v4.19.13 snapshot.
diff --git a/fs/btrfs/scrub.c b/fs/btrfs/scrub.c
new file mode 100644
index 0000000..3be1456
--- /dev/null
+++ b/fs/btrfs/scrub.c
@@ -0,0 +1,4023 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
+ */
+
+#include <linux/blkdev.h>
+#include <linux/ratelimit.h>
+#include <linux/sched/mm.h>
+#include "ctree.h"
+#include "volumes.h"
+#include "disk-io.h"
+#include "ordered-data.h"
+#include "transaction.h"
+#include "backref.h"
+#include "extent_io.h"
+#include "dev-replace.h"
+#include "check-integrity.h"
+#include "rcu-string.h"
+#include "raid56.h"
+
+/*
+ * This is only the first step towards a full-features scrub. It reads all
+ * extent and super block and verifies the checksums. In case a bad checksum
+ * is found or the extent cannot be read, good data will be written back if
+ * any can be found.
+ *
+ * Future enhancements:
+ *  - In case an unrepairable extent is encountered, track which files are
+ *    affected and report them
+ *  - track and record media errors, throw out bad devices
+ *  - add a mode to also read unallocated space
+ */
+
+struct scrub_block;
+struct scrub_ctx;
+
+/*
+ * the following three values only influence the performance.
+ * The last one configures the number of parallel and outstanding I/O
+ * operations. The first two values configure an upper limit for the number
+ * of (dynamically allocated) pages that are added to a bio.
+ */
+#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
+#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
+#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
+
+/*
+ * the following value times PAGE_SIZE needs to be large enough to match the
+ * largest node/leaf/sector size that shall be supported.
+ * Values larger than BTRFS_STRIPE_LEN are not supported.
+ */
+#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
+
+struct scrub_recover {
+	refcount_t		refs;
+	struct btrfs_bio	*bbio;
+	u64			map_length;
+};
+
+struct scrub_page {
+	struct scrub_block	*sblock;
+	struct page		*page;
+	struct btrfs_device	*dev;
+	struct list_head	list;
+	u64			flags;  /* extent flags */
+	u64			generation;
+	u64			logical;
+	u64			physical;
+	u64			physical_for_dev_replace;
+	atomic_t		refs;
+	struct {
+		unsigned int	mirror_num:8;
+		unsigned int	have_csum:1;
+		unsigned int	io_error:1;
+	};
+	u8			csum[BTRFS_CSUM_SIZE];
+
+	struct scrub_recover	*recover;
+};
+
+struct scrub_bio {
+	int			index;
+	struct scrub_ctx	*sctx;
+	struct btrfs_device	*dev;
+	struct bio		*bio;
+	blk_status_t		status;
+	u64			logical;
+	u64			physical;
+#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
+	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
+#else
+	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
+#endif
+	int			page_count;
+	int			next_free;
+	struct btrfs_work	work;
+};
+
+struct scrub_block {
+	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
+	int			page_count;
+	atomic_t		outstanding_pages;
+	refcount_t		refs; /* free mem on transition to zero */
+	struct scrub_ctx	*sctx;
+	struct scrub_parity	*sparity;
+	struct {
+		unsigned int	header_error:1;
+		unsigned int	checksum_error:1;
+		unsigned int	no_io_error_seen:1;
+		unsigned int	generation_error:1; /* also sets header_error */
+
+		/* The following is for the data used to check parity */
+		/* It is for the data with checksum */
+		unsigned int	data_corrected:1;
+	};
+	struct btrfs_work	work;
+};
+
+/* Used for the chunks with parity stripe such RAID5/6 */
+struct scrub_parity {
+	struct scrub_ctx	*sctx;
+
+	struct btrfs_device	*scrub_dev;
+
+	u64			logic_start;
+
+	u64			logic_end;
+
+	int			nsectors;
+
+	u64			stripe_len;
+
+	refcount_t		refs;
+
+	struct list_head	spages;
+
+	/* Work of parity check and repair */
+	struct btrfs_work	work;
+
+	/* Mark the parity blocks which have data */
+	unsigned long		*dbitmap;
+
+	/*
+	 * Mark the parity blocks which have data, but errors happen when
+	 * read data or check data
+	 */
+	unsigned long		*ebitmap;
+
+	unsigned long		bitmap[0];
+};
+
+struct scrub_ctx {
+	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
+	struct btrfs_fs_info	*fs_info;
+	int			first_free;
+	int			curr;
+	atomic_t		bios_in_flight;
+	atomic_t		workers_pending;
+	spinlock_t		list_lock;
+	wait_queue_head_t	list_wait;
+	u16			csum_size;
+	struct list_head	csum_list;
+	atomic_t		cancel_req;
+	int			readonly;
+	int			pages_per_rd_bio;
+
+	int			is_dev_replace;
+
+	struct scrub_bio        *wr_curr_bio;
+	struct mutex            wr_lock;
+	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
+	struct btrfs_device     *wr_tgtdev;
+	bool                    flush_all_writes;
+
+	/*
+	 * statistics
+	 */
+	struct btrfs_scrub_progress stat;
+	spinlock_t		stat_lock;
+
+	/*
+	 * Use a ref counter to avoid use-after-free issues. Scrub workers
+	 * decrement bios_in_flight and workers_pending and then do a wakeup
+	 * on the list_wait wait queue. We must ensure the main scrub task
+	 * doesn't free the scrub context before or while the workers are
+	 * doing the wakeup() call.
+	 */
+	refcount_t              refs;
+};
+
+struct scrub_warning {
+	struct btrfs_path	*path;
+	u64			extent_item_size;
+	const char		*errstr;
+	u64			physical;
+	u64			logical;
+	struct btrfs_device	*dev;
+};
+
+struct full_stripe_lock {
+	struct rb_node node;
+	u64 logical;
+	u64 refs;
+	struct mutex mutex;
+};
+
+static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
+static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
+static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
+static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
+				     struct scrub_block *sblocks_for_recheck);
+static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
+				struct scrub_block *sblock,
+				int retry_failed_mirror);
+static void scrub_recheck_block_checksum(struct scrub_block *sblock);
+static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
+					     struct scrub_block *sblock_good);
+static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
+					    struct scrub_block *sblock_good,
+					    int page_num, int force_write);
+static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
+static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
+					   int page_num);
+static int scrub_checksum_data(struct scrub_block *sblock);
+static int scrub_checksum_tree_block(struct scrub_block *sblock);
+static int scrub_checksum_super(struct scrub_block *sblock);
+static void scrub_block_get(struct scrub_block *sblock);
+static void scrub_block_put(struct scrub_block *sblock);
+static void scrub_page_get(struct scrub_page *spage);
+static void scrub_page_put(struct scrub_page *spage);
+static void scrub_parity_get(struct scrub_parity *sparity);
+static void scrub_parity_put(struct scrub_parity *sparity);
+static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
+				    struct scrub_page *spage);
+static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
+		       u64 physical, struct btrfs_device *dev, u64 flags,
+		       u64 gen, int mirror_num, u8 *csum, int force,
+		       u64 physical_for_dev_replace);
+static void scrub_bio_end_io(struct bio *bio);
+static void scrub_bio_end_io_worker(struct btrfs_work *work);
+static void scrub_block_complete(struct scrub_block *sblock);
+static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
+			       u64 extent_logical, u64 extent_len,
+			       u64 *extent_physical,
+			       struct btrfs_device **extent_dev,
+			       int *extent_mirror_num);
+static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
+				    struct scrub_page *spage);
+static void scrub_wr_submit(struct scrub_ctx *sctx);
+static void scrub_wr_bio_end_io(struct bio *bio);
+static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
+static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
+static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
+static void scrub_put_ctx(struct scrub_ctx *sctx);
+
+static inline int scrub_is_page_on_raid56(struct scrub_page *page)
+{
+	return page->recover &&
+	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
+}
+
+static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
+{
+	refcount_inc(&sctx->refs);
+	atomic_inc(&sctx->bios_in_flight);
+}
+
+static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
+{
+	atomic_dec(&sctx->bios_in_flight);
+	wake_up(&sctx->list_wait);
+	scrub_put_ctx(sctx);
+}
+
+static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
+{
+	while (atomic_read(&fs_info->scrub_pause_req)) {
+		mutex_unlock(&fs_info->scrub_lock);
+		wait_event(fs_info->scrub_pause_wait,
+		   atomic_read(&fs_info->scrub_pause_req) == 0);
+		mutex_lock(&fs_info->scrub_lock);
+	}
+}
+
+static void scrub_pause_on(struct btrfs_fs_info *fs_info)
+{
+	atomic_inc(&fs_info->scrubs_paused);
+	wake_up(&fs_info->scrub_pause_wait);
+}
+
+static void scrub_pause_off(struct btrfs_fs_info *fs_info)
+{
+	mutex_lock(&fs_info->scrub_lock);
+	__scrub_blocked_if_needed(fs_info);
+	atomic_dec(&fs_info->scrubs_paused);
+	mutex_unlock(&fs_info->scrub_lock);
+
+	wake_up(&fs_info->scrub_pause_wait);
+}
+
+static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
+{
+	scrub_pause_on(fs_info);
+	scrub_pause_off(fs_info);
+}
+
+/*
+ * Insert new full stripe lock into full stripe locks tree
+ *
+ * Return pointer to existing or newly inserted full_stripe_lock structure if
+ * everything works well.
+ * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
+ *
+ * NOTE: caller must hold full_stripe_locks_root->lock before calling this
+ * function
+ */
+static struct full_stripe_lock *insert_full_stripe_lock(
+		struct btrfs_full_stripe_locks_tree *locks_root,
+		u64 fstripe_logical)
+{
+	struct rb_node **p;
+	struct rb_node *parent = NULL;
+	struct full_stripe_lock *entry;
+	struct full_stripe_lock *ret;
+
+	lockdep_assert_held(&locks_root->lock);
+
+	p = &locks_root->root.rb_node;
+	while (*p) {
+		parent = *p;
+		entry = rb_entry(parent, struct full_stripe_lock, node);
+		if (fstripe_logical < entry->logical) {
+			p = &(*p)->rb_left;
+		} else if (fstripe_logical > entry->logical) {
+			p = &(*p)->rb_right;
+		} else {
+			entry->refs++;
+			return entry;
+		}
+	}
+
+	/* Insert new lock */
+	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
+	if (!ret)
+		return ERR_PTR(-ENOMEM);
+	ret->logical = fstripe_logical;
+	ret->refs = 1;
+	mutex_init(&ret->mutex);
+
+	rb_link_node(&ret->node, parent, p);
+	rb_insert_color(&ret->node, &locks_root->root);
+	return ret;
+}
+
+/*
+ * Search for a full stripe lock of a block group
+ *
+ * Return pointer to existing full stripe lock if found
+ * Return NULL if not found
+ */
+static struct full_stripe_lock *search_full_stripe_lock(
+		struct btrfs_full_stripe_locks_tree *locks_root,
+		u64 fstripe_logical)
+{
+	struct rb_node *node;
+	struct full_stripe_lock *entry;
+
+	lockdep_assert_held(&locks_root->lock);
+
+	node = locks_root->root.rb_node;
+	while (node) {
+		entry = rb_entry(node, struct full_stripe_lock, node);
+		if (fstripe_logical < entry->logical)
+			node = node->rb_left;
+		else if (fstripe_logical > entry->logical)
+			node = node->rb_right;
+		else
+			return entry;
+	}
+	return NULL;
+}
+
+/*
+ * Helper to get full stripe logical from a normal bytenr.
+ *
+ * Caller must ensure @cache is a RAID56 block group.
+ */
+static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
+				   u64 bytenr)
+{
+	u64 ret;
+
+	/*
+	 * Due to chunk item size limit, full stripe length should not be
+	 * larger than U32_MAX. Just a sanity check here.
+	 */
+	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
+
+	/*
+	 * round_down() can only handle power of 2, while RAID56 full
+	 * stripe length can be 64KiB * n, so we need to manually round down.
+	 */
+	ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
+		cache->full_stripe_len + cache->key.objectid;
+	return ret;
+}
+
+/*
+ * Lock a full stripe to avoid concurrency of recovery and read
+ *
+ * It's only used for profiles with parities (RAID5/6), for other profiles it
+ * does nothing.
+ *
+ * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
+ * So caller must call unlock_full_stripe() at the same context.
+ *
+ * Return <0 if encounters error.
+ */
+static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
+			    bool *locked_ret)
+{
+	struct btrfs_block_group_cache *bg_cache;
+	struct btrfs_full_stripe_locks_tree *locks_root;
+	struct full_stripe_lock *existing;
+	u64 fstripe_start;
+	int ret = 0;
+
+	*locked_ret = false;
+	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
+	if (!bg_cache) {
+		ASSERT(0);
+		return -ENOENT;
+	}
+
+	/* Profiles not based on parity don't need full stripe lock */
+	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
+		goto out;
+	locks_root = &bg_cache->full_stripe_locks_root;
+
+	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
+
+	/* Now insert the full stripe lock */
+	mutex_lock(&locks_root->lock);
+	existing = insert_full_stripe_lock(locks_root, fstripe_start);
+	mutex_unlock(&locks_root->lock);
+	if (IS_ERR(existing)) {
+		ret = PTR_ERR(existing);
+		goto out;
+	}
+	mutex_lock(&existing->mutex);
+	*locked_ret = true;
+out:
+	btrfs_put_block_group(bg_cache);
+	return ret;
+}
+
+/*
+ * Unlock a full stripe.
+ *
+ * NOTE: Caller must ensure it's the same context calling corresponding
+ * lock_full_stripe().
+ *
+ * Return 0 if we unlock full stripe without problem.
+ * Return <0 for error
+ */
+static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
+			      bool locked)
+{
+	struct btrfs_block_group_cache *bg_cache;
+	struct btrfs_full_stripe_locks_tree *locks_root;
+	struct full_stripe_lock *fstripe_lock;
+	u64 fstripe_start;
+	bool freeit = false;
+	int ret = 0;
+
+	/* If we didn't acquire full stripe lock, no need to continue */
+	if (!locked)
+		return 0;
+
+	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
+	if (!bg_cache) {
+		ASSERT(0);
+		return -ENOENT;
+	}
+	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
+		goto out;
+
+	locks_root = &bg_cache->full_stripe_locks_root;
+	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
+
+	mutex_lock(&locks_root->lock);
+	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
+	/* Unpaired unlock_full_stripe() detected */
+	if (!fstripe_lock) {
+		WARN_ON(1);
+		ret = -ENOENT;
+		mutex_unlock(&locks_root->lock);
+		goto out;
+	}
+
+	if (fstripe_lock->refs == 0) {
+		WARN_ON(1);
+		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
+			fstripe_lock->logical);
+	} else {
+		fstripe_lock->refs--;
+	}
+
+	if (fstripe_lock->refs == 0) {
+		rb_erase(&fstripe_lock->node, &locks_root->root);
+		freeit = true;
+	}
+	mutex_unlock(&locks_root->lock);
+
+	mutex_unlock(&fstripe_lock->mutex);
+	if (freeit)
+		kfree(fstripe_lock);
+out:
+	btrfs_put_block_group(bg_cache);
+	return ret;
+}
+
+static void scrub_free_csums(struct scrub_ctx *sctx)
+{
+	while (!list_empty(&sctx->csum_list)) {
+		struct btrfs_ordered_sum *sum;
+		sum = list_first_entry(&sctx->csum_list,
+				       struct btrfs_ordered_sum, list);
+		list_del(&sum->list);
+		kfree(sum);
+	}
+}
+
+static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
+{
+	int i;
+
+	if (!sctx)
+		return;
+
+	/* this can happen when scrub is cancelled */
+	if (sctx->curr != -1) {
+		struct scrub_bio *sbio = sctx->bios[sctx->curr];
+
+		for (i = 0; i < sbio->page_count; i++) {
+			WARN_ON(!sbio->pagev[i]->page);
+			scrub_block_put(sbio->pagev[i]->sblock);
+		}
+		bio_put(sbio->bio);
+	}
+
+	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
+		struct scrub_bio *sbio = sctx->bios[i];
+
+		if (!sbio)
+			break;
+		kfree(sbio);
+	}
+
+	kfree(sctx->wr_curr_bio);
+	scrub_free_csums(sctx);
+	kfree(sctx);
+}
+
+static void scrub_put_ctx(struct scrub_ctx *sctx)
+{
+	if (refcount_dec_and_test(&sctx->refs))
+		scrub_free_ctx(sctx);
+}
+
+static noinline_for_stack
+struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
+{
+	struct scrub_ctx *sctx;
+	int		i;
+	struct btrfs_fs_info *fs_info = dev->fs_info;
+
+	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
+	if (!sctx)
+		goto nomem;
+	refcount_set(&sctx->refs, 1);
+	sctx->is_dev_replace = is_dev_replace;
+	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
+	sctx->curr = -1;
+	sctx->fs_info = dev->fs_info;
+	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
+		struct scrub_bio *sbio;
+
+		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
+		if (!sbio)
+			goto nomem;
+		sctx->bios[i] = sbio;
+
+		sbio->index = i;
+		sbio->sctx = sctx;
+		sbio->page_count = 0;
+		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
+				scrub_bio_end_io_worker, NULL, NULL);
+
+		if (i != SCRUB_BIOS_PER_SCTX - 1)
+			sctx->bios[i]->next_free = i + 1;
+		else
+			sctx->bios[i]->next_free = -1;
+	}
+	sctx->first_free = 0;
+	atomic_set(&sctx->bios_in_flight, 0);
+	atomic_set(&sctx->workers_pending, 0);
+	atomic_set(&sctx->cancel_req, 0);
+	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
+	INIT_LIST_HEAD(&sctx->csum_list);
+
+	spin_lock_init(&sctx->list_lock);
+	spin_lock_init(&sctx->stat_lock);
+	init_waitqueue_head(&sctx->list_wait);
+
+	WARN_ON(sctx->wr_curr_bio != NULL);
+	mutex_init(&sctx->wr_lock);
+	sctx->wr_curr_bio = NULL;
+	if (is_dev_replace) {
+		WARN_ON(!fs_info->dev_replace.tgtdev);
+		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
+		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
+		sctx->flush_all_writes = false;
+	}
+
+	return sctx;
+
+nomem:
+	scrub_free_ctx(sctx);
+	return ERR_PTR(-ENOMEM);
+}
+
+static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
+				     void *warn_ctx)
+{
+	u64 isize;
+	u32 nlink;
+	int ret;
+	int i;
+	unsigned nofs_flag;
+	struct extent_buffer *eb;
+	struct btrfs_inode_item *inode_item;
+	struct scrub_warning *swarn = warn_ctx;
+	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
+	struct inode_fs_paths *ipath = NULL;
+	struct btrfs_root *local_root;
+	struct btrfs_key root_key;
+	struct btrfs_key key;
+
+	root_key.objectid = root;
+	root_key.type = BTRFS_ROOT_ITEM_KEY;
+	root_key.offset = (u64)-1;
+	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
+	if (IS_ERR(local_root)) {
+		ret = PTR_ERR(local_root);
+		goto err;
+	}
+
+	/*
+	 * this makes the path point to (inum INODE_ITEM ioff)
+	 */
+	key.objectid = inum;
+	key.type = BTRFS_INODE_ITEM_KEY;
+	key.offset = 0;
+
+	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
+	if (ret) {
+		btrfs_release_path(swarn->path);
+		goto err;
+	}
+
+	eb = swarn->path->nodes[0];
+	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
+					struct btrfs_inode_item);
+	isize = btrfs_inode_size(eb, inode_item);
+	nlink = btrfs_inode_nlink(eb, inode_item);
+	btrfs_release_path(swarn->path);
+
+	/*
+	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
+	 * uses GFP_NOFS in this context, so we keep it consistent but it does
+	 * not seem to be strictly necessary.
+	 */
+	nofs_flag = memalloc_nofs_save();
+	ipath = init_ipath(4096, local_root, swarn->path);
+	memalloc_nofs_restore(nofs_flag);
+	if (IS_ERR(ipath)) {
+		ret = PTR_ERR(ipath);
+		ipath = NULL;
+		goto err;
+	}
+	ret = paths_from_inode(inum, ipath);
+
+	if (ret < 0)
+		goto err;
+
+	/*
+	 * we deliberately ignore the bit ipath might have been too small to
+	 * hold all of the paths here
+	 */
+	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
+		btrfs_warn_in_rcu(fs_info,
+"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
+				  swarn->errstr, swarn->logical,
+				  rcu_str_deref(swarn->dev->name),
+				  swarn->physical,
+				  root, inum, offset,
+				  min(isize - offset, (u64)PAGE_SIZE), nlink,
+				  (char *)(unsigned long)ipath->fspath->val[i]);
+
+	free_ipath(ipath);
+	return 0;
+
+err:
+	btrfs_warn_in_rcu(fs_info,
+			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
+			  swarn->errstr, swarn->logical,
+			  rcu_str_deref(swarn->dev->name),
+			  swarn->physical,
+			  root, inum, offset, ret);
+
+	free_ipath(ipath);
+	return 0;
+}
+
+static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
+{
+	struct btrfs_device *dev;
+	struct btrfs_fs_info *fs_info;
+	struct btrfs_path *path;
+	struct btrfs_key found_key;
+	struct extent_buffer *eb;
+	struct btrfs_extent_item *ei;
+	struct scrub_warning swarn;
+	unsigned long ptr = 0;
+	u64 extent_item_pos;
+	u64 flags = 0;
+	u64 ref_root;
+	u32 item_size;
+	u8 ref_level = 0;
+	int ret;
+
+	WARN_ON(sblock->page_count < 1);
+	dev = sblock->pagev[0]->dev;
+	fs_info = sblock->sctx->fs_info;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return;
+
+	swarn.physical = sblock->pagev[0]->physical;
+	swarn.logical = sblock->pagev[0]->logical;
+	swarn.errstr = errstr;
+	swarn.dev = NULL;
+
+	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
+				  &flags);
+	if (ret < 0)
+		goto out;
+
+	extent_item_pos = swarn.logical - found_key.objectid;
+	swarn.extent_item_size = found_key.offset;
+
+	eb = path->nodes[0];
+	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
+	item_size = btrfs_item_size_nr(eb, path->slots[0]);
+
+	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
+		do {
+			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
+						      item_size, &ref_root,
+						      &ref_level);
+			btrfs_warn_in_rcu(fs_info,
+"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
+				errstr, swarn.logical,
+				rcu_str_deref(dev->name),
+				swarn.physical,
+				ref_level ? "node" : "leaf",
+				ret < 0 ? -1 : ref_level,
+				ret < 0 ? -1 : ref_root);
+		} while (ret != 1);
+		btrfs_release_path(path);
+	} else {
+		btrfs_release_path(path);
+		swarn.path = path;
+		swarn.dev = dev;
+		iterate_extent_inodes(fs_info, found_key.objectid,
+					extent_item_pos, 1,
+					scrub_print_warning_inode, &swarn, false);
+	}
+
+out:
+	btrfs_free_path(path);
+}
+
+static inline void scrub_get_recover(struct scrub_recover *recover)
+{
+	refcount_inc(&recover->refs);
+}
+
+static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
+				     struct scrub_recover *recover)
+{
+	if (refcount_dec_and_test(&recover->refs)) {
+		btrfs_bio_counter_dec(fs_info);
+		btrfs_put_bbio(recover->bbio);
+		kfree(recover);
+	}
+}
+
+/*
+ * scrub_handle_errored_block gets called when either verification of the
+ * pages failed or the bio failed to read, e.g. with EIO. In the latter
+ * case, this function handles all pages in the bio, even though only one
+ * may be bad.
+ * The goal of this function is to repair the errored block by using the
+ * contents of one of the mirrors.
+ */
+static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
+{
+	struct scrub_ctx *sctx = sblock_to_check->sctx;
+	struct btrfs_device *dev;
+	struct btrfs_fs_info *fs_info;
+	u64 logical;
+	unsigned int failed_mirror_index;
+	unsigned int is_metadata;
+	unsigned int have_csum;
+	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
+	struct scrub_block *sblock_bad;
+	int ret;
+	int mirror_index;
+	int page_num;
+	int success;
+	bool full_stripe_locked;
+	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
+				      DEFAULT_RATELIMIT_BURST);
+
+	BUG_ON(sblock_to_check->page_count < 1);
+	fs_info = sctx->fs_info;
+	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
+		/*
+		 * if we find an error in a super block, we just report it.
+		 * They will get written with the next transaction commit
+		 * anyway
+		 */
+		spin_lock(&sctx->stat_lock);
+		++sctx->stat.super_errors;
+		spin_unlock(&sctx->stat_lock);
+		return 0;
+	}
+	logical = sblock_to_check->pagev[0]->logical;
+	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
+	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
+	is_metadata = !(sblock_to_check->pagev[0]->flags &
+			BTRFS_EXTENT_FLAG_DATA);
+	have_csum = sblock_to_check->pagev[0]->have_csum;
+	dev = sblock_to_check->pagev[0]->dev;
+
+	/*
+	 * For RAID5/6, race can happen for a different device scrub thread.
+	 * For data corruption, Parity and Data threads will both try
+	 * to recovery the data.
+	 * Race can lead to doubly added csum error, or even unrecoverable
+	 * error.
+	 */
+	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
+	if (ret < 0) {
+		spin_lock(&sctx->stat_lock);
+		if (ret == -ENOMEM)
+			sctx->stat.malloc_errors++;
+		sctx->stat.read_errors++;
+		sctx->stat.uncorrectable_errors++;
+		spin_unlock(&sctx->stat_lock);
+		return ret;
+	}
+
+	/*
+	 * read all mirrors one after the other. This includes to
+	 * re-read the extent or metadata block that failed (that was
+	 * the cause that this fixup code is called) another time,
+	 * page by page this time in order to know which pages
+	 * caused I/O errors and which ones are good (for all mirrors).
+	 * It is the goal to handle the situation when more than one
+	 * mirror contains I/O errors, but the errors do not
+	 * overlap, i.e. the data can be repaired by selecting the
+	 * pages from those mirrors without I/O error on the
+	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
+	 * would be that mirror #1 has an I/O error on the first page,
+	 * the second page is good, and mirror #2 has an I/O error on
+	 * the second page, but the first page is good.
+	 * Then the first page of the first mirror can be repaired by
+	 * taking the first page of the second mirror, and the
+	 * second page of the second mirror can be repaired by
+	 * copying the contents of the 2nd page of the 1st mirror.
+	 * One more note: if the pages of one mirror contain I/O
+	 * errors, the checksum cannot be verified. In order to get
+	 * the best data for repairing, the first attempt is to find
+	 * a mirror without I/O errors and with a validated checksum.
+	 * Only if this is not possible, the pages are picked from
+	 * mirrors with I/O errors without considering the checksum.
+	 * If the latter is the case, at the end, the checksum of the
+	 * repaired area is verified in order to correctly maintain
+	 * the statistics.
+	 */
+
+	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
+				      sizeof(*sblocks_for_recheck), GFP_NOFS);
+	if (!sblocks_for_recheck) {
+		spin_lock(&sctx->stat_lock);
+		sctx->stat.malloc_errors++;
+		sctx->stat.read_errors++;
+		sctx->stat.uncorrectable_errors++;
+		spin_unlock(&sctx->stat_lock);
+		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
+		goto out;
+	}
+
+	/* setup the context, map the logical blocks and alloc the pages */
+	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
+	if (ret) {
+		spin_lock(&sctx->stat_lock);
+		sctx->stat.read_errors++;
+		sctx->stat.uncorrectable_errors++;
+		spin_unlock(&sctx->stat_lock);
+		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
+		goto out;
+	}
+	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
+	sblock_bad = sblocks_for_recheck + failed_mirror_index;
+
+	/* build and submit the bios for the failed mirror, check checksums */
+	scrub_recheck_block(fs_info, sblock_bad, 1);
+
+	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
+	    sblock_bad->no_io_error_seen) {
+		/*
+		 * the error disappeared after reading page by page, or
+		 * the area was part of a huge bio and other parts of the
+		 * bio caused I/O errors, or the block layer merged several
+		 * read requests into one and the error is caused by a
+		 * different bio (usually one of the two latter cases is
+		 * the cause)
+		 */
+		spin_lock(&sctx->stat_lock);
+		sctx->stat.unverified_errors++;
+		sblock_to_check->data_corrected = 1;
+		spin_unlock(&sctx->stat_lock);
+
+		if (sctx->is_dev_replace)
+			scrub_write_block_to_dev_replace(sblock_bad);
+		goto out;
+	}
+
+	if (!sblock_bad->no_io_error_seen) {
+		spin_lock(&sctx->stat_lock);
+		sctx->stat.read_errors++;
+		spin_unlock(&sctx->stat_lock);
+		if (__ratelimit(&_rs))
+			scrub_print_warning("i/o error", sblock_to_check);
+		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
+	} else if (sblock_bad->checksum_error) {
+		spin_lock(&sctx->stat_lock);
+		sctx->stat.csum_errors++;
+		spin_unlock(&sctx->stat_lock);
+		if (__ratelimit(&_rs))
+			scrub_print_warning("checksum error", sblock_to_check);
+		btrfs_dev_stat_inc_and_print(dev,
+					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
+	} else if (sblock_bad->header_error) {
+		spin_lock(&sctx->stat_lock);
+		sctx->stat.verify_errors++;
+		spin_unlock(&sctx->stat_lock);
+		if (__ratelimit(&_rs))
+			scrub_print_warning("checksum/header error",
+					    sblock_to_check);
+		if (sblock_bad->generation_error)
+			btrfs_dev_stat_inc_and_print(dev,
+				BTRFS_DEV_STAT_GENERATION_ERRS);
+		else
+			btrfs_dev_stat_inc_and_print(dev,
+				BTRFS_DEV_STAT_CORRUPTION_ERRS);
+	}
+
+	if (sctx->readonly) {
+		ASSERT(!sctx->is_dev_replace);
+		goto out;
+	}
+
+	/*
+	 * now build and submit the bios for the other mirrors, check
+	 * checksums.
+	 * First try to pick the mirror which is completely without I/O
+	 * errors and also does not have a checksum error.
+	 * If one is found, and if a checksum is present, the full block
+	 * that is known to contain an error is rewritten. Afterwards
+	 * the block is known to be corrected.
+	 * If a mirror is found which is completely correct, and no
+	 * checksum is present, only those pages are rewritten that had
+	 * an I/O error in the block to be repaired, since it cannot be
+	 * determined, which copy of the other pages is better (and it
+	 * could happen otherwise that a correct page would be
+	 * overwritten by a bad one).
+	 */
+	for (mirror_index = 0; ;mirror_index++) {
+		struct scrub_block *sblock_other;
+
+		if (mirror_index == failed_mirror_index)
+			continue;
+
+		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
+		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
+			if (mirror_index >= BTRFS_MAX_MIRRORS)
+				break;
+			if (!sblocks_for_recheck[mirror_index].page_count)
+				break;
+
+			sblock_other = sblocks_for_recheck + mirror_index;
+		} else {
+			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
+			int max_allowed = r->bbio->num_stripes -
+						r->bbio->num_tgtdevs;
+
+			if (mirror_index >= max_allowed)
+				break;
+			if (!sblocks_for_recheck[1].page_count)
+				break;
+
+			ASSERT(failed_mirror_index == 0);
+			sblock_other = sblocks_for_recheck + 1;
+			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
+		}
+
+		/* build and submit the bios, check checksums */
+		scrub_recheck_block(fs_info, sblock_other, 0);
+
+		if (!sblock_other->header_error &&
+		    !sblock_other->checksum_error &&
+		    sblock_other->no_io_error_seen) {
+			if (sctx->is_dev_replace) {
+				scrub_write_block_to_dev_replace(sblock_other);
+				goto corrected_error;
+			} else {
+				ret = scrub_repair_block_from_good_copy(
+						sblock_bad, sblock_other);
+				if (!ret)
+					goto corrected_error;
+			}
+		}
+	}
+
+	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
+		goto did_not_correct_error;
+
+	/*
+	 * In case of I/O errors in the area that is supposed to be
+	 * repaired, continue by picking good copies of those pages.
+	 * Select the good pages from mirrors to rewrite bad pages from
+	 * the area to fix. Afterwards verify the checksum of the block
+	 * that is supposed to be repaired. This verification step is
+	 * only done for the purpose of statistic counting and for the
+	 * final scrub report, whether errors remain.
+	 * A perfect algorithm could make use of the checksum and try
+	 * all possible combinations of pages from the different mirrors
+	 * until the checksum verification succeeds. For example, when
+	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
+	 * of mirror #2 is readable but the final checksum test fails,
+	 * then the 2nd page of mirror #3 could be tried, whether now
+	 * the final checksum succeeds. But this would be a rare
+	 * exception and is therefore not implemented. At least it is
+	 * avoided that the good copy is overwritten.
+	 * A more useful improvement would be to pick the sectors
+	 * without I/O error based on sector sizes (512 bytes on legacy
+	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
+	 * mirror could be repaired by taking 512 byte of a different
+	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
+	 * area are unreadable.
+	 */
+	success = 1;
+	for (page_num = 0; page_num < sblock_bad->page_count;
+	     page_num++) {
+		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
+		struct scrub_block *sblock_other = NULL;
+
+		/* skip no-io-error page in scrub */
+		if (!page_bad->io_error && !sctx->is_dev_replace)
+			continue;
+
+		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
+			/*
+			 * In case of dev replace, if raid56 rebuild process
+			 * didn't work out correct data, then copy the content
+			 * in sblock_bad to make sure target device is identical
+			 * to source device, instead of writing garbage data in
+			 * sblock_for_recheck array to target device.
+			 */
+			sblock_other = NULL;
+		} else if (page_bad->io_error) {
+			/* try to find no-io-error page in mirrors */
+			for (mirror_index = 0;
+			     mirror_index < BTRFS_MAX_MIRRORS &&
+			     sblocks_for_recheck[mirror_index].page_count > 0;
+			     mirror_index++) {
+				if (!sblocks_for_recheck[mirror_index].
+				    pagev[page_num]->io_error) {
+					sblock_other = sblocks_for_recheck +
+						       mirror_index;
+					break;
+				}
+			}
+			if (!sblock_other)
+				success = 0;
+		}
+
+		if (sctx->is_dev_replace) {
+			/*
+			 * did not find a mirror to fetch the page
+			 * from. scrub_write_page_to_dev_replace()
+			 * handles this case (page->io_error), by
+			 * filling the block with zeros before
+			 * submitting the write request
+			 */
+			if (!sblock_other)
+				sblock_other = sblock_bad;
+
+			if (scrub_write_page_to_dev_replace(sblock_other,
+							    page_num) != 0) {
+				btrfs_dev_replace_stats_inc(
+					&fs_info->dev_replace.num_write_errors);
+				success = 0;
+			}
+		} else if (sblock_other) {
+			ret = scrub_repair_page_from_good_copy(sblock_bad,
+							       sblock_other,
+							       page_num, 0);
+			if (0 == ret)
+				page_bad->io_error = 0;
+			else
+				success = 0;
+		}
+	}
+
+	if (success && !sctx->is_dev_replace) {
+		if (is_metadata || have_csum) {
+			/*
+			 * need to verify the checksum now that all
+			 * sectors on disk are repaired (the write
+			 * request for data to be repaired is on its way).
+			 * Just be lazy and use scrub_recheck_block()
+			 * which re-reads the data before the checksum
+			 * is verified, but most likely the data comes out
+			 * of the page cache.
+			 */
+			scrub_recheck_block(fs_info, sblock_bad, 1);
+			if (!sblock_bad->header_error &&
+			    !sblock_bad->checksum_error &&
+			    sblock_bad->no_io_error_seen)
+				goto corrected_error;
+			else
+				goto did_not_correct_error;
+		} else {
+corrected_error:
+			spin_lock(&sctx->stat_lock);
+			sctx->stat.corrected_errors++;
+			sblock_to_check->data_corrected = 1;
+			spin_unlock(&sctx->stat_lock);
+			btrfs_err_rl_in_rcu(fs_info,
+				"fixed up error at logical %llu on dev %s",
+				logical, rcu_str_deref(dev->name));
+		}
+	} else {
+did_not_correct_error:
+		spin_lock(&sctx->stat_lock);
+		sctx->stat.uncorrectable_errors++;
+		spin_unlock(&sctx->stat_lock);
+		btrfs_err_rl_in_rcu(fs_info,
+			"unable to fixup (regular) error at logical %llu on dev %s",
+			logical, rcu_str_deref(dev->name));
+	}
+
+out:
+	if (sblocks_for_recheck) {
+		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
+		     mirror_index++) {
+			struct scrub_block *sblock = sblocks_for_recheck +
+						     mirror_index;
+			struct scrub_recover *recover;
+			int page_index;
+
+			for (page_index = 0; page_index < sblock->page_count;
+			     page_index++) {
+				sblock->pagev[page_index]->sblock = NULL;
+				recover = sblock->pagev[page_index]->recover;
+				if (recover) {
+					scrub_put_recover(fs_info, recover);
+					sblock->pagev[page_index]->recover =
+									NULL;
+				}
+				scrub_page_put(sblock->pagev[page_index]);
+			}
+		}
+		kfree(sblocks_for_recheck);
+	}
+
+	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
+	if (ret < 0)
+		return ret;
+	return 0;
+}
+
+static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
+{
+	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
+		return 2;
+	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
+		return 3;
+	else
+		return (int)bbio->num_stripes;
+}
+
+static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
+						 u64 *raid_map,
+						 u64 mapped_length,
+						 int nstripes, int mirror,
+						 int *stripe_index,
+						 u64 *stripe_offset)
+{
+	int i;
+
+	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
+		/* RAID5/6 */
+		for (i = 0; i < nstripes; i++) {
+			if (raid_map[i] == RAID6_Q_STRIPE ||
+			    raid_map[i] == RAID5_P_STRIPE)
+				continue;
+
+			if (logical >= raid_map[i] &&
+			    logical < raid_map[i] + mapped_length)
+				break;
+		}
+
+		*stripe_index = i;
+		*stripe_offset = logical - raid_map[i];
+	} else {
+		/* The other RAID type */
+		*stripe_index = mirror;
+		*stripe_offset = 0;
+	}
+}
+
+static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
+				     struct scrub_block *sblocks_for_recheck)
+{
+	struct scrub_ctx *sctx = original_sblock->sctx;
+	struct btrfs_fs_info *fs_info = sctx->fs_info;
+	u64 length = original_sblock->page_count * PAGE_SIZE;
+	u64 logical = original_sblock->pagev[0]->logical;
+	u64 generation = original_sblock->pagev[0]->generation;
+	u64 flags = original_sblock->pagev[0]->flags;
+	u64 have_csum = original_sblock->pagev[0]->have_csum;
+	struct scrub_recover *recover;
+	struct btrfs_bio *bbio;
+	u64 sublen;
+	u64 mapped_length;
+	u64 stripe_offset;
+	int stripe_index;
+	int page_index = 0;
+	int mirror_index;
+	int nmirrors;
+	int ret;
+
+	/*
+	 * note: the two members refs and outstanding_pages
+	 * are not used (and not set) in the blocks that are used for
+	 * the recheck procedure
+	 */
+
+	while (length > 0) {
+		sublen = min_t(u64, length, PAGE_SIZE);
+		mapped_length = sublen;
+		bbio = NULL;
+
+		/*
+		 * with a length of PAGE_SIZE, each returned stripe
+		 * represents one mirror
+		 */
+		btrfs_bio_counter_inc_blocked(fs_info);
+		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
+				logical, &mapped_length, &bbio);
+		if (ret || !bbio || mapped_length < sublen) {
+			btrfs_put_bbio(bbio);
+			btrfs_bio_counter_dec(fs_info);
+			return -EIO;
+		}
+
+		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
+		if (!recover) {
+			btrfs_put_bbio(bbio);
+			btrfs_bio_counter_dec(fs_info);
+			return -ENOMEM;
+		}
+
+		refcount_set(&recover->refs, 1);
+		recover->bbio = bbio;
+		recover->map_length = mapped_length;
+
+		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
+
+		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
+
+		for (mirror_index = 0; mirror_index < nmirrors;
+		     mirror_index++) {
+			struct scrub_block *sblock;
+			struct scrub_page *page;
+
+			sblock = sblocks_for_recheck + mirror_index;
+			sblock->sctx = sctx;
+
+			page = kzalloc(sizeof(*page), GFP_NOFS);
+			if (!page) {
+leave_nomem:
+				spin_lock(&sctx->stat_lock);
+				sctx->stat.malloc_errors++;
+				spin_unlock(&sctx->stat_lock);
+				scrub_put_recover(fs_info, recover);
+				return -ENOMEM;
+			}
+			scrub_page_get(page);
+			sblock->pagev[page_index] = page;
+			page->sblock = sblock;
+			page->flags = flags;
+			page->generation = generation;
+			page->logical = logical;
+			page->have_csum = have_csum;
+			if (have_csum)
+				memcpy(page->csum,
+				       original_sblock->pagev[0]->csum,
+				       sctx->csum_size);
+
+			scrub_stripe_index_and_offset(logical,
+						      bbio->map_type,
+						      bbio->raid_map,
+						      mapped_length,
+						      bbio->num_stripes -
+						      bbio->num_tgtdevs,
+						      mirror_index,
+						      &stripe_index,
+						      &stripe_offset);
+			page->physical = bbio->stripes[stripe_index].physical +
+					 stripe_offset;
+			page->dev = bbio->stripes[stripe_index].dev;
+
+			BUG_ON(page_index >= original_sblock->page_count);
+			page->physical_for_dev_replace =
+				original_sblock->pagev[page_index]->
+				physical_for_dev_replace;
+			/* for missing devices, dev->bdev is NULL */
+			page->mirror_num = mirror_index + 1;
+			sblock->page_count++;
+			page->page = alloc_page(GFP_NOFS);
+			if (!page->page)
+				goto leave_nomem;
+
+			scrub_get_recover(recover);
+			page->recover = recover;
+		}
+		scrub_put_recover(fs_info, recover);
+		length -= sublen;
+		logical += sublen;
+		page_index++;
+	}
+
+	return 0;
+}
+
+static void scrub_bio_wait_endio(struct bio *bio)
+{
+	complete(bio->bi_private);
+}
+
+static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
+					struct bio *bio,
+					struct scrub_page *page)
+{
+	DECLARE_COMPLETION_ONSTACK(done);
+	int ret;
+	int mirror_num;
+
+	bio->bi_iter.bi_sector = page->logical >> 9;
+	bio->bi_private = &done;
+	bio->bi_end_io = scrub_bio_wait_endio;
+
+	mirror_num = page->sblock->pagev[0]->mirror_num;
+	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
+				    page->recover->map_length,
+				    mirror_num, 0);
+	if (ret)
+		return ret;
+
+	wait_for_completion_io(&done);
+	return blk_status_to_errno(bio->bi_status);
+}
+
+static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
+					  struct scrub_block *sblock)
+{
+	struct scrub_page *first_page = sblock->pagev[0];
+	struct bio *bio;
+	int page_num;
+
+	/* All pages in sblock belong to the same stripe on the same device. */
+	ASSERT(first_page->dev);
+	if (!first_page->dev->bdev)
+		goto out;
+
+	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
+	bio_set_dev(bio, first_page->dev->bdev);
+
+	for (page_num = 0; page_num < sblock->page_count; page_num++) {
+		struct scrub_page *page = sblock->pagev[page_num];
+
+		WARN_ON(!page->page);
+		bio_add_page(bio, page->page, PAGE_SIZE, 0);
+	}
+
+	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
+		bio_put(bio);
+		goto out;
+	}
+
+	bio_put(bio);
+
+	scrub_recheck_block_checksum(sblock);
+
+	return;
+out:
+	for (page_num = 0; page_num < sblock->page_count; page_num++)
+		sblock->pagev[page_num]->io_error = 1;
+
+	sblock->no_io_error_seen = 0;
+}
+
+/*
+ * this function will check the on disk data for checksum errors, header
+ * errors and read I/O errors. If any I/O errors happen, the exact pages
+ * which are errored are marked as being bad. The goal is to enable scrub
+ * to take those pages that are not errored from all the mirrors so that
+ * the pages that are errored in the just handled mirror can be repaired.
+ */
+static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
+				struct scrub_block *sblock,
+				int retry_failed_mirror)
+{
+	int page_num;
+
+	sblock->no_io_error_seen = 1;
+
+	/* short cut for raid56 */
+	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
+		return scrub_recheck_block_on_raid56(fs_info, sblock);
+
+	for (page_num = 0; page_num < sblock->page_count; page_num++) {
+		struct bio *bio;
+		struct scrub_page *page = sblock->pagev[page_num];
+
+		if (page->dev->bdev == NULL) {
+			page->io_error = 1;
+			sblock->no_io_error_seen = 0;
+			continue;
+		}
+
+		WARN_ON(!page->page);
+		bio = btrfs_io_bio_alloc(1);
+		bio_set_dev(bio, page->dev->bdev);
+
+		bio_add_page(bio, page->page, PAGE_SIZE, 0);
+		bio->bi_iter.bi_sector = page->physical >> 9;
+		bio->bi_opf = REQ_OP_READ;
+
+		if (btrfsic_submit_bio_wait(bio)) {
+			page->io_error = 1;
+			sblock->no_io_error_seen = 0;
+		}
+
+		bio_put(bio);
+	}
+
+	if (sblock->no_io_error_seen)
+		scrub_recheck_block_checksum(sblock);
+}
+
+static inline int scrub_check_fsid(u8 fsid[],
+				   struct scrub_page *spage)
+{
+	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
+	int ret;
+
+	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
+	return !ret;
+}
+
+static void scrub_recheck_block_checksum(struct scrub_block *sblock)
+{
+	sblock->header_error = 0;
+	sblock->checksum_error = 0;
+	sblock->generation_error = 0;
+
+	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
+		scrub_checksum_data(sblock);
+	else
+		scrub_checksum_tree_block(sblock);
+}
+
+static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
+					     struct scrub_block *sblock_good)
+{
+	int page_num;
+	int ret = 0;
+
+	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
+		int ret_sub;
+
+		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
+							   sblock_good,
+							   page_num, 1);
+		if (ret_sub)
+			ret = ret_sub;
+	}
+
+	return ret;
+}
+
+static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
+					    struct scrub_block *sblock_good,
+					    int page_num, int force_write)
+{
+	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
+	struct scrub_page *page_good = sblock_good->pagev[page_num];
+	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
+
+	BUG_ON(page_bad->page == NULL);
+	BUG_ON(page_good->page == NULL);
+	if (force_write || sblock_bad->header_error ||
+	    sblock_bad->checksum_error || page_bad->io_error) {
+		struct bio *bio;
+		int ret;
+
+		if (!page_bad->dev->bdev) {
+			btrfs_warn_rl(fs_info,
+				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
+			return -EIO;
+		}
+
+		bio = btrfs_io_bio_alloc(1);
+		bio_set_dev(bio, page_bad->dev->bdev);
+		bio->bi_iter.bi_sector = page_bad->physical >> 9;
+		bio->bi_opf = REQ_OP_WRITE;
+
+		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
+		if (PAGE_SIZE != ret) {
+			bio_put(bio);
+			return -EIO;
+		}
+
+		if (btrfsic_submit_bio_wait(bio)) {
+			btrfs_dev_stat_inc_and_print(page_bad->dev,
+				BTRFS_DEV_STAT_WRITE_ERRS);
+			btrfs_dev_replace_stats_inc(
+				&fs_info->dev_replace.num_write_errors);
+			bio_put(bio);
+			return -EIO;
+		}
+		bio_put(bio);
+	}
+
+	return 0;
+}
+
+static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
+{
+	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
+	int page_num;
+
+	/*
+	 * This block is used for the check of the parity on the source device,
+	 * so the data needn't be written into the destination device.
+	 */
+	if (sblock->sparity)
+		return;
+
+	for (page_num = 0; page_num < sblock->page_count; page_num++) {
+		int ret;
+
+		ret = scrub_write_page_to_dev_replace(sblock, page_num);
+		if (ret)
+			btrfs_dev_replace_stats_inc(
+				&fs_info->dev_replace.num_write_errors);
+	}
+}
+
+static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
+					   int page_num)
+{
+	struct scrub_page *spage = sblock->pagev[page_num];
+
+	BUG_ON(spage->page == NULL);
+	if (spage->io_error) {
+		void *mapped_buffer = kmap_atomic(spage->page);
+
+		clear_page(mapped_buffer);
+		flush_dcache_page(spage->page);
+		kunmap_atomic(mapped_buffer);
+	}
+	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
+}
+
+static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
+				    struct scrub_page *spage)
+{
+	struct scrub_bio *sbio;
+	int ret;
+
+	mutex_lock(&sctx->wr_lock);
+again:
+	if (!sctx->wr_curr_bio) {
+		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
+					      GFP_KERNEL);
+		if (!sctx->wr_curr_bio) {
+			mutex_unlock(&sctx->wr_lock);
+			return -ENOMEM;
+		}
+		sctx->wr_curr_bio->sctx = sctx;
+		sctx->wr_curr_bio->page_count = 0;
+	}
+	sbio = sctx->wr_curr_bio;
+	if (sbio->page_count == 0) {
+		struct bio *bio;
+
+		sbio->physical = spage->physical_for_dev_replace;
+		sbio->logical = spage->logical;
+		sbio->dev = sctx->wr_tgtdev;
+		bio = sbio->bio;
+		if (!bio) {
+			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
+			sbio->bio = bio;
+		}
+
+		bio->bi_private = sbio;
+		bio->bi_end_io = scrub_wr_bio_end_io;
+		bio_set_dev(bio, sbio->dev->bdev);
+		bio->bi_iter.bi_sector = sbio->physical >> 9;
+		bio->bi_opf = REQ_OP_WRITE;
+		sbio->status = 0;
+	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
+		   spage->physical_for_dev_replace ||
+		   sbio->logical + sbio->page_count * PAGE_SIZE !=
+		   spage->logical) {
+		scrub_wr_submit(sctx);
+		goto again;
+	}
+
+	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
+	if (ret != PAGE_SIZE) {
+		if (sbio->page_count < 1) {
+			bio_put(sbio->bio);
+			sbio->bio = NULL;
+			mutex_unlock(&sctx->wr_lock);
+			return -EIO;
+		}
+		scrub_wr_submit(sctx);
+		goto again;
+	}
+
+	sbio->pagev[sbio->page_count] = spage;
+	scrub_page_get(spage);
+	sbio->page_count++;
+	if (sbio->page_count == sctx->pages_per_wr_bio)
+		scrub_wr_submit(sctx);
+	mutex_unlock(&sctx->wr_lock);
+
+	return 0;
+}
+
+static void scrub_wr_submit(struct scrub_ctx *sctx)
+{
+	struct scrub_bio *sbio;
+
+	if (!sctx->wr_curr_bio)
+		return;
+
+	sbio = sctx->wr_curr_bio;
+	sctx->wr_curr_bio = NULL;
+	WARN_ON(!sbio->bio->bi_disk);
+	scrub_pending_bio_inc(sctx);
+	/* process all writes in a single worker thread. Then the block layer
+	 * orders the requests before sending them to the driver which
+	 * doubled the write performance on spinning disks when measured
+	 * with Linux 3.5 */
+	btrfsic_submit_bio(sbio->bio);
+}
+
+static void scrub_wr_bio_end_io(struct bio *bio)
+{
+	struct scrub_bio *sbio = bio->bi_private;
+	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
+
+	sbio->status = bio->bi_status;
+	sbio->bio = bio;
+
+	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
+			 scrub_wr_bio_end_io_worker, NULL, NULL);
+	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
+}
+
+static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
+{
+	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
+	struct scrub_ctx *sctx = sbio->sctx;
+	int i;
+
+	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
+	if (sbio->status) {
+		struct btrfs_dev_replace *dev_replace =
+			&sbio->sctx->fs_info->dev_replace;
+
+		for (i = 0; i < sbio->page_count; i++) {
+			struct scrub_page *spage = sbio->pagev[i];
+
+			spage->io_error = 1;
+			btrfs_dev_replace_stats_inc(&dev_replace->
+						    num_write_errors);
+		}
+	}
+
+	for (i = 0; i < sbio->page_count; i++)
+		scrub_page_put(sbio->pagev[i]);
+
+	bio_put(sbio->bio);
+	kfree(sbio);
+	scrub_pending_bio_dec(sctx);
+}
+
+static int scrub_checksum(struct scrub_block *sblock)
+{
+	u64 flags;
+	int ret;
+
+	/*
+	 * No need to initialize these stats currently,
+	 * because this function only use return value
+	 * instead of these stats value.
+	 *
+	 * Todo:
+	 * always use stats
+	 */
+	sblock->header_error = 0;
+	sblock->generation_error = 0;
+	sblock->checksum_error = 0;
+
+	WARN_ON(sblock->page_count < 1);
+	flags = sblock->pagev[0]->flags;
+	ret = 0;
+	if (flags & BTRFS_EXTENT_FLAG_DATA)
+		ret = scrub_checksum_data(sblock);
+	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
+		ret = scrub_checksum_tree_block(sblock);
+	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
+		(void)scrub_checksum_super(sblock);
+	else
+		WARN_ON(1);
+	if (ret)
+		scrub_handle_errored_block(sblock);
+
+	return ret;
+}
+
+static int scrub_checksum_data(struct scrub_block *sblock)
+{
+	struct scrub_ctx *sctx = sblock->sctx;
+	u8 csum[BTRFS_CSUM_SIZE];
+	u8 *on_disk_csum;
+	struct page *page;
+	void *buffer;
+	u32 crc = ~(u32)0;
+	u64 len;
+	int index;
+
+	BUG_ON(sblock->page_count < 1);
+	if (!sblock->pagev[0]->have_csum)
+		return 0;
+
+	on_disk_csum = sblock->pagev[0]->csum;
+	page = sblock->pagev[0]->page;
+	buffer = kmap_atomic(page);
+
+	len = sctx->fs_info->sectorsize;
+	index = 0;
+	for (;;) {
+		u64 l = min_t(u64, len, PAGE_SIZE);
+
+		crc = btrfs_csum_data(buffer, crc, l);
+		kunmap_atomic(buffer);
+		len -= l;
+		if (len == 0)
+			break;
+		index++;
+		BUG_ON(index >= sblock->page_count);
+		BUG_ON(!sblock->pagev[index]->page);
+		page = sblock->pagev[index]->page;
+		buffer = kmap_atomic(page);
+	}
+
+	btrfs_csum_final(crc, csum);
+	if (memcmp(csum, on_disk_csum, sctx->csum_size))
+		sblock->checksum_error = 1;
+
+	return sblock->checksum_error;
+}
+
+static int scrub_checksum_tree_block(struct scrub_block *sblock)
+{
+	struct scrub_ctx *sctx = sblock->sctx;
+	struct btrfs_header *h;
+	struct btrfs_fs_info *fs_info = sctx->fs_info;
+	u8 calculated_csum[BTRFS_CSUM_SIZE];
+	u8 on_disk_csum[BTRFS_CSUM_SIZE];
+	struct page *page;
+	void *mapped_buffer;
+	u64 mapped_size;
+	void *p;
+	u32 crc = ~(u32)0;
+	u64 len;
+	int index;
+
+	BUG_ON(sblock->page_count < 1);
+	page = sblock->pagev[0]->page;
+	mapped_buffer = kmap_atomic(page);
+	h = (struct btrfs_header *)mapped_buffer;
+	memcpy(on_disk_csum, h->csum, sctx->csum_size);
+
+	/*
+	 * we don't use the getter functions here, as we
+	 * a) don't have an extent buffer and
+	 * b) the page is already kmapped
+	 */
+	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
+		sblock->header_error = 1;
+
+	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
+		sblock->header_error = 1;
+		sblock->generation_error = 1;
+	}
+
+	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
+		sblock->header_error = 1;
+
+	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
+		   BTRFS_UUID_SIZE))
+		sblock->header_error = 1;
+
+	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
+	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
+	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
+	index = 0;
+	for (;;) {
+		u64 l = min_t(u64, len, mapped_size);
+
+		crc = btrfs_csum_data(p, crc, l);
+		kunmap_atomic(mapped_buffer);
+		len -= l;
+		if (len == 0)
+			break;
+		index++;
+		BUG_ON(index >= sblock->page_count);
+		BUG_ON(!sblock->pagev[index]->page);
+		page = sblock->pagev[index]->page;
+		mapped_buffer = kmap_atomic(page);
+		mapped_size = PAGE_SIZE;
+		p = mapped_buffer;
+	}
+
+	btrfs_csum_final(crc, calculated_csum);
+	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
+		sblock->checksum_error = 1;
+
+	return sblock->header_error || sblock->checksum_error;
+}
+
+static int scrub_checksum_super(struct scrub_block *sblock)
+{
+	struct btrfs_super_block *s;
+	struct scrub_ctx *sctx = sblock->sctx;
+	u8 calculated_csum[BTRFS_CSUM_SIZE];
+	u8 on_disk_csum[BTRFS_CSUM_SIZE];
+	struct page *page;
+	void *mapped_buffer;
+	u64 mapped_size;
+	void *p;
+	u32 crc = ~(u32)0;
+	int fail_gen = 0;
+	int fail_cor = 0;
+	u64 len;
+	int index;
+
+	BUG_ON(sblock->page_count < 1);
+	page = sblock->pagev[0]->page;
+	mapped_buffer = kmap_atomic(page);
+	s = (struct btrfs_super_block *)mapped_buffer;
+	memcpy(on_disk_csum, s->csum, sctx->csum_size);
+
+	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
+		++fail_cor;
+
+	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
+		++fail_gen;
+
+	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
+		++fail_cor;
+
+	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
+	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
+	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
+	index = 0;
+	for (;;) {
+		u64 l = min_t(u64, len, mapped_size);
+
+		crc = btrfs_csum_data(p, crc, l);
+		kunmap_atomic(mapped_buffer);
+		len -= l;
+		if (len == 0)
+			break;
+		index++;
+		BUG_ON(index >= sblock->page_count);
+		BUG_ON(!sblock->pagev[index]->page);
+		page = sblock->pagev[index]->page;
+		mapped_buffer = kmap_atomic(page);
+		mapped_size = PAGE_SIZE;
+		p = mapped_buffer;
+	}
+
+	btrfs_csum_final(crc, calculated_csum);
+	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
+		++fail_cor;
+
+	if (fail_cor + fail_gen) {
+		/*
+		 * if we find an error in a super block, we just report it.
+		 * They will get written with the next transaction commit
+		 * anyway
+		 */
+		spin_lock(&sctx->stat_lock);
+		++sctx->stat.super_errors;
+		spin_unlock(&sctx->stat_lock);
+		if (fail_cor)
+			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
+				BTRFS_DEV_STAT_CORRUPTION_ERRS);
+		else
+			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
+				BTRFS_DEV_STAT_GENERATION_ERRS);
+	}
+
+	return fail_cor + fail_gen;
+}
+
+static void scrub_block_get(struct scrub_block *sblock)
+{
+	refcount_inc(&sblock->refs);
+}
+
+static void scrub_block_put(struct scrub_block *sblock)
+{
+	if (refcount_dec_and_test(&sblock->refs)) {
+		int i;
+
+		if (sblock->sparity)
+			scrub_parity_put(sblock->sparity);
+
+		for (i = 0; i < sblock->page_count; i++)
+			scrub_page_put(sblock->pagev[i]);
+		kfree(sblock);
+	}
+}
+
+static void scrub_page_get(struct scrub_page *spage)
+{
+	atomic_inc(&spage->refs);
+}
+
+static void scrub_page_put(struct scrub_page *spage)
+{
+	if (atomic_dec_and_test(&spage->refs)) {
+		if (spage->page)
+			__free_page(spage->page);
+		kfree(spage);
+	}
+}
+
+static void scrub_submit(struct scrub_ctx *sctx)
+{
+	struct scrub_bio *sbio;
+
+	if (sctx->curr == -1)
+		return;
+
+	sbio = sctx->bios[sctx->curr];
+	sctx->curr = -1;
+	scrub_pending_bio_inc(sctx);
+	btrfsic_submit_bio(sbio->bio);
+}
+
+static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
+				    struct scrub_page *spage)
+{
+	struct scrub_block *sblock = spage->sblock;
+	struct scrub_bio *sbio;
+	int ret;
+
+again:
+	/*
+	 * grab a fresh bio or wait for one to become available
+	 */
+	while (sctx->curr == -1) {
+		spin_lock(&sctx->list_lock);
+		sctx->curr = sctx->first_free;
+		if (sctx->curr != -1) {
+			sctx->first_free = sctx->bios[sctx->curr]->next_free;
+			sctx->bios[sctx->curr]->next_free = -1;
+			sctx->bios[sctx->curr]->page_count = 0;
+			spin_unlock(&sctx->list_lock);
+		} else {
+			spin_unlock(&sctx->list_lock);
+			wait_event(sctx->list_wait, sctx->first_free != -1);
+		}
+	}
+	sbio = sctx->bios[sctx->curr];
+	if (sbio->page_count == 0) {
+		struct bio *bio;
+
+		sbio->physical = spage->physical;
+		sbio->logical = spage->logical;
+		sbio->dev = spage->dev;
+		bio = sbio->bio;
+		if (!bio) {
+			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
+			sbio->bio = bio;
+		}
+
+		bio->bi_private = sbio;
+		bio->bi_end_io = scrub_bio_end_io;
+		bio_set_dev(bio, sbio->dev->bdev);
+		bio->bi_iter.bi_sector = sbio->physical >> 9;
+		bio->bi_opf = REQ_OP_READ;
+		sbio->status = 0;
+	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
+		   spage->physical ||
+		   sbio->logical + sbio->page_count * PAGE_SIZE !=
+		   spage->logical ||
+		   sbio->dev != spage->dev) {
+		scrub_submit(sctx);
+		goto again;
+	}
+
+	sbio->pagev[sbio->page_count] = spage;
+	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
+	if (ret != PAGE_SIZE) {
+		if (sbio->page_count < 1) {
+			bio_put(sbio->bio);
+			sbio->bio = NULL;
+			return -EIO;
+		}
+		scrub_submit(sctx);
+		goto again;
+	}
+
+	scrub_block_get(sblock); /* one for the page added to the bio */
+	atomic_inc(&sblock->outstanding_pages);
+	sbio->page_count++;
+	if (sbio->page_count == sctx->pages_per_rd_bio)
+		scrub_submit(sctx);
+
+	return 0;
+}
+
+static void scrub_missing_raid56_end_io(struct bio *bio)
+{
+	struct scrub_block *sblock = bio->bi_private;
+	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
+
+	if (bio->bi_status)
+		sblock->no_io_error_seen = 0;
+
+	bio_put(bio);
+
+	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
+}
+
+static void scrub_missing_raid56_worker(struct btrfs_work *work)
+{
+	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
+	struct scrub_ctx *sctx = sblock->sctx;
+	struct btrfs_fs_info *fs_info = sctx->fs_info;
+	u64 logical;
+	struct btrfs_device *dev;
+
+	logical = sblock->pagev[0]->logical;
+	dev = sblock->pagev[0]->dev;
+
+	if (sblock->no_io_error_seen)
+		scrub_recheck_block_checksum(sblock);
+
+	if (!sblock->no_io_error_seen) {
+		spin_lock(&sctx->stat_lock);
+		sctx->stat.read_errors++;
+		spin_unlock(&sctx->stat_lock);
+		btrfs_err_rl_in_rcu(fs_info,
+			"IO error rebuilding logical %llu for dev %s",
+			logical, rcu_str_deref(dev->name));
+	} else if (sblock->header_error || sblock->checksum_error) {
+		spin_lock(&sctx->stat_lock);
+		sctx->stat.uncorrectable_errors++;
+		spin_unlock(&sctx->stat_lock);
+		btrfs_err_rl_in_rcu(fs_info,
+			"failed to rebuild valid logical %llu for dev %s",
+			logical, rcu_str_deref(dev->name));
+	} else {
+		scrub_write_block_to_dev_replace(sblock);
+	}
+
+	scrub_block_put(sblock);
+
+	if (sctx->is_dev_replace && sctx->flush_all_writes) {
+		mutex_lock(&sctx->wr_lock);
+		scrub_wr_submit(sctx);
+		mutex_unlock(&sctx->wr_lock);
+	}
+
+	scrub_pending_bio_dec(sctx);
+}
+
+static void scrub_missing_raid56_pages(struct scrub_block *sblock)
+{
+	struct scrub_ctx *sctx = sblock->sctx;
+	struct btrfs_fs_info *fs_info = sctx->fs_info;
+	u64 length = sblock->page_count * PAGE_SIZE;
+	u64 logical = sblock->pagev[0]->logical;
+	struct btrfs_bio *bbio = NULL;
+	struct bio *bio;
+	struct btrfs_raid_bio *rbio;
+	int ret;
+	int i;
+
+	btrfs_bio_counter_inc_blocked(fs_info);
+	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
+			&length, &bbio);
+	if (ret || !bbio || !bbio->raid_map)
+		goto bbio_out;
+
+	if (WARN_ON(!sctx->is_dev_replace ||
+		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
+		/*
+		 * We shouldn't be scrubbing a missing device. Even for dev
+		 * replace, we should only get here for RAID 5/6. We either
+		 * managed to mount something with no mirrors remaining or
+		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
+		 */
+		goto bbio_out;
+	}
+
+	bio = btrfs_io_bio_alloc(0);
+	bio->bi_iter.bi_sector = logical >> 9;
+	bio->bi_private = sblock;
+	bio->bi_end_io = scrub_missing_raid56_end_io;
+
+	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
+	if (!rbio)
+		goto rbio_out;
+
+	for (i = 0; i < sblock->page_count; i++) {
+		struct scrub_page *spage = sblock->pagev[i];
+
+		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
+	}
+
+	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
+			scrub_missing_raid56_worker, NULL, NULL);
+	scrub_block_get(sblock);
+	scrub_pending_bio_inc(sctx);
+	raid56_submit_missing_rbio(rbio);
+	return;
+
+rbio_out:
+	bio_put(bio);
+bbio_out:
+	btrfs_bio_counter_dec(fs_info);
+	btrfs_put_bbio(bbio);
+	spin_lock(&sctx->stat_lock);
+	sctx->stat.malloc_errors++;
+	spin_unlock(&sctx->stat_lock);
+}
+
+static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
+		       u64 physical, struct btrfs_device *dev, u64 flags,
+		       u64 gen, int mirror_num, u8 *csum, int force,
+		       u64 physical_for_dev_replace)
+{
+	struct scrub_block *sblock;
+	int index;
+
+	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
+	if (!sblock) {
+		spin_lock(&sctx->stat_lock);
+		sctx->stat.malloc_errors++;
+		spin_unlock(&sctx->stat_lock);
+		return -ENOMEM;
+	}
+
+	/* one ref inside this function, plus one for each page added to
+	 * a bio later on */
+	refcount_set(&sblock->refs, 1);
+	sblock->sctx = sctx;
+	sblock->no_io_error_seen = 1;
+
+	for (index = 0; len > 0; index++) {
+		struct scrub_page *spage;
+		u64 l = min_t(u64, len, PAGE_SIZE);
+
+		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
+		if (!spage) {
+leave_nomem:
+			spin_lock(&sctx->stat_lock);
+			sctx->stat.malloc_errors++;
+			spin_unlock(&sctx->stat_lock);
+			scrub_block_put(sblock);
+			return -ENOMEM;
+		}
+		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
+		scrub_page_get(spage);
+		sblock->pagev[index] = spage;
+		spage->sblock = sblock;
+		spage->dev = dev;
+		spage->flags = flags;
+		spage->generation = gen;
+		spage->logical = logical;
+		spage->physical = physical;
+		spage->physical_for_dev_replace = physical_for_dev_replace;
+		spage->mirror_num = mirror_num;
+		if (csum) {
+			spage->have_csum = 1;
+			memcpy(spage->csum, csum, sctx->csum_size);
+		} else {
+			spage->have_csum = 0;
+		}
+		sblock->page_count++;
+		spage->page = alloc_page(GFP_KERNEL);
+		if (!spage->page)
+			goto leave_nomem;
+		len -= l;
+		logical += l;
+		physical += l;
+		physical_for_dev_replace += l;
+	}
+
+	WARN_ON(sblock->page_count == 0);
+	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
+		/*
+		 * This case should only be hit for RAID 5/6 device replace. See
+		 * the comment in scrub_missing_raid56_pages() for details.
+		 */
+		scrub_missing_raid56_pages(sblock);
+	} else {
+		for (index = 0; index < sblock->page_count; index++) {
+			struct scrub_page *spage = sblock->pagev[index];
+			int ret;
+
+			ret = scrub_add_page_to_rd_bio(sctx, spage);
+			if (ret) {
+				scrub_block_put(sblock);
+				return ret;
+			}
+		}
+
+		if (force)
+			scrub_submit(sctx);
+	}
+
+	/* last one frees, either here or in bio completion for last page */
+	scrub_block_put(sblock);
+	return 0;
+}
+
+static void scrub_bio_end_io(struct bio *bio)
+{
+	struct scrub_bio *sbio = bio->bi_private;
+	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
+
+	sbio->status = bio->bi_status;
+	sbio->bio = bio;
+
+	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
+}
+
+static void scrub_bio_end_io_worker(struct btrfs_work *work)
+{
+	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
+	struct scrub_ctx *sctx = sbio->sctx;
+	int i;
+
+	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
+	if (sbio->status) {
+		for (i = 0; i < sbio->page_count; i++) {
+			struct scrub_page *spage = sbio->pagev[i];
+
+			spage->io_error = 1;
+			spage->sblock->no_io_error_seen = 0;
+		}
+	}
+
+	/* now complete the scrub_block items that have all pages completed */
+	for (i = 0; i < sbio->page_count; i++) {
+		struct scrub_page *spage = sbio->pagev[i];
+		struct scrub_block *sblock = spage->sblock;
+
+		if (atomic_dec_and_test(&sblock->outstanding_pages))
+			scrub_block_complete(sblock);
+		scrub_block_put(sblock);
+	}
+
+	bio_put(sbio->bio);
+	sbio->bio = NULL;
+	spin_lock(&sctx->list_lock);
+	sbio->next_free = sctx->first_free;
+	sctx->first_free = sbio->index;
+	spin_unlock(&sctx->list_lock);
+
+	if (sctx->is_dev_replace && sctx->flush_all_writes) {
+		mutex_lock(&sctx->wr_lock);
+		scrub_wr_submit(sctx);
+		mutex_unlock(&sctx->wr_lock);
+	}
+
+	scrub_pending_bio_dec(sctx);
+}
+
+static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
+				       unsigned long *bitmap,
+				       u64 start, u64 len)
+{
+	u64 offset;
+	u64 nsectors64;
+	u32 nsectors;
+	int sectorsize = sparity->sctx->fs_info->sectorsize;
+
+	if (len >= sparity->stripe_len) {
+		bitmap_set(bitmap, 0, sparity->nsectors);
+		return;
+	}
+
+	start -= sparity->logic_start;
+	start = div64_u64_rem(start, sparity->stripe_len, &offset);
+	offset = div_u64(offset, sectorsize);
+	nsectors64 = div_u64(len, sectorsize);
+
+	ASSERT(nsectors64 < UINT_MAX);
+	nsectors = (u32)nsectors64;
+
+	if (offset + nsectors <= sparity->nsectors) {
+		bitmap_set(bitmap, offset, nsectors);
+		return;
+	}
+
+	bitmap_set(bitmap, offset, sparity->nsectors - offset);
+	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
+}
+
+static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
+						   u64 start, u64 len)
+{
+	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
+}
+
+static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
+						  u64 start, u64 len)
+{
+	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
+}
+
+static void scrub_block_complete(struct scrub_block *sblock)
+{
+	int corrupted = 0;
+
+	if (!sblock->no_io_error_seen) {
+		corrupted = 1;
+		scrub_handle_errored_block(sblock);
+	} else {
+		/*
+		 * if has checksum error, write via repair mechanism in
+		 * dev replace case, otherwise write here in dev replace
+		 * case.
+		 */
+		corrupted = scrub_checksum(sblock);
+		if (!corrupted && sblock->sctx->is_dev_replace)
+			scrub_write_block_to_dev_replace(sblock);
+	}
+
+	if (sblock->sparity && corrupted && !sblock->data_corrected) {
+		u64 start = sblock->pagev[0]->logical;
+		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
+			  PAGE_SIZE;
+
+		scrub_parity_mark_sectors_error(sblock->sparity,
+						start, end - start);
+	}
+}
+
+static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
+{
+	struct btrfs_ordered_sum *sum = NULL;
+	unsigned long index;
+	unsigned long num_sectors;
+
+	while (!list_empty(&sctx->csum_list)) {
+		sum = list_first_entry(&sctx->csum_list,
+				       struct btrfs_ordered_sum, list);
+		if (sum->bytenr > logical)
+			return 0;
+		if (sum->bytenr + sum->len > logical)
+			break;
+
+		++sctx->stat.csum_discards;
+		list_del(&sum->list);
+		kfree(sum);
+		sum = NULL;
+	}
+	if (!sum)
+		return 0;
+
+	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
+	ASSERT(index < UINT_MAX);
+
+	num_sectors = sum->len / sctx->fs_info->sectorsize;
+	memcpy(csum, sum->sums + index, sctx->csum_size);
+	if (index == num_sectors - 1) {
+		list_del(&sum->list);
+		kfree(sum);
+	}
+	return 1;
+}
+
+/* scrub extent tries to collect up to 64 kB for each bio */
+static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
+			u64 logical, u64 len,
+			u64 physical, struct btrfs_device *dev, u64 flags,
+			u64 gen, int mirror_num, u64 physical_for_dev_replace)
+{
+	int ret;
+	u8 csum[BTRFS_CSUM_SIZE];
+	u32 blocksize;
+
+	if (flags & BTRFS_EXTENT_FLAG_DATA) {
+		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
+			blocksize = map->stripe_len;
+		else
+			blocksize = sctx->fs_info->sectorsize;
+		spin_lock(&sctx->stat_lock);
+		sctx->stat.data_extents_scrubbed++;
+		sctx->stat.data_bytes_scrubbed += len;
+		spin_unlock(&sctx->stat_lock);
+	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
+		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
+			blocksize = map->stripe_len;
+		else
+			blocksize = sctx->fs_info->nodesize;
+		spin_lock(&sctx->stat_lock);
+		sctx->stat.tree_extents_scrubbed++;
+		sctx->stat.tree_bytes_scrubbed += len;
+		spin_unlock(&sctx->stat_lock);
+	} else {
+		blocksize = sctx->fs_info->sectorsize;
+		WARN_ON(1);
+	}
+
+	while (len) {
+		u64 l = min_t(u64, len, blocksize);
+		int have_csum = 0;
+
+		if (flags & BTRFS_EXTENT_FLAG_DATA) {
+			/* push csums to sbio */
+			have_csum = scrub_find_csum(sctx, logical, csum);
+			if (have_csum == 0)
+				++sctx->stat.no_csum;
+		}
+		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
+				  mirror_num, have_csum ? csum : NULL, 0,
+				  physical_for_dev_replace);
+		if (ret)
+			return ret;
+		len -= l;
+		logical += l;
+		physical += l;
+		physical_for_dev_replace += l;
+	}
+	return 0;
+}
+
+static int scrub_pages_for_parity(struct scrub_parity *sparity,
+				  u64 logical, u64 len,
+				  u64 physical, struct btrfs_device *dev,
+				  u64 flags, u64 gen, int mirror_num, u8 *csum)
+{
+	struct scrub_ctx *sctx = sparity->sctx;
+	struct scrub_block *sblock;
+	int index;
+
+	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
+	if (!sblock) {
+		spin_lock(&sctx->stat_lock);
+		sctx->stat.malloc_errors++;
+		spin_unlock(&sctx->stat_lock);
+		return -ENOMEM;
+	}
+
+	/* one ref inside this function, plus one for each page added to
+	 * a bio later on */
+	refcount_set(&sblock->refs, 1);
+	sblock->sctx = sctx;
+	sblock->no_io_error_seen = 1;
+	sblock->sparity = sparity;
+	scrub_parity_get(sparity);
+
+	for (index = 0; len > 0; index++) {
+		struct scrub_page *spage;
+		u64 l = min_t(u64, len, PAGE_SIZE);
+
+		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
+		if (!spage) {
+leave_nomem:
+			spin_lock(&sctx->stat_lock);
+			sctx->stat.malloc_errors++;
+			spin_unlock(&sctx->stat_lock);
+			scrub_block_put(sblock);
+			return -ENOMEM;
+		}
+		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
+		/* For scrub block */
+		scrub_page_get(spage);
+		sblock->pagev[index] = spage;
+		/* For scrub parity */
+		scrub_page_get(spage);
+		list_add_tail(&spage->list, &sparity->spages);
+		spage->sblock = sblock;
+		spage->dev = dev;
+		spage->flags = flags;
+		spage->generation = gen;
+		spage->logical = logical;
+		spage->physical = physical;
+		spage->mirror_num = mirror_num;
+		if (csum) {
+			spage->have_csum = 1;
+			memcpy(spage->csum, csum, sctx->csum_size);
+		} else {
+			spage->have_csum = 0;
+		}
+		sblock->page_count++;
+		spage->page = alloc_page(GFP_KERNEL);
+		if (!spage->page)
+			goto leave_nomem;
+		len -= l;
+		logical += l;
+		physical += l;
+	}
+
+	WARN_ON(sblock->page_count == 0);
+	for (index = 0; index < sblock->page_count; index++) {
+		struct scrub_page *spage = sblock->pagev[index];
+		int ret;
+
+		ret = scrub_add_page_to_rd_bio(sctx, spage);
+		if (ret) {
+			scrub_block_put(sblock);
+			return ret;
+		}
+	}
+
+	/* last one frees, either here or in bio completion for last page */
+	scrub_block_put(sblock);
+	return 0;
+}
+
+static int scrub_extent_for_parity(struct scrub_parity *sparity,
+				   u64 logical, u64 len,
+				   u64 physical, struct btrfs_device *dev,
+				   u64 flags, u64 gen, int mirror_num)
+{
+	struct scrub_ctx *sctx = sparity->sctx;
+	int ret;
+	u8 csum[BTRFS_CSUM_SIZE];
+	u32 blocksize;
+
+	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
+		scrub_parity_mark_sectors_error(sparity, logical, len);
+		return 0;
+	}
+
+	if (flags & BTRFS_EXTENT_FLAG_DATA) {
+		blocksize = sparity->stripe_len;
+	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
+		blocksize = sparity->stripe_len;
+	} else {
+		blocksize = sctx->fs_info->sectorsize;
+		WARN_ON(1);
+	}
+
+	while (len) {
+		u64 l = min_t(u64, len, blocksize);
+		int have_csum = 0;
+
+		if (flags & BTRFS_EXTENT_FLAG_DATA) {
+			/* push csums to sbio */
+			have_csum = scrub_find_csum(sctx, logical, csum);
+			if (have_csum == 0)
+				goto skip;
+		}
+		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
+					     flags, gen, mirror_num,
+					     have_csum ? csum : NULL);
+		if (ret)
+			return ret;
+skip:
+		len -= l;
+		logical += l;
+		physical += l;
+	}
+	return 0;
+}
+
+/*
+ * Given a physical address, this will calculate it's
+ * logical offset. if this is a parity stripe, it will return
+ * the most left data stripe's logical offset.
+ *
+ * return 0 if it is a data stripe, 1 means parity stripe.
+ */
+static int get_raid56_logic_offset(u64 physical, int num,
+				   struct map_lookup *map, u64 *offset,
+				   u64 *stripe_start)
+{
+	int i;
+	int j = 0;
+	u64 stripe_nr;
+	u64 last_offset;
+	u32 stripe_index;
+	u32 rot;
+
+	last_offset = (physical - map->stripes[num].physical) *
+		      nr_data_stripes(map);
+	if (stripe_start)
+		*stripe_start = last_offset;
+
+	*offset = last_offset;
+	for (i = 0; i < nr_data_stripes(map); i++) {
+		*offset = last_offset + i * map->stripe_len;
+
+		stripe_nr = div64_u64(*offset, map->stripe_len);
+		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
+
+		/* Work out the disk rotation on this stripe-set */
+		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
+		/* calculate which stripe this data locates */
+		rot += i;
+		stripe_index = rot % map->num_stripes;
+		if (stripe_index == num)
+			return 0;
+		if (stripe_index < num)
+			j++;
+	}
+	*offset = last_offset + j * map->stripe_len;
+	return 1;
+}
+
+static void scrub_free_parity(struct scrub_parity *sparity)
+{
+	struct scrub_ctx *sctx = sparity->sctx;
+	struct scrub_page *curr, *next;
+	int nbits;
+
+	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
+	if (nbits) {
+		spin_lock(&sctx->stat_lock);
+		sctx->stat.read_errors += nbits;
+		sctx->stat.uncorrectable_errors += nbits;
+		spin_unlock(&sctx->stat_lock);
+	}
+
+	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
+		list_del_init(&curr->list);
+		scrub_page_put(curr);
+	}
+
+	kfree(sparity);
+}
+
+static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
+{
+	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
+						    work);
+	struct scrub_ctx *sctx = sparity->sctx;
+
+	scrub_free_parity(sparity);
+	scrub_pending_bio_dec(sctx);
+}
+
+static void scrub_parity_bio_endio(struct bio *bio)
+{
+	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
+	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
+
+	if (bio->bi_status)
+		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
+			  sparity->nsectors);
+
+	bio_put(bio);
+
+	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
+			scrub_parity_bio_endio_worker, NULL, NULL);
+	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
+}
+
+static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
+{
+	struct scrub_ctx *sctx = sparity->sctx;
+	struct btrfs_fs_info *fs_info = sctx->fs_info;
+	struct bio *bio;
+	struct btrfs_raid_bio *rbio;
+	struct btrfs_bio *bbio = NULL;
+	u64 length;
+	int ret;
+
+	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
+			   sparity->nsectors))
+		goto out;
+
+	length = sparity->logic_end - sparity->logic_start;
+
+	btrfs_bio_counter_inc_blocked(fs_info);
+	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
+			       &length, &bbio);
+	if (ret || !bbio || !bbio->raid_map)
+		goto bbio_out;
+
+	bio = btrfs_io_bio_alloc(0);
+	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
+	bio->bi_private = sparity;
+	bio->bi_end_io = scrub_parity_bio_endio;
+
+	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
+					      length, sparity->scrub_dev,
+					      sparity->dbitmap,
+					      sparity->nsectors);
+	if (!rbio)
+		goto rbio_out;
+
+	scrub_pending_bio_inc(sctx);
+	raid56_parity_submit_scrub_rbio(rbio);
+	return;
+
+rbio_out:
+	bio_put(bio);
+bbio_out:
+	btrfs_bio_counter_dec(fs_info);
+	btrfs_put_bbio(bbio);
+	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
+		  sparity->nsectors);
+	spin_lock(&sctx->stat_lock);
+	sctx->stat.malloc_errors++;
+	spin_unlock(&sctx->stat_lock);
+out:
+	scrub_free_parity(sparity);
+}
+
+static inline int scrub_calc_parity_bitmap_len(int nsectors)
+{
+	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
+}
+
+static void scrub_parity_get(struct scrub_parity *sparity)
+{
+	refcount_inc(&sparity->refs);
+}
+
+static void scrub_parity_put(struct scrub_parity *sparity)
+{
+	if (!refcount_dec_and_test(&sparity->refs))
+		return;
+
+	scrub_parity_check_and_repair(sparity);
+}
+
+static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
+						  struct map_lookup *map,
+						  struct btrfs_device *sdev,
+						  struct btrfs_path *path,
+						  u64 logic_start,
+						  u64 logic_end)
+{
+	struct btrfs_fs_info *fs_info = sctx->fs_info;
+	struct btrfs_root *root = fs_info->extent_root;
+	struct btrfs_root *csum_root = fs_info->csum_root;
+	struct btrfs_extent_item *extent;
+	struct btrfs_bio *bbio = NULL;
+	u64 flags;
+	int ret;
+	int slot;
+	struct extent_buffer *l;
+	struct btrfs_key key;
+	u64 generation;
+	u64 extent_logical;
+	u64 extent_physical;
+	u64 extent_len;
+	u64 mapped_length;
+	struct btrfs_device *extent_dev;
+	struct scrub_parity *sparity;
+	int nsectors;
+	int bitmap_len;
+	int extent_mirror_num;
+	int stop_loop = 0;
+
+	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
+	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
+	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
+			  GFP_NOFS);
+	if (!sparity) {
+		spin_lock(&sctx->stat_lock);
+		sctx->stat.malloc_errors++;
+		spin_unlock(&sctx->stat_lock);
+		return -ENOMEM;
+	}
+
+	sparity->stripe_len = map->stripe_len;
+	sparity->nsectors = nsectors;
+	sparity->sctx = sctx;
+	sparity->scrub_dev = sdev;
+	sparity->logic_start = logic_start;
+	sparity->logic_end = logic_end;
+	refcount_set(&sparity->refs, 1);
+	INIT_LIST_HEAD(&sparity->spages);
+	sparity->dbitmap = sparity->bitmap;
+	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
+
+	ret = 0;
+	while (logic_start < logic_end) {
+		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
+			key.type = BTRFS_METADATA_ITEM_KEY;
+		else
+			key.type = BTRFS_EXTENT_ITEM_KEY;
+		key.objectid = logic_start;
+		key.offset = (u64)-1;
+
+		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+		if (ret < 0)
+			goto out;
+
+		if (ret > 0) {
+			ret = btrfs_previous_extent_item(root, path, 0);
+			if (ret < 0)
+				goto out;
+			if (ret > 0) {
+				btrfs_release_path(path);
+				ret = btrfs_search_slot(NULL, root, &key,
+							path, 0, 0);
+				if (ret < 0)
+					goto out;
+			}
+		}
+
+		stop_loop = 0;
+		while (1) {
+			u64 bytes;
+
+			l = path->nodes[0];
+			slot = path->slots[0];
+			if (slot >= btrfs_header_nritems(l)) {
+				ret = btrfs_next_leaf(root, path);
+				if (ret == 0)
+					continue;
+				if (ret < 0)
+					goto out;
+
+				stop_loop = 1;
+				break;
+			}
+			btrfs_item_key_to_cpu(l, &key, slot);
+
+			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
+			    key.type != BTRFS_METADATA_ITEM_KEY)
+				goto next;
+
+			if (key.type == BTRFS_METADATA_ITEM_KEY)
+				bytes = fs_info->nodesize;
+			else
+				bytes = key.offset;
+
+			if (key.objectid + bytes <= logic_start)
+				goto next;
+
+			if (key.objectid >= logic_end) {
+				stop_loop = 1;
+				break;
+			}
+
+			while (key.objectid >= logic_start + map->stripe_len)
+				logic_start += map->stripe_len;
+
+			extent = btrfs_item_ptr(l, slot,
+						struct btrfs_extent_item);
+			flags = btrfs_extent_flags(l, extent);
+			generation = btrfs_extent_generation(l, extent);
+
+			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
+			    (key.objectid < logic_start ||
+			     key.objectid + bytes >
+			     logic_start + map->stripe_len)) {
+				btrfs_err(fs_info,
+					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
+					  key.objectid, logic_start);
+				spin_lock(&sctx->stat_lock);
+				sctx->stat.uncorrectable_errors++;
+				spin_unlock(&sctx->stat_lock);
+				goto next;
+			}
+again:
+			extent_logical = key.objectid;
+			extent_len = bytes;
+
+			if (extent_logical < logic_start) {
+				extent_len -= logic_start - extent_logical;
+				extent_logical = logic_start;
+			}
+
+			if (extent_logical + extent_len >
+			    logic_start + map->stripe_len)
+				extent_len = logic_start + map->stripe_len -
+					     extent_logical;
+
+			scrub_parity_mark_sectors_data(sparity, extent_logical,
+						       extent_len);
+
+			mapped_length = extent_len;
+			bbio = NULL;
+			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
+					extent_logical, &mapped_length, &bbio,
+					0);
+			if (!ret) {
+				if (!bbio || mapped_length < extent_len)
+					ret = -EIO;
+			}
+			if (ret) {
+				btrfs_put_bbio(bbio);
+				goto out;
+			}
+			extent_physical = bbio->stripes[0].physical;
+			extent_mirror_num = bbio->mirror_num;
+			extent_dev = bbio->stripes[0].dev;
+			btrfs_put_bbio(bbio);
+
+			ret = btrfs_lookup_csums_range(csum_root,
+						extent_logical,
+						extent_logical + extent_len - 1,
+						&sctx->csum_list, 1);
+			if (ret)
+				goto out;
+
+			ret = scrub_extent_for_parity(sparity, extent_logical,
+						      extent_len,
+						      extent_physical,
+						      extent_dev, flags,
+						      generation,
+						      extent_mirror_num);
+
+			scrub_free_csums(sctx);
+
+			if (ret)
+				goto out;
+
+			if (extent_logical + extent_len <
+			    key.objectid + bytes) {
+				logic_start += map->stripe_len;
+
+				if (logic_start >= logic_end) {
+					stop_loop = 1;
+					break;
+				}
+
+				if (logic_start < key.objectid + bytes) {
+					cond_resched();
+					goto again;
+				}
+			}
+next:
+			path->slots[0]++;
+		}
+
+		btrfs_release_path(path);
+
+		if (stop_loop)
+			break;
+
+		logic_start += map->stripe_len;
+	}
+out:
+	if (ret < 0)
+		scrub_parity_mark_sectors_error(sparity, logic_start,
+						logic_end - logic_start);
+	scrub_parity_put(sparity);
+	scrub_submit(sctx);
+	mutex_lock(&sctx->wr_lock);
+	scrub_wr_submit(sctx);
+	mutex_unlock(&sctx->wr_lock);
+
+	btrfs_release_path(path);
+	return ret < 0 ? ret : 0;
+}
+
+static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
+					   struct map_lookup *map,
+					   struct btrfs_device *scrub_dev,
+					   int num, u64 base, u64 length,
+					   int is_dev_replace)
+{
+	struct btrfs_path *path, *ppath;
+	struct btrfs_fs_info *fs_info = sctx->fs_info;
+	struct btrfs_root *root = fs_info->extent_root;
+	struct btrfs_root *csum_root = fs_info->csum_root;
+	struct btrfs_extent_item *extent;
+	struct blk_plug plug;
+	u64 flags;
+	int ret;
+	int slot;
+	u64 nstripes;
+	struct extent_buffer *l;
+	u64 physical;
+	u64 logical;
+	u64 logic_end;
+	u64 physical_end;
+	u64 generation;
+	int mirror_num;
+	struct reada_control *reada1;
+	struct reada_control *reada2;
+	struct btrfs_key key;
+	struct btrfs_key key_end;
+	u64 increment = map->stripe_len;
+	u64 offset;
+	u64 extent_logical;
+	u64 extent_physical;
+	u64 extent_len;
+	u64 stripe_logical;
+	u64 stripe_end;
+	struct btrfs_device *extent_dev;
+	int extent_mirror_num;
+	int stop_loop = 0;
+
+	physical = map->stripes[num].physical;
+	offset = 0;
+	nstripes = div64_u64(length, map->stripe_len);
+	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
+		offset = map->stripe_len * num;
+		increment = map->stripe_len * map->num_stripes;
+		mirror_num = 1;
+	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
+		int factor = map->num_stripes / map->sub_stripes;
+		offset = map->stripe_len * (num / map->sub_stripes);
+		increment = map->stripe_len * factor;
+		mirror_num = num % map->sub_stripes + 1;
+	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
+		increment = map->stripe_len;
+		mirror_num = num % map->num_stripes + 1;
+	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
+		increment = map->stripe_len;
+		mirror_num = num % map->num_stripes + 1;
+	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
+		get_raid56_logic_offset(physical, num, map, &offset, NULL);
+		increment = map->stripe_len * nr_data_stripes(map);
+		mirror_num = 1;
+	} else {
+		increment = map->stripe_len;
+		mirror_num = 1;
+	}
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	ppath = btrfs_alloc_path();
+	if (!ppath) {
+		btrfs_free_path(path);
+		return -ENOMEM;
+	}
+
+	/*
+	 * work on commit root. The related disk blocks are static as
+	 * long as COW is applied. This means, it is save to rewrite
+	 * them to repair disk errors without any race conditions
+	 */
+	path->search_commit_root = 1;
+	path->skip_locking = 1;
+
+	ppath->search_commit_root = 1;
+	ppath->skip_locking = 1;
+	/*
+	 * trigger the readahead for extent tree csum tree and wait for
+	 * completion. During readahead, the scrub is officially paused
+	 * to not hold off transaction commits
+	 */
+	logical = base + offset;
+	physical_end = physical + nstripes * map->stripe_len;
+	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
+		get_raid56_logic_offset(physical_end, num,
+					map, &logic_end, NULL);
+		logic_end += base;
+	} else {
+		logic_end = logical + increment * nstripes;
+	}
+	wait_event(sctx->list_wait,
+		   atomic_read(&sctx->bios_in_flight) == 0);
+	scrub_blocked_if_needed(fs_info);
+
+	/* FIXME it might be better to start readahead at commit root */
+	key.objectid = logical;
+	key.type = BTRFS_EXTENT_ITEM_KEY;
+	key.offset = (u64)0;
+	key_end.objectid = logic_end;
+	key_end.type = BTRFS_METADATA_ITEM_KEY;
+	key_end.offset = (u64)-1;
+	reada1 = btrfs_reada_add(root, &key, &key_end);
+
+	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
+	key.type = BTRFS_EXTENT_CSUM_KEY;
+	key.offset = logical;
+	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
+	key_end.type = BTRFS_EXTENT_CSUM_KEY;
+	key_end.offset = logic_end;
+	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
+
+	if (!IS_ERR(reada1))
+		btrfs_reada_wait(reada1);
+	if (!IS_ERR(reada2))
+		btrfs_reada_wait(reada2);
+
+
+	/*
+	 * collect all data csums for the stripe to avoid seeking during
+	 * the scrub. This might currently (crc32) end up to be about 1MB
+	 */
+	blk_start_plug(&plug);
+
+	/*
+	 * now find all extents for each stripe and scrub them
+	 */
+	ret = 0;
+	while (physical < physical_end) {
+		/*
+		 * canceled?
+		 */
+		if (atomic_read(&fs_info->scrub_cancel_req) ||
+		    atomic_read(&sctx->cancel_req)) {
+			ret = -ECANCELED;
+			goto out;
+		}
+		/*
+		 * check to see if we have to pause
+		 */
+		if (atomic_read(&fs_info->scrub_pause_req)) {
+			/* push queued extents */
+			sctx->flush_all_writes = true;
+			scrub_submit(sctx);
+			mutex_lock(&sctx->wr_lock);
+			scrub_wr_submit(sctx);
+			mutex_unlock(&sctx->wr_lock);
+			wait_event(sctx->list_wait,
+				   atomic_read(&sctx->bios_in_flight) == 0);
+			sctx->flush_all_writes = false;
+			scrub_blocked_if_needed(fs_info);
+		}
+
+		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
+			ret = get_raid56_logic_offset(physical, num, map,
+						      &logical,
+						      &stripe_logical);
+			logical += base;
+			if (ret) {
+				/* it is parity strip */
+				stripe_logical += base;
+				stripe_end = stripe_logical + increment;
+				ret = scrub_raid56_parity(sctx, map, scrub_dev,
+							  ppath, stripe_logical,
+							  stripe_end);
+				if (ret)
+					goto out;
+				goto skip;
+			}
+		}
+
+		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
+			key.type = BTRFS_METADATA_ITEM_KEY;
+		else
+			key.type = BTRFS_EXTENT_ITEM_KEY;
+		key.objectid = logical;
+		key.offset = (u64)-1;
+
+		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+		if (ret < 0)
+			goto out;
+
+		if (ret > 0) {
+			ret = btrfs_previous_extent_item(root, path, 0);
+			if (ret < 0)
+				goto out;
+			if (ret > 0) {
+				/* there's no smaller item, so stick with the
+				 * larger one */
+				btrfs_release_path(path);
+				ret = btrfs_search_slot(NULL, root, &key,
+							path, 0, 0);
+				if (ret < 0)
+					goto out;
+			}
+		}
+
+		stop_loop = 0;
+		while (1) {
+			u64 bytes;
+
+			l = path->nodes[0];
+			slot = path->slots[0];
+			if (slot >= btrfs_header_nritems(l)) {
+				ret = btrfs_next_leaf(root, path);
+				if (ret == 0)
+					continue;
+				if (ret < 0)
+					goto out;
+
+				stop_loop = 1;
+				break;
+			}
+			btrfs_item_key_to_cpu(l, &key, slot);
+
+			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
+			    key.type != BTRFS_METADATA_ITEM_KEY)
+				goto next;
+
+			if (key.type == BTRFS_METADATA_ITEM_KEY)
+				bytes = fs_info->nodesize;
+			else
+				bytes = key.offset;
+
+			if (key.objectid + bytes <= logical)
+				goto next;
+
+			if (key.objectid >= logical + map->stripe_len) {
+				/* out of this device extent */
+				if (key.objectid >= logic_end)
+					stop_loop = 1;
+				break;
+			}
+
+			extent = btrfs_item_ptr(l, slot,
+						struct btrfs_extent_item);
+			flags = btrfs_extent_flags(l, extent);
+			generation = btrfs_extent_generation(l, extent);
+
+			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
+			    (key.objectid < logical ||
+			     key.objectid + bytes >
+			     logical + map->stripe_len)) {
+				btrfs_err(fs_info,
+					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
+				       key.objectid, logical);
+				spin_lock(&sctx->stat_lock);
+				sctx->stat.uncorrectable_errors++;
+				spin_unlock(&sctx->stat_lock);
+				goto next;
+			}
+
+again:
+			extent_logical = key.objectid;
+			extent_len = bytes;
+
+			/*
+			 * trim extent to this stripe
+			 */
+			if (extent_logical < logical) {
+				extent_len -= logical - extent_logical;
+				extent_logical = logical;
+			}
+			if (extent_logical + extent_len >
+			    logical + map->stripe_len) {
+				extent_len = logical + map->stripe_len -
+					     extent_logical;
+			}
+
+			extent_physical = extent_logical - logical + physical;
+			extent_dev = scrub_dev;
+			extent_mirror_num = mirror_num;
+			if (is_dev_replace)
+				scrub_remap_extent(fs_info, extent_logical,
+						   extent_len, &extent_physical,
+						   &extent_dev,
+						   &extent_mirror_num);
+
+			ret = btrfs_lookup_csums_range(csum_root,
+						       extent_logical,
+						       extent_logical +
+						       extent_len - 1,
+						       &sctx->csum_list, 1);
+			if (ret)
+				goto out;
+
+			ret = scrub_extent(sctx, map, extent_logical, extent_len,
+					   extent_physical, extent_dev, flags,
+					   generation, extent_mirror_num,
+					   extent_logical - logical + physical);
+
+			scrub_free_csums(sctx);
+
+			if (ret)
+				goto out;
+
+			if (extent_logical + extent_len <
+			    key.objectid + bytes) {
+				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
+					/*
+					 * loop until we find next data stripe
+					 * or we have finished all stripes.
+					 */
+loop:
+					physical += map->stripe_len;
+					ret = get_raid56_logic_offset(physical,
+							num, map, &logical,
+							&stripe_logical);
+					logical += base;
+
+					if (ret && physical < physical_end) {
+						stripe_logical += base;
+						stripe_end = stripe_logical +
+								increment;
+						ret = scrub_raid56_parity(sctx,
+							map, scrub_dev, ppath,
+							stripe_logical,
+							stripe_end);
+						if (ret)
+							goto out;
+						goto loop;
+					}
+				} else {
+					physical += map->stripe_len;
+					logical += increment;
+				}
+				if (logical < key.objectid + bytes) {
+					cond_resched();
+					goto again;
+				}
+
+				if (physical >= physical_end) {
+					stop_loop = 1;
+					break;
+				}
+			}
+next:
+			path->slots[0]++;
+		}
+		btrfs_release_path(path);
+skip:
+		logical += increment;
+		physical += map->stripe_len;
+		spin_lock(&sctx->stat_lock);
+		if (stop_loop)
+			sctx->stat.last_physical = map->stripes[num].physical +
+						   length;
+		else
+			sctx->stat.last_physical = physical;
+		spin_unlock(&sctx->stat_lock);
+		if (stop_loop)
+			break;
+	}
+out:
+	/* push queued extents */
+	scrub_submit(sctx);
+	mutex_lock(&sctx->wr_lock);
+	scrub_wr_submit(sctx);
+	mutex_unlock(&sctx->wr_lock);
+
+	blk_finish_plug(&plug);
+	btrfs_free_path(path);
+	btrfs_free_path(ppath);
+	return ret < 0 ? ret : 0;
+}
+
+static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
+					  struct btrfs_device *scrub_dev,
+					  u64 chunk_offset, u64 length,
+					  u64 dev_offset,
+					  struct btrfs_block_group_cache *cache,
+					  int is_dev_replace)
+{
+	struct btrfs_fs_info *fs_info = sctx->fs_info;
+	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
+	struct map_lookup *map;
+	struct extent_map *em;
+	int i;
+	int ret = 0;
+
+	read_lock(&map_tree->map_tree.lock);
+	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
+	read_unlock(&map_tree->map_tree.lock);
+
+	if (!em) {
+		/*
+		 * Might have been an unused block group deleted by the cleaner
+		 * kthread or relocation.
+		 */
+		spin_lock(&cache->lock);
+		if (!cache->removed)
+			ret = -EINVAL;
+		spin_unlock(&cache->lock);
+
+		return ret;
+	}
+
+	map = em->map_lookup;
+	if (em->start != chunk_offset)
+		goto out;
+
+	if (em->len < length)
+		goto out;
+
+	for (i = 0; i < map->num_stripes; ++i) {
+		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
+		    map->stripes[i].physical == dev_offset) {
+			ret = scrub_stripe(sctx, map, scrub_dev, i,
+					   chunk_offset, length,
+					   is_dev_replace);
+			if (ret)
+				goto out;
+		}
+	}
+out:
+	free_extent_map(em);
+
+	return ret;
+}
+
+static noinline_for_stack
+int scrub_enumerate_chunks(struct scrub_ctx *sctx,
+			   struct btrfs_device *scrub_dev, u64 start, u64 end,
+			   int is_dev_replace)
+{
+	struct btrfs_dev_extent *dev_extent = NULL;
+	struct btrfs_path *path;
+	struct btrfs_fs_info *fs_info = sctx->fs_info;
+	struct btrfs_root *root = fs_info->dev_root;
+	u64 length;
+	u64 chunk_offset;
+	int ret = 0;
+	int ro_set;
+	int slot;
+	struct extent_buffer *l;
+	struct btrfs_key key;
+	struct btrfs_key found_key;
+	struct btrfs_block_group_cache *cache;
+	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	path->reada = READA_FORWARD;
+	path->search_commit_root = 1;
+	path->skip_locking = 1;
+
+	key.objectid = scrub_dev->devid;
+	key.offset = 0ull;
+	key.type = BTRFS_DEV_EXTENT_KEY;
+
+	while (1) {
+		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+		if (ret < 0)
+			break;
+		if (ret > 0) {
+			if (path->slots[0] >=
+			    btrfs_header_nritems(path->nodes[0])) {
+				ret = btrfs_next_leaf(root, path);
+				if (ret < 0)
+					break;
+				if (ret > 0) {
+					ret = 0;
+					break;
+				}
+			} else {
+				ret = 0;
+			}
+		}
+
+		l = path->nodes[0];
+		slot = path->slots[0];
+
+		btrfs_item_key_to_cpu(l, &found_key, slot);
+
+		if (found_key.objectid != scrub_dev->devid)
+			break;
+
+		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
+			break;
+
+		if (found_key.offset >= end)
+			break;
+
+		if (found_key.offset < key.offset)
+			break;
+
+		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
+		length = btrfs_dev_extent_length(l, dev_extent);
+
+		if (found_key.offset + length <= start)
+			goto skip;
+
+		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
+
+		/*
+		 * get a reference on the corresponding block group to prevent
+		 * the chunk from going away while we scrub it
+		 */
+		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
+
+		/* some chunks are removed but not committed to disk yet,
+		 * continue scrubbing */
+		if (!cache)
+			goto skip;
+
+		/*
+		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
+		 * to avoid deadlock caused by:
+		 * btrfs_inc_block_group_ro()
+		 * -> btrfs_wait_for_commit()
+		 * -> btrfs_commit_transaction()
+		 * -> btrfs_scrub_pause()
+		 */
+		scrub_pause_on(fs_info);
+		ret = btrfs_inc_block_group_ro(cache);
+		if (!ret && is_dev_replace) {
+			/*
+			 * If we are doing a device replace wait for any tasks
+			 * that started dellaloc right before we set the block
+			 * group to RO mode, as they might have just allocated
+			 * an extent from it or decided they could do a nocow
+			 * write. And if any such tasks did that, wait for their
+			 * ordered extents to complete and then commit the
+			 * current transaction, so that we can later see the new
+			 * extent items in the extent tree - the ordered extents
+			 * create delayed data references (for cow writes) when
+			 * they complete, which will be run and insert the
+			 * corresponding extent items into the extent tree when
+			 * we commit the transaction they used when running
+			 * inode.c:btrfs_finish_ordered_io(). We later use
+			 * the commit root of the extent tree to find extents
+			 * to copy from the srcdev into the tgtdev, and we don't
+			 * want to miss any new extents.
+			 */
+			btrfs_wait_block_group_reservations(cache);
+			btrfs_wait_nocow_writers(cache);
+			ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
+						       cache->key.objectid,
+						       cache->key.offset);
+			if (ret > 0) {
+				struct btrfs_trans_handle *trans;
+
+				trans = btrfs_join_transaction(root);
+				if (IS_ERR(trans))
+					ret = PTR_ERR(trans);
+				else
+					ret = btrfs_commit_transaction(trans);
+				if (ret) {
+					scrub_pause_off(fs_info);
+					btrfs_put_block_group(cache);
+					break;
+				}
+			}
+		}
+		scrub_pause_off(fs_info);
+
+		if (ret == 0) {
+			ro_set = 1;
+		} else if (ret == -ENOSPC) {
+			/*
+			 * btrfs_inc_block_group_ro return -ENOSPC when it
+			 * failed in creating new chunk for metadata.
+			 * It is not a problem for scrub/replace, because
+			 * metadata are always cowed, and our scrub paused
+			 * commit_transactions.
+			 */
+			ro_set = 0;
+		} else {
+			btrfs_warn(fs_info,
+				   "failed setting block group ro: %d", ret);
+			btrfs_put_block_group(cache);
+			break;
+		}
+
+		btrfs_dev_replace_write_lock(&fs_info->dev_replace);
+		dev_replace->cursor_right = found_key.offset + length;
+		dev_replace->cursor_left = found_key.offset;
+		dev_replace->item_needs_writeback = 1;
+		btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
+		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
+				  found_key.offset, cache, is_dev_replace);
+
+		/*
+		 * flush, submit all pending read and write bios, afterwards
+		 * wait for them.
+		 * Note that in the dev replace case, a read request causes
+		 * write requests that are submitted in the read completion
+		 * worker. Therefore in the current situation, it is required
+		 * that all write requests are flushed, so that all read and
+		 * write requests are really completed when bios_in_flight
+		 * changes to 0.
+		 */
+		sctx->flush_all_writes = true;
+		scrub_submit(sctx);
+		mutex_lock(&sctx->wr_lock);
+		scrub_wr_submit(sctx);
+		mutex_unlock(&sctx->wr_lock);
+
+		wait_event(sctx->list_wait,
+			   atomic_read(&sctx->bios_in_flight) == 0);
+
+		scrub_pause_on(fs_info);
+
+		/*
+		 * must be called before we decrease @scrub_paused.
+		 * make sure we don't block transaction commit while
+		 * we are waiting pending workers finished.
+		 */
+		wait_event(sctx->list_wait,
+			   atomic_read(&sctx->workers_pending) == 0);
+		sctx->flush_all_writes = false;
+
+		scrub_pause_off(fs_info);
+
+		btrfs_dev_replace_write_lock(&fs_info->dev_replace);
+		dev_replace->cursor_left = dev_replace->cursor_right;
+		dev_replace->item_needs_writeback = 1;
+		btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
+
+		if (ro_set)
+			btrfs_dec_block_group_ro(cache);
+
+		/*
+		 * We might have prevented the cleaner kthread from deleting
+		 * this block group if it was already unused because we raced
+		 * and set it to RO mode first. So add it back to the unused
+		 * list, otherwise it might not ever be deleted unless a manual
+		 * balance is triggered or it becomes used and unused again.
+		 */
+		spin_lock(&cache->lock);
+		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
+		    btrfs_block_group_used(&cache->item) == 0) {
+			spin_unlock(&cache->lock);
+			btrfs_mark_bg_unused(cache);
+		} else {
+			spin_unlock(&cache->lock);
+		}
+
+		btrfs_put_block_group(cache);
+		if (ret)
+			break;
+		if (is_dev_replace &&
+		    atomic64_read(&dev_replace->num_write_errors) > 0) {
+			ret = -EIO;
+			break;
+		}
+		if (sctx->stat.malloc_errors > 0) {
+			ret = -ENOMEM;
+			break;
+		}
+skip:
+		key.offset = found_key.offset + length;
+		btrfs_release_path(path);
+	}
+
+	btrfs_free_path(path);
+
+	return ret;
+}
+
+static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
+					   struct btrfs_device *scrub_dev)
+{
+	int	i;
+	u64	bytenr;
+	u64	gen;
+	int	ret;
+	struct btrfs_fs_info *fs_info = sctx->fs_info;
+
+	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
+		return -EIO;
+
+	/* Seed devices of a new filesystem has their own generation. */
+	if (scrub_dev->fs_devices != fs_info->fs_devices)
+		gen = scrub_dev->generation;
+	else
+		gen = fs_info->last_trans_committed;
+
+	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
+		bytenr = btrfs_sb_offset(i);
+		if (bytenr + BTRFS_SUPER_INFO_SIZE >
+		    scrub_dev->commit_total_bytes)
+			break;
+
+		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
+				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
+				  NULL, 1, bytenr);
+		if (ret)
+			return ret;
+	}
+	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
+
+	return 0;
+}
+
+/*
+ * get a reference count on fs_info->scrub_workers. start worker if necessary
+ */
+static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
+						int is_dev_replace)
+{
+	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
+	int max_active = fs_info->thread_pool_size;
+
+	if (fs_info->scrub_workers_refcnt == 0) {
+		fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
+				flags, is_dev_replace ? 1 : max_active, 4);
+		if (!fs_info->scrub_workers)
+			goto fail_scrub_workers;
+
+		fs_info->scrub_wr_completion_workers =
+			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
+					      max_active, 2);
+		if (!fs_info->scrub_wr_completion_workers)
+			goto fail_scrub_wr_completion_workers;
+
+		fs_info->scrub_parity_workers =
+			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
+					      max_active, 2);
+		if (!fs_info->scrub_parity_workers)
+			goto fail_scrub_parity_workers;
+	}
+	++fs_info->scrub_workers_refcnt;
+	return 0;
+
+fail_scrub_parity_workers:
+	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
+fail_scrub_wr_completion_workers:
+	btrfs_destroy_workqueue(fs_info->scrub_workers);
+fail_scrub_workers:
+	return -ENOMEM;
+}
+
+static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
+{
+	if (--fs_info->scrub_workers_refcnt == 0) {
+		btrfs_destroy_workqueue(fs_info->scrub_workers);
+		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
+		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
+	}
+	WARN_ON(fs_info->scrub_workers_refcnt < 0);
+}
+
+int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
+		    u64 end, struct btrfs_scrub_progress *progress,
+		    int readonly, int is_dev_replace)
+{
+	struct scrub_ctx *sctx;
+	int ret;
+	struct btrfs_device *dev;
+
+	if (btrfs_fs_closing(fs_info))
+		return -EINVAL;
+
+	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
+		/*
+		 * in this case scrub is unable to calculate the checksum
+		 * the way scrub is implemented. Do not handle this
+		 * situation at all because it won't ever happen.
+		 */
+		btrfs_err(fs_info,
+			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
+		       fs_info->nodesize,
+		       BTRFS_STRIPE_LEN);
+		return -EINVAL;
+	}
+
+	if (fs_info->sectorsize != PAGE_SIZE) {
+		/* not supported for data w/o checksums */
+		btrfs_err_rl(fs_info,
+			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
+		       fs_info->sectorsize, PAGE_SIZE);
+		return -EINVAL;
+	}
+
+	if (fs_info->nodesize >
+	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
+	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
+		/*
+		 * would exhaust the array bounds of pagev member in
+		 * struct scrub_block
+		 */
+		btrfs_err(fs_info,
+			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
+		       fs_info->nodesize,
+		       SCRUB_MAX_PAGES_PER_BLOCK,
+		       fs_info->sectorsize,
+		       SCRUB_MAX_PAGES_PER_BLOCK);
+		return -EINVAL;
+	}
+
+
+	mutex_lock(&fs_info->fs_devices->device_list_mutex);
+	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
+	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
+		     !is_dev_replace)) {
+		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
+		return -ENODEV;
+	}
+
+	if (!is_dev_replace && !readonly &&
+	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
+		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
+		btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
+				rcu_str_deref(dev->name));
+		return -EROFS;
+	}
+
+	mutex_lock(&fs_info->scrub_lock);
+	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
+	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
+		mutex_unlock(&fs_info->scrub_lock);
+		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
+		return -EIO;
+	}
+
+	btrfs_dev_replace_read_lock(&fs_info->dev_replace);
+	if (dev->scrub_ctx ||
+	    (!is_dev_replace &&
+	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
+		btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
+		mutex_unlock(&fs_info->scrub_lock);
+		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
+		return -EINPROGRESS;
+	}
+	btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
+
+	ret = scrub_workers_get(fs_info, is_dev_replace);
+	if (ret) {
+		mutex_unlock(&fs_info->scrub_lock);
+		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
+		return ret;
+	}
+
+	sctx = scrub_setup_ctx(dev, is_dev_replace);
+	if (IS_ERR(sctx)) {
+		mutex_unlock(&fs_info->scrub_lock);
+		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
+		scrub_workers_put(fs_info);
+		return PTR_ERR(sctx);
+	}
+	sctx->readonly = readonly;
+	dev->scrub_ctx = sctx;
+	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
+
+	/*
+	 * checking @scrub_pause_req here, we can avoid
+	 * race between committing transaction and scrubbing.
+	 */
+	__scrub_blocked_if_needed(fs_info);
+	atomic_inc(&fs_info->scrubs_running);
+	mutex_unlock(&fs_info->scrub_lock);
+
+	if (!is_dev_replace) {
+		/*
+		 * by holding device list mutex, we can
+		 * kick off writing super in log tree sync.
+		 */
+		mutex_lock(&fs_info->fs_devices->device_list_mutex);
+		ret = scrub_supers(sctx, dev);
+		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
+	}
+
+	if (!ret)
+		ret = scrub_enumerate_chunks(sctx, dev, start, end,
+					     is_dev_replace);
+
+	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
+	atomic_dec(&fs_info->scrubs_running);
+	wake_up(&fs_info->scrub_pause_wait);
+
+	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
+
+	if (progress)
+		memcpy(progress, &sctx->stat, sizeof(*progress));
+
+	mutex_lock(&fs_info->scrub_lock);
+	dev->scrub_ctx = NULL;
+	scrub_workers_put(fs_info);
+	mutex_unlock(&fs_info->scrub_lock);
+
+	scrub_put_ctx(sctx);
+
+	return ret;
+}
+
+void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
+{
+	mutex_lock(&fs_info->scrub_lock);
+	atomic_inc(&fs_info->scrub_pause_req);
+	while (atomic_read(&fs_info->scrubs_paused) !=
+	       atomic_read(&fs_info->scrubs_running)) {
+		mutex_unlock(&fs_info->scrub_lock);
+		wait_event(fs_info->scrub_pause_wait,
+			   atomic_read(&fs_info->scrubs_paused) ==
+			   atomic_read(&fs_info->scrubs_running));
+		mutex_lock(&fs_info->scrub_lock);
+	}
+	mutex_unlock(&fs_info->scrub_lock);
+}
+
+void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
+{
+	atomic_dec(&fs_info->scrub_pause_req);
+	wake_up(&fs_info->scrub_pause_wait);
+}
+
+int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
+{
+	mutex_lock(&fs_info->scrub_lock);
+	if (!atomic_read(&fs_info->scrubs_running)) {
+		mutex_unlock(&fs_info->scrub_lock);
+		return -ENOTCONN;
+	}
+
+	atomic_inc(&fs_info->scrub_cancel_req);
+	while (atomic_read(&fs_info->scrubs_running)) {
+		mutex_unlock(&fs_info->scrub_lock);
+		wait_event(fs_info->scrub_pause_wait,
+			   atomic_read(&fs_info->scrubs_running) == 0);
+		mutex_lock(&fs_info->scrub_lock);
+	}
+	atomic_dec(&fs_info->scrub_cancel_req);
+	mutex_unlock(&fs_info->scrub_lock);
+
+	return 0;
+}
+
+int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
+			   struct btrfs_device *dev)
+{
+	struct scrub_ctx *sctx;
+
+	mutex_lock(&fs_info->scrub_lock);
+	sctx = dev->scrub_ctx;
+	if (!sctx) {
+		mutex_unlock(&fs_info->scrub_lock);
+		return -ENOTCONN;
+	}
+	atomic_inc(&sctx->cancel_req);
+	while (dev->scrub_ctx) {
+		mutex_unlock(&fs_info->scrub_lock);
+		wait_event(fs_info->scrub_pause_wait,
+			   dev->scrub_ctx == NULL);
+		mutex_lock(&fs_info->scrub_lock);
+	}
+	mutex_unlock(&fs_info->scrub_lock);
+
+	return 0;
+}
+
+int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
+			 struct btrfs_scrub_progress *progress)
+{
+	struct btrfs_device *dev;
+	struct scrub_ctx *sctx = NULL;
+
+	mutex_lock(&fs_info->fs_devices->device_list_mutex);
+	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
+	if (dev)
+		sctx = dev->scrub_ctx;
+	if (sctx)
+		memcpy(progress, &sctx->stat, sizeof(*progress));
+	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
+
+	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
+}
+
+static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
+			       u64 extent_logical, u64 extent_len,
+			       u64 *extent_physical,
+			       struct btrfs_device **extent_dev,
+			       int *extent_mirror_num)
+{
+	u64 mapped_length;
+	struct btrfs_bio *bbio = NULL;
+	int ret;
+
+	mapped_length = extent_len;
+	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
+			      &mapped_length, &bbio, 0);
+	if (ret || !bbio || mapped_length < extent_len ||
+	    !bbio->stripes[0].dev->bdev) {
+		btrfs_put_bbio(bbio);
+		return;
+	}
+
+	*extent_physical = bbio->stripes[0].physical;
+	*extent_mirror_num = bbio->mirror_num;
+	*extent_dev = bbio->stripes[0].dev;
+	btrfs_put_bbio(bbio);
+}