 2616 | { |
| 2617 | struct scrub_ctx *sctx = sparity->sctx; |
| 2618 | int ret; |
| 2619 | u8 csum[BTRFS_CSUM_SIZE]; |
| 2620 | u32 blocksize; |
| 2621 | |
| 2622 | if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { |
| 2623 | scrub_parity_mark_sectors_error(sparity, logical, len); |
| 2624 | return 0; |
| 2625 | } |
| 2626 | |
| 2627 | if (flags & BTRFS_EXTENT_FLAG_DATA) { |
| 2628 | blocksize = sparity->stripe_len; |
| 2629 | } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
| 2630 | blocksize = sparity->stripe_len; |
| 2631 | } else { |
| 2632 | blocksize = sctx->fs_info->sectorsize; |
| 2633 | WARN_ON(1); |
| 2634 | } |
| 2635 | |
| 2636 | while (len) { |
| 2637 | u64 l = min_t(u64, len, blocksize); |
| 2638 | int have_csum = 0; |
| 2639 | |
| 2640 | if (flags & BTRFS_EXTENT_FLAG_DATA) { |
| 2641 | /* push csums to sbio */ |
| 2642 | have_csum = scrub_find_csum(sctx, logical, csum); |
| 2643 | if (have_csum == 0) |
| 2644 | goto skip; |
| 2645 | } |
| 2646 | ret = scrub_pages_for_parity(sparity, logical, l, physical, dev, |
| 2647 | flags, gen, mirror_num, |
| 2648 | have_csum ? csum : NULL); |
| 2649 | if (ret) |
| 2650 | return ret; |
| 2651 | skip: |
| 2652 | len -= l; |
| 2653 | logical += l; |
| 2654 | physical += l; |
| 2655 | } |
| 2656 | return 0; |
| 2657 | } |
| 2658 | |
| 2659 | /* |
| 2660 | * Given a physical address, this will calculate it's |
| 2661 | * logical offset. if this is a parity stripe, it will return |
| 2662 | * the most left data stripe's logical offset. |
| 2663 | * |
| 2664 | * return 0 if it is a data stripe, 1 means parity stripe. |
| 2665 | */ |
| 2666 | static int get_raid56_logic_offset(u64 physical, int num, |
| 2667 | struct map_lookup *map, u64 *offset, |
| 2668 | u64 *stripe_start) |
| 2669 | { |
| 2670 | int i; |
| 2671 | int j = 0; |
| 2672 | u64 stripe_nr; |
| 2673 | u64 last_offset; |
| 2674 | u32 stripe_index; |
| 2675 | u32 rot; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2676 | const int data_stripes = nr_data_stripes(map); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2677 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2678 | last_offset = (physical - map->stripes[num].physical) * data_stripes; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2679 | if (stripe_start) |
| 2680 | *stripe_start = last_offset; |
| 2681 | |
| 2682 | *offset = last_offset; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2683 | for (i = 0; i < data_stripes; i++) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2684 | *offset = last_offset + i * map->stripe_len; |
| 2685 | |
| 2686 | stripe_nr = div64_u64(*offset, map->stripe_len); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2687 | stripe_nr = div_u64(stripe_nr, data_stripes); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2688 | |
| 2689 | /* Work out the disk rotation on this stripe-set */ |
| 2690 | stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot); |
| 2691 | /* calculate which stripe this data locates */ |
| 2692 | rot += i; |
| 2693 | stripe_index = rot % map->num_stripes; |
| 2694 | if (stripe_index == num) |
| 2695 | return 0; |
| 2696 | if (stripe_index < num) |
| 2697 | j++; |
| 2698 | } |
| 2699 | *offset = last_offset + j * map->stripe_len; |
| 2700 | return 1; |
| 2701 | } |
| 2702 | |
| 2703 | static void scrub_free_parity(struct scrub_parity *sparity) |
| 2704 | { |
| 2705 | struct scrub_ctx *sctx = sparity->sctx; |
| 2706 | struct scrub_page *curr, *next; |
| 2707 | int nbits; |
| 2708 | |
| 2709 | nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors); |
| 2710 | if (nbits) { |
| 2711 | spin_lock(&sctx->stat_lock); |
| 2712 | sctx->stat.read_errors += nbits; |
| 2713 | sctx->stat.uncorrectable_errors += nbits; |
| 2714 | spin_unlock(&sctx->stat_lock); |
| 2715 | } |
| 2716 | |
| 2717 | list_for_each_entry_safe(curr, next, &sparity->spages, list) { |
| 2718 | list_del_init(&curr->list); |
| 2719 | scrub_page_put(curr); |
| 2720 | } |
| 2721 | |
| 2722 | kfree(sparity); |
| 2723 | } |
| 2724 | |
| 2725 | static void scrub_parity_bio_endio_worker(struct btrfs_work *work) |
| 2726 | { |
| 2727 | struct scrub_parity *sparity = container_of(work, struct scrub_parity, |
| 2728 | work); |
| 2729 | struct scrub_ctx *sctx = sparity->sctx; |
| 2730 | |
| 2731 | scrub_free_parity(sparity); |
| 2732 | scrub_pending_bio_dec(sctx); |
| 2733 | } |
| 2734 | |
| 2735 | static void scrub_parity_bio_endio(struct bio *bio) |
| 2736 | { |
| 2737 | struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private; |
| 2738 | struct btrfs_fs_info *fs_info = sparity->sctx->fs_info; |
| 2739 | |
| 2740 | if (bio->bi_status) |
| 2741 | bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, |
| 2742 | sparity->nsectors); |
| 2743 | |
| 2744 | bio_put(bio); |
| 2745 | |
| 2746 | btrfs_init_work(&sparity->work, btrfs_scrubparity_helper, |
| 2747 | scrub_parity_bio_endio_worker, NULL, NULL); |
| 2748 | btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work); |
| 2749 | } |
| 2750 | |
| 2751 | static void scrub_parity_check_and_repair(struct scrub_parity *sparity) |
| 2752 | { |
| 2753 | struct scrub_ctx *sctx = sparity->sctx; |
| 2754 | struct btrfs_fs_info *fs_info = sctx->fs_info; |
| 2755 | struct bio *bio; |
| 2756 | struct btrfs_raid_bio *rbio; |
| 2757 | struct btrfs_bio *bbio = NULL; |
| 2758 | u64 length; |
| 2759 | int ret; |
| 2760 | |
| 2761 | if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap, |
| 2762 | sparity->nsectors)) |
| 2763 | goto out; |
| 2764 | |
| 2765 | length = sparity->logic_end - sparity->logic_start; |
| 2766 | |
| 2767 | btrfs_bio_counter_inc_blocked(fs_info); |
| 2768 | ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start, |
| 2769 | &length, &bbio); |
| 2770 | if (ret || !bbio || !bbio->raid_map) |
| 2771 | goto bbio_out; |
| 2772 | |
| 2773 | bio = btrfs_io_bio_alloc(0); |
| 2774 | bio->bi_iter.bi_sector = sparity->logic_start >> 9; |
| 2775 | bio->bi_private = sparity; |
| 2776 | bio->bi_end_io = scrub_parity_bio_endio; |
| 2777 | |
| 2778 | rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio, |
| 2779 | length, sparity->scrub_dev, |
| 2780 | sparity->dbitmap, |
| 2781 | sparity->nsectors); |
| 2782 | if (!rbio) |
| 2783 | goto rbio_out; |
| 2784 | |
| 2785 | scrub_pending_bio_inc(sctx); |
| 2786 | raid56_parity_submit_scrub_rbio(rbio); |
| 2787 | return; |
| 2788 | |
| 2789 | rbio_out: |
| 2790 | bio_put(bio); |
| 2791 | bbio_out: |
| 2792 | btrfs_bio_counter_dec(fs_info); |
| 2793 | btrfs_put_bbio(bbio); |
| 2794 | bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, |
| 2795 | sparity->nsectors); |
| 2796 | spin_lock(&sctx->stat_lock); |
| 2797 | sctx->stat.malloc_errors++; |
| 2798 | spin_unlock(&sctx->stat_lock); |
| 2799 | out: |
| 2800 | scrub_free_parity(sparity); |
| 2801 | } |
| 2802 | |
| 2803 | static inline int scrub_calc_parity_bitmap_len(int nsectors) |
| 2804 | { |
| 2805 | return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long); |
| 2806 | } |
| 2807 | |
| 2808 | static void scrub_parity_get(struct scrub_parity *sparity) |
| 2809 | { |
| 2810 | refcount_inc(&sparity->refs); |
| 2811 | } |
| 2812 | |
| 2813 | static void scrub_parity_put(struct scrub_parity *sparity) |
| 2814 | { |
| 2815 | if (!refcount_dec_and_test(&sparity->refs)) |
| 2816 | return; |
| 2817 | |
| 2818 | scrub_parity_check_and_repair(sparity); |
| 2819 | } |
| 2820 | |
| 2821 | static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx, |
| 2822 | struct map_lookup *map, |
| 2823 | struct btrfs_device *sdev, |
| 2824 | struct btrfs_path *path, |
| 2825 | u64 logic_start, |
| 2826 | u64 logic_end) |
| 2827 | { |
| 2828 | struct btrfs_fs_info *fs_info = sctx->fs_info; |
| 2829 | struct btrfs_root *root = fs_info->extent_root; |
| 2830 | struct btrfs_root *csum_root = fs_info->csum_root; |
| 2831 | struct btrfs_extent_item *extent; |
| 2832 | struct btrfs_bio *bbio = NULL; |
| 2833 | u64 flags; |
| 2834 | int ret; |
| 2835 | int slot; |
| 2836 | struct extent_buffer *l; |
| 2837 | struct btrfs_key key; |
| 2838 | u64 generation; |
| 2839 | u64 extent_logical; |
| 2840 | u64 extent_physical; |
| 2841 | u64 extent_len; |
| 2842 | u64 mapped_length; |
| 2843 | struct btrfs_device *extent_dev; |
| 2844 | struct scrub_parity *sparity; |
| 2845 | int nsectors; |
| 2846 | int bitmap_len; |
| 2847 | int extent_mirror_num; |
| 2848 | int stop_loop = 0; |
| 2849 | |
| 2850 | nsectors = div_u64(map->stripe_len, fs_info->sectorsize); |
| 2851 | bitmap_len = scrub_calc_parity_bitmap_len(nsectors); |
| 2852 | sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len, |
| 2853 | GFP_NOFS); |
| 2854 | if (!sparity) { |
| 2855 | spin_lock(&sctx->stat_lock); |
| 2856 | sctx->stat.malloc_errors++; |
| 2857 | spin_unlock(&sctx->stat_lock); |
| 2858 | return -ENOMEM; |
| 2859 | } |
| 2860 | |
| 2861 | sparity->stripe_len = map->stripe_len; |
| 2862 | sparity->nsectors = nsectors; |
| 2863 | sparity->sctx = sctx; |
| 2864 | sparity->scrub_dev = sdev; |
| 2865 | sparity->logic_start = logic_start; |
| 2866 | sparity->logic_end = logic_end; |
| 2867 | refcount_set(&sparity->refs, 1); |
| 2868 | INIT_LIST_HEAD(&sparity->spages); |
| 2869 | sparity->dbitmap = sparity->bitmap; |
| 2870 | sparity->ebitmap = (void *)sparity->bitmap + bitmap_len; |
| 2871 | |
| 2872 | ret = 0; |
| 2873 | while (logic_start < logic_end) { |
| 2874 | if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) |
| 2875 | key.type = BTRFS_METADATA_ITEM_KEY; |
| 2876 | else |
| 2877 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 2878 | key.objectid = logic_start; |
| 2879 | key.offset = (u64)-1; |
| 2880 | |
| 2881 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| 2882 | if (ret < 0) |
| 2883 | goto out; |
| 2884 | |
| 2885 | if (ret > 0) { |
| 2886 | ret = btrfs_previous_extent_item(root, path, 0); |
| 2887 | if (ret < 0) |
| 2888 | goto out; |
| 2889 | if (ret > 0) { |
| 2890 | btrfs_release_path(path); |
| 2891 | ret = btrfs_search_slot(NULL, root, &key, |
| 2892 | path, 0, 0); |
| 2893 | if (ret < 0) |
| 2894 | goto out; |
| 2895 | } |
| 2896 | } |
| 2897 | |
| 2898 | stop_loop = 0; |
| 2899 | while (1) { |
| 2900 | u64 bytes; |
| 2901 | |
| 2902 | l = path->nodes[0]; |
| 2903 | slot = path->slots[0]; |
| 2904 | if (slot >= btrfs_header_nritems(l)) { |
| 2905 | ret = btrfs_next_leaf(root, path); |
| 2906 | if (ret == 0) |
| 2907 | continue; |
| 2908 | if (ret < 0) |
| 2909 | goto out; |
| 2910 | |
| 2911 | stop_loop = 1; |
| 2912 | break; |
| 2913 | } |
| 2914 | btrfs_item_key_to_cpu(l, &key, slot); |
| 2915 | |
| 2916 | if (key.type != BTRFS_EXTENT_ITEM_KEY && |
| 2917 | key.type != BTRFS_METADATA_ITEM_KEY) |
| 2918 | goto next; |
| 2919 | |
| 2920 | if (key.type == BTRFS_METADATA_ITEM_KEY) |
| 2921 | bytes = fs_info->nodesize; |
| 2922 | else |
| 2923 | bytes = key.offset; |
| 2924 | |
| 2925 | if (key.objectid + bytes <= logic_start) |
| 2926 | goto next; |
| 2927 | |
| 2928 | if (key.objectid >= logic_end) { |
| 2929 | stop_loop = 1; |
| 2930 | break; |
| 2931 | } |
| 2932 | |
| 2933 | while (key.objectid >= logic_start + map->stripe_len) |
| 2934 | logic_start += map->stripe_len; |
| 2935 | |
| 2936 | extent = btrfs_item_ptr(l, slot, |
| 2937 | struct btrfs_extent_item); |
| 2938 | flags = btrfs_extent_flags(l, extent); |
| 2939 | generation = btrfs_extent_generation(l, extent); |
| 2940 | |
| 2941 | if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && |
| 2942 | (key.objectid < logic_start || |
| 2943 | key.objectid + bytes > |
| 2944 | logic_start + map->stripe_len)) { |
| 2945 | btrfs_err(fs_info, |
| 2946 | "scrub: tree block %llu spanning stripes, ignored. logical=%llu", |
| 2947 | key.objectid, logic_start); |
| 2948 | spin_lock(&sctx->stat_lock); |
| 2949 | sctx->stat.uncorrectable_errors++; |
| 2950 | spin_unlock(&sctx->stat_lock); |
| 2951 | goto next; |
| 2952 | } |
| 2953 | again: |
| 2954 | extent_logical = key.objectid; |
| 2955 | extent_len = bytes; |
| 2956 | |
| 2957 | if (extent_logical < logic_start) { |
| 2958 | extent_len -= logic_start - extent_logical; |
| 2959 | extent_logical = logic_start; |
| 2960 | } |
| 2961 | |
| 2962 | if (extent_logical + extent_len > |
| 2963 | logic_start + map->stripe_len) |
| 2964 | extent_len = logic_start + map->stripe_len - |
| 2965 | extent_logical; |
| 2966 | |
| 2967 | scrub_parity_mark_sectors_data(sparity, extent_logical, |
| 2968 | extent_len); |
| 2969 | |
| 2970 | mapped_length = extent_len; |
| 2971 | bbio = NULL; |
| 2972 | ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, |
| 2973 | extent_logical, &mapped_length, &bbio, |
| 2974 | 0); |
| 2975 | if (!ret) { |
| 2976 | if (!bbio || mapped_length < extent_len) |
| 2977 | ret = -EIO; |
| 2978 | } |
| 2979 | if (ret) { |
| 2980 | btrfs_put_bbio(bbio); |
| 2981 | goto out; |
| 2982 | } |
| 2983 | extent_physical = bbio->stripes[0].physical; |
| 2984 | extent_mirror_num = bbio->mirror_num; |
| 2985 | extent_dev = bbio->stripes[0].dev; |
| 2986 | btrfs_put_bbio(bbio); |
| 2987 | |
| 2988 | ret = btrfs_lookup_csums_range(csum_root, |
| 2989 | extent_logical, |
| 2990 | extent_logical + extent_len - 1, |
| 2991 | &sctx->csum_list, 1); |
| 2992 | if (ret) |
| 2993 | goto out; |
| 2994 | |
| 2995 | ret = scrub_extent_for_parity(sparity, extent_logical, |
| 2996 | extent_len, |
| 2997 | extent_physical, |
| 2998 | extent_dev, flags, |
| 2999 | generation, |
| 3000 | extent_mirror_num); |
| 3001 | |
| 3002 | scrub_free_csums(sctx); |
| 3003 | |
| 3004 | if (ret) |
| 3005 | goto out; |
| 3006 | |
| 3007 | if (extent_logical + extent_len < |
| 3008 | key.objectid + bytes) { |
| 3009 | logic_start += map->stripe_len; |
| 3010 | |
| 3011 | if (logic_start >= logic_end) { |
| 3012 | stop_loop = 1; |
| 3013 | break; |
| 3014 | } |
| 3015 | |
| 3016 | if (logic_start < key.objectid + bytes) { |
| 3017 | cond_resched(); |
| 3018 | goto again; |
| 3019 | } |
| 3020 | } |
| 3021 | next: |
| 3022 | path->slots[0]++; |
| 3023 | } |
| 3024 | |
| 3025 | btrfs_release_path(path); |
| 3026 | |
| 3027 | if (stop_loop) |
| 3028 | break; |
| 3029 | |
| 3030 | logic_start += map->stripe_len; |
| 3031 | } |
| 3032 | out: |
| 3033 | if (ret < 0) |
| 3034 | scrub_parity_mark_sectors_error(sparity, logic_start, |
| 3035 | logic_end - logic_start); |
| 3036 | scrub_parity_put(sparity); |
| 3037 | scrub_submit(sctx); |
| 3038 | mutex_lock(&sctx->wr_lock); |
| 3039 | scrub_wr_submit(sctx); |
| 3040 | mutex_unlock(&sctx->wr_lock); |
| 3041 | |
| 3042 | btrfs_release_path(path); |
| 3043 | return ret < 0 ? ret : 0; |
| 3044 | } |
| 3045 | |
| 3046 | static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, |
| 3047 | struct map_lookup *map, |
| 3048 | struct btrfs_device *scrub_dev, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3049 | int num, u64 base, u64 length) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3050 | { |
| 3051 | struct btrfs_path *path, *ppath; |
| 3052 | struct btrfs_fs_info *fs_info = sctx->fs_info; |
| 3053 | struct btrfs_root *root = fs_info->extent_root; |
| 3054 | struct btrfs_root *csum_root = fs_info->csum_root; |
| 3055 | struct btrfs_extent_item *extent; |
| 3056 | struct blk_plug plug; |
| 3057 | u64 flags; |
| 3058 | int ret; |
| 3059 | int slot; |
| 3060 | u64 nstripes; |
| 3061 | struct extent_buffer *l; |
| 3062 | u64 physical; |
| 3063 | u64 logical; |
| 3064 | u64 logic_end; |
| 3065 | u64 physical_end; |
| 3066 | u64 generation; |
| 3067 | int mirror_num; |
| 3068 | struct reada_control *reada1; |
| 3069 | struct reada_control *reada2; |
| 3070 | struct btrfs_key key; |
| 3071 | struct btrfs_key key_end; |
| 3072 | u64 increment = map->stripe_len; |
| 3073 | u64 offset; |
| 3074 | u64 extent_logical; |
| 3075 | u64 extent_physical; |
| 3076 | u64 extent_len; |
| 3077 | u64 stripe_logical; |
| 3078 | u64 stripe_end; |
| 3079 | struct btrfs_device *extent_dev; |
| 3080 | int extent_mirror_num; |
| 3081 | int stop_loop = 0; |
| 3082 | |
| 3083 | physical = map->stripes[num].physical; |
| 3084 | offset = 0; |
| 3085 | nstripes = div64_u64(length, map->stripe_len); |
| 3086 | if (map->type & BTRFS_BLOCK_GROUP_RAID0) { |
| 3087 | offset = map->stripe_len * num; |
| 3088 | increment = map->stripe_len * map->num_stripes; |
| 3089 | mirror_num = 1; |
| 3090 | } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { |
| 3091 | int factor = map->num_stripes / map->sub_stripes; |
| 3092 | offset = map->stripe_len * (num / map->sub_stripes); |
| 3093 | increment = map->stripe_len * factor; |
| 3094 | mirror_num = num % map->sub_stripes + 1; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3095 | } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3096 | increment = map->stripe_len; |
| 3097 | mirror_num = num % map->num_stripes + 1; |
| 3098 | } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { |
| 3099 | increment = map->stripe_len; |
| 3100 | mirror_num = num % map->num_stripes + 1; |
| 3101 | } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { |
| 3102 | get_raid56_logic_offset(physical, num, map, &offset, NULL); |
| 3103 | increment = map->stripe_len * nr_data_stripes(map); |
| 3104 | mirror_num = 1; |
| 3105 | } else { |
| 3106 | increment = map->stripe_len; |
| 3107 | mirror_num = 1; |
| 3108 | } |
| 3109 | |
| 3110 | path = btrfs_alloc_path(); |
| 3111 | if (!path) |
| 3112 | return -ENOMEM; |
| 3113 | |
| 3114 | ppath = btrfs_alloc_path(); |
| 3115 | if (!ppath) { |
| 3116 | btrfs_free_path(path); |
| 3117 | return -ENOMEM; |
| 3118 | } |
| 3119 | |
| 3120 | /* |
| 3121 | * work on commit root. The related disk blocks are static as |
| 3122 | * long as COW is applied. This means, it is save to rewrite |
| 3123 | * them to repair disk errors without any race conditions |
| 3124 | */ |
| 3125 | path->search_commit_root = 1; |
| 3126 | path->skip_locking = 1; |
| 3127 | |
| 3128 | ppath->search_commit_root = 1; |
| 3129 | ppath->skip_locking = 1; |
| 3130 | /* |
| 3131 | * trigger the readahead for extent tree csum tree and wait for |
| 3132 | * completion. During readahead, the scrub is officially paused |
| 3133 | * to not hold off transaction commits |
| 3134 | */ |
| 3135 | logical = base + offset; |
| 3136 | physical_end = physical + nstripes * map->stripe_len; |
| 3137 | if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { |
| 3138 | get_raid56_logic_offset(physical_end, num, |
| 3139 | map, &logic_end, NULL); |
| 3140 | logic_end += base; |
| 3141 | } else { |
| 3142 | logic_end = logical + increment * nstripes; |
| 3143 | } |
| 3144 | wait_event(sctx->list_wait, |
| 3145 | atomic_read(&sctx->bios_in_flight) == 0); |
| 3146 | scrub_blocked_if_needed(fs_info); |
| 3147 | |
| 3148 | /* FIXME it might be better to start readahead at commit root */ |
| 3149 | key.objectid = logical; |
| 3150 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 3151 | key.offset = (u64)0; |
| 3152 | key_end.objectid = logic_end; |
| 3153 | key_end.type = BTRFS_METADATA_ITEM_KEY; |
| 3154 | key_end.offset = (u64)-1; |
| 3155 | reada1 = btrfs_reada_add(root, &key, &key_end); |
| 3156 | |
| 3157 | key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; |
| 3158 | key.type = BTRFS_EXTENT_CSUM_KEY; |
| 3159 | key.offset = logical; |
| 3160 | key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; |
| 3161 | key_end.type = BTRFS_EXTENT_CSUM_KEY; |
| 3162 | key_end.offset = logic_end; |
| 3163 | reada2 = btrfs_reada_add(csum_root, &key, &key_end); |
| 3164 | |
| 3165 | if (!IS_ERR(reada1)) |
| 3166 | btrfs_reada_wait(reada1); |
| 3167 | if (!IS_ERR(reada2)) |
| 3168 | btrfs_reada_wait(reada2); |
| 3169 | |
| 3170 | |
| 3171 | /* |
| 3172 | * collect all data csums for the stripe to avoid seeking during |
| 3173 | * the scrub. This might currently (crc32) end up to be about 1MB |
| 3174 | */ |
| 3175 | blk_start_plug(&plug); |
| 3176 | |
| 3177 | /* |
| 3178 | * now find all extents for each stripe and scrub them |
| 3179 | */ |
| 3180 | ret = 0; |
| 3181 | while (physical < physical_end) { |
| 3182 | /* |
| 3183 | * canceled? |
| 3184 | */ |
| 3185 | if (atomic_read(&fs_info->scrub_cancel_req) || |
| 3186 | atomic_read(&sctx->cancel_req)) { |
| 3187 | ret = -ECANCELED; |
| 3188 | goto out; |
| 3189 | } |
| 3190 | /* |
| 3191 | * check to see if we have to pause |
| 3192 | */ |
| 3193 | if (atomic_read(&fs_info->scrub_pause_req)) { |
| 3194 | /* push queued extents */ |
| 3195 | sctx->flush_all_writes = true; |
| 3196 | scrub_submit(sctx); |
| 3197 | mutex_lock(&sctx->wr_lock); |
| 3198 | scrub_wr_submit(sctx); |
| 3199 | mutex_unlock(&sctx->wr_lock); |
| 3200 | wait_event(sctx->list_wait, |
| 3201 | atomic_read(&sctx->bios_in_flight) == 0); |
| 3202 | sctx->flush_all_writes = false; |
| 3203 | scrub_blocked_if_needed(fs_info); |
| 3204 | } |
| 3205 | |
| 3206 | if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { |
| 3207 | ret = get_raid56_logic_offset(physical, num, map, |
| 3208 | &logical, |
| 3209 | &stripe_logical); |
| 3210 | logical += base; |
| 3211 | if (ret) { |
| 3212 | /* it is parity strip */ |
| 3213 | stripe_logical += base; |
| 3214 | stripe_end = stripe_logical + increment; |
| 3215 | ret = scrub_raid56_parity(sctx, map, scrub_dev, |
| 3216 | ppath, stripe_logical, |
| 3217 | stripe_end); |
| 3218 | if (ret) |
| 3219 | goto out; |
| 3220 | goto skip; |
| 3221 | } |
| 3222 | } |
| 3223 | |
| 3224 | if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) |
| 3225 | key.type = BTRFS_METADATA_ITEM_KEY; |
| 3226 | else |
| 3227 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 3228 | key.objectid = logical; |
| 3229 | key.offset = (u64)-1; |
| 3230 | |
| 3231 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| 3232 | if (ret < 0) |
| 3233 | goto out; |
| 3234 | |
| 3235 | if (ret > 0) { |
| 3236 | ret = btrfs_previous_extent_item(root, path, 0); |
| 3237 | if (ret < 0) |
| 3238 | goto out; |
| 3239 | if (ret > 0) { |
| 3240 | /* there's no smaller item, so stick with the |
| 3241 | * larger one */ |
| 3242 | btrfs_release_path(path); |
| 3243 | ret = btrfs_search_slot(NULL, root, &key, |
| 3244 | path, 0, 0); |
| 3245 | if (ret < 0) |
| 3246 | goto out; |
| 3247 | } |
| 3248 | } |
| 3249 | |
| 3250 | stop_loop = 0; |
| 3251 | while (1) { |
| 3252 | u64 bytes; |
| 3253 | |
| 3254 | l = path->nodes[0]; |
| 3255 | slot = path->slots[0]; |
| 3256 | if (slot >= btrfs_header_nritems(l)) { |
| 3257 | ret = btrfs_next_leaf(root, path); |
| 3258 | if (ret == 0) |
| 3259 | continue; |
| 3260 | if (ret < 0) |
| 3261 | goto out; |
| 3262 | |
| 3263 | stop_loop = 1; |
| 3264 | break; |
| 3265 | } |
| 3266 | btrfs_item_key_to_cpu(l, &key, slot); |
| 3267 | |
| 3268 | if (key.type != BTRFS_EXTENT_ITEM_KEY && |
| 3269 | key.type != BTRFS_METADATA_ITEM_KEY) |
| 3270 | goto next; |
| 3271 | |
| 3272 | if (key.type == BTRFS_METADATA_ITEM_KEY) |
| 3273 | bytes = fs_info->nodesize; |
| 3274 | else |
| 3275 | bytes = key.offset; |
| 3276 | |
| 3277 | if (key.objectid + bytes <= logical) |
| 3278 | goto next; |
| 3279 | |
| 3280 | if (key.objectid >= logical + map->stripe_len) { |
| 3281 | /* out of this device extent */ |
| 3282 | if (key.objectid >= logic_end) |
| 3283 | stop_loop = 1; |
| 3284 | break; |
| 3285 | } |
| 3286 | |
| 3287 | extent = btrfs_item_ptr(l, slot, |
| 3288 | struct btrfs_extent_item); |
| 3289 | flags = btrfs_extent_flags(l, extent); |
| 3290 | generation = btrfs_extent_generation(l, extent); |
| 3291 | |
| 3292 | if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && |
| 3293 | (key.objectid < logical || |
| 3294 | key.objectid + bytes > |
| 3295 | logical + map->stripe_len)) { |
| 3296 | btrfs_err(fs_info, |
| 3297 | "scrub: tree block %llu spanning stripes, ignored. logical=%llu", |
| 3298 | key.objectid, logical); |
| 3299 | spin_lock(&sctx->stat_lock); |
| 3300 | sctx->stat.uncorrectable_errors++; |
| 3301 | spin_unlock(&sctx->stat_lock); |
| 3302 | goto next; |
| 3303 | } |
| 3304 | |
| 3305 | again: |
| 3306 | extent_logical = key.objectid; |
| 3307 | extent_len = bytes; |
| 3308 | |
| 3309 | /* |
| 3310 | * trim extent to this stripe |
| 3311 | */ |
| 3312 | if (extent_logical < logical) { |
| 3313 | extent_len -= logical - extent_logical; |
| 3314 | extent_logical = logical; |
| 3315 | } |
| 3316 | if (extent_logical + extent_len > |
| 3317 | logical + map->stripe_len) { |
| 3318 | extent_len = logical + map->stripe_len - |
| 3319 | extent_logical; |
| 3320 | } |
| 3321 | |
| 3322 | extent_physical = extent_logical - logical + physical; |
| 3323 | extent_dev = scrub_dev; |
| 3324 | extent_mirror_num = mirror_num; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3325 | if (sctx->is_dev_replace) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3326 | scrub_remap_extent(fs_info, extent_logical, |
| 3327 | extent_len, &extent_physical, |
| 3328 | &extent_dev, |
| 3329 | &extent_mirror_num); |
| 3330 | |
| 3331 | ret = btrfs_lookup_csums_range(csum_root, |
| 3332 | extent_logical, |
| 3333 | extent_logical + |
| 3334 | extent_len - 1, |
| 3335 | &sctx->csum_list, 1); |
| 3336 | if (ret) |
| 3337 | goto out; |
| 3338 | |
| 3339 | ret = scrub_extent(sctx, map, extent_logical, extent_len, |
| 3340 | extent_physical, extent_dev, flags, |
| 3341 | generation, extent_mirror_num, |
| 3342 | extent_logical - logical + physical); |
| 3343 | |
| 3344 | scrub_free_csums(sctx); |
| 3345 | |
| 3346 | if (ret) |
| 3347 | goto out; |
| 3348 | |
| 3349 | if (extent_logical + extent_len < |
| 3350 | key.objectid + bytes) { |
| 3351 | if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { |
| 3352 | /* |
| 3353 | * loop until we find next data stripe |
| 3354 | * or we have finished all stripes. |
| 3355 | */ |
| 3356 | loop: |
| 3357 | physical += map->stripe_len; |
| 3358 | ret = get_raid56_logic_offset(physical, |
| 3359 | num, map, &logical, |
| 3360 | &stripe_logical); |
| 3361 | logical += base; |
| 3362 | |
| 3363 | if (ret && physical < physical_end) { |
| 3364 | stripe_logical += base; |
| 3365 | stripe_end = stripe_logical + |
| 3366 | increment; |
| 3367 | ret = scrub_raid56_parity(sctx, |
| 3368 | map, scrub_dev, ppath, |
| 3369 | stripe_logical, |
| 3370 | stripe_end); |
| 3371 | if (ret) |
| 3372 | goto out; |
| 3373 | goto loop; |
| 3374 | } |
| 3375 | } else { |
| 3376 | physical += map->stripe_len; |
| 3377 | logical += increment; |
| 3378 | } |
| 3379 | if (logical < key.objectid + bytes) { |
| 3380 | cond_resched(); |
| 3381 | goto again; |
| 3382 | } |
| 3383 | |
| 3384 | if (physical >= physical_end) { |
| 3385 | stop_loop = 1; |
| 3386 | break; |
| 3387 | } |
| 3388 | } |
| 3389 | next: |
| 3390 | path->slots[0]++; |
| 3391 | } |
| 3392 | btrfs_release_path(path); |
| 3393 | skip: |
| 3394 | logical += increment; |
| 3395 | physical += map->stripe_len; |
| 3396 | spin_lock(&sctx->stat_lock); |
| 3397 | if (stop_loop) |
| 3398 | sctx->stat.last_physical = map->stripes[num].physical + |
| 3399 | length; |
| 3400 | else |
| 3401 | sctx->stat.last_physical = physical; |
| 3402 | spin_unlock(&sctx->stat_lock); |
| 3403 | if (stop_loop) |
| 3404 | break; |
| 3405 | } |
| 3406 | out: |
| 3407 | /* push queued extents */ |
| 3408 | scrub_submit(sctx); |
| 3409 | mutex_lock(&sctx->wr_lock); |
| 3410 | scrub_wr_submit(sctx); |
| 3411 | mutex_unlock(&sctx->wr_lock); |
| 3412 | |
| 3413 | blk_finish_plug(&plug); |
| 3414 | btrfs_free_path(path); |
| 3415 | btrfs_free_path(ppath); |
| 3416 | return ret < 0 ? ret : 0; |
| 3417 | } |
| 3418 | |
| 3419 | static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, |
| 3420 | struct btrfs_device *scrub_dev, |
| 3421 | u64 chunk_offset, u64 length, |
| 3422 | u64 dev_offset, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3423 | struct btrfs_block_group_cache *cache) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3424 | { |
| 3425 | struct btrfs_fs_info *fs_info = sctx->fs_info; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3426 | struct extent_map_tree *map_tree = &fs_info->mapping_tree; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3427 | struct map_lookup *map; |
| 3428 | struct extent_map *em; |
| 3429 | int i; |
| 3430 | int ret = 0; |
| 3431 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3432 | read_lock(&map_tree->lock); |
| 3433 | em = lookup_extent_mapping(map_tree, chunk_offset, 1); |
| 3434 | read_unlock(&map_tree->lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3435 | |
| 3436 | if (!em) { |
| 3437 | /* |
| 3438 | * Might have been an unused block group deleted by the cleaner |
| 3439 | * kthread or relocation. |
| 3440 | */ |
| 3441 | spin_lock(&cache->lock); |
| 3442 | if (!cache->removed) |
| 3443 | ret = -EINVAL; |
| 3444 | spin_unlock(&cache->lock); |
| 3445 | |
| 3446 | return ret; |
| 3447 | } |
| 3448 | |
| 3449 | map = em->map_lookup; |
| 3450 | if (em->start != chunk_offset) |
| 3451 | goto out; |
| 3452 | |
| 3453 | if (em->len < length) |
| 3454 | goto out; |
| 3455 | |
| 3456 | for (i = 0; i < map->num_stripes; ++i) { |
| 3457 | if (map->stripes[i].dev->bdev == scrub_dev->bdev && |
| 3458 | map->stripes[i].physical == dev_offset) { |
| 3459 | ret = scrub_stripe(sctx, map, scrub_dev, i, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3460 | chunk_offset, length); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3461 | if (ret) |
| 3462 | goto out; |
| 3463 | } |
| 3464 | } |
| 3465 | out: |
| 3466 | free_extent_map(em); |
| 3467 | |
| 3468 | return ret; |
| 3469 | } |
| 3470 | |
| 3471 | static noinline_for_stack |
| 3472 | int scrub_enumerate_chunks(struct scrub_ctx *sctx, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3473 | struct btrfs_device *scrub_dev, u64 start, u64 end) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3474 | { |
| 3475 | struct btrfs_dev_extent *dev_extent = NULL; |
| 3476 | struct btrfs_path *path; |
| 3477 | struct btrfs_fs_info *fs_info = sctx->fs_info; |
| 3478 | struct btrfs_root *root = fs_info->dev_root; |
| 3479 | u64 length; |
| 3480 | u64 chunk_offset; |
| 3481 | int ret = 0; |
| 3482 | int ro_set; |
| 3483 | int slot; |
| 3484 | struct extent_buffer *l; |
| 3485 | struct btrfs_key key; |
| 3486 | struct btrfs_key found_key; |
| 3487 | struct btrfs_block_group_cache *cache; |
| 3488 | struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; |
| 3489 | |
| 3490 | path = btrfs_alloc_path(); |
| 3491 | if (!path) |
| 3492 | return -ENOMEM; |
| 3493 | |
| 3494 | path->reada = READA_FORWARD; |
| 3495 | path->search_commit_root = 1; |
| 3496 | path->skip_locking = 1; |
| 3497 | |
| 3498 | key.objectid = scrub_dev->devid; |
| 3499 | key.offset = 0ull; |
| 3500 | key.type = BTRFS_DEV_EXTENT_KEY; |
| 3501 | |
| 3502 | while (1) { |
| 3503 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| 3504 | if (ret < 0) |
| 3505 | break; |
| 3506 | if (ret > 0) { |
| 3507 | if (path->slots[0] >= |
| 3508 | btrfs_header_nritems(path->nodes[0])) { |
| 3509 | ret = btrfs_next_leaf(root, path); |
| 3510 | if (ret < 0) |
| 3511 | break; |
| 3512 | if (ret > 0) { |
| 3513 | ret = 0; |
| 3514 | break; |
| 3515 | } |
| 3516 | } else { |
| 3517 | ret = 0; |
| 3518 | } |
| 3519 | } |
| 3520 | |
| 3521 | l = path->nodes[0]; |
| 3522 | slot = path->slots[0]; |
| 3523 | |
| 3524 | btrfs_item_key_to_cpu(l, &found_key, slot); |
| 3525 | |
| 3526 | if (found_key.objectid != scrub_dev->devid) |
| 3527 | break; |
| 3528 | |
| 3529 | if (found_key.type != BTRFS_DEV_EXTENT_KEY) |
| 3530 | break; |
| 3531 | |
| 3532 | if (found_key.offset >= end) |
| 3533 | break; |
| 3534 | |
| 3535 | if (found_key.offset < key.offset) |
| 3536 | break; |
| 3537 | |
| 3538 | dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); |
| 3539 | length = btrfs_dev_extent_length(l, dev_extent); |
| 3540 | |
| 3541 | if (found_key.offset + length <= start) |
| 3542 | goto skip; |
| 3543 | |
| 3544 | chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); |
| 3545 | |
| 3546 | /* |
| 3547 | * get a reference on the corresponding block group to prevent |
| 3548 | * the chunk from going away while we scrub it |
| 3549 | */ |
| 3550 | cache = btrfs_lookup_block_group(fs_info, chunk_offset); |
| 3551 | |
| 3552 | /* some chunks are removed but not committed to disk yet, |
| 3553 | * continue scrubbing */ |
| 3554 | if (!cache) |
| 3555 | goto skip; |
| 3556 | |
| 3557 | /* |
| 3558 | * we need call btrfs_inc_block_group_ro() with scrubs_paused, |
| 3559 | * to avoid deadlock caused by: |
| 3560 | * btrfs_inc_block_group_ro() |
| 3561 | * -> btrfs_wait_for_commit() |
| 3562 | * -> btrfs_commit_transaction() |
| 3563 | * -> btrfs_scrub_pause() |
| 3564 | */ |
| 3565 | scrub_pause_on(fs_info); |
| 3566 | ret = btrfs_inc_block_group_ro(cache); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3567 | if (!ret && sctx->is_dev_replace) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3568 | /* |
| 3569 | * If we are doing a device replace wait for any tasks |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3570 | * that started delalloc right before we set the block |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3571 | * group to RO mode, as they might have just allocated |
| 3572 | * an extent from it or decided they could do a nocow |
| 3573 | * write. And if any such tasks did that, wait for their |
| 3574 | * ordered extents to complete and then commit the |
| 3575 | * current transaction, so that we can later see the new |
| 3576 | * extent items in the extent tree - the ordered extents |
| 3577 | * create delayed data references (for cow writes) when |
| 3578 | * they complete, which will be run and insert the |
| 3579 | * corresponding extent items into the extent tree when |
| 3580 | * we commit the transaction they used when running |
| 3581 | * inode.c:btrfs_finish_ordered_io(). We later use |
| 3582 | * the commit root of the extent tree to find extents |
| 3583 | * to copy from the srcdev into the tgtdev, and we don't |
| 3584 | * want to miss any new extents. |
| 3585 | */ |
| 3586 | btrfs_wait_block_group_reservations(cache); |
| 3587 | btrfs_wait_nocow_writers(cache); |
| 3588 | ret = btrfs_wait_ordered_roots(fs_info, U64_MAX, |
| 3589 | cache->key.objectid, |
| 3590 | cache->key.offset); |
| 3591 | if (ret > 0) { |
| 3592 | struct btrfs_trans_handle *trans; |
| 3593 | |
| 3594 | trans = btrfs_join_transaction(root); |
| 3595 | if (IS_ERR(trans)) |
| 3596 | ret = PTR_ERR(trans); |
| 3597 | else |
| 3598 | ret = btrfs_commit_transaction(trans); |
| 3599 | if (ret) { |
| 3600 | scrub_pause_off(fs_info); |
| 3601 | btrfs_put_block_group(cache); |
| 3602 | break; |
| 3603 | } |
| 3604 | } |
| 3605 | } |
| 3606 | scrub_pause_off(fs_info); |
| 3607 | |
| 3608 | if (ret == 0) { |
| 3609 | ro_set = 1; |
| 3610 | } else if (ret == -ENOSPC) { |
| 3611 | /* |
| 3612 | * btrfs_inc_block_group_ro return -ENOSPC when it |
| 3613 | * failed in creating new chunk for metadata. |
| 3614 | * It is not a problem for scrub/replace, because |
| 3615 | * metadata are always cowed, and our scrub paused |
| 3616 | * commit_transactions. |
| 3617 | */ |
| 3618 | ro_set = 0; |
| 3619 | } else { |
| 3620 | btrfs_warn(fs_info, |
| 3621 | "failed setting block group ro: %d", ret); |
| 3622 | btrfs_put_block_group(cache); |
| 3623 | break; |
| 3624 | } |
| 3625 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3626 | down_write(&fs_info->dev_replace.rwsem); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3627 | dev_replace->cursor_right = found_key.offset + length; |
| 3628 | dev_replace->cursor_left = found_key.offset; |
| 3629 | dev_replace->item_needs_writeback = 1; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3630 | up_write(&dev_replace->rwsem); |
| 3631 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3632 | ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3633 | found_key.offset, cache); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3634 | |
| 3635 | /* |
| 3636 | * flush, submit all pending read and write bios, afterwards |
| 3637 | * wait for them. |
| 3638 | * Note that in the dev replace case, a read request causes |
| 3639 | * write requests that are submitted in the read completion |
| 3640 | * worker. Therefore in the current situation, it is required |
| 3641 | * that all write requests are flushed, so that all read and |
| 3642 | * write requests are really completed when bios_in_flight |
| 3643 | * changes to 0. |
| 3644 | */ |
| 3645 | sctx->flush_all_writes = true; |
| 3646 | scrub_submit(sctx); |
| 3647 | mutex_lock(&sctx->wr_lock); |
| 3648 | scrub_wr_submit(sctx); |
| 3649 | mutex_unlock(&sctx->wr_lock); |
| 3650 | |
| 3651 | wait_event(sctx->list_wait, |
| 3652 | atomic_read(&sctx->bios_in_flight) == 0); |
| 3653 | |
| 3654 | scrub_pause_on(fs_info); |
| 3655 | |
| 3656 | /* |
| 3657 | * must be called before we decrease @scrub_paused. |
| 3658 | * make sure we don't block transaction commit while |
| 3659 | * we are waiting pending workers finished. |
| 3660 | */ |
| 3661 | wait_event(sctx->list_wait, |
| 3662 | atomic_read(&sctx->workers_pending) == 0); |
| 3663 | sctx->flush_all_writes = false; |
| 3664 | |
| 3665 | scrub_pause_off(fs_info); |
| 3666 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3667 | down_write(&fs_info->dev_replace.rwsem); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3668 | dev_replace->cursor_left = dev_replace->cursor_right; |
| 3669 | dev_replace->item_needs_writeback = 1; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3670 | up_write(&fs_info->dev_replace.rwsem); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3671 | |
| 3672 | if (ro_set) |
| 3673 | btrfs_dec_block_group_ro(cache); |
| 3674 | |
| 3675 | /* |
| 3676 | * We might have prevented the cleaner kthread from deleting |
| 3677 | * this block group if it was already unused because we raced |
| 3678 | * and set it to RO mode first. So add it back to the unused |
| 3679 | * list, otherwise it might not ever be deleted unless a manual |
| 3680 | * balance is triggered or it becomes used and unused again. |
| 3681 | */ |
| 3682 | spin_lock(&cache->lock); |
| 3683 | if (!cache->removed && !cache->ro && cache->reserved == 0 && |
| 3684 | btrfs_block_group_used(&cache->item) == 0) { |
| 3685 | spin_unlock(&cache->lock); |
| 3686 | btrfs_mark_bg_unused(cache); |
| 3687 | } else { |
| 3688 | spin_unlock(&cache->lock); |
| 3689 | } |
| 3690 | |
| 3691 | btrfs_put_block_group(cache); |
| 3692 | if (ret) |
| 3693 | break; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3694 | if (sctx->is_dev_replace && |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3695 | atomic64_read(&dev_replace->num_write_errors) > 0) { |
| 3696 | ret = -EIO; |
| 3697 | break; |
| 3698 | } |
| 3699 | if (sctx->stat.malloc_errors > 0) { |
| 3700 | ret = -ENOMEM; |
| 3701 | break; |
| 3702 | } |
| 3703 | skip: |
| 3704 | key.offset = found_key.offset + length; |
| 3705 | btrfs_release_path(path); |
| 3706 | } |
| 3707 | |
| 3708 | btrfs_free_path(path); |
| 3709 | |
| 3710 | return ret; |
| 3711 | } |
| 3712 | |
| 3713 | static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, |
| 3714 | struct btrfs_device *scrub_dev) |
| 3715 | { |
| 3716 | int i; |
| 3717 | u64 bytenr; |
| 3718 | u64 gen; |
| 3719 | int ret; |
| 3720 | struct btrfs_fs_info *fs_info = sctx->fs_info; |
| 3721 | |
| 3722 | if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) |
| 3723 | return -EIO; |
| 3724 | |
| 3725 | /* Seed devices of a new filesystem has their own generation. */ |
| 3726 | if (scrub_dev->fs_devices != fs_info->fs_devices) |
| 3727 | gen = scrub_dev->generation; |
| 3728 | else |
| 3729 | gen = fs_info->last_trans_committed; |
| 3730 | |
| 3731 | for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { |
| 3732 | bytenr = btrfs_sb_offset(i); |
| 3733 | if (bytenr + BTRFS_SUPER_INFO_SIZE > |
| 3734 | scrub_dev->commit_total_bytes) |
| 3735 | break; |
| 3736 | |
| 3737 | ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, |
| 3738 | scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, |
| 3739 | NULL, 1, bytenr); |
| 3740 | if (ret) |
| 3741 | return ret; |
| 3742 | } |
| 3743 | wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); |
| 3744 | |
| 3745 | return 0; |
| 3746 | } |
| 3747 | |
| 3748 | /* |
| 3749 | * get a reference count on fs_info->scrub_workers. start worker if necessary |
| 3750 | */ |
| 3751 | static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, |
| 3752 | int is_dev_replace) |
| 3753 | { |
| 3754 | unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; |
| 3755 | int max_active = fs_info->thread_pool_size; |
| 3756 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3757 | lockdep_assert_held(&fs_info->scrub_lock); |
| 3758 | |
| 3759 | if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) { |
| 3760 | ASSERT(fs_info->scrub_workers == NULL); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3761 | fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", |
| 3762 | flags, is_dev_replace ? 1 : max_active, 4); |
| 3763 | if (!fs_info->scrub_workers) |
| 3764 | goto fail_scrub_workers; |
| 3765 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3766 | ASSERT(fs_info->scrub_wr_completion_workers == NULL); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3767 | fs_info->scrub_wr_completion_workers = |
| 3768 | btrfs_alloc_workqueue(fs_info, "scrubwrc", flags, |
| 3769 | max_active, 2); |
| 3770 | if (!fs_info->scrub_wr_completion_workers) |
| 3771 | goto fail_scrub_wr_completion_workers; |
| 3772 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3773 | ASSERT(fs_info->scrub_parity_workers == NULL); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3774 | fs_info->scrub_parity_workers = |
| 3775 | btrfs_alloc_workqueue(fs_info, "scrubparity", flags, |
| 3776 | max_active, 2); |
| 3777 | if (!fs_info->scrub_parity_workers) |
| 3778 | goto fail_scrub_parity_workers; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3779 | |
| 3780 | refcount_set(&fs_info->scrub_workers_refcnt, 1); |
| 3781 | } else { |
| 3782 | refcount_inc(&fs_info->scrub_workers_refcnt); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3783 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3784 | return 0; |
| 3785 | |
| 3786 | fail_scrub_parity_workers: |
| 3787 | btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers); |
| 3788 | fail_scrub_wr_completion_workers: |
| 3789 | btrfs_destroy_workqueue(fs_info->scrub_workers); |
| 3790 | fail_scrub_workers: |
| 3791 | return -ENOMEM; |
| 3792 | } |
| 3793 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3794 | int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, |
| 3795 | u64 end, struct btrfs_scrub_progress *progress, |
| 3796 | int readonly, int is_dev_replace) |
| 3797 | { |
| 3798 | struct scrub_ctx *sctx; |
| 3799 | int ret; |
| 3800 | struct btrfs_device *dev; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3801 | unsigned int nofs_flag; |
| 3802 | struct btrfs_workqueue *scrub_workers = NULL; |
| 3803 | struct btrfs_workqueue *scrub_wr_comp = NULL; |
| 3804 | struct btrfs_workqueue *scrub_parity = NULL; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3805 | |
| 3806 | if (btrfs_fs_closing(fs_info)) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3807 | return -EAGAIN; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3808 | |
| 3809 | if (fs_info->nodesize > BTRFS_STRIPE_LEN) { |
| 3810 | /* |
| 3811 | * in this case scrub is unable to calculate the checksum |
| 3812 | * the way scrub is implemented. Do not handle this |
| 3813 | * situation at all because it won't ever happen. |
| 3814 | */ |
| 3815 | btrfs_err(fs_info, |
| 3816 | "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails", |
| 3817 | fs_info->nodesize, |
| 3818 | BTRFS_STRIPE_LEN); |
| 3819 | return -EINVAL; |
| 3820 | } |
| 3821 | |
| 3822 | if (fs_info->sectorsize != PAGE_SIZE) { |
| 3823 | /* not supported for data w/o checksums */ |
| 3824 | btrfs_err_rl(fs_info, |
| 3825 | "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails", |
| 3826 | fs_info->sectorsize, PAGE_SIZE); |
| 3827 | return -EINVAL; |
| 3828 | } |
| 3829 | |
| 3830 | if (fs_info->nodesize > |
| 3831 | PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK || |
| 3832 | fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) { |
| 3833 | /* |
| 3834 | * would exhaust the array bounds of pagev member in |
| 3835 | * struct scrub_block |
| 3836 | */ |
| 3837 | btrfs_err(fs_info, |
| 3838 | "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails", |
| 3839 | fs_info->nodesize, |
| 3840 | SCRUB_MAX_PAGES_PER_BLOCK, |
| 3841 | fs_info->sectorsize, |
| 3842 | SCRUB_MAX_PAGES_PER_BLOCK); |
| 3843 | return -EINVAL; |
| 3844 | } |
| 3845 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3846 | /* Allocate outside of device_list_mutex */ |
| 3847 | sctx = scrub_setup_ctx(fs_info, is_dev_replace); |
| 3848 | if (IS_ERR(sctx)) |
| 3849 | return PTR_ERR(sctx); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3850 | |
| 3851 | mutex_lock(&fs_info->fs_devices->device_list_mutex); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3852 | dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3853 | if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && |
| 3854 | !is_dev_replace)) { |
| 3855 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3856 | ret = -ENODEV; |
| 3857 | goto out_free_ctx; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3858 | } |
| 3859 | |
| 3860 | if (!is_dev_replace && !readonly && |
| 3861 | !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { |
| 3862 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| 3863 | btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable", |
| 3864 | rcu_str_deref(dev->name)); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3865 | ret = -EROFS; |
| 3866 | goto out_free_ctx; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3867 | } |
| 3868 | |
| 3869 | mutex_lock(&fs_info->scrub_lock); |
| 3870 | if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || |
| 3871 | test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { |
| 3872 | mutex_unlock(&fs_info->scrub_lock); |
| 3873 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3874 | ret = -EIO; |
| 3875 | goto out_free_ctx; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3876 | } |
| 3877 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3878 | down_read(&fs_info->dev_replace.rwsem); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3879 | if (dev->scrub_ctx || |
| 3880 | (!is_dev_replace && |
| 3881 | btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3882 | up_read(&fs_info->dev_replace.rwsem); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3883 | mutex_unlock(&fs_info->scrub_lock); |
| 3884 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3885 | ret = -EINPROGRESS; |
| 3886 | goto out_free_ctx; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3887 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3888 | up_read(&fs_info->dev_replace.rwsem); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3889 | |
| 3890 | ret = scrub_workers_get(fs_info, is_dev_replace); |
| 3891 | if (ret) { |
| 3892 | mutex_unlock(&fs_info->scrub_lock); |
| 3893 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3894 | goto out_free_ctx; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3895 | } |
| 3896 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3897 | sctx->readonly = readonly; |
| 3898 | dev->scrub_ctx = sctx; |
| 3899 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| 3900 | |
| 3901 | /* |
| 3902 | * checking @scrub_pause_req here, we can avoid |
| 3903 | * race between committing transaction and scrubbing. |
| 3904 | */ |
| 3905 | __scrub_blocked_if_needed(fs_info); |
| 3906 | atomic_inc(&fs_info->scrubs_running); |
| 3907 | mutex_unlock(&fs_info->scrub_lock); |
| 3908 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3909 | /* |
| 3910 | * In order to avoid deadlock with reclaim when there is a transaction |
| 3911 | * trying to pause scrub, make sure we use GFP_NOFS for all the |
| 3912 | * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity() |
| 3913 | * invoked by our callees. The pausing request is done when the |
| 3914 | * transaction commit starts, and it blocks the transaction until scrub |
| 3915 | * is paused (done at specific points at scrub_stripe() or right above |
| 3916 | * before incrementing fs_info->scrubs_running). |
| 3917 | */ |
| 3918 | nofs_flag = memalloc_nofs_save(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3919 | if (!is_dev_replace) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3920 | btrfs_info(fs_info, "scrub: started on devid %llu", devid); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3921 | /* |
| 3922 | * by holding device list mutex, we can |
| 3923 | * kick off writing super in log tree sync. |
| 3924 | */ |
| 3925 | mutex_lock(&fs_info->fs_devices->device_list_mutex); |
| 3926 | ret = scrub_supers(sctx, dev); |
| 3927 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| 3928 | } |
| 3929 | |
| 3930 | if (!ret) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3931 | ret = scrub_enumerate_chunks(sctx, dev, start, end); |
| 3932 | memalloc_nofs_restore(nofs_flag); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3933 | |
| 3934 | wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); |
| 3935 | atomic_dec(&fs_info->scrubs_running); |
| 3936 | wake_up(&fs_info->scrub_pause_wait); |
| 3937 | |
| 3938 | wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); |
| 3939 | |
| 3940 | if (progress) |
| 3941 | memcpy(progress, &sctx->stat, sizeof(*progress)); |
| 3942 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3943 | if (!is_dev_replace) |
| 3944 | btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d", |
| 3945 | ret ? "not finished" : "finished", devid, ret); |
| 3946 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3947 | mutex_lock(&fs_info->scrub_lock); |
| 3948 | dev->scrub_ctx = NULL; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3949 | if (refcount_dec_and_test(&fs_info->scrub_workers_refcnt)) { |
| 3950 | scrub_workers = fs_info->scrub_workers; |
| 3951 | scrub_wr_comp = fs_info->scrub_wr_completion_workers; |
| 3952 | scrub_parity = fs_info->scrub_parity_workers; |
| 3953 | |
| 3954 | fs_info->scrub_workers = NULL; |
| 3955 | fs_info->scrub_wr_completion_workers = NULL; |
| 3956 | fs_info->scrub_parity_workers = NULL; |
| 3957 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3958 | mutex_unlock(&fs_info->scrub_lock); |
| 3959 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3960 | btrfs_destroy_workqueue(scrub_workers); |
| 3961 | btrfs_destroy_workqueue(scrub_wr_comp); |
| 3962 | btrfs_destroy_workqueue(scrub_parity); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3963 | scrub_put_ctx(sctx); |
| 3964 | |
| 3965 | return ret; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3966 | |
| 3967 | out_free_ctx: |
| 3968 | scrub_free_ctx(sctx); |
| 3969 | |
| 3970 | return ret; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3971 | } |
| 3972 | |
| 3973 | void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) |
| 3974 | { |
| 3975 | mutex_lock(&fs_info->scrub_lock); |
| 3976 | atomic_inc(&fs_info->scrub_pause_req); |
| 3977 | while (atomic_read(&fs_info->scrubs_paused) != |
| 3978 | atomic_read(&fs_info->scrubs_running)) { |
| 3979 | mutex_unlock(&fs_info->scrub_lock); |
| 3980 | wait_event(fs_info->scrub_pause_wait, |
| 3981 | atomic_read(&fs_info->scrubs_paused) == |
| 3982 | atomic_read(&fs_info->scrubs_running)); |
| 3983 | mutex_lock(&fs_info->scrub_lock); |
| 3984 | } |
| 3985 | mutex_unlock(&fs_info->scrub_lock); |
| 3986 | } |
| 3987 | |
| 3988 | void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) |
| 3989 | { |
| 3990 | atomic_dec(&fs_info->scrub_pause_req); |
| 3991 | wake_up(&fs_info->scrub_pause_wait); |
| 3992 | } |
| 3993 | |
| 3994 | int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) |
| 3995 | { |
| 3996 | mutex_lock(&fs_info->scrub_lock); |
| 3997 | if (!atomic_read(&fs_info->scrubs_running)) { |
| 3998 | mutex_unlock(&fs_info->scrub_lock); |
| 3999 | return -ENOTCONN; |
| 4000 | } |
| 4001 | |
| 4002 | atomic_inc(&fs_info->scrub_cancel_req); |
| 4003 | while (atomic_read(&fs_info->scrubs_running)) { |
| 4004 | mutex_unlock(&fs_info->scrub_lock); |
| 4005 | wait_event(fs_info->scrub_pause_wait, |
| 4006 | atomic_read(&fs_info->scrubs_running) == 0); |
| 4007 | mutex_lock(&fs_info->scrub_lock); |
| 4008 | } |
| 4009 | atomic_dec(&fs_info->scrub_cancel_req); |
| 4010 | mutex_unlock(&fs_info->scrub_lock); |
| 4011 | |
| 4012 | return 0; |
| 4013 | } |
| 4014 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 4015 | int btrfs_scrub_cancel_dev(struct btrfs_device *dev) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4016 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 4017 | struct btrfs_fs_info *fs_info = dev->fs_info; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4018 | struct scrub_ctx *sctx; |
| 4019 | |
| 4020 | mutex_lock(&fs_info->scrub_lock); |
| 4021 | sctx = dev->scrub_ctx; |
| 4022 | if (!sctx) { |
| 4023 | mutex_unlock(&fs_info->scrub_lock); |
| 4024 | return -ENOTCONN; |
| 4025 | } |
| 4026 | atomic_inc(&sctx->cancel_req); |
| 4027 | while (dev->scrub_ctx) { |
| 4028 | mutex_unlock(&fs_info->scrub_lock); |
| 4029 | wait_event(fs_info->scrub_pause_wait, |
| 4030 | dev->scrub_ctx == NULL); |
| 4031 | mutex_lock(&fs_info->scrub_lock); |
| 4032 | } |
| 4033 | mutex_unlock(&fs_info->scrub_lock); |
| 4034 | |
| 4035 | return 0; |
| 4036 | } |
| 4037 | |
| 4038 | int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, |
| 4039 | struct btrfs_scrub_progress *progress) |
| 4040 | { |
| 4041 | struct btrfs_device *dev; |
| 4042 | struct scrub_ctx *sctx = NULL; |
| 4043 | |
| 4044 | mutex_lock(&fs_info->fs_devices->device_list_mutex); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 4045 | dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4046 | if (dev) |
| 4047 | sctx = dev->scrub_ctx; |
| 4048 | if (sctx) |
| 4049 | memcpy(progress, &sctx->stat, sizeof(*progress)); |
| 4050 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| 4051 | |
| 4052 | return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; |
| 4053 | } |
| 4054 | |
| 4055 | static void scrub_remap_extent(struct btrfs_fs_info *fs_info, |
| 4056 | u64 extent_logical, u64 extent_len, |
| 4057 | u64 *extent_physical, |
| 4058 | struct btrfs_device **extent_dev, |
| 4059 | int *extent_mirror_num) |
| 4060 | { |
| 4061 | u64 mapped_length; |
| 4062 | struct btrfs_bio *bbio = NULL; |
| 4063 | int ret; |
| 4064 | |
| 4065 | mapped_length = extent_len; |
| 4066 | ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical, |
| 4067 | &mapped_length, &bbio, 0); |
| 4068 | if (ret || !bbio || mapped_length < extent_len || |
| 4069 | !bbio->stripes[0].dev->bdev) { |
| 4070 | btrfs_put_bbio(bbio); |
| 4071 | return; |
| 4072 | } |
| 4073 | |
| 4074 | *extent_physical = bbio->stripes[0].physical; |
| 4075 | *extent_mirror_num = bbio->mirror_num; |
| 4076 | *extent_dev = bbio->stripes[0].dev; |
| 4077 | btrfs_put_bbio(bbio); |
| 4078 | } |